title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Ridge Regularizaton: an Essential Concept in Data Science
Ridge or more formally $\ell_2$ regularization shows up in many areas of statistics and machine learning. It is one of those essential devices that any good data scientist needs to master for their craft. In this brief ridge fest I have collected together some of the magic and beauty of ridge that my colleagues and I have encountered over the past 40 years in applied statistics.
stat
Meta-Learning Mean Functions for Gaussian Processes
When fitting Bayesian machine learning models on scarce data, the main challenge is to obtain suitable prior knowledge and encode it into the model. Recent advances in meta-learning offer powerful methods for extracting such prior knowledge from data acquired in related tasks. When it comes to meta-learning in Gaussian process models, approaches in this setting have mostly focused on learning the kernel function of the prior, but not on learning its mean function. In this work, we explore meta-learning the mean function of a Gaussian process prior. We present analytical and empirical evidence that mean function learning can be useful in the meta-learning setting, discuss the risk of overfitting, and draw connections to other meta-learning approaches, such as model agnostic meta-learning and functional PCA.
stat
Vertex Classification on Weighted Networks
This paper proposes a discrimination technique for vertices in a weighted network. We assume that the edge weights and adjacencies in the network are conditionally independent and that both sources of information encode class membership information. In particular, we introduce a edge weight distribution matrix to the standard K-Block Stochastic Block Model to model weighted networks. This allows us to develop simple yet powerful extensions of classification techniques using the spectral embedding of the unweighted adjacency matrix. We consider two assumptions on the edge weight distributions and propose classification procedures in both settings. We show the effectiveness of the proposed classifiers by comparing them to quadratic discriminant analysis following the spectral embedding of a transformed weighted network. Moreover, we discuss and show how the methods perform when the edge weights do not encode class membership information.
stat
SEAM methodology for context-rich player matchup evaluations
We develop the SEAM (synthetic estimated average matchup) method for describing batter versus pitcher matchups in baseball, both numerically and visually. We first estimate the distribution of balls put into play by a batter facing a pitcher, called the spray chart distribution. This distribution is conditional on batter and pitcher characteristics. These characteristics are a better expression of talent than any conventional statistics. Many individual matchups have a sample size that is too small to be reliable. Synthetic versions of the batter and pitcher under consideration are constructed in order to alleviate these concerns. Weights governing how much influence these synthetic players have on the overall spray chart distribution are constructed to minimize expected mean square error. We then provide novel performance metrics that are calculated as expectations taken with respect to the spray chart distribution. These performance metrics provide a context rich approach to player evaluation. Our main contribution is a Shiny app that allows users to evaluate any batter-pitcher matchup that has occurred or could have occurred in the last five years. One can access this app at \url{https://seam.stat.illinois.edu/app/}. This interactive tool has utility for anyone interested in baseball as well as team executives and players.
stat
Improved BiGAN training with marginal likelihood equalization
We propose a novel training procedure for improving the performance of generative adversarial networks (GANs), especially to bidirectional GANs. First, we enforce that the empirical distribution of the inverse inference network matches the prior distribution, which favors the generator network reproducibility on the seen samples. Second, we have found that the marginal log-likelihood of the samples shows a severe overrepresentation of a certain type of samples. To address this issue, we propose to train the bidirectional GAN using a non-uniform sampling for the mini-batch selection, resulting in improved quality and variety in generated samples measured quantitatively and by visual inspection. We illustrate our new procedure with the well-known CIFAR10, Fashion MNIST and CelebA datasets.
stat
An extended note on the multibin logarithmic score used in the FluSight competitions
In recent years the Centers for Disease Control and Prevention (CDC) have organized FluSight influenza forecasting competitions. To evaluate the participants' forecasts a multibin logarithmic score has been created, which is a non-standard variant of the established logarithmic score. Unlike the original log score, the multibin version is not proper and may thus encourage dishonest forecasting. We explore the practical consequences this may have, using forecasts from the 2016/17 FluSight competition for illustration.
stat
Exploiting new forms of data to study the private rented sector: strengths and limitations of a database of rental listings
Reviews of official statistics for UK housing have noted that developments have not kept pace with real-world change, particularly the rapid growth of private renting. This paper examines the potential value of big data in this context. We report on the construction of a dataset from the on-line adverts of one national lettings agency, describing the content of the dataset and efforts to validate it against external sources. Focussing on one urban area, we illustrate how the dataset can shed new light on local changes. Lastly, we discuss the issues involved in making more routine use of this kind of data.
stat
A Bimodal Weibull Distribution: Properties and Inference
Modeling is a challenging topic and using parametric models is an important stage to reach flexible function for modeling. Weibull distribution has two parameters which are shape $\alpha$ and scale $\beta$. In this study, bimodality parameter is added and so bimodal Weibull distribution is proposed by using a quadratic transformation technique used to generate bimodal functions produced due to using the quadratic expression. The analytical simplicity of Weibull and quadratic form give an advantage to derive a bimodal Weibull via constructing normalizing constant. The characteristics and properties of the proposed distribution are examined to show its usability in modeling. After examination as first stage in modeling issue, it is appropriate to use bimodal Weibull for modeling data sets. Two estimation methods which are maximum $\log_q$ likelihood and its special form including objective functions $\log_q(f)$ and $\log(f)$ are used to estimate the parameters of shape, scale and bimodality parameters of the function. The second stage in modeling is overcome by using heuristic algorithm for optimization of function according to parameters due to fact that converging to global point of objective function is performed by heuristic algorithm based on the stochastic optimization. Real data sets are provided to show the modeling competence of the proposed distribution.
stat
A Variational Approach to Privacy and Fairness
In this article, we propose a new variational approach to learn private and/or fair representations. This approach is based on the Lagrangians of a new formulation of the privacy and fairness optimization problems that we propose. In this formulation, we aim at generating representations of the data that keep a prescribed level of the relevant information that is not shared by the private or sensitive data, while minimizing the remaining information they keep. The proposed approach (i) exhibits the similarities of the privacy and fairness problems, (ii) allows us to control the trade-off between utility and privacy or fairness through the Lagrange multiplier parameter, and (iii) can be comfortably incorporated to common representation learning algorithms such as the VAE, the $\beta$-VAE, the VIB, or the nonlinear IB.
stat
The shapes of an epidemic: using Functional Data Analysis to characterize COVID-19 in Italy
We investigate patterns of COVID-19 mortality across 20 Italian regions and their association with mobility, positivity, and socio-demographic, infrastructural and environmental covariates. Notwithstanding limitations in accuracy and resolution of the data available from public sources, we pinpoint significant trends exploiting information in curves and shapes with Functional Data Analysis techniques. These depict two starkly different epidemics; an "exponential" one unfolding in Lombardia and the worst hit areas of the north, and a milder, "flat(tened)" one in the rest of the country -- including Veneto, where cases appeared concurrently with Lombardia but aggressive testing was implemented early on. We find that mobility and positivity can predict COVID-19 mortality, also when controlling for relevant covariates. Among the latter, primary care appears to mitigate mortality, and contacts in hospitals, schools and work places to aggravate it. The techniques we describe could capture additional and potentially sharper signals if applied to richer data.
stat
Kernel Methods for Unobserved Confounding: Negative Controls, Proxies, and Instruments
Negative control is a strategy for learning the causal relationship between treatment and outcome in the presence of unmeasured confounding. The treatment effect can nonetheless be identified if two auxiliary variables are available: a negative control treatment (which has no effect on the actual outcome), and a negative control outcome (which is not affected by the actual treatment). These auxiliary variables can also be viewed as proxies for a traditional set of control variables, and they bear resemblance to instrumental variables. I propose a new family of non-parametric algorithms for learning treatment effects with negative controls. I consider treatment effects of the population, of sub-populations, and of alternative populations. I allow for data that may be discrete or continuous, and low-, high-, or infinite-dimensional. I impose the additional structure of the reproducing kernel Hilbert space (RKHS), a popular non-parametric setting in machine learning. I prove uniform consistency and provide finite sample rates of convergence. I evaluate the estimators in simulations.
stat
CytOpT: Optimal Transport with Domain Adaptation for Interpreting Flow Cytometry data
The automated analysis of flow cytometry measurements is an active research field. We introduce a new algorithm, referred to as CytOpT, using regularized optimal transport to directly estimate the different cell population proportions from a biological sample characterized with flow cytometry measurements. We rely on the regularized Wasserstein metric to compare cytometry measurements from different samples, thus accounting for possible mis-alignment of a given cell population across sample (due to technical variability from the technology of measurements). In this work, we rely on a supervised learning technique based on the Wasserstein metric that is used to estimate an optimal re-weighting of class proportions in a mixture model from a source distribution (with known segmentation into cell sub-populations) to fit a target distribution with unknown segmentation. Due to the high-dimensionality of flow cytometry data, we use stochastic algorithms to approximate the regularized Wasserstein metric to solve the optimization problem involved in the estimation of optimal weights representing the cell population proportions in the target distribution. Several flow cytometry data sets are used to illustrate the performances of CytOpT that are also compared to those of existing algorithms for automatic gating based on supervised learning.
stat
Optimizing Interim Analysis Timing for Bayesian Adaptive Commensurate Designs
In developing products for rare diseases, statistical challenges arise due to the limited number of patients available for participation in drug trials and other clinical research. Bayesian adaptive clinical trial designs offer the possibility of increased statistical efficiency, reduced development cost and ethical hazard prevention via their incorporation of evidence from external sources (historical data, expert opinions, and real-world evidence), and flexibility in the specification of interim looks. In this paper, we propose a novel Bayesian adaptive commensurate design that borrows adaptively from historical information and also uses a particular payoff function to optimize the timing of the study's interim analysis. The trial payoff is a function of how many samples can be saved via early stopping and the probability of making correct early decisions for either futility or efficacy. We calibrate our Bayesian algorithm to have acceptable long-run frequentist properties (Type I error and power) via simulation at the design stage. We illustrate our approach using a pediatric trial design setting testing the effect of a new drug for a rare genetic disease. The optimIA R package available at https://github.com/wxwx1993/Bayesian_IA_Timing provides an easy-to-use implementation of our approach.
stat
Foundations of Population-Based SHM, Part IV: The Geometry of Spaces of Structures and their Feature Spaces
One of the requirements of the population-based approach to Structural Health Monitoring (SHM) proposed in the earlier papers in this sequence, is that structures be represented by points in an abstract space. Furthermore, these spaces should be metric spaces in a loose sense; i.e. there should be some measure of distance applicable to pairs of points; similar structures should then be close in the metric. However, this geometrical construction is not enough for the framing of problems in data-based SHM, as it leaves undefined the notion of feature spaces. Interpreting the feature values on a structure-by-structure basis as a type of field over the space of structures, it seems sensible to borrow an idea from modern theoretical physics, and define feature assignments as sections in a vector bundle over the structure space. With this idea in place, one can interpret the effect of environmental and operational variations as gauge degrees of freedom, as in modern gauge field theories. This paper will discuss the various geometrical structures required for an abstract theory of feature spaces in SHM, and will draw analogies with how these structures have shown their power in modern physics. In the second part of the paper, the problem of determining the normal condition cross section of a feature bundle is addressed. The solution is provided by the application of Graph Neural Networks (GNN), a versatile non-Euclidean machine learning algorithm which is not restricted to inputs and outputs from vector spaces. In particular, the algorithm is well suited to operating directly on the sort of graph structures which are an important part of the proposed framework for PBSHM. The solution of the normal section problem is demonstrated for a heterogeneous population of truss structures for which the feature of interest is the first natural frequency.
stat
Implicit differentiation of Lasso-type models for hyperparameter optimization
Setting regularization parameters for Lasso-type estimators is notoriously difficult, though crucial in practice. The most popular hyperparameter optimization approach is grid-search using held-out validation data. Grid-search however requires to choose a predefined grid for each parameter, which scales exponentially in the number of parameters. Another approach is to cast hyperparameter optimization as a bi-level optimization problem, one can solve by gradient descent. The key challenge for these methods is the estimation of the gradient with respect to the hyperparameters. Computing this gradient via forward or backward automatic differentiation is possible yet usually suffers from high memory consumption. Alternatively implicit differentiation typically involves solving a linear system which can be prohibitive and numerically unstable in high dimension. In addition, implicit differentiation usually assumes smooth loss functions, which is not the case for Lasso-type problems. This work introduces an efficient implicit differentiation algorithm, without matrix inversion, tailored for Lasso-type problems. Our approach scales to high-dimensional data by leveraging the sparsity of the solutions. Experiments demonstrate that the proposed method outperforms a large number of standard methods to optimize the error on held-out data, or the Stein Unbiased Risk Estimator (SURE).
stat
Unified estimation framework for unnormalized models with statistical efficiency
The parameter estimation of unnormalized models is a challenging problem. The maximum likelihood estimation (MLE) is computationally infeasible for these models since normalizing constants are not explicitly calculated. Although some consistent estimators have been proposed earlier, the problem of statistical efficiency remains. In this study, we propose a unified, statistically efficient estimation framework for unnormalized models and several efficient estimators, whose asymptotic variance is the same as the MLE. The computational cost of these estimators is also reasonable and they can be employed whether the sample space is discrete or continuous. The loss functions of the proposed estimators are derived by combining the following two methods: (1) density-ratio matching using Bregman divergence, and (2) plugging-in nonparametric estimators. We also analyze the properties of the proposed estimators when the unnormalized models are misspecified. The experimental results demonstrate the advantages of our method over existing approaches.
stat
Stochastic Graph Recurrent Neural Network
Representation learning over graph structure data has been widely studied due to its wide application prospects. However, previous methods mainly focus on static graphs while many real-world graphs evolve over time. Modeling such evolution is important for predicting properties of unseen networks. To resolve this challenge, we propose SGRNN, a novel neural architecture that applies stochastic latent variables to simultaneously capture the evolution in node attributes and topology. Specifically, deterministic states are separated from stochastic states in the iterative process to suppress mutual interference. With semi-implicit variational inference integrated to SGRNN, a non-Gaussian variational distribution is proposed to help further improve the performance. In addition, to alleviate KL-vanishing problem in SGRNN, a simple and interpretable structure is proposed based on the lower bound of KL-divergence. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed model. Code is available at https://github.com/StochasticGRNN/SGRNN.
stat
Restricted Boltzmann Machines as Models of Interacting Variables
We study the type of distributions that Restricted Boltzmann Machines (RBMs) with different activation functions can express by investigating the effect of the activation function of the hidden nodes on the marginal distribution they impose on observed binary nodes. We report an exact expression for these marginals in the form of a model of interacting binary variables with the explicit form of the interactions depending on the hidden node activation function. We study the properties of these interactions in detail and evaluate how the accuracy with which the RBM approximates distributions over binary variables depends on the hidden node activation function and on the number of hidden nodes. When the inferred RBM parameters are weak, an intuitive pattern is found for the expression of the interaction terms which reduces substantially the differences across activation functions. We show that the weak parameter approximation is a good approximation for different RBMs trained on the MNIST dataset. Interestingly, in these cases, the mapping reveals that the inferred models are essentially low order interaction models.
stat
A Neural Process Approach for Probabilistic Reconstruction of No-Data Gaps in Lunar Digital Elevation Maps
With the advent of NASA's lunar reconnaissance orbiter (LRO), a large amount of high-resolution digital elevation maps (DEMs) have been constructed by using narrow-angle cameras (NACs) to characterize the Moon's surface. However, NAC DEMs commonly contain no-data gaps (voids), which makes the map less reliable. To resolve the issue, this paper provides a deep-learning-based framework for the probabilistic reconstruction of no-data gaps in NAC DEMs. The framework is built upon a state of the art stochastic process model, attentive neural processes (ANP), and predicts the conditional distribution of elevation on the target coordinates (latitude and longitude) conditioned on the observed elevation data in nearby regions. Furthermore, this paper proposes sparse attentive neural processes (SANPs) that not only reduces the linear computational complexity of the ANP O(N) to the constant complexity O(K) but enhance the reconstruction performance by preventing overfitting and over-smoothing problems. The proposed method is evaluated on the Apollo 17 landing site (20.0{\deg}N and 30.4{\deg}E), demonstrating that the suggested approach successfully reconstructs no-data gaps with uncertainty analysis while preserving the high resolution of original NAC DEMs.
stat
Is a single unique Bayesian network enough to accurately represent your data?
Bayesian network (BN) modelling is extensively used in systems epidemiology. Usually it consists in selecting and reporting the best-fitting structure conditional to the data. A major practical concern is avoiding overfitting, on account of its extreme flexibility and its modelling richness. Many approaches have been proposed to control for overfitting. Unfortunately, they essentially all rely on very crude decisions that result in too simplistic approaches for such complex systems. In practice, with limited data sampled from complex system, this approach seems too simplistic. An alternative would be to use the Monte Carlo Markov chain model choice (MC3) over the network to learn the landscape of reasonably supported networks, and then to present all possible arcs with their MCMC support. This paper presents an R implementation, called mcmcabn, of a flexible structural MC3 that is accessible to non-specialists.
stat
The Connection between Discrete- and Continuous-Time Descriptions of Gaussian Continuous Processes
Learning the continuous equations of motion from discrete observations is a common task in all areas of physics. However, not any discretization of a Gaussian continuous-time stochastic process can be adopted in parametric inference. We show that discretizations yielding consistent estimators have the property of `invariance under coarse-graining', and correspond to fixed points of a renormalization group map on the space of autoregressive moving average (ARMA) models (for linear processes). This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order stochastic differential equations, even if the corresponding integration schemes may be acceptably good for numerical simulations.
stat
Model-Protected Multi-Task Learning
Multi-task learning (MTL) refers to the paradigm of learning multiple related tasks together. In contrast, in single-task learning (STL) each individual task is learned independently. MTL often leads to better trained models because they can leverage the commonalities among related tasks. However, because MTL algorithms can ``leak" information from different models across different tasks, MTL poses a potential security risk. Specifically, an adversary may participate in the MTL process through one task and thereby acquire the model information for another task. The previously proposed privacy-preserving MTL methods protect data instances rather than models, and some of them may underperform in comparison with STL methods. In this paper, we propose a privacy-preserving MTL framework to prevent information from each model leaking to other models based on a perturbation of the covariance matrix of the model matrix. We study two popular MTL approaches for instantiation, namely, learning the low-rank and group-sparse patterns of the model matrix. Our algorithms can be guaranteed not to underperform compared with STL methods. We build our methods based upon tools for differential privacy, and privacy guarantees, utility bounds are provided, and heterogeneous privacy budgets are considered. The experiments demonstrate that our algorithms outperform the baseline methods constructed by existing privacy-preserving MTL methods on the proposed model-protection problem.
stat
Achieving Equalized Odds by Resampling Sensitive Attributes
We present a flexible framework for learning predictive models that approximately satisfy the equalized odds notion of fairness. This is achieved by introducing a general discrepancy functional that rigorously quantifies violations of this criterion. This differentiable functional is used as a penalty driving the model parameters towards equalized odds. To rigorously evaluate fitted models, we develop a formal hypothesis test to detect whether a prediction rule violates this property, the first such test in the literature. Both the model fitting and hypothesis testing leverage a resampled version of the sensitive attribute obeying equalized odds, by construction. We demonstrate the applicability and validity of the proposed framework both in regression and multi-class classification problems, reporting improved performance over state-of-the-art methods. Lastly, we show how to incorporate techniques for equitable uncertainty quantification---unbiased for each group under study---to communicate the results of the data analysis in exact terms.
stat
Optimal stratification of survival data via Bayesian nonparametric mixtures
The stratified proportional hazards model represents a simple solution to account for heterogeneity within the data while keeping the multiplicative effect on the hazard function. Strata are typically defined a priori by resorting to the values taken by a categorical covariate. A general framework is proposed, which allows for the stratification of a generic accelerated life time model, including as a special case the Weibull proportional hazard model. The stratification is determined a posteriori by taking into account that strata might be characterized by different baseline survivals as well as different effects of the predictors. This is achieved by considering a Bayesian nonparametric mixture model and the posterior distribution it induces on the space of data partitions. The optimal stratification is then identified by means of the variation of information criterion and, in turn, stratum-specific inference is carried out. The performance of the proposed method and its robustness to the presence of right-censored observations are investigated by means of an extensive simulation study. A further illustration is provided by the analysis of a data set extracted from the University of Massachusetts AIDS Research Unit IMPACT Study.
stat
Contrast Specific Propensity Scores
Basic propensity score methodology is designed to balance multivariate pre-treatment covariates when comparing one active treatment with one control treatment. Practical settings often involve comparing more than two treatments, where more complicated contrasts than the basic treatment-control one,(1,-1), are relevant. Here, we propose the use of contrast-specific propensity scores (CSPS). CSPS allow the creation of treatment groups of units that are balanced with respect to bifurcations of the specified contrasts and the multivariate space spanned by them.
stat
Estimation, Confidence Intervals, and Large-Scale Hypotheses Testing for High-Dimensional Mixed Linear Regression
This paper studies the high-dimensional mixed linear regression (MLR) where the output variable comes from one of the two linear regression models with an unknown mixing proportion and an unknown covariance structure of the random covariates. Building upon a high-dimensional EM algorithm, we propose an iterative procedure for estimating the two regression vectors and establish their rates of convergence. Based on the iterative estimators, we further construct debiased estimators and establish their asymptotic normality. For individual coordinates, confidence intervals centered at the debiased estimators are constructed. Furthermore, a large-scale multiple testing procedure is proposed for testing the regression coefficients and is shown to control the false discovery rate (FDR) asymptotically. Simulation studies are carried out to examine the numerical performance of the proposed methods and their superiority over existing methods. The proposed methods are further illustrated through an analysis of a dataset of multiplex image cytometry, which investigates the interaction networks among the cellular phenotypes that include the expression levels of 20 epitopes or combinations of markers.
stat
Discriminative Bayesian Filtering Lends Momentum to the Stochastic Newton Method for Minimizing Log-Convex Functions
To minimize the average of a set of log-convex functions, the stochastic Newton method iteratively updates its estimate using subsampled versions of the full objective's gradient and Hessian. We contextualize this optimization problem as sequential Bayesian inference on a latent state-space model with a discriminatively-specified observation process. Applying Bayesian filtering then yields a novel optimization algorithm that considers the entire history of gradients and Hessians when forming an update. We establish matrix-based conditions under which the effect of older observations diminishes over time, in a manner analogous to Polyak's heavy ball momentum. We illustrate various aspects of our approach with an example and review other relevant innovations for the stochastic Newton method.
stat
Exploring the Effects of COVID-19 Containment Policies on Crime: An Empirical Analysis of the Short-term Aftermath in Los Angeles
This work investigates whether and how COVID-19 containment policies had an immediate impact on crime trends in Los Angeles. The analysis is conducted using Bayesian structural time-series and focuses on nine crime categories and on the overall crime count, daily monitored from January 1st 2017 to March 28th 2020. We concentrate on two post-intervention time windows - from March 4th to March 16th and from March 4th to March 28th 2020 - to dynamically assess the short-term effects of mild and strict policies. In Los Angeles, overall crime has significantly decreased, as well as robbery, shoplifting, theft, and battery. No significant effect has been detected for vehicle theft, burglary, assault with a deadly weapon, intimate partner assault, and homicide. Results suggest that, in the first weeks after the interventions are put in place, social distancing impacts more directly on instrumental and less serious crimes. Policy implications are also discussed.
stat
Multiple imputation with missing data indicators
Multiple imputation is a well-established general technique for analyzing data with missing values. A convenient way to implement multiple imputation is sequential regression multiple imputation (SRMI), also called chained equations multiple imputation. In this approach, we impute missing values using regression models for each variable, conditional on the other variables in the data. This approach, however, assumes that the missingness mechanism is missing at random, and it is not well-justified under not-at-random missingness without additional modification. In this paper, we describe how we can generalize the SRMI imputation procedure to handle not-at-random missingness (MNAR) in the setting where missingness may depend on other variables that are also missing. We provide algebraic justification for several generalizations of standard SRMI using Taylor series and other approximations of the target imputation distribution under MNAR. Resulting regression model approximations include indicators for missingness, interactions, or other functions of the MNAR missingness model and observed data. In a simulation study, we demonstrate that the proposed SRMI modifications result in reduced bias in the final analysis compared to standard SRMI, with an approximation strategy involving inclusion of an offset in the imputation model performing the best overall. The method is illustrated in a breast cancer study, where the goal is to estimate the prevalence of a specific genetic pathogenic variant.
stat
Smoothly varying ridge regularization
A basis expansion with regularization methods is much appealing to the flexible or robust nonlinear regression models for data with complex structures. When the underlying function has inhomogeneous smoothness, it is well known that conventional reguralization methods do not perform well. In this case, an adaptive procedure such as a free-knot spline or a local likelihood method is often introduced as an effective method. However, both methods need intensive computational loads. In this study, we consider a new efficient basis expansion by proposing a smoothly varying regularization method which is constructed by some special penalties. We call them adaptive-type penalties. In our modeling, adaptive-type penalties play key rolls and it has been successful in giving good estimation for inhomogeneous smoothness functions. A crucial issue in the modeling process is the choice of a suitable model among candidates. To select the suitable model, we derive an approximated generalized information criterion (GIC). The proposed method is investigated through Monte Carlo simulations and real data analysis. Numerical results suggest that our method performs well in various situations.
stat
HLIBCov: Parallel Hierarchical Matrix Approximation of Large Covariance Matrices and Likelihoods with Applications in Parameter Identification
We provide more technical details about the HLIBCov package, which is using parallel hierarchical ($\H$-) matrices to identify unknown parameters of the covariance function (variance, smoothness, and covariance length). These parameters are estimated by maximizing the joint Gaussian log-likelihood function. The HLIBCov package approximates large dense inhomogeneous covariance matrices with a log-linear computational cost and storage requirement. We explain how to compute the Cholesky factorization, determinant, inverse and quadratic form in the H-matrix format. To demonstrate the numerical performance, we identify three unknown parameters in an example with 2,000,000 locations on a PC-desktop.
stat
Paired Comparisons Modeling using t-Distribution with Bayesian Analysis
A paired comparison analysis is the simplest way to make comparative judgments between objects where objects may be goods, services or skills. For a set of problems, this technique helps to choose the most important problem to solve first and/or provides the solution that will be the most effective. This paper presents the theory of paired comparisons method and contributes to the paired comparisons models by developing a new model based on t-distribution. The developed model is illustrated using a data set of citations among four famous journals of Statistics. Using Bayesian analysis, the journals are ranked as JRSS-B --> Biometrika --> JASA --> Comm. in Stats.
stat
Extrinsic Kernel Ridge Regression Classifier for Planar Kendall Shape Space
Kernel methods have had great success in Statistics and Machine Learning. Despite their growing popularity, however, less effort has been drawn towards developing kernel based classification methods on Riemannian manifolds due to difficulty in dealing with non-Euclidean geometry. In this paper, motivated by the extrinsic framework of manifold-valued data analysis, we propose a new positive definite kernel on planar Kendall shape space $\Sigma_2^k$, called extrinsic Veronese Whitney Gaussian kernel. We show that our approach can be extended to develop Gaussian kernels on any embedded manifold. Furthermore, kernel ridge regression classifier (KRRC) is implemented to address the shape classification problem on $\Sigma_2^k$, and their promising performances are illustrated through the real data analysis.
stat
Conditional analysis for mixed covariates, with application to feed intake of lactating sows
We propose a novel modeling framework to study the effect of covariates of various types on the conditional distribution of the response. The methodology accommodates flexible model structure, allows for joint estimation of the quantiles at all levels, and involves a computationally efficient estimation algorithm. Extensive numerical investigation confirms good performance of the proposed method. The methodology is motivated by and applied to a lactating sow study, where the primary interest is to understand how the dynamic change of minute-by-minute temperature in the farrowing rooms within a day (functional covariate) is associated with low quantiles of feed intake of lactating sows, while accounting for other sow-specific information (vector covariate).
stat
Thirteen Simple Steps for Creating An R Package with an External C++ Library
We desribe how we extend R with an external C++ code library by using the Rcpp package. Our working example uses the recent machine learning library and application 'Corels' providing optimal yet easily interpretable rule lists <arXiv:1704.01701> which we bring to R in the form of the 'RcppCorels' package. We discuss each step in the process, and derive a set of simple rules and recommendations which are illustrated with the concrete example.
stat
A Survey on Bayesian Deep Learning
A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks. For a constantly updating project page, please refer to https://github.com/js05212/BayesianDeepLearning-Survey.
stat
An Adaptive Algorithm based on High-Dimensional Function Approximation to obtain Optimal Designs
Algorithms which compute locally optimal continuous designs often rely on a finite design space or on repeatedly solving a complex non-linear program. Both methods require extensive evaluations of the Jacobian Df of the underlying model. These evaluations present a heavy computational burden. Based on the Kiefer-Wolfowitz Equivalence Theorem we present a novel design of experiments algorithm which computes optimal designs in a continuous design space. For this iterative algorithm we combine an adaptive Bayes-like sampling scheme with Gaussian process regression to approximate the directional derivative of the design criterion. The approximation allows us to adaptively select new design points on which to evaluate the model. The adaptive selection of the algorithm requires significantly less evaluations of Df and reduces the runtime of the computations. We show the viability of the new algorithm on two examples from chemical engineering.
stat
A critical assessment of conformal prediction methods applied in binary classification settings
In recent years there has been an increase in the number of scientific papers that suggest using conformal predictions in drug discovery. We consider that some versions of conformal predictions applied in binary settings are embroiled in pitfalls, not obvious at first sight, and that it is important to inform the scientific community about them. In the paper we first introduce the general theory of conformal predictions and follow with an explanation of the versions currently dominant in drug discovery research today. Finally, we provide cases for their critical assessment in binary classification settings.
stat
Sample Size Estimation using a Latent Variable Model for Mixed Outcome Co-Primary, Multiple Primary and Composite Endpoints
Mixed outcome endpoints that combine multiple continuous and discrete components to form co-primary, multiple primary or composite endpoints are often employed as primary outcome measures in clinical trials. There are many advantages to joint modelling the individual outcomes using a latent variable framework, however in order to make use of the model in practice we require techniques for sample size estimation. In this paper we show how the latent variable model can be applied to the three types of joint endpoints and propose appropriate hypotheses, power and sample size estimation methods for each. We illustrate the techniques using a numerical example based on the four dimensional endpoint in the MUSE trial and find that the sample size required for the co-primary endpoint is larger than that required for the individual endpoint with the smallest effect size. Conversely, the sample size required for the multiple primary endpoint is reduced from that required for the individual outcome with the largest effect size. We show that the analytical technique agrees with the empirical power from simulation studies. We further illustrate the reduction in required sample size that may be achieved in trials of mixed outcome composite endpoints through a simulation study and find that the sample size primarily depends on the components driving response and the correlation structure and much less so on the treatment effect structure in the individual endpoints.
stat
Application of Levy Processes in Modelling (Geodetic) Time Series With Mixed Spectra
Recently, various models have been developed, including the fractional Brownian motion (fBm), to analyse the stochastic properties of geodetic time series, together with the extraction of geophysical signals. The noise spectrum of these time series is generally modeled as a mixed spectrum, with a sum of white and coloured noise. Here, we are interested in modelling the residual time series, after deterministically subtracting geophysical signals from the observations. This residual time series is then assumed to be a sum of three random variables (r.v.), with the last r.v. belonging to the family of Levy processes. This stochastic term models the remaining residual signals and other correlated processes. Via simulations and real time series, we identify three classes of Levy processes: Gaussian, fractional and stable. In the first case, residuals are predominantly constituted of short-memory processes. Fractional Levy process can be an alternative model to the fBm in the presence of long-term correlations and self-similarity property. Stable process is characterized by a large variance, which can be satisfied in the case of heavy-tailed distributions. The application to geodetic time series imply potential anxiety in the functional model selection where missing geophysical information can generate such residual time series.
stat
A confidence interval robust to publication bias for random-effects meta-analysis of few studies
Systematic reviews aim to summarize all the available evidence relevant to a particular research question. If appropriate, the data from identified studies are quantitatively combined in a meta-analysis. Often only few studies regarding a particular research question exist. In these settings the estimation of the between-study heterogeneity is challenging. Furthermore, the assessment of publication bias is difficult as standard methods such as visual inspection or formal hypothesis tests in funnel plots do not provide adequate guidance. Previously, Henmi and Copas (Statistics in Medicine 2010, 29: 2969--2983) proposed a confidence interval for the overall effect in random-effects meta-analysis that is robust to publication bias to some extent. As is evident from their simulations, the confidence intervals have improved coverage compared with standard methods. To our knowledge, the properties of their method has never been assessed for meta-analyses including fewer than five studies. In this manuscript, we propose a variation of the method by Henmi and Copas employing an improved estimator of the between-study heterogeneity, in particular when dealing with few studies only. In a simulation study, the proposed method is compared to several competitors. Overall, we found that our method outperforms the others in terms of coverage probabilities. In particular, an improvement compared with the proposal by Henmi and Copas is demonstrated. The work is motivated and illustrated by a systematic review and meta-analysis in paediatric immunosuppression following liver transplantations.
stat
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
In Bayesian applications, there is a huge interest in rapid and accurate estimation of the posterior distribution, particularly for high dimensional or hierarchical models. In this article, we propose to use optimization to solve for a joint distribution (random transport plan) between two random variables, $\theta$ from the posterior distribution and $\beta$ from the simple multivariate uniform. Specifically, we obtain an approximate estimate of the conditional distribution $\Pi(\beta\mid \theta)$ as an infinite mixture of simple location-scale changes; applying the Bayes' theorem, $\Pi(\theta\mid\beta)$ can be sampled as one of the reversed transforms from the uniform, with the weight proportional to the posterior density/mass function. This produces independent random samples with high approximation accuracy, as well as nice theoretic guarantees. Our method shows compelling advantages in performance and accuracy, compared to the state-of-the-art Markov chain Monte Carlo and approximations such as variational Bayes and normalizing flow. We illustrate this approach via several challenging applications, such as sampling from multi-modal distribution, estimating sparse signals in high dimension, and soft-thresholding of a graph with a prior on the degrees.
stat
Evaluating the performance of personal, social, health-related, biomarker and genetic data for predicting an individuals future health using machine learning: A longitudinal analysis
As we gain access to a greater depth and range of health-related information about individuals, three questions arise: (1) Can we build better models to predict individual-level risk of ill health? (2) How much data do we need to effectively predict ill health? (3) Are new methods required to process the added complexity that new forms of data bring? The aim of the study is to apply a machine learning approach to identify the relative contribution of personal, social, health-related, biomarker and genetic data as predictors of future health in individuals. Using longitudinal data from 6830 individuals in the UK from Understanding Society (2010-12 to 2015-17), the study compares the predictive performance of five types of measures: personal (e.g. age, sex), social (e.g. occupation, education), health-related (e.g. body weight, grip strength), biomarker (e.g. cholesterol, hormones) and genetic single nucleotide polymorphisms (SNPs). The predicted outcome variable was limiting long-term illness one and five years from baseline. Two machine learning approaches were used to build predictive models: deep learning via neural networks and XGBoost (gradient boosting decision trees). Model fit was compared to traditional logistic regression models. Results found that health-related measures had the strongest prediction of future health status, with genetic data performing poorly. Machine learning models only offered marginal improvements in model accuracy when compared to logistic regression models, but also performed well on other metrics e.g. neural networks were best on AUC and XGBoost on precision. The study suggests that increasing complexity of data and methods does not necessarily translate to improved understanding of the determinants of health or performance of predictive models of ill health.
stat
Noisy-Input Entropy Search for Efficient Robust Bayesian Optimization
We consider the problem of robust optimization within the well-established Bayesian optimization (BO) framework. While BO is intrinsically robust to noisy evaluations of the objective function, standard approaches do not consider the case of uncertainty about the input parameters. In this paper, we propose Noisy-Input Entropy Search (NES), a novel information-theoretic acquisition function that is designed to find robust optima for problems with both input and measurement noise. NES is based on the key insight that the robust objective in many cases can be modeled as a Gaussian process, however, it cannot be observed directly. We evaluate NES on several benchmark problems from the optimization literature and from engineering. The results show that NES reliably finds robust optima, outperforming existing methods from the literature on all benchmarks.
stat
Non-asymptotic error controlled sparse high dimensional precision matrix estimation
Estimation of a high dimensional precision matrix is a critical problem to many areas of statistics including Gaussian graphical models and inference on high dimensional data. Working under the structural assumption of sparsity, we propose a novel methodology for estimating such matrices while controlling the false positive rate, percentage of matrix entries incorrectly chosen to be non-zero. We specifically focus on false positive rates tending towards zero with finite sample guarantees. This methodology is distribution free, but is particularly applicable to the problem of Gaussian network recovery. We also consider applications to constructing gene networks in genomics data.
stat
Distributed Variational Representation Learning
The problem of distributed representation learning is one in which multiple sources of information $X_1,\ldots,X_K$ are processed separately so as to learn as much information as possible about some ground truth $Y$. We investigate this problem from information-theoretic grounds, through a generalization of Tishby's centralized Information Bottleneck (IB) method to the distributed setting. Specifically, $K$ encoders, $K \geq 2$, compress their observations $X_1,\ldots,X_K$ separately in a manner such that, collectively, the produced representations preserve as much information as possible about $Y$. We study both discrete memoryless (DM) and memoryless vector Gaussian data models. For the discrete model, we establish a single-letter characterization of the optimal tradeoff between complexity (or rate) and relevance (or information) for a class of memoryless sources (the observations $X_1,\ldots,X_K$ being conditionally independent given $Y$). For the vector Gaussian model, we provide an explicit characterization of the optimal complexity-relevance tradeoff. Furthermore, we develop a variational bound on the complexity-relevance tradeoff which generalizes the evidence lower bound (ELBO) to the distributed setting. We also provide two algorithms that allow to compute this bound: i) a Blahut-Arimoto type iterative algorithm which enables to compute optimal complexity-relevance encoding mappings by iterating over a set of self-consistent equations, and ii) a variational inference type algorithm in which the encoding mappings are parametrized by neural networks and the bound approximated by Markov sampling and optimized with stochastic gradient descent. Numerical results on synthetic and real datasets are provided to support the efficiency of the approaches and algorithms developed in this paper.
stat
Bayesian Model Selection for Change Point Detection and Clustering
We address the new problem of estimating a piece-wise constant signal with the purpose of detecting its change points and the levels of clusters. Our approach is to model it as a nonparametric penalized least square model selection on a family of models indexed over the collection of partitions of the design points and propose a computationally efficient algorithm to approximately solve it. Statistically, minimizing such a penalized criterion yields an approximation to the maximum a posteriori probability (MAP) estimator. The criterion is then analyzed and an oracle inequality is derived using a Gaussian concentration inequality. The oracle inequality is used to derive on one hand conditions for consistency and on the other hand an adaptive upper bound on the expected square risk of the estimator, which statistically motivates our approximation. Finally, we apply our algorithm to simulated data to experimentally validate the statistical guarantees and illustrate its behavior.
stat
Winning by hiding behind others: An analysis of speed skating data
In some athletic races, such as cycling and types of speed skating races, athletes have to complete a relatively long distance at a high speed in the presence of direct opponents. To win such a race, athletes are motivated to hide behind others to suppress energy consumption before a final moment of the race. This situation seems to produce a social dilemma: players want to hide behind others, whereas if a group of players attempts to do so, they may all lose to other players that overtake them. To support that speed skaters are involved in such a social dilemma, we analyzed video footage data for 14 mass start skating races to find that skaters that hid behind others to avoid air resistance for a long time before the final lap tended to win. Furthermore, the finish rank of the skaters in mass start races was independent of the record of the same skaters in time-trial races measured in the absence of direct opponents. The results suggest that how to strategically cope with a skater's dilemma may be a key determinant for winning long-distance and high-speed races with direct opponents.
stat
A brief introduction to the Grey Machine Learning
This paper presents a brief introduction to the key points of the Grey Machine Learning (GML) based on the kernels. The general formulation of the grey system models have been firstly summarized, and then the nonlinear extension of the grey models have been developed also with general formulations. The kernel implicit mapping is used to estimate the nonlinear function of the GML model, by extending the nonparametric formulation of the LSSVM, the estimation of the nonlinear function of the GML model can also be expressed by the kernels. A short discussion on the priority of this new framework to the existing grey models and LSSVM have also been discussed in this paper. And the perspectives and future orientations of this framework have also been presented.
stat
Partially Pooled Propensity Score Models for Average Treatment Effect Estimation with Multilevel Data
Causal inference analyses often use existing observational data, which in many cases has some clustering of individuals. In this paper we discuss propensity score weighting methods in a multilevel setting where within clusters individuals share unmeasured confounders that are related to treatment assignment and the potential outcomes. We focus in particular on settings where models with fixed cluster effects are either not feasible or not useful due to the presence of a large number of small clusters. We found, both through numerical experiments and theoretical derivations, that a strategy of grouping clusters with similar treatment prevalence and estimating propensity scores within such cluster groups is effective in reducing bias from unmeasured cluster-level covariates under mild conditions on the outcome model. We apply our proposed method in evaluating the effectiveness of center-based pre-school program participation on children's achievement at kindergarten, using the Early Childhood Longitudinal Study, Kindergarten data.
stat
Covariate-assisted Sparse Tensor Completion
We aim to provably complete a sparse and highly-missing tensor in the presence of covariate information along tensor modes. Our motivation comes from online advertising where users click-through-rates (CTR) on ads over various devices form a CTR tensor that has about 96% missing entries and has many zeros on non-missing entries, which makes the standalone tensor completion method unsatisfactory. Beside the CTR tensor, additional ad features or user characteristics are often available. In this paper, we propose Covariate-assisted Sparse Tensor Completion (COSTCO) to incorporate covariate information for the recovery of the sparse tensor. The key idea is to jointly extract latent components from both the tensor and the covariate matrix to learn a synthetic representation. Theoretically, we derive the error bound for the recovered tensor components and explicitly quantify the improvements on both the reveal probability condition and the tensor recovery accuracy due to covariates. Finally, we apply COSTCO to an advertisement dataset consisting of a CTR tensor and ad covariate matrix, leading to 23% accuracy improvement over the baseline. An important by-product is that ad latent components from COSTCO reveal interesting ad clusters, which are useful for better ad targeting.
stat
On Posterior Consistency of Bayesian Factor Models in High Dimensions
As a principled dimension reduction technique, factor models have been widely adopted in social science, economics, bioinformatics, and many other fields. However, in high-dimensional settings, conducting a 'correct' Bayesianfactor analysis can be subtle since it requires both a careful prescription of the prior distribution and a suitable computational strategy. In particular, we analyze the issues related to the attempt of being "noninformative" for elements of the factor loading matrix, especially for sparse Bayesian factor models in high dimensions, and propose solutions to them. We show here why adopting the orthogonal factor assumption is appropriate and can result in a consistent posterior inference of the loading matrix conditional on the true idiosyncratic variance and the allocation of nonzero elements in the true loading matrix. We also provide an efficient Gibbs sampler to conduct the full posterior inference based on the prior setup from Rockova and George (2016)and a uniform orthogonal factor assumption on the factor matrix.
stat
Cross-Validation and Uncertainty Determination for Randomized Neural Networks with Applications to Mobile Sensors
Randomized artificial neural networks such as extreme learning machines provide an attractive and efficient method for supervised learning under limited computing ressources and green machine learning. This especially applies when equipping mobile devices (sensors) with weak artificial intelligence. Results are discussed about supervised learning with such networks and regression methods in terms of consistency and bounds for the generalization and prediction error. Especially, some recent results are reviewed addressing learning with data sampled by moving sensors leading to non-stationary and dependent samples. As randomized networks lead to random out-of-sample performance measures, we study a cross-validation approach to handle the randomness and make use of it to improve out-of-sample performance. Additionally, a computationally efficient approach to determine the resulting uncertainty in terms of a confidence interval for the mean out-of-sample prediction error is discussed based on two-stage estimation. The approach is applied to a prediction problem arising in vehicle integrated photovoltaics.
stat
A Poisson multi-Bernoulli mixture filter for coexisting point and extended targets
This paper proposes a Poisson multi-Bernoulli mixture (PMBM) filter for coexisting point and extended targets. The PMBM filter provides a recursion to compute the filtering posterior based on single-target predictions and updates. In this paper, we first derive the PMBM filter update for a generalised measurement model, which can include measurements originated from point and extended targets. Second, we propose a single-target space that accommodates both point and extended targets and derive the filtering recursion that propagates Gaussian densities for single targets and gamma Gaussian inverse Wishart densities for extended targets. As a computationally efficient approximation of the PMBM filter, we also develop a Poisson multi-Bernoulli (PMB) filter for coexisting point and extended targets. The resulting filters are analysed via numerical simulations.
stat
Identifying brain hierarchical structures associated with Alzheimer's disease using a regularized regression method with tree predictors
Brain segmentation at different levels is generally represented as hierarchical trees. Brain regional atrophy at specific levels was found to be marginally associated with Alzheimer's disease outcomes. In this study, we propose an L1-type regularization for predictors that follow a hierarchical tree structure. Considering a tree as a directed acyclic graph, we interpret the model parameters from a path analysis perspective. Under this concept, the proposed penalty regulates the total effect of each predictor on the outcome. With regularity conditions, it is shown that under the proposed regularization, the estimator of the model coefficient is consistent in L2-norm and the model selection is also consistent. By applying to a brain structural magnetic resonance imaging dataset acquired from the Alzheimer's Disease Neuroimaging Initiative, the proposed approach identifies brain regions where atrophy in these regions demonstrates the declination in memory. With regularization on the total effects, the findings suggest that the impact of atrophy on memory deficits is localized from small brain regions but at various levels of brain segmentation.
stat
Nested Dirichlet Process For Population Size Estimation From Multi-list Recapture Data
Heterogeneity of response patterns is important in estimating the size of a closed population from multiple recapture data when capture patterns are different over time and location. In this paper, we extend the non-parametric one layer latent class model for multiple recapture data proposed by Manrique-Vallier (2016) to a nested latent class model with the first layer modeling individual heterogeneity and the second layer modeling location-time differences. Location-time groups with similar recording patterns are in the same top layer latent class and individuals within each top layer class are dependent. The nested latent class model incorporates hierarchical heterogeneity into the modeling to estimate population size from multi-list recapture data. This approach leads to more accurate population size estimation and reduced uncertainty. We apply the method to estimating casualties from the Syrian conflict.
stat
Intrinsic wavelet regression for curves of Hermitian positive definite matrices
Intrinsic wavelet transforms and wavelet estimation methods are introduced for curves in the non-Euclidean space of Hermitian positive definite matrices, with in mind the application to Fourier spectral estimation of multivariate stationary time series. The main focus is on intrinsic average-interpolation wavelet transforms in the space of positive definite matrices equipped with an affine-invariant Riemannian metric, and convergence rates of linear wavelet thresholding are derived for intrinsically smooth curves of Hermitian positive definite matrices. In the context of multivariate Fourier spectral estimation, intrinsic wavelet thresholding is equivariant under a change of basis of the time series, and nonlinear wavelet thresholding is able to capture localized features in the spectral density matrix across frequency, always guaranteeing positive definite estimates. The finite-sample performance of intrinsic wavelet thresholding is assessed by means of simulated data and compared to several benchmark estimators in the Riemannian manifold. Further illustrations are provided by examining the multivariate spectra of trial-replicated brain signal time series recorded during a learning experiment.
stat
Graph Spectral Embedding for Parsimonious Transmission of Multivariate Time Series
We propose a graph spectral representation of time series data that 1) is parsimoniously encoded to user-demanded resolution; 2) is unsupervised and performant in data-constrained scenarios; 3) captures event and event-transition structure within the time series; and 4) has near-linear computational complexity in both signal length and ambient dimension. This representation, which we call Laplacian Events Signal Segmentation (LESS), can be computed on time series of arbitrary dimension and originating from sensors of arbitrary type. Hence, time series originating from sensors of heterogeneous type can be compressed to levels demanded by constrained-communication environments, before being fused at a common center. Temporal dynamics of the data is summarized without explicit partitioning or probabilistic modeling. As a proof-of-principle, we apply this technique on high dimensional wavelet coefficients computed from the Free Spoken Digit Dataset to generate a memory efficient representation that is interpretable. Due to its unsupervised and non-parametric nature, LESS representations remain performant in the digit classification task despite the absence of labels and limited data.
stat
Probabilistic Solutions To Ordinary Differential Equations As Non-Linear Bayesian Filtering: A New Perspective
We formulate probabilistic numerical approximations to solutions of ordinary differential equations (ODEs) as problems in Gaussian process (GP) regression with non-linear measurement functions. This is achieved by defining the measurement sequence to consist of the observations of the difference between the derivative of the GP and the vector field evaluated at the GP---which are all identically zero at the solution of the ODE. When the GP has a state-space representation, the problem can be reduced to a non-linear Bayesian filtering problem and all widely-used approximations to the Bayesian filtering and smoothing problems become applicable. Furthermore, all previous GP-based ODE solvers that are formulated in terms of generating synthetic measurements of the gradient field come out as specific approximations. Based on the non-linear Bayesian filtering problem posed in this paper, we develop novel Gaussian solvers for which we establish favourable stability properties. Additionally, non-Gaussian approximations to the filtering problem are derived by the particle filter approach. The resulting solvers are compared with other probabilistic solvers in illustrative experiments.
stat
Estimating the number of communities in networks by spectral methods
Community detection is a fundamental problem in network analysis with many methods available to estimate communities. Most of these methods assume that the number of communities is known, which is often not the case in practice. We study a simple and very fast method for estimating the number of communities based on the spectral properties of certain graph operators, such as the non-backtracking matrix and the Bethe Hessian matrix. We show that the method performs well under several models and a wide range of parameters, and is guaranteed to be consistent under several asymptotic regimes. We compare this method to several existing methods for estimating the number of communities and show that it is both more accurate and more computationally efficient.
stat
BreGMN: scaled-Bregman Generative Modeling Networks
The family of f-divergences is ubiquitously applied to generative modeling in order to adapt the distribution of the model to that of the data. Well-definedness of f-divergences, however, requires the distributions of the data and model to overlap completely in every time step of training. As a result, as soon as the support of distributions of data and model contain non-overlapping portions, gradient based training of the corresponding model becomes hopeless. Recent advances in generative modeling are full of remedies for handling this support mismatch problem: key ideas include either modifying the objective function to integral probability measures (IPMs) that are well-behaved even on disjoint probabilities, or optimizing a well-behaved variational lower bound instead of the true objective. We, on the other hand, establish that a complete change of the objective function is unnecessary, and instead an augmentation of the base measure of the problematic divergence can resolve the issue. Based on this observation, we propose a generative model which leverages the class of Scaled Bregman Divergences and generalizes both f-divergences and Bregman divergences. We analyze this class of divergences and show that with the appropriate choice of base measure it can resolve the support mismatch problem and incorporate geometric information. Finally, we study the performance of the proposed method and demonstrate promising results on MNIST, CelebA and CIFAR-10 datasets.
stat
Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments
With continued advances in Geographic Information Systems and related computational technologies, statisticians are often required to analyze very large spatial datasets. This has generated substantial interest over the last decade, already too vast to be summarized here, in scalable methodologies for analyzing large spatial datasets. Scalable spatial process models have been found especially attractive due to their richness and flexibility and, particularly so in the Bayesian paradigm, due to their presence in hierarchical model settings. However, the vast majority of research articles present in this domain have been geared toward innovative theory or more complex model development. Very limited attention has been accorded to approaches for easily implementable scalable hierarchical models for the practicing scientist or spatial analyst. This article is submitted to the Practice section of the journal with the aim of developing massively scalable Bayesian approaches that can rapidly deliver Bayesian inference on spatial process that are practically indistinguishable from inference obtained using more expensive alternatives. A key emphasis is on implementation within very standard (modest) computing environments (e.g., a standard desktop or laptop) using easily available statistical software packages without requiring message-parsing interfaces or parallel programming paradigms. Key insights are offered regarding assumptions and approximations concerning practical efficiency.
stat
Attention, Learn to Solve Routing Problems!
The recently presented idea to learn heuristics for combinatorial optimization problems is promising as it can save costly development. However, to push this idea towards practical implementation, we need better models and better ways of training. We contribute in both directions: we propose a model based on attention layers with benefits over the Pointer Network and we show how to train this model using REINFORCE with a simple baseline based on a deterministic greedy rollout, which we find is more efficient than using a value function. We significantly improve over recent learned heuristics for the Travelling Salesman Problem (TSP), getting close to optimal results for problems up to 100 nodes. With the same hyperparameters, we learn strong heuristics for two variants of the Vehicle Routing Problem (VRP), the Orienteering Problem (OP) and (a stochastic variant of) the Prize Collecting TSP (PCTSP), outperforming a wide range of baselines and getting results close to highly optimized and specialized algorithms.
stat
Congestion in near capacity metro operations: optimum boardings and alightings at bottleneck stations
During peak hours, metro systems often operate at high service frequencies to transport large volumes of passengers. However, the punctuality of such operations can be severely impacted by a vicious circle of passenger congestion and train delays. In particular, high volumes of passenger boardings and alightings may lead to increased dwell times at stations, that may eventually cause queuing of trains in upstream. Such stations act as active bottlenecks in the metro network and congestion may propagate from these bottlenecks to the entire network. Thus, understanding the mechanism that drives passenger congestion at these bottleneck stations is crucial to develop informed control strategies, such as control of inflow of passengers entering these stations. To this end, we conduct the first station-level econometric analysis to estimate a causal relationship between boarding-alighting movements and train flow using data from entry/exit gates and train movement data of the Mass Transit Railway, Hong Kong. We adopt a Bayesian non-parametric spline-based regression approach and apply instrumental variables estimation to control for confounding bias that may occur due to unobserved characteristics of metro operations. Through the results of the empirical study, we identify bottleneck stations and provide estimates of optimum passenger movements per train and service frequencies at the bottleneck stations. These estimates, along with real data on daily demand, could assist metro operators in devising station-level control strategies.
stat
Multi-Output Gaussian Processes with Functional Data: A Study on Coastal Flood Hazard Assessment
Most of the existing coastal flood Forecast and Early-Warning Systems do not model the flood, but instead, rely on the prediction of hydrodynamic conditions at the coast and on expert judgment. Recent scientific contributions are now capable to precisely model flood events, even in situations where wave overtopping plays a significant role. Such models are nevertheless costly-to-evaluate and surrogate ones need to be exploited for substantial computational savings. For the latter models, the hydro-meteorological forcing conditions (inputs) or flood events (outputs) are conveniently parametrised into scalar representations. However, they neglect the fact that inputs are actually functions (more precisely, time series), and that floods spatially propagate inland. Here, we introduce a multi-output Gaussian process model accounting for both criteria. On various examples, we test its versatility for both learning spatial maps and inferring unobserved ones. We demonstrate that efficient implementations are obtained by considering tensor-structured data and/or sparse-variational approximations. Finally, the proposed framework is applied on a coastal application aiming at predicting flood events. We conclude that accurate predictions are obtained in the order of minutes rather than the couples of days required by dedicated hydrodynamic simulators.
stat
A Simple and Interpretable Predictive Model for Healthcare
Deep Learning based models are currently dominating most state-of-the-art solutions for disease prediction. Existing works employ RNNs along with multiple levels of attention mechanisms to provide interpretability. These deep learning models, with trainable parameters running into millions, require huge amounts of compute and data to train and deploy. These requirements are sometimes so huge that they render usage of such models as unfeasible. We address these challenges by developing a simpler yet interpretable non-deep learning based model for application to EHR data. We model and showcase our work's results on the task of predicting first occurrence of a diagnosis, often overlooked in existing works. We push the capabilities of a tree based model and come up with a strong baseline for more sophisticated models. Its performance shows an improvement over deep learning based solutions (both, with and without the first-occurrence constraint) all the while maintaining interpretability.
stat
Cross-Entropy Based Importance Sampling for Stochastic Simulation Models
To efficiently evaluate system reliability based on Monte Carlo simulation, importance sampling is used widely. The optimal importance sampling density was derived in 1950s for the deterministic simulation model, which maps an input to an output deterministically, and is approximated in practice using various methods. For the stochastic simulation model whose output is random given an input, the optimal importance sampling density was derived only recently. In the existing literature, metamodel-based approaches have been used to approximate this optimal density. However, building a satisfactory metamodel is often difficult or time-consuming in practice. This paper proposes a cross-entropy based method, which is automatic and does not require specific domain knowledge. The proposed method uses an expectation-maximization algorithm to guide the choice of a mixture distribution model for approximating the optimal density. The method iteratively updates the approximated density to minimize its estimated discrepancy, measured by estimated cross-entropy, from the optimal density. The mixture model's complexity is controlled using the cross-entropy information criterion. The method is empirically validated using extensive numerical studies and applied to a case study of evaluating the reliability of wind turbine using a stochastic simulation model.
stat
Gaussian process with derivative information for the analysis of the sunlight adverse effects on color of rock art paintings
Microfading Spectrometry (MFS) is a method for assessing light sensitivity color (spectral) variations of cultural heritage objects. The MFS technique provides measurements of the surface under study, where each point of the surface gives rise to a time-series that represents potential spectral (color) changes due to sunlight exposition over time. Color fading is expected to be non-decreasing as a function of time and stabilize eventually. These properties can be expressed in terms of the partial derivatives of the functions. We propose a spatio-temporal model that takes this information into account by jointly modeling the spatio-temporal process and its derivative process using Gaussian processes (GPs). We fitted the proposed model to MFS data collected from the surface of prehistoric rock art paintings. A multivariate covariance function in a GP allows modeling trichromatic image color variables jointly with spatial distances and time points variables as inputs to evaluate the covariance structure of the data. We demonstrated that the colorimetric variables are useful for predicting the color fading time-series for new unobserved spatial locations. Furthermore, constraining the model using derivative sign observations for monotonicity was shown to be beneficial in terms of both predictive performance and application-specific interpretability.
stat
Efficient identification of infected sub-population
When testing for infections, the standard method is to test each subject individually. If testing methodology is such that samples from multiple subjects can be efficiently combined and tested at once, yielding a positive results if any one subject in the subgroup is positive, then one can often identify the infected sub-population with a considerably lower number of tests compared to the number of test subjects. We present two such methods that allow an increase in testing efficiency (in terms of total number of test performed) by a factor of $\approx$ 10 if population infection rate is $10^{-2}$ and a factor of $\approx$50 when it is $10^{-3}$. Such methods could be useful when testing large fractions of the total population, as will be perhaps required during the current coronavirus pandemic.
stat
Model Evidence with Fast Tree Based Quadrature
High dimensional integration is essential to many areas of science, ranging from particle physics to Bayesian inference. Approximating these integrals is hard, due in part to the difficulty of locating and sampling from regions of the integration domain that make significant contributions to the overall integral. Here, we present a new algorithm called Tree Quadrature (TQ) that separates this sampling problem from the problem of using those samples to produce an approximation of the integral. TQ places no qualifications on how the samples provided to it are obtained, allowing it to use state-of-the-art sampling algorithms that are largely ignored by existing integration algorithms. Given a set of samples, TQ constructs a surrogate model of the integrand in the form of a regression tree, with a structure optimised to maximise integral precision. The tree divides the integration domain into smaller containers, which are individually integrated and aggregated to estimate the overall integral. Any method can be used to integrate each individual container, so existing integration methods, like Bayesian Monte Carlo, can be combined with TQ to boost their performance. On a set of benchmark problems, we show that TQ provides accurate approximations to integrals in up to 15 dimensions; and in dimensions 4 and above, it outperforms simple Monte Carlo and the popular Vegas method.
stat
Generalisation in fully-connected neural networks for time series forecasting
In this paper we study the generalization capabilities of fully-connected neural networks trained in the context of time series forecasting. Time series do not satisfy the typical assumption in statistical learning theory of the data being i.i.d. samples from some data-generating distribution. We use the input and weight Hessians, that is the smoothness of the learned function with respect to the input and the width of the minimum in weight space, to quantify a network's ability to generalize to unseen data. While such generalization metrics have been studied extensively in the i.i.d. setting of for example image recognition, here we empirically validate their use in the task of time series forecasting. Furthermore we discuss how one can control the generalization capability of the network by means of the training process using the learning rate, batch size and the number of training iterations as controls. Using these hyperparameters one can efficiently control the complexity of the output function without imposing explicit constraints.
stat
An axiomatic nonparametric production function estimator: Modeling production in Japan's cardboard industry
We develop a new approach to estimate a production function based on the economic axioms of the Regular Ultra Passum law and convex non-homothetic input isoquants. Central to the development of our estimator is stating the axioms as shape constraints and using shape constrained nonparametric regression methods. We implement this approach using data from the Japanese corrugated cardboard industry from 1997-2007. Using this new approach, we find most productive scale size is a function of the capital-to-labor ratio and the largest firms operate close to the largest most productive scale size associated with a high capital-to-labor ratio. We measure the productivity growth across the panel periods based on the residuals from our axiomatic model. We also decompose productivity into scale, input mix, and unexplained effects to clarify the sources the productivity differences and provide managers guidance to make firms more productive.
stat
The problem of perfect predictors in statistical spike train models
Generalized Linear Models (GLMs) have been used extensively in statistical models of spike train data. However, the IRLS algorithm, which is often used to fit such models, can fail to converge in situations where response and non-response can be separated by a single predictor or a linear combination of multiple predictors. Such situations are likely to arise in many neural systems due to properties such as refractoriness and incomplete sampling of the signals that influence spiking. In this paper, we describe multiple classes of approaches to address this problem: Standard IRLS with a fixed iteration limit, computing the maximum likelihood solution in the limit, Bayesian estimation, regularization, change of basis, and modifying the search parameters. We demonstrate a specific application of each of these methods to spiking data from rat somatosensory cortex and discuss the advantages and disadvantages of each. We also provide an example of a roadmap for selecting a method based on the problem's particular analysis issues and scientific goals.
stat
Metropolis-Hastings with Averaged Acceptance Ratios
Markov chain Monte Carlo (MCMC) methods to sample from a probability distribution $\pi$ defined on a space $(\Theta,\mathcal{T})$ consist of the simulation of realisations of Markov chains $\{\theta_{n},n\geq1\}$ of invariant distribution $\pi$ and such that the distribution of $\theta_{i}$ converges to $\pi$ as $i\rightarrow\infty$. In practice one is typically interested in the computation of expectations of functions, say $f$, with respect to $\pi$ and it is also required that averages $M^{-1}\sum_{n=1}^{M}f(\theta_{n})$ converge to the expectation of interest. The iterative nature of MCMC makes it difficult to develop generic methods to take advantage of parallel computing environments when interested in reducing time to convergence. While numerous approaches have been proposed to reduce the variance of ergodic averages, including averaging over independent realisations of $\{\theta_{n},n\geq1\}$ simulated on several computers, techniques to reduce the "burn-in" of MCMC are scarce. In this paper we explore a simple and generic approach to improve convergence to equilibrium of existing algorithms which rely on the Metropolis-Hastings (MH) update, the main building block of MCMC. The main idea is to use averages of the acceptance ratio w.r.t. multiple realisations of random variables involved, while preserving $\pi$ as invariant distribution. The methodology requires limited change to existing code, is naturally suited to parallel computing and is shown on our examples to provide substantial performance improvements both in terms of convergence to equilibrium and variance of ergodic averages. In some scenarios gains are observed even on a serial machine.
stat
There is no trade-off: enforcing fairness can improve accuracy
One of the main barriers to the broader adoption of algorithmic fairness in machine learning is the trade-off between fairness and performance of ML models: many practitioners are unwilling to sacrifice the performance of their ML model for fairness. In this paper, we show that this trade-off may not be necessary. If the algorithmic biases in an ML model are due to sampling biases in the training data, then enforcing algorithmic fairness may improve the performance of the ML model on unbiased test data. We study conditions under which enforcing algorithmic fairness helps practitioners learn the Bayes decision rule for (unbiased) test data from biased training data. We also demonstrate the practical implications of our theoretical results in real-world ML tasks.
stat
Information-Theoretic Confidence Bounds for Reinforcement Learning
We integrate information-theoretic concepts into the design and analysis of optimistic algorithms and Thompson sampling. By making a connection between information-theoretic quantities and confidence bounds, we obtain results that relate the per-period performance of the agent with its information gain about the environment, thus explicitly characterizing the exploration-exploitation tradeoff. The resulting cumulative regret bound depends on the agent's uncertainty over the environment and quantifies the value of prior information. We show applicability of this approach to several environments, including linear bandits, tabular MDPs, and factored MDPs. These examples demonstrate the potential of a general information-theoretic approach for the design and analysis of reinforcement learning algorithms.
stat
Stochastic modeling of non-linear adsorption with Gaussian kernel density estimators
Adsorption is a relevant process in many fields, such as product manufacturing or pollution remediation in porous materials. Adsorption takes place at the molecular scale, amenable to be modeled by Lagrangian numerical methods. We have proposed a chemical diffusion-reaction model for the simulation of adsorption, based on the combination of a random walk particle tracking method involving the use of Gaussian Kernel Density Estimators. The main feature of the proposed model is that it can effectively reproduce the nonlinear behavior characteristic of the Langmuir and Freundlich isotherms. In the former, it is enough to add a finite number of sorption sites of homogeneous sorption properties, and to set the process as the combination of the forward and the backward reactions, each one of them with a prespecified reaction rate. To model the Freundlich isotherm instead, typical of low to intermediate range of solute concentrations, there is a need to assign a different equilibrium constant to each specific sorption site, provided they are all drawn from a truncated power-law distribution. Both nonlinear models can be combined in a single framework to obtain a typical observed behavior for a wide range of concentration values.
stat
SIMEX Estimation in Parametric Modal Regression with Measurement Error
For a class of parametric modal regression models with measurement error, a simulation extrapolation estimation procedure is proposed in this paper for estimating the modal regression coefficients. Large sample properties of the proposed estimation procedure, including the consistency and asymptotic normality, are thoroughly investigated. Simulation studies are conducted to evaluate its robustness to potential outliers and the effectiveness in reducing the bias caused by the measurement error.
stat
Online Graph-Based Change-Point Detection for High Dimensional Data
Online change-point detection (OCPD) is important for application in various areas such as finance, biology, and the Internet of Things (IoT). However, OCPD faces major challenges due to high-dimensionality, and it is still rarely studied in literature. In this paper, we propose a novel, online, graph-based, change-point detection algorithm to detect change of distribution in low- to high-dimensional data. We introduce a similarity measure, which is derived from the graph-spanning ratio, to test statistically if a change occurs. Through numerical study using artificial online datasets, our data-driven approach demonstrates high detection power for high-dimensional data, while the false alarm rate (type I error) is controlled at a nominal significant level. In particular, our graph-spanning approach has desirable power with small and multiple scanning window, which allows timely detection of change-point in the online setting.
stat
BayesFlow: Learning complex stochastic models with invertible neural networks
Estimating the parameters of mathematical models is a common problem in almost all branches of science. However, this problem can prove notably difficult when processes and model descriptions become increasingly complex and an explicit likelihood function is not available. With this work, we propose a novel method for globally amortized Bayesian inference based on invertible neural networks which we call BayesFlow. The method uses simulation to learn a global estimator for the probabilistic mapping from observed data to underlying model parameters. A neural network pre-trained in this way can then, without additional training or optimization, infer full posteriors on arbitrary many real datasets involving the same model family. In addition, our method incorporates a summary network trained to embed the observed data into maximally informative summary statistics. Learning summary statistics from data makes the method applicable to modeling scenarios where standard inference techniques with hand-crafted summary statistics fail. We demonstrate the utility of BayesFlow on challenging intractable models from population dynamics, epidemiology, cognitive science and ecology. We argue that BayesFlow provides a general framework for building amortized Bayesian parameter estimation machines for any forward model from which data can be simulated.
stat
Local likelihood estimation of complex tail dependence structures, applied to U.S. precipitation extremes
To disentangle the complex non-stationary dependence structure of precipitation extremes over the entire contiguous U.S., we propose a flexible local approach based on factor copula models. Our sub-asymptotic spatial modeling framework yields non-trivial tail dependence structures, with a weakening dependence strength as events become more extreme, a feature commonly observed with precipitation data but not accounted for in classical asymptotic extreme-value models. To estimate the local extremal behavior, we fit the proposed model in small regional neighborhoods to high threshold exceedances, under the assumption of local stationarity, which allows us to gain in flexibility. Adopting a local censored likelihood approach, inference is made on a fine spatial grid, and local estimation is performed by taking advantage of distributed computing resources and the embarrassingly parallel nature of this estimation procedure. The local model is efficiently fitted at all grid points, and uncertainty is measured using a block bootstrap procedure. An extensive simulation study shows that our approach can adequately capture complex, non-stationary dependencies, while our study of U.S. winter precipitation data reveals interesting differences in local tail structures over space, which has important implications on regional risk assessment of extreme precipitation events.
stat
Network Group Hawkes Process Model
In this work, we study the event occurrences of user activities on online social network platforms. To characterize the social activity interactions among network users, we propose a network group Hawkes (NGH) process model. Particularly, the observed network structure information is employed to model the users' dynamic posting behaviors. Furthermore, the users are clustered into latent groups according to their dynamic behavior patterns. To estimate the model, a constraint maximum likelihood approach is proposed. Theoretically, we establish the consistency and asymptotic normality of the estimators. In addition, we show that the group memberships can be identified consistently. To conduct estimation, a branching representation structure is firstly introduced, and a stochastic EM (StEM) algorithm is developed to tackle the computational problem. Lastly, we apply the proposed method to a social network data collected from Sina Weibo, and identify the infuential network users as an interesting application.
stat
Unit Level Modeling of Survey Data for Small Area Estimation Under Informative Sampling: A Comprehensive Overview with Extensions
Model-based small area estimation is frequently used in conjunction with survey data in order to establish estimates for under-sampled or unsampled geographies. These models can be specified at either the area-level, or the unit-level, but unit-level models often offer potential advantages such as more precise estimates and easy spatial aggregation. Nevertheless, relative to area-level models, literature on unit-level models is less prevalent. In modeling small areas at the unit level, challenges often arise as a consequence of the informative sampling mechanism used to collect the survey data. This paper provides a comprehensive methodological review for unit-level models under informative sampling, with an emphasis on Bayesian approaches. To provide insight into the differences between methods, we conduct a simulation study that compares several of the described approaches. In addition, the methods used for simulation are further illustrated through an application to the American Community Survey. Finally, we present several extensions and areas for future research.
stat
Which practical interventions does the do-operator refer to in causal inference? Illustration on the example of obesity and cancer
For exposures $X$ like obesity, no precise and unambiguous definition exists for the hypothetical intervention $do(X = x_0)$. This has raised concerns about the relevance of causal effects estimated from observational studies for such exposures. Under the framework of structural causal models, we study how the effect of $do(X = x_0)$ relates to the effect of interventions on causes of $X$. We show that for interventions focusing on causes of $X$ that affect the outcome through $X$ only, the effect of $do(X = x_0)$ equals the effect of the considered intervention. On the other hand, for interventions on causes $W$ of $X$ that affect the outcome not only through $X$, we show that the effect of $do(X = x_0)$ only partly captures the effect of the intervention. In particular, under simple causal models (e.g., linear models with no interaction), the effect of $do(X = x_0)$ can be seen as an indirect effect of the intervention on $W$.
stat
Study on estimators of the PDF and CDF of the one parameter polynomial exponential distribution
In this article, we have considered one parameter polynomial exponential (OPPE) distribution. The exponential, Lindley, length-biased Lindley and Sujatha distribution are particular cases. Two estimators viz, MLE and UMVUE of the PDF and the CDF of the OPPE distribution have been discussed. The estimation issue of the length-biased Lindley and Sujatha distribution have been considered in detail. The estimators have been compared in MSE sense. Monte Carlo simulations and real data analysis are performed to compare the performances of the proposed methods of estimation.
stat
Variational Inference for the Smoothing Distribution in Dynamic Probit Models
Recently, Fasano, Rebaudo, Durante and Petrone (2019) provided closed-form expressions for the filtering, predictive and smoothing distributions of multivariate dynamic probit models, leveraging on unified skew-normal distribution properties. This allows to develop algorithms to draw independent and identically distributed samples from such distributions, as well as sequential Monte Carlo procedures for the filtering and predictive distributions, allowing to overcome computational bottlenecks that may arise for large sample sizes. In this paper, we briefly review the above-mentioned closed-form expressions, mainly focusing on the smoothing distribution of the univariate dynamic probit. We develop a variational Bayes approach, extending the partially factorized mean-field variational approximation introduced by Fasano, Durante and Zanella (2019) for the static binary probit model to the dynamic setting. Results are shown for a financial application.
stat
High-Dimensional Multi-Task Averaging and Application to Kernel Mean Embedding
We propose an improved estimator for the multi-task averaging problem, whose goal is the joint estimation of the means of multiple distributions using separate, independent data sets. The naive approach is to take the empirical mean of each data set individually, whereas the proposed method exploits similarities between tasks, without any related information being known in advance. First, for each data set, similar or neighboring means are determined from the data by multiple testing. Then each naive estimator is shrunk towards the local average of its neighbors. We prove theoretically that this approach provides a reduction in mean squared error. This improvement can be significant when the dimension of the input space is large, demonstrating a "blessing of dimensionality" phenomenon. An application of this approach is the estimation of multiple kernel mean embeddings, which plays an important role in many modern applications. The theoretical results are verified on artificial and real world data.
stat
What is an Ordinal Latent Trait Model?
Although various polytomous item response models are considered to be ordinal models there seems no general definition of an ordinal model available. Alternative concepts of ordinal models are discussed and it is shown that they coincide for classical unidimensional models. For multidimensional models the definition of an ordinal model refers to specific traits in the multidimensional space of traits. The objective is to provide a theoretical framework for ordinal models. Practical considerations concerning the strength of the link between the latent trait and the order of categories are considered briefly.
stat
Primary analysis method for incomplete CD4 count data from IMPI trial and other trials with similar setting
The National Research Council panel on prevention and treatment of missing data in clinical trials recommends that primary analysis methods are carefully selected before appropriate sensitivity analysis methods can be chosen. In this paper, we recommend an appropriate primary analysis method for handling CD4 count data from the IMPI trial and trials with similar settings. The estimand of interest in the IMPI trial is the effectiveness estimand hypothesis. We discussed, compared, and contrasted results from complete case analysis and simple imputation methods, with the direct-likelihood and multiple imputation methods. The simple imputation methods produced biased estimates of treatment effect. However, the maximum likelihood and the multiple imputation methods produced consistent estimates of treatment effect. The maximum likelihood or the multiple imputation approaches produced unbiased and consistent estimates. Therefore, either the maximum likelihood or the multiple imputation methods, under the assumption that the data are missing at random can be considered as primary analysis method when one is considering sensitivity analysis to dropout using the CD4 count data from the IMPI trial and other trials with similar settings.
stat
Robust decision analysis under severe uncertainty and ambiguous tradeoffs: an invasive species case study
Bayesian decision analysis is a useful method for risk management decisions, but is limited in its ability to consider severe uncertainty in knowledge, and value ambiguity in management objectives. We study the use of robust Bayesian decision analysis to handle problems where one or both of these issues arise. The robust Bayesian approach models severe uncertainty through bounds on probability distributions, and value ambiguity through bounds on utility functions. To incorporate data, standard Bayesian updating is applied on the entire set of distributions. To elicit our expert's utility representing the value of different management objectives, we use a modified version of the swing weighting procedure that can cope with severe value ambiguity. We demonstrate these methods on an environmental management problem to eradicate an alien invasive marmorkrebs recently discovered in Sweden, which needed a rapid response despite substantial knowledge gaps if the species was still present (i.e. severe uncertainty) and the need for difficult tradeoffs and competing interests (i.e. value ambiguity). We identify that the decision alternatives to drain the system and remove individuals in combination with dredging and sieving with or without a degradable biocide, or increasing pH, are consistently bad under the entire range of probability and utility bounds. This case study shows how robust Bayesian decision analysis provides a transparent methodology for integrating information in risk management problems where little data are available and/or where the tradeoffs ambiguous.
stat
Functional Sequential Treatment Allocation with Covariates
We consider a multi-armed bandit problem with covariates. Given a realization of the covariate vector, instead of targeting the treatment with highest conditional expectation, the decision maker targets the treatment which maximizes a general functional of the conditional potential outcome distribution, e.g., a conditional quantile, trimmed mean, or a socio-economic functional such as an inequality, welfare or poverty measure. We develop expected regret lower bounds for this problem, and construct a near minimax optimal assignment policy.
stat
Learning Influence-Receptivity Network Structure with Guarantee
Traditional works on community detection from observations of information cascade assume that a single adjacency matrix parametrizes all the observed cascades. However, in reality the connection structure usually does not stay the same across cascades. For example, different people have different topics of interest, therefore the connection structure depends on the information/topic content of the cascade. In this paper we consider the case where we observe a sequence of noisy adjacency matrices triggered by information/event with different topic distributions. We propose a novel latent model using the intuition that a connection is more likely to exist between two nodes if they are interested in similar topics, which are common with the information/event. Specifically, we endow each node with two node-topic vectors: an influence vector that measures how influential/authoritative they are on each topic; and a receptivity vector that measures how receptive/susceptible they are to each topic. We show how these two node-topic structures can be estimated from observed adjacency matrices with theoretical guarantee on estimation error, in cases where the topic distributions of the information/event are known, as well as when they are unknown. Experiments on synthetic and real data demonstrate the effectiveness of our model and superior performance compared to state-of-the-art methods.
stat
Learning Optimal Distributionally Robust Individualized Treatment Rules
Recent development in the data-driven decision science has seen great advances in individualized decision making. Given data with individual covariates, treatment assignments and outcomes, policy makers best individualized treatment rule (ITR) that maximizes the expected outcome, known as the value function. Many existing methods assume that the training and testing distributions are the same. However, the estimated optimal ITR may have poor generalizability when the training and testing distributions are not identical. In this paper, we consider the problem of finding an optimal ITR from a restricted ITR class where there is some unknown covariate changes between the training and testing distributions. We propose a novel distributionally robust ITR (DR-ITR) framework that maximizes the worst-case value function across the values under a set of underlying distributions that are "close" to the training distribution. The resulting DR-ITR can guarantee the performance among all such distributions reasonably well. We further propose a calibrating procedure that tunes the DR-ITR adaptively to a small amount of calibration data from a target population. In this way, the calibrated DR-ITR can be shown to enjoy better generalizability than the standard ITR based on our numerical studies.
stat
Lasso Meets Horseshoe : A Survey
The goal of this paper is to contrast and survey the major advances in two of the most commonly used high-dimensional techniques, namely, the Lasso and horseshoe regularization. Lasso is a gold standard for predictor selection while horseshoe is a state-of-the-art Bayesian estimator for sparse signals. Lasso is fast and scalable and uses convex optimization whilst the horseshoe is non-convex. Our novel perspective focuses on three aspects: (i) theoretical optimality in high dimensional inference for the Gaussian sparse model and beyond, (ii) efficiency and scalability of computation and (iii) methodological development and performance.
stat
Optimal Uncertainty-guided Neural Network Training
The neural network (NN)-based direct uncertainty quantification (UQ) methods have achieved the state of the art performance since the first inauguration, known as the lower-upper-bound estimation (LUBE) method. However, currently-available cost functions for uncertainty guided NN training are not always converging and all converged NNs are not generating optimized prediction intervals (PIs). Moreover, several groups have proposed different quality criteria for PIs. These raise a question about their relative effectiveness. Most of the existing cost functions of uncertainty guided NN training are not customizable and the convergence of training is uncertain. Therefore, in this paper, we propose a highly customizable smooth cost function for developing NNs to construct optimal PIs. The optimized average width of PIs, PI-failure distances and the PI coverage probability (PICP) are computed for the test dataset. The performance of the proposed method is examined for the wind power generation and the electricity demand data. Results show that the proposed method reduces variation in the quality of PIs, accelerates the training, and improves convergence probability from 99.2% to 99.8%.
stat
Low-Rank Covariance Function Estimation for Multidimensional Functional Data
Multidimensional function data arise from many fields nowadays. The covariance function plays an important role in the analysis of such increasingly common data. In this paper, we propose a novel nonparametric covariance function estimation approach under the framework of reproducing kernel Hilbert spaces (RKHS) that can handle both sparse and dense functional data. We extend multilinear rank structures for (finite-dimensional) tensors to functions, which allow for flexible modeling of both covariance operators and marginal structures. The proposed framework can guarantee that the resulting estimator is automatically semi-positive definite, and can incorporate various spectral regularizations. The trace-norm regularization in particular can promote low ranks for both covariance operator and marginal structures. Despite the lack of a closed form, under mild assumptions, the proposed estimator can achieve unified theoretical results that hold for any relative magnitudes between the sample size and the number of observations per sample field, and the rate of convergence reveals the "phase-transition" phenomenon from sparse to dense functional data. Based on a new representer theorem, an ADMM algorithm is developed for the trace-norm regularization. The appealing numerical performance of the proposed estimator is demonstrated by a simulation study and the analysis of a dataset from the Argo project.
stat
Random clique covers for graphs with local density and global sparsity
Large real-world graphs tend to be sparse, but they often contain many densely connected subgraphs and exhibit high clustering coefficients. While recent random graph models can capture this sparsity, they ignore the local density, or vice versa. We develop a Bayesian nonparametric graph model based on random edge clique covers, and show that this model can capture power law degree distribution, global sparsity and non-vanishing local clustering coefficient. This distribution can be used directly as a prior on observed graphs, or as part of a hierarchical Bayesian model for inferring latent graph structures.
stat
The Ridgelet Prior: A Covariance Function Approach to Prior Specification for Bayesian Neural Networks
Bayesian neural networks attempt to combine the strong predictive performance of neural networks with formal quantification of uncertainty associated with the predictive output in the Bayesian framework. However, it remains unclear how to endow the parameters of the network with a prior distribution that is meaningful when lifted into the output space of the network. A possible solution is proposed that enables the user to posit an appropriate covariance function for the task at hand. Our approach constructs a prior distribution for the parameters of the network, called a ridgelet prior, that approximates the posited covariance structure in the output space of the network. The approach is rooted in the ridgelet transform and we establish both finite-sample-size error bounds and the consistency of the approximation of the covariance function in a limit where the number of hidden units is increased. Our experimental assessment is limited to a proof-of-concept, where we demonstrate that the ridgelet prior can out-perform an unstructured prior on regression problems for which an informative covariance function can be a priori provided.
stat
Small-sample performance and underlying assumptions of a bootstrap-based inference method for a general analysis of covariance model with possibly heteroskedastic and nonnormal errors
It is well known that the standard F test is severely affected by heteroskedasticity in unbalanced analysis of covariance (ANCOVA) models. Currently available potential remedies for such a scenario are based on heteroskedasticity-consistent covariance matrix estimation (HCCME). However, the HCCME approach tends to be liberal in small samples. Therefore, in the present manuscript, we propose a combination of HCCME and a wild bootstrap technique, with the aim of improving the small-sample performance. We precisely state a set of assumptions for the general ANCOVA model and discuss their practical interpretation in detail, since this issue may have been somewhat neglected in applied research so far. We prove that these assumptions are sufficient to ensure the asymptotic validity of the combined HCCME-wild bootstrap ANCOVA. The results of our simulation study indicate that our proposed test remedies the problems of the ANCOVA F test and its heteroskedasticity-consistent alternatives in small to moderate sample size scenarios. Our test only requires very mild conditions, thus being applicable in a broad range of real-life settings, as illustrated by the detailed discussion of a dataset from preclinical research on spinal cord injury. Our proposed method is ready-to-use and allows for valid hypothesis testing in frequently encountered settings (e.g., comparing group means while adjusting for baseline measurements in a randomized controlled clinical trial).
stat
Bayesian Conditional Transformation Models
Recent developments in statistical regression methodology establish flexible relationships between all parameters of the response distribution and the covariates. This shift away from pure mean regression is just one example and is further intensified by conditional transformation models (CTMs). They aim to infer the entire conditional distribution directly by applying a transformation function that transforms the response conditionally on a set of covariates towards a simple log-concave reference distribution. Thus, CTMs allow not only variance, kurtosis and skewness but the complete conditional distribution function to depend on the explanatory variables. In this article, we propose a Bayesian notion of conditional transformation models (BCTM) for discrete and continuous responses in the presence of random censoring. Rather than relying on simple polynomials, we implement a spline-based parametrization for monotonic effects that are supplemented with smoothness penalties. Furthermore, we are able to benefit from the Bayesian paradigm directly via easily obtainable credible intervals and other quantities without relying on large sample approximations. A simulation study demonstrates the competitiveness of our approach against its likelihood-based counterpart, most likely transformations (MLTs) and Bayesian additive models of location, scale and shape (BAMLSS). Three applications illustrate the versatility of the BCTMs in problems involving real world data.
stat