Datasets:
pretty_name: J
dataset_info:
- config_name: Github_easy
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 1208636
num_examples: 1170
- name: val
num_bytes: 182688
num_examples: 191
- name: test
num_bytes: 539656
num_examples: 577
download_size: 540610
dataset_size: 1930980
- config_name: Github_hard
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 12816152
num_examples: 746
- name: val
num_bytes: 1607525
num_examples: 122
- name: test
num_bytes: 5754647.483870967
num_examples: 368
download_size: 3562146
dataset_size: 20178324.48387097
- config_name: Github_medium
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 4990832
num_examples: 1189
- name: val
num_bytes: 557390
num_examples: 194
- name: test
num_bytes: 2417201.5784148397
num_examples: 586
download_size: 1580336
dataset_size: 7965423.57841484
- config_name: Github_trivial
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 467333.24324324325
num_examples: 266
- name: val
num_bytes: 77303.24324324324
num_examples: 44
- name: test
num_bytes: 235423.51351351352
num_examples: 134
download_size: 158044
dataset_size: 780060
- config_name: Github_ultra
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 7311744.743902439
num_examples: 98
- name: val
num_bytes: 1193754.243902439
num_examples: 16
- name: test
num_bytes: 3730482.012195122
num_examples: 50
download_size: 2221455
dataset_size: 12235981
- config_name: Glaiveai2K
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 865943.3989455184
num_examples: 1026
- name: val
num_bytes: 141791.9015817223
num_examples: 168
- name: test
num_bytes: 432971.6994727592
num_examples: 513
download_size: 284264
dataset_size: 1440707
- config_name: JsonSchemaStore
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 13308367.977642277
num_examples: 295
- name: val
num_bytes: 2210542.4776422763
num_examples: 49
- name: test
num_bytes: 6676740.544715447
num_examples: 148
download_size: 4019966
dataset_size: 22195651
- config_name: Kubernetes
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 15388503.69924812
num_examples: 639
- name: val
num_bytes: 2528627.3684210526
num_examples: 105
- name: test
num_bytes: 7706292.932330827
num_examples: 320
download_size: 6819424
dataset_size: 25623424
- config_name: Snowplow
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 969083.2952853598
num_examples: 242
- name: val
num_bytes: 160179.0570719603
num_examples: 40
- name: test
num_bytes: 484541.6476426799
num_examples: 121
download_size: 298277
dataset_size: 1613804
- config_name: WashingtonPost
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 1604526.016
num_examples: 74
- name: val
num_bytes: 281876.192
num_examples: 13
- name: test
num_bytes: 823945.792
num_examples: 38
download_size: 565170
dataset_size: 2710348
- config_name: default
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 54520620
num_examples: 5754
- name: val
num_bytes: 15255546
num_examples: 937
- name: test
num_bytes: 27031812.394351464
num_examples: 2867
download_size: 20765998
dataset_size: 96807978.39435147
configs:
- config_name: Github_easy
data_files:
- split: train
path: Github_easy/train-*
- split: val
path: Github_easy/val-*
- split: test
path: Github_easy/test-*
- config_name: Github_hard
data_files:
- split: train
path: Github_hard/train-*
- split: val
path: Github_hard/val-*
- split: test
path: Github_hard/test-*
- config_name: Github_medium
data_files:
- split: train
path: Github_medium/train-*
- split: val
path: Github_medium/val-*
- split: test
path: Github_medium/test-*
- config_name: Github_trivial
data_files:
- split: train
path: Github_trivial/train-*
- split: val
path: Github_trivial/val-*
- split: test
path: Github_trivial/test-*
- config_name: Github_ultra
data_files:
- split: train
path: Github_ultra/train-*
- split: val
path: Github_ultra/val-*
- split: test
path: Github_ultra/test-*
- config_name: Glaiveai2K
data_files:
- split: train
path: Glaiveai2K/train-*
- split: val
path: Glaiveai2K/val-*
- split: test
path: Glaiveai2K/test-*
- config_name: JsonSchemaStore
data_files:
- split: train
path: JsonSchemaStore/train-*
- split: val
path: JsonSchemaStore/val-*
- split: test
path: JsonSchemaStore/test-*
- config_name: Kubernetes
data_files:
- split: train
path: Kubernetes/train-*
- split: val
path: Kubernetes/val-*
- split: test
path: Kubernetes/test-*
- config_name: Snowplow
data_files:
- split: train
path: Snowplow/train-*
- split: val
path: Snowplow/val-*
- split: test
path: Snowplow/test-*
- config_name: WashingtonPost
data_files:
- split: train
path: WashingtonPost/train-*
- split: val
path: WashingtonPost/val-*
- split: test
path: WashingtonPost/test-*
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
- split: test
path: data/test-*
license: mit
task_categories:
- text-generation
JSONSchemaBench
JSONSchemaBench is a benchmark of real-world JSON schemas designed to evaluate structured output generation for Large Language Models (LLMs). It contains approximately 10,000 JSON schemas, capturing diverse constraints and complexities.
import datasets
from datasets import load_dataset
def main():
# Inspect the available subsets of the dataset
all_subsets = datasets.get_dataset_config_names("epfl-dlab/JSONSchemaBench")
print("Available subsets:", all_subsets)
# Example output: ['Github_easy', 'Github_hard', 'Github_medium', 'Github_trivial', 'Github_ultra', 'Glaiveai2K', 'JsonSchemaStore', 'Kubernetes', 'Snowplow', 'WashingtonPost', 'default']
# Access a specific subset of the dataset
subset_name = "Github_easy"
github_easy = load_dataset("epfl-dlab/JSONSchemaBench", subset_name)
print(f"Loaded subset '{subset_name}':", github_easy)
# Load the entire dataset as a whole
entire_dataset = load_dataset("epfl-dlab/JSONSchemaBench", "default")
print("Loaded entire dataset:", entire_dataset)
if __name__ == "__main__":
main()
Update (March 31st, 2025)
To improve inference efficiency and streamline data collation, weβve decided to drop a small number of exceptionally long samples from the dataset.
Weβre using the meta-llama/Llama-3.2-1B-instruct
tokenizer, and the filtering criteria are as follows:
- Github_easy: Samples longer than 1024 tokens β 5 out of 582 removed
- Github_medium: Samples longer than 2048 tokens β 7 out of 593 removed
- Github_hard: Samples longer than 8192 tokens β 4 out of 372 removed
- Other subsets are not touched
Since the number of discarded samples is minimal, this change is expected to have at most a 1% impact on results.
β οΈ Important Update (March 10th, 2025)
We have restructured the dataset to include train/val/test splits. If you downloaded the dataset before this date, you might encounter errors like KeyError: 'Github_easy'
.
To fix this issue, please follow one of the options below:
- Update How Subsets Are Accessed: If you previously used:
from datasets import load_dataset, concatenate_datasets, DatasetDict, Dataset
subset: DatasetDict = load_dataset("epfl-dlab/JSONSchemaBench")
subset["Github_easy"]
You can update it to:
from datasets import load_dataset, concatenate_datasets, DatasetDict, Dataset
subset: DatasetDict = load_dataset("epfl-dlab/JSONSchemaBench", name="Github_easy")
subset: Dataset = concatenate_datasets([subset["train"], subset["val"], subset["test"]])
- Load the Dataset in the Old Structure: If you need the previous structure, you can use a specific revision:
dataset = load_dataset("epfl-dlab/JSONSchemaBench", revision="e2ee5fdba65657c60d3a24b321172eb7141f8d73")
We apologize for the inconvenience and appreciate your understanding! π
π Dataset Overview
- Purpose: Evaluate the efficiency and coverage of structured output generation.
- Sources: GitHub, Kubernetes, API specifications, curated collections.
- Schemas: Categorized based on complexity and domain.
π Dataset Breakdown
Dataset | Category | Count |
---|---|---|
GlaiveAI-2K | Function Call | 1707 |
Github-Trivial | Misc | 444 |
Github-Easy | Misc | 1943 |
Snowplow | Operational API | 403 |
Github-Medium | Misc | 1976 |
Kubernetes | Kubernetes API | 1064 |
Washington Post | Resource Access API | 125 |
Github-Hard | Misc | 1240 |
JSONSchemaStore | Misc | 492 |
Github-Ultra | Misc | 164 |
Total | 9558 |
π₯ Loading the Dataset
from datasets import load_dataset
dataset = load_dataset("epfl-dlab/JSONSchemaBench")
print(dataset)
π Data Structure
Each dataset split contains:
"json_schema"
: The schema definition."unique_id"
: A unique identifier for the schema.
π For more details, check out the paper.
π Citation
@misc{geng2025jsonschemabench,
title={Generating Structured Outputs from Language Models: Benchmark and Studies},
author={Saibo Geng et al.},
year={2025},
eprint={2501.10868},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.10868}
}
License
This dataset is provided under the MIT License. Please ensure that you comply with the license terms when using or distributing this dataset.
Acknowledgements
We would like to thank the contributors and maintainers of the JSON schema projects and the open-source community for their invaluable work and support.