title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Optimal Bayesian Smoothing of Functional Observations over a Large Graph
In modern contexts, some types of data are observed in high-resolution, essentially continuously in time. Such data units are best described as taking values in a space of functions. Subject units carrying the observations may have intrinsic relations among themselves, and are best described by the nodes of a large graph. It is often sensible to think that the underlying signals in these functional observations vary smoothly over the graph, in that neighboring nodes have similar underlying signals. This qualitative information allows borrowing of strength over neighboring nodes and consequently leads to more accurate inference. In this paper, we consider a model with Gaussian functional observations and adopt a Bayesian approach to smoothing over the nodes of the graph. We characterize the minimax rate of estimation in terms of the regularity of the signals and their variation across nodes quantified in terms of the graph Laplacian. We show that an appropriate prior constructed from the graph Laplacian can attain the minimax bound, while using a mixture prior, the minimax rate up to a logarithmic factor can be attained simultaneously for all possible values of functional and graphical smoothness. We also show that in the fixed smoothness setting, an optimal sized credible region has arbitrarily high frequentist coverage. A simulation experiment demonstrates that the method performs better than potential competing methods like the random forest. The method is also applied to a dataset on daily temperatures measured at several weather stations in the US state of North Carolina.
stat
Max-Linear Regression by Scalable and Guaranteed Convex Programming
We consider the multivariate max-linear regression problem where the model parameters $\boldsymbol{\beta}_{1},\dotsc,\boldsymbol{\beta}_{k}\in\mathbb{R}^{p}$ need to be estimated from $n$ independent samples of the (noisy) observations $y = \max_{1\leq j \leq k} \boldsymbol{\beta}_{j}^{\mathsf{T}} \boldsymbol{x} + \mathrm{noise}$. The max-linear model vastly generalizes the conventional linear model, and it can approximate any convex function to an arbitrary accuracy when the number of linear models $k$ is large enough. However, the inherent nonlinearity of the max-linear model renders the estimation of the regression parameters computationally challenging. Particularly, no estimator based on convex programming is known in the literature. We formulate and analyze a scalable convex program as the estimator for the max-linear regression problem. Under the standard Gaussian observation setting, we present a non-asymptotic performance guarantee showing that the convex program recovers the parameters with high probability. When the $k$ linear components are equally likely to achieve the maximum, our result shows that a sufficient number of observations scales as $k^{2}p$ up to a logarithmic factor. This significantly improves on the analogous prior result based on alternating minimization (Ghosh et al., 2019). Finally, through a set of Monte Carlo simulations, we illustrate that our theoretical result is consistent with empirical behavior, and the convex estimator for max-linear regression is as competitive as the alternating minimization algorithm in practice.
stat
Anomaly Detection in Trajectory Data with Normalizing Flows
The task of detecting anomalous data patterns is as important in practical applications as challenging. In the context of spatial data, recognition of unexpected trajectories brings additional difficulties, such as high dimensionality and varying pattern lengths. We aim to tackle such a problem from a probability density estimation point of view, since it provides an unsupervised procedure to identify out of distribution samples. More specifically, we pursue an approach based on normalizing flows, a recent framework that enables complex density estimation from data with neural networks. Our proposal computes exact model likelihood values, an important feature of normalizing flows, for each segment of the trajectory. Then, we aggregate the segments' likelihoods into a single coherent trajectory anomaly score. Such a strategy enables handling possibly large sequences with different lengths. We evaluate our methodology, named aggregated anomaly detection with normalizing flows (GRADINGS), using real world trajectory data and compare it with more traditional anomaly detection techniques. The promising results obtained in the performed computational experiments indicate the feasibility of the GRADINGS, specially the variant that considers autoregressive normalizing flows.
stat
Teasing out the overall survival benefit with adjustment for treatment switching to other therapies
In oncology clinical trials, characterizing the long-term overall survival (OS) benefit for an experimental drug or treatment regimen (experimental group) is often unobservable if some patients in the control group switch to drugs in the experimental group and/or other cancer treatments after disease progression. A key question often raised by payers and reimbursement agencies is how to estimate the true benefit of the experimental drug group on overall survival that would have been estimated if there were no treatment switches. Several commonly used statistical methods are available to estimate overall survival benefit while adjusting for treatment switching, ranging from naive exclusion or censoring approaches to more advanced methods including inverse probability of censoring weighting (IPCW), iterative parameter estimation (IPE) algorithm or rank-preserving structural failure time models (RPSFTM). However, many clinical trials now have patients switching to different treatment regimens other than the test drugs, and the existing methods cannot handle more complicated scenarios. To address this challenge, we propose two additional methods: stratified RPSFTM and random-forest-based prediction. A simulation study is conducted to assess the properties of the existing methods along with the two newly proposed approaches.
stat
Efficient Learning for Clustering and Optimizing Context-Dependent Designs
We consider a simulation optimization problem for a context-dependent decision-making. A Gaussian mixture model is proposed to capture the performance clustering phenomena of context-dependent designs. Under a Bayesian framework, we develop a dynamic sampling policy to efficiently learn both the global information of each cluster and local information of each design for selecting the best designs in all contexts. The proposed sampling policy is proved to be consistent and achieve the asymptotically optimal sampling ratio. Numerical experiments show that the proposed sampling policy significantly improves the efficiency in context-dependent simulation optimization.
stat
Nonstationary, Nonparametric, Nonseparable Bayesian Spatio-Temporal Modeling Using Kernel Convolution of Order Based Dependent Dirichlet Process
In this article, using kernel convolution of order based dependent Dirichlet process (Griffin and Steel (2006)) we construct a nonstationary, nonseparable, nonparametric space-time process, which, as we show, satisfies desirable properties, and includes the stationary, separable, parametric processes as special cases. We also investigate the smoothness properties of our proposed model. Since our model entails an infinite random series, for Bayesian model fitting purpose we must either truncate the series or more appropriately consider a random number of summands, which renders the model dimension a random variable. We attack the variable dimensionality problem using Transdimensional Transformation based Markov Chain Monte Carlo introduced by Das and Bhattacharya (2019b), which can update all the variables and also change dimensions in a single block using essentially a single random variable drawn from some arbitrary density defined on a relevant support. For the sake of completeness we also address the problem of truncating the infinite series by providing a uniform bound on the error incurred by truncating the infinite series. We illustrate the effectiveness of our model and methodologies on a simulated data set and demonstrate that our approach significantly outperforms that of Fuentes and Reich (2013) which is based on principles somewhat similar to ours. We also fit two real, spatial and spatio-temporal datasets with our approach and obtain quite encouraging results in both the cases.
stat
Principal Ellipsoid Analysis (PEA): Efficient non-linear dimension reduction & clustering
Even with the rise in popularity of over-parameterized models, simple dimensionality reduction and clustering methods, such as PCA and k-means, are still routinely used in an amazing variety of settings. A primary reason is the combination of simplicity, interpretability and computational efficiency. The focus of this article is on improving upon PCA and k-means, by allowing non-linear relations in the data and more flexible cluster shapes, without sacrificing the key advantages. The key contribution is a new framework for Principal Elliptical Analysis (PEA), defining a simple and computationally efficient alternative to PCA that fits the best elliptical approximation through the data. We provide theoretical guarantees on the proposed PEA algorithm using Vapnik-Chervonenkis (VC) theory to show strong consistency and uniform concentration bounds. Toy experiments illustrate the performance of PEA, and the ability to adapt to non-linear structure and complex cluster shapes. In a rich variety of real data clustering applications, PEA is shown to do as well as k-means for simple datasets, while dramatically improving performance in more complex settings.
stat
Accelerating Nonconvex Learning via Replica Exchange Langevin Diffusion
Langevin diffusion is a powerful method for nonconvex optimization, which enables the escape from local minima by injecting noise into the gradient. In particular, the temperature parameter controlling the noise level gives rise to a tradeoff between ``global exploration'' and ``local exploitation'', which correspond to high and low temperatures. To attain the advantages of both regimes, we propose to use replica exchange, which swaps between two Langevin diffusions with different temperatures. We theoretically analyze the acceleration effect of replica exchange from two perspectives: (i) the convergence in \chi^2-divergence, and (ii) the large deviation principle. Such an acceleration effect allows us to faster approach the global minima. Furthermore, by discretizing the replica exchange Langevin diffusion, we obtain a discrete-time algorithm. For such an algorithm, we quantify its discretization error in theory and demonstrate its acceleration effect in practice.
stat
Efficient Bayesian Experimental Design for Implicit Models
Bayesian experimental design involves the optimal allocation of resources in an experiment, with the aim of optimising cost and performance. For implicit models, where the likelihood is intractable but sampling from the model is possible, this task is particularly difficult and therefore largely unexplored. This is mainly due to technical difficulties associated with approximating posterior distributions and utility functions. We devise a novel experimental design framework for implicit models that improves upon previous work in two ways. First, we use the mutual information between parameters and data as the utility function, which has previously not been feasible. We achieve this by utilising Likelihood-Free Inference by Ratio Estimation (LFIRE) to approximate posterior distributions, instead of the traditional approximate Bayesian computation or synthetic likelihood methods. Secondly, we use Bayesian optimisation in order to solve the optimal design problem, as opposed to the typically used grid search or sampling-based methods. We find that this increases efficiency and allows us to consider higher design dimensions.
stat
Estimation and inference for area-wise spatial income distributions from grouped data
Estimating income distributions plays an important role in the measurement of inequality and poverty over space. The existing literature on income distributions predominantly focuses on estimating an income distribution for a country or a region separately and the simultaneous estimation of multiple income distributions has not been discussed in spite of its practical importance. In this work, we develop an effective method for the simultaneous estimation and inference for area-wise spatial income distributions taking account of geographical information from grouped data. Based on the multinomial likelihood function for grouped data, we propose a spatial state-space model for area-wise parameters of parametric income distributions. We provide an efficient Bayesian approach to estimation and inference for area-wise latent parameters, which enables us to compute area-wise summary measures of income distributions such as mean incomes and Gini indices, not only for sampled areas but also for areas without any samples thanks to the latent spatial state-space structure. The proposed method is demonstrated using the Japanese municipality-wise grouped income data. The simulation studies show the superiority of the proposed method to a crude conventional approach which estimates the income distributions separately.
stat
Additive Adversarial Learning for Unbiased Authentication
Authentication is a task aiming to confirm the truth between data instances and personal identities. Typical authentication applications include face recognition, person re-identification, authentication based on mobile devices and so on. The recently-emerging data-driven authentication process may encounter undesired biases, i.e., the models are often trained in one domain (e.g., for people wearing spring outfits) while required to apply in other domains (e.g., they change the clothes to summer outfits). To address this issue, we propose a novel two-stage method that disentangles the class/identity from domain-differences, and we consider multiple types of domain-difference. In the first stage, we learn disentangled representations by a one-versus-rest disentangle learning (OVRDL) mechanism. In the second stage, we improve the disentanglement by an additive adversarial learning (AAL) mechanism. Moreover, we discuss the necessity to avoid a learning dilemma due to disentangling causally related types of domain-difference. Comprehensive evaluation results demonstrate the effectiveness and superiority of the proposed method.
stat
What Drives Inflation and How: Evidence from Additive Mixed Models Selected by cAIC
We analyze which forces explain inflation and how in a large panel of 124 countries from 1997 to 2015. Models motivated by economic theory are compared to an approach based on model-based boosting and non-linearities are explicitly considered. We provide compelling evidence that the interaction of energy price and energy rents stand out among 40 explanatory variables. The output gap and globalization are also relevant drivers of inflation. Credit and money growth, a country's inflation history and demographic changes are comparably less important while central bank related variables as well as political variables turn out to have the least empirical relevance. In a subset of countries public debt denomination and exchange rate arrangements also play a noteworthy role in the inflation process. By contrast, other public-debt variables and an inflation targeting regime have weaker explanatory power. Finally, there is clear evidence of structural breaks in the effects since the financial crisis.
stat
Elastic $k$-means clustering of functional data for posterior exploration, with an application to inference on acute respiratory infection dynamics
We propose a new method for clustering of functional data using a $k$-means framework. We work within the elastic functional data analysis framework, which allows for decomposition of the overall variation in functional data into amplitude and phase components. We use the amplitude component to partition functions into shape clusters using an automated approach. To select an appropriate number of clusters, we additionally propose a novel Bayesian Information Criterion defined using a mixture model on principal components estimated using functional Principal Component Analysis. The proposed method is motivated by the problem of posterior exploration, wherein samples obtained from Markov chain Monte Carlo algorithms are naturally represented as functions. We evaluate our approach using a simulated dataset, and apply it to a study of acute respiratory infection dynamics in San Luis Potos\'{i}, Mexico.
stat
Universal consistency of Wasserstein $k$-NN classifier
The Wasserstein distance provides a notion of dissimilarities between probability measures, which has recent applications in learning of structured data with varying size such as images and text documents. In this work, we analyze the $k$-nearest neighbor classifier ($k$-NN) under the Wasserstein distance and establish the universal consistency on families of distributions. Using previous known results on the consistency of the $k$-NN classifier on infinite dimensional metric spaces, it suffices to show that the families is a countable union of finite dimensional components. As a result, we are able to prove universal consistency of $k$-NN on spaces of finitely supported measures, the space of finite wavelet series and the spaces of Gaussian measures with commuting covariance matrices.
stat
A pseudo-marginal sequential Monte Carlo online smoothing algorithm
We consider online computation of expectations of additive state functionals under general path probability measures proportional to products of unnormalised transition densities. These transition densities are assumed to be intractable but possible to estimate, with or without bias. Using pseudo-marginalisation techniques we are able to extend the particle-based, rapid incremental smoother (PaRIS) algorithm proposed in [J.Olsson and J.Westerborn. Efficient particle-based online smoothing in general hidden Markov models: The PaRIS algorithm. Bernoulli, 23(3):1951--1996, 2017] to this setting. The resulting algorithm, which has a linear complexity in the number of particles and constant memory requirements, applies to a wide range of challenging path-space Monte Carlo problems, including smoothing in partially observed diffusion processes and models with intractable likelihood. The algorithm is furnished with several theoretical results, including a central limit theorem, establishing its convergence and numerical stability. Moreover, under strong mixing assumptions we establish a novel $O(n \varepsilon)$ bound on the asymptotic bias of the algorithm, where $n$ is the path length and $\varepsilon$ controls the bias of the density estimators.
stat
Generalized Records for Functional Time Series with Application to Unit Root Tests
A generalization of the definition of records to functional data is proposed. The definition is based on ranking curves using a notion of functional depth. This approach allows us to study the curves of the number of records over time. We focus on functional time series and apply ideas from univariate time series to demonstrate the asymptotic distribution describing the number of records. A unit root test is proposed as an application of functional record theory. Through a Monte Carlo study, different scenarios of functional processes are simulated to evaluate the performance of the unit root test. The generalized record definition is applied on two different datasets: Annual mortality rates in France and daily curves of wind speed at Yanbu, Saudi Arabia. The record curves are identified and the underlying functional process is studied based on the number of record curves observed.
stat
Loss-Based Variational Bayes Prediction
We propose a new method for Bayesian prediction that caters for models with a large number of parameters and is robust to model misspecification. Given a class of high-dimensional (but parametric) predictive models, this new approach constructs a posterior predictive using a variational approximation to a loss-based, or Gibbs, posterior that is directly focused on predictive accuracy. The theoretical behavior of the new prediction approach is analyzed and a form of optimality demonstrated. Applications to both simulated and empirical data using high-dimensional Bayesian neural network and autoregressive mixture models demonstrate that the approach provides more accurate results than various alternatives, including misspecified likelihood-based predictions.
stat
The vote Package: Single Transferable Vote and Other Electoral Systems in R
We describe the vote package in R, which implements the plurality (or first-past-the-post), two-round runoff, score, approval and single transferable vote (STV) electoral systems, as well as methods for selecting the Condorcet winner and loser. We emphasize the STV system, which we have found to work well in practice for multi-winner elections with small electorates, such as committee and council elections, and the selection of multiple job candidates. For single-winner elections, the STV is also called instant runoff voting (IRV), ranked choice voting (RCV), or the alternative vote (AV) system. The package also implements the STV system with equal preferences, for the first time in a software package, to our knowledge. It also implements a new variant of STV, in which a minimum number of candidates from a specified group are required to be elected. We illustrate the package with several real examples.
stat
Statistical significance revisited
Statistical significance measures the reliability of a result obtained from a random experiment. We investigate the number of repetitions needed for a statistical result to have a certain significance. In the first step, we consider binomially distributed variables in the example of medication testing with fixed placebo efficacy, asking how many experiments are needed in order to achieve a significance of 95 %. In the next step, we take the probability distribution of the placebo efficacy into account, which to the best of our knowledge has not been done so far. Depending on the specifics, we show that in order to obtain identical significance, it may be necessary to perform twice as many experiments than in a setting where the placebo distribution is neglected. We proceed by considering more general probability distributions and close with comments on some erroneous assumptions on probability distributions which lead, for instance, to a trivial explanation of the fat tail.
stat
Data Driven Robust Estimation Methods for Fixed Effects Panel Data Models
The panel data regression models have gained increasing attention in different areas of research including but not limited to econometrics, environmental sciences, epidemiology, behavioral and social sciences. However, the presence of outlying observations in panel data may often lead to biased and inefficient estimates of the model parameters resulting in unreliable inferences when the least squares (LS) method is applied. We propose extensions of the M-estimation approach with a data-driven selection of tuning parameters to achieve desirable level of robustness against outliers without loss of estimation efficiency. The consistency and asymptotic normality of the proposed estimators have also been proved under some mild regularity conditions. The finite sample properties of the existing and proposed robust estimators have been examined through an extensive simulation study and an application to macroeconomic data. Our findings reveal that the proposed methods often exhibits improved estimation and prediction performances in the presence of outliers and are consistent with the traditional LS method when there is no contamination.
stat
Bayesian estimates of transmission line outage rates that consider line dependencies
Transmission line outage rates are fundamental to power system reliability analysis. Line outages are infrequent, occurring only about once a year, so outage data are limited. We propose a Bayesian hierarchical model that leverages line dependencies to better estimate outage rates of individual transmission lines from limited outage data. The Bayesian estimates have a lower standard deviation than estimating the outage rates simply by dividing the number of outages by the number of years of data, especially when the number of outages is small. The Bayesian model produces more accurate individual line outage rates, as well as estimates of the uncertainty of these rates. Better estimates of line outage rates can improve system risk assessment, outage prediction, and maintenance scheduling.
stat
The conformable fractional grey system model
The fractional order grey models (FGM) have appealed considerable interest of research in recent years due to its higher effectiveness and flexibility than the conventional grey models and other prediction models. However, the definitions of the fractional order accumulation (FOA) and difference (FOD) is computationally complex, which leads to difficulties for the theoretical analysis and applications. In this paper, the new definition of the FOA are proposed based on the definitions of Conformable Fractional Derivative, which is called the Conformable Fractional Accumulation (CFA), along with its inverse operation, the Conformable Fractional Difference (CFD). Then the new Conformable Fractional Grey Model (CFGM) based on CFA and CFD is introduced with detailed modelling procedures. The feasibility and simplicity and the CFGM are shown in the numerical example. And the at last the comprehensive real-world case studies of natural gas production forecasting in 11 countries are presented, and results show that the CFGM is much more effective than the existing FGM model in the 165 subcases.
stat
Spectral Dependence
This paper presents a general framework for modeling dependence in multivariate time series. Its fundamental approach relies on decomposing each signal in a system into various frequency components and then studying the dependence properties through these oscillatory activities.The unifying theme across the paper is to explore the strength of dependence and possible lead-lag dynamics through filtering. The proposed framework is capable of representing both linear and non-linear dependencies that could occur instantaneously or after some delay(lagged dependence). Examples for studying dependence between oscillations are illustrated through multichannel electroencephalograms. These examples emphasized that some of the most prominent frequency domain measures such as coherence, partial coherence,and dual-frequency coherence can be derived as special cases under this general framework.This paper also introduces related approaches for modeling dependence through phase-amplitude coupling and causality of (one-sided) filtered signals.
stat
Penalized polytomous ordinal logistic regression using cumulative logits. Application to network inference of zero-inflated variables
We consider the problem of variable selection when the response is ordinal, that is an ordered categorical variable. In particular, we are interested in selecting quantitative explanatory variables linked with the ordinal response variable and we want to determine which predictors are relevant. In this framework, we choose to use the polytomous ordinal logistic regression model using cumulative logits which generalizes the logistic regression. We then introduce the Lasso estimation of the regression coefficients using the Frank-Wolfe algorithm. To deal with the choice of the penalty parameter, we use the stability selection method and we develop a new method based on the knockoffs idea. This knockoffs method is general and suitable to any regression and besides, gives an order of importance of the covariates. Finally, we provide some experimental results to corroborate our method. We then present an application of this regression method for network inference of zero-inflated variables and use it in practice on real abundance data in an agronomic context.
stat
A weighting method for simultaneous adjustment for confounding and joint exposure-outcome misclassifications
Joint misclassification of exposure and outcome variables can lead to considerable bias in epidemiological studies of causal exposure-outcome effects. In this paper, we present a new maximum likelihood based estimator for the marginal causal odd-ratio that simultaneously adjusts for confounding and several forms of joint misclassification of the exposure and outcome variables. The proposed method relies on validation data for the construction of weights that account for both sources of bias. The weighting estimator, which is an extension of the exposure misclassification weighting estimator proposed by Gravel and Platt (Statistics in Medicine, 2018), is applied to reinfarction data. Simulation studies were carried out to study its finite sample properties and compare it with methods that do not account for confounding or misclassification. The new estimator showed favourable large sample properties in the simulations. Further research is needed to study the sensitivity of the proposed method and that of alternatives to violations of their assumptions. The implementation of the estimator is facilitated by a new R function in an existing R package.
stat
Interpretation of the individual effect under treatment spillover
Some interventions may include important spillover or dissemination effects between study participants. For example, vaccines, cash transfers, and education programs may exert a causal effect on participants beyond those to whom individual treatment is assigned. In a recent paper, Buchanan et al. provide a causal definition of the "individual effect" of an intervention in networks of people who inject drugs. In this short note, we discuss the interpretation of the individual effect when a spillover or dissemination effect exists.
stat
Pareto Smoothed Importance Sampling
Importance weighting is a general way to adjust Monte Carlo integration to account for draws from the wrong distribution, but the resulting estimate can be noisy when the importance ratios have a heavy right tail. This routinely occurs when there are aspects of the target distribution that are not well captured by the approximating distribution, in which case more stable estimates can be obtained by modifying extreme importance ratios. We present a new method for stabilizing importance weights using a generalized Pareto distribution fit to the upper tail of the distribution of the simulated importance ratios. The method, which empirically performs better than existing methods for stabilizing importance sampling estimates, includes stabilized effective sample size estimates, Monte Carlo error estimates and convergence diagnostics.
stat
Using flexible noise models to avoid noise model misspecification in inference of differential equation time series models
When modelling time series, it is common to decompose observed variation into a "signal" process, the process of interest, and "noise", representing nuisance factors that obfuscate the signal. To separate signal from noise, assumptions must be made about both parts of the system. If the signal process is incorrectly specified, our predictions using this model may generalise poorly; similarly, if the noise process is incorrectly specified, we can attribute too much or too little observed variation to the signal. With little justification, independent Gaussian noise is typically chosen, which defines a statistical model that is simple to implement but often misstates system uncertainty and may underestimate error autocorrelation. There are a range of alternative noise processes available but, in practice, none of these may be entirely appropriate, as actual noise may be better characterised as a time-varying mixture of these various types. Here, we consider systems where the signal is modelled with ordinary differential equations and present classes of flexible noise processes that adapt to a system's characteristics. Our noise models include a multivariate normal kernel where Gaussian processes allow for non-stationary persistence and variance, and nonparametric Bayesian models that partition time series into distinct blocks of separate noise structures. Across the scenarios we consider, these noise processes faithfully reproduce true system uncertainty: that is, parameter estimate uncertainty when doing inference using the correct noise model. The models themselves and the methods for fitting them are scalable to large datasets and could help to ensure more appropriate quantification of uncertainty in a host of time series models.
stat
Inference about complex relationships using peak height data from DNA mixtures
In both criminal cases and civil cases there is an increasing demand for the analysis of DNA mixtures involving relationships. The goal might be, for example, to identify the contributors to a DNA mixture where the donors may be related, or to infer the relationship between individuals based on a mixture. This paper introduces an approach to modelling and computation for DNA mixtures involving contributors with arbitrarily complex relationships. It builds on an extension of Jacquard's condensed coefficients of identity, to specify and compute with joint relationships, not only pairwise ones, including the possibility of inbreeding. The methodology developed is applied to two casework examples involving a missing person, and simulation studies of performance, in which the ability of the methodology to recover complex relationship information from synthetic data with known `true' family structure is examined. The methods used to analyse the examples are implemented in the new KinMix R package, that extends the DNAmixtures package to allow for modelling DNA mixtures with related contributors. KinMix inherits from DNAmixtures the capacity to deal with mixtures with many contributors, in a time- and space-efficient way.
stat
Estimation of Discrete Choice Models: A Machine Learning Approach
In this paper we propose a new method of estimation for discrete choice demand models when individual level data are available. The method employs a two-step procedure. Step 1 predicts the choice probabilities as functions of the observed individual level characteristics. Step 2 estimates the structural parameters of the model using the estimated choice probabilities at a particular point of interest and the moment restrictions. In essence, the method uses nonparametric approximation (followed by) moment estimation. Hence the name---NAME. We use simulations to compare the performance of NAME with the standard methodology. We find that our method improves precision as well as convergence time. We supplement the analysis by providing the large sample properties of the proposed estimator.
stat
Vector Autoregressive Moving Average Model with Scalar Moving Average
We show Vector Autoregressive Moving Average models with scalar Moving Average components could be estimated by generalized least square (GLS) for each fixed moving average polynomial. The conditional variance of the GLS model is the concentrated covariant matrix of the moving average process. Under GLS the likelihood function of these models has similar format to their VAR counterparts. Maximum likelihood estimate can be done by optimizing with gradient over the moving average parameters. These models are inexpensive generalizations of Vector Autoregressive models. We discuss a relationship between this result and the Borodin-Okounkov formula in operator theory.
stat
Two-step penalised logistic regression for multi-omic data with an application to cardiometabolic syndrome
Building classification models that predict a binary class label on the basis of high dimensional multi-omics datasets poses several challenges, due to the typically widely differing characteristics of the data layers in terms of number of predictors, type of data, and levels of noise. Previous research has shown that applying classical logistic regression with elastic-net penalty to these datasets can lead to poor results (Liu et al., 2018). We implement a two-step approach to multi-omic logistic regression in which variable selection is performed on each layer separately and a predictive model is then built using the variables selected in the first step. Here, our approach is compared to other methods that have been developed for the same purpose, and we adapt existing software for multi-omic linear regression (Zhao and Zucknick, 2020) to the logistic regression setting. Extensive simulation studies show that our approach should be preferred if the goal is to select as many relevant predictors as possible, as well as achieving prediction performances comparable to those of the best competitors. Our motivating example is a cardiometabolic syndrome dataset comprising eight 'omic data types for 2 extreme phenotype groups (10 obese and 10 lipodystrophy individuals) and 185 blood donors. Our proposed approach allows us to identify features that characterise cardiometabolic syndrome at the molecular level. R code is available at https://github.com/acabassi/logistic-regression-for-multi-omic-data.
stat
A comparison of group testing architectures for COVID-19 testing
An important component of every country's COVID-19 response is fast and efficient testing - to identify and isolate cases, as well as for early detection of local hotspots. For many countries, producing a sufficient number of tests has been a serious limiting factor in their efforts to control COVID-19 infections. Group testing is a well-established mathematical tool, which can provide a substantial and inexpensive expansion of testing capacity. In this note, we compare several popular group testing schemes in the context of qPCR testing for COVID-19. We find that in practical settings, for identification of individuals with COVID-19, Dorfman testing is the best choice at prevalences up to 30%, while for estimation of COVID-19 prevalence rates in the total population, Gibbs-Gower testing is the best choice at prevalences up to 30% given a fixed and relatively small number of tests. For instance, at a prevalence of up to 2%, Dorfman testing gives an efficiency gain of 3.5--8; at 1% prevalence, Gibbs-Gower testing gives an efficiency gain of 18, even when capping the pool size at a feasible number . This note is intended as a helpful handbook for labs implementing group testing methods.
stat
A Bayesian binomial regression model with latent Gaussian processes for modelling DNA methylation
Epigenetic observations are represented by the total number of reads from a given pool of cells and the number of methylated reads, making it reasonable to model this data by a binomial distribution. There are numerous factors that can influence the probability of success in a particular region. Moreover, there is a strong spatial (alongside the genome) dependence of these probabilities. We incorporate dependence on the covariates and the spatial dependence of the methylation probability for observations from a pool of cells by means of a binomial regression model with a latent Gaussian field and a logit link function. We apply a Bayesian approach including prior specifications on model configurations. We run a mode jumping Markov chain Monte Carlo algorithm (MJMCMC) across different choices of covariates in order to obtain the joint posterior distribution of parameters and models. This also allows finding the best set of covariates to model methylation probability within the genomic region of interest and individual marginal inclusion probabilities of the covariates.
stat
Many perspectives on Deborah Mayo's "Statistical Inference as Severe Testing: How to Get Beyond the Statistics Wars"
The new book by philosopher Deborah Mayo is relevant to data science for topical reasons, as she takes various controversial positions regarding hypothesis testing and statistical practice, and also as an entry point to thinking about the philosophy of statistics. The present article is a slightly expanded version of a series of informal reviews and comments on Mayo's book. We hope this discussion will introduce people to Mayo's ideas along with other perspectives on the topics she addresses.
stat
Data filtering methods for SARS-CoV-2 wastewater surveillance
In the case of SARS-CoV-2 pandemic management, wastewater-based epidemiology aims to derive information on the infection dynamics by monitoring virus concentrations in the wastewater. However, due to the intrinsic random fluctuations of the viral signal in the wastewater (due to e.g., dilution; transport and fate processes in sewer system; variation in the number of persons discharging; variations in virus excretion and water consumption per day) the subsequent prevalence analysis may result in misleading conclusions. It is thus helpful to apply data filtering techniques to reduce the noise in the signal. In this paper we investigate 13 smoothing algorithms applied to the virus signals monitored in four wastewater treatment plants in Austria. The parameters of the algorithms have been defined by an optimization procedure aiming for performance metrics. The results are further investigated by means of a cluster analysis. While all algorithms are in principle applicable, SPLINE, Generalized Additive Model and Friedman Super Smoother are recognized as superior methods in this context (with the latter two having a tendency to over-smoothing). A first analysis of the resulting datasets indicates the influence of catchment size for wastewater-based epidemiology as smaller communities both reveal a signal threshold before any relation with infection dynamics is visible and also a higher sensitivity towards infection clusters.
stat
Surrogate-based Bayesian Comparison of Computationally Expensive Models: Application to Microbially Induced Calcite Precipitation
Geochemical processes in subsurface reservoirs affected by microbial activity change the material properties of porous media. This is a complex biogeochemical process in subsurface reservoirs that currently contains strong conceptual uncertainty. This means, several modeling approaches describing the biogeochemical process are plausible and modelers face the uncertainty of choosing the most appropriate one. Once observation data becomes available, a rigorous Bayesian model selection accompanied by a Bayesian model justifiability analysis could be employed to choose the most appropriate model, i.e. the one that describes the underlying physical processes best in the light of the available data. However, biogeochemical modeling is computationally very demanding because it conceptualizes different phases, biomass dynamics, geochemistry, precipitation and dissolution in porous media. Therefore, the Bayesian framework cannot be based directly on the full computational models as this would require too many expensive model evaluations. To circumvent this problem, we suggest performing both Bayesian model selection and justifiability analysis after constructing surrogates for the competing biogeochemical models. Here, we use the arbitrary polynomial chaos expansion. We account for the approximation error in the Bayesian analysis by introducing novel correction factors for the resulting model weights. Thereby, we extend the Bayesian justifiability analysis and assess model similarities for computationally expensive models. We demonstrate the method on a representative scenario for microbially induced calcite precipitation in a porous medium. Our extension of the justifiability analysis provides a suitable approach for the comparison of computationally demanding models and gives an insight on the necessary amount of data for a reliable model performance.
stat
Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks
Given a set of empirical observations, conditional density estimation aims to capture the statistical relationship between a conditional variable $\mathbf{x}$ and a dependent variable $\mathbf{y}$ by modeling their conditional probability $p(\mathbf{y}|\mathbf{x})$. The paper develops best practices for conditional density estimation for finance applications with neural networks, grounded on mathematical insights and empirical evaluations. In particular, we introduce a noise regularization and data normalization scheme, alleviating problems with over-fitting, initialization and hyper-parameter sensitivity of such estimators. We compare our proposed methodology with popular semi- and non-parametric density estimators, underpin its effectiveness in various benchmarks on simulated and Euro Stoxx 50 data and show its superior performance. Our methodology allows to obtain high-quality estimators for statistical expectations of higher moments, quantiles and non-linear return transformations, with very little assumptions about the return dynamic.
stat
Online Smoothing for Diffusion Processes Observed with Noise
We introduce a methodology for online estimation of smoothing expectations for a class of additive functionals, in the context of a rich family of diffusion processes (that may include jumps) -- observed at discrete-time instances. We overcome the unavailability of the transition density of the underlying SDE by working on the augmented pathspace. The new method can be applied, for instance, to carry out online parameter inference for the designated class of models. Algorithms defined on the infinite-dimensional pathspace have been developed in the last years mainly in the context of MCMC techniques. There, the main benefit is the achievement of mesh-free mixing times for the practical time-discretised algorithm used on a PC. Our own methodology sets up the framework for infinite-dimensional online filtering -- an important positive practical consequence is the construct of estimates with the variance that does not increase with decreasing mesh-size. Besides regularity conditions, our method is, in principle, applicable under the weak assumption -- relatively to restrictive conditions often required in the MCMC or filtering literature of methods defined on pathspace -- that the SDE covariance matrix is invertible.
stat
On Adversarial Bias and the Robustness of Fair Machine Learning
Optimizing prediction accuracy can come at the expense of fairness. Towards minimizing discrimination against a group, fair machine learning algorithms strive to equalize the behavior of a model across different groups, by imposing a fairness constraint on models. However, we show that giving the same importance to groups of different sizes and distributions, to counteract the effect of bias in training data, can be in conflict with robustness. We analyze data poisoning attacks against group-based fair machine learning, with the focus on equalized odds. An adversary who can control sampling or labeling for a fraction of training data, can reduce the test accuracy significantly beyond what he can achieve on unconstrained models. Adversarial sampling and adversarial labeling attacks can also worsen the model's fairness gap on test data, even though the model satisfies the fairness constraint on training data. We analyze the robustness of fair machine learning through an empirical evaluation of attacks on multiple algorithms and benchmark datasets.
stat
NeurT-FDR: Controlling FDR by Incorporating Feature Hierarchy
Controlling false discovery rate (FDR) while leveraging the side information of multiple hypothesis testing is an emerging research topic in modern data science. Existing methods rely on the test-level covariates while ignoring possible hierarchy among the covariates. This strategy may not be optimal for complex large-scale problems, where hierarchical information often exists among those test-level covariates. We propose NeurT-FDR which boosts statistical power and controls FDR for multiple hypothesis testing while leveraging the hierarchy among test-level covariates. Our method parametrizes the test-level covariates as a neural network and adjusts the feature hierarchy through a regression framework, which enables flexible handling of high-dimensional features as well as efficient end-to-end optimization. We show that NeurT-FDR has strong FDR guarantees and makes substantially more discoveries in synthetic and real datasets compared to competitive baselines.
stat
Statistical analysis of periodic data in neuroscience
Many experimental paradigms in neuroscience involve driving the nervous system with periodic sensory stimuli. Neural signals recorded with a variety of techniques will then include phase-locked oscillations at the stimulation frequency. The analysis of such data often involves standard univariate statistics such as T-tests, conducted on the Fourier amplitude components (ignoring phase), either to test for the presence of a signal, or to compare signals across different conditions. However, the assumptions of these tests will often be violated because amplitudes are not normally distributed, and furthermore weak signals might be missed if the phase information is discarded. An alternative approach is to conduct multivariate statistical tests using the real and imaginary Fourier components. Here the performance of two multivariate extensions of the T-test are compared: Hotelling's $T^2$ and a variant called $T^2_{circ}$. A novel test of the assumptions of $T^2_{circ}$ is developed, based on the condition index of the data (the square root of the ratio of eigenvalues of a bounding ellipse), and a heuristic for excluding outliers using the Mahalanobis distance is proposed. The $T^2_{circ}$ statistic is then extended to multi-level designs, resulting in a new statistical test termed $ANOVA^2_{circ}$. This has identical assumptions to $T^2_{circ}$, and is shown to be more sensitive than MANOVA when these assumptions are met. The use of these tests is demonstrated for two publicly available empirical data sets, and practical guidance is suggested for choosing which test to run. Implementations of these novel tools are provided as an R package and a Matlab toolbox, in the hope that their wider adoption will improve the sensitivity of statistical inferences involving periodic data.
stat
Recyclable Gaussian Processes
We present a new framework for recycling independent variational approximations to Gaussian processes. The main contribution is the construction of variational ensembles given a dictionary of fitted Gaussian processes without revisiting any subset of observations. Our framework allows for regression, classification and heterogeneous tasks, i.e. mix of continuous and discrete variables over the same input domain. We exploit infinite-dimensional integral operators based on the Kullback-Leibler divergence between stochastic processes to re-combine arbitrary amounts of variational sparse approximations with different complexity, likelihood model and location of the pseudo-inputs. Extensive results illustrate the usability of our framework in large-scale distributed experiments, also compared with the exact inference models in the literature.
stat
The Probabilistic Fault Tolerance of Neural Networks in the Continuous Limit
The loss of a few neurons in a brain rarely results in any visible loss of function. However, the insight into what "few" means in this context is unclear. How many random neuron failures will it take to lead to a visible loss of function? In this paper, we address the fundamental question of the impact of the crash of a random subset of neurons on the overall computation of a neural network and the error in the output it produces. We study fault tolerance of neural networks subject to small random neuron/weight crash failures in a probabilistic setting. We give provable guarantees on the robustness of the network to these crashes. Our main contribution is a bound on the error in the output of a network under small random Bernoulli crashes proved by using a Taylor expansion in the continuous limit, where close-by neurons at a layer are similar. The failure mode we adopt in our model is characteristic of neuromorphic hardware, a promising technology to speed up artificial neural networks, as well as of biological networks. We show that our theoretical bounds can be used to compare the fault tolerance of different architectures and to design a regularizer improving the fault tolerance of a given architecture. We design an algorithm achieving fault tolerance using a reasonable number of neurons. In addition to the theoretical proof, we also provide experimental validation of our results and suggest a connection to the generalization capacity problem.
stat
One-Trial Correction of Legacy AI Systems and Stochastic Separation Theorems
We consider the problem of efficient "on the fly" tuning of existing, or {\it legacy}, Artificial Intelligence (AI) systems. The legacy AI systems are allowed to be of arbitrary class, albeit the data they are using for computing interim or final decision responses should posses an underlying structure of a high-dimensional topological real vector space. The tuning method that we propose enables dealing with errors without the need to re-train the system. Instead of re-training a simple cascade of perceptron nodes is added to the legacy system. The added cascade modulates the AI legacy system's decisions. If applied repeatedly, the process results in a network of modulating rules "dressing up" and improving performance of existing AI systems. Mathematical rationale behind the method is based on the fundamental property of measure concentration in high dimensional spaces. The method is illustrated with an example of fine-tuning a deep convolutional network that has been pre-trained to detect pedestrians in images.
stat
Predictive inference with Fleming--Viot-driven dependent Dirichlet processes
We consider predictive inference using a class of temporally dependent Dirichlet processes driven by Fleming--Viot diffusions, which have a natural bearing in Bayesian nonparametrics and lend the resulting family of random probability measures to analytical posterior analysis. Formulating the implied statistical model as a hidden Markov model, we fully describe the predictive distribution induced by these Fleming--Viot-driven dependent Dirichlet processes, for a sequence of observations collected at a certain time given another set of draws collected at several previous times. This is identified as a mixture of P\'olya urns, whereby the observations can be values from the baseline distribution or copies of previous draws collected at the same time as in the usual P\`olya urn, or can be sampled from a random subset of the data collected at previous times. We characterise the time-dependent weights of the mixture which select such subsets and discuss the asymptotic regimes. We describe the induced partition by means of a Chinese restaurant process metaphor with a conveyor belt, whereby new customers who do not sit at an occupied table open a new table by picking a dish either from the baseline distribution or from a time-varying offer available on the conveyor belt. We lay out explicit algorithms for exact and approximate posterior sampling of both observations and partitions, and illustrate our results on predictive problems with synthetic and real data.
stat
Small Area Estimation of Health Outcomes
Small area estimation (SAE) entails estimating characteristics of interest for domains, often geographical areas, in which there may be few or no samples available. SAE has a long history and a wide variety of methods have been suggested, from a bewildering range of philosophical standpoints. We describe design-based and model-based approaches and models that are specified at the area-level and at the unit-level, focusing on health applications and fully Bayesian spatial models. The use of auxiliary information is a key ingredient for successful inference when response data are sparse and we discuss a number of approaches that allow the inclusion of covariate data. SAE for HIV prevalence, using data collected from a Demographic Health Survey in Malawi in 2015-2016, is used to illustrate a number of techniques. The potential use of SAE techniques for outcomes related to COVID-19 is discussed.
stat
Probabilistic Neural Architecture Search
In neural architecture search (NAS), the space of neural network architectures is automatically explored to maximize predictive accuracy for a given task. Despite the success of recent approaches, most existing methods cannot be directly applied to large scale problems because of their prohibitive computational complexity or high memory usage. In this work, we propose a Probabilistic approach to neural ARchitecture SEarCh (PARSEC) that drastically reduces memory requirements while maintaining state-of-the-art computational complexity, making it possible to directly search over more complex architectures and larger datasets. Our approach only requires as much memory as is needed to train a single architecture from our search space. This is due to a memory-efficient sampling procedure wherein we learn a probability distribution over high-performing neural network architectures. Importantly, this framework enables us to transfer the distribution of architectures learnt on smaller problems to larger ones, further reducing the computational cost. We showcase the advantages of our approach in applications to CIFAR-10 and ImageNet, where our approach outperforms methods with double its computational cost and matches the performance of methods with costs that are three orders of magnitude larger.
stat
Estimating Local Interactions Among Many Agents Who Observe Their Neighbors
In various economic environments, people observe other people with whom they strategically interact. We can model such information-sharing relations as an information network, and the strategic interactions as a game on the network. When any two agents in the network are connected either directly or indirectly in a large network, empirical modeling using an equilibrium approach can be cumbersome, since the testable implications from an equilibrium generally involve all the players of the game, whereas a researcher's data set may contain only a fraction of these players in practice. This paper develops a tractable empirical model of linear interactions where each agent, after observing part of his neighbors' types, not knowing the full information network, uses best responses that are linear in his and other players' types that he observes, based on simple beliefs about the other players' strategies. We provide conditions on information networks and beliefs such that the best responses take an explicit form with multiple intuitive features. Furthermore, the best responses reveal how local payoff interdependence among agents is translated into local stochastic dependence of their actions, allowing the econometrician to perform asymptotic inference without having to observe all the players in the game or having to know the precise sampling process.
stat
Comparison of Methods for the Assessment of Nonlinearity in Short-Term Heart Rate Variability under different Physiopathological States
Despite the widespread diffusion of nonlinear methods for heart rate variability (HRV) analysis, the presence and the extent to which nonlinear dynamics contribute to short-term HRV is still controversial. This work aims at testing the hypothesis that different types of nonlinearity can be observed in HRV depending on the method adopted and on the physiopathological state. Two entropy-based measures of time series complexity (normalized complexity index, NCI) and regularity (information storage, IS), and a measure quantifying deviations from linear correlations in a time series (Gaussian linear contrast, GLC), are applied to short HRV recordings obtained in young (Y) and old (O) healthy subjects and in myocardial infarction (MI) patients monitored in the resting supine position and in the upright position reached through head-up tilt. The method of surrogate data is employed to detect the presence of and quantify the contribution of nonlinear dynamics to HRV. We find that the three measures differ both in their variations across groups and conditions and in the number and strength of nonlinear HRV dynamics detected: at rest, IS reveals a significantly lower number of nonlinear dynamics in Y, whereas during tilt GLC reveals significantly stronger nonlinear HRV dynamics in MI; in the transition from rest to tilt, all measures detect a significant weakening of nonlinear HRV dynamics in Y, while only GLC detects a significant strengthening of such dynamics in MI. These results suggest that distinct dynamic structures, detected with different sensitivity by nonlinear measures, lie beneath short-term HRV in different physiological states and pathological conditions.
stat
Simulating an infinite mean waiting time
We consider a hybrid method to simulate the return time to the initial state in a critical-case birth--death process. The expected value of this return time is infinite, but its distribution asymptotically follows a power-law. Hence, the simulation approach is to directly simulate the process, unless the simulated time exceeds some threshold and if it does, draw the return time from the tail of the power law.
stat
Bayesian Landmark-based Shape Analysis of Tumor Pathology Images
Medical imaging is a form of technology that has revolutionized the medical field in the past century. In addition to radiology imaging of tumor tissues, digital pathology imaging, which captures histological details in high spatial resolution, is fast becoming a routine clinical procedure for cancer diagnosis support and treatment planning. Recent developments in deep-learning methods facilitate the segmentation of tumor regions at almost the cellular level from digital pathology images. The traditional shape features that were developed for characterizing tumor boundary roughness in radiology are not applicable. Reliable statistical approaches to modeling tumor shape in pathology images are in urgent need. In this paper, we consider the problem of modeling a tumor boundary with a closed polygonal chain. A Bayesian landmark-based shape analysis (BayesLASA) model is proposed to partition the polygonal chain into mutually exclusive segments to quantify the boundary roughness piecewise. Our fully Bayesian inference framework provides uncertainty estimates of both the number and locations of landmarks. The BayesLASA outperforms a recently developed landmark detection model for planar elastic curves in terms of accuracy and efficiency. We demonstrate how this model-based analysis can lead to sharper inferences than ordinary approaches through a case study on the 246 pathology images from 143 non-small cell lung cancer patients. The case study shows that the heterogeneity of tumor boundary roughness predicts patient prognosis (p-value < 0.001). This statistical methodology not only presents a new model for characterizing a digitized object's shape features by using its landmarks, but also provides a new perspective for understanding the role of tumor surface in cancer progression.
stat
Continuous-Time Birth-Death MCMC for Bayesian Regression Tree Models
Decision trees are flexible models that are well suited for many statistical regression problems. In a Bayesian framework for regression trees, Markov Chain Monte Carlo (MCMC) search algorithms are required to generate samples of tree models according to their posterior probabilities. The critical component of such an MCMC algorithm is to construct good Metropolis-Hastings steps for updating the tree topology. However, such algorithms frequently suffering from local mode stickiness and poor mixing. As a result, the algorithms are slow to converge. Hitherto, authors have primarily used discrete-time birth/death mechanisms for Bayesian (sums of) regression tree models to explore the model space. These algorithms are efficient only if the acceptance rate is high which is not always the case. Here we overcome this issue by developing a new search algorithm which is based on a continuous-time birth-death Markov process. This search algorithm explores the model space by jumping between parameter spaces corresponding to different tree structures. In the proposed algorithm, the moves between models are always accepted which can dramatically improve the convergence and mixing properties of the MCMC algorithm. We provide theoretical support of the algorithm for Bayesian regression tree models and demonstrate its performance.
stat
Entropy-Regularized $2$-Wasserstein Distance between Gaussian Measures
Gaussian distributions are plentiful in applications dealing in uncertainty quantification and diffusivity. They furthermore stand as important special cases for frameworks providing geometries for probability measures, as the resulting geometry on Gaussians is often expressible in closed-form under the frameworks. In this work, we study the Gaussian geometry under the entropy-regularized 2-Wasserstein distance, by providing closed-form solutions for the distance and interpolations between elements. Furthermore, we provide a fixed-point characterization of a population barycenter when restricted to the manifold of Gaussians, which allows computations through the fixed-point iteration algorithm. As a consequence, the results yield closed-form expressions for the 2-Sinkhorn divergence. As the geometries change by varying the regularization magnitude, we study the limiting cases of vanishing and infinite magnitudes, reconfirming well-known results on the limits of the Sinkhorn divergence. Finally, we illustrate the resulting geometries with a numerical study.
stat
Adaptive Bayesian SLOPE -- High-dimensional Model Selection with Missing Values
We consider the problem of variable selection in high-dimensional settings with missing observations among the covariates. To address this relatively understudied problem, we propose a new synergistic procedure -- adaptive Bayesian SLOPE -- which effectively combines the SLOPE method (sorted $l_1$ regularization) together with the Spike-and-Slab LASSO method. We position our approach within a Bayesian framework which allows for simultaneous variable selection and parameter estimation, despite the missing values. As with the Spike-and-Slab LASSO, the coefficients are regarded as arising from a hierarchical model consisting of two groups: (1) the spike for the inactive and (2) the slab for the active. However, instead of assigning independent spike priors for each covariate, here we deploy a joint "SLOPE" spike prior which takes into account the ordering of coefficient magnitudes in order to control for false discoveries. Through extensive simulations, we demonstrate satisfactory performance in terms of power, FDR and estimation bias under a wide range of scenarios. Finally, we analyze a real dataset consisting of patients from Paris hospitals who underwent a severe trauma, where we show excellent performance in predicting platelet levels. Our methodology has been implemented in C++ and wrapped into an R package ABSLOPE for public use.
stat
Confidently Comparing Estimators with the c-value
Modern statistics provides an ever-expanding toolkit for estimating unknown parameters. Consequently, applied statisticians frequently face a difficult decision: retain a parameter estimate from a familiar method or replace it with an estimate from a newer or complex one. While it is traditional to compare estimators using risk, such comparisons are rarely conclusive in realistic settings. In response, we propose the "c-value" as a measure of confidence that a new estimate achieves smaller loss than an old estimate on a given dataset. We show that it is unlikely that a computed c-value is large and that the new estimate has larger loss than the old. Therefore, just as a small p-value provides evidence to reject a null hypothesis, a large c-value provides evidence to use a new estimate in place of the old. For a wide class of problems and estimators, we show how to compute a c-value by first constructing a data-dependent high-probability lower bound on the difference in loss. The c-value is frequentist in nature, but we show that it can provide a validation of Bayesian estimates in real data applications involving hierarchical models and Gaussian processes.
stat
Default Bayesian Model Selection of Constrained Multivariate Normal Linear Models
The multivariate normal linear model is one of the most widely employed models for statistical inference in applied research. Special cases include (multivariate) t testing, (M)AN(C)OVA, (multivariate) multiple regression, and repeated measures analysis. Statistical procedures for model selection where the models may have equality and order constraints on the model parameters of interest are limited however. This paper presents a default Bayes factor for this model selection problem. The default Bayes factor is based on generalized fractional Bayes methodology where different fractions are used for different observations and where the default prior is centered on the boundary of the constrained space under investigation. First, the method is fully automatic and therefore can be applied when prior information is weak or completely unavailable. Second, using group specific fractions, the same amount of information is used from each group resulting in a minimally informative default prior having a matrix Cauchy distribution, resulting in a consistent default Bayes factor. Third, numerical computation can be done using parallelization which makes it computationally cheap. Fourth, the evidence can be updated in a relatively simple manner when observing new data. Fifth, the selection criterion can be applied relatively straightforwardly in the presence of missing data that are missing at random. Applications for the social and behavioral sciences are used for illustration.
stat
Multi-view Vector-valued Manifold Regularization for Multi-label Image Classification
In computer vision, image datasets used for classification are naturally associated with multiple labels and comprised of multiple views, because each image may contain several objects (e.g. pedestrian, bicycle and tree) and is properly characterized by multiple visual features (e.g. color, texture and shape). Currently available tools ignore either the label relationship or the view complementary. Motivated by the success of the vector-valued function that constructs matrix-valued kernels to explore the multi-label structure in the output space, we introduce multi-view vector-valued manifold regularization (MV$\mathbf{^3}$MR) to integrate multiple features. MV$\mathbf{^3}$MR exploits the complementary property of different features and discovers the intrinsic local geometry of the compact support shared by different features under the theme of manifold regularization. We conducted extensive experiments on two challenging, but popular datasets, PASCAL VOC' 07 (VOC) and MIR Flickr (MIR), and validated the effectiveness of the proposed MV$\mathbf{^3}$MR for image classification.
stat
Emulating satellite drag from large simulation experiments
Obtaining accurate estimates of satellite drag coefficients in low Earth orbit is a crucial component in positioning and collision avoidance. Simulators can produce accurate estimates, but their computational expense is much too large for real-time application. A pilot study showed that Gaussian process (GP) surrogate models could accurately emulate simulations. However, cubic runtime for training GPs means that they could only be applied to a narrow range of input configurations to achieve the desired level of accuracy. In this paper we show how extensions to the local approximate Gaussian Process (laGP) method allow accurate full-scale emulation. The new methodological contributions, which involve a multi-level global/local modeling approach, and a set-wise approach to local subset selection, are shown to perform well in benchmark and synthetic data settings. We conclude by demonstrating that our method achieves the desired level of accuracy, besting simpler viable (i.e., computationally tractable) global and local modeling approaches, when trained on seventy thousand core hours of drag simulations for two real-world satellites: the Hubble space telescope (HST) and the gravity recovery and climate experiment (GRACE).
stat
High dimensionality: The latest challenge to data analysis
The advent of modern technology, permitting the measurement of thousands of characteristics simultaneously, has given rise to floods of data characterized by many large or even huge datasets. This new paradigm presents extraordinary challenges to data analysis and the question arises: how can conventional data analysis methods, devised for moderate or small datasets, cope with the complexities of modern data? The case of high dimensional data is particularly revealing of some of the drawbacks. We look at the case where the number of characteristics measured in an object is at least the number of observed objects and conclude that this configuration leads to geometrical and mathematical oddities and is an insurmountable barrier for the direct application of traditional methodologies. If scientists are going to ignore fundamental mathematical results arrived at in this paper and blindly use software to analyze data, the results of their analyses may not be trustful, and the findings of their experiments may never be validated. That is why new methods together with the wise use of traditional approaches are essential to progress safely through the present reality.
stat
Kernel Machine and Distributed Lag Models for Assessing Windows of Susceptibility to Environmental Mixtures in Children's Health Studies
Exposures to environmental chemicals during gestation can alter health status later in life. Most studies of maternal exposure to chemicals during pregnancy focus on a single chemical exposure observed at high temporal resolution. Recent research has turned to focus on exposure to mixtures of multiple chemicals, generally observed at a single time point. We consider statistical methods for analyzing data on chemical mixtures that are observed at a high temporal resolution. As motivation, we analyze the association between exposure to four ambient air pollutants observed weekly throughout gestation and birth weight in a Boston-area prospective birth cohort. To explore patterns in the data, we first apply methods for analyzing data on (1) a single chemical observed at high temporal resolution, and (2) a mixture measured at a single point in time. We highlight the shortcomings of these approaches for temporally-resolved data on exposure to chemical mixtures. Second, we propose a novel method, a Bayesian kernel machine regression distributed lag model (BKMR-DLM), that simultaneously accounts for nonlinear associations and interactions among time-varying measures of exposure to mixtures. BKMR-DLM uses a functional weight for each exposure that parameterizes the window of susceptibility corresponding to that exposure within a kernel machine framework that captures non-linear and interaction effects of the multivariate exposure on the outcome. In a simulation, we show that the proposed method can better estimate the exposure-response function and, in high signal settings, can identify critical windows in time during which exposure has an increased association with the outcome. Applying the proposed methods to the birth cohort data, we found evidence of a negative association between OC and birth weight and that nitrate modifies the OC, EC, and sulfate exposure-response functions.
stat
Generalized Autoregressive Moving Average Models with GARCH Errors
One of the important and widely used classes of models for non-Gaussian time series is the generalized autoregressive model average models (GARMA), which specifies an ARMA structure for the conditional mean process of the underlying time series. However, in many applications one often encounters conditional heteroskedasticity. In this paper we propose a new class of models, referred to as GARMA-GARCH models, that jointly specify both the conditional mean and conditional variance processes of a general non-Gaussian time series. Under the general modeling framework, we propose three specific models, as examples, for proportional time series, nonnegative time series, and skewed and heavy-tailed financial time series. Maximum likelihood estimator (MLE) and quasi Gaussian MLE (GMLE) are used to estimate the parameters. Simulation studies and three applications are used to demonstrate the properties of the models and the estimation procedures.
stat
A note on marginal correlation based screening
Independence screening methods such as the two sample $t$-test and the marginal correlation based ranking are among the most widely used techniques for variable selection in ultrahigh dimensional data sets. In this short note, simple examples are used to demonstrate potential problems with the independence screening methods in the presence of correlated predictors. Also, an example is considered where all important variables are independent among themselves and all but one important variables are independent with the unimportant variables. Furthermore, a real data example from a genome wide association study is used to illustrate inferior performance of marginal correlation screening compared to another screening method.
stat
A Computational Theory of Robust Localization Verifiability in the Presence of Pure Outlier Measurements
The problem of localizing a set of nodes from relative pairwise measurements is at the core of many applications such as Structure from Motion (SfM), sensor networks, and Simultaneous Localization And Mapping (SLAM). In practical situations, the accuracy of the relative measurements is marred by noise and outliers; hence, we have the problem of quantifying how much we should trust the solution returned by some given localization solver. In this work, we focus on the question of whether an L1-norm robust optimization formulation can recover a solution that is identical to the ground truth, under the scenario of translation-only measurements corrupted exclusively by outliers and no noise; we call this concept verifiability. On the theoretical side, we prove that the verifiability of a problem depends only on the topology of the graph of measurements, the edge support of the outliers, and their signs, while it is independent of ground truth locations of the nodes, and of any positive scaling of the outliers. On the computational side, we present a novel approach based on the dual simplex algorithm that can check the verifiability of a problem, completely characterize the space of equivalent solutions if they exist, and identify subgraphs that are verifiable. As an application of our theory, we provide a procedure to compute a priori probability of recovering a solution congruent or equivalent to the ground truth given a measurement graph and the probabilities of each edge containing an outlier.
stat
Estimating conditional probabilities of historical migrations in the transatlantic slave trade using kriging and Markov decision process models
Intra-African conflicts during the collapse of the kingdom of Oyo from 1817 to 1836 resulted in the enslavement of an estimated 121,000 people who were then transported to coastal ports via complex trade networks and loaded onto slave ships destined for the Americas. Historians have a good record of where these people went across the Atlantic, but little is known about where individuals were from or enslaved \textit{within} Africa. In this work, we develop a novel two-step statistical approach to describe the enslavement of people given documented violent conflict, the transport of enslaved peoples from their location of capture to their port of departure, and---given an enslaved individual's location of departure---that person's probability of origin. We combine spatial prediction of conflict density via Kriging with a Markov decision process characterising intra-African transportation. The results of this model can be visualised using an interactive web application, plotting estimated conditional probabilities of historical migrations during the African diaspora. These results help trace the uncertain origins of people enslaved in this region of Africa during this time period: using the two-step statistical methodology developed here provides a probabilistic answer to this question.
stat
Causal Inference in the Time of Covid-19
In this paper we develop statistical methods for causal inference in epidemics. Our focus is in estimating the effect of social mobility on deaths in the Covid-19 pandemic. We propose a marginal structural model motivated by a modified version of a basic epidemic model. We estimate the counterfactual time series of deaths under interventions on mobility. We conduct several types of sensitivity analyses. We find that the data support the idea that reduced mobility causes reduced deaths, but the conclusion comes with caveats. There is evidence of sensitivity to model misspecification and unmeasured confounding which implies that the size of the causal effect needs to be interpreted with caution. While there is little doubt the the effect is real, our work highlights the challenges in drawing causal inferences from pandemic data.
stat
Floodgate: inference for model-free variable importance
Many modern applications seek to understand the relationship between an outcome variable $Y$ and a covariate $X$ in the presence of a (possibly high-dimensional) confounding variable $Z$. Although much attention has been paid to testing whether $Y$ depends on $X$ given $Z$, in this paper we seek to go beyond testing by inferring the strength of that dependence. We first define our estimand, the minimum mean squared error (mMSE) gap, which quantifies the conditional relationship between $Y$ and $X$ in a way that is deterministic, model-free, interpretable, and sensitive to nonlinearities and interactions. We then propose a new inferential approach called floodgate that can leverage any working regression function chosen by the user (allowing, e.g., it to be fitted by a state-of-the-art machine learning algorithm or be derived from qualitative domain knowledge) to construct asymptotic confidence bounds, and we apply it to the mMSE gap. In addition to proving floodgate's asymptotic validity, we rigorously quantify its accuracy (distance from confidence bound to estimand) and robustness. We demonstrate floodgate's performance in a series of simulations and apply it to data from the UK Biobank to infer the strengths of dependence of platelet count on various groups of genetic mutations.
stat
Applications of Common Entropy for Causal Inference
We study the problem of discovering the simplest latent variable that can make two observed discrete variables conditionally independent. The minimum entropy required for such a latent is known as common entropy in information theory. We extend this notion to Renyi common entropy by minimizing the Renyi entropy of the latent variable. To efficiently compute common entropy, we propose an iterative algorithm that can be used to discover the trade-off between the entropy of the latent variable and the conditional mutual information of the observed variables. We show two applications of common entropy in causal inference: First, under the assumption that there are no low-entropy mediators, it can be used to distinguish causation from spurious correlation among almost all joint distributions on simple causal graphs with two observed variables. Second, common entropy can be used to improve constraint-based methods such as PC or FCI algorithms in the small-sample regime, where these methods are known to struggle. We propose a modification to these constraint-based methods to assess if a separating set found by these algorithms is valid using common entropy. We finally evaluate our algorithms on synthetic and real data to establish their performance.
stat
A Bayesian Statistics Course for Undergraduates: Bayesian Thinking, Computing, and Research
We propose a semester-long Bayesian statistics course for undergraduate students with calculus and probability background. We cultivate students' Bayesian thinking with Bayesian methods applied to real data problems. We leverage modern Bayesian computing techniques not only for implementing Bayesian methods, but also to deepen students' understanding of the methods. Collaborative case studies further enrich students' learning and provide experience to solve open-ended applied problems. The course has an emphasis on undergraduate research, where accessible academic journal articles are read, discussed, and critiqued in class. With increased confidence and familiarity, students take the challenge of reading, implementing, and sometimes extending methods in journal articles for their course projects.
stat
Prevalence Estimation from Random Samples and Census Data with Participation Bias
Countries officially record the number of COVID-19 cases based on medical tests of a subset of the population with unknown participation bias. For prevalence estimation, the official information is typically discarded and, instead, small random survey samples are taken. We derive (maximum likelihood and method of moment) prevalence estimators, based on a survey sample, that additionally utilize the official information, and that are substantially more accurate than the simple sample proportion of positive cases. Put differently, using our estimators, the same level of precision can be obtained with substantially smaller survey samples. We take into account the possibility of measurement errors due to the sensitivity and specificity of the medical testing procedure. The proposed estimators and associated confidence intervals are implemented in the companion open source R package cape.
stat
Generalized tensor regression with covariates on multiple modes
We consider the problem of tensor-response regression given covariates on multiple modes. Such data problems arise frequently in applications such as neuroimaging, network analysis, and spatial-temporal modeling. We propose a new family of tensor response regression models that incorporate covariates, and establish the theoretical accuracy guarantees. Unlike earlier methods, our estimation allows high-dimensionality in both the tensor response and the covariate matrices on multiple modes. An efficient alternating updating algorithm is further developed. Our proposal handles a broad range of data types, including continuous, count, and binary observations. Through simulation and applications to two real datasets, we demonstrate the outperformance of our approach over the state-of-art.
stat
Warped Gradient-Enhanced Gaussian Process Surrogate Models for Inference with Intractable Likelihoods
Markov chain Monte Carlo methods for intractable likelihoods, such as the exchange algorithm, require simulations of the sufficient statistics at every iteration of the Markov chain, which often result in expensive computations. Surrogate models for the likelihood function have been developed to accelerate inference algorithms in this context. However, these surrogate models tend to be relatively inflexible, and often provide a poor approximation to the true likelihood function. In this article, we propose the use of a warped, gradient-enhanced, Gaussian process surrogate model for the likelihood function, which jointly models the sample means and variances of the sufficient statistics, and uses warping functions to capture covariance nonstationarity in the input parameter space. We show that both the consideration of nonstationarity and the inclusion of gradient information can be leveraged to obtain a surrogate model that outperforms the conventional stationary Gaussian process surrogate model when making inference, particularly in regions where the likelihood function exhibits a phase transition. We also show that the proposed surrogate model can be used to improve the effective sample size per unit time when embedded in exact inferential algorithms. The utility of our approach in speeding up inferential algorithms is demonstrated on simulated and real-world data.
stat
Confidence intervals for class prevalences under prior probability shift
Point estimation of class prevalences in the presence of data set shift has been a popular research topic for more than two decades. Less attention has been paid to the construction of confidence and prediction intervals for estimates of class prevalences. One little considered question is whether or not it is necessary for practical purposes to distinguish confidence and prediction intervals. Another question so far not yet conclusively answered is whether or not the discriminatory power of the classifier or score at the basis of an estimation method matters for the accuracy of the estimates of the class prevalences. This paper presents a simulation study aimed at shedding some light on these and other related questions.
stat
Onset detection: A new approach to QBH system
Query by Humming (QBH) is a system to provide a user with the song(s) which the user hums to the system. Current QBH method requires the extraction of onset and pitch information in order to track similarity with various versions of different songs. However, we here focus on detecting precise onsets only and use them to build a QBH system which is better than existing methods in terms of speed and memory and empirically in terms of accuracy. We also provide statistical analogy for onset detection functions and provide a measure of error in our algorithm.
stat
Visualizing and comparing distributions with half-disk density strips
We propose a user-friendly graphical tool, the half-disk density strip (HDDS), for visualizing and comparing probability density functions. The HDDS exploits color shading for representing a distribution in an intuitive way. In univariate settings, the half-disk density strip allows to immediately discern the key characteristics of a density, such as symmetry, dispersion, and multi-modality. In the multivariate settings, we define HDDS tables to generalize the concept of contingency tables. It is an array of half-disk density strips, which compactly displays the univariate marginal and conditional densities of a variable of interest, together with the joint and marginal densities of the conditioning variables. Moreover, HDDSs are by construction well suited to easily compare pairs of densities. To highlight the concrete benefits of the proposed methods, we show how to use HDDSs for analyzing income distribution and life-satisfaction, conditionally on continuous and categorical controls, from survey data. The code for implementing HDDS methods is made available through a dedicated R package.
stat
Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles
Both feature selection and hyperparameter tuning are key tasks in machine learning. Hyperparameter tuning is often useful to increase model performance, while feature selection is undertaken to attain sparse models. Sparsity may yield better model interpretability and lower cost of data acquisition, data handling and model inference. While sparsity may have a beneficial or detrimental effect on predictive performance, a small drop in performance may be acceptable in return for a substantial gain in sparseness. We therefore treat feature selection as a multi-objective optimization task. We perform hyperparameter tuning and feature selection simultaneously because the choice of features of a model may influence what hyperparameters perform well. We present, benchmark, and compare two different approaches for multi-objective joint hyperparameter optimization and feature selection: The first uses multi-objective model-based optimization. The second is an evolutionary NSGA-II-based wrapper approach to feature selection which incorporates specialized sampling, mutation and recombination operators. Both methods make use of parameterized filter ensembles. While model-based optimization needs fewer objective evaluations to achieve good performance, it incurs computational overhead compared to the NSGA-II, so the preferred choice depends on the cost of evaluating a model on given data.
stat
Quantifying Artifacts over Time: Interval Estimation of a Poisson Distribution using the Jeffreys Prior
This article presents a new method for estimating the amount of an artifact class in use at a given moment in the past from a random assemblage of archaeological finds. This method is based on the use of simulation, since an analytical solution is computationally impractical. Estimating the number of artifacts in use at any time $t$ is shown to follow a Poisson distribution, which allows for credible intervals to be established using the Jeffreys prior. This estimator works from minimal assumptions about the dating and duration of finds, as well as the intensity of collection, and is applied to coinage from four Roman-period sites excavated by the Roman Peasant Project (2009-2014). The result provides for an estimation of the abundance of material according to an interval of certainty.
stat
Residual Entropy
We describe an approach to improving model fitting and model generalization that considers the entropy of distributions of modelling residuals. We use simple simulations to demonstrate the observational signatures of overfitting on ordered sequences of modelling residuals, via the autocorrelation and power spectral density. These results motivate the conclusion that, as commonly applied, the least squares method assumes too much when it assumes that residuals are uncorrelated for all possible models or values of the model parameters. We relax these too-stringent assumptions in favour of imposing an entropy prior on the (unknown, model-dependent, but potentially marginalizable) distribution function for residuals. We recommend a simple extension to the Mean Squared Error loss function that approximately incorporates this prior and can be used immediately for modelling applications where meaningfully-ordered sequences of observations or training data can be defined.
stat
Sparse Laplacian Shrinkage with the Graphical Lasso Estimator for Regression Problems
This paper considers a high-dimensional linear regression problem where there are complex correlation structures among predictors. We propose a graph-constrained regularization procedure, named Sparse Laplacian Shrinkage with the Graphical Lasso Estimator (SLS-GLE). The procedure uses the estimated precision matrix to describe the specific information on the conditional dependence pattern among predictors, and encourages both sparsity on the regression model and the graphical model. We introduce the Laplacian quadratic penalty adopting the graph information, and give detailed discussions on the advantages of using the precision matrix to construct the Laplacian matrix. Theoretical properties and numerical comparisons are presented to show that the proposed method improves both model interpretability and accuracy of estimation. We also apply this method to a financial problem and prove that the proposed procedure is successful in assets selection.
stat
A semi-supervised learning framework for quantitative structure-activity regression modelling
Supervised learning models, also known as quantitative structure-activity regression (QSAR) models, are increasingly used in assisting the process of preclinical, small molecule drug discovery. The models are trained on data consisting of a finite dimensional representation of molecular structures and their corresponding target specific activities. These models can then be used to predict the activity of previously unmeasured novel compounds. In this work we address two problems related to this approach. The first is to estimate the extent to which the quality of the model predictions degrades for compounds very different from the compounds in the training data. The second is to adjust for the screening dependent selection bias inherent in many training data sets. In the most extreme cases, only compounds which pass an activity-dependent screening are reported. By using a semi-supervised learning framework, we show that it is possible to make predictions which take into account the similarity of the testing compounds to those in the training data and adjust for the reporting selection bias. We illustrate this approach using publicly available structure-activity data on a large set of compounds reported by GlaxoSmithKline (the Tres Cantos AntiMalarial Set) to inhibit in vitro P. falciparum growth.
stat
Neural Mixture Distributional Regression
We present neural mixture distributional regression (NMDR), a holistic framework to estimate complex finite mixtures of distributional regressions defined by flexible additive predictors. Our framework is able to handle a large number of mixtures of potentially different distributions in high-dimensional settings, allows for efficient and scalable optimization and can be applied to recent concepts that combine structured regression models with deep neural networks. While many existing approaches for mixture models address challenges in optimization of such and provide results for convergence under specific model assumptions, our approach is assumption-free and instead makes use of optimizers well-established in deep learning. Through extensive numerical experiments and a high-dimensional deep learning application we provide evidence that the proposed approach is competitive to existing approaches and works well in more complex scenarios.
stat
Adaptive spline fitting with particle swarm optimization
In fitting data with a spline, finding the optimal placement of knots can significantly improve the quality of the fit. However, the challenging high-dimensional and non-convex optimization problem associated with completely free knot placement has been a major roadblock in using this approach. We present a method that uses particle swarm optimization (PSO) combined with model selection to address this challenge. The problem of overfitting due to knot clustering that accompanies free knot placement is mitigated in this method by explicit regularization, resulting in a significantly improved performance on highly noisy data. The principal design choices available in the method are delineated and a statistically rigorous study of their effect on performance is carried out using simulated data and a wide variety of benchmark functions. Our results demonstrate that PSO-based free knot placement leads to a viable and flexible adaptive spline fitting approach that allows the fitting of both smooth and non-smooth functions.
stat
The Shapley Value of coalition of variables provides better explanations
While Shapley Values (SV) are one of the gold standard for interpreting machine learning models, we show that they are still poorly understood, in particular in the presence of categorical variables or of variables of low importance. For instance, we show that the popular practice that consists in summing the SV of dummy variables is false as it provides wrong estimates of all the SV in the model and implies spurious interpretations. Based on the identification of null and active coalitions, and a coalitional version of the SV, we provide a correct computation and inference of important variables. Moreover, a Python library (All the experiments and simulations can be reproduced with the publicly available library Active Coalition of Variables, https://www.github.com/salimamoukou/acv00) that computes reliably conditional expectations and SV for tree-based models, is implemented and compared with state-of-the-art algorithms on toy models and real data sets.
stat
Estimating the error variance in a high-dimensional linear model
The lasso has been studied extensively as a tool for estimating the coefficient vector in the high-dimensional linear model; however, considerably less is known about estimating the error variance in this context. In this paper, we propose the natural lasso estimator for the error variance, which maximizes a penalized likelihood objective. A key aspect of the natural lasso is that the likelihood is expressed in terms of the natural parameterization of the multiparameter exponential family of a Gaussian with unknown mean and variance. The result is a remarkably simple estimator of the error variance with provably good performance in terms of mean squared error. These theoretical results do not require placing any assumptions on the design matrix or the true regression coefficients. We also propose a companion estimator, called the organic lasso, which theoretically does not require tuning of the regularization parameter. Both estimators do well empirically compared to preexisting methods, especially in settings where successful recovery of the true support of the coefficient vector is hard. Finally, we show that existing methods can do well under fewer assumptions than previously known, thus providing a fuller story about the problem of estimating the error variance in high-dimensional linear models.
stat
A Probabilistic Assessment of the COVID-19 Lockdown on Air Quality in the UK
In March 2020 the United Kingdom (UK) entered a nationwide lockdown period due to the Covid-19 pandemic. As a result, levels of nitrogen dioxide (NO2) in the atmosphere dropped. In this work, we use 550,134 NO2 data points from 237 stations in the UK to build a spatiotemporal Gaussian process capable of predicting NO2 levels across the entire UK. We integrate several covariate datasets to enhance the model's ability to capture the complex spatiotemporal dynamics of NO2. Our numerical analyses show that, within two weeks of a UK lockdown being imposed, UK NO2 levels dropped 36.8%. Further, we show that as a direct result of lockdown NO2 levels were 29-38% lower than what they would have been had no lockdown occurred. In accompaniment to these numerical results, we provide a software framework that allows practitioners to easily and efficiently fit similar models.
stat
Detection of foraging behavior from accelerometer data using U-Net type convolutional networks
Narwhal is one of the most mysterious marine mammals, due to its isolated habitat in the Arctic region. Tagging is a technology that has the potential to explore the activities of this species, where behavioral information can be collected from instrumented individuals. This includes accelerometer data, diving and acoustic data as well as GPS positioning. An essential element in understanding the ecological role of toothed whales is to characterize their feeding behavior and estimate the amount of food consumption. Buzzes are sounds emitted by toothed whales that are related directly to the foraging behaviors. It is therefore of interest to measure or estimate the rate of buzzing to estimate prey intake. The main goal of this paper is to find a way to detect prey capture attempts directly from accelerometer data, and thus be able to estimate food consumption without the need for the more demanding acoustic data. We develop 3 automated buzz detection methods based on accelerometer and depth data solely. We use a dataset from 5 narwhals instrumented in East Greenland in 2018 to train, validate and test a logistic regression model and the machine learning algorithms random forest and deep learning, using the buzzes detected from acoustic data as the ground truth. The deep learning algorithm performed best among the tested methods. We conclude that reliable buzz detectors can be derived from high-frequency-sampling, back-mounted accelerometer tags, thus providing an alternative tool for studies of foraging ecology of marine mammals in their natural environments. We also compare buzz detection with certain movement patterns, such as sudden changes in acceleration (jerks), found in other marine mammal species for estimating prey capture. We find that narwhals do not seem to make big jerks when foraging and conclude that their hunting patterns in that respect differ from other marine mammals.
stat
Comparing partitions through the Matching Error
With the aim to propose a non parametric hypothesis test, this paper carries out a study on the Matching Error (ME), a comparison index of two partitions obtained from the same data set, using for example two clustering methods. This index is related to the misclassifica-tion error in supervised learning. Some properties of the ME and, especially, its distribution function for the case of two independent partitions are analyzed. Extensive simulations show the efficiency of the ME and we propose a hypothesis test based on it.
stat
Additive Models for Symmetric Positive-Definite Matrices, Riemannian Manifolds and Lie groups
In this paper an additive regression model for a symmetric positive-definite matrix valued response and multiple scalar predictors is proposed. The model exploits the abelian group structure inherited from either the Log-Cholesky metric or the Log-Euclidean framework that turns the space of symmetric positive-definite matrices into a Riemannian manifold and further a bi-invariant Lie group. The additive model for responses in the space of symmetric positive-definite matrices with either of these metrics is shown to connect to an additive model on a tangent space. This connection not only entails an efficient algorithm to estimate the component functions but also allows to generalize the proposed additive model to general Riemannian manifolds that might not have a Lie group structure. Optimal asymptotic convergence rates and normality of the estimated component functions are also established. Numerical studies show that the proposed model enjoys superior numerical performance, especially when there are multiple predictors. The practical merits of the proposed model are demonstrated by analyzing diffusion tensor brain imaging data.
stat
Vectorized Uncertainty Propagation and Input Probability Sensitivity Analysis
In this article we construct a theoretical and computational process for assessing Input Probability Sensitivity Analysis (IPSA) using a Graphics Processing Unit (GPU) enabled technique called Vectorized Uncertainty Propagation (VUP). VUP propagates probability distributions through a parametric computational model in a way that's computational time complexity grows sublinearly in the number of distinct propagated input probability distributions. VUP can therefore be used to efficiently implement IPSA, which estimates a model's probabilistic sensitivity to measurement and parametric uncertainty over each relevant measurement location. Theory and simulation illustrate the effectiveness of these methods.
stat
Modeling a sequence of multinomial data with randomly varying probabilities
We consider a sequence of variables having multinomial distribution with the number of trials corresponding to these variables being large and possibly different. The multinomial probabilities of the categories are assumed to vary randomly depending on batches. The proposed framework is interesting from the perspective of various applications in practice such as predicting the winner of an election, forecasting the market share of different brands etc. In this work, first we derive sufficient conditions of asymptotic normality of the estimates of the multinomial cell probabilities, and corresponding suitable transformations. Then, we consider a Bayesian setting to implement our model. We consider hierarchical priors using multivariate normal and inverse Wishart distributions, and establish the posterior consistency. Based on this result and following appropriate Gibbs sampling algorithms, we can infer about aggregate data. The methodology is illustrated in detail with two real life applications, in the contexts of political election and sales forecasting. Additional insights of effectiveness are also derived through a simulation study.
stat
Probabilistic Performance-Pattern Decomposition (PPPD): analysis framework and applications to stochastic mechanical systems
Since the early 1900s, numerous research efforts have been devoted to developing quantitative solutions to stochastic mechanical systems. In general, the problem is perceived as solved when a complete or partial probabilistic description on the quantity of interest (QoI) is determined. However, in the presence of complex system behavior, there is a critical need to go beyond mere probabilistic descriptions. In fact, to gain a full understanding of the system, it is crucial to extract physical characterizations from the probabilistic structure of the QoI, especially when the QoI solution is obtained in a data-driven fashion. Motivated by this perspective, the paper proposes a framework to obtain structuralized characterizations on behaviors of stochastic systems. The framework is named Probabilistic Performance-Pattern Decomposition (PPPD). PPPD analysis aims to decompose complex response behaviors, conditional to a prescribed performance state, into meaningful patterns in the space of system responses, and to investigate how the patterns are triggered in the space of basic random variables. To illustrate the application of PPPD, the paper studies three numerical examples: 1) an illustrative example with hypothetical stochastic processes input and output; 2) a stochastic Lorenz system with periodic as well as chaotic behaviors; and 3) a simplified shear-building model subjected to a stochastic ground motion excitation.
stat
Qsparse-local-SGD: Distributed SGD with Quantization, Sparsification, and Local Computations
Communication bottleneck has been identified as a significant issue in distributed optimization of large-scale learning models. Recently, several approaches to mitigate this problem have been proposed, including different forms of gradient compression or computing local models and mixing them iteratively. In this paper, we propose \emph{Qsparse-local-SGD} algorithm, which combines aggressive sparsification with quantization and local computation along with error compensation, by keeping track of the difference between the true and compressed gradients. We propose both synchronous and asynchronous implementations of \emph{Qsparse-local-SGD}. We analyze convergence for \emph{Qsparse-local-SGD} in the \emph{distributed} setting for smooth non-convex and convex objective functions. We demonstrate that \emph{Qsparse-local-SGD} converges at the same rate as vanilla distributed SGD for many important classes of sparsifiers and quantizers. We use \emph{Qsparse-local-SGD} to train ResNet-50 on ImageNet and show that it results in significant savings over the state-of-the-art, in the number of bits transmitted to reach target accuracy.
stat
Analysis and Simulation of Extremes and Rare Events in Complex Systems
Rare weather and climate events, such as heat waves and floods, can bring tremendous social costs. Climate data is often limited in duration and spatial coverage, and climate forecasting has often turned to simulations of climate models to make better predictions of rare weather events. However very long simulations of complex models, in order to obtain accurate probability estimates, may be prohibitively slow. It is an important scientific problem to develop probabilistic and dynamical techniques to estimate the probabilities of rare events accurately from limited data. In this paper we compare four modern methods of estimating the probability of rare events: the generalized extreme value (GEV) method from classical extreme value theory; two importance sampling techniques, genealogical particle analysis (GPA) and the Giardina-Kurchan-Lecomte-Tailleur (GKLT) algorithm; as well as brute force Monte Carlo (MC). With these techniques we estimate the probabilities of rare events in three dynamical models: the Ornstein-Uhlenbeck process, the Lorenz '96 system and PlaSim (a climate model). We keep the computational effort constant and see how well the rare event probability estimation of each technique compares to a gold standard afforded by a very long run control. Somewhat surprisingly we find that classical extreme value theory methods outperform GPA, GKLT and MC at estimating rare events.
stat
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
We propose an adaptively weighted stochastic gradient Langevin dynamics algorithm (SGLD), so-called contour stochastic gradient Langevin dynamics (CSGLD), for Bayesian learning in big data statistics. The proposed algorithm is essentially a \emph{scalable dynamic importance sampler}, which automatically \emph{flattens} the target distribution such that the simulation for a multi-modal distribution can be greatly facilitated. Theoretically, we prove a stability condition and establish the asymptotic convergence of the self-adapting parameter to a {\it unique fixed-point}, regardless of the non-convexity of the original energy function; we also present an error analysis for the weighted averaging estimators. Empirically, the CSGLD algorithm is tested on multiple benchmark datasets including CIFAR10 and CIFAR100. The numerical results indicate its superiority over the existing state-of-the-art algorithms in training deep neural networks.
stat
Uniform convergence of local Fr\'echet regression, with applications to locating extrema and time warping for metric-space valued trajectories
Local Fr\'echet regression is a nonparametric regression method for metric-space valued responses and Euclidean predictors, which can be utilized to obtain estimates of smooth trajectories taking values in general metric spaces from noisy metric-space valued random objects. We derive uniform rates of convergence, which so far have eluded theoretical analysis of this method, for both fixed and random target functions, where we utilize tools from empirical processes. These results are shown to be widely applicable in metric-space valued data analysis. In addition to simulations, we provide two pertinent examples where these results are important: The consistent estimation of the location of properly defined extrema in metric-space valued trajectories, which we illustrate with the problem of locating the age of minimum connectivity in the brain as obtained from fMRI data; and time warping for metric-space valued trajectories, illustrated with yearly mortality distributions across countries.
stat
Particle-based adaptive-lag online marginal smoothing in general state-space models
We present a novel algorithm, an adaptive-lag smoother, approximating efficiently, in an online fashion, sequences of expectations under the marginal smoothing distributions in general state-space models. The algorithm evolves recursively a bank of estimators, one for each marginal, in resemblance with the so-called particle-based, rapid incremental smoother (PaRIS). Each estimator is propagated until a stopping criterion, measuring the fluctuations of the estimates, is met. The presented algorithm is furnished with theoretical results describing its asymptotic limit and memory usage.
stat
TULIP: A Toolbox for Linear Discriminant Analysis with Penalties
Linear discriminant analysis (LDA) is a powerful tool in building classifiers with easy computation and interpretation. Recent advancements in science technology have led to the popularity of datasets with high dimensions, high orders and complicated structure. Such datasetes motivate the generalization of LDA in various research directions. The R package TULIP integrates several popular high-dimensional LDA-based methods and provides a comprehensive and user-friendly toolbox for linear, semi-parametric and tensor-variate classification. Functions are included for model fitting, cross validation and prediction. In addition, motivated by datasets with diverse sources of predictors, we further include functions for covariate adjustment. Our package is carefully tailored for low storage and high computation efficiency. Moreover, our package is the first R package for many of these methods, providing great convenience to researchers in this area.
stat
Uncertainty Quantification in Extreme Learning Machine: Analytical Developments, Variance Estimates and Confidence Intervals
Uncertainty quantification is crucial to assess prediction quality of a machine learning model. In the case of Extreme Learning Machines (ELM), most methods proposed in the literature make strong assumptions on the data, ignore the randomness of input weights or neglect the bias contribution in confidence interval estimations. This paper presents novel estimations that overcome these constraints and improve the understanding of ELM variability. Analytical derivations are provided under general assumptions, supporting the identification and the interpretation of the contribution of different variability sources. Under both homoskedasticity and heteroskedasticity, several variance estimates are proposed, investigated, and numerically tested, showing their effectiveness in replicating the expected variance behaviours. Finally, the feasibility of confidence intervals estimation is discussed by adopting a critical approach, hence raising the awareness of ELM users concerning some of their pitfalls. The paper is accompanied with a scikit-learn compatible Python library enabling efficient computation of all estimates discussed herein.
stat
Integrating Domain Knowledge in Data-driven Earth Observation with Process Convolutions
The modelling of Earth observation data is a challenging problem, typically approached by either purely mechanistic or purely data-driven methods. Mechanistic models encode the domain knowledge and physical rules governing the system. Such models, however, need the correct specification of all interactions between variables in the problem and the appropriate parameterization is a challenge in itself. On the other hand, machine learning approaches are flexible data-driven tools, able to approximate arbitrarily complex functions, but lack interpretability and struggle when data is scarce or in extrapolation regimes. In this paper, we argue that hybrid learning schemes that combine both approaches can address all these issues efficiently. We introduce Gaussian process (GP) convolution models for hybrid modelling in Earth observation (EO) problems. We specifically propose the use of a class of GP convolution models called latent force models (LFMs) for EO time series modelling, analysis and understanding. LFMs are hybrid models that incorporate physical knowledge encoded in differential equations into a multioutput GP model. LFMs can transfer information across time-series, cope with missing observations, infer explicit latent functions forcing the system, and learn parameterizations which are very helpful for system analysis and interpretability. We consider time series of soil moisture from active (ASCAT) and passive (SMOS, AMSR2) microwave satellites. We show how assuming a first order differential equation as governing equation, the model automatically estimates the e-folding time or decay rate related to soil moisture persistence and discovers latent forces related to precipitation. The proposed hybrid methodology reconciles the two main approaches in remote sensing parameter estimation by blending statistical learning and mechanistic modeling.
stat
Profile Entropy: A Fundamental Measure for the Learnability and Compressibility of Discrete Distributions
The profile of a sample is the multiset of its symbol frequencies. We show that for samples of discrete distributions, profile entropy is a fundamental measure unifying the concepts of estimation, inference, and compression. Specifically, profile entropy a) determines the speed of estimating the distribution relative to the best natural estimator; b) characterizes the rate of inferring all symmetric properties compared with the best estimator over any label-invariant distribution collection; c) serves as the limit of profile compression, for which we derive optimal near-linear-time block and sequential algorithms. To further our understanding of profile entropy, we investigate its attributes, provide algorithms for approximating its value, and determine its magnitude for numerous structural distribution families.
stat