title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
At the Intersection of Deep Sequential Model Framework and State-space Model Framework: Study on Option Pricing
Inference and forecast problems of the nonlinear dynamical system have arisen in a variety of contexts. Reservoir computing and deep sequential models, on the one hand, have demonstrated efficient, robust, and superior performance in modeling simple and chaotic dynamical systems. However, their innate deterministic feature has partially detracted their robustness to noisy system, and their inability to offer uncertainty measurement has also been an insufficiency of the framework. On the other hand, the traditional state-space model framework is robust to noise. It also carries measured uncertainty, forming a just-right complement to the reservoir computing and deep sequential model framework. We propose the unscented reservoir smoother, a model that unifies both deep sequential and state-space models to achieve both frameworks' superiorities. Evaluated in the option pricing setting on top of noisy datasets, URS strikes highly competitive forecasting accuracy, especially those of longer-term, and uncertainty measurement. Further extensions and implications on URS are also discussed to generalize a full integration of both frameworks.
stat
Integrating data science ethics into an undergraduate major
We present a programmatic approach to incorporating ethics into an undergraduate major in statistical and data sciences. We discuss departmental-level initiatives designed to meet the National Academy of Sciences recommendation for weaving ethics into the curriculum from top-to-bottom as our majors progress from our introductory courses to our senior capstone course, as well as from side-to-side through co-curricular programming. We also provide six examples of data science ethics modules used in five different courses at our liberal arts college, each focusing on a different ethical consideration. The modules are designed to be portable such that they can be flexibly incorporated into existing courses at different levels of instruction with minimal disruption to syllabi. We conclude with next steps and preliminary assessments.
stat
Element-centric clustering comparison unifies overlaps and hierarchy
Clustering is one of the most universal approaches for understanding complex data. A pivotal aspect of clustering analysis is quantitatively comparing clusterings; clustering comparison is the basis for many tasks such as clustering evaluation, consensus clustering, and tracking the temporal evolution of clusters. In particular, the extrinsic evaluation of clustering methods requires comparing the uncovered clusterings to planted clusterings or known metadata. Yet, as we demonstrate, existing clustering comparison measures have critical biases which undermine their usefulness, and no measure accommodates both overlapping and hierarchical clusterings. Here we unify the comparison of disjoint, overlapping, and hierarchically structured clusterings by proposing a new element-centric framework: elements are compared based on the relationships induced by the cluster structure, as opposed to the traditional cluster-centric philosophy. We demonstrate that, in contrast to standard clustering similarity measures, our framework does not suffer from critical biases and naturally provides unique insights into how the clusterings differ. We illustrate the strengths of our framework by revealing new insights into the organization of clusters in two applications: the improved classification of schizophrenia based on the overlapping and hierarchical community structure of fMRI brain networks, and the disentanglement of various social homophily factors in Facebook social networks. The universality of clustering suggests far-reaching impact of our framework throughout all areas of science.
stat
An adaptive stochastic optimization algorithm for resource allocation
We consider the classical problem of sequential resource allocation where a decision maker must repeatedly divide a budget between several resources, each with diminishing returns. This can be recast as a specific stochastic optimization problem where the objective is to maximize the cumulative reward, or equivalently to minimize the regret. We construct an algorithm that is {\em adaptive} to the complexity of the problem, expressed in term of the regularity of the returns of the resources, measured by the exponent in the {\L}ojasiewicz inequality (or by their universal concavity parameter). Our parameter-independent algorithm recovers the optimal rates for strongly-concave functions and the classical fast rates of multi-armed bandit (for linear reward functions). Moreover, the algorithm improves existing results on stochastic optimization in this regret minimization setting for intermediate cases.
stat
A flexible model-free prediction-based framework for feature ranking
Despite the availability of numerous statistical and machine learning tools for joint feature modeling, many scientists investigate features marginally, i.e., one feature at a time. This is partly due to training and convention but also roots in scientists' strong interests in simple visualization and interpretability. As such, marginal feature ranking for some predictive tasks, e.g., prediction of cancer driver genes, is widely practiced in the process of scientific discoveries. In this work, we focus on marginal ranking for binary prediction, the arguably most common predictive tasks. We argue that the most widely used marginal ranking criteria, including the Pearson correlation, the two-sample t test, and two-sample Wilcoxon rank-sum test, do not fully take feature distributions and prediction objectives into account. To address this gap in practice, we propose two ranking criteria corresponding to two prediction objectives: the classical criterion (CC) and the Neyman-Pearson criterion (NPC), both of which use model-free nonparametric implementations to accommodate diverse feature distributions. Theoretically, we show that under regularity conditions both criteria achieve sample-level ranking consistent with their population-level counterpart with high probability. Moreover, NPC is robust to sampling bias when the two class proportions in a sample deviate from those in the population. This property endows NPC good potential in biomedical research where sampling bias is common. We demonstrate the use and relative advantages of CC and NPC in simulation and real data studies. Our model-free objective-based ranking idea is extendable to ranking feature subsets and generalizable to other prediction tasks and learning objectives.
stat
Spatial Heterogeneity Automatic Detection and Estimation
Spatial regression is widely used for modeling the relationship between a dependent variable and explanatory covariates. Oftentimes, the linear relationships vary across space, when some covariates have location-specific effects on the response. One fundamental question is how to detect the systematic variation in the model and identify which locations share common regression coefficients and which do not. Only a correct model structure can assure unbiased estimation of coefficients and valid inferences. In this work, we propose a new procedure, called Spatial Heterogeneity Automatic Detection and Estimation (SHADE), for automatically and simultaneously subgrouping and estimating covariate effects for spatial regression models. The SHADE employs a class of spatially-weighted fusion type penalty on all pairs of observations, with location-specific weight adaptively constructed using spatial information, to cluster coefficients into subgroups. Under certain regularity conditions, the SHADE is shown to be able to identify the true model structure with probability approaching one and estimate regression coefficients consistently. We develop an alternating direction method of multiplier algorithm (ADMM) to compute the SHAD efficiently. In numerical studies, we demonstrate empirical performance of the SHADE by using different choices of weights and compare their accuracy. The results suggest that spatial information can enhance subgroup structure analysis in challenging situations when the spatial variation among regression coefficients is small or the number of repeated measures is small. Finally, the SHADE is applied to find the relationship between a natural resource survey and a land cover data layer to identify spatially interpretable groups.
stat
An end-to-end data-driven optimisation framework for constrained trajectories
Many real-world problems require to optimise trajectories under constraints. Classical approaches are based on optimal control methods but require an exact knowledge of the underlying dynamics, which could be challenging or even out of reach. In this paper, we leverage data-driven approaches to design a new end-to-end framework which is dynamics-free for optimised and realistic trajectories. We first decompose the trajectories on function basis, trading the initial infinite dimension problem on a multivariate functional space for a parameter optimisation problem. A maximum \emph{a posteriori} approach which incorporates information from data is used to obtain a new optimisation problem which is regularised. The penalised term focuses the search on a region centered on data and includes estimated linear constraints in the problem. We apply our data-driven approach to two settings in aeronautics and sailing routes optimisation, yielding commanding results. The developed approach has been implemented in the Python library PyRotor.
stat
A Theory of Dichotomous Valuation with Applications to Variable Selection
An econometric or statistical model may undergo a marginal gain if we admit a new variable to the model, and a marginal loss if we remove an existing variable from the model. Assuming equality of opportunity among all candidate variables, we derive a valuation framework by the expected marginal gain and marginal loss in all potential modeling scenarios. However, marginal gain and loss are not symmetric; thus, we introduce three unbiased solutions. When used in variable selection, our new approaches significantly outperform several popular methods used in practice. The results also explore some novel traits of the Shapley value.
stat
Data-Based Optimal Bandwidth for Kernel Density Estimation of Statistical Samples
It is a common practice to evaluate probability density function or matter spatial density function from statistical samples. Kernel density estimation is a frequently used method, but to select an optimal bandwidth of kernel estimation, which is completely based on data samples, is a long-term issue that has not been well settled so far. There exist analytic formulae of optimal kernel bandwidth, but they cannot be applied directly to data samples, since they depend on the unknown underlying density functions from which the samples are drawn. In this work, we devise an approach to pick out the totally data-based optimal bandwidth. First, we derive correction formulae for the analytic formulae of optimal bandwidth to compute the roughness of the sample's density function. Then substitute the correction formulae into the analytic formulae for optimal bandwidth, and through iteration, we obtain the sample's optimal bandwidth. Compared with analytic formulae, our approach gives very good results, with relative differences from the analytic formulae being only 2%-3% for a sample size larger than 10^4. This approach can also be generalized easily to cases of variable kernel estimations.
stat
Distributed ARIMA Models for Ultra-long Time Series
Providing forecasts for ultra-long time series plays a vital role in various activities, such as investment decisions, industrial production arrangements, and farm management. This paper develops a novel distributed forecasting framework to tackle challenges associated with forecasting ultra-long time series by utilizing the industry-standard MapReduce framework. The proposed model combination approach facilitates distributed time series forecasting by combining the local estimators of ARIMA (AutoRegressive Integrated Moving Average) models delivered from worker nodes and minimizing a global loss function. In this way, instead of unrealistically assuming the data generating process (DGP) of an ultra-long time series stays invariant, we make assumptions only on the DGP of subseries spanning shorter time periods. We investigate the performance of the proposed distributed ARIMA models on an electricity demand dataset. Compared to ARIMA models, our approach results in significantly improved forecasting accuracy and computational efficiency both in point forecasts and prediction intervals, especially for longer forecast horizons. Moreover, we explore some potential factors that may affect the forecasting performance of our approach.
stat
Combining Population and Study Data for Inference on Event Rates
This note considers the problem of conducting statistical inference on the share of individuals in some subgroup of a population that experience some event. The specific complication is that the size of the subgroup needs to be estimated, whereas the number of individuals that experience the event is known. The problem is motivated by the recent study of Streeck et al. (2020), who estimate the infection fatality rate (IFR) of SARS-CoV-2 infection in a German town that experienced a super-spreading event in mid-February 2020. In their case the subgroup of interest is comprised of all infected individuals, and the event is death caused by the infection. We clarify issues with the precise definition of the target parameter in this context, and propose confidence intervals (CIs) based on classical statistical principles that result in good coverage properties.
stat
Convergence diagnostics for Markov chain Monte Carlo
Markov chain Monte Carlo (MCMC) is one of the most useful approaches to scientific computing because of its flexible construction, ease of use and generality. Indeed, MCMC is indispensable for performing Bayesian analysis. Two critical questions that MCMC practitioners need to address are where to start and when to stop the simulation. Although a great amount of research has gone into establishing convergence criteria and stopping rules with sound theoretical foundation, in practice, MCMC users often decide convergence by applying empirical diagnostic tools. This review article discusses the most widely used MCMC convergence diagnostic tools. Some recently proposed stopping rules with firm theoretical footing are also presented. The convergence diagnostics and stopping rules are illustrated using three detailed examples.
stat
On the bias of H-scores for comparing biclusters, and how to correct it
In the last two decades several biclustering methods have been developed as new unsupervised learning techniques to simultaneously cluster rows and columns of a data matrix. These algorithms play a central role in contemporary machine learning and in many applications, e.g. to computational biology and bioinformatics. The H-score is the evaluation score underlying the seminal biclustering algorithm by Cheng and Church, as well as many other subsequent biclustering methods. In this paper, we characterize a potentially troublesome bias in this score, that can distort biclustering results. We prove, both analytically and by simulation, that the average H-score increases with the number of rows/columns in a bicluster. This makes the H-score, and hence all algorithms based on it, biased towards small clusters. Based on our analytical proof, we are able to provide a straightforward way to correct this bias, allowing users to accurately compare biclusters.
stat
Randomization for the susceptibility effect of an infectious disease intervention
Randomized trials of infectious disease interventions, such as vaccines, often focus on groups of connected or potentially interacting individuals. When the pathogen of interest is transmissible between study subjects, interference may occur: individual infection outcomes may depend on treatments received by others. Epidemiologists have defined the primary causal effect of interest -- called the "susceptibility effect" -- as a contrast in infection risk under treatment versus no treatment, while holding exposure to infectiousness constant. A related quantity -- the "direct effect" -- is defined as an unconditional contrast between the infection risk under treatment versus no treatment. The purpose of this paper is to show that under a widely recommended randomization design, the direct effect may fail to recover the sign of the true susceptibility effect of the intervention in a randomized trial when outcomes are contagious. The analytical approach uses structural features of infectious disease transmission to define the susceptibility effect. A new probabilistic coupling argument reveals stochastic dominance relations between potential infection outcomes under different treatment allocations. The results suggest that estimating the direct effect under randomization may provide misleading inferences about the effect of an intervention -- such as a vaccine -- when outcomes are contagious.
stat
A general theory of regression adjustment for covariate-adaptive randomization: OLS, Lasso, and beyond
We consider the problem of estimating and inferring treatment effects in randomized experiments. In practice, stratified randomization, or more generally, covariate-adaptive randomization, is routinely used in the design stage to balance the treatment allocations with respect to a few variables that are most relevant to the outcomes. Then, regression is performed in the analysis stage to adjust the remaining imbalances to yield more efficient treatment effect estimators. Building upon and unifying the recent results obtained for ordinary least squares adjusted estimators under covariate-adaptive randomization, this paper presents a general theory of regression adjustment that allows for arbitrary model misspecification and the presence of a large number of baseline covariates. We exemplify the theory on two Lasso-adjusted treatment effect estimators, both of which are optimal in their respective classes. In addition, nonparametric consistent variance estimators are proposed to facilitate valid inferences, which work irrespective of the specific randomization methods used. The robustness and improved efficiency of the proposed estimators are demonstrated through a simulation study and a clinical trial example. This study sheds light on improving treatment effect estimation efficiency by implementing machine learning methods in covariate-adaptive randomized experiments.
stat
Mixed effects models for healthcare longitudinal data with an informative visiting process: a Monte Carlo simulation study
Electronic health records are being increasingly used in medical research to answer more relevant and detailed clinical questions; however, they pose new and significant methodological challenges. For instance, observation times are likely correlated with the underlying disease severity: patients with worse conditions utilise health care more and may have worse biomarker values recorded. Traditional methods for analysing longitudinal data assume independence between observation times and disease severity; yet, with healthcare data such assumptions unlikely holds. Through Monte Carlo simulation, we compare different analytical approaches proposed to account for an informative visiting process to assess whether they lead to unbiased results. Furthermore, we formalise a joint model for the observation process and the longitudinal outcome within an extended joint modelling framework. We illustrate our results using data from a pragmatic trial on enhanced care for individuals with chronic kidney disease, and we introduce user-friendly software that can be used to fit the joint model for the observation process and a longitudinal outcome.
stat
On the Adversarial Robustness of Multivariate Robust Estimation
In this paper, we investigate the adversarial robustness of multivariate $M$-Estimators. In the considered model, after observing the whole dataset, an adversary can modify all data points with the goal of maximizing inference errors. We use adversarial influence function (AIF) to measure the asymptotic rate at which the adversary can change the inference result. We first characterize the adversary's optimal modification strategy and its corresponding AIF. From the defender's perspective, we would like to design an estimator that has a small AIF. For the case of joint location and scale estimation problem, we characterize the optimal $M$-estimator that has the smallest AIF. We further identify a tradeoff between robustness against adversarial modifications and robustness against outliers, and derive the optimal $M$-estimator that achieves the best tradeoff.
stat
Nonparametric Multivariate Density Estimation: A Low-Rank Characteristic Function Approach
Effective non-parametric density estimation is a key challenge in high-dimensional multivariate data analysis. In this paper,we propose a novel approach that builds upon tensor factorization tools. Any multivariate density can be represented by its characteristic function, via the Fourier transform. If the sought density is compactly supported, then its characteristic function can be approximated, within controllable error, by a finite tensor of leading Fourier coefficients, whose size de-pends on the smoothness of the underlying density. This tensor can be naturally estimated from observed realizations of the random vector of interest, via sample averaging. In order to circumvent the curse of dimensionality, we introduce a low-rank model of this characteristic tensor, which significantly improves the density estimate especially for high-dimensional data and/or in the sample-starved regime. By virtue of uniqueness of low-rank tensor decomposition, under certain conditions, our method enables learning the true data-generating distribution. We demonstrate the very promising performance of the proposed method using several measured datasets.
stat
Scaling Hamiltonian Monte Carlo Inference for Bayesian Neural Networks with Symmetric Splitting
Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo (MCMC) approach that exhibits favourable exploration properties in high-dimensional models such as neural networks. Unfortunately, HMC has limited use in large-data regimes and little work has explored suitable approaches that aim to preserve the entire Hamiltonian. In our work, we introduce a new symmetric integration scheme for split HMC that does not rely on stochastic gradients. We show that our new formulation is more efficient than previous approaches and is easy to implement with a single GPU. As a result, we are able to perform full HMC over common deep learning architectures using entire data sets. In addition, when we compare with stochastic gradient MCMC, we show that our method achieves better performance in both accuracy and uncertainty quantification. Our approach demonstrates HMC as a feasible option when considering inference schemes for large-scale machine learning problems.
stat
A simple recipe for making accurate parametric inference in finite sample
Constructing tests or confidence regions that control over the error rates in the long-run is probably one of the most important problem in statistics. Yet, the theoretical justification for most methods in statistics is asymptotic. The bootstrap for example, despite its simplicity and its widespread usage, is an asymptotic method. There are in general no claim about the exactness of inferential procedures in finite sample. In this paper, we propose an alternative to the parametric bootstrap. We setup general conditions to demonstrate theoretically that accurate inference can be claimed in finite sample.
stat
Scalable Low-Rank Autoregressive Tensor Learning for Spatiotemporal Traffic Data Imputation
Missing value problem in spatiotemporal traffic data has long been a challenging topic, in particular for large-scale and high-dimensional data with complex missing mechanisms and diverse degrees of missingness. Recent studies based on tensor nuclear norm have demonstrated the superiority of tensor learning in imputation tasks by effectively characterizing the complex correlations/dependencies in spatiotemporal data. However, despite the promising results, these approaches do not scale well to large tensors. In this paper, we focus on addressing the missing data imputation problem for large-scale spatiotemporal traffic data. To achieve both high accuracy and efficiency, we develop a scalable autoregressive tensor learning model---Low-Tubal-Rank Autoregressive Tensor Completion (LATC-Tubal)---based on the existing framework of Low-Rank Autoregressive Tensor Completion (LATC), which is well-suited for spatiotemporal traffic data that characterized by multidimensional structure of location$\times$ time of day $\times$ day. In particular, the proposed LATC-Tubal model involves a scalable tensor nuclear norm minimization scheme by integrating linear unitary transformation. Therefore, the tensor nuclear norm minimization can be solved by singular value thresholding on the transformed matrix of each day while the day-to-day correlation can be effectively preserved by the unitary transform matrix. Before setting up the experiment, we consider two large-scale 5-minute traffic speed data sets collected by the California PeMS system with 11160 sensors. We compare LATC-Tubal with state-of-the-art baseline models, and find that LATC-Tubal can achieve competitively accuracy with a significantly lower computational cost. In addition, the LATC-Tubal will also benefit other tasks in modeling large-scale spatiotemporal traffic data, such as network-level traffic forecasting.
stat
Topological Data Analysis of Database Representations for Information Retrieval
Appropriately representing elements in a database so that queries may be accurately matched is a central task in information retrieval. This recently has been achieved by embedding the graphical structure of the database into a manifold so that the hierarchy is preserved. Persistent homology provides a rigorous characterization for the database topology in terms of both its hierarchy and connectivity structure. We compute persistent homology on a variety of datasets and show that some commonly used embeddings fail to preserve the connectivity. Moreover, we show that embeddings which successfully retain the database topology coincide in persistent homology. We introduce the dilation-invariant bottleneck distance to capture this effect, which addresses metric distortion on manifolds. We use it to show that distances between topology-preserving embeddings of databases are small.
stat
Log-symmetric quantile regression models
Regression models based on the log-symmetric family of distributions are particularly useful when the response is strictly positive and asymmetric. In this paper, we propose a class of quantile regression models based on reparameterized log-symmetric distributions, which have a quantile parameter. Two Monte Carlo simulation studies are carried out using the R software. The first one analyzes the performance of the maximum likelihood estimators, the information criteria AIC, BIC and AICc, and the generalized Cox-Snell and random quantile residuals. The second one evaluates the performance of the size and power of the Wald, likelihood ratio, score and gradient tests. A real box office data set is finally analyzed to illustrate the proposed approach.
stat
Ultrahigh-dimensional Robust and Efficient Sparse Regression using Non-Concave Penalized Density Power Divergence
We propose a sparse regression method based on the non-concave penalized density power divergence loss function which is robust against infinitesimal contamination in very high dimensionality. Present methods of sparse and robust regression are based on $\ell_1$-penalization, and their theoretical properties are not well-investigated. In contrast, we use a general class of folded concave penalties that ensure sparse recovery and consistent estimation of regression coefficients. We propose an alternating algorithm based on the Concave-Convex procedure to obtain our estimate, and demonstrate its robustness properties using influence function analysis. Under some conditions on the fixed design matrix and penalty function, we prove that this estimator possesses large-sample oracle properties in an ultrahigh-dimensional regime. The performance and effectiveness of our proposed method for parameter estimation and prediction compared to state-of-the-art are demonstrated through simulation studies.
stat
No-harm calibration for generalized Oaxaca-Blinder estimators
In randomized experiments, linear regression with baseline features can be used to form an estimate of the sample average treatment effect that is asymptotically no less efficient than the treated-minus-control difference in means. Randomization alone provides this "do-no-harm" property, with neither truth of a linear model nor a generative model for the outcomes being required. We present a general calibration step which confers the same no-harm property onto estimators leveraging a broad class of nonlinear models. The process recovers the usual regression-adjusted estimator when ordinary least squares is used, and further provides non-inferior treatment effect estimators using methods such as logistic and Poisson regression. The resulting estimators are non-inferior with respect to both the difference in means estimator and with respect to treatment effect estimators that have not undergone calibration.
stat
Bayesian design and analysis of external pilot trials for complex interventions
External pilot trials of complex interventions are used to help determine if and how a confirmatory trial should be undertaken, providing estimates of parameters such as recruitment, retention and adherence rates. The decision to progress to the confirmatory trial is typically made by comparing these estimates to pre-specified thresholds known as progression criteria, although the statistical properties of such decision rules are rarely assessed. Such assessment is complicated by several methodological challenges, including the simultaneous evaluation of multiple endpoints, complex multi-level models, small sample sizes, and uncertainty in nuisance parameters. In response to these challenges, we describe a Bayesian approach to the design and analysis of external pilot trials. We show how progression decisions can be made by minimising the expected value of a loss function, defined over the whole parameter space to allow for preferences and trade-offs between multiple parameters to be articulated and used in the decision making process. The assessment of preferences is kept feasible by using a piecewise constant parameterisation of the loss function, the parameters of which are chosen at the design stage to lead to desirable operating characteristics. We describe a flexible, yet computationally intensive, nested Monte Carlo algorithm for estimating operating characteristics. The method is used to revisit the design of an external pilot trial of a complex intervention designed to increase the physical activity of care home residents.
stat
Computation of Standardized Residuals for MARSS Models
This report shows how to compute the variance of the joint conditional model and state residuals for multivariate autoregressive Gaussian state-space (MARSS) models. The MARSS model can be written: x(t)=Bx(t-1)+u+w(t), y(t)=Zx(t)+a+v(t), where w(t) and v(t) are multivariate normal error-terms with variance-covariance matrices Q and R respectively. The joint conditional residuals are the w(t) and v(t) conditioned on a set of, possibly incomplete, data y. Harvey, Koopman and Penzer (1998) show a recursive algorithm for these residuals. I show the equation for the residuals using the conditional variances of the states and the conditional covariance between unobserved data and states. This allows one to compute the variance of un-observed residuals, which could be useful for leave-one-out cross-validation tests. I also show how to modify the Harvey et al algorithm in the case of missing values and how to modify it to return the non-normalized conditional residuals.
stat
Optimal Uncertainty Quantification of a risk measurement from a thermal-hydraulic code using Canonical Moments
We study an industrial computer code related to nuclear safety. A major topic of interest is to assess the uncertainties tainting the results of a computer simulation. In this work we gain robustness on the quantification of a risk measurement by accounting for all sources of uncertainties tainting the inputs of a computer code. To that extent, we evaluate the maximum quantile over a class of distributions defined only by constraints on their moments. Two options are available when dealing with such complex optimization problems: one can either optimize under constraints; or preferably, one should reformulate the objective function. We identify a well suited parameterization to compute the optimal quantile based on the theory of canonical moments. It allows an effective, free of constraints, optimization.
stat
BIMC: The Bayesian Inverse Monte Carlo method for goal-oriented uncertainty quantification. Part II
In Part I (arXiv:1911.00619) of this article, we proposed an importance sampling algorithm to compute rare-event probabilities in forward uncertainty quantification problems. The algorithm, which we termed the "Bayesian Inverse Monte Carlo (BIMC) method", was shown to be optimal for problems in which the input-output operator is nearly linear. But applying the original BIMC to highly nonlinear systems can lead to several different failure modes. In this paper, we modify the BIMC method to extend its applicability to a wider class of systems. The modified algorithm, which we call "Adaptive-BIMC (A-BIMC)", has two stages. In the first stage, we solve a sequence of optimization problems to roughly identify those regions of parameter space which trigger the rare-event. In the second stage, we use the stage one results to construct a mixture of Gaussians that can be then used in an importance sampling algorithm to estimate rare event probability. We propose using a local surrogate that minimizes costly forward solves. The effectiveness of A-BIMC is demonstrated via several synthetic examples. Yet again, the modified algorithm is prone to failure. We systematically identify conditions under which it fails to lead to an effective importance sampling distribution.
stat
Noise and Fluctuation of Finite Learning Rate Stochastic Gradient Descent
In the vanishing learning rate regime, stochastic gradient descent (SGD) is now relatively well understood. In this work, we propose to study the basic properties of SGD and its variants in the non-vanishing learning rate regime. The focus is on deriving exactly solvable results and discussing their implications. The main contributions of this work are to derive the stationary distribution for discrete-time SGD in a quadratic loss function with and without momentum; in particular, one implication of our result is that the fluctuation caused by discrete-time dynamics takes a distorted shape and is dramatically larger than a continuous-time theory could predict. Examples of applications of the proposed theory considered in this work include the approximation error of variants of SGD, the effect of minibatch noise, the optimal Bayesian inference, the escape rate from a sharp minimum, and the stationary distribution of a few second-order methods including damped Newton's method and natural gradient descent.
stat
Exploring data subsets with vtree
Variable trees are a new method for the exploration of discrete multivariate data. They display nested subsets and corresponding frequencies and percentages. Manual calculation of these quantities can be laborious, especially when there are many multi-level factors and missing data. Here we introduce variable trees and their implementation in the vtree R package, draw comparisons with existing methods (contingency tables, mosaic plots, Venn/Euler diagrams, and UpSet), and illustrate their utility using two case studies. Variable trees can be used to (1) reveal patterns in nested subsets, (2) explore missing data, and (3) generate study flow diagrams (e.g., CONSORT diagrams) directly from data frames, to support reproducible research and open science.
stat
ACVAE-VC: Non-parallel many-to-many voice conversion with auxiliary classifier variational autoencoder
This paper proposes a non-parallel many-to-many voice conversion (VC) method using a variant of the conditional variational autoencoder (VAE) called an auxiliary classifier VAE (ACVAE). The proposed method has three key features. First, it adopts fully convolutional architectures to construct the encoder and decoder networks so that the networks can learn conversion rules that capture time dependencies in the acoustic feature sequences of source and target speech. Second, it uses an information-theoretic regularization for the model training to ensure that the information in the attribute class label will not be lost in the conversion process. With regular CVAEs, the encoder and decoder are free to ignore the attribute class label input. This can be problematic since in such a situation, the attribute class label will have little effect on controlling the voice characteristics of input speech at test time. Such situations can be avoided by introducing an auxiliary classifier and training the encoder and decoder so that the attribute classes of the decoder outputs are correctly predicted by the classifier. Third, it avoids producing buzzy-sounding speech at test time by simply transplanting the spectral details of the input speech into its converted version. Subjective evaluation experiments revealed that this simple method worked reasonably well in a non-parallel many-to-many speaker identity conversion task.
stat
Linear screening for high-dimensional computer experiments
In this paper we propose a linear variable screening method for computer experiments when the number of input variables is larger than the number of runs. This method uses a linear model to model the nonlinear data, and screens the important variables by existing screening methods for linear models. When the underlying simulator is nearly sparse, we prove that the linear screening method is asymptotically valid under mild conditions. To improve the screening accuracy, we also provide a two-stage procedure that uses different basis functions in the linear model. The proposed methods are very simple and easy to implement. Numerical results indicate that our methods outperform existing model-free screening methods.
stat
Scalable visualisation methods for modern Generalized Additive Models
In the last two decades the growth of computational resources has made it possible to handle Generalized Additive Models (GAMs) that formerly were too costly for serious applications. However, the growth in model complexity has not been matched by improved visualisations for model development and results presentation. Motivated by an industrial application in electricity load forecasting, we identify the areas where the lack of modern visualisation tools for GAMs is particularly severe, and we address the shortcomings of existing methods by proposing a set of visual tools that a) are fast enough for interactive use, b) exploit the additive structure of GAMs, c) scale to large data sets and d) can be used in conjunction with a wide range of response distributions. All the new visual methods proposed in this work are implemented by the mgcViz R package, which can be found on the Comprehensive R Archive Network.
stat
Nonparametric Functional Approximation with Delaunay Triangulation
We propose a differentiable nonparametric algorithm, the Delaunay triangulation learner (DTL), to solve the functional approximation problem on the basis of a $p$-dimensional feature space. By conducting the Delaunay triangulation algorithm on the data points, the DTL partitions the feature space into a series of $p$-dimensional simplices in a geometrically optimal way, and fits a linear model within each simplex. We study its theoretical properties by exploring the geometric properties of the Delaunay triangulation, and compare its performance with other statistical learners in numerical studies.
stat
Towards More Flexible False Positive Control in Phase III Randomized Clinical Trials
Phase III randomized clinical trials play a monumentally critical role in the evaluation of new medical products. Because of the intrinsic nature of uncertainty embedded in our capability in assessing the efficacy of a medical product, interpretation of trial results relies on statistical principles to control the error of false positives below desirable level. The well-established statistical hypothesis testing procedure suffers from two major limitations, namely, the lack of flexibility in the thresholds to claim success and the lack of capability of controlling the total number of false positives that could be yielded by the large volume of trials. We propose two general theoretical frameworks based on the conventional frequentist paradigm and Bayesian perspectives, which offer realistic, flexible and effective solutions to these limitations. Our methods are based on the distribution of the effect sizes of the population of trials of interest. The estimation of this distribution is practically feasible as clinicaltrials.gov provides a centralized data repository with unbiased coverage of clinical trials. We provide a detailed development of the two frameworks with numerical results obtained for industry sponsored Phase III randomized clinical trials.
stat
On the Convergence of Stochastic Gradient Descent with Adaptive Stepsizes
Stochastic gradient descent is the method of choice for large scale optimization of machine learning objective functions. Yet, its performance is greatly variable and heavily depends on the choice of the stepsizes. This has motivated a large body of research on adaptive stepsizes. However, there is currently a gap in our theoretical understanding of these methods, especially in the non-convex setting. In this paper, we start closing this gap: we theoretically analyze in the convex and non-convex settings a generalized version of the AdaGrad stepsizes. We show sufficient conditions for these stepsizes to achieve almost sure asymptotic convergence of the gradients to zero, proving the first guarantee for generalized AdaGrad stepsizes in the non-convex setting. Moreover, we show that these stepsizes allow to automatically adapt to the level of noise of the stochastic gradients in both the convex and non-convex settings, interpolating between $O(1/T)$ and $O(1/\sqrt{T})$, up to logarithmic terms.
stat
Dynamic Silos: Modularity in intra-organizational communication networks during the Covid-19 pandemic
Workplace communications around the world were drastically altered by Covid-19, work-from-home orders, and the rise of remote work. We analyze aggregated, anonymized metadata from over 360 billion emails within over 4000 organizations worldwide to examine changes in network community structures from 2019 through 2020. We find that, during 2020, organizations around the world became more siloed, evidenced by increased modularity. This shift was concurrent with decreased stability, indicating that organizational siloes had less stable membership. We provide initial insights into the implications of these network changes -- which we term dynamic silos -- for organizational performance and innovation.
stat
Multilevel Dimension-Independent Likelihood-Informed MCMC for Large-Scale Inverse Problems
We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui, Law, Marzouk, 2016) and the multilevel MCMC (Dodwell et al., 2015) to explore the hierarchy of posterior distributions. This integration offers several advantages: First, DILI-MCMC employs an intrinsic likelihood-informed subspace (LIS) (Cui et al., 2014) -- which involves a number of forward and adjoint model simulations -- to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a Rayleigh-Ritz procedure to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. To be able to fully exploit the power of multilevel MCMC and to reduce the dependencies of samples on different levels for a parallel implementation, we also suggest a new pooling strategy for allocating computational resources across different levels and constructing Markov chains at higher levels conditioned on those simulated on lower levels. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.
stat
Inferring the unknown parameters in Differential Equation by Gaussian Process Regression with Constraint
Differential Equation (DE) is a commonly used modeling method in various scientific subjects such as finance and biology. The parameters in DE models often have interesting scientific interpretations, but their values are often unknown and need to be estimated from the measurements of the DE. In this work, we propose a Bayesian inference framework to solve the problem of estimating the parameters of the DE model, from the given noisy and scarce observations of the solution only. A key issue in this problem is to robustly estimate the derivatives of a function from noisy observations of only the function values at given location points, under the assumption of a physical model in the form of differential equation governing the function and its derivatives. To address the key issue, we use the Gaussian Process Regression with Constraint (GPRC) method which jointly model the solution, the derivatives, and the parametric differential equation, to estimate the solution and its derivatives. For nonlinear differential equations, a Picard-iteration-like approximation of linearization method is used so that the GPRC can be still iteratively applicable. A new potential which combines the data and equation information, is proposed and used in the likelihood for our inference. With numerical examples, we illustrate that the proposed method has competitive performance against existing approaches for estimating the unknown parameters in DEs.
stat
Survival analysis as a classification problem
In this paper, we explore a method for treating survival analysis as a classification problem. The method uses a "stacking" idea that collects the features and outcomes of the survival data in a large data frame, and then treats it as a classification problem. In this framework, various statistical learning algorithms (including logistic regression, random forests, gradient boosting machines and neural networks) can be applied to estimate the parameters and make predictions. For stacking with logistic regression, we show that this approach is approximately equivalent to the Cox proportional hazards model with both theoretical analysis and simulation studies. For stacking with other machine learning algorithms, we show through simulation studies that our method can outperform Cox proportional hazards model in terms of estimated survival curves. This idea is not new, but we believe that it should be better known by statistiicians and other data scientists.
stat
Net benefit separation and the determination curve: a probabilistic framework for cost-effectiveness estimation
Considerations regarding clinical effectiveness and cost are essential in comparing the overall value of two treatments. There has been growing interest in methodology to integrate cost and effectiveness measures in order to inform policy and promote adequate resource allocation. The net monetary benefit aggregates information on differences in mean cost and clinical outcomes; the cost-effectiveness acceptability curve was then developed to characterize the extent to which the strength of evidence regarding net monetary benefit changes with fluctuations in the willingness-to-pay threshold. Methods to derive insights from characteristics of the cost/clinical outcomes besides mean differences remain undeveloped but may also be informative. We propose a novel probabilistic measure of cost-effectiveness based on the stochastic ordering of the individual net benefit distribution under each treatment. Our approach is able to accommodate features frequently encountered in observational data including confounding and censoring, and complements the net monetary benefit in the insights it provides. We conduct a range of simulations to evaluate finite-sample performance and illustrate our proposed approach using simulated data based on a study of endometrial cancer patients.
stat
On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks
The gradient noise (GN) in the stochastic gradient descent (SGD) algorithm is often considered to be Gaussian in the large data regime by assuming that the \emph{classical} central limit theorem (CLT) kicks in. This assumption is often made for mathematical convenience, since it enables SGD to be analyzed as a stochastic differential equation (SDE) driven by a Brownian motion. We argue that the Gaussianity assumption might fail to hold in deep learning settings and hence render the Brownian motion-based analyses inappropriate. Inspired by non-Gaussian natural phenomena, we consider the GN in a more general context and invoke the \emph{generalized} CLT, which suggests that the GN converges to a \emph{heavy-tailed} $\alpha$-stable random vector, where \emph{tail-index} $\alpha$ determines the heavy-tailedness of the distribution. Accordingly, we propose to analyze SGD as a discretization of an SDE driven by a L\'{e}vy motion. Such SDEs can incur `jumps', which force the SDE and its discretization \emph{transition} from narrow minima to wider minima, as proven by existing metastability theory and the extensions that we proved recently. In this study, under the $\alpha$-stable GN assumption, we further establish an explicit connection between the convergence rate of SGD to a local minimum and the tail-index $\alpha$. To validate the $\alpha$-stable assumption, we conduct experiments on common deep learning scenarios and show that in all settings, the GN is highly non-Gaussian and admits heavy-tails. We investigate the tail behavior in varying network architectures and sizes, loss functions, and datasets. Our results open up a different perspective and shed more light on the belief that SGD prefers wide minima.
stat
Identification of Causal Diffusion Effects Under Structural Stationarity
Although social and biomedical scientists have long been interested in the process through which ideas and behaviors diffuse, the identification of causal diffusion effects, also known as peer and contagion effects, remains challenging. Many scholars consider the commonly used assumption of no omitted confounders to be untenable due to contextual confounding and homophily bias. To address this long-standing problem, we examine the causal identification under a new assumption of structural stationarity, which formalizes the underlying diffusion process with a class of dynamic causal directed acyclic graphs. First, we develop a statistical test that can detect a wide range of biases, including the two types mentioned above. We then propose a difference-in-differences style estimator that can directly correct biases under an additional parametric assumption. Leveraging the proposed methods, we study the spatial diffusion of hate crimes against refugees in Germany. After correcting large upward bias in existing studies, we find hate crimes diffuse only to areas that have a high proportion of school dropouts.
stat
Integrated Time Series Summarization and Prediction Algorithm and its Application to COVID-19 Data Mining
This paper proposes a simple method to extract from a set of multiple related time series a compressed representation for each time series based on statistics for the entire set of all time series. This is achieved by a hierarchical algorithm that first generates an alphabet of shapelets based on the segmentation of centroids for clustered data, before labels of these shapelets are assigned to the segmentation of each single time series via nearest neighbor search using unconstrained dynamic time warping as distance measure to deal with non-uniform time series lenghts. Thereby, a sequence of labels is assigned for each time series. Completion of the last label sequence permits prediction of individual time series. Proposed method is evaluated on two global COVID-19 datasets, first, for the number of daily net cases (daily new infections minus daily recoveries), and, second, for the number of daily deaths attributed to COVID-19 as of April 27, 2020. The first dataset involves 249 time series for different countries, each of length 96. The second dataset involves 264 time series, each of length 96. Based on detected anomalies in available data a decentralized exit strategy from lockdowns is advocated.
stat
Estimating Full Lipschitz Constants of Deep Neural Networks
We estimate the Lipschitz constants of the gradient of a deep neural network and the network itself with respect to the full set of parameters. We first develop estimates for a deep feed-forward densely connected network and then, in a more general framework, for all neural networks that can be represented as solutions of controlled ordinary differential equations, where time appears as continuous depth. These estimates can be used to set the step size of stochastic gradient descent methods, which is illustrated for one example method.
stat
Accelerating delayed-acceptance Markov chain Monte Carlo algorithms
Delayed-acceptance Markov chain Monte Carlo (DA-MCMC) samples from a probability distribution via a two-stages version of the Metropolis-Hastings algorithm, by combining the target distribution with a "surrogate" (i.e. an approximate and computationally cheaper version) of said distribution. DA-MCMC accelerates MCMC sampling in complex applications, while still targeting the exact distribution. We design a computationally faster, albeit approximate, DA-MCMC algorithm. We consider parameter inference in a Bayesian setting where a surrogate likelihood function is introduced in the delayed-acceptance scheme. When the evaluation of the likelihood function is computationally intensive, our scheme produces a 2-4 times speed-up, compared to standard DA-MCMC. However, the acceleration is highly problem dependent. Inference results for the standard delayed-acceptance algorithm and our approximated version are similar, indicating that our algorithm can return reliable Bayesian inference. As a computationally intensive case study, we introduce a novel stochastic differential equation model for protein folding data.
stat
Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior
We revisit Rahimi and Recht (2007)'s kernel random Fourier features (RFF) method through the lens of the PAC-Bayesian theory. While the primary goal of RFF is to approximate a kernel, we look at the Fourier transform as a prior distribution over trigonometric hypotheses. It naturally suggests learning a posterior on these hypotheses. We derive generalization bounds that are optimized by learning a pseudo-posterior obtained from a closed-form expression. Based on this study, we consider two learning strategies: The first one finds a compact landmarks-based representation of the data where each landmark is given by a distribution-tailored similarity measure, while the second one provides a PAC-Bayesian justification to the kernel alignment method of Sinha and Duchi (2016).
stat
Reducing Sampling Ratios Improves Bagging in Sparse Regression
Bagging, a powerful ensemble method from machine learning, improves the performance of unstable predictors. Although the power of Bagging has been shown mostly in classification problems, we demonstrate the success of employing Bagging in sparse regression over the baseline method (L1 minimization). The framework employs the generalized version of the original Bagging with various bootstrap ratios. The performance limits associated with different choices of bootstrap sampling ratio L/m and number of estimates K is analyzed theoretically. Simulation shows that the proposed method yields state-of-the-art recovery performance, outperforming L1 minimization and Bolasso in the challenging case of low levels of measurements. A lower L/m ratio (60% - 90%) leads to better performance, especially with a small number of measurements. With the reduced sampling rate, SNR improves over the original Bagging by up to 24%. With a properly chosen sampling ratio, a reasonably small number of estimates K = 30 gives satisfying result, even though increasing K is discovered to always improve or at least maintain the performance.
stat
A multi-series framework for demand forecasts in E-commerce
Sales forecasts are crucial for the E-commerce business. State-of-the-art techniques typically apply only univariate methods to make prediction for each series independently. However, due to the short nature of sales times series in E-commerce, univariate methods don't apply well. In this article, we propose a global model which outperforms state-of-the-art models on real dataset. It is achieved by using Tree Boosting Methods that exploit non-linearity and cross-series information. We also proposed a preprocessing framework to overcome the inherent difficulties in the E-commerce data. In particular, we use different schemes to limit the impact of the volatility of the data.
stat
Exploring the Predictability of Cryptocurrencies via Bayesian Hidden Markov Models
In this paper, we consider a variety of multi-state Hidden Markov models for predicting and explaining the Bitcoin, Ether and Ripple returns in the presence of state (regime) dynamics. In addition, we examine the effects of several financial, economic and cryptocurrency specific predictors on the cryptocurrency return series. Our results indicate that the Non-Homogeneous Hidden Markov (NHHM) model with four states has the best one-step-ahead forecasting performance among all competing models for all three series. The dominance of the predictive densities over the single regime random walk model relies on the fact that the states capture alternating periods with distinct return characteristics. In particular, the four state NHHM model distinguishes bull, bear and calm regimes for the Bitcoin series, and periods with different profit and risk magnitudes for the Ether and Ripple series. Also, conditionally on the hidden states, it identifies predictors with different linear and non-linear effects on the cryptocurrency returns. These empirical findings provide important insight for portfolio management and policy implementation.
stat
Factor Analysis for High-Dimensional Time Series with Change Point
We consider change-point latent factor models for high-dimensional time series, where a structural break may exist in the underlying factor structure. In particular, we propose consistent estimators for factor loading spaces before and after the change point, and the problem of estimating the change-point location is also considered. Compared with existing results on change-point factor analysis of high-dimensional time series, a distinguished feature of the current paper is that our results allow strong cross-sectional dependence in the noise process. To accommodate the unknown degree of cross-sectional dependence strength, we propose to use self-normalization to pivotalize the change-point test statistic. Numerical experiments including a Monte Carlo simulation study and a real data application are presented to illustrate the proposed methods.
stat
The conditionally autoregressive hidden Markov model (CarHMM): Inferring behavioural states from animal tracking data exhibiting conditional autocorrelation
One of the central interests of animal movement ecology is relating movement characteristics to behavioural characteristics. The traditional discrete-time statistical tool for inferring unobserved behaviours from movement data is the hidden Markov model (HMM). While the HMM is an important and powerful tool, sometimes it is not flexible enough to appropriately fit the data. Data for marine animals often exhibit conditional autocorrelation, self-dependence of the step length process which cannot be explained solely by the behavioural state, which violates one of the main assumptions of the HMM. Using a grey seal track as an example, along with multiple simulation scenarios, we motivate and develop the conditionally autoregressive hidden Markov model (CarHMM), which is a generalization of the HMM designed specifically to handle conditional autocorrelation. In addition to introducing and examining the new CarHMM, we provide guidelines for all stages of an analysis using either an HMM or CarHMM. These include guidelines for pre-processing location data to obtain deflection angles and step lengths, model selection, and model checking. In addition to these practical guidelines, we link estimated model parameters to biologically meaningful quantities such as activity budget and residency time. We also provide interpretations of traditional "foraging" and "transiting" behaviours in the context of the new CarHMM parameters.
stat
Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective
In panel experiments, we randomly expose multiple units to different interventions and measure their subsequent outcomes, sequentially repeating the procedure numerous times. Using the potential outcomes framework, we define finite population dynamic causal effects that capture the relative effectiveness of alternative treatment paths. For the leading example, known as the lag-p dynamic causal effects, we provide a nonparametric estimator that is unbiased over the randomization distribution. We then derive the finite population limiting distribution of our estimators as either the sample size or the duration of the experiment increases. Our approach provides a new technique for deriving finite population central limit theorems that exploits the underlying Martingale property of unbiased estimators. We further describe two methods for conducting inference on dynamic causal effects: a conservative test for weak null hypotheses of zero average causal effects using the limiting distribution and an exact randomization-based test for sharp null hypotheses. We also derive the finite population probability limit of commonly-used linear fixed effects estimators, showing that these estimators perform poorly in the presence of dynamic causal effects. We conclude with a simulation study and an empirical application in which we reanalyze a lab experiment on cooperation.
stat
A general kernel boosting framework integrating pathways for predictive modeling based on genomic data
Predictive modeling based on genomic data has gained popularity in biomedical research and clinical practice by allowing researchers and clinicians to identify biomarkers and tailor treatment decisions more efficiently. Analysis incorporating pathway information can boost discovery power and better connect new findings with biological mechanisms. In this article, we propose a general framework, Pathway-based Kernel Boosting (PKB), which incorporates clinical information and prior knowledge about pathways for prediction of binary, continuous and survival outcomes. We introduce appropriate loss functions and optimization procedures for different outcome types. Our prediction algorithm incorporates pathway knowledge by constructing kernel function spaces from the pathways and use them as base learners in the boosting procedure. Through extensive simulations and case studies in drug response and cancer survival datasets, we demonstrate that PKB can substantially outperform other competing methods, better identify biological pathways related to drug response and patient survival, and provide novel insights into cancer pathogenesis and treatment response.
stat
Enabling Counterfactual Survival Analysis with Balanced Representations
Balanced representation learning methods have been applied successfully to counterfactual inference from observational data. However, approaches that account for survival outcomes are relatively limited. Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials, and such data are also relevant in fields like manufacturing (e.g., for equipment monitoring). When the outcome of interest is a time-to-event, special precautions for handling censored events need to be taken, as ignoring censored outcomes may lead to biased estimates. We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes. Further, we formulate a nonparametric hazard ratio metric for evaluating average and individualized treatment effects. Experimental results on real-world and semi-synthetic datasets, the latter of which we introduce, demonstrate that the proposed approach significantly outperforms competitive alternatives in both survival-outcome prediction and treatment-effect estimation.
stat
Sequential estimation for GEE with adaptive variables and subject selection
Modeling correlated or highly stratified multiple-response data becomes a common data analysis task due to modern data monitoring facilities and methods. Generalized estimating equations (GEE) is one of the popular statistical methods for analyzing this kind of data. In this paper, we present a sequential estimation procedure for obtaining GEE-based estimates. In addition to the conventional random sampling, the proposed method features adaptive subject recruiting and variable selection. Moreover, we equip our method with an adaptive shrinkage property so that it can decide the effective variables during the estimation procedure and build a confidence set with a pre-specified precision for the corresponding parameters. In addition to the statistical properties of the proposed procedure, we assess our method using both simulated data and real data sets.
stat
Density ratio model with data-adaptive basis function
In many applications, we collect independent samples from interconnected populations. These population distributions share some latent structure, so it is advantageous to jointly analyze the samples. One effective way to connect the distributions is the semiparametric density ratio model (DRM). A key ingredient in the DRM is that the log density ratios are linear combinations of prespecified functions; the vector formed by these functions is called the basis function. A sensible basis function can often be chosen based on knowledge of the context, and DRM-based inference is effective even if the basis function is imperfect. However, a data-adaptive approach to the choice of basis function remains an interesting and important research problem. We propose an approach based on the classical functional principal component analysis (FPCA). Under some conditions, we show that this approach leads to consistent basis function estimation. Our simulation results show that the proposed adaptive choice leads to an efficiency gain. We use a real-data example to demonstrate the efficiency gain and the ease of our approach.
stat
Learning Integral Representations of Gaussian Processes
We propose a representation of Gaussian processes (GPs) based on powers of the integral operator defined by a kernel function, we call these stochastic processes integral Gaussian processes (IGPs). Sample paths from IGPs are functions contained within the reproducing kernel Hilbert space (RKHS) defined by the kernel function, in contrast sample paths from the standard GP are not functions within the RKHS. We develop computationally efficient non-parametric regression models based on IGPs. The main innovation in our regression algorithm is the construction of a low dimensional subspace that captures the information most relevant to explaining variation in the response. We use ideas from supervised dimension reduction to compute this subspace. The result of using the construction we propose involves significant improvements in the computational complexity of estimating kernel hyper-parameters as well as reducing the prediction variance.
stat
Characterizing functional relationships between anthropogenic and biological sounds: A western New York state soundscape case study
Roads are a widespread feature of landscapes worldwide, and road traffic sound potentially makes nearby habitat unsuitable for acoustically communicating organisms. It is important to understand the influence of roads at the soundscape level to mitigate negative impacts of road sound on individual species as well as subsequent effects on the surrounding landscape. We seek to characterize the relationship between anthropogenic and biological sounds in western New York and assess the extent to which available traffic data explains variability in anthropogenic noise. Recordings were obtained in the spring of 2016 at 18 sites throughout western New York. We used the Welch Power Spectral Density (PSD) at low frequencies (0.5-2 kHz) to represent anthropogenic noise and PSD values at higher frequencies (2-11 kHz) to represent biological sound. Relationships were modeled using a novel two-stage hierarchical Bayesian model utilizing beta regression and basis splines. Model results and map predictions illustrate that anthropogenic noise and biological sound have an inverse relationship, and anthropogenic noise is greatest in close proximity to high traffic volume roads. The predictions have large uncertainty, resulting from the temporal coarseness of public road data used as a proxy for traffic sound. Results suggest that finer temporal resolution traffic sound data, such as crowd-sourced time-indexed traffic data from geographic positioning systems, might better account for observed temporal changes in the soundscape. The use of such data, in combination with the proposed modeling framework, could have important implications for the development of sound management policies.
stat
Flexible Modeling of Hurdle Conway-Maxwell-Poisson Distributions with Application to Mining Injuries
While the hurdle Poisson regression is a popular class of models for count data with excessive zeros, the link function in the binary component may be unsuitable for highly imbalanced cases. Ordinary Poisson regression is unable to handle the presence of dispersion. In this paper, we introduce Conway-Maxwell-Poisson (CMP) distribution and integrate use of flexible skewed Weibull link functions as better alternative. We take a fully Bayesian approach to draw inference from the underlying models to better explain skewness and quantify dispersion, with Deviance Information Criteria (DIC) used for model selection. For empirical investigation, we analyze mining injury data for period 2013-2016 from the U.S. Mine Safety and Health Administration (MSHA). The risk factors describing proportions of employee hours spent in each type of mining work are compositional data; the probabilistic principal components analysis (PPCA) is deployed to deal with such covariates. The hurdle CMP regression is additionally adjusted for exposure, measured by the total employee working hours, to make inference on rate of mining injuries; we tested its competitiveness against other models. This can be used as predictive model in the mining workplace to identify features that increase the risk of injuries so that prevention can be implemented.
stat
What is meant by 'P(R|Yobs)'?
Missing at Random (MAR) is a central concept in incomplete data methods, and often it is stated as $P(R\mspace{3mu}|\,Y_{obs}, Y_{mis}) = P(R\mspace{3mu}|\,Y_{obs})$. This notation has been used in the literature for more than three decades and has become the de facto standard. In some cases, the notation has been misinterpreted to be a statement about conditional independence. While previous work has sought to clarify the required definitions, a clear explanation of how to interpret the standard notation is lacking, and a definition of the function $P(R\mspace{3mu}|\,Y_{obs})$ for non-MAR mechanisms is difficult to locate in the literature. The aim of this paper is to fill these gaps.
stat
A stochastic model for the lifecycle and track of extreme extratropical cyclones in the North Atlantic
Extratropical cyclones are large-scale weather systems which are often the source of extreme weather events in Northern Europe, often leading to mass infrastructural damage and casualties. Such systems create a local vorticity maxima which tracks across the Atlantic Ocean and from which can be determined a climatology for the region. While there have been considerable advances in developing algorithms for extracting the track and evolution of cyclones from reanalysis datasets, the data record is relatively short. This justifies the need for a statistical model to represent the more extreme characteristics of these weather systems, specifically their intensity and the spatial variability in their tracks. This paper presents a novel simulation-based approach to modelling the lifecycle of extratropical cyclones in terms of both their tracks and vorticity, incorporating various aspects of cyclone evolution and movement. By drawing on methods from extreme value analysis, we can simulate more extreme storms than those observed, representing a useful tool for practitioners concerned with risk assessment with regard to these weather systems.
stat
Robust subset selection
The best subset selection (or "best subsets") estimator is a classic tool for sparse regression, and developments in mathematical optimization over the past decade have made it more computationally tractable than ever. Notwithstanding its desirable statistical properties, the best subsets estimator is susceptible to outliers and can break down in the presence of a single contaminated data point. To address this issue, we propose a robust adaption of best subsets that is highly resistant to contamination in both the response and the predictors. Our estimator generalizes the notion of subset selection to both predictors and observations, thereby achieving robustness in addition to sparsity. This procedure, which we call "robust subset selection" (or "robust subsets"), is defined by a combinatorial optimization problem for which we apply modern discrete optimization methods. We formally establish the robustness of our estimator in terms of the finite-sample breakdown point of its objective value. In support of this result, we report experiments on both synthetic and real data that demonstrate the superiority of robust subsets over best subsets in the presence of contamination. Importantly, robust subsets fares competitively across several metrics compared with popular robust adaptions of the Lasso.
stat
A Bayesian Approach for Predicting Food and Beverage Sales in Staff Canteens and Restaurants
Accurate demand forecasting is one of the key aspects for successfully managing restaurants and staff canteens. In particular, properly predicting future sales of menu items allows a precise ordering of food stock. From an environmental point of view, this ensures maintaining a low level of pre-consumer food waste, while from the managerial point of view, this is critical to guarantee the profitability of the restaurant. Hence, we are interested in predicting future values of the daily sold quantities of given menu items. The corresponding time series show multiple strong seasonalities, trend changes, data gaps, and outliers. We propose a forecasting approach that is solely based on the data retrieved from Point of Sales systems and allows for a straightforward human interpretation. Therefore, we propose two generalized additive models for predicting the future sales. In an extensive evaluation, we consider two data sets collected at a casual restaurant and a large staff canteen consisting of multiple time series, that cover a period of 20 months, respectively. We show that the proposed models fit the features of the considered restaurant data. Moreover, we compare the predictive performance of our method against the performance of other well-established forecasting approaches.
stat
Adaptive Estimation in Structured Factor Models with Applications to Overlapping Clustering
This work introduces a novel estimation method, called LOVE, of the entries and structure of a loading matrix A in a sparse latent factor model X = AZ + E, for an observable random vector X in Rp, with correlated unobservable factors Z \in RK, with K unknown, and independent noise E. Each row of A is scaled and sparse. In order to identify the loading matrix A, we require the existence of pure variables, which are components of X that are associated, via A, with one and only one latent factor. Despite the fact that the number of factors K, the number of the pure variables, and their location are all unknown, we only require a mild condition on the covariance matrix of Z, and a minimum of only two pure variables per latent factor to show that A is uniquely defined, up to signed permutations. Our proofs for model identifiability are constructive, and lead to our novel estimation method of the number of factors and of the set of pure variables, from a sample of size n of observations on X. This is the first step of our LOVE algorithm, which is optimization-free, and has low computational complexity of order p2. The second step of LOVE is an easily implementable linear program that estimates A. We prove that the resulting estimator is minimax rate optimal up to logarithmic factors in p. The model structure is motivated by the problem of overlapping variable clustering, ubiquitous in data science. We define the population level clusters as groups of those components of X that are associated, via the sparse matrix A, with the same unobservable latent factor, and multi-factor association is allowed. Clusters are respectively anchored by the pure variables, and form overlapping sub-groups of the p-dimensional random vector X. The Latent model approach to OVErlapping clustering is reflected in the name of our algorithm, LOVE.
stat
Estimation of Accurate and Calibrated Uncertainties in Deterministic models
In this paper we focus on the problem of assigning uncertainties to single-point predictions generated by a deterministic model that outputs a continuous variable. This problem applies to any state-of-the-art physics or engineering models that have a computational cost that does not readily allow to run ensembles and to estimate the uncertainty associated to single-point predictions. Essentially, we devise a method to easily transform a deterministic prediction into a probabilistic one. We show that for doing so, one has to compromise between the accuracy and the reliability (calibration) of such a probabilistic model. Hence, we introduce a cost function that encodes their trade-off. We use the Continuous Rank Probability Score to measure accuracy and we derive an analytic formula for the reliability, in the case of forecasts of continuous scalar variables expressed in terms of Gaussian distributions. The new Accuracy-Reliability cost function is then used to estimate the input-dependent variance, given a black-box mean function, by solving a two-objective optimization problem. The simple philosophy behind this strategy is that predictions based on the estimated variances should not only be accurate, but also reliable (i.e. statistical consistent with observations). Conversely, early works based on the minimization of classical cost functions, such as the negative log probability density, cannot simultaneously enforce both accuracy and reliability. We show several examples both with synthetic data, where the underlying hidden noise can accurately be recovered, and with large real-world datasets.
stat
Defending the P-value
Attacks on the P-value are nothing new, but the recent attacks are increasingly more serious. They come from more mainstream sources, with widening targets such as a call to retire the significance testing altogether. While well meaning, I believe these attacks are nevertheless misdirected: Blaming the P-value for the naturally tentative trial-and-error process of scientific discoveries, and presuming that banning the P-value would make the process cleaner and less error-prone. However tentative, the skeptical scientists still have to form unambiguous opinions, proximately to move forward in their investigations and ultimately to present results to the wider community. With obvious reasons, they constantly need to balance between the false-positive and false-negative errors. How would banning the P-value or significance tests help in this balancing act? It seems trite to say that this balance will always depend on the relative costs or the trade-off between the errors. These costs are highly context specific, varying by area of applications or by stage of investigation. A calibrated but tunable knob, such as that given by the P-value, is needed for controlling this balance. This paper presents detailed arguments in support of the P-value.
stat
Robust Extrinsic Regression Analysis for Manifold Valued Data
Recently, there has been a growing need in analyzing data on manifolds owing to their important role in diverse fields of science and engineering. In the literature of manifold-valued data analysis up till now, however, only a few works have been carried out concerning the robustness of estimation against noises, outliers, and other sources of perturbations. In this regard, we introduce a novel extrinsic framework for analyzing manifold valued data in a robust manner. First, by extending the notion of the geometric median, we propose a new robust location parameter on manifolds, so-called the extrinsic median. A robust extrinsic regression method is also developed by incorporating the conditional extrinsic median into the classical local polynomial regression method. We present the Weiszfeld's algorithm for implementing the proposed methods. The promising performance of our approach against existing methods is illustrated through simulation studies.
stat
Identification and Estimation of Causal Effects from Dependent Data
The assumption that data samples are independent and identically distributed (iid) is standard in many areas of statistics and machine learning. Nevertheless, in some settings, such as social networks, infectious disease modeling, and reasoning with spatial and temporal data, this assumption is false. An extensive literature exists on making causal inferences under the iid assumption [18, 12, 28, 22], even when unobserved confounding bias may be present. But, as pointed out in [20], causal inference in non-iid contexts is challenging due to the presence of both unobserved confounding and data dependence. In this paper we develop a general theory describing when causal inferences are possible in such scenarios. We use segregated graphs [21], a generalization of latent projection mixed graphs [30], to represent causal models of this type and provide a complete algorithm for non-parametric identification in these models. We then demonstrate how statistical inference may be performed on causal parameters identified by this algorithm. In particular, we consider cases where only a single sample is available for parts of the model due to full interference, i.e., all units are pathwise dependent and neighbors' treatments affect each others' outcomes [26]. We apply these techniques to a synthetic data set which considers users sharing fake news articles given the structure of their social network, user activity levels, and baseline demographics and socioeconomic covariates.
stat
On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models
This study investigates the effects of Markov chain Monte Carlo (MCMC) sampling in unsupervised Maximum Likelihood (ML) learning. Our attention is restricted to the family of unnormalized probability densities for which the negative log density (or energy function) is a ConvNet. We find that many of the techniques used to stabilize training in previous studies are not necessary. ML learning with a ConvNet potential requires only a few hyper-parameters and no regularization. Using this minimal framework, we identify a variety of ML learning outcomes that depend solely on the implementation of MCMC sampling. On one hand, we show that it is easy to train an energy-based model which can sample realistic images with short-run Langevin. ML can be effective and stable even when MCMC samples have much higher energy than true steady-state samples throughout training. Based on this insight, we introduce an ML method with purely noise-initialized MCMC, high-quality short-run synthesis, and the same budget as ML with informative MCMC initialization such as CD or PCD. Unlike previous models, our energy model can obtain realistic high-diversity samples from a noise signal after training. On the other hand, ConvNet potentials learned with non-convergent MCMC do not have a valid steady-state and cannot be considered approximate unnormalized densities of the training data because long-run MCMC samples differ greatly from observed images. We show that it is much harder to train a ConvNet potential to learn a steady-state over realistic images. To our knowledge, long-run MCMC samples of all previous models lose the realism of short-run samples. With correct tuning of Langevin noise, we train the first ConvNet potentials for which long-run and steady-state MCMC samples are realistic images.
stat
Depth-based Weighted Jackknife Empirical Likelihood for Non-smooth U-structure Equations
In many applications, parameters of interest are estimated by solving some non-smooth estimating equations with $U$-statistic structure. Jackknife empirical likelihood (JEL) approach can solve this problem efficiently by reducing the computation complexity of the empirical likelihood (EL) method. However, as EL, JEL suffers the sensitivity problem to outliers. In this paper, we propose a weighted jackknife empirical likelihood (WJEL) to tackle the above limitation of JEL. The proposed WJEL tilts the JEL function by assigning smaller weights to outliers. The asymptotic of the WJEL ratio statistic is derived. It converges in distribution to a multiple of a chi-square random variable. The multiplying constant depends on the weighting scheme. The self-normalized version of WJEL ratio does not require to know the constant and hence yields the standard chi-square distribution in the limit. Robustness of the proposed method is illustrated by simulation studies and one real data application.
stat
Discovering Drug-Drug and Drug-Disease Interactions Inducing Acute Kidney Injury Using Deep Rule Forests
Patients with Acute Kidney Injury (AKI) increase mortality, morbidity, and long-term adverse events. Therefore, early identification of AKI may improve renal function recovery, decrease comorbidities, and further improve patients' survival. To control certain risk factors and develop targeted prevention strategies are important to reduce the risk of AKI. Drug-drug interactions and drug-disease interactions are critical issues for AKI. Typical statistical approaches cannot handle the complexity of drug-drug and drug-disease interactions. In this paper, we propose a novel learning algorithm, Deep Rule Forests (DRF), which discovers rules from multilayer tree models as the combinations of drug usages and disease indications to help identify such interactions. We found that several disease and drug usages are considered having significant impact on the occurrence of AKI. Our experimental results also show that the DRF model performs comparatively better than typical tree-based and other state-of-the-art algorithms in terms of prediction accuracy and model interpretability.
stat
Bayesian Optimization of Risk Measures
We consider Bayesian optimization of objective functions of the form $\rho[ F(x, W) ]$, where $F$ is a black-box expensive-to-evaluate function and $\rho$ denotes either the VaR or CVaR risk measure, computed with respect to the randomness induced by the environmental random variable $W$. Such problems arise in decision making under uncertainty, such as in portfolio optimization and robust systems design. We propose a family of novel Bayesian optimization algorithms that exploit the structure of the objective function to substantially improve sampling efficiency. Instead of modeling the objective function directly as is typical in Bayesian optimization, these algorithms model $F$ as a Gaussian process, and use the implied posterior on the objective function to decide which points to evaluate. We demonstrate the effectiveness of our approach in a variety of numerical experiments.
stat
Simulation-Based Decision Making in the NFL using NFLSimulatoR
In this paper, we introduce an R software package for simulating plays and drives using play-by-play data from the National Football League. The simulations are generated by sampling play-by-play data from previous football seasons.The sampling procedure adds statistical rigor to any decisions or inferences arising from examining the simulations. We highlight that the package is particularly useful as a data-driven tool for evaluating potential in-game strategies or rule changes within the league. We demonstrate its utility by evaluating the oft-debated strategy of $\textit{going for it}$ on fourth down and investigating whether or not teams should pass more than the current standard.
stat
Fair Regression with Wasserstein Barycenters
We study the problem of learning a real-valued function that satisfies the Demographic Parity constraint. It demands the distribution of the predicted output to be independent of the sensitive attribute. We consider the case that the sensitive attribute is available for prediction. We establish a connection between fair regression and optimal transport theory, based on which we derive a close form expression for the optimal fair predictor. Specifically, we show that the distribution of this optimum is the Wasserstein barycenter of the distributions induced by the standard regression function on the sensitive groups. This result offers an intuitive interpretation of the optimal fair prediction and suggests a simple post-processing algorithm to achieve fairness. We establish risk and distribution-free fairness guarantees for this procedure. Numerical experiments indicate that our method is very effective in learning fair models, with a relative increase in error rate that is inferior to the relative gain in fairness.
stat
On projection methods for functional time series forecasting
Two nonparametric methods are presented for forecasting functional time series (FTS). The FTS we observe is a curve at a discrete-time point. We address both one-step-ahead forecasting and dynamic updating. Dynamic updating is a forward prediction of the unobserved segment of the most recent curve. Among the two proposed methods, the first one is a straightforward adaptation to FTS of the $k$-nearest neighbors methods for univariate time series forecasting. The second one is based on a selection of curves, termed \emph{the curve envelope}, that aims to be representative in shape and magnitude of the most recent functional observation, either a whole curve or the observed part of a partially observed curve. In a similar fashion to $k$-nearest neighbors and other projection methods successfully used for time series forecasting, we ``project'' the $k$-nearest neighbors and the curves in the envelope for forecasting. In doing so, we keep track of the next period evolution of the curves. The methods are applied to simulated data, daily electricity demand, and NOx emissions and provide competitive results with and often superior to several benchmark predictions. The approach offers a model-free alternative to statistical methods based on FTS modeling to study the cyclic or seasonal behavior of many FTS.
stat
Markov Neighborhood Regression for High-Dimensional Inference
This paper proposes an innovative method for constructing confidence intervals and assessing p-values in statistical inference for high-dimensional linear models. The proposed method has successfully broken the high-dimensional inference problem into a series of low-dimensional inference problems: For each regression coefficient $\beta_i$, the confidence interval and $p$-value are computed by regressing on a subset of variables selected according to the conditional independence relations between the corresponding variable $X_i$ and other variables. Since the subset of variables forms a Markov neighborhood of $X_i$ in the Markov network formed by all the variables $X_1,X_2,\ldots,X_p$, the proposed method is coined as Markov neighborhood regression. The proposed method is tested on high-dimensional linear, logistic and Cox regression. The numerical results indicate that the proposed method significantly outperforms the existing ones. Based on the Markov neighborhood regression, a method of learning causal structures for high-dimensional linear models is proposed and applied to identification of drug sensitive genes and cancer driver genes. The idea of using conditional independence relations for dimension reduction is general and potentially can be extended to other high-dimensional or big data problems as well.
stat
Blending of Probability and Non-Probability Samples: Applications to a Survey of Military Caregivers
Probability samples are the preferred method for providing inferences that are generalizable to a larger population. However, when a small (or rare) subpopulation is the group of interest, this approach is unlikely to yield a sample size large enough to produce precise inferences. Non-probability (or convenience) sampling often provides the necessary sample size to yield efficient estimates, but selection bias may compromise the generalizability of results to the broader population. Motivating the exposition is a survey of military caregivers; our interest is focused on unpaid caregivers of wounded, ill, or injured servicemembers and veterans who served in the US armed forces following September 11, 2001. An extensive probability sampling effort yielded only 72 caregivers from this subpopulation. Therefore, we consider supplementing the probability sample with a convenience sample from the same subpopulation, and we develop novel methods of statistical weighting that may be used to combine (or blend) the samples. Our analyses show that the subpopulation of interest endures greater hardships than caregivers of veterans with earlier dates of service, and these conclusions are discernably stronger when blended samples with the proposed weighting schemes are used. We conclude with simulation studies that illustrate the efficacy of the proposed techniques, examine the bias-variance trade-off encountered when using inadequately blended data, and show that the gain in precision provided by the convenience sample is lower in circumstances where the outcome is strongly related to the auxiliary variables used for blending.
stat
Adaptive-to-model hybrid of tests for regressions
In model checking for regressions, nonparametric estimation-based tests usually have tractable limiting null distributions and are sensitive to oscillating alternative models, but suffer from the curse of dimensionality. In contrast, empirical process-based tests can, at the fastest possible rate, detect local alternatives distinct from the null model, but is less sensitive to oscillating alternative models and with intractable limiting null distributions. It has long been an issue on how to construct a test that can fully inherit the merits of these two types of tests and avoid the shortcomings. We in this paper propose a generic adaptive-to-model hybrid of moment and conditional moment-based test to achieve this goal. Further, a significant feature of the method is to make nonparametric estimation-based tests, under the alternatives, also share the merits of existing empirical process-based tests. This methodology can be readily applied to other kinds of data and constructing other hybrids. As a by-product in sufficient dimension reduction field, the estimation of residual-related central subspace is used to indicate the underlying models for model adaptation. A systematic study is devoted to showing when alternative models can be indicated and when cannot. This estimation is of its own interest and can be applied to the problems with other kinds of data. Numerical studies are conducted to verify the powerfulness of the proposed test.
stat
Self-driving car safety quantification via component-level analysis
In this paper, we present a rigorous modular statistical approach for arguing safety or its insufficiency of an autonomous vehicle through a concrete illustrative example. The methodology relies on making appropriate quantitative studies of the performance of constituent components. We explain the importance of sufficient and necessary conditions at the component level for the overall safety of the vehicle as well as the cost-saving benefits of the approach. A simple concrete automated braking example studied illustrates how separate perception system and operational design domain statistical analyses can be used to prove or disprove safety at the vehicle level.
stat
Smoothing Graphons for Modelling Exchangeable Relational Data
Modelling exchangeable relational data can be described by \textit{graphon theory}. Most Bayesian methods for modelling exchangeable relational data can be attributed to this framework by exploiting different forms of graphons. However, the graphons adopted by existing Bayesian methods are either piecewise-constant functions, which are insufficiently flexible for accurate modelling of the relational data, or are complicated continuous functions, which incur heavy computational costs for inference. In this work, we introduce a smoothing procedure to piecewise-constant graphons to form {\em smoothing graphons}, which permit continuous intensity values for describing relations, but without impractically increasing computational costs. In particular, we focus on the Bayesian Stochastic Block Model (SBM) and demonstrate how to adapt the piecewise-constant SBM graphon to the smoothed version. We initially propose the Integrated Smoothing Graphon (ISG) which introduces one smoothing parameter to the SBM graphon to generate continuous relational intensity values. We then develop the Latent Feature Smoothing Graphon (LFSG), which improves on the ISG by introducing auxiliary hidden labels to decompose the calculation of the ISG intensity and enable efficient inference. Experimental results on real-world data sets validate the advantages of applying smoothing strategies to the Stochastic Block Model, demonstrating that smoothing graphons can greatly improve AUC and precision for link prediction without increasing computational complexity.
stat
Analysing the causal effect of London cycle superhighways on traffic congestion
Transport operators have a range of intervention options available to improve or enhance their networks. Such interventions are often made in the absence of sound evidence on resulting outcomes. Cycling superhighways were promoted as a sustainable and healthy travel mode, one of the aims of which was to reduce traffic congestion. Estimating the impacts that cycle superhighways have on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-intervention and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to the doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network. The methodology proposed can assist in effective decision making to improve network performance.
stat
Importance sampling correction versus standard averages of reversible MCMCs in terms of the asymptotic variance
We establish an ordering criterion for the asymptotic variances of two consistent Markov chain Monte Carlo (MCMC) estimators: an importance sampling (IS) estimator, based on an approximate reversible chain and subsequent IS weighting, and a standard MCMC estimator, based on an exact reversible chain. Essentially, we relax the criterion of the Peskun type covariance ordering by considering two different invariant probabilities, and obtain, in place of a strict ordering of asymptotic variances, a bound of the asymptotic variance of IS by that of the direct MCMC. Simple examples show that IS can have arbitrarily better or worse asymptotic variance than Metropolis-Hastings and delayed-acceptance (DA) MCMC. Our ordering implies that IS is guaranteed to be competitive up to a factor depending on the supremum of the (marginal) IS weight. We elaborate upon the criterion in case of unbiased estimators as part of an auxiliary variable framework. We show how the criterion implies asymptotic variance guarantees for IS in terms of pseudo-marginal (PM) and DA corrections, essentially if the ratio of exact and approximate likelihoods is bounded. We also show that convergence of the IS chain can be less affected by unbounded high-variance unbiased estimators than PM and DA chains.
stat
The Cost of Privacy: Optimal Rates of Convergence for Parameter Estimation with Differential Privacy
Privacy-preserving data analysis is a rising challenge in contemporary statistics, as the privacy guarantees of statistical methods are often achieved at the expense of accuracy. In this paper, we investigate the tradeoff between statistical accuracy and privacy in mean estimation and linear regression, under both the classical low-dimensional and modern high-dimensional settings. A primary focus is to establish minimax optimality for statistical estimation with the $(\varepsilon,\delta)$-differential privacy constraint. To this end, we find that classical lower bound arguments fail to yield sharp results, and new technical tools are called for. By refining the "tracing adversary" technique for lower bounds in the theoretical computer science literature, we formulate a general lower bound argument for minimax risks with differential privacy constraints, and apply this argument to high-dimensional mean estimation and linear regression problems. We also design computationally efficient algorithms that attain the minimax lower bounds up to a logarithmic factor. In particular, for the high-dimensional linear regression, a novel private iterative hard thresholding pursuit algorithm is proposed, based on a privately truncated version of stochastic gradient descent. The numerical performance of these algorithms is demonstrated by simulation studies and applications to real data containing sensitive information, for which privacy-preserving statistical methods are necessary.
stat
A Hierarchical Max-Infinitely Divisible Spatial Model for Extreme Precipitation
Understanding the spatial extent of extreme precipitation is necessary for determining flood risk and adequately designing infrastructure (e.g., stormwater pipes) to withstand such hazards. While environmental phenomena typically exhibit weakening spatial dependence at increasingly extreme levels, limiting max-stable process models for block maxima have a rigid dependence structure that does not capture this type of behavior. We propose a flexible Bayesian model from a broader family of (conditionally) max-infinitely divisible processes that allows for weakening spatial dependence at increasingly extreme levels, and due to a hierarchical representation of the likelihood in terms of random effects, our inference approach scales to large datasets. Therefore, our model not only has a flexible dependence structure, but it also allows for fast, fully Bayesian inference, prediction and conditional simulation in high dimensions. The proposed model is constructed using flexible random basis functions that are estimated from the data, allowing for straightforward inspection of the predominant spatial patterns of extremes. In addition, the described process possesses (conditional) max-stability as a special case, making inference on the tail dependence class possible. We apply our model to extreme precipitation in North-Eastern America, and show that the proposed model adequately captures the extremal behavior of the data. Interestingly, we find that the principal modes of spatial variation estimated from our model resemble observed patterns in extreme precipitation events occurring along the coast (e.g., with localized tropical cyclones and convective storms) and mountain range borders. Our model, which can easily be adapted to other types of environmental datasets, is therefore useful to identify extreme weather patterns and regions at risk.
stat
Early warning in egg production curves from commercial hens: A SVM approach
Artificial Intelligence allows the improvement of our daily life, for instance, speech and handwritten text recognition, real time translation and weather forecasting are common used applications. In the livestock sector, machine learning algorithms have the potential for early detection and warning of problems, which represents a significant milestone in the poultry industry. Production problems generate economic loss that could be avoided by acting in a timely manner. In the current study, training and testing of support vector machines are addressed, for an early detection of problems in the production curve of commercial eggs, using farm's egg production data of 478,919 laying hens grouped in 24 flocks. Experiments using support vector machines with a 5 k-fold cross-validation were performed at different previous time intervals, to alert with up to 5 days of forecasting interval, whether a flock will experience a problem in production curve. Performance metrics such as accuracy, specificity, sensitivity, and positive predictive value were evaluated, reaching 0-day values of 0.9874, 0.9876, 0.9783 and 0.6518 respectively on unseen data (test-set). The optimal forecasting interval was from zero to three days, performance metrics decreases as the forecasting interval is increased. It should be emphasized that this technique was able to issue an alert a day in advance, achieving an accuracy of 0.9854, a specificity of 0.9865, a sensitivity of 0.9333 and a positive predictive value of 0.6135. This novel application embedded in a computer system of poultry management is able to provide significant improvements in early detection and warning of problems related to the production curve.
stat
A Statistical Analysis of Recent Traffic Crashes in Massachusetts
A statistical analysis implemented in the Python programming language was performed on the available MassDOT car accident data to identify whether a certain set of traffic circumstances would increase the likelihood of injuries. In the analysis, we created a binary classifier as a model to separate crashes that resulted in injury from those that did not. To accomplish this, we first cleaned up the initial data, then proceeded to represent categorical variables numerically through one hot encoding before finally producing models with Recursive Feature Elimination (RFE) and without RFE, in conjunction with logistic regression. This statistical analysis plays a significant role in our modern road network that has presented us with a heap of obstacles, one of the most critical being the issue of how we can ensure the safety of all drivers and passengers. Findings from our analysis identify that tough weather and road conditions, senior/teen drivers and dangerous intersections play prominent roles in accidents that resulted in injuries in Massachusetts. These new findings can provide valuable references and scientific data support to relevant authorities and policy makers for upgrading road infrastructure, passing regulations, etc.
stat
Estimation of Viterbi path in Bayesian hidden Markov models
The article studies different methods for estimating the Viterbi path in the Bayesian framework. The Viterbi path is an estimate of the underlying state path in hidden Markov models (HMMs), which has a maximum posterior probability (MAP). For an HMM with given parameters, the Viterbi path can be easily found with the Viterbi algorithm. In the Bayesian framework the Viterbi algorithm is not applicable and several iterative methods can be used instead. We introduce a new EM-type algorithm for finding the MAP path and compare it with various other methods for finding the MAP path, including the variational Bayes approach and MCMC methods. Examples with simulated data are used to compare the performance of the methods. The main focus is on non-stochastic iterative methods and our results show that the best of those methods work as well or better than the best MCMC methods. Our results demonstrate that when the primary goal is segmentation, then it is more reasonable to perform segmentation directly by considering the transition and emission parameters as nuisance parameters.
stat
Conditionally Independent Multiresolution Gaussian Processes
The multiresolution Gaussian process (GP) has gained increasing attention as a viable approach towards improving the quality of approximations in GPs that scale well to large-scale data. Most of the current constructions assume full independence across resolutions. This assumption simplifies the inference, but it underestimates the uncertainties in transitioning from one resolution to another. This in turn results in models which are prone to overfitting in the sense of excessive sensitivity to the chosen resolution, and predictions which are non-smooth at the boundaries. Our contribution is a new construction which instead assumes conditional independence among GPs across resolutions. We show that relaxing the full independence assumption enables robustness against overfitting, and that it delivers predictions that are smooth at the boundaries. Our new model is compared against current state of the art on 2 synthetic and 9 real-world datasets. In most cases, our new conditionally independent construction performed favorably when compared against models based on the full independence assumption. In particular, it exhibits little to no signs of overfitting.
stat
The Impact of Operating Environment on Efficiency of Public Libraries
Analysis of technical efficiency is an important tool in management of public libraries. We assess the efficiency of 4660 public libraries established by municipalities in the Czech Republic in the year 2017. For this purpose, we utilize the data envelopment analysis (DEA) based on the Chebyshev distance. We pay special attention to the operating environment and find that the efficiency scores significantly depend on the population of the municipality and distance to the municipality with extended powers. To remove the effect of the operating environment, we perform DEA separately for categories based on the decision tree analysis as well as categories designed by an expert.
stat
On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and Non-Asymptotic Concentration
We undertake a precise study of the asymptotic and non-asymptotic properties of stochastic approximation procedures with Polyak-Ruppert averaging for solving a linear system $\bar{A} \theta = \bar{b}$. When the matrix $\bar{A}$ is Hurwitz, we prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity. The CLT characterizes the exact asymptotic covariance matrix, which is the sum of the classical Polyak-Ruppert covariance and a correction term that scales with the step size. Under assumptions on the tail of the noise distribution, we prove a non-asymptotic concentration inequality whose main term matches the covariance in CLT in any direction, up to universal constants. When the matrix $\bar{A}$ is not Hurwitz but only has non-negative real parts in its eigenvalues, we prove that the averaged LSA procedure actually achieves an $O(1/T)$ rate in mean-squared error. Our results provide a more refined understanding of linear stochastic approximation in both the asymptotic and non-asymptotic settings. We also show various applications of the main results, including the study of momentum-based stochastic gradient methods as well as temporal difference algorithms in reinforcement learning.
stat
Network Elastic Net for Identifying Smoking specific gene expression for lung cancer
Survival month for non-small lung cancer patients depend upon which stage of lung cancer is present. Our aim is to identify smoking specific gene expression biomarkers in the prognosis of lung cancer patients. In this paper, we introduce the network elastic net, a generalization of network lasso that allows for simultaneous clustering and regression on graphs. In Network elastic net, we consider similar patients based on smoking cigarettes per year to form the network. We then further find the suitable cluster among patients based on coefficients of genes having different survival month structures and showed the efficacy of the clusters using stage enrichment. This can be used to identify the stage of cancer using gene expression and smoking behavior of patients without doing any tests.
stat
Flatness is a False Friend
Hessian based measures of flatness, such as the trace, Frobenius and spectral norms, have been argued, used and shown to relate to generalisation. In this paper we demonstrate that for feed forward neural networks under the cross entropy loss, we would expect low loss solutions with large weights to have small Hessian based measures of flatness. This implies that solutions obtained using $L2$ regularisation should in principle be sharper than those without, despite generalising better. We show this to be true for logistic regression, multi-layer perceptrons, simple convolutional, pre-activated and wide residual networks on the MNIST and CIFAR-$100$ datasets. Furthermore, we show that for adaptive optimisation algorithms using iterate averaging, on the VGG-$16$ network and CIFAR-$100$ dataset, achieve superior generalisation to SGD but are $30 \times$ sharper. This theoretical finding, along with experimental results, raises serious questions about the validity of Hessian based sharpness measures in the discussion of generalisation. We further show that the Hessian rank can be bounded by the a constant times number of neurons multiplied by the number of classes, which in practice is often a small fraction of the network parameters. This explains the curious observation that many Hessian eigenvalues are either zero or very near zero which has been reported in the literature.
stat
Fast Training of Sparse Graph Neural Networks on Dense Hardware
Graph neural networks have become increasingly popular in recent years due to their ability to naturally encode relational input data and their ability to scale to large graphs by operating on a sparse representation of graph adjacency matrices. As we look to scale up these models using custom hardware, a natural assumption would be that we need hardware tailored to sparse operations and/or dynamic control flow. In this work, we question this assumption by scaling up sparse graph neural networks using a platform targeted at dense computation on fixed-size data. Drawing inspiration from optimization of numerical algorithms on sparse matrices, we develop techniques that enable training the sparse graph neural network model from Allamanis et al. [2018] in 13 minutes using a 512-core TPUv2 Pod, whereas the original training takes almost a day.
stat
Combining Observational and Experimental Datasets Using Shrinkage Estimators
We consider the problem of combining data from observational and experimental sources to make causal conclusions. This problem is increasingly relevant, as the modern era has yielded passive collection of massive observational datasets in areas such as e-commerce and electronic health. These data may be used to supplement experimental data, which is frequently expensive to obtain. In Rosenman et al. (2018), we considered this problem under the assumption that all confounders were measured. Here, we relax the assumption of unconfoundedness. To derive combined estimators with desirable properties, we make use of results from the Stein Shrinkage literature. Our contributions are threefold. First, we propose a generic procedure for deriving shrinkage estimators in this setting, making use of a generalized unbiased risk estimate. Second, we develop two new estimators, prove finite sample conditions under which they have lower risk than an estimator using only experimental data, and show that each achieves a notion of asymptotic optimality. Third, we draw connections between our approach and results in sensitivity analysis, including proposing a method for evaluating the feasibility of our estimators.
stat
Non-parametric targeted Bayesian estimation of class proportions in unlabeled data
We introduce a novel Bayesian estimator for the class proportion in an unlabeled dataset, based on the targeted learning framework. Our procedure requires the specification of a prior (and outputs a posterior) only for the target of inference, instead of the prior (and posterior) on the full-data distribution employed by classical non-parametric Bayesian methods .When the scientific question can be characterized by a low-dimensional parameter functional, focus on such a prior and posterior distributions is more aligned with Bayesian subjectivism, compared to focus on entire data distributions. We prove a Bernstein-von Mises-type result for our proposed Bayesian procedure, which guarantees that the posterior distribution converges to the distribution of an efficient, asymptotically linear estimator. In particular, the posterior is Gaussian, doubly robust, and efficient in the limit, under the only assumption that certain nuisance parameters are estimated at slow rates. We perform numerical studies illustrating the frequentist properties of the method. We also illustrate their use in a motivating application to estimate the proportion of embolic strokes of undetermined source arising from occult cardiac sources or large-artery atherosclerotic lesions. Though we focus on the motivating example of the proportion of cases in an unlabeled dataset, the procedure is general and can be adapted to estimate any pathwise differentiable parameter in a non-parametric model.
stat
The GLD-plot: A depth-based plot to investigate unimodality of directional data
A graphical tool for investigating unimodality of hyperspherical data is proposed. It is based on the notion of statistical data depth function for directional data which extends the univariate concept of rank. Firstly a local version of distance-based depths for directional data based on aims at analyzing the local structure of hyperspherical data is proposed. Then such notion is compared to the global version of data depth by means of a two-dimensional scatterplot, i.e. the GLD-plot. The proposal is illustrated on simulated and real data examples.
stat
Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models
Predictive models that accurately emulate complex scientific processes can achieve exponential speed-ups over numerical simulators or experiments, and at the same time provide surrogates for improving the subsequent analysis. Consequently, there is a recent surge in utilizing modern machine learning (ML) methods, such as deep neural networks, to build data-driven emulators. While the majority of existing efforts has focused on tailoring off-the-shelf ML solutions to better suit the scientific problem at hand, we study an often overlooked, yet important, problem of choosing loss functions to measure the discrepancy between observed data and the predictions from a model. Due to lack of better priors on the expected residual structure, in practice, simple choices such as the mean squared error and the mean absolute error are made. However, the inherent symmetric noise assumption made by these loss functions makes them inappropriate in cases where the data is heterogeneous or when the noise distribution is asymmetric. We propose Learn-by-Calibrating (LbC), a novel deep learning approach based on interval calibration for designing emulators in scientific applications, that are effective even with heterogeneous data and are robust to outliers. Using a large suite of use-cases, we show that LbC provides significant improvements in generalization error over widely-adopted loss function choices, achieves high-quality emulators even in small data regimes and more importantly, recovers the inherent noise structure without any explicit priors.
stat
Change point detection for COVID-19 excess deaths in Belgium
Emerging at the end of 2019, COVID-19 has become a public health threat to people worldwide. Apart from the deaths who tested positive for COVID-19, many others have died from causes indirectly related to COVID-19. Therefore, the COVID-19 confirmed deaths underestimate the influence of the pandemic on the society; instead, the measure of `excess deaths' is a more objective and comparable way to assess the scale of the epidemic and formulate lessons. One common practical issue in analyzing the impact of COVID-19 is to determine the `pre-COVID-19' period and the `post-COVID-19' period. We apply a change point detection method to identify any change points using the excess deaths in Belgium.
stat