title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
High-dimensional Varying Index Coefficient Models via Stein's Identity
We study the parameter estimation problem for a varying index coefficient model in high dimensions. Unlike the most existing works that iteratively estimate the parameters and link functions, based on the generalized Stein's identity, we propose computationally efficient estimators for the high-dimensional parameters without estimating the link functions. We consider two different setups where we either estimate each sparse parameter vector individually or estimate the parameters simultaneously as a sparse or low-rank matrix. For all these cases, our estimators are shown to achieve optimal statistical rates of convergence (up to logarithmic terms in the low-rank setting). Moreover, throughout our analysis, we only require the covariate to satisfy certain moment conditions, which is significantly weaker than the Gaussian or elliptically symmetric assumptions that are commonly made in the existing literature. Finally, we conduct extensive numerical experiments to corroborate the theoretical results.
stat
Modeling Atmospheric Data and Identifying Dynamics: Temporal Data-Driven Modeling of Air Pollutants
Atmospheric modelling has recently experienced a surge with the advent of deep learning. Most of these models, however, predict concentrations of pollutants following a data-driven approach in which the physical laws that govern their behaviors and relationships remain hidden. With the aid of real-world air quality data collected hourly in different stations throughout Madrid, we present a case study using a series of data-driven techniques with the following goals: (1) Find systems of ordinary differential equations that model the concentration of pollutants and their changes over time; (2) assess the performance and limitations of our models using stability analysis; (3) reconstruct the time series of chemical pollutants not measured in certain stations using delay coordinate embedding results.
stat
Ridge regression with adaptive additive rectangles and other piecewise functional templates
We propose an $L_{2}$-based penalization algorithm for functional linear regression models, where the coefficient function is shrunk towards a data-driven shape template $\gamma$, which is constrained to belong to a class of piecewise functions by restricting its basis expansion. In particular, we focus on the case where $\gamma$ can be expressed as a sum of $q$ rectangles that are adaptively positioned with respect to the regression error. As the problem of finding the optimal knot placement of a piecewise function is nonconvex, the proposed parametrization allows to reduce the number of variables in the global optimization scheme, resulting in a fitting algorithm that alternates between approximating a suitable template and solving a convex ridge-like problem. The predictive power and interpretability of our method is shown on multiple simulations and two real world case studies.
stat
Amazon Forest Fires Between 2001 and 2006 and Birth Weight in Porto Velho
Birth weight data (22,012 live-births) from a public hospital in Porto Velho (Amazon) was used in multiple statistical models to assess the effects of forest-fire smoke on human reproductive outcome. Mean birth weights for girls (3,139 g) and boys (3,393 g) were considered statistically different (p-value < 2.2e-16). Among all models analyzed, the means were considered statistically different only when treated as a function of month and year (p-value = 0.0989, girls and 0.0079, boys) . The R 2 statistics indicate that the regression models considered are able to explain 65 % (girls) and 54 % (boys) of the variation of the mean birth weight.
stat
A Unified Framework for Causal Inference with Multiple Imputation Using Martingale
Multiple imputation is widely used to handle confounders missing at random in causal inference. Although Rubin's combining rule is simple, it is not clear whether or not the standard multiple imputation inference is consistent when coupled with the commonly-used average causal effect (ACE) estimators. This article establishes a unified martingale representation for the average causal effect (ACE) estimators after multiple imputation. This representation invokes the wild bootstrap inference to provide consistent variance estimation. Our framework applies to asymptotically normal ACE estimators, including the regression imputation, weighting, and matching estimators. We extend to the scenarios when both outcome and confounders are subject to missingness and when the data are missing not at random.
stat
Regression for Copula-linked Compound Distributions with Applications in Modeling Aggregate Insurance Claims
In actuarial research, a task of particular interest and importance is to predict the loss cost for individual risks so that informative decisions are made in various insurance operations such as underwriting, ratemaking, and capital management. The loss cost is typically viewed to follow a compound distribution where the summation of the severity variables is stopped by the frequency variable. A challenging issue in modeling such outcome is to accommodate the potential dependence between the number of claims and the size of each individual claim. In this article, we introduce a novel regression framework for compound distributions that uses a copula to accommodate the association between the frequency and the severity variables, and thus allows for arbitrary dependence between the two components. We further show that the new model is very flexible and is easily modified to account for incomplete data due to censoring or truncation. The flexibility of the proposed model is illustrated using both simulated and real data sets. In the analysis of granular claims data from property insurance, we find substantive negative relationship between the number and the size of insurance claims. In addition, we demonstrate that ignoring the frequency-severity association could lead to biased decision-making in insurance operations.
stat
Multi-sample Estimation of Bacterial Composition Matrix in Metagenomics Data
Metagenomics sequencing is routinely applied to quantify bacterial abundances in microbiome studies, where the bacterial composition is estimated based on the sequencing read counts. Due to limited sequencing depth and DNA dropouts, many rare bacterial taxa might not be captured in the final sequencing reads, which results in many zero counts. Naive composition estimation using count normalization leads to many zero proportions, which tend to result in inaccurate estimates of bacterial abundance and diversity. This paper takes a multi-sample approach to the estimation of bacterial abundances in order to borrow information across samples and across species. Empirical results from real data sets suggest that the composition matrix over multiple samples is approximately low rank, which motivates a regularized maximum likelihood estimation with a nuclear norm penalty. An efficient optimization algorithm using the generalized accelerated proximal gradient and Euclidean projection onto simplex space is developed. The theoretical upper bounds and the minimax lower bounds of the estimation errors, measured by the Kullback-Leibler divergence and the Frobenius norm, are established. Simulation studies demonstrate that the proposed estimator outperforms the naive estimators. The method is applied to an analysis of a human gut microbiome dataset.
stat
Exploiting offshore wind and solar resources in the Mediterranean using ERA5 reanalysis data
Commercial electricity production from marine renewable sources is becoming a necessity at a global scale. Offshore wind and solar resources can be combined to reduce construction and maintenance costs. In this respect, the aim of this study is two-fold: i) analyse offshore wind and solar resource and their variability in the Mediterranean Sea at the annual and seasonal scales based on the recently published ERA5 reanalysis dataset, and; ii) perform a preliminary assessment of some important features of complementarity, synergy, and availability of the examined resources using an event-based probabilistic approach. A robust coefficient of variation is introduced to examine the variability of each resource and a joint coefficient of variation is implemented for the first time to evaluate the joint variability of offshore wind and solar potential. The association between the resources is examined by introducing a robust measure of correlation, along with the Pearson's r and Kendall's tau correlation coefficient and the corresponding results are compared. Several metrics are used to examine the degree of complementarity affected by variability and intermittency issues. Areas with high potential and low variability for both resources include the Aegean and Alboran seas, while significant synergy (over 52%) is identified in the gulfs of Lion, Gabes and Sidra, Aegean Sea and northern Cyprus Isl. The advantage of combining these two resources is highlighted at selected locations in terms of the monthly energy production.
stat
Bayesian Variable Selection for Non-Gaussian Responses: A Marginally Calibrated Copula Approach
We propose a new highly flexible and tractable Bayesian approach to undertake variable selection in non-Gaussian regression models. It uses a copula decomposition for the joint distribution of observations on the dependent variable. This allows the marginal distribution of the dependent variable to be calibrated accurately using a nonparametric or other estimator. The family of copulas employed are `implicit copulas' that are constructed from existing hierarchical Bayesian models widely used for variable selection, and we establish some of their properties. Even though the copulas are high-dimensional, they can be estimated efficiently and quickly using Markov chain Monte Carlo (MCMC). A simulation study shows that when the responses are non-Gaussian the approach selects variables more accurately than contemporary benchmarks. A real data example in the Web Appendix illustrates that accounting for even mild deviations from normality can lead to a substantial increase in accuracy. To illustrate the full potential of our approach we extend it to spatial variable selection for fMRI. Using real data, we show our method allows for voxel-specific marginal calibration of the magnetic resonance signal at over 6,000 voxels, leading to an increase in the quality of the activation maps.
stat
A Change-Point Based Control Chart for Detecting Sparse Changes in High-Dimensional Heteroscedastic Data
Because of the curse-of-dimensionality, high-dimensional processes present challenges to traditional multivariate statistical process monitoring (SPM) techniques. In addition, the unknown underlying distribution and complicated dependency among variables such as heteroscedasticity increase uncertainty of estimated parameters, and decrease the effectiveness of control charts. In addition, the requirement of sufficient reference samples limits the application of traditional charts in high dimension low sample size scenarios (small n, large p). More difficulties appear in detecting and diagnosing abnormal behaviors that are caused by a small set of variables, i.e., sparse changes. In this article, we propose a changepoint based control chart to detect sparse shifts in the mean vector of high-dimensional heteroscedastic processes. Our proposed method can start monitoring when the number of observations is a lot smaller than the dimensionality. The simulation results show its robustness to nonnormality and heteroscedasticity. A real data example is used to illustrate the effectiveness of the proposed control chart in high-dimensional applications. Supplementary material and code are provided online.
stat
Envelope Methods with Ignorable Missing Data
Envelope method was recently proposed as a method to reduce the dimension of responses in multivariate regressions. However, when there exists missing data, the envelope method using the complete case observations may lead to biased and inefficient results. In this paper, we generalize the envelope estimation when the predictors and/or the responses are missing at random. Specifically, we incorporate the envelope structure in the expectation-maximization (EM) algorithm. As the parameters under the envelope method are not pointwise identifiable, the EM algorithm for the envelope method was not straightforward and requires a special decomposition. Our method is guaranteed to be more efficient, or at least as efficient as, the standard EM algorithm. Moreover, our method has the potential to outperform the full data MLE. We give asymptotic properties of our method under both normal and non-normal cases. The efficiency gain over the standard EM is confirmed in simulation studies and in an application to the Chronic Renal Insufficiency Cohort (CRIC) study.
stat
Incorporating Dynamicity of Transportation Network with Multi-Weight Traffic Graph Convolution for Traffic Forecasting
Traffic forecasting problem remains a challenging task in the intelligent transportation system due to its spatio-temporal complexity. Although temporal dependency has been well studied and discussed, spatial dependency is relatively less explored due to its large variations, especially in the urban environment. In this study, a novel graph convolutional network model, Multi-Weight Traffic Graph Convolutional (MW-TGC) network, is proposed and applied to two urban networks with contrasting geometric constraints. The model conducts graph convolution operations on speed data with multi-weighted adjacency matrices to combine the features, including speed limit, distance, and angle. The spatially isolated dimension reduction operation is conducted on the combined features to learn the dependencies among the features and reduce the size of the output to a computationally feasible level. The output of multi-weight graph convolution is applied to the sequence-to-sequence model with Long Short-Term Memory units to learn temporal dependencies. When applied to two urban sites, urban-core and urban-mix, MW-TGC network not only outperformed the comparative models in both sites but also reduced variance in the heterogeneous urban-mix network. We conclude that MW-TGC network can provide a robust traffic forecasting performance across the variations in spatial complexity, which can be a strong advantage in urban traffic forecasting.
stat
A Model of a Randomized Experiment with an Application to the PROWESS Clinical Trial
I develop a model of a randomized experiment with a binary intervention and a binary outcome. Potential outcomes in the intervention and control groups give rise to four types of participants. Fixing ideas such that the outcome is mortality, some participants would live regardless, others would be saved, others would be killed, and others would die regardless. These potential outcome types are not observable. However, I use the model to develop estimators of the number of participants of each type. The model relies on the randomization within the experiment and on deductive reasoning. I apply the model to an important clinical trial, the PROWESS trial, and I perform a Monte Carlo simulation calibrated to estimates from the trial. The reduced form from the trial shows a reduction in mortality, which provided a rationale for FDA approval. However, I find that the intervention killed two participants for every three it saved.
stat
A flexible forecasting model for production systems
This paper discusses desirable properties of forecasting models in production systems. It then develops a family of models which are designed to satisfy these properties: highly customizable to capture complex patterns; accommodates a large variety of objectives; has interpretable components; produces robust results; has automatic changepoint detection for trend and seasonality; and runs fast -- making it a good choice for reliable and scalable production systems. The model allows for seasonality at various time scales, events/holidays, and change points in trend and seasonality. The volatility is fitted separately to maintain flexibility and speed and is allowed to be a function of specified features.
stat
Linear Optimal Transport Embedding: Provable fast Wasserstein distance computation and classification for nonlinear problems
Discriminating between distributions is an important problem in a number of scientific fields. This motivated the introduction of Linear Optimal Transportation (LOT), which embeds the space of distributions into an $L^2$-space. The transform is defined by computing the optimal transport of each distribution to a fixed reference distribution, and has a number of benefits when it comes to speed of computation and to determining classification boundaries. In this paper, we characterize a number of settings in which LOT embeds families of distributions into a space in which they are linearly separable. This is true in arbitrary dimension, and for families of distributions generated through perturbations of shifts and scalings of a fixed distribution. We also prove conditions under which the $L^2$ distance of the LOT embedding between two distributions in arbitrary dimension is nearly isometric to Wasserstein-2 distance between those distributions. This is of significant computational benefit, as one must only compute $N$ optimal transport maps to define the $N^2$ pairwise distances between $N$ distributions. We demonstrate the benefits of LOT on a number of distribution classification problems.
stat
Neural Group Actions
We introduce an algorithm for designing Neural Group Actions, collections of deep neural network architectures which model symmetric transformations satisfying the laws of a given finite group. This generalizes involutive neural networks $\mathcal{N}$, which satisfy $\mathcal{N}(\mathcal{N}(x))=x$ for any data $x$, the group law of $\mathbb{Z}_2$. We show how to optionally enforce an additional constraint that the group action be volume-preserving. We conjecture, by analogy to a universality result for involutive neural networks, that generative models built from Neural Group Actions are universal approximators for collections of probabilistic transitions adhering to the group laws. We demonstrate experimentally that a Neural Group Action for the quaternion group $Q_8$ can learn how a set of nonuniversal quantum gates satisfying the $Q_8$ group laws act on single qubit quantum states.
stat
On Bayesian inference for the Extended Plackett-Luce model
The analysis of rank ordered data has a long history in the statistical literature across a diverse range of applications. In this paper we consider the Extended Plackett-Luce model that induces a flexible (discrete) distribution over permutations. The parameter space of this distribution is a combination of potentially high-dimensional discrete and continuous components and this presents challenges for parameter interpretability and also posterior computation. Particular emphasis is placed on the interpretation of the parameters in terms of observable quantities and we propose a general framework for preserving the mode of the prior predictive distribution. Posterior sampling is achieved using an effective simulation based approach that does not require imposing restrictions on the parameter space. Working in the Bayesian framework permits a natural representation of the posterior predictive distribution and we draw on this distribution to address the rank aggregation problem and also to identify potential lack of model fit. The flexibility of the Extended Plackett-Luce model along with the effectiveness of the proposed sampling scheme are demonstrated using several simulation studies and real data examples.
stat
Model-based inference of conditional extreme value distributions with hydrological applications
Multivariate extreme value models are used to estimate joint risk in a number of applications, with a particular focus on environmental fields ranging from climatology and hydrology to oceanography and seismic hazards. The semi-parametric conditional extreme value model of Heffernan and Tawn (2004) involving a multivariate regression provides the most suitable of current statistical models in terms of its flexibility to handle a range of extremal dependence classes. However, the standard inference for the joint distribution of the residuals of this model suffers from the curse of dimensionality since in a $d$-dimensional application it involves a $d-1$-dimensional non-parametric density estimator, which requires, for accuracy, a number points and commensurate effort that is exponential in $d$. Furthermore, it does not allow for any partially missing observations to be included and a previous proposal to address this is extremely computationally intensive, making its use prohibitive if the proportion of missing data is non-trivial. We propose to replace the $d-1$-dimensional non-parametric density estimator with a model-based copula with univariate marginal densities estimated using kernel methods. This approach provides statistically and computationally efficient estimates whatever the dimension, $d$ or the degree of missing data. Evidence is presented to show that the benefits of this approach substantially outweigh potential mis-specification errors. The methods are illustrated through the analysis of UK river flow data at a network of 46 sites and assessing the rarity of the 2015 floods in north west England.
stat
Time-varying Autoregression with Low Rank Tensors
We present a windowed technique to learn parsimonious time-varying autoregressive models from multivariate timeseries. This unsupervised method uncovers interpretable spatiotemporal structure in data via non-smooth and non-convex optimization. In each time window, we assume the data follow a linear model parameterized by a system matrix, and we model this stack of potentially different system matrices as a low rank tensor. Because of its structure, the model is scalable to high-dimensional data and can easily incorporate priors such as smoothness over time. We find the components of the tensor using alternating minimization and prove that any stationary point of this algorithm is a local minimum. We demonstrate on a synthetic example that our method identifies the true rank of a switching linear system in the presence of noise. We illustrate our model's utility and superior scalability over extant methods when applied to several synthetic and real-world example: two types of time-varying linear systems, worm behavior, sea surface temperature, and monkey brain datasets.
stat
Inference in experiments conditional on observed imbalances in covariates
Double blind randomized controlled trials are traditionally seen as the gold standard for causal inferences as the difference-in-means estimator is an unbiased estimator of the average treatment effect in the experiment. The fact that this estimator is unbiased over all possible randomizations does not, however, mean that any given estimate is close to the true treatment effect. Similarly, while pre-determined covariates will be balanced between treatment and control groups on average, large imbalances may be observed in a given experiment and the researcher may therefore want to condition on such covariates using linear regression. This paper studies the theoretical properties of both the difference-in-means and OLS estimators conditional on observed differences in covariates. By deriving the statistical properties of the conditional estimators, we can establish guidance for how to deal with covariate imbalances. We study both inference with OLS, as well as with a new version of Fisher's exact test, where the randomization distribution comes from a small subset of all possible assignment vectors.
stat
Prior-preconditioned conjugate gradient method for accelerated Gibbs sampling in "large $n$ & large $p$" sparse Bayesian regression
In a modern observational study based on healthcare databases, the number of observations and of predictors typically range in the order of $10^5$ ~ $10^6$ and of $10^4$ ~ $10^5$. Despite the large sample size, data rarely provide sufficient information to reliably estimate such a large number of parameters. Sparse regression techniques provide potential solutions, one notable approach being the Bayesian methods based on shrinkage priors. In the "large $n$ & large $p$" setting, however, posterior computation encounters a major bottleneck at repeated sampling from a high-dimensional Gaussian distribution, whose precision matrix $\Phi$ is expensive to compute and factorize. In this article, we present a novel algorithm to speed up this bottleneck based on the following observation: we can cheaply generate a random vector $b$ such that the solution to the linear system $\Phi \beta = b$ has the desired Gaussian distribution. We can then solve the linear system by the conjugate gradient (CG) algorithm through matrix-vector multiplications by $\Phi$, without ever explicitly inverting $\Phi$. Rapid convergence of CG in this specific context is achieved by the theory of prior-preconditioning we develop. We apply our algorithm to a clinically relevant large-scale observational study with $n$ = 72,489 patients and $p$ = 22,175 clinical covariates, designed to assess the relative risk of adverse events from two alternative blood anti-coagulants. Our algorithm demonstrates an order of magnitude speed-up in the posterior computation.
stat
Quantum-inspired Machine Learning on high-energy physics data
One of the most challenging big data problems in high energy physics is the analysis and classification of the data produced by the Large Hadron Collider at CERN. Recently, machine learning techniques have been employed to tackle such challenges, which, despite being very effective, rely on classification schemes that are hard to interpret. Here, we introduce and apply a quantum-inspired machine learning technique and, exploiting tree tensor networks, we show how to efficiently classify b-jet events in proton-proton collisions at LHCb and to interpret the classification results. In particular, we show how to select important features and adapt the network geometry based on information acquired in the learning process. Moreover, the tree tensor network can be adapted for optimal precision or fast response in time without the need for repeating the learning process. This paves the way to high-frequency real-time applications as needed for current and future LHC event classification to trigger events at the tens of MHz scale.
stat
A Maximin $\Phi_{p}$-Efficient Design for Multivariate GLM
Experimental designs for a generalized linear model (GLM) often depend on the specification of the model, including the link function, the predictors, and unknown parameters, such as the regression coefficients. To deal with uncertainties of these model specifications, it is important to construct optimal designs with high efficiency under such uncertainties. Existing methods such as Bayesian experimental designs often use prior distributions of model specifications to incorporate model uncertainties into the design criterion. Alternatively, one can obtain the design by optimizing the worst-case design efficiency with respect to uncertainties of model specifications. In this work, we propose a new Maximin $\Phi_p$-Efficient (or Mm-$\Phi_p$ for short) design which aims at maximizing the minimum $\Phi_p$-efficiency under model uncertainties. Based on the theoretical properties of the proposed criterion, we develop an efficient algorithm with sound convergence properties to construct the Mm-$\Phi_p$ design. The performance of the proposed Mm-$\Phi_p$ design is assessed through several numerical examples.
stat
Improved Inference of Gaussian Mixture Copula Model for Clustering and Reproducibility Analysis using Automatic Differentiation
Copulas provide a modular parameterization of multivariate distributions that decouples the modeling of marginals from the dependencies between them. Gaussian Mixture Copula Model (GMCM) is a highly flexible copula that can model many kinds of multi-modal dependencies, as well as asymmetric and tail dependencies. They have been effectively used in clustering non-Gaussian data and in Reproducibility Analysis, a meta-analysis method designed to verify the reliability and consistency of multiple high-throughput experiments. Parameter estimation for GMCM is challenging due to its intractable likelihood. The best previous methods have maximized a proxy-likelihood through a Pseudo Expectation Maximization (PEM) algorithm. They have no guarantees of convergence or convergence to the correct parameters. In this paper, we use Automatic Differentiation (AD) tools to develop a method, called AD-GMCM, that can maximize the exact GMCM likelihood. In our simulation studies and experiments with real data, AD-GMCM finds more accurate parameter estimates than PEM and yields better performance in clustering and Reproducibility Analysis. We discuss the advantages of an AD-based approach, to address problems related to monotonic increase of likelihood and parameter identifiability in GMCM. We also analyze, for GMCM, two well-known cases of degeneracy of maximum likelihood in GMM that can lead to spurious clustering solutions. Our analysis shows that, unlike GMM, GMCM is not affected in one of the cases.
stat
Estimating locomotor demands during team play from broadcast-derived tracking data
The introduction of optical tracking data across sports has given rise to the ability to dissect athletic performance at a level unfathomable a decade ago. One specific area that has seen substantial benefit is sports science, as high resolution coordinate data permits sports scientists to have to-the-second estimates of external load metrics, such as acceleration load and high speed running distance, traditionally used to understand the physical toll a game takes on an athlete. Unfortunately, collecting this data requires installation of expensive hardware and paying costly licensing fees to data providers, restricting its availability. Algorithms have been developed that allow a traditional broadcast feed to be converted to x-y coordinate data, making tracking data easier to acquire, but coordinates are available for an athlete only when that player is within the camera frame. Obviously, this leads to inaccuracies in player load estimates, limiting the usefulness of this data for sports scientists. In this research, we develop models that predict offscreen load metrics and demonstrate the viability of broadcast-derived tracking data for understanding external load in soccer.
stat
Commuting Variability by Wage Groups in Baton Rouge 1990-2010
Residential segregation recently has shifted to more class or income-based in the United States, and neighborhoods are undergoing significant changes such as commuting patterns over time. To better understand the commuting inequality across neighborhoods of different income levels, this research analyzes commuting variability (in both distance and time) across wage groups as well as stability over time using the CTPP data 1990-2010 in Baton Rouge. In comparison to previous work, commuting distance is estimated more accurately by Monte Carlo simulation of individual trips to mitigate aggregation error and scale effect. The results based on neighborhoods mean wage rate indicate that commuting behaviors vary across areas of different wage rates and such variability is captured by a convex shape. Affluent neighborhoods tended to commute more but highest-wage neighborhoods retreated for less commuting. This trend remains relatively stable over time despite an overall transportation improvement in general. A complementary analysis based on the distribution of wage groups is conducted to gain more detailed insights and uncovers the lasting poor mobility (e.g., fewer location and transport options) of the lowest-wage workers in 1990-2010.
stat
Metropolis-Hastings Generative Adversarial Networks
We introduce the Metropolis-Hastings generative adversarial network (MH-GAN), which combines aspects of Markov chain Monte Carlo and GANs. The MH-GAN draws samples from the distribution implicitly defined by a GAN's discriminator-generator pair, as opposed to standard GANs which draw samples from the distribution defined only by the generator. It uses the discriminator from GAN training to build a wrapper around the generator for improved sampling. With a perfect discriminator, this wrapped generator samples from the true distribution on the data exactly even when the generator is imperfect. We demonstrate the benefits of the improved generator on multiple benchmark datasets, including CIFAR-10 and CelebA, using the DCGAN, WGAN, and progressive GAN.
stat
Patterns of Effects and Sensitivity Analysis for Differences-in-Differences
Applied analysts often use the differences-in-differences (DID) method to estimate the causal effect of policy interventions with observational data. The method is widely used, as the required before and after comparison of a treated and control group is commonly encountered in practice. DID removes bias from unobserved time-invariant confounders. While DID removes bias from time-invariant confounders, bias from time-varying confounders may be present. Hence, like any observational comparison, DID studies remain susceptible to bias from hidden confounders. Here, we develop a method of sensitivity analysis that allows investigators to quantify the amount of bias necessary to change a study's conclusions. Our method operates within a matched design that removes bias from observed baseline covariates. We develop methods for both binary and continuous outcomes. We then apply our methods to two different empirical examples from the social sciences. In the first application, we study the effect of changes to disability payments in Germany. In the second, we re-examine whether election day registration increased turnout in Wisconsin.
stat
Learning spectrograms with convolutional spectral kernels
We introduce the convolutional spectral kernel (CSK), a novel family of non-stationary, nonparametric covariance kernels for Gaussian process (GP) models, derived from the convolution between two imaginary radial basis functions. We present a principled framework to interpret CSK, as well as other deep probabilistic models, using approximated Fourier transform, yielding a concise representation of input-frequency spectrogram. Observing through the lens of the spectrogram, we provide insight on the interpretability of deep models. We then infer the functional hyperparameters using scalable variational and MCMC methods. On small- and medium-sized spatiotemporal datasets, we demonstrate improved generalization of GP models when equipped with CSK, and their capability to extract non-stationary periodic patterns.
stat
Gaussian Process Manifold Interpolation for Probabilistic Atrial Activation Maps and Uncertain Conduction Velocity
In patients with atrial fibrillation, local activation time (LAT) maps are routinely used for characterising patient pathophysiology. The gradient of LAT maps can be used to calculate conduction velocity (CV), which directly relates to material conductivity and may provide an important measure of atrial substrate properties. Including uncertainty in CV calculations would help with interpreting the reliability of these measurements. Here, we build upon a recent insight into reduced-rank Gaussian processes (GP) to perform probabilistic interpolation of uncertain LAT directly on human atrial manifolds. Our Gaussian Process Manifold Interpolation (GPMI) method accounts for the topology of the atria, and allows for calculation of statistics for predicted CV. We demonstrate our method on two clinical cases, and perform validation against a simulated ground truth. CV uncertainty depends on data density, wave propagation direction, and CV magnitude. GPMI is suitable for probabilistic interpolation of other uncertain quantities on non-Euclidean manifolds.
stat
A guide to Value of Information methods for prioritising research in health impact modelling
Health impact simulation models are used to predict how a proposed intervention or scenario will affect public health outcomes, based on available data and knowledge of the process. The outputs of these models are uncertain due to uncertainty in the structure and inputs to the model. In order to assess the extent of uncertainty in the outcome we must quantify all potentially relevant uncertainties. Then to reduce uncertainty we should obtain and analyse new data, but it may be unclear which parts of the model would benefit from such extra research. This paper presents methods for uncertainty quantification and research prioritisation in health impact models based on Value of Information (VoI) analysis. Specifically, we 1. discuss statistical methods for quantifying uncertainty in this type of model, given the typical kinds of data that are available, which are often weaker than the ideal data that are desired; 2. show how the expected value of partial perfect information (EVPPI) can be calculated to compare how uncertainty in each model parameter influences uncertainty in the output; 3. show how research time can be prioritised efficiently, in the light of which components contribute most to outcome uncertainty. The same methods can be used whether the purpose of the model is to estimate quantities of interest to a policy maker, or to explicitly decide between policies. We demonstrate how these methods might be used in a model of the impact of air pollution on health outcomes.
stat
Structured Sparsity Modeling for Improved Multivariate Statistical Analysis based Fault Isolation
In order to improve the fault diagnosis capability of multivariate statistical methods, this article introduces a fault isolation framework based on structured sparsity modeling. The developed method relies on the reconstruction based contribution analysis and the process structure information can be incorporated into the reconstruction objective function in the form of structured sparsity regularization terms. The structured sparsity terms allow selection of fault variables over structures like blocks or networks of process variables, hence more accurate fault isolation can be achieved. Four structured sparsity terms corresponding to different kinds of process information are considered, namely, partially known sparse support, block sparsity, clustered sparsity and tree-structured sparsity. The optimization problems involving the structured sparsity terms can be solved using the Alternating Direction Method of Multipliers (ADMM) algorithm, which is fast and efficient. Through a simulation example and an application study to a coal-fired power plant, it is verified that the proposed method can better isolate faulty variables by incorporating process structure information.
stat
Deep learning for prediction of complex geology ahead of drilling
During a geosteering operation the well path is intentionally adjusted in response to the new data acquired while drilling. To achieve consistent high-quality decisions, especially when drilling in complex environments, decision support systems can help cope with high volumes of data and interpretation complexities. They can assimilate the real-time measurements into a probabilistic earth model and use the updated model for decision recommendations. Recently, machine learning (ML) techniques have enabled a wide range of methods that redistribute computational cost from on-line to off-line calculations. In this paper, we introduce two ML techniques into the geosteering decision support framework. Firstly, a complex earth model representation is generated using a Generative Adversarial Network (GAN). Secondly, a commercial extra-deep electromagnetic simulator is represented using a Forward Deep Neural Network (FDNN). The numerical experiments demonstrate that the combination of the GAN and the FDNN in an ensemble randomized maximum likelihood data assimilation scheme provides real-time estimates of complex geological uncertainty. This yields reduction of geological uncertainty ahead of the drill-bit from the measurements gathered behind and around the well bore.
stat
Clustering small datasets in high-dimension by random projection
Datasets in high-dimension do not typically form clusters in their original space; the issue is worse when the number of points in the dataset is small. We propose a low-computation method to find statistically significant clustering structures in a small dataset. The method proceeds by projecting the data on a random line and seeking binary clusterings in the resulting one-dimensional data. Non-linear separations are obtained by extending the feature space using monomials of higher degrees in the original features. The statistical validity of the clustering structures obtained is tested in the projected one-dimensional space, thus bypassing the challenge of statistical validation in high-dimension. Projecting on a random line is an extreme dimension reduction technique that has previously been used successfully as part of a hierarchical clustering method for high-dimensional data. Our experiments show that with this simplified framework, statistically significant clustering structures can be found with as few as 100-200 points, depending on the dataset. The different structures uncovered are found to persist as more points are added to the dataset.
stat
Testing the fit of relational models
Relational models generalize log-linear models to arbitrary discrete sample spaces by specifying effects associated with any subsets of their cells. A relational model may include an overall effect, pertaining to every cell after a reparameterization, and in this case, the properties of the maximum likelihood estimates (MLEs) are analogous to those computed under traditional log-linear models, and the goodness-of-fit tests are also the same. If an overall effect is not present in any reparameterization, the properties of the MLEs are considerably different, and the Poisson and multinomial MLEs are not equivalent. In the Poisson case, if the overall effect is not present, the observed total is not always preserved by the MLE, and thus, the likelihood ratio statistic is not identical with twice the Kullback-Leibler divergence. However, as demonstrated, its general form may be obtained from the Bregman divergence. The asymptotic equivalence of the Pearson chi-squared and likelihood ratio statistics holds, but the generality considered here requires extended proofs.
stat
Bayesian Group Selection in Logistic Regression with Application to MRI Data Analysis
We consider Bayesian logistic regression models with group-structured covariates. In high-dimensional settings, it is often assumed that only small portion of groups are significant, thus consistent group selection is of significant importance. While consistent frequentist group selection methods have been proposed, theoretical properties of Bayesian group selection methods for logistic regression models have not been investigated yet. In this paper, we consider a hierarchical group spike and slab prior for logistic regression models in high-dimensional settings. Under mild conditions, we establish strong group selection consistency of the induced posterior, which is the first theoretical result in the Bayesian literature. Through simulation studies, we demonstrate that the performance of the proposed method outperforms existing state-of-the-art methods in various settings. We further apply our method to an MRI data set for predicting Parkinson's disease and show its benefits over other contenders.
stat
Scalable Deep Generative Relational Models with High-Order Node Dependence
We propose a probabilistic framework for modelling and exploring the latent structure of relational data. Given feature information for the nodes in a network, the scalable deep generative relational model (SDREM) builds a deep network architecture that can approximate potential nonlinear mappings between nodes' feature information and the nodes' latent representations. Our contribution is two-fold: (1) We incorporate high-order neighbourhood structure information to generate the latent representations at each node, which vary smoothly over the network. (2) Due to the Dirichlet random variable structure of the latent representations, we introduce a novel data augmentation trick which permits efficient Gibbs sampling. The SDREM can be used for large sparse networks as its computational cost scales with the number of positive links. We demonstrate its competitive performance through improved link prediction performance on a range of real-world datasets.
stat
A Novel Adaptive Kernel for the RBF Neural Networks
In this paper, we propose a novel adaptive kernel for the radial basis function (RBF) neural networks. The proposed kernel adaptively fuses the Euclidean and cosine distance measures to exploit the reciprocating properties of the two. The proposed framework dynamically adapts the weights of the participating kernels using the gradient descent method thereby alleviating the need for predetermined weights. The proposed method is shown to outperform the manual fusion of the kernels on three major problems of estimation namely nonlinear system identification, pattern classification and function approximation.
stat
Accurate, reliable and fast robustness evaluation
Throughout the past five years, the susceptibility of neural networks to minimal adversarial perturbations has moved from a peculiar phenomenon to a core issue in Deep Learning. Despite much attention, however, progress towards more robust models is significantly impaired by the difficulty of evaluating the robustness of neural network models. Today's methods are either fast but brittle (gradient-based attacks), or they are fairly reliable but slow (score- and decision-based attacks). We here develop a new set of gradient-based adversarial attacks which (a) are more reliable in the face of gradient-masking than other gradient-based attacks, (b) perform better and are more query efficient than current state-of-the-art gradient-based attacks, (c) can be flexibly adapted to a wide range of adversarial criteria and (d) require virtually no hyperparameter tuning. These findings are carefully validated across a diverse set of six different models and hold for L0, L1, L2 and Linf in both targeted as well as untargeted scenarios. Implementations will soon be available in all major toolboxes (Foolbox, CleverHans and ART). We hope that this class of attacks will make robustness evaluations easier and more reliable, thus contributing to more signal in the search for more robust machine learning models.
stat
The Role of Distributional Overlap on the Precision Gain of Bounds for Generalization
Over the past ten years, propensity score methods have made an important contribution to improving generalizations from studies that do not select samples randomly from a population of inference. However, these methods require assumptions and recent work has considered the role of bounding approaches that provide a range of treatment impact estimates that are consistent with the observable data. An important limitation to bound estimates is that they can be uninformatively wide. This has motivated research on the use of propensity score stratification to narrow bounds. This article assesses the role of distributional overlap in propensity scores on the effectiveness of stratification to tighten bounds. Using the results of two simulation studies and two case studies, I evaluate the relationship between distributional overlap and precision gain and discuss the implications when propensity score stratification is used as a method to improve precision in the bounding framework.
stat
Tensor Basis Gaussian Process Models of Hyperelastic Materials
In this work, we develop Gaussian process regression (GPR) models of hyperelastic material behavior. First, we consider the direct approach of modeling the components of the Cauchy stress tensor as a function of the components of the Finger stretch tensor in a Gaussian process. We then consider an improvement on this approach that embeds rotational invariance of the stress-stretch constitutive relation in the GPR representation. This approach requires fewer training examples and achieves higher accuracy while maintaining invariance to rotations exactly. Finally, we consider an approach that recovers the strain-energy density function and derives the stress tensor from this potential. Although the error of this model for predicting the stress tensor is higher, the strain-energy density is recovered with high accuracy from limited training data. The approaches presented here are examples of physics-informed machine learning. They go beyond purely data-driven approaches by embedding the physical system constraints directly into the Gaussian process representation of materials models.
stat
Enhancing single-arm phase II trials by inclusion of matched control patients
When a novel treatment has successfully passed phase I, different options to design subsequent phase II trials are available. One approach is a single-arm trial, comparing the response rate in the intervention group against a fixed proportion. Another alternative is to conduct a randomized phase II trial, comparing the new treatment with placebo or the current standard. A significant problem arises in both approaches when the investigated patient population is very heterogeneous regarding prognostic factors. For the situation that a substantial dataset of historical controls exists, we propose an approach to enhance the classic single-arm trial design by including matched control patients. The outcome of the observed study population can be adjusted based on the matched controls with a comparable distribution of known confounders. We propose an adaptive two-stage design with the options of early stopping for futility and recalculation of the sample size taking the matching rate, number of matching partners, and observed treatment effect into account. The performance of the proposed design in terms of type I error rate, power, and expected sample size is investigated via simulation studies based on a hypothetical phase II trial investigating a novel therapy for patients with acute myeloid leukemia.
stat
A Simple Heuristic for Bayesian Optimization with A Low Budget
The aim of black-box optimization is to optimize an objective function within the constraints of a given evaluation budget. In this problem, it is generally assumed that the computational cost for evaluating a point is large; thus, it is important to search efficiently with as low budget as possible. Bayesian optimization is an efficient method for black-box optimization and provides exploration-exploitation trade-off by constructing a surrogate model that considers uncertainty of the objective function. However, because Bayesian optimization should construct the surrogate model for the entire search space, it does not exhibit good performance when points are not sampled sufficiently. In this study, we develop a heuristic method refining the search space for Bayesian optimization when the available evaluation budget is low. The proposed method refines a promising region by dividing the original region so that Bayesian optimization can be executed with the promising region as the initial search space. We confirm that Bayesian optimization with the proposed method outperforms Bayesian optimization alone and shows equal or better performance to two search-space division algorithms through experiments on the benchmark functions and the hyperparameter optimization of machine learning algorithms.
stat
A Unified Taylor Framework for Revisiting Attribution Methods
Attribution methods have been developed to understand the decision-making process of machine learning models, especially deep neural networks, by assigning importance scores to individual features. Existing attribution methods often built upon empirical intuitions and heuristics. There still lacks a general and theoretical framework that not only can unify these attribution methods, but also theoretically reveal their rationales, fidelity, and limitations. To bridge the gap, in this paper, we propose a Taylor attribution framework and reformulate seven mainstream attribution methods into the framework. Based on reformulations, we analyze the attribution methods in terms of rationale, fidelity, and limitation. Moreover, We establish three principles for a good attribution in the Taylor attribution framework, i.e., low approximation error, correct contribution assignment, and unbiased baseline selection. Finally, we empirically validate the Taylor reformulations and reveal a positive correlation between the attribution performance and the number of principles followed by the attribution method via benchmarking on real-world datasets.
stat
Bayesian subset selection and variable importance for interpretable prediction and classification
Subset selection is a valuable tool for interpretable learning, scientific discovery, and data compression. However, classical subset selection is often eschewed due to selection instability, computational bottlenecks, and lack of post-selection inference. We address these challenges from a Bayesian perspective. Given any Bayesian predictive model $\mathcal{M}$, we elicit predictively-competitive subsets using linear decision analysis. The approach is customizable for (local) prediction or classification and provides interpretable summaries of $\mathcal{M}$. A key quantity is the acceptable family of subsets, which leverages the predictive distribution from $\mathcal{M}$ to identify subsets that offer nearly-optimal prediction. The acceptable family spawns new (co-) variable importance metrics based on whether variables (co-) appear in all, some, or no acceptable subsets. Crucially, the linear coefficients for any subset inherit regularization and predictive uncertainty quantification via $\mathcal{M}$. The proposed approach exhibits excellent prediction, interval estimation, and variable selection for simulated data, including $p=400 > n$. These tools are applied to a large education dataset with highly correlated covariates, where the acceptable family is especially useful. Our analysis provides unique insights into the combination of environmental, socioeconomic, and demographic factors that predict educational outcomes, and features highly competitive prediction with remarkable stability.
stat
On Linear Convergence of Weighted Kernel Herding
We provide a novel convergence analysis of two popular sampling algorithms, Weighted Kernel Herding and Sequential Bayesian Quadrature, that are used to approximate the expectation of a function under a distribution. Existing theoretical analysis was insufficient to explain the empirical successes of these algorithms. We improve upon existing convergence rates to show that, under mild assumptions, these algorithms converge linearly. To this end, we also suggest a simplifying assumption that is true for most cases in finite dimensions, and that acts as a sufficient condition for linear convergence to hold in the much harder case of infinite dimensions. When this condition is not satisfied, we provide a weaker convergence guarantee. Our analysis also yields a new distributed algorithm for large-scale computation that we prove converges linearly under the same assumptions. Finally, we provide an empirical evaluation to test the proposed algorithm for a real world application.
stat
Joint Nonparametric Precision Matrix Estimation with Confounding
We consider the problem of precision matrix estimation where, due to extraneous confounding of the underlying precision matrix, the data are independent but not identically distributed. While such confounding occurs in many scientific problems, our approach is inspired by recent neuroscientific research suggesting that brain function, as measured using functional magnetic resonance imagine (fMRI), is susceptible to confounding by physiological noise such as breathing and subject motion. Following the scientific motivation, we propose a graphical model, which in turn motivates a joint nonparametric estimator. We provide theoretical guarantees for the consistency and the convergence rate of the proposed estimator. In addition, we demonstrate that the optimization of the proposed estimator can be transformed into a series of linear programming problems, and thus be efficiently solved in parallel. Empirical results are presented using simulated and real brain imaging data, which suggest that our approach improves precision matrix estimation, as compared to baselines, when confounding is present.
stat
Stable discovery of interpretable subgroups via calibration in causal studies
Building on Yu and Kumbier's PCS framework and for randomized experiments, we introduce a novel methodology for Stable Discovery of Interpretable Subgroups via Calibration (StaDISC), with large heterogeneous treatment effects. StaDISC was developed during our re-analysis of the 1999-2000 VIGOR study, an 8076 patient randomized controlled trial (RCT), that compared the risk of adverse events from a then newly approved drug, Rofecoxib (Vioxx), to that from an older drug Naproxen. Vioxx was found to, on average and in comparison to Naproxen, reduce the risk of gastrointestinal (GI) events but increase the risk of thrombotic cardiovascular (CVT) events. Applying StaDISC, we fit 18 popular conditional average treatment effect (CATE) estimators for both outcomes and use calibration to demonstrate their poor global performance. However, they are locally well-calibrated and stable, enabling the identification of patient groups with larger than (estimated) average treatment effects. In fact, StaDISC discovers three clinically interpretable subgroups each for the GI outcome (totaling 29.4% of the study size) and the CVT outcome (totaling 11.0%). Complementary analyses of the found subgroups using the 2001-2004 APPROVe study, a separate independently conducted RCT with 2587 patients, provides further supporting evidence for the promise of StaDISC.
stat
Block Gibbs samplers for logistic mixed models: convergence properties and a comparison with full Gibbs samplers
Logistic linear mixed model (LLMM) is one of the most widely used statistical models. Generally, Markov chain Monte Carlo algorithms are used to explore the posterior densities associated with Bayesian LLMMs. Polson, Scott and Windle's (2013) Polya-Gamma data augmentation (DA) technique can be used to construct full Gibbs (FG) samplers for LLMMs. Here, we develop efficient block Gibbs (BG) samplers for Bayesian LLMMs using the Polya-Gamma DA method. We compare the FG and BG samplers in the context of simulated and real data examples as the correlation between the fixed and random effects changes as well as when the dimensions of the design matrices vary. These numerical examples demonstrate superior performance of the BG samplers over the FG samplers. We also derive conditions guaranteeing geometric ergodicity of the BG Markov chain when the popular improper uniform prior is assigned on the regression coefficients and proper or improper priors are placed on the variance parameters of the random effects. This theoretical result has important practical implications as it justifies the use of asymptotically valid Monte Carlo standard errors for Markov chain based estimates of posterior quantities.
stat
Estimation of Failure Probabilities via Local Subset Approximations
We here consider the subset simulation method which approaches a failure event using a decreasing sequence of nested intermediate failure events. The method resembles importance sampling, which actively explores a probability space by conditioning the next evaluation on the previous evaluations using a Markov chain Monte Carlo (MCMC) algorithm. A Markov chain typically requires many steps to estimate the target distribution, which is impractical with expensive numerical models. Therefore, we propose to approximate each step of a Markov chain locally with Gaussian process (GP) regression. Benchmark examples of reliability analysis show that local approximations significantly improve overall efficiency of subset simulation. They reduce the number of expensive limit-state evaluations by over $80\%$. However, GP regression becomes computationally impractical with increasing dimension. Therefore, to make our use of a GP feasible, we employ the partial least squares (PLS) regression, a gradient-free reduction method, locally to explore and utilize a low-dimensional subspace within a Markov chain. Numerical experiments illustrate a significant computational gain with maintained sufficient accuracy.
stat
Detecting bearish and bullish markets in financial time series using hierarchical hidden Markov models
Financial markets exhibit alternating periods of rising and falling prices. Stock traders seeking to make profitable investment decisions have to account for those trends, where the goal is to accurately predict switches from bullish towards bearish markets and vice versa. Popular tools for modeling financial time series are hidden Markov models, where a latent state process is used to explicitly model switches among different market regimes. In their basic form, however, hidden Markov models are not capable of capturing both short- and long-term trends, which can lead to a misinterpretation of short-term price fluctuations as changes in the long-term trend. In this paper, we demonstrate how hierarchical hidden Markov models can be used to draw a comprehensive picture of financial markets, which can contribute to the development of more sophisticated trading strategies. The feasibility of the suggested approach is illustrated in two real-data applications, where we model data from two major stock indices, the Deutscher Aktienindex and the Standard & Poor's 500.
stat
SuRF: a New Method for Sparse Variable Selection, with Application in Microbiome Data Analysis
In this paper, we present a new variable selection method for regression and classification purposes. Our method, called Subsampling Ranking Forward selection (SuRF), is based on LASSO penalised regression, subsampling and forward-selection methods. SuRF offers major advantages over existing variable selection methods in terms of both sparsity of selected models and model inference. We provide an R package that can implement our method for generalized linear models. We apply our method to classification problems from microbiome data, using a novel agglomeration approach to deal with the special tree-like correlation structure of the variables. Existing methods arbitrarily choose a taxonomic level a priori before performing the analysis, whereas by combining SuRF with these aggregated variables, we are able to identify the key biomarkers at the appropriate taxonomic level, as suggested by the data. We present simulations in multiple sparse settings to demonstrate that our approach performs better than several other popularly used existing approaches in recovering the true variables. We apply SuRF to two microbiome data sets: one about prediction of pouchitis and another for identifying samples from two healthy individuals. We find that SuRF can provide a better or comparable prediction with other methods while controlling the false positive rate of variable selection.
stat
Provable Robust Classification via Learned Smoothed Densities
Smoothing classifiers and probability density functions with Gaussian kernels appear unrelated, but in this work, they are unified for the problem of robust classification. The key building block is approximating the $\textit{energy function}$ of the random variable $Y=X+N(0,\sigma^2 I_d)$ with a neural network which we use to formulate the problem of robust classification in terms of $\widehat{x}(Y)$, the $\textit{Bayes estimator}$ of $X$ given the noisy measurements $Y$. We introduce $\textit{empirical Bayes smoothed classifiers}$ within the framework of $\textit{randomized smoothing}$ and study it theoretically for the two-class linear classifier, where we show one can improve their robustness above $\textit{the margin}$. We test the theory on MNIST and we show that with a learned smoothed energy function and a linear classifier we can achieve provable $\ell_2$ robust accuracies that are competitive with empirical defenses. This setup can be significantly improved by $\textit{learning}$ empirical Bayes smoothed classifiers with adversarial training and on MNIST we show that we can achieve provable robust accuracies higher than the state-of-the-art empirical defenses in a range of radii. We discuss some fundamental challenges of randomized smoothing based on a geometric interpretation due to concentration of Gaussians in high dimensions, and we finish the paper with a proposal for using walk-jump sampling, itself based on learned smoothed densities, for robust classification.
stat
Distance Assisted Recursive Testing
In many applications, a large number of features are collected with the goal to identify a few important ones. Sometimes, these features lie in a metric space with a known distance matrix, which partially reflects their co-importance pattern. Proper use of the distance matrix will boost the power of identifying important features. Hence, we develop a new multiple testing framework named the Distance Assisted Recursive Testing (DART). DART has two stages. In stage 1, we transform the distance matrix into an aggregation tree, where each node represents a set of features. In stage 2, based on the aggregation tree, we set up dynamic node hypotheses and perform multiple testing on the tree. All rejections are mapped back to the features. Under mild assumptions, the false discovery proportion of DART converges to the desired level in high probability converging to one. We illustrate by theory and simulations that DART has superior performance under various models compared to the existing methods. We applied DART to a clinical trial in the allogeneic stem cell transplantation study to identify the gut microbiota whose abundance will be impacted by the after-transplant care.
stat
Relative gradient optimization of the Jacobian term in unsupervised deep learning
Learning expressive probabilistic models correctly describing the data is a ubiquitous problem in machine learning. A popular approach for solving it is mapping the observations into a representation space with a simple joint distribution, which can typically be written as a product of its marginals -- thus drawing a connection with the field of nonlinear independent component analysis. Deep density models have been widely used for this task, but their maximum likelihood based training requires estimating the log-determinant of the Jacobian and is computationally expensive, thus imposing a trade-off between computation and expressive power. In this work, we propose a new approach for exact training of such neural networks. Based on relative gradients, we exploit the matrix structure of neural network parameters to compute updates efficiently even in high-dimensional spaces; the computational cost of the training is quadratic in the input size, in contrast with the cubic scaling of naive approaches. This allows fast training with objective functions involving the log-determinant of the Jacobian, without imposing constraints on its structure, in stark contrast to autoregressive normalizing flows.
stat
Think Global and Act Local: Bayesian Optimisation over High-Dimensional Categorical and Mixed Search Spaces
High-dimensional black-box optimisation remains an important yet notoriously challenging problem. Despite the success of Bayesian optimisation methods on continuous domains, domains that are categorical, or that mix continuous and categorical variables, remain challenging. We propose a novel solution -- we combine local optimisation with a tailored kernel design, effectively handling high-dimensional categorical and mixed search spaces, whilst retaining sample efficiency. We further derive convergence guarantee for the proposed approach. Finally, we demonstrate empirically that our method outperforms the current baselines on a variety of synthetic and real-world tasks in terms of performance, computational costs, or both.
stat
Fast Exact Bayesian Inference for Sparse Signals in the Normal Sequence Model
We consider exact algorithms for Bayesian inference with model selection priors (including spike-and-slab priors) in the sparse normal sequence model. Because the best existing exact algorithm becomes numerically unstable for sample sizes over n=500, there has been much attention for alternative approaches like approximate algorithms (Gibbs sampling, variational Bayes, etc.), shrinkage priors (e.g. the Horseshoe prior and the Spike-and-Slab LASSO) or empirical Bayesian methods. However, by introducing algorithmic ideas from online sequential prediction, we show that exact calculations are feasible for much larger sample sizes: for general model selection priors we reach n=25000, and for certain spike-and-slab priors we can easily reach n=100000. We further prove a de Finetti-like result for finite sample sizes that characterizes exactly which model selection priors can be expressed as spike-and-slab priors. The computational speed and numerical accuracy of the proposed methods are demonstrated in experiments on simulated data, on a differential gene expression data set, and to compare the effect of multiple hyper-parameter settings in the beta-binomial prior. In our experimental evaluation we compute guaranteed bounds on the numerical accuracy of all new algorithms, which shows that the proposed methods are numerically reliable whereas an alternative based on long division is not.
stat
Learning Dynamics Model in Reinforcement Learning by Incorporating the Long Term Future
In model-based reinforcement learning, the agent interleaves between model learning and planning. These two components are inextricably intertwined. If the model is not able to provide sensible long-term prediction, the executed planner would exploit model flaws, which can yield catastrophic failures. This paper focuses on building a model that reasons about the long-term future and demonstrates how to use this for efficient planning and exploration. To this end, we build a latent-variable autoregressive model by leveraging recent ideas in variational inference. We argue that forcing latent variables to carry future information through an auxiliary task substantially improves long-term predictions. Moreover, by planning in the latent space, the planner's solution is ensured to be within regions where the model is valid. An exploration strategy can be devised by searching for unlikely trajectories under the model. Our method achieves higher reward faster compared to baselines on a variety of tasks and environments in both the imitation learning and model-based reinforcement learning settings.
stat
Estimating Treatment Effects with Observed Confounders and Mediators
Given a causal graph, the do-calculus can express treatment effects as functionals of the observational joint distribution that can be estimated empirically. Sometimes the do-calculus identifies multiple valid formulae, prompting us to compare the statistical properties of the corresponding estimators. For example, the backdoor formula applies when all confounders are observed and the frontdoor formula applies when an observed mediator transmits the causal effect. In this paper, we investigate the over-identified scenario where both confounders and mediators are observed, rendering both estimators valid. Addressing the linear Gaussian causal model, we derive the finite-sample variance for both estimators and demonstrate that either estimator can dominate the other by an unbounded constant factor depending on the model parameters. Next, we derive an optimal estimator, which leverages all observed variables to strictly outperform the backdoor and frontdoor estimators. We also present a procedure for combining two datasets, with confounders observed in one and mediators in the other. Finally, we evaluate our methods on both simulated data and the IHDP and JTPA datasets.
stat
Learning Models from Data with Measurement Error: Tackling Underreporting
Measurement error in observational datasets can lead to systematic bias in inferences based on these datasets. As studies based on observational data are increasingly used to inform decisions with real-world impact, it is critical that we develop a robust set of techniques for analyzing and adjusting for these biases. In this paper we present a method for estimating the distribution of an outcome given a binary exposure that is subject to underreporting. Our method is based on a missing data view of the measurement error problem, where the true exposure is treated as a latent variable that is marginalized out of a joint model. We prove three different conditions under which the outcome distribution can still be identified from data containing only error-prone observations of the exposure. We demonstrate this method on synthetic data and analyze its sensitivity to near violations of the identifiability conditions. Finally, we use this method to estimate the effects of maternal smoking and opioid use during pregnancy on childhood obesity, two import problems from public health. Using the proposed method, we estimate these effects using only subject-reported drug use data and substantially refine the range of estimates generated by a sensitivity analysis-based approach. Further, the estimates produced by our method are consistent with existing literature on both the effects of maternal smoking and the rate at which subjects underreport smoking.
stat
Asymmetry approach to study for chemotherapy treatment and devices failure times data using modified Power function distribution with some modified estimators
In order to improve the already existing models that are used extensively in bio sciences and applied sciences research, a new class of Weighted Power function distribution (WPFD) has been proposed with its various properties and different modifications to be more applicable in real life. We have provided the mathematical derivations for the new distribution including moments, incomplete moments, conditional moments, inverse moments, mean residual function, vitality function, order statistics, mills ratio, information function, Shannon entropy, Bonferroni and Lorenz curves and quantile function. We have also characterized the WPFD, based on doubly truncated mean. The aim of the study is to increase the application of the Power function distribution. The main feature of the proposed distribution is that there is no induction of parameters as compare to the other generalization of the distributions, which are complexed having many parameters. We have used R programming to estimate the parameters of the new class of WPFD using Maximum Likelihood Method (MLM), Percentile Estimators (P.E) and their modified estimators. After analyzing the data, we conclude that the proposed model WPFD performs better in the data sets while compared to different competitor models.
stat
Nonparametric testing of the dependence structure among points-marks-covariates in spatial point patterns
We investigate testing of the hypothesis of independence between a covariate and the marks in a marked point process. It would be rather straightforward if the (unmarked) point process were independent of the covariate and the marks. In practice, however, such an assumption is questionable, and possible dependence between the point process and the covariate or the marks may lead to incorrect conclusions. Hence we propose to investigate the complete dependence structure in the triangle points-marks-covariates together. We take advantage of the recent development of the nonparametric random shift methods, namely the new variance correction approach, and propose tests of the null hypothesis of independence between the marks and the covariate and between the points and the covariate. We present a detailed simulation study showing the performance of the methods, and provide two theorems establishing the appropriate form of the correction factors for the variance correction. Finally, we illustrate the use of the proposed methods in two real applications.
stat
Improving the Stability of the Knockoff Procedure: Multiple Simultaneous Knockoffs and Entropy Maximization
The Model-X knockoff procedure has recently emerged as a powerful approach for feature selection with statistical guarantees. The advantage of knockoff is that if we have a good model of the features X, then we can identify salient features without knowing anything about how the outcome Y depends on X. An important drawback of knockoffs is its instability: running the procedure twice can result in very different selected features, potentially leading to different conclusions. Addressing this instability is critical for obtaining reproducible and robust results. Here we present a generalization of the knockoff procedure that we call simultaneous multi-knockoffs. We show that multi-knockoff guarantees false discovery rate (FDR) control, and is substantially more stable and powerful compared to the standard (single) knockoff. Moreover we propose a new algorithm based on entropy maximization for generating Gaussian multi-knockoffs. We validate the improved stability and power of multi-knockoffs in systematic experiments. We also illustrate how multi-knockoffs can improve the accuracy of detecting genetic mutations that are causally linked to phenotypes.
stat
Improving Adversarial Robustness of Ensembles with Diversity Training
Deep Neural Networks are vulnerable to adversarial attacks even in settings where the attacker has no direct access to the model being attacked. Such attacks usually rely on the principle of transferability, whereby an attack crafted on a surrogate model tends to transfer to the target model. We show that an ensemble of models with misaligned loss gradients can provide an effective defense against transfer-based attacks. Our key insight is that an adversarial example is less likely to fool multiple models in the ensemble if their loss functions do not increase in a correlated fashion. To this end, we propose Diversity Training, a novel method to train an ensemble of models with uncorrelated loss functions. We show that our method significantly improves the adversarial robustness of ensembles and can also be combined with existing methods to create a stronger defense.
stat
Parametric Copula-GP model for analyzing multidimensional neuronal and behavioral relationships
One of the main challenges in current systems neuroscience is the analysis of high-dimensional neuronal and behavioral data that are characterized by different statistics and timescales of the recorded variables. We propose a parametric copula model which separates the statistics of the individual variables from their dependence structure, and escapes the curse of dimensionality by using vine copula constructions. We use a Bayesian framework with Gaussian Process (GP) priors over copula parameters, conditioned on a continuous task-related variable. We validate the model on synthetic data and compare its performance in estimating mutual information against the commonly used non-parametric algorithms. Our model provides accurate information estimates when the dependencies in the data match the parametric copulas used in our framework. When the exact density estimation with a parametric model is not possible, our Copula-GP model is still able to provide reasonable information estimates, close to the ground truth and comparable to those obtained with a neural network estimator. Finally, we apply our framework to real neuronal and behavioral recordings obtained in awake mice. We demonstrate the ability of our framework to 1) produce accurate and interpretable bivariate models for the analysis of inter-neuronal noise correlations or behavioral modulations; 2) expand to more than 100 dimensions and measure information content in the whole-population statistics. These results demonstrate that the Copula-GP framework is particularly useful for the analysis of complex multidimensional relationships between neuronal, sensory and behavioral data.
stat
A causal exposure response function with local adjustment for confounding: Estimating health effects of exposure to low levels of ambient fine particulate matter
The Clean Air Act mandates that the National Ambient Air Quality Standards (NAAQS) must be routinely assessed to protect populations based on the latest science. Therefore, researchers should continue to address whether exposure to levels of air pollution below the NAAQS is harmful to human health. The contentious nature surrounding environmental regulations urges us to cast this question within a causal inference framework. Parametric and semi-parametric regression approaches have been used to estimate the exposure-response (ER) curve between ambient air pollution and health outcomes. Most of these approaches are not formulated within a causal framework, adjust for the same covariates across all levels of exposure, and do not account for model uncertainty. We introduce a Bayesian framework for the estimation of a causal ER curve called LERCA (Local Exposure Response Confounding Adjustment), which allows for different confounders and different strength of confounding at the different exposure levels; and propagates uncertainty regarding confounders' selection and the shape of the ER. LERCA provides a principled way of assessing the covariates' confounding importance at different exposure levels, providing researchers with information regarding the variables to adjust for in regression models. Using simulations, we show that state of the art approaches perform poorly in estimating the ER curve in the presence of local confounding. LERCA is used to evaluate the relationship between exposure to ambient PM2.5 and cardiovascular hospitalizations for 5,362 zip codes in the US, while adjusting for a potentially varying set of confounders across the exposure range. Ambient PM2.5 leads to an increase in cardiovascular hospitalization rates when focusing at the low exposure range. Our results indicate that there is no threshold for the effect of PM2.5 on cardiovascular hospitalizations.
stat
Approximating posteriors with high-dimensional nuisance parameters via integrated rotated Gaussian approximation
Posterior computation for high-dimensional data with many parameters can be challenging. This article focuses on a new method for approximating posterior distributions of a low- to moderate-dimensional parameter in the presence of a high-dimensional or otherwise computationally challenging nuisance parameter. The focus is on regression models and the key idea is to separate the likelihood into two components through a rotation. One component involves only the nuisance parameters, which can then be integrated out using a novel type of Gaussian approximation. We provide theory on approximation accuracy that holds for a broad class of forms of the nuisance component and priors. Applying our method to simulated and real data sets shows that it can outperform state-of-the-art posterior approximation approaches.
stat
A statistical Testing Procedure for Validating Class Labels
Motivated by an open problem of validating protein identities in label-free shotgun proteomics work-flows, we present a testing procedure to validate class/protein labels using available measurements across instances/peptides. More generally, we present a solution to the problem of identifying instances that are deemed, based on some distance (or quasi-distance) measure, as outliers relative to the subset of instances assigned to the same class. The proposed procedure is non-parametric and requires no specific distributional assumption on the measured distances. The only assumption underlying the testing procedure is that measured distances between instances within the same class are stochastically smaller than measured distances between instances from different classes. The test is shown to simultaneously control the Type I and Type II error probabilities whilst also controlling the overall error probability of the repeated testing invoked in the validation procedure of initial class labeling. The theoretical results are supplemented with results from an extensive numerical study, simulating a typical setup for labeling validation in proteomics work-flow applications. These results illustrate the applicability and viability of our method. Even with up to 25% of instances mislabeled, our testing procedure maintains a high specificity and greatly reduces the proportion of mislabeled instances.
stat
Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs
Collections of probability distributions arise in a variety of statistical applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions are represented by histograms over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of histograms over such general domains. We propose the intrinsic slicing construction that yields a novel class of Wasserstein distances on manifolds and graphs. These distances are Hilbert embeddable, allowing us to reduce the histogram collection comparison problem to a more familiar mean testing problem in a Hilbert space. We provide two testing procedures one based on resampling and another on combining p-values from coordinate-wise tests. Our experiments in a variety of data settings show that the resulting tests are powerful and the p-values are well-calibrated. Example applications to user activity patterns, spatial data, and brain connectomics are provided.
stat
Horvitz-Thompson-like estimation with distance-based detection probabilities for circular plot sampling of forests
In circular plot sampling, trees within a given distance from the sample plot location constitute a sample, which is used to infer characteristics of interest for the forest area. If the sample is collected using a technical device located at the sampling point, e.g. a terrestrial laser scanner, all trees of the sample plot cannot be observed because they hide behind each other. We propose a Horvitz-Thompson-like estimator with distance-based detection probabilities derived from stochastic geometry for estimation of population totals such as stem density and basal area in such situation. We show that our estimator is unbiased for Poisson forests and give estimates of variance and approximate confidence intervals for the estimator, unlike any previous methods. We compare the estimator to two previously published benchmark methods. The comparison is done through a simulation study where several plots are simulated either from field measured data or different marked point processes. The simulations show that the estimator produces lower or comparable error values than the other methods. In the sample plots based on the field measured data the bias is relatively small - relative mean of errors for stem density, for example, varying from 0.3 to 2.2 per cent, depending on the detection condition - and the empirical coverage probabilities of the approximate confidence intervals are either similar to the nominal levels or conservative.
stat
Improving ERGM Starting Values Using Simulated Annealing
Much of the theory of estimation for exponential family models, which include exponential-family random graph models (ERGMs) as a special case, is well-established and maximum likelihood estimates in particular enjoy many desirable properties. However, in the case of many ERGMs, direct calculation of MLEs is impossible and therefore methods for approximating MLEs and/or alternative estimation methods must be employed. Many MLE approximation methods require alternative estimates as starting points. We discuss one class of such alternatives here. The MLE satisfies the so-called "likelihood principle," unlike the MPLE. This means that different networks may have different MPLEs even if they have the same sufficient statistics. We exploit this fact here to search for improved starting values for approximation-based MLE methods. The method we propose has shown its merit in producing an MLE for a network dataset and model that had defied estimation using all other known methods.
stat
Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm
We consider the task of sampling with respect to a log concave probability distribution. The potential of the target distribution is assumed to be composite, \textit{i.e.}, written as the sum of a smooth convex term, and a nonsmooth convex term possibly taking infinite values. The target distribution can be seen as a minimizer of the Kullback-Leibler divergence defined on the Wasserstein space (\textit{i.e.}, the space of probability measures). In the first part of this paper, we establish a strong duality result for this minimization problem. In the second part of this paper, we use the duality gap arising from the first part to study the complexity of the Proximal Stochastic Gradient Langevin Algorithm (PSGLA), which can be seen as a generalization of the Projected Langevin Algorithm. Our approach relies on viewing PSGLA as a primal dual algorithm and covers many cases where the target distribution is not fully supported. In particular, we show that if the potential is strongly convex, the complexity of PSGLA is $O(1/\varepsilon^2)$ in terms of the 2-Wasserstein distance. In contrast, the complexity of the Projected Langevin Algorithm is $O(1/\varepsilon^{12})$ in terms of total variation when the potential is convex.
stat
Approximate Bayesian Computation for Finite Mixture Models
Finite mixture models are used in statistics and other disciplines, but inference for mixture models is challenging due, in part, to the multimodality of the likelihood function and the so-called label switching problem. We propose extensions of the Approximate Bayesian Computation-Population Monte Carlo (ABC-PMC) algorithm as an alternative framework for inference on finite mixture models. There are several decisions to make when implementing an ABC-PMC algorithm for finite mixture models, including the selection of the kernels used for moving the particles through the iterations, how to address the label switching problem, and the choice of informative summary statistics. Examples are presented to demonstrate the performance of the proposed ABC-PMC algorithm for mixture modeling. The performance of the proposed method is evaluated in a simulation study and for the popular recessional velocity galaxy data.
stat
Exact slice sampler for Hierarchical Dirichlet Processes
We propose an exact slice sampler for Hierarchical Dirichlet process (HDP) and its associated mixture models (Teh et al., 2006). Although there are existing MCMC algorithms for sampling from the HDP, a slice sampler has been missing from the literature. Slice sampling is well-known for its desirable properties including its fast mixing and its natural potential for parallelization. On the other hand, the hierarchical nature of HDPs poses challenges to adopting a full-fledged slice sampler that automatically truncates all the infinite measures involved without ad-hoc modifications. In this work, we adopt the powerful idea of Bayesian variable augmentation to address this challenge. By introducing new latent variables, we obtain a full factorization of the joint distribution that is suitable for slice sampling. Our algorithm has several appealing features such as (1) fast mixing; (2) remaining exact while allowing natural truncation of the underlying infinite-dimensional measures, as in (Kalli et al., 2011), resulting in updates of only a finite number of necessary atoms and weights in each iteration; and (3) being naturally suited to parallel implementations. The underlying principle for joint factorization of the full likelihood is simple and can be applied to many other settings, such as designing sampling algorithms for general dependent Dirichlet process (DDP) models.
stat
Censored Regression for Modelling International Small Arms Trading and its "Forensic" Use for Exploring Unreported Trades
In this paper we use a censored regression model to investigate data on the international trade of small arms and ammunition (SAA) provided by the Norwegian Initiative on Small Arms Transfers (NISAT). Taking a network based view on the transfers, we not only rely on exogenous covariates but also estimate endogenous network effects. We apply a spatial autocorrelation (SAR) model with multiple weight matrices. The likelihood is maximized employing the Monte Carlo Expectation Maximization (MCEM) algorithm. Our approach reveals strong and stable endogenous network effects. Furthermore, we find evidence for a substantial path dependence as well as a close connection between exports of civilian and military small arms. The model is then used in a "forensic" manner to analyse latent network structures and thereby to identify countries with higher or lower tendency to export or import than reflected in the data. The approach is also validated using a simulation study.
stat
Speech Recognition: Keyword Spotting Through Image Recognition
The problem of identifying voice commands has always been a challenge due to the presence of noise and variability in speed, pitch, etc. We will compare the efficacies of several neural network architectures for the speech recognition problem. In particular, we will build a model to determine whether a one second audio clip contains a particular word (out of a set of 10), an unknown word, or silence. The models to be implemented are a CNN recommended by the Tensorflow Speech Recognition tutorial, a low-latency CNN, and an adversarially trained CNN. The result is a demonstration of how to convert a problem in audio recognition to the better-studied domain of image classification, where the powerful techniques of convolutional neural networks are fully developed. Additionally, we demonstrate the applicability of the technique of Virtual Adversarial Training (VAT) to this problem domain, functioning as a powerful regularizer with promising potential future applications.
stat
Device Heterogeneity in Federated Learning: A Superquantile Approach
We propose a federated learning framework to handle heterogeneous client devices which do not conform to the population data distribution. The approach hinges upon a parameterized superquantile-based objective, where the parameter ranges over levels of conformity. We present an optimization algorithm and establish its convergence to a stationary point. We show how to practically implement it using secure aggregation by interleaving iterations of the usual federated averaging method with device filtering. We conclude with numerical experiments on neural networks as well as linear models on tasks from computer vision and natural language processing.
stat
Stage I non-small cell lung cancer stratification by using a model-based clustering algorithm with covariates
Lung cancer is currently the leading cause of cancer deaths. Among various subtypes, the number of patients diagnosed with stage I non-small cell lung cancer (NSCLC), particularly adenocarcinoma, has been increasing. It is estimated that 30 - 40\% of stage I patients will relapse, and 10 - 30\% will die due to recurrence, clearly suggesting the presence of a subgroup that could be benefited by additional therapy. We hypothesize that current attempts to identify stage I NSCLC subgroup failed due to covariate effects, such as the age at diagnosis and differentiation, which may be masking the results. In this context, to stratify stage I NSCLC, we propose CEM-Co, a model-based clustering algorithm that removes/minimizes the effects of undesirable covariates during the clustering process. We applied CEM-Co on a gene expression data set composed of 129 subjects diagnosed with stage I NSCLC and successfully identified a subgroup with a significantly different phenotype (poor prognosis), while standard clustering algorithms failed.
stat
On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks
Mixup~\cite{zhang2017mixup} is a recently proposed method for training deep neural networks where additional samples are generated during training by convexly combining random pairs of images and their associated labels. While simple to implement, it has been shown to be a surprisingly effective method of data augmentation for image classification: DNNs trained with mixup show noticeable gains in classification performance on a number of image classification benchmarks. In this work, we discuss a hitherto untouched aspect of mixup training -- the calibration and predictive uncertainty of models trained with mixup. We find that DNNs trained with mixup are significantly better calibrated -- i.e., the predicted softmax scores are much better indicators of the actual likelihood of a correct prediction -- than DNNs trained in the regular fashion. We conduct experiments on a number of image classification architectures and datasets -- including large-scale datasets like ImageNet -- and find this to be the case. Additionally, we find that merely mixing features does not result in the same calibration benefit and that the label smoothing in mixup training plays a significant role in improving calibration. Finally, we also observe that mixup-trained DNNs are less prone to over-confident predictions on out-of-distribution and random-noise data. We conclude that the typical overconfidence seen in neural networks, even on in-distribution data is likely a consequence of training with hard labels, suggesting that mixup be employed for classification tasks where predictive uncertainty is a significant concern.
stat
A general method for regularizing tensor decomposition methods via pseudo-data
Tensor decomposition methods allow us to learn the parameters of latent variable models through decomposition of low-order moments of data. A significant limitation of these algorithms is that there exists no general method to regularize them, and in the past regularization has mostly been performed using bespoke modifications to the algorithms, tailored for the particular form of the desired regularizer. We present a general method of regularizing tensor decomposition methods which can be used for any likelihood model that is learnable using tensor decomposition methods and any differentiable regularization function by supplementing the training data with pseudo-data. The pseudo-data is optimized to balance two terms: being as close as possible to the true data and enforcing the desired regularization. On synthetic, semi-synthetic and real data, we demonstrate that our method can improve inference accuracy and regularize for a broad range of goals including transfer learning, sparsity, interpretability, and orthogonality of the learned parameters.
stat
Robust Adaptive Control Charts
In statistical process control, procedures are applied that require relatively strict conditions for their use. If such assumptions are violated, these methods become inefficient, leading to increased incidence of false signals. Therefore, a robust version of control charts is sought to be less sensitive with respect to a breach of normality and independence in measurements. Robust control charts, however, usually increase the delay in the detection of assignable causes. This negative effect can, to some extent, be removed with the aid of an adaptive approach.
stat
Weibull Racing Survival Analysis for Competing Events and a Study of Loan Payoff and Default
We propose Bayesian nonparametric Weibull delegate racing (WDR) to explicitly model surviving under competing events and to interpret how the covariates accelerate or decelerate the event times. WDR explains non-monotonic covariate effects by racing a potentially infinite number of sub-events, relaxing the ubiquitous proportional-hazards assumption which may be too restrictive. WDR can handle different types of censoring and missing event times or types. For inference, we develop a Gibbs-sampler-based MCMC algorithm along with a maximum a posteriori estimation for big data applications. We use synthetic data analysis to demonstrate the flexibility and parsimonious nonlinearity of WDR. We also use a data set of time to loan payoff and default from Prosper.com to showcase the interpretability.
stat
Estimating Robot Strengths with Application to Selection of Alliance Members in FIRST Robotics Competitions
Since the inception of the FIRST Robotics Competition (FRC) and its special playoff system, robotics teams have longed to appropriately quantify the strengths of their designed robots. The FRC includes a playground draft-like phase (alliance selection), arguably the most game-changing part of the competition, in which the top-8 robotics teams in a tournament based on the FRC's ranking system assess potential alliance members for the opportunity of partnering in a playoff stage. In such a three-versus-three competition, several measures and models have been used to characterize actual or relative robot strengths. However, existing models are found to have poor predictive performance due to their imprecise estimates of robot strengths caused by a small ratio of the number of observations to the number of robots. A more general regression model with latent clusters of robot strengths is, thus, proposed to enhance their predictive capacities. Two effective estimation procedures are further developed to simultaneously estimate the number of clusters, clusters of robots, and robot strengths. Meanwhile, some measures are used to assess the predictive ability of competing models, the agreement between published FRC measures of strength and model-based robot strengths of all, playoff, and FRC top-8 robots, and the agreement between FRC top-8 robots and model-based top robots. Moreover, the stability of estimated robot strengths and accuracies is investigated to determine whether the scheduled matches are excessive or insufficient. In the analysis of qualification data from the 2018 FRC Houston and Detroit championships, the predictive ability of our model is also shown to be significantly better than those of existing models. Teams who adopt the new model can now appropriately rank their preferences for playoff alliance partners with greater predictive capability than before.
stat
Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks
Motivated by the pursuit of a systematic computational and algorithmic understanding of Generative Adversarial Networks (GANs), we present a simple yet unified non-asymptotic local convergence theory for smooth two-player games, which subsumes several discrete-time gradient-based saddle point dynamics. The analysis reveals the surprising nature of the off-diagonal interaction term as both a blessing and a curse. On the one hand, this interaction term explains the origin of the slow-down effect in the convergence of Simultaneous Gradient Ascent (SGA) to stable Nash equilibria. On the other hand, for the unstable equilibria, exponential convergence can be proved thanks to the interaction term, for four modified dynamics proposed to stabilize GAN training: Optimistic Mirror Descent (OMD), Consensus Optimization (CO), Implicit Updates (IU) and Predictive Method (PM). The analysis uncovers the intimate connections among these stabilizing techniques, and provides detailed characterization on the choice of learning rate. As a by-product, we present a new analysis for OMD proposed in Daskalakis, Ilyas, Syrgkanis, and Zeng [2017] with improved rates.
stat
Conjugate Nearest Neighbor Gaussian Process Models for Efficient Statistical Interpolation of Large Spatial Data
A key challenge in spatial statistics is the analysis for massive spatially-referenced data sets. Such analyses often proceed from Gaussian process specifications that can produce rich and robust inference, but involve dense covariance matrices that lack computationally exploitable structures. The matrix computations required for fitting such models involve floating point operations in cubic order of the number of spatial locations and dynamic memory storage in quadratic order. Recent developments in spatial statistics offer a variety of massively scalable approaches. Bayesian inference and hierarchical models, in particular, have gained popularity due to their richness and flexibility in accommodating spatial processes. Our current contribution is to provide computationally efficient exact algorithms for spatial interpolation of massive data sets using scalable spatial processes. We combine low-rank Gaussian processes with efficient sparse approximations. Following recent work by [1], we model the low-rank process using a Gaussian predictive process (GPP) and the residual process as a sparsity-inducing nearest-neighbor Gaussian process (NNGP). A key contribution here is to implement these models using exact conjugate Bayesian modeling to avoid expensive iterative algorithms. Through the simulation studies, we evaluate performance of the proposed approach and the robustness of our models, especially for long range prediction. We implement our approaches for remotely sensed light detection and ranging (LiDAR) data collected over the US Forest Service Tanana Inventory Unit (TIU) in a remote portion of Interior Alaska.
stat
Covariate balancing for causal inference on categorical and continuous treatments
We propose novel estimators for categorical and continuous treatments by using an optimal covariate balancing strategy for inverse probability weighting. The resulting estimators are shown to be consistent and asymptotically normal for causal contrasts of interest, either when the model explaining treatment assignment is correctly specified, or when the correct set of bases for the outcome models has been chosen and the assignment model is sufficiently rich. For the categorical treatment case, we show that the estimator attains the semiparametric efficiency bound when all models are correctly specified. For the continuous case, the causal parameter of interest is a function of the treatment dose. The latter is not parametrized and the estimators proposed are shown to have bias and variance of the classical nonparametric rate. Asymptotic results are complemented with simulations illustrating the finite sample properties. Our analysis of a data set suggests a nonlinear effect of BMI on the decline in self reported health.
stat
Nonclosedness of Sets of Neural Networks in Sobolev Spaces
We examine the closedness of sets of realized neural networks of a fixed architecture in Sobolev spaces. For an exactly $m$-times differentiable activation function $\rho$, we construct a sequence of neural networks $(\Phi_n)_{n \in \mathbb{N}}$ whose realizations converge in order-$(m-1)$ Sobolev norm to a function that cannot be realized exactly by a neural network. Thus, sets of realized neural networks are not closed in order-$(m-1)$ Sobolev spaces $W^{m-1,p}$ for $p \in [1,\infty]$. We further show that these sets are not closed in $W^{m,p}$ under slightly stronger conditions on the $m$-th derivative of $\rho$. For a real analytic activation function, we show that sets of realized neural networks are not closed in $W^{k,p}$ for any $k \in \mathbb{N}$. The nonclosedness allows for approximation of non-network target functions with unbounded parameter growth. We partially characterize the rate of parameter growth for most activation functions by showing that a specific sequence of realized neural networks can approximate the activation function's derivative with weights increasing inversely proportional to the $L^p$ approximation error. Finally, we present experimental results showing that networks are capable of closely approximating non-network target functions with increasing parameters via training.
stat
Kernel Interpolation for Scalable Online Gaussian Processes
Gaussian processes (GPs) provide a gold standard for performance in online settings, such as sample-efficient control and black box optimization, where we need to update a posterior distribution as we acquire data in a sequential fashion. However, updating a GP posterior to accommodate even a single new observation after having observed $n$ points incurs at least $O(n)$ computations in the exact setting. We show how to use structured kernel interpolation to efficiently recycle computations for constant-time $O(1)$ online updates with respect to the number of points $n$, while retaining exact inference. We demonstrate the promise of our approach in a range of online regression and classification settings, Bayesian optimization, and active sampling to reduce error in malaria incidence forecasting. Code is available at https://github.com/wjmaddox/online_gp.
stat
Deep Mixed Effect Model using Gaussian Processes: A Personalized and Reliable Prediction for Healthcare
We present a personalized and reliable prediction model for healthcare, which can provide individually tailored medical services such as diagnosis, disease treatment, and prevention. Our proposed framework targets at making personalized and reliable predictions from time-series data, such as Electronic Health Records (EHR), by modeling two complementary components: i) a shared component that captures global trend across diverse patients and ii) a patient-specific component that models idiosyncratic variability for each patient. To this end, we propose a composite model of a deep neural network to learn complex global trends from the large number of patients, and Gaussian Processes (GP) to probabilistically model individual time-series given relatively small number of visits per patient. We evaluate our model on diverse and heterogeneous tasks from EHR datasets and show practical advantages over standard time-series deep models such as pure Recurrent Neural Network (RNN).
stat
Higher-order interactions in statistical physics and machine learning: A model-independent solution to the inverse problem at equilibrium
The problem of inferring pair-wise and higher-order interactions in complex systems involving large numbers of interacting variables, from observational data, is fundamental to many fields. Known to the statistical physics community as the inverse problem, it has become accessible in recent years due to real and simulated 'big' data being generated. Current approaches to the inverse problem rely on parametric assumptions, physical approximations, e.g. mean-field theory, and ignoring higher-order interactions which may lead to biased or incorrect estimates. We bypass these shortcomings using a cross-disciplinary approach and demonstrate that none of these assumptions and approximations are necessary: We introduce a universal, model-independent, and fundamentally unbiased estimator of all-order symmetric interactions, via the non-parametric framework of Targeted Learning, a subfield of mathematical statistics. Due to its universality, our definition is readily applicable to any system at equilibrium with binary and categorical variables, be it magnetic spins, nodes in a neural network, or protein networks in biology. Our approach is targeted, not requiring fitting unnecessary parameters. Instead, it expends all data on estimating interactions, hence substantially increasing accuracy. We demonstrate the generality of our technique both analytically and numerically on (i) the 2-dimensional Ising model, (ii) an Ising-like model with 4-point interactions, (iii) the Restricted Boltzmann Machine, and (iv) simulated individual-level human DNA variants and representative traits. The latter demonstrates the applicability of this approach to discover epistatic interactions causal of disease in population biomedicine.
stat
A Note on Debiased/Double Machine Learning Logistic Partially Linear Model
It is of particular interests in many application fields to draw doubly robust inference of a logistic partially linear model with the predictor specified as combination of a targeted low dimensional linear parametric function and a nuisance nonparametric function. In recent, Tan (2019) proposed a simple and flexible doubly robust estimator for this purpose. They introduced the two nuisance models, i.e. nonparametric component in the logistic model and conditional mean of the exposure covariates given the other covariates and fixed response, and specified them as fixed dimensional parametric models. Their framework could be potentially extended to machine learning or high dimensional nuisance modelling exploited recently, e.g. in Chernozhukovet al. (2018a,b) and Smucler et al. (2019); Tan (2020). Motivated by this, we derive the debiased/double machine learning logistic partially linear model in this note. For construction of the nuisance models, we separately consider the use of high dimensional sparse parametric models and general machine learning methods. By deriving certain moment equations to calibrate the first order bias of the nuisance models, we preserve a model double robustness property on high dimensional ultra-sparse nuisance models. We also discuss and compare the underlying assumption of our method with debiased LASSO (Van deGeer et al., 2014). To implement the machine learning proposal, we design a full model refitting procedure that allows the use of any blackbox conditional mean estimation method in our framework. Under the machine learning setting, our method is rate doubly robust in a similar sense as Chernozhukov et al. (2018a).
stat
Phenotyping OSA: a time series analysis using fuzzy clustering and persistent homology
Sleep apnea is a disorder that has serious consequences for the pediatric population. There has been recent concern that traditional diagnosis of the disorder using the apnea-hypopnea index may be ineffective in capturing its multi-faceted outcomes. In this work, we take a first step in addressing this issue by phenotyping patients using a clustering analysis of airflow time series. This is approached in three ways: using feature-based fuzzy clustering in the time and frequency domains, and using persistent homology to study the signal from a topological perspective. The fuzzy clusters are analyzed in a novel manner using a Dirichlet regression analysis, while the topological approach leverages Takens embedding theorem to study the periodicity properties of the signals.
stat
Efficient surrogate modeling methods for large-scale Earth system models based on machine learning techniques
Improving predictive understanding of Earth system variability and change requires data-model integration. Efficient data-model integration for complex models requires surrogate modeling to reduce model evaluation time. However, building a surrogate of a large-scale Earth system model (ESM) with many output variables is computationally intensive because it involves a large number of expensive ESM simulations. In this effort, we propose an efficient surrogate method capable of using a few ESM runs to build an accurate and fast-to-evaluate surrogate system of model outputs over large spatial and temporal domains. We first use singular value decomposition to reduce the output dimensions, and then use Bayesian optimization techniques to generate an accurate neural network surrogate model based on limited ESM simulation samples. Our machine learning based surrogate methods can build and evaluate a large surrogate system of many variables quickly. Thus, whenever the quantities of interest change such as a different objective function, a new site, and a longer simulation time, we can simply extract the information of interest from the surrogate system without rebuilding new surrogates, which significantly saves computational efforts. We apply the proposed method to a regional ecosystem model to approximate the relationship between 8 model parameters and 42660 carbon flux outputs. Results indicate that using only 20 model simulations, we can build an accurate surrogate system of the 42660 variables, where the consistency between the surrogate prediction and actual model simulation is 0.93 and the mean squared error is 0.02. This highly-accurate and fast-to-evaluate surrogate system will greatly enhance the computational efficiency in data-model integration to improve predictions and advance our understanding of the Earth system.
stat
Clustering Multivariate Data using Factor Analytic Bayesian Mixtures with an Unknown Number of Components
Recent work on overfitting Bayesian mixtures of distributions offers a powerful framework for clustering multivariate data using a latent Gaussian model which resembles the factor analysis model. The flexibility provided by overfitting mixture models yields a simple and efficient way in order to estimate the unknown number of clusters and model parameters by Markov chain Monte Carlo (MCMC) sampling. The present study extends this approach by considering a set of eight parameterizations, giving rise to parsimonious representations of the covariance matrix per cluster. A Gibbs sampler combined with a prior parallel tempering scheme is implemented in order to approximately sample from the posterior distribution of the overfitting mixture. The parameterization and number of factors is selected according to the Bayesian Information Criterion. Identifiability issues related to label switching are dealt by post-processing the simulated output with the Equivalence Classes Representatives algorithm. The contributed method and software are demonstrated and compared to similar models estimated using the Expectation-Maximization algorithm on simulated and real datasets. The software is available online at https://CRAN.R-project.org/package=fabMix.
stat
A Distribution-Free Test of Covariate Shift Using Conformal Prediction
Covariate shift is a common and important assumption in transfer learning and domain adaptation to treat the distributional difference between the training and testing data. We propose a nonparametric test of covariate shift using the conformal prediction framework. The construction of our test statistic combines recent developments in conformal prediction with a novel choice of conformity score, resulting in a valid and powerful test statistic under very general settings. To our knowledge, this is the first successful attempt of using conformal prediction for testing statistical hypotheses. Our method is suitable for modern machine learning scenarios where the data has high dimensionality and large sample sizes, and can be effectively combined with existing classification algorithms to find good conformity score functions. The performance of the proposed method is demonstrated in synthetic and real data examples.
stat
Defining Estimands Using a Mix of Strategies to Handle Intercurrent Events in Clinical Trials
Randomized controlled trials (RCT) are the gold standard for evaluation of the efficacy and safety of investigational interventions. If every patient in an RCT were to adhere to the randomized treatment, one could simply analyze the complete data to infer the treatment effect. However, intercurrent events (ICEs) including the use of concomitant medication for unsatisfactory efficacy, treatment discontinuation due to adverse events, or lack of efficacy, may lead to interventions that deviate from the original treatment assignment. Therefore, defining the appropriate estimand (the appropriate parameter to be estimated) based on the primary objective of the study is critical prior to determining the statistical analysis method and analyzing the data. The International Council for Harmonisation (ICH) E9 (R1), published on November 20, 2019, provided 5 strategies to define the estimand: treatment policy, hypothetical, composite variable, while on treatment and principal stratum. In this article, we propose an estimand using a mix of strategies in handling ICEs. This estimand is an average of the null treatment difference for those with ICEs potentially related to safety and the treatment difference for the other patients if they would complete the assigned treatments. Two examples from clinical trials evaluating anti-diabetes treatments are provided to illustrate the estimation of this proposed estimand and to compare it with the estimates for estimands using hypothetical and treatment policy strategies in handling ICEs.
stat
Max-infinitely divisible models and inference for spatial extremes
For many environmental processes, recent studies have shown that the dependence strength is decreasing when quantile levels increase. This implies that the popular max-stable models are inadequate to capture the rate of joint tail decay, and to estimate joint extremal probabilities beyond observed levels. We here develop a more flexible modeling framework based on the class of max-infinitely divisible processes, which extend max-stable processes while retaining dependence properties that are natural for maxima. We propose two parametric constructions for max-infinitely divisible models, which relax the max-stability property but remain close to some popular max-stable models obtained as special cases. The first model considers maxima over a finite, random number of independent observations, while the second model generalizes the spectral representation of max-stable processes. Inference is performed using a pairwise likelihood. We illustrate the benefits of our new modeling framework on Dutch wind gust maxima calculated over different time units. Results strongly suggest that our proposed models outperform other natural models, such as the Student-t copula process and its max-stable limit, even for large block sizes.
stat
Generalized simultaneous component analysis of binary and quantitative data
In the current era of systems biological research there is a need for the integrative analysis of binary and quantitative genomics data sets measured on the same objects. One standard tool of exploring the underlying dependence structure present in multiple quantitative data sets is simultaneous component analysis (SCA) model. However, it does not have any provisions when a part of the data are binary. To this end, we propose the generalized SCA (GSCA) model, which takes into account the distinct mathematical properties of binary and quantitative measurements in the maximum likelihood framework. Like in the SCA model, a common low dimensional subspace is assumed to represent the shared information between these two distinct types of measurements. However, the GSCA model can easily be overfitted when a rank larger than one is used, leading to some of the estimated parameters to become very large. To achieve a low rank solution and combat overfitting, we propose to use a concave variant of the nuclear norm penalty. An efficient majorization algorithm is developed to fit this model with different concave penalties. Realistic simulations (low signal-to-noise ratio and highly imbalanced binary data) are used to evaluate the performance of the proposed model in recovering the underlying structure. Also, a missing value based cross validation procedure is implemented for model selection. We illustrate the usefulness of the GSCA model for exploratory data analysis of quantitative gene expression and binary copy number aberration (CNA) measurements obtained from the GDSC1000 data sets.
stat
Res-embedding for Deep Learning Based Click-Through Rate Prediction Modeling
Recently, click-through rate (CTR) prediction models have evolved from shallow methods to deep neural networks. Most deep CTR models follow an Embedding\&MLP paradigm, that is, first mapping discrete id features, e.g. user visited items, into low dimensional vectors with an embedding module, then learn a multi-layer perception (MLP) to fit the target. In this way, embedding module performs as the representative learning and plays a key role in the model performance. However, in many real-world applications, deep CTR model often suffers from poor generalization performance, which is mostly due to the learning of embedding parameters. In this paper, we model user behavior using an interest delay model, study carefully the embedding mechanism, and obtain two important results: (i) We theoretically prove that small aggregation radius of embedding vectors of items which belongs to a same user interest domain will result in good generalization performance of deep CTR model. (ii) Following our theoretical analysis, we design a new embedding structure named res-embedding. In res-embedding module, embedding vector of each item is the sum of two components: (i) a central embedding vector calculated from an item-based interest graph (ii) a residual embedding vector with its scale to be relatively small. Empirical evaluation on several public datasets demonstrates the effectiveness of the proposed res-embedding structure, which brings significant improvement on the model performance.
stat
Adaptive Algorithm for Sparse Signal Recovery
Spike and slab priors play a key role in inducing sparsity for sparse signal recovery. The use of such priors results in hard non-convex and mixed integer programming problems. Most of the existing algorithms to solve the optimization problems involve either simplifying assumptions, relaxations or high computational expenses. We propose a new adaptive alternating direction method of multipliers (AADMM) algorithm to directly solve the presented optimization problem. The algorithm is based on the one-to-one mapping property of the support and non-zero element of the signal. At each step of the algorithm, we update the support by either adding an index to it or removing an index from it and use the alternating direction method of multipliers to recover the signal corresponding to the updated support. Experiments on synthetic data and real-world images show that the proposed AADMM algorithm provides superior performance and is computationally cheaper, compared to the recently developed iterative convex refinement (ICR) algorithm.
stat