title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Three issues impeding communication of statistical methodology for incomplete data
We identify three issues permeating the literature on statistical methodology for incomplete data written for non-specialist statisticians and other investigators. The first is a mathematical defect in the notation Yobs, Ymis used to partition the data into observed and missing components. The second are issues concerning the notation `P(R|Yobs, Ymis)=P(R|Yobs)' used for communicating the definition of missing at random (MAR). And the third is the framing of ignorability by emulating complete-data methods exactly, rather than treating the question of ignorability on its own merits. These issues have been present in the literature for a long time, and have simple remedies. The purpose of this paper is to raise awareness of these issues, and to explain how they can be remedied.
stat
Regularization Strategies for Quantile Regression
We investigate different methods for regularizing quantile regression when predicting either a subset of quantiles or the full inverse CDF. We show that minimizing an expected pinball loss over a continuous distribution of quantiles is a good regularizer even when only predicting a specific quantile. For predicting multiple quantiles, we propose achieving the classic goal of non-crossing quantiles by using deep lattice networks that treat the quantile as a monotonic input feature, and we discuss why monotonicity on other features is an apt regularizer for quantile regression. We show that lattice models enable regularizing the predicted distribution to a location-scale family. Lastly, we propose applying rate constraints to improve the calibration of the quantile predictions on specific subsets of interest and improve fairness metrics. We demonstrate our contributions on simulations, benchmark datasets, and real quantile regression problems.
stat
Outlier Detection for Functional Data with R Package fdaoutlier
Outlier detection is one of the standard exploratory analysis tasks in functional data analysis. We present the R package fdaoutlier which contains implementations of some of the latest techniques for detecting functional outliers. The package makes it easy to detect different types of outliers (magnitude, shape, and amplitude) in functional data, and some of the implemented methods can be applied to both univariate and multivariate functional data. We illustrate the main functionality of the R package with common functional datasets in the literature.
stat
Towards Optimal Transport with Global Invariances
Many problems in machine learning involve calculating correspondences between sets of objects, such as point clouds or images. Discrete optimal transport provides a natural and successful approach to such tasks whenever the two sets of objects can be represented in the same space, or at least distances between them can be directly evaluated. Unfortunately neither requirement is likely to hold when object representations are learned from data. Indeed, automatically derived representations such as word embeddings are typically fixed only up to some global transformations, for example, reflection or rotation. As a result, pairwise distances across two such instances are ill-defined without specifying their relative transformation. In this work, we propose a general framework for optimal transport in the presence of latent global transformations. We cast the problem as a joint optimization over transport couplings and transformations chosen from a flexible class of invariances, propose algorithms to solve it, and show promising results in various tasks, including a popular unsupervised word translation benchmark.
stat
Flow Contrastive Estimation of Energy-Based Models
This paper studies a training method to jointly estimate an energy-based model and a flow-based model, in which the two models are iteratively updated based on a shared adversarial value function. This joint training method has the following traits. (1) The update of the energy-based model is based on noise contrastive estimation, with the flow model serving as a strong noise distribution. (2) The update of the flow model approximately minimizes the Jensen-Shannon divergence between the flow model and the data distribution. (3) Unlike generative adversarial networks (GAN) which estimates an implicit probability distribution defined by a generator model, our method estimates two explicit probabilistic distributions on the data. Using the proposed method we demonstrate a significant improvement on the synthesis quality of the flow model, and show the effectiveness of unsupervised feature learning by the learned energy-based model. Furthermore, the proposed training method can be easily adapted to semi-supervised learning. We achieve competitive results to the state-of-the-art semi-supervised learning methods.
stat
Detecting Multiple Replicating Signals using Adaptive Filtering Procedures
Replicability is a fundamental quality of scientific discoveries: we are interested in those signals that are detectable in different laboratories, study populations, across time etc. Unlike meta-analysis which accounts for experimental variability but does not guarantee replicability, testing a partial conjunction (PC) null aims specifically to identify the signals that are discovered in multiple studies. In many contemporary applications, e.g., comparing multiple high-throughput genetic experiments, a large number $M$ of PC nulls need to be tested simultaneously, calling for a multiple comparisons correction. However, standard multiple testing adjustments on the $M$ PC $p$-values can be severely conservative, especially when $M$ is large and the signals are sparse. We introduce AdaFilter, a new multiple testing procedure that increases power by adaptively filtering out unlikely candidates of PC nulls. We prove that AdaFilter can control FWER and FDR as long as data across studies are independent, and has much higher power than other existing methods. We illustrate the application of AdaFilter with three examples: microarray studies of Duchenne muscular dystrophy, single-cell RNA sequencing of T cells in lung cancer tumors and GWAS for metabolomics.
stat
Predictive Uncertainty Quantification with Compound Density Networks
Despite the huge success of deep neural networks (NNs), finding good mechanisms for quantifying their prediction uncertainty is still an open problem. Bayesian neural networks are one of the most popular approaches to uncertainty quantification. On the other hand, it was recently shown that ensembles of NNs, which belong to the class of mixture models, can be used to quantify prediction uncertainty. In this paper, we build upon these two approaches. First, we increase the mixture model's flexibility by replacing the fixed mixing weights by an adaptive, input-dependent distribution (specifying the probability of each component) represented by NNs, and by considering uncountably many mixture components. The resulting class of models can be seen as the continuous counterpart to mixture density networks and is therefore referred to as compound density networks (CDNs). We employ both maximum likelihood and variational Bayesian inference to train CDNs, and empirically show that they yield better uncertainty estimates on out-of-distribution data and are more robust to adversarial examples than the previous approaches.
stat
The Gaussian Neural Process
Neural Processes (NPs; Garnelo et al., 2018a,b) are a rich class of models for meta-learning that map data sets directly to predictive stochastic processes. We provide a rigorous analysis of the standard maximum-likelihood objective used to train conditional NPs. Moreover, we propose a new member to the Neural Process family called the Gaussian Neural Process (GNP), which models predictive correlations, incorporates translation equivariance, provides universal approximation guarantees, and demonstrates encouraging performance.
stat
Interpretable feature subset selection: A Shapley value based approach
For feature selection and related problems, we introduce the notion of classification game, a cooperative game, with features as players and hinge loss based characteristic function and relate a feature's contribution to Shapley value based error apportioning (SVEA) of total training error. Our major contribution is ($\star$) to show that for any dataset the threshold 0 on SVEA value identifies feature subset whose joint interactions for label prediction is significant or those features that span a subspace where the data is predominantly lying. In addition, our scheme ($\star$) identifies the features on which Bayes classifier doesn't depend but any surrogate loss function based finite sample classifier does; this contributes to the excess $0$-$1$ risk of such a classifier, ($\star$) estimates unknown true hinge risk of a feature, and ($\star$) relate the stability property of an allocation and negative valued SVEA by designing the analogue of core of classification game. Due to Shapley value's computationally expensive nature, we build on a known Monte Carlo based approximation algorithm that computes characteristic function (Linear Programs) only when needed. We address the potential sample bias problem in feature selection by providing interval estimates for SVEA values obtained from multiple sub-samples. We illustrate all the above aspects on various synthetic and real datasets and show that our scheme achieves better results than existing recursive feature elimination technique and ReliefF in most cases. Our theoretically grounded classification game in terms of well defined characteristic function offers interpretability (which we formalize in terms of final task) and explainability of our framework, including identification of important features.
stat
A General Framework for the Derandomization of PAC-Bayesian Bounds
PAC-Bayesian bounds are known to be tight and informative when studying the generalization ability of randomized classifiers. However, when applied to some family of deterministic models such as neural networks, they require a loose and costly derandomization step. As an alternative to this step, we introduce three new PAC-Bayesian generalization bounds that have the originality to be pointwise, meaning that they provide guarantees over one single hypothesis instead of the usual averaged analysis. Our bounds are rather general, potentially parameterizable, and provide novel insights for various machine learning settings that rely on randomized algorithms. We illustrate the interest of our theoretical result for the analysis of neural network training.
stat
Generalization and Memorization: The Bias Potential Model
Models for learning probability distributions such as generative models and density estimators behave quite differently from models for learning functions. One example is found in the memorization phenomenon, namely the ultimate convergence to the empirical distribution, that occurs in generative adversarial networks (GANs). For this reason, the issue of generalization is more subtle than that for supervised learning. For the bias potential model, we show that dimension-independent generalization accuracy is achievable if early stopping is adopted, despite that in the long term, the model either memorizes the samples or diverges.
stat
The sharp, the flat and the shallow: Can weakly interacting agents learn to escape bad minima?
An open problem in machine learning is whether flat minima generalize better and how to compute such minima efficiently. This is a very challenging problem. As a first step towards understanding this question we formalize it as an optimization problem with weakly interacting agents. We review appropriate background material from the theory of stochastic processes and provide insights that are relevant to practitioners. We propose an algorithmic framework for an extended stochastic gradient Langevin dynamics and illustrate its potential. The paper is written as a tutorial, and presents an alternative use of multi-agent learning. Our primary focus is on the design of algorithms for machine learning applications; however the underlying mathematical framework is suitable for the understanding of large scale systems of agent based models that are popular in the social sciences, economics and finance.
stat
Hierarchical Causal Bandit
Causal bandit is a nascent learning model where an agent sequentially experiments in a causal network of variables, in order to identify the reward-maximizing intervention. Despite the model's wide applicability, existing analytical results are largely restricted to a parallel bandit version where all variables are mutually independent. We introduce in this work the hierarchical causal bandit model as a viable path towards understanding general causal bandits with dependent variables. The core idea is to incorporate a contextual variable that captures the interaction among all variables with direct effects. Using this hierarchical framework, we derive sharp insights on algorithmic design in causal bandits with dependent arms and obtain nearly matching regret bounds in the case of a binary context.
stat
Low-rank Tensor Estimation via Riemannian Gauss-Newton: Statistical Optimality and Second-Order Convergence
In this paper, we consider the estimation of a low Tucker rank tensor from a number of noisy linear measurements. The general problem covers many specific examples arising from applications, including tensor regression, tensor completion, and tensor PCA/SVD. We propose a Riemannian Gauss-Newton (RGN) method with fast implementations for low Tucker rank tensor estimation. Different from the generic (super)linear convergence guarantee of RGN in the literature, we prove the first quadratic convergence guarantee of RGN for low-rank tensor estimation under some mild conditions. A deterministic estimation error lower bound, which matches the upper bound, is provided that demonstrates the statistical optimality of RGN. The merit of RGN is illustrated through two machine learning applications: tensor regression and tensor SVD. Finally, we provide the simulation results to corroborate our theoretical findings.
stat
Augmented Ensemble MCMC sampling in Factorial Hidden Markov Models
Bayesian inference for factorial hidden Markov models is challenging due to the exponentially sized latent variable space. Standard Monte Carlo samplers can have difficulties effectively exploring the posterior landscape and are often restricted to exploration around localised regions that depend on initialisation. We introduce a general purpose ensemble Markov Chain Monte Carlo (MCMC) technique to improve on existing poorly mixing samplers. This is achieved by combining parallel tempering and an auxiliary variable scheme to exchange information between the chains in an efficient way. The latter exploits a genetic algorithm within an augmented Gibbs sampler. We compare our technique with various existing samplers in a simulation study as well as in a cancer genomics application, demonstrating the improvements obtained by our augmented ensemble approach.
stat
Density Estimation on a Network
This paper develops a novel approach to density estimation on a network. We formulate nonparametric density estimation on a network as a nonparametric regression problem by binning. Nonparametric regression using local polynomial kernel-weighted least squares have been studied rigorously, and its asymptotic properties make it superior to kernel estimators such as the Nadaraya-Watson estimator. When applied to a network, the best estimator near a vertex depends on the amount of smoothness at the vertex. Often, there are no compelling reasons to assume that a density will be continuous or discontinuous at a vertex, hence a data driven approach is proposed. To estimate the density in a neighborhood of a vertex, we propose a two-step procedure. The first step of this pretest estimator fits a separate local polynomial regression on each edge using data only on that edge, and then tests for equality of the estimates at the vertex. If the null hypothesis is not rejected, then the second step re-estimates the regression function in a small neighborhood of the vertex, subject to a joint equality constraint. Since the derivative of the density may be discontinuous at the vertex, we propose a piecewise polynomial local regression estimate to model the change in slope. We study in detail the special case of local piecewise linear regression and derive the leading bias and variance terms using weighted least squares theory. We show that the proposed approach will remove the bias near a vertex that has been noted for existing methods, which typically do not allow for discontinuity at vertices. For a fixed network, the proposed method scales sub-linearly with sample size and it can be extended to regression and varying coefficient models on a network. We demonstrate the workings of the proposed model by simulation studies and apply it to a dendrite network data set.
stat
"Old Techniques for New Times": the RMaCzek package for producing Czekanowski's Diagrams
Inspired by the MaCzek Visual Basic program we provide an R package, RMaCzek, that produces Czekanowski's diagram. Our package permits any seriation and distance method the user provides. In this paper we focus on the OLO and QAP_2SUM methods from the seriation package. We illustrate the possibilities of our package with three anthropological studies, one socio-economical one and a phylogenetically motivated simulation study.
stat
Doubly Robust Nonparametric Instrumental Variable Estimators for Survival Outcomes
Instrumental variable (IV) methods allow us the opportunity to address unmeasured confounding in causal inference. However, most IV methods are only applicable to discrete or continuous outcomes with very few IV methods for censored survival outcomes. In this work we propose nonparametric estimators for the local average treatment effect on survival probabilities under both nonignorable and ignorable censoring. We provide an efficient influence function-based estimator and a simple estimation procedure when the IV is either binary or continuous. The proposed estimators possess double-robustness properties and can easily incorporate nonparametric estimation using machine learning tools. In simulation studies, we demonstrate the flexibility and efficiency of our proposed estimators under various plausible scenarios. We apply our method to the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial for estimating the causal effect of screening on survival probabilities and investigate the causal contrasts between the two interventions under different censoring assumptions.
stat
Asymptotically optimal sequential FDR and pFDR control with (or without) prior information on the number of signals
We investigate asymptotically optimal multiple testing procedures for streams of sequential data in the context of prior information on the number of false null hypotheses ("signals"). We show that the "gap" and "gap-intersection" procedures, recently proposed and shown by Song and Fellouris (2017, Electron. J. Statist.) to be asymptotically optimal for controlling type 1 and 2 familywise error rates (FWEs), are also asymptotically optimal for controlling FDR/FNR when their critical values are appropriately adjusted. Generalizing this result, we show that these procedures, again with appropriately adjusted critical values, are asymptotically optimal for controlling any multiple testing error metric that is bounded between multiples of FWE in a certain sense. This class of metrics includes FDR/FNR but also pFDR/pFNR, the per-comparison and per-family error rates, and the false positive rate. Our analysis includes asymptotic regimes in which the number of null hypotheses approaches $\infty$ as the type 1 and 2 error metrics approach $0$.
stat
When stakes are high: balancing accuracy and transparency with Model-Agnostic Interpretable Data-driven suRRogates
Highly regulated industries, like banking and insurance, ask for transparent decision-making algorithms. At the same time, competitive markets are pushing for the use of complex black box models. We therefore present a procedure to develop a Model-Agnostic Interpretable Data-driven suRRogate (maidrr) suited for structured tabular data. Knowledge is extracted from a black box via partial dependence effects. These are used to perform smart feature engineering by grouping variable values. This results in a segmentation of the feature space with automatic variable selection. A transparent generalized linear model (GLM) is fit to the features in categorical format and their relevant interactions. We demonstrate our R package maidrr with a case study on general insurance claim frequency modeling for six publicly available datasets. Our maidrr GLM closely approximates a gradient boosting machine (GBM) black box and outperforms both a linear and tree surrogate as benchmarks.
stat
Spatial Analysis Made Easy with Linear Regression and Kernels
Kernel methods are an incredibly popular technique for extending linear models to non-linear problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression), before progressing to a review of random Fourier features (RFF), a set of methods that enable the scaling of kernel methods to big datasets. At each stage, the associated R code is provided. We begin by illustrating how the dual representation of ridge regression relies solely on inner products and permits the use of kernels to map the data into high-dimensional spaces. We progress to RFFs, showing how only a few lines of code provides a significant computational speed-up for a negligible cost to accuracy. We provide an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them.
stat
A Robust Statistical method to Estimate the Intervention Effect with Longitudinal Data
Segmented regression is a standard statistical procedure used to estimate the effect of a policy intervention on time series outcomes. This statistical method assumes the normality of the outcome variable, a large sample size, no autocorrelation in the observations, and a linear trend over time. Also, segmented regression is very sensitive to outliers. In a small sample study, if the outcome variable does not follow a Gaussian distribution, then using segmented regression to estimate the intervention effect leads to incorrect inferences. To address the small sample problem and non-normality in the outcome variable, including outliers, we describe and develop a robust statistical method to estimate the policy intervention effect in a series of longitudinal data. A simulation study is conducted to demonstrate the effect of outliers and non-normality in the outcomes by calculating the power of the test statistics with the segmented regression and the proposed robust statistical methods. Moreover, since finding the sampling distribution of the proposed robust statistic is analytically difficult, we use a nonparametric bootstrap technique to study the properties of the sampling distribution and make statistical inferences. Simulation studies show that the proposed method has more power than the standard t-test used in segmented regression analysis under the non-normality error distribution. Finally, we use the developed technique to estimate the intervention effect of the Istanbul Declaration on illegal organ activities. The robust method detected more significant effects compared to the standard method and provided shorter confidence intervals.
stat
Bayesian Optimization for Materials Design with Mixed Quantitative and Qualitative Variables
Although Bayesian Optimization (BO) has been employed for accelerating materials design in computational materials engineering, existing works are restricted to problems with quantitative variables. However, real designs of materials systems involve both qualitative and quantitative design variables representing material compositions, microstructure morphology, and processing conditions. For mixed-variable problems, existing Bayesian Optimization (BO) approaches represent qualitative factors by dummy variables first and then fit a standard Gaussian process (GP) model with numerical variables as the surrogate model. This approach is restrictive theoretically and fails to capture complex correlations between qualitative levels. We present in this paper the integration of a novel latent-variable (LV) approach for mixed-variable GP modeling with the BO framework for materials design. LVGP is a fundamentally different approach that maps qualitative design variables to underlying numerical LV in GP, which has strong physical justification. It provides flexible parameterization and representation of qualitative factors and shows superior modeling accuracy compared to the existing methods. We demonstrate our approach through testing with numerical examples and materials design examples. It is found that in all test examples the mapped LVs provide intuitive visualization and substantial insight into the nature and effects of the qualitative factors. Though materials designs are used as examples, the method presented is generic and can be utilized for other mixed variable design optimization problems that involve expensive physics-based simulations.
stat
Bayesian Fusion of Data Partitioned Particle Estimates
We present a Bayesian data fusion method to approximate a posterior distribution from an ensemble of particle estimates that only have access to subsets of the data. Our approach relies on approximate probabilistic inference of model parameters through Monte Carlo methods, followed by an update and resample scheme related to multiple importance sampling to combine information from the initial estimates. We show the method is convergent in the particle limit and directly suited to application on multi-sensor data fusion problems by demonstrating efficacy on a multi-sensor Keplerian orbit determination problem and a bearings-only tracking problem.
stat
Histopathological imaging features- versus molecular measurements-based cancer prognosis modeling
For most if not all cancers, prognosis is of significant importance, and extensive modeling research has been conducted. With the genetic nature of cancer, in the past two decades, multiple types of molecular data (such as gene expressions and DNA mutations) have been explored. More recently, histopathological imaging data, which is routinely collected in biopsy, has been shown as informative for modeling prognosis. In this study, using the TCGA LUAD and LUSC data as a showcase, we examine and compare modeling lung cancer overall survival using gene expressions versus histopathological imaging features. High-dimensional regularization methods are adopted for estimation and selection. Our analysis shows that gene expressions have slightly better prognostic performance. In addition, most of the gene expressions are found to be weakly correlated imaging features. It is expected that this study can provide some insight into utilizing the two types of important data in cancer prognosis modeling and into lung cancer overall survival.
stat
Variational Integrator Networks for Physically Structured Embeddings
Learning workable representations of dynamical systems is becoming an increasingly important problem in a number of application areas. By leveraging recent work connecting deep neural networks to systems of differential equations, we propose \emph{variational integrator networks}, a class of neural network architectures designed to preserve the geometric structure of physical systems. This class of network architectures facilitates accurate long-term prediction, interpretability, and data-efficient learning, while still remaining highly flexible and capable of modeling complex behavior. We demonstrate that they can accurately learn dynamical systems from both noisy observations in phase space and from image pixels within which the unknown dynamics are embedded.
stat
Maximum $\log_q$ Likelihood Estimation for Parameters of Weibull Distribution and Properties: Monte Carlo Simulation
The maximum ${\log}_q$ likelihood estimation method is a generalization of the known maximum $\log$ likelihood method to overcome the problem for modeling non-identical observations (inliers and outliers). The parameter $q$ is a tuning constant to manage the modeling capability. Weibull is a flexible and popular distribution for problems in engineering. In this study, this method is used to estimate the parameters of Weibull distribution when non-identical observations exist. Since the main idea is based on modeling capability of objective function $\rho(x;\boldsymbol{\theta})=\log_q\big[f(x;\boldsymbol{\theta})\big]$, we observe that the finiteness of score functions cannot play a role in the robust estimation for inliers. The properties of Weibull distribution are examined. In the numerical experiment, the parameters of Weibull distribution are estimated by $\log_q$ and its special form, $\log$, likelihood methods if the different designs of contamination into underlying Weibull distribution are applied. The optimization is performed via genetic algorithm. The modeling competence of $\rho(x;\boldsymbol{\theta})$ and insensitiveness to non-identical observations are observed by Monte Carlo simulation. The value of $q$ can be chosen by use of the mean squared error in simulation and the $p$-value of Kolmogorov-Smirnov test statistic used for evaluation of fitting competence. Thus, we can overcome the problem about determining of the value of $q$ for real data sets.
stat
Implicit bias of gradient descent for mean squared error regression with wide neural networks
We investigate gradient descent training of wide neural networks and the corresponding implicit bias in function space. Focusing on 1D regression, we show that the solution of training a width-$n$ shallow ReLU network is within $n^{- 1/2}$ of the function which fits the training data and whose difference from initialization has smallest 2-norm of the second derivative weighted by $1/\zeta$. The curvature penalty function $1/\zeta$ is expressed in terms of the probability distribution that is utilized to initialize the network parameters, and we compute it explicitly for various common initialization procedures. For instance, asymmetric initialization with a uniform distribution yields a constant curvature penalty, and thence the solution function is the natural cubic spline interpolation of the training data. The statement generalizes to the training trajectories, which in turn are captured by trajectories of spatially adaptive smoothing splines with decreasing regularization strength.
stat
Laplace approximation for fast Bayesian inference in generalized additive models based on penalized regression splines
Generalized additive models (GAMs) are a well-established statistical tool for modeling complex nonlinear relationships between covariates and a response assumed to have a conditional distribution in the exponential family. In this article, P-splines and the Laplace approximation are coupled for flexible and fast approximate Bayesian inference in GAMs. The proposed Laplace-P-spline model contributes to the development of a new methodology to explore the posterior penalty space by considering a deterministic grid-based strategy or a Markov chain sampler, depending on the number of smooth additive terms in the predictor. Our approach has the merit of relying on closed form analytical expressions for the gradient and Hessian of the approximate posterior penalty vector, which enables to construct accurate posterior pointwise and credible set estimators for latent field variables at a relatively low computational budget even for a large number of smooth additive components. Based upon simple Gaussian approximations of the conditional latent field posterior, the suggested methodology enjoys excellent statistical properties. The performance of the Laplace-P-spline model is confirmed through different simulation scenarios and the method is illustrated on two real datasets.
stat
Incorporating Open Data into Introductory Courses in Statistics
The 2016 Guidelines for Assessment and Instruction in Statistics Education (GAISE) College Report emphasized six recommendations to teach introductory courses in statistics. Among them: use of real data with context and purpose. Many educators have created databases consisting of multiple data sets for use in class; sometimes making hundreds of data sets available. Yet `the context and purpose' component of the data may remain elusive if just a generic database is made available. We describe the use of open data in introductory courses. Countries and cities continue to share data through open data portals. Hence, educators can find regional data that engages their students more effectively. We present excerpts from case studies that show the application of statistical methods to data on: crime, housing, rainfall, tourist travel, and others. Data wrangling and discussion of results are recognized as important case study components. Thus the open data based case studies attend most GAISE College Report recommendations. Reproducible \textsf{R} code is made available for each case study. Example uses of open data in more advanced courses in statistics are also described.
stat
Generalizing the log-Moyal distribution and regression models for heavy tailed loss data
Catastrophic loss data are known to be heavy-tailed. Practitioners then need models that are able to capture both tail and modal parts of claim data. To this purpose, a new parametric family of loss distributions is proposed as a gamma mixture of the generalized log-Moyal distribution from Bhati and Ravi (2018), termed the generalized log-Moyal gamma distribution (GLMGA). We discuss the probabilistic characteristics of the GLMGA, and statistical estimation of the parameters through maximum likelihood. While the GLMGA distribution is a special case of the GB2 distribution, we show that this simpler model is effective in regression modelling of large and modal loss data. A fire claim data set reported in Cummins et al. (1990) and a Chinese earthquake loss data set are used to illustrate the applicability of the proposed model.
stat
The effect of short-term exposure to the natural environment on depressive mood: A systematic review and meta-analysis
Research suggests that exposure to the natural environment can improve mood, however, current reviews are limited in scope and there is little understanding of moderators. We aimed to conduct a comprehensive systematic review and meta-analysis of the evidence for the effect of short-term exposure to the natural environment on depressive mood. Five databases were systematically searched for relevant studies published up to March 2018. Risk of bias was evaluated using the Cochrane Risk of Bias (ROB) tool 1.0 and the Risk of Bias in Non-Randomised Studies of Interventions (ROBINS-I) tool where appropriate. The GRADE approach was used to assess the quality of evidence overall. A random-effects meta-analysis was performed. 20 potential moderators of the effect size were coded and the machine learning-based MetaForest algorithm was used to identify relevant moderators. These were then entered into a meta-regression. 33 studies met the inclusion criteria. Effect sizes ranged from -2.30 to 0.84, with a pooled effect size of $\gamma$ = -0.30 95% CI [-0.50 to -0.10]. However, there was significant residual heterogeneity between studies and risk of bias was high. Type of natural environment, type of built environment, gender mix of the sample, and region of study origin, among others, were identified as relevant moderators but were not significant when entered in a meta-regression. Quality of evidence was rated very low to low. An assessment of publication bias was inconclusive. A small effect was found for reduction in depressive mood following exposure to the natural environment. However, the high risk of bias and low quality of studies limits confidence in the results. The variation in effect size also remains largely unexplained. It is recommended that future studies make use of reporting guidelines and aim to reduce the potential for bias where possible.
stat
OmicsMapNet: Transforming omics data to take advantage of Deep Convolutional Neural Network for discovery
We developed OmicsMapNet approach to take advantage of existing deep leaning frameworks to analyze high-dimensional omics data as 2-dimensional images. The omics data of individual samples were first rearranged into 2D images in which molecular features related in functions, ontologies, or other relationships were organized in spatially adjacent and patterned locations. Deep learning neural networks were trained to classify the images. Molecular features informative of classes of different phenotypes were subsequently identified. As an example, we used the KEGG BRITE database to rearrange RNA-Seq expression data of TCGA diffuse glioma samples as treemaps to capture the functional hierarchical structure of genes in 2D images. Deep Convolutional Neural Networks (CNN) were derived using tools from TensorFlow to learn the grade of TCGA LGG and GBM samples with relatively high accuracy. The most contributory features in the trained CNN were confirmed in pathway analysis for their plausible functional involvement.
stat
Semi-supervised Logistic Learning Based on Exponential Tilt Mixture Models
Consider semi-supervised learning for classification, where both labeled and unlabeled data are available for training. The goal is to exploit both datasets to achieve higher prediction accuracy than just using labeled data alone. We develop a semi-supervised logistic learning method based on exponential tilt mixture models, by extending a statistical equivalence between logistic regression and exponential tilt modeling. We study maximum nonparametric likelihood estimation and derive novel objective functions which are shown to be Fisher consistent. We also propose regularized estimation and construct simple and highly interpretable EM algorithms. Finally, we present numerical results which demonstrate the advantage of the proposed methods compared with existing methods.
stat
Robust estimation of tree structured Gaussian Graphical Model
Consider jointly Gaussian random variables whose conditional independence structure is specified by a graphical model. If we observe realizations of the variables, we can compute the covariance matrix, and it is well known that the support of the inverse covariance matrix corresponds to the edges of the graphical model. Instead, suppose we only have noisy observations. If the noise at each node is independent, we can compute the sum of the covariance matrix and an unknown diagonal. The inverse of this sum is (in general) dense. We ask: can the original independence structure be recovered? We address this question for tree structured graphical models. We prove that this problem is unidentifiable, but show that this unidentifiability is limited to a small class of candidate trees. We further present additional constraints under which the problem is identifiable. Finally, we provide an O(n^3) algorithm to find this equivalence class of trees.
stat
Going Deep: Models for Continuous-Time Within-Play Valuation of Game Outcomes in American Football with Tracking Data
Continuous-time assessments of game outcomes in sports have become increasingly common in the last decade. In American football, only discrete-time estimates of play value were possible, since the most advanced public football datasets were recorded at the play-by-play level. While measures such as expected points and win probability are useful for evaluating football plays and game situations, there has been no research into how these values change throughout the course of a play. In this work, we make two main contributions: First, we introduce a general framework for continuous-time within-play valuation in the National Football League using player-tracking data. Our modular framework incorporates several modular sub-models, to easily incorporate recent work involving player tracking data in football. Second, we use a long short-term memory recurrent neural network to construct a ball-carrier model to estimate how many yards the ball-carrier is expected to gain from their current position, conditional on the locations and trajectories of the ball-carrier, their teammates and opponents. Additionally, we demonstrate an extension with conditional density estimation so that the expectation of any measure of play value can be calculated in continuous-time, which was never before possible at such a granular level.
stat
Threshold selection for wave heights: asymptotic methods based on L-moments
Two automatic threshold selection (TS) methods for Extreme Value analysis under a peaks-over-threshold (POT) approach are presented and evaluated, both built on: fitting the Generalized Pareto distribution (GPd) to excesses' samples over candidate levels ; the GPd-specific relation between L-skewness and L-kurtosis; the asymptotic behaviour of the matching L-statistics. Performance is illustrated on significant wave heights data sets and compared to the L-moment-based heuristic in [10], which is found to be favorable. PUBLISHED VERSION AVAILABLE AT: https://www.spestatistica.pt/storage/app/uploads/public/609/28f/6d0/60928f6d08a0c016386627.pdf
stat
A comparison of parameter estimation in function-on-function regression
Recent technological developments have enabled us to collect complex and high-dimensional data in many scientific fields, such as population health, meteorology, econometrics, geology, and psychology. It is common to encounter such datasets collected repeatedly over a continuum. Functional data, whose sample elements are functions in the graphical forms of curves, images, and shapes, characterize these data types. Functional data analysis techniques reduce the complex structure of these data and focus on the dependences within and (possibly) between the curves. A common research question is to investigate the relationships in regression models that involve at least one functional variable. However, the performance of functional regression models depends on several factors, such as the smoothing technique, the number of basis functions, and the estimation method. This paper provides a selective comparison for function-on-function regression models where both the response and predictor(s) are functions, to determine the optimal choice of basis function from a set of model evaluation criteria. We also propose a bootstrap method to construct a confidence interval for the response function. The numerical comparisons are implemented through Monte Carlo simulations and two real data examples.
stat
Bayesian nonparametric multiway regression for clustered binomial data
We introduce a Bayesian nonparametric regression model for data with multiway (tensor) structure, motivated by an application to periodontal disease (PD) data. Our outcome is the number of diseased sites measured over four different tooth types for each subject, with subject-specific covariates available as predictors. The outcomes are not well-characterized by simple parametric models, so we use a nonparametric approach with a binomial likelihood wherein the latent probabilities are drawn from a mixture with an arbitrary number of components, analogous to a Dirichlet Process (DP). We use a flexible probit stick-breaking formulation for the component weights that allows for covariate dependence and clustering structure in the outcomes. The parameter space for this model is large and multiway: patients $\times$ tooth types $\times$ covariates $\times$ components. We reduce its effective dimensionality, and account for the multiway structure, via low-rank assumptions. We illustrate how this can improve performance, and simplify interpretation, while still providing sufficient flexibility. We describe a general and efficient Gibbs sampling algorithm for posterior computation. The resulting fit to the PD data outperforms competitors, and is interpretable and well-calibrated. An interactive visual of the predictive model is available at http://ericfrazerlock.com/toothdata/ToothDisplay.html , and the code is available at https://github.com/lockEF/NonparametricMultiway .
stat
Enforcing Mean Reversion in State Space Models for Prawn Pond Water Quality Forecasting
The contribution of this study is a novel approach to introduce mean reversion in multi-step-ahead forecasts of state-space models. This approach is demonstrated in a prawn pond water quality forecasting application. The mean reversion constrains forecasts by gradually drawing them to an average of previously observed dynamics. This corrects deviations in forecasts caused by irregularities such as chaotic, non-linear, and stochastic trends. The key features of the approach include (1) it enforces mean reversion, (2) it provides a means to model both short and long-term dynamics, (3) it is able to apply mean reversion to select structural state-space components, and (4) it is simple to implement. Our mean reversion approach is demonstrated on various state-space models and compared with several time-series models on a prawn pond water quality dataset. Results show that mean reversion reduces long-term forecast errors by over 60% to produce the most accurate models in the comparison.
stat
Hierarchical Bayesian propulsion power models for marine vessels
Assessing the magnitude of fuel consumption of marine traffic is a challenging task. The consumption can be reduced by the ways the vessels are operated, to achieve both improved cost efficiency and reduced CO2 emissions. Mathematical models for predicting ships' consumption are in a central role in both of these tasks. Nowadays, many ships are equipped with data collection systems, which enable data-based calibration of the consumption models. Typically this calibration procedure is carried out independently for each particular ship, using only data collected from the ship in question. In this paper, we demonstrate a hierarchical Bayesian modeling approach, where we fit a single model over many vessels, with the assumption that the parameters of vessels of same type and similar characteristics (e.g. vessel size) are likely close to each other. The benefits of such an approach are two-fold; 1) we can borrow information about parameters that are not well informed by the vessel-specific data using data from similar ships, and 2) we can use the final hierarchical model to predict the behavior of a vessel from which we don't have any data, based only on its characteristics. In this paper, we discuss the basic concept and present a first simple version of the model. We apply the Stan statistical modeling tool for the model fitting and use real data from 64 cruise ships collected via the widely used commercial Eniram platform. By using Bayesian statistical methods we obtain uncertainties for the model predictions, too. The prediction accuracy of the model is compared to an existing data-free modeling approach.
stat
Modifying the Chi-square and the CMH test for population genetic inference: adapting to over-dispersion
Evolve and resequence studies provide a popular approach to simulate evolution in the lab and explore its genetic basis. In this context, the chi-square test, Fishers exact test, as well as the Cochran-Mantel-Haenszel test are commonly used to infer genomic positions affected by selection from temporal changes in allele frequency. However, the null model associated with these tests does not match the null hypothesis of actual interest. Indeed due to genetic drift and possibly other additional noise components such as pool sequencing, the null variance in the data can be substantially larger than accounted forby these common test statistics. This leads to p-values that are systematically too small and therefore a huge number of false positive results. Even, if the ranking rather than the actual p-values is of interest, a naive application of the mentioned tests will give misleading results, as the amount of over-dispersion varies from locus to locus. We therefore propose adjusted statistics that take the over-dispersion into account while keeping the formulas simple. This is particularly useful in genome-wide applications, where millions of SNPs can be handled with little computational effort. We then apply the adapted test statistics to real data fromDrosophila, and investigate how in-formation from intermediate generations can be included when avail-able. The obtained formulas may also be useful in other situations, provided that the null variance either is known or can be estimated.
stat
Efficient Integration of Aggregate Data and Individual Patient Data in One-Way Mixed Models
Often both Aggregate Data (AD) studies and Individual Patient Data (IPD) studies are available for specific treatments. Combining these two sources of data could improve the overall meta-analytic estimates of treatment effects. Moreover, often for some studies with AD, the associated IPD maybe available, albeit at some extra effort or cost to the analyst. We propose a method for combining treatment effects across trials when the response is from the exponential family of distribution and hence a generalized linear model structure can be used. We consider the case when treatment effects are fixed and common across studies. Using the proposed combination method, we evaluate the wisdom of choosing AD when IPD is available by studying the relative efficiency of analyzing all IPD studies versus combining various percentages of AD and IPD studies. For many different models design constraints under which the AD estimators are the IPD estimators, and hence fully efficient, are known. For such models we advocate a selection procedure that chooses AD studies over IPD studies in a manner that force least departure from design constraints and hence ensures a fully efficient combined AD and IPD estimator.
stat
SONIC: SOcial Network with Influencers and Communities
The integration of social media characteristics into an econometric framework requires modeling a high dimensional dynamic network with dimensions of parameter typically much larger than the number of observations. To cope with this problem, we introduce SONIC, a new high-dimensional network model that assumes that (1) only few influencers drive the network dynamics; (2) the community structure of the network is characterized by homogeneity of response to specific influencers, implying their underlying similarity. An estimation procedure is proposed based on a greedy algorithm and LASSO regularization. Through theoretical study and simulations, we show that the matrix parameter can be estimated even when sample size is smaller than the size of the network. Using a novel dataset retrieved from one of leading social media platforms - StockTwits and quantifying their opinions via natural language processing, we model the opinions network dynamics among a select group of users and further detect the latent communities. With a sparsity regularization, we can identify important nodes in the network.
stat
Nonparametric graphical model for counts
Although multivariate count data are routinely collected in many application areas, there is surprisingly little work developing flexible models for characterizing their dependence structure. This is particularly true when interest focuses on inferring the conditional independence graph. In this article, we propose a new class of pairwise Markov random field-type models for the joint distribution of a multivariate count vector. By employing a novel type of transformation, we avoid restricting to non-negative dependence structures or inducing other restrictions through truncations. Taking a Bayesian approach to inference, we choose a Dirichlet process prior for the distribution of a random effect to induce great flexibility in the specification. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for posterior computation. We prove various theoretical properties, including posterior consistency, and show that our COunt Nonparametric Graphical Analysis (CONGA) approach has good performance relative to competitors in simulation studies. The methods are motivated by an application to neuron spike count data in mice.
stat
Full Law Identification In Graphical Models Of Missing Data: Completeness Results
Missing data has the potential to affect analyses conducted in all fields of scientific study, including healthcare, economics, and the social sciences. Several approaches to unbiased inference in the presence of non-ignorable missingness rely on the specification of the target distribution and its missingness process as a probability distribution that factorizes with respect to a directed acyclic graph. In this paper, we address the longstanding question of the characterization of models that are identifiable within this class of missing data distributions. We provide the first completeness result in this field of study -- necessary and sufficient graphical conditions under which, the full data distribution can be recovered from the observed data distribution. We then simultaneously address issues that may arise due to the presence of both missing data and unmeasured confounding, by extending these graphical conditions and proofs of completeness, to settings where some variables are not just missing, but completely unobserved.
stat
Self-Attention Generative Adversarial Networks
In this paper, we propose the Self-Attention Generative Adversarial Network (SAGAN) which allows attention-driven, long-range dependency modeling for image generation tasks. Traditional convolutional GANs generate high-resolution details as a function of only spatially local points in lower-resolution feature maps. In SAGAN, details can be generated using cues from all feature locations. Moreover, the discriminator can check that highly detailed features in distant portions of the image are consistent with each other. Furthermore, recent work has shown that generator conditioning affects GAN performance. Leveraging this insight, we apply spectral normalization to the GAN generator and find that this improves training dynamics. The proposed SAGAN achieves the state-of-the-art results, boosting the best published Inception score from 36.8 to 52.52 and reducing Frechet Inception distance from 27.62 to 18.65 on the challenging ImageNet dataset. Visualization of the attention layers shows that the generator leverages neighborhoods that correspond to object shapes rather than local regions of fixed shape.
stat
Bernoulli Race Particle Filters
When the weights in a particle filter are not available analytically, standard resampling methods cannot be employed. To circumvent this problem state-of-the-art algorithms replace the true weights with non-negative unbiased estimates. This algorithm is still valid but at the cost of higher variance of the resulting filtering estimates in comparison to a particle filter using the true weights. We propose here a novel algorithm that allows for resampling according to the true intractable weights when only an unbiased estimator of the weights is available. We demonstrate our algorithm on several examples.
stat
Gaussian Process Modulated Cox Processes under Linear Inequality Constraints
Gaussian process (GP) modulated Cox processes are widely used to model point patterns. Existing approaches require a mapping (link function) between the unconstrained GP and the positive intensity function. This commonly yields solutions that do not have a closed form or that are restricted to specific covariance functions. We introduce a novel finite approximation of GP-modulated Cox processes where positiveness conditions can be imposed directly on the GP, with no restrictions on the covariance function. Our approach can also ensure other types of inequality constraints (e.g. monotonicity, convexity), resulting in more versatile models that can be used for other classes of point processes (e.g. renewal processes). We demonstrate on both synthetic and real-world data that our framework accurately infers the intensity functions. Where monotonicity is a feature of the process, our ability to include this in the inference improves results.
stat
Shapley Interpretation and Activation in Neural Networks
We propose a novel Shapley value approach to help address neural networks' interpretability and "vanishing gradient" problems. Our method is based on an accurate analytical approximation to the Shapley value of a neuron with ReLU activation. This analytical approximation admits a linear propagation of relevance across neural network layers, resulting in a simple, fast and sensible interpretation of neural networks' decision making process. We then derived a globally continuous and non-vanishing Shapley gradient, which can replace the conventional gradient in training neural network layers with ReLU activation, and leading to better training performance. We further derived a Shapley Activation (SA) function, which is a close approximation to ReLU but features the Shapley gradient. The SA is easy to implement in existing machine learning frameworks. Numerical tests show that SA consistently outperforms ReLU in training convergence, accuracy and stability.
stat
Regularized Variational Data Assimilation for Bias Treatment using the Wasserstein Metric
This paper presents a new variational data assimilation (VDA) approach for the formal treatment of bias in both model outputs and observations. This approach relies on the Wasserstein metric stemming from the theory of optimal mass transport to penalize the distance between the probability histograms of the analysis state and an a priori reference dataset, which is likely to be more uncertain but less biased than both model and observations. Unlike previous bias-aware VDA approaches, the new Wasserstein metric VDA (WM-VDA) dynamically treats systematic biases of unknown magnitude and sign in both model and observations through assimilation of the reference data in the probability domain and can fully recover the probability histogram of the analysis state. The performance of WM-VDA is compared with the classic three-dimensional VDA (3D-Var) scheme on first-order linear dynamics and the chaotic Lorenz attractor. Under positive systematic biases in both model and observations, we consistently demonstrate a significant reduction in the forecast bias and unbiased root mean squared error.
stat
Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services
This study develops an online predictive optimization framework for dynamically operating a transit service in an area of crowd movements. The proposed framework integrates demand prediction and supply optimization to periodically redesign the service routes based on recently observed demand. To predict demand for the service, we use Quantile Regression to estimate the marginal distribution of movement counts between each pair of serviced locations. The framework then combines these marginals into a joint demand distribution by constructing a Gaussian copula, which captures the structure of correlation between the marginals. For supply optimization, we devise a linear programming model, which simultaneously determines the route structure and the service frequency according to the predicted demand. Importantly, our framework both preserves the uncertainty structure of future demand and leverages this for robust route optimization, while keeping both components decoupled. We evaluate our framework using a real-world case study of autonomous mobility in a university campus in Denmark. The results show that our framework often obtains the ground truth optimal solution, and can outperform conventional methods for route optimization, which do not leverage full predictive distributions.
stat
Causal inference with Bayes rule
The concept of causality has a controversial history. The question of whether it is possible to represent and address causal problems with probability theory, or if fundamentally new mathematics such as the do-calculus is required has been hotly debated, In this paper we demonstrate that, while it is critical to explicitly model our assumptions on the impact of intervening in a system, provided we do so, estimating causal effects can be done entirely within the standard Bayesian paradigm. The invariance assumptions underlying causal graphical models can be encoded in ordinary Probabilistic graphical models, allowing causal estimation with Bayesian statistics, equivalent to the do-calculus.
stat
Differentially Private Continual Learning
Catastrophic forgetting can be a significant problem for institutions that must delete historic data for privacy reasons. For example, hospitals might not be able to retain patient data permanently. But neural networks trained on recent data alone will tend to forget lessons learned on old data. We present a differentially private continual learning framework based on variational inference. We estimate the likelihood of past data given the current model using differentially private generative models of old datasets.
stat
Topological Uncertainty: Monitoring trained neural networks through persistence of activation graphs
Although neural networks are capable of reaching astonishing performances on a wide variety of contexts, properly training networks on complicated tasks requires expertise and can be expensive from a computational perspective. In industrial applications, data coming from an open-world setting might widely differ from the benchmark datasets on which a network was trained. Being able to monitor the presence of such variations without retraining the network is of crucial importance. In this article, we develop a method to monitor trained neural networks based on the topological properties of their activation graphs. To each new observation, we assign a Topological Uncertainty, a score that aims to assess the reliability of the predictions by investigating the whole network instead of its final layer only, as typically done by practitioners. Our approach entirely works at a post-training level and does not require any assumption on the network architecture, optimization scheme, nor the use of data augmentation or auxiliary datasets; and can be faithfully applied on a large range of network architectures and data types. We showcase experimentally the potential of Topological Uncertainty in the context of trained network selection, Out-Of-Distribution detection, and shift-detection, both on synthetic and real datasets of images and graphs.
stat
Efficient Primal-Dual Algorithms for Large-Scale Multiclass Classification
We develop efficient algorithms to train $\ell_1$-regularized linear classifiers with large dimensionality $d$ of the feature space, number of classes $k$, and sample size $n$. Our focus is on a special class of losses that includes, in particular, the multiclass hinge and logistic losses. Our approach combines several ideas: (i) passing to the equivalent saddle-point problem with a quasi-bilinear objective; (ii) applying stochastic mirror descent with a proper choice of geometry which guarantees a favorable accuracy bound; (iii) devising non-uniform sampling schemes to approximate the matrix products. In particular, for the multiclass hinge loss we propose a \textit{sublinear} algorithm with iterations performed in $O(d+n+k)$ arithmetic operations.
stat
ROBustness In Network (robin): an R package for Comparison and Validation of communities
In network analysis, many community detection algorithms have been developed, however, their implementation leaves unaddressed the question of the statistical validation of the results. Here we present robin(ROBustness In Network), an R package to assess the robustness of the community structure of a network found by one or more methods to give indications about their reliability. The procedure initially detects if the community structure found by a set of algorithms is statistically significant and then compares two selected detection algorithms on the same graph to choose the one that better fits the network of interest. We demonstrate the use of our package on the American College Football benchmark dataset.
stat
A Multi-Stage Stochastic Programming Approach to Epidemic Resource Allocation with Equity Considerations
Existing compartmental models in epidemiology are limited in terms of optimizing the resource allocation to control an epidemic outbreak under disease growth uncertainty. In this study, we address this core limitation by presenting a multi-stage stochastic programming compartmental model, which integrates the uncertain disease progression and resource allocation to control an infectious disease outbreak. The proposed multi-stage stochastic program involves various disease growth scenarios and optimizes the distribution of treatment centers and resources while minimizing the total expected number of new infections and funerals. We define two new equity metrics, namely infection and capacity equity, and explicitly consider equity for allocating treatment funds and facilities over multiple time stages. We also study the multi-stage value of the stochastic solution (VSS), which demonstrates the superiority of the proposed stochastic programming model over its deterministic counterpart. We apply the proposed formulation to control the Ebola Virus Disease (EVD) in Guinea, Sierra Leone, and Liberia of West Africa to determine the optimal and fair resource-allocation strategies. Our model balances the proportion of infections over all regions, even without including the infection equity or prevalence equity constraints. Model results also show that allocating treatment resources proportional to population is sub-optimal, and enforcing such a resource allocation policy might adversely impact the total number of infections and deaths, and thus resulting in a high cost that we have to pay for the fairness. Our multi-stage stochastic epidemic-logistics model is practical and can be adapted to control other infectious diseases in meta-populations and dynamically evolving situations.
stat
A Survival Mediation Model with Bayesian Model Averaging
Determining the extent to which a patient is benefiting from cancer therapy is challenging. Criteria for quantifying the extent of "tumor response" observed within a few cycles of treatment have been established for various types of solid as well as hematologic malignancies. These measures comprise the primary endpoints of phase II trials. Regulatory approvals of new cancer therapies, however, are usually contingent upon the demonstration of superior overall survival with randomized evidence acquired with a phase III trial comparing the novel therapy to an appropriate standard of care treatment. With nearly two thirds of phase III oncology trials failing to achieve statistically significant results, researchers continue to refine and propose new surrogate endpoints. This article presents a Bayesian framework for studying relationships among treatment, patient subgroups, tumor response and survival. Combining classical components of mediation analysis with Bayesian model averaging (BMA), the methodology is robust to model mis-specification among various possible relationships among the observable entities. Posterior inference is demonstrated via application to a randomized controlled phase III trial in metastatic colorectal cancer. Moreover, the article details posterior predictive distributions of survival and statistical metrics for quantifying the extent of direct and indirect, or tumor response mediated, treatment effects.
stat
Robust Causal Inference for Incremental Return on Ad Spend with Randomized Paired Geo Experiments
Evaluating the incremental return on ad spend (iROAS) of a prospective online marketing strategy---that is, the ratio of the strategy's causal effect on some response metric of interest relative to its causal effect on the ad spend---has become progressively more important as advertisers increasingly seek to better understand the impact of their marketing decisions. Although randomized "geo experiments" are frequently employed for this evaluation, obtaining reliable estimates of the iROAS can be challenging as oftentimes only a small number of highly heterogeneous units are used. In this paper, we formulate a novel statistical framework for inferring the iROAS of online advertising in a randomized paired geo experiment design which further motivates and provides new insights into Rosenbaum's arguments on instrumental variables, and we propose and develop a robust and distribution-free estimator "Trimmed Match" which adaptively trims poorly matched pairs. Using numerical simulations and real case studies, we show that Trimmed Match can be more efficient than some alternatives, and we investigate the sensitivity of the estimator to some violations of its assumptions. Consistency and asymptotic normality are also established for a fixed trim rate. Technical proofs are provided in the appendix.
stat
Semi-parametric Bayes Regression with Network Valued Covariates
There is an increasing recognition of the role of brain networks as neuroimaging biomarkers in mental health and psychiatric studies. Our focus is posttraumatic stress disorder (PTSD), where the brain network interacts with environmental exposures in complex ways to drive the disease progression. Existing linear models seeking to characterize the relation between the clinical phenotype and the entire edge set in the brain network may be overly simplistic and often involve inflated number of parameters leading to computational burden and inaccurate estimation. In one of the first such efforts, we develop a novel two stage Bayesian framework to find a node-specific lower dimensional representation for the network using a latent scale approach in the first stage, and then use a flexible Gaussian process regression framework for prediction involving the latent scales and other supplementary covariates in the second stage. The proposed approach relaxes linearity assumptions, addresses the curse of dimensionality and is scalable to high dimensional networks while maintaining interpretability at the node level of the network. Extensive simulations and results from our motivating PTSD application show a distinct advantage of the proposed approach over competing linear and non-linear approaches in terms of prediction and coverage.
stat
Approximate Bayesian Bootstrap Procedures to Estimate Multilevel Treatment Effects in Observational Studies with Application to Type 2 Diabetes Treatment Regimens
Randomized clinical trials are considered the gold standard for estimating causal effects. Nevertheless, in studies that are aimed at examining adverse effects of interventions, such trials are often impractical because of ethical and financial considerations. In observational studies, matching on the generalized propensity scores was proposed as a possible solution to estimate the treatment effects of multiple interventions. However, the derivation of point and interval estimates for these matching procedures can become complex with non-continuous or censored outcomes. We propose a novel Approximate Bayesian Bootstrap algorithm that result in statistically valid point and interval estimates of the treatment effects with categorical outcomes. The procedure relies on the estimated generalized propensity scores and multiply imputes the unobserved potential outcomes for each unit. In addition, we describe a corresponding interpretable sensitivity analysis to examine the unconfoundedness assumption. We apply this approach to examines the cardiovascular safety of common, real-world anti-diabetic treatment regimens for Type 2 diabetes mellitus in a large observational database.
stat
Global Non-convex Optimization with Discretized Diffusions
An Euler discretization of the Langevin diffusion is known to converge to the global minimizers of certain convex and non-convex optimization problems. We show that this property holds for any suitably smooth diffusion and that different diffusions are suitable for optimizing different classes of convex and non-convex functions. This allows us to design diffusions suitable for globally optimizing convex and non-convex functions not covered by the existing Langevin theory. Our non-asymptotic analysis delivers computable optimization and integration error bounds based on easily accessed properties of the objective and chosen diffusion. Central to our approach are new explicit Stein factor bounds on the solutions of Poisson equations. We complement these results with improved optimization guarantees for targets other than the standard Gibbs measure.
stat
A flexible adaptive lasso Cox frailty model based on the full likelihood
In this work a method to regularize Cox frailty models is proposed that accommodates time-varying covariates and time-varying coefficients and is based on the full instead of the partial likelihood. A particular advantage in this framework is that the baseline hazard can be explicitly modeled in a smooth, semi-parametric way, e.g. via P-splines. Regularization for variable selection is performed via a lasso penalty and via group lasso for categorical variables while a second penalty regularizes wiggliness of smooth estimates of time-varying coefficients and the baseline hazard. Additionally, adaptive weights are included to stabilize the estimation. The method is implemented in R as coxlasso and will be compared to other packages for regularized Cox regression. Existing packages, however, do not allow for the combination of different effects that are accommodated in coxlasso.
stat
An Approximation Scheme for Multivariate Information based on Partial Information Decomposition
We consider an approximation scheme for multivariate information assuming that synergistic information only appearing in higher order joint distributions is suppressed, which may hold in large classes of systems. Our approximation scheme gives a practical way to evaluate information among random variables and is expected to be applied to feature selection in machine learning. The truncation order of our approximation scheme is given by the order of synergy. In the classification of information, we use the partial information decomposition of the original one. The resulting multivariate information is expected to be reasonable if higher order synergy is suppressed in the system. In addition, it is calculable in relatively easy way if the truncation order is not so large. We also perform numerical experiments to check the validity of our approximation scheme.
stat
Tensor Monte Carlo: particle methods for the GPU era
Multi-sample, importance-weighted variational autoencoders (IWAE) give tighter bounds and more accurate uncertainty estimates than variational autoencoders (VAE) trained with a standard single-sample objective. However, IWAEs scale poorly: as the latent dimensionality grows, they require exponentially many samples to retain the benefits of importance weighting. While sequential Monte-Carlo (SMC) can address this problem, it is prohibitively slow because the resampling step imposes sequential structure which cannot be parallelised, and moreover, resampling is non-differentiable which is problematic when learning approximate posteriors. To address these issues, we developed tensor Monte-Carlo (TMC) which gives exponentially many importance samples by separately drawing $K$ samples for each of the $n$ latent variables, then averaging over all $K^n$ possible combinations. While the sum over exponentially many terms might seem to be intractable, in many cases it can be computed efficiently as a series of tensor inner-products. We show that TMC is superior to IWAE on a generative model with multiple stochastic layers trained on the MNIST handwritten digit database, and we show that TMC can be combined with standard variance reduction techniques.
stat
Gradient Boosting Machine: A Survey
In this survey, we discuss several different types of gradient boosting algorithms and illustrate their mathematical frameworks in detail: 1. introduction of gradient boosting leads to 2. objective function optimization, 3. loss function estimations, and 4. model constructions. 5. application of boosting in ranking.
stat
Distributed Bayesian clustering using finite mixture of mixtures
In many modern applications, there is interest in analyzing enormous data sets that cannot be easily moved across computers or loaded into memory on a single computer. In such settings, it is very common to be interested in clustering. Existing distributed clustering algorithms are mostly distance or density based without a likelihood specification, precluding the possibility of formal statistical inference. Model-based clustering allows statistical inference, yet research on distributed inference has emphasized nonparametric Bayesian mixture models over finite mixture models. To fill this gap, we introduce a nearly embarrassingly parallel algorithm for clustering under a Bayesian overfitted finite mixture of Gaussian mixtures, which we term distributed Bayesian clustering (DIB-C). DIB-C can flexibly accommodate data sets with various shapes (e.g. skewed or multi-modal). With data randomly partitioned and distributed, we first run Markov chain Monte Carlo in an embarrassingly parallel manner to obtain local clustering draws and then refine across workers for a final clustering estimate based on any loss function on the space of partitions. DIB-C can also estimate cluster densities, quickly classify new subjects and provide a posterior predictive distribution. Both simulation studies and real data applications show superior performance of DIB-C in terms of robustness and computational efficiency.
stat
Isomorphism Check for $2^n$ Factorial Designs with Randomization Restrictions
Factorial designs with randomization restrictions are often used in industrial experiments when a complete randomization of trials is impractical. In the statistics literature, the analysis, construction and isomorphism of factorial designs has been extensively investigated. Much of the work has been on a case-by-case basis -- addressing completely randomized designs, randomized block designs, split-plot designs, etc. separately. In this paper we take a more unified approach, developing theoretical results and an efficient relabeling strategy to both construct and check the isomorphism of multi-stage factorial designs with randomization restrictions. The examples presented in this paper particularly focus on split-lot designs.
stat
Deep Kernel Survival Analysis and Subject-Specific Survival Time Prediction Intervals
Kernel survival analysis methods predict subject-specific survival curves and times using information about which training subjects are most similar to a test subject. These most similar training subjects could serve as forecast evidence. How similar any two subjects are is given by the kernel function. In this paper, we present the first neural network framework that learns which kernel functions to use in kernel survival analysis. We also show how to use kernel functions to construct prediction intervals of survival time estimates that are statistically valid for individuals similar to a test subject. These prediction intervals can use any kernel function, such as ones learned using our neural kernel learning framework or using random survival forests. Our experiments show that our neural kernel survival estimators are competitive with a variety of existing survival analysis methods, and that our prediction intervals can help compare different methods' uncertainties, even for estimators that do not use kernels. In particular, these prediction interval widths can be used as a new performance metric for survival analysis methods.
stat
A memory-free spatial additive mixed modeling for big spatial data
This study develops a spatial additive mixed modeling (AMM) approach estimating spatial and non-spatial effects from large samples, such as millions of observations. Although fast AMM approaches are already well-established, they are restrictive in that they assume an known spatial dependence structure. To overcome this limitation, this study develops a fast AMM with the estimation of spatial structure in residuals and regression coefficients together with non-spatial effects. We rely on a Moran coefficient-based approach to estimate the spatial structure. The proposed approach pre-compresses large matrices whose size grows with respect to the sample size N before the model estimation; thus, the computational complexity for the estimation is independent of the sample size. Furthermore, the pre-compression is done through a block-wise procedure that makes the memory consumption independent of N. Eventually, the spatial AMM is memory-free and fast even for millions of observations. The developed approach is compared to alternatives through Monte Carlo simulation experiments. The result confirms the accuracy and computational efficiency of the developed approach. The developed approaches are implemented in an R package spmoran.
stat
Minimum Volume Topic Modeling
We propose a new topic modeling procedure that takes advantage of the fact that the Latent Dirichlet Allocation (LDA) log likelihood function is asymptotically equivalent to the logarithm of the volume of the topic simplex. This allows topic modeling to be reformulated as finding the probability simplex that minimizes its volume and encloses the documents that are represented as distributions over words. A convex relaxation of the minimum volume topic model optimization is proposed, and it is shown that the relaxed problem has the same global minimum as the original problem under the separability assumption and the sufficiently scattered assumption introduced by Arora et al. (2013) and Huang et al. (2016). A locally convergent alternating direction method of multipliers (ADMM) approach is introduced for solving the relaxed minimum volume problem. Numerical experiments illustrate the benefits of our approach in terms of computation time and topic recovery performance.
stat
StructureBoost: Efficient Gradient Boosting for Structured Categorical Variables
Gradient boosting methods based on Structured Categorical Decision Trees (SCDT) have been demonstrated to outperform numerical and one-hot-encodings on problems where the categorical variable has a known underlying structure. However, the enumeration procedure in the SCDT is infeasible except for categorical variables with low or moderate cardinality. We propose and implement two methods to overcome the computational obstacles and efficiently perform Gradient Boosting on complex structured categorical variables. The resulting package, called StructureBoost, is shown to outperform established packages such as CatBoost and LightGBM on problems with categorical predictors that contain sophisticated structure. Moreover, we demonstrate that StructureBoost can make accurate predictions on unseen categorical values due to its knowledge of the underlying structure.
stat
Estimation and inference on high-dimensional individualized treatment rule in observational data using split-and-pooled de-correlated score
With the increasing adoption of electronic health records, there is an increasing interest in developing individualized treatment rules, which recommend treatments according to patients' characteristics, from large observational data. However, there is a lack of valid inference procedures for such rules developed from this type of data in the presence of high-dimensional covariates. In this work, we develop a penalized doubly robust method to estimate the optimal individualized treatment rule from high-dimensional data. We propose a split-and-pooled de-correlated score to construct hypothesis tests and confidence intervals. Our proposal utilizes the data splitting to conquer the slow convergence rate of nuisance parameter estimations, such as non-parametric methods for outcome regression or propensity models. We establish the limiting distributions of the split-and-pooled de-correlated score test and the corresponding one-step estimator in high-dimensional setting. Simulation and real data analysis are conducted to demonstrate the superiority of the proposed method.
stat
Provably Strict Generalisation Benefit for Equivariant Models
It is widely believed that engineering a model to be invariant/equivariant improves generalisation. Despite the growing popularity of this approach, a precise characterisation of the generalisation benefit is lacking. By considering the simplest case of linear models, this paper provides the first provably non-zero improvement in generalisation for invariant/equivariant models when the target distribution is invariant/equivariant with respect to a compact group. Moreover, our work reveals an interesting relationship between generalisation, the number of training examples and properties of the group action. Our results rest on an observation of the structure of function spaces under averaging operators which, along with its consequences for feature averaging, may be of independent interest.
stat
Estimation of parameters of the Gumbel type-II distribution under AT-II PHCS with an application of Covid-19 data
In this paper, we investigate the classical and Bayesian estimation of unknown parameters of the Gumbel type-II distribution based on adaptive type-II progressive hybrid censored sample (AT-II PHCS). The maximum likelihood estimates (MLEs) and maximum product spacing estimates (MPSEs) are developed and computed numerically using Newton-Raphson method. Bayesian approaches are employed to estimate parameters under symmetric and asymmetric loss functions. Bayesian estimates are not in explicit forms. Thus, Bayesian estimates are obtained by using Markov chain Monte Carlo (MCMC) method along with the Metropolis-Hastings (MH) algorithm. Based on the normality property of MLEs the asymptotic confidence intervals are constructed. Also, bootstrap intervals and highest posterior density (HPD) credible intervals are constructed. Further a Monte Carlo simulation study is carried out. Finally, the data set based on the death rate due to Covid-19 in India is analyzed for illustration of the purpose.
stat
Model-based Differentially Private Data Synthesis and Statistical Inference in Multiply Synthetic Differentially Private Data
We propose the approach of model-based differentially private synthesis (modips) in the Bayesian framework for releasing individual-level surrogate/synthetic datasets with privacy guarantees given the original data. The modips technique integrates the concept of differential privacy into model-based data synthesis. We introduce several variants for the general modips approach and different procedures to obtaining privacy-preserving posterior samples, a key step in modips. The uncertainty from the sanitization and synthetic process in modips can be accounted for by releasing multiple synthetic datasets and quantified via an inferential combination rule that is proposed in this paper. We run empirical studies to examine the impacts of the number of synthetic sets and the privacy budget allocation schemes on the inference based on synthetic data.
stat
Constructed measures and causal inference: towards a new model of measurement for psychosocial constructs
Psychosocial constructs can only be assessed indirectly, and measures are typically formed by a combination of indicators that are thought to relate to the construct. Reflective and formative measurement models offer different conceptualizations of the relation between the indicators and what is sometimes conceived of as a univariate latent variable supposed to correspond in some way to the construct. It is argued that the empirical implications of reflective and formative models will often be violated by data since the causally relevant constituents will generally be multivariate, not univariate. These empirical implications can be formally tested but factor analysis is not adequate to do so. It is argued that formative models misconstrue the relationship between the constructed measures and the underlying reality by which causal processes operate, but that reflective models misconstrue the nature of the underlying reality itself by typically presuming that the constituents of it that are causally efficacious are unidimensional. The ensuing problems arising from these misconstruals are discussed. A causal interpretation is proposed of associations between constructed measures and various outcomes that is applicable to both reflective and formative models and is applicable even if the usual assumptions of these models are violated. An outline for a new model of the process of measure construction is put forward. Discussion is given to the practical implications of these observations and proposals for the provision of definitions, the selection of items, item-by-item analyses, the construction of measures, and the interpretation of the associations of these measures with subsequent outcomes.
stat
Computationally efficient univariate filtering for massive data
The vast availability of large scale, massive and big data has increased the computational cost of data analysis. One such case is the computational cost of the univariate filtering which typically involves fitting many univariate regression models and is essential for numerous variable selection algorithms to reduce the number of predictor variables. The paper manifests how to dramatically reduce that computational cost by employing the score test or the simple Pearson correlation (or the t-test for binary responses). Extensive Monte Carlo simulation studies will demonstrate their advantages and disadvantages compared to the likelihood ratio test and examples with real data will illustrate the performance of the score test and the log-likelihood ratio test under realistic scenarios. Depending on the regression model used, the score test is 30 - 60,000 times faster than the log-likelihood ratio test and produces nearly the same results. Hence this paper strongly recommends to substitute the log-likelihood ratio test with the score test when coping with large scale data, massive data, big data, or even with data whose sample size is in the order of a few tens of thousands or higher.
stat
The Autoregressive Structural Model for analyzing longitudinal health data of an aging population in China
We seek to elucidate the impact of social activity, physical activity and functional health status (factors) on depressive symptoms (outcome) in the China Health and Retirement Longitudinal Study (CHARLS), a multi-year study of aging involving 20,000 participants 45 years of age and older. Although a variety of statistical methods are available for analyzing longitudinal data, modeling the dynamics within a complex system remains a difficult methodological challenge. We develop an Autoregressive Structural Model (ASM) to examine these factors on depressive symptoms while accounting for temporal dependence. The ASM builds on the structural equation model and also consists of two components: a measurement model that connects observations to latent factors, and a structural model that delineates the mechanism among latent factors. Our ASM further incorporates autoregressive dependence into both components for repeated measurements. The results from applying the ASM to the CHARLS data indicate that social and physical activity independently and consistently mitigated depressive symptoms over the course of five years, by mediating through functional health status.
stat
Learning Deep Generative Models with Annealed Importance Sampling
Variational inference (VI) and Markov chain Monte Carlo (MCMC) are two main approximate approaches for learning deep generative models by maximizing marginal likelihood. In this paper, we propose using annealed importance sampling for learning deep generative models. Our proposed approach bridges VI with MCMC. It generalizes VI methods such as variational auto-encoders and importance weighted auto-encoders (IWAE) and the MCMC method proposed in (Hoffman, 2017). It also provides insights into why running multiple short MCMC chains can help learning deep generative models. Through experiments, we show that our approach yields better density models than IWAE and can effectively trade computation for model accuracy without increasing memory cost.
stat
Rescuing neural spike train models from bad MLE
The standard approach to fitting an autoregressive spike train model is to maximize the likelihood for one-step prediction. This maximum likelihood estimation (MLE) often leads to models that perform poorly when generating samples recursively for more than one time step. Moreover, the generated spike trains can fail to capture important features of the data and even show diverging firing rates. To alleviate this, we propose to directly minimize the divergence between neural recorded and model generated spike trains using spike train kernels. We develop a method that stochastically optimizes the maximum mean discrepancy induced by the kernel. Experiments performed on both real and synthetic neural data validate the proposed approach, showing that it leads to well-behaving models. Using different combinations of spike train kernels, we show that we can control the trade-off between different features which is critical for dealing with model-mismatch.
stat
Deep Random Splines for Point Process Intensity Estimation of Neural Population Data
Gaussian processes are the leading class of distributions on random functions, but they suffer from well known issues including difficulty scaling and inflexibility with respect to certain shape constraints (such as nonnegativity). Here we propose Deep Random Splines, a flexible class of random functions obtained by transforming Gaussian noise through a deep neural network whose output are the parameters of a spline. Unlike Gaussian processes, Deep Random Splines allow us to readily enforce shape constraints while inheriting the richness and tractability of deep generative models. We also present an observational model for point process data which uses Deep Random Splines to model the intensity function of each point process and apply it to neural population data to obtain a low-dimensional representation of spiking activity. Inference is performed via a variational autoencoder that uses a novel recurrent encoder architecture that can handle multiple point processes as input. We use a newly collected dataset where a primate completes a pedaling task, and observe better dimensionality reduction with our model than with competing alternatives.
stat
An illustration of the risk of borrowing information via a shared likelihood
A concrete, stylized example illustrates that inferences may be degraded, rather than improved, by incorporating supplementary data via a joint likelihood. In the example, the likelihood is assumed to be correctly specified, as is the prior over the parameter of interest; all that is necessary for the joint modeling approach to suffer is misspecification of the prior over a nuisance parameter.
stat
Truncated, Censored, and Actuarial Payment-type Moments for Robust Fitting of a Single-parameter Pareto Distribution
With some regularity conditions maximum likelihood estimators (MLEs) always produce asymptotically optimal (in the sense of consistency, efficiency, sufficiency, and unbiasedness) estimators. But in general, the MLEs lead to non-robust statistical inference, for example, pricing models and risk measures. Actuarial claim severity is continuous, right-skewed, and frequently heavy-tailed. The data sets that such models are usually fitted to contain outliers that are difficult to identify and separate from genuine data. Moreover, due to commonly used actuarial "loss control strategies" in financial and insurance industries, the random variables we observe and wish to model are affected by truncation (due to deductibles), censoring (due to policy limits), scaling (due to coinsurance proportions) and other transformations. To alleviate the lack of robustness of MLE-based inference in risk modeling, here in this paper, we propose and develop a new method of estimation - method of truncated moments (MTuM) and generalize it for different scenarios of loss control mechanism. Various asymptotic properties of those estimates are established by using central limit theory. New connections between different estimators are found. A comparative study of newly-designed methods with the corresponding MLEs is performed. Detail investigation has been done for a single parameter Pareto loss model including a simulation study.
stat
Investigating the Robustness of Artificial Intelligent Algorithms with Mixture Experiments
Artificial intelligent (AI) algorithms, such as deep learning and XGboost, are used in numerous applications including computer vision, autonomous driving, and medical diagnostics. The robustness of these AI algorithms is of great interest as inaccurate prediction could result in safety concerns and limit the adoption of AI systems. In this paper, we propose a framework based on design of experiments to systematically investigate the robustness of AI classification algorithms. A robust classification algorithm is expected to have high accuracy and low variability under different application scenarios. The robustness can be affected by a wide range of factors such as the imbalance of class labels in the training dataset, the chosen prediction algorithm, the chosen dataset of the application, and a change of distribution in the training and test datasets. To investigate the robustness of AI classification algorithms, we conduct a comprehensive set of mixture experiments to collect prediction performance results. Then statistical analyses are conducted to understand how various factors affect the robustness of AI classification algorithms. We summarize our findings and provide suggestions to practitioners in AI applications.
stat
Design-adherent estimators for network surveys
Network surveys of key populations at risk for HIV are an essential part of the effort to understand how the epidemic spreads and how it can be prevented. Estimation of population values from the sample data has been probematical, however, because the link-tracing of the network surveys includes different people in the sample with unequal probabilities, and these inclusion probabilities have to be estimated accurately to avoid large biases in survey estimates. A new approach to estimation is introduced here, based on resampling the sample network many times using a design that adheres to main features of the design used in the field. These features include network link tracing, branching, and without-replacement sampling. The frequency that a person is included in the resamples is used to estimate the inclusion probability for each person in the original sample, and these estimates of inclusion probabilities are used in an unequal-probability estimator. In simulations using a population of drug users, sex workers, and their partners for which the actual values of population characteristics are known, the design-adherent estimation approach increases the accuracy of estimates of population quantities, largely by eliminating most of the biases.
stat
Efficient Estimation of Mixture Cure Frailty Model for Clustered Current Status Data
Current status data abounds in the field of epidemiology and public health, where the only observable data for a subject is the random inspection time and the event status at inspection. Motivated by such a current status data from a periodontal study where data are inherently clustered, we propose a unified methodology to analyze such complex data. We allow the time-to-event to follow the semiparametric GOR model with a cure fraction, and develop a unified estimation scheme powered by the EM algorithm. The within-subject correlation is accounted for by a random (frailty) effect, and the non-parametric component of the GOR model is approximated via penalized splines, with a set of knot points that increases with the sample size. Proposed methodology is accompanied by a rigorous asymptotic theory, and the related semiparametric efficiency. The finite sample performance of our model parameters are assessed via simulation studies. Furthermore, the proposed methodology is illustrated via application to the oral health data, accompanied by diagnostic checks to identify influential observations. An easy to use R package CRFCSD is also available for implementation.
stat
Bayesian analysis of Turkish Income and Living Conditions data, using clustered longitudinal ordinal modelling with Bridge distributed random-effects
This paper is motivated by the panel surveys, called Statistics on Income and Living Conditions (SILC), conducted annually on (randomly selected) country-representative households to monitor EU 2020 aims on poverty reduction. We particularly consider the surveys conducted in Turkey, within the scope of integration to the EU, between 2010 and 2013. Our main interests are on health aspects of economic and living conditions. The outcome is {\it self-reported health} that is clustered longitudinal ordinal, since repeated measures of it are nested within individuals and individuals are nested within families. Economic and living conditions were measured through a number of individual- and family-level explanatory variables. The questions of interest are on the marginal relationships between the outcome and covariates that are addressed using a polytomous logistic regression with Bridge distributed random-effects. This choice of distribution allows one to {\it directly} obtain marginal inferences in the presence of random-effects. Widely used Normal distribution is also considered as the random-effects distribution. Samples from the joint posterior density of parameters and random-effects are drawn using Markov Chain Monte Carlo. Interesting findings from public health point of view are that differences were found between sub-groups of employment status, income level and panel year in terms of odds of reporting better health.
stat
Estimating the number of SARS-CoV-2 infections and the impact of social distancing in the United States
Understanding the number of individuals who have been infected with the novel coronavirus SARS-CoV-2, and the extent to which social distancing policies have been effective at limiting its spread, are critical for effective policy going forward. Here we present estimates of the extent to which confirmed cases in the United States undercount the true number of infections, and analyze how effective social distancing measures have been at mitigating or suppressing the virus. Our analysis uses a Bayesian model of COVID-19 fatalities with a likelihood based on an underlying differential equation model of the epidemic. We provide analysis for four states with significant epidemics: California, Florida, New York, and Washington. Our short-term forecasts suggest that these states may be following somewhat different trajectories for growth of the number of cases and fatalities.
stat
Tracking change-points in multivariate extremes
In this paper we devise a statistical method for tracking and modeling change-points on the dependence structure of multivariate extremes. The methods are motivated by and illustrated on a case study on crypto-assets.
stat
Shallow Neural Hawkes: Non-parametric kernel estimation for Hawkes processes
Multi-dimensional Hawkes process (MHP) is a class of self and mutually exciting point processes that find wide range of applications -- from prediction of earthquakes to modelling of order books in high frequency trading. This paper makes two major contributions, we first find an unbiased estimator for the log-likelihood estimator of the Hawkes process to enable efficient use of the stochastic gradient descent method for maximum likelihood estimation. The second contribution is, we propose a specific single hidden layered neural network for the non-parametric estimation of the underlying kernels of the MHP. We evaluate the proposed model on both synthetic and real datasets, and find the method has comparable or better performance than existing estimation methods. The use of shallow neural network ensures that we do not compromise on the interpretability of the Hawkes model, while at the same time have the flexibility to estimate any non-standard Hawkes excitation kernel.
stat
Bayesian Double Feature Allocation for Phenotyping with Electronic Health Records
We propose a categorical matrix factorization method to infer latent diseases from electronic health records (EHR) data in an unsupervised manner. A latent disease is defined as an unknown biological aberration that causes a set of common symptoms for a group of patients. The proposed approach is based on a novel double feature allocation model which simultaneously allocates features to the rows and the columns of a categorical matrix. Using a Bayesian approach, available prior information on known diseases greatly improves identifiability and interpretability of latent diseases. This includes known diagnoses for patients and known association of diseases with symptoms. We validate the proposed approach by simulation studies including mis-specified models and comparison with sparse latent factor models. In the application to Chinese EHR data, we find interesting results, some of which agree with related clinical and medical knowledge.
stat
Temporal models for demographic and global health outcomes in multiple populations: Introducing a new framework to review and standardize documentation of model assumptions and facilitate model comparison
There is growing interest in producing estimates of demographic and global health indicators in populations with limited data. Statistical models are needed to combine data from multiple data sources into estimates and projections with uncertainty. Diverse modeling approaches have been applied to this problem, making comparisons between models difficult. We propose a model class, Temporal Models for Multiple Populations (TMMPs), to facilitate documentation of model assumptions in a standardized way and comparison across models. The class distinguishes between latent trends and the observed data, which may be noisy or exhibit systematic biases. We provide general formulations of the process model, which describes the latent trend of the indicator of interest. We show how existing models for a variety of indicators can be written as TMMPs and how the TMMP-based description can be used to compare and contrast model assumptions. We end with a discussion of outstanding questions and future directions.
stat
Discovering Interactions Using Covariate Informed Random Partition Models
Combination chemotherapy treatment regimens created for patients diagnosed with childhood acute lymphoblastic leukemia have had great success in improving cure rates. Unfortunately, patients prescribed these types of treatment regimens have displayed susceptibility to the onset of osteonecrosis. Some have suggested that this is due to pharmacokinetic interaction between two agents in the treatment regimen (asparaginase and dexamethasone) and other physiological variables. Determining which physiological variables to consider when searching for interactions in scenarios like these, minus a priori guidance, has proved to be a challenging problem, particularly if interactions influence the response distribution in ways beyond shifts in expectation or dispersion only. In this paper we propose an exploratory technique that is able to discover associations between covariates and responses in a very general way. The procedure connects covariates to responses very flexibly through dependent random partition prior distributions, and then employs machine learning techniques to highlight potential associations found in each cluster. We provide a simulation study to show utility and apply the method to data produced from a study dedicated to learning which physiological predictors influence severity of osteonecrosis multiplicatively.
stat
Accelerating Metropolis-within-Gibbs sampler with localized computations of differential equations
Inverse problem is ubiquitous in science and engineering, and Bayesian methodologies are often used to infer the underlying parameters. For high dimensional temporal-spatial models, classical Markov chain Monte Carlo (MCMC) methods are often slow to converge, and it is necessary to apply Metropolis-within-Gibbs (MwG) sampling on parameter blocks. However, the computation cost of each MwG iteration is typically $O(n^2)$, where $n$ is the model dimension. This can be too expensive in practice. This paper introduces a new reduced computation method to bring down the computation cost to $O(n)$, for the inverse initial value problem of a stochastic differential equation (SDE) with local interactions. The key observation is that each MwG proposal is only different from the original iterate at one parameter block, and this difference will only propagate within a local domain in the SDE computations. Therefore we can approximate the global SDE computation with a surrogate updated only within the local domain for reduced computation cost. Both theoretically and numerically, we show that the approximation errors can be controlled by the local domain size. We discuss how to implement the local computation scheme using Euler--Maruyama and 4th order Runge--Kutta methods. We numerically demonstrate the performance of the proposed method with the Lorenz 96 model and a linear stochastic flow model.
stat
On expectile-assisted inverse regression estimation for sufficient dimension reduction
Moment-based sufficient dimension reduction methods such as sliced inverse regression may not work well in the presence of heteroscedasticity. We propose to first estimate the expectiles through kernel expectile regression, and then carry out dimension reduction based on random projections of the regression expectiles. Several popular inverse regression methods in the literature are extended under this general framework. The proposed expectile-assisted methods outperform existing moment-based dimension reduction methods in both numerical studies and an analysis of the Big Mac data.
stat
Root-finding Approaches for Computing Conformal Prediction Set
Conformal prediction constructs a confidence region for an unobserved response of a feature vector based on previous identically distributed and exchangeable observations of responses and features. It has a coverage guarantee at any nominal level without additional assumptions on their distribution. However, it requires a refitting procedure for all replacement candidates of the target response. In regression settings, this corresponds to an infinite number of model fit. Apart from relatively simple estimators that can be written as pieces of linear function of the response, efficiently computing such sets is difficult and is still considered as an open problem. We exploit the fact that, \emph{often}, conformal prediction sets are intervals whose boundaries can be efficiently approximated by classical root-finding software. We investigate how this approach can overcome many limitations of formerly used strategies and achieves calculations that have been unattainable so far. We discuss its complexity as well as its drawbacks and evaluate its efficiency through numerical experiments.
stat
On models for the estimation of the excess mortality hazard in case of insufficiently stratified life tables
In cancer epidemiology using population-based data, regression models for the excess mortality hazard is a useful method to estimate cancer survival and to describe the association between prognosis factors and excess mortality. This method requires expected mortality rates from general population life tables: each cancer patient is assigned an expected (background) mortality rate obtained from the life tables, typically at least according to their age and sex, from the population they belong to. However, those life tables may be insufficiently stratified, as some characteristics such as deprivation, ethnicity, and comorbidities, are not available in the life tables for a number of countries. This may affect the background mortality rate allocated to each patient, and it has been shown that not including relevant information for assigning an expected mortality rate to each patient induces a bias in the estimation of the regression parameters of the excess hazard model. We propose two parametric corrections in excess hazard regression models, including a single-parameter or a random effect (frailty), to account for possible mismatches in the life table and thus misspecification of the background mortality rate. In an extensive simulation study, the good statistical performance of the proposed approach is demonstrated, and we illustrate their use on real population-based data of lung cancer patients. We present conditions and limitations of these methods, and provide some recommendations for their use in practice.
stat
A weighted random survival forest
A weighted random survival forest is presented in the paper. It can be regarded as a modification of the random forest improving its performance. The main idea underlying the proposed model is to replace the standard procedure of averaging used for estimation of the random survival forest hazard function by weighted avaraging where the weights are assigned to every tree and can be veiwed as training paremeters which are computed in an optimal way by solving a standard quadratic optimization problem maximizing Harrell's C-index. Numerical examples with real data illustrate the outperformance of the proposed model in comparison with the original random survival forest.
stat