Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
JSONSchemaBench / README.md
Saibo-creator's picture
Update README.md
5bd0f46 verified
metadata
pretty_name: J
dataset_info:
  - config_name: Github_easy
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 1208636
        num_examples: 1170
      - name: val
        num_bytes: 182688
        num_examples: 191
      - name: test
        num_bytes: 539656
        num_examples: 577
    download_size: 540610
    dataset_size: 1930980
  - config_name: Github_hard
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 12816152
        num_examples: 746
      - name: val
        num_bytes: 1607525
        num_examples: 122
      - name: test
        num_bytes: 5754647.483870967
        num_examples: 368
    download_size: 3562146
    dataset_size: 20178324.48387097
  - config_name: Github_medium
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 4990832
        num_examples: 1189
      - name: val
        num_bytes: 557390
        num_examples: 194
      - name: test
        num_bytes: 2417201.5784148397
        num_examples: 586
    download_size: 1580336
    dataset_size: 7965423.57841484
  - config_name: Github_trivial
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 467333.24324324325
        num_examples: 266
      - name: val
        num_bytes: 77303.24324324324
        num_examples: 44
      - name: test
        num_bytes: 235423.51351351352
        num_examples: 134
    download_size: 158044
    dataset_size: 780060
  - config_name: Github_ultra
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 7311744.743902439
        num_examples: 98
      - name: val
        num_bytes: 1193754.243902439
        num_examples: 16
      - name: test
        num_bytes: 3730482.012195122
        num_examples: 50
    download_size: 2221455
    dataset_size: 12235981
  - config_name: Glaiveai2K
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 865943.3989455184
        num_examples: 1026
      - name: val
        num_bytes: 141791.9015817223
        num_examples: 168
      - name: test
        num_bytes: 432971.6994727592
        num_examples: 513
    download_size: 284264
    dataset_size: 1440707
  - config_name: JsonSchemaStore
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 13308367.977642277
        num_examples: 295
      - name: val
        num_bytes: 2210542.4776422763
        num_examples: 49
      - name: test
        num_bytes: 6676740.544715447
        num_examples: 148
    download_size: 4019966
    dataset_size: 22195651
  - config_name: Kubernetes
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 15388503.69924812
        num_examples: 639
      - name: val
        num_bytes: 2528627.3684210526
        num_examples: 105
      - name: test
        num_bytes: 7706292.932330827
        num_examples: 320
    download_size: 6819424
    dataset_size: 25623424
  - config_name: Snowplow
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 969083.2952853598
        num_examples: 242
      - name: val
        num_bytes: 160179.0570719603
        num_examples: 40
      - name: test
        num_bytes: 484541.6476426799
        num_examples: 121
    download_size: 298277
    dataset_size: 1613804
  - config_name: WashingtonPost
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 1604526.016
        num_examples: 74
      - name: val
        num_bytes: 281876.192
        num_examples: 13
      - name: test
        num_bytes: 823945.792
        num_examples: 38
    download_size: 565170
    dataset_size: 2710348
  - config_name: default
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 54520620
        num_examples: 5754
      - name: val
        num_bytes: 15255546
        num_examples: 937
      - name: test
        num_bytes: 27031812.394351464
        num_examples: 2867
    download_size: 20765998
    dataset_size: 96807978.39435147
configs:
  - config_name: Github_easy
    data_files:
      - split: train
        path: Github_easy/train-*
      - split: val
        path: Github_easy/val-*
      - split: test
        path: Github_easy/test-*
  - config_name: Github_hard
    data_files:
      - split: train
        path: Github_hard/train-*
      - split: val
        path: Github_hard/val-*
      - split: test
        path: Github_hard/test-*
  - config_name: Github_medium
    data_files:
      - split: train
        path: Github_medium/train-*
      - split: val
        path: Github_medium/val-*
      - split: test
        path: Github_medium/test-*
  - config_name: Github_trivial
    data_files:
      - split: train
        path: Github_trivial/train-*
      - split: val
        path: Github_trivial/val-*
      - split: test
        path: Github_trivial/test-*
  - config_name: Github_ultra
    data_files:
      - split: train
        path: Github_ultra/train-*
      - split: val
        path: Github_ultra/val-*
      - split: test
        path: Github_ultra/test-*
  - config_name: Glaiveai2K
    data_files:
      - split: train
        path: Glaiveai2K/train-*
      - split: val
        path: Glaiveai2K/val-*
      - split: test
        path: Glaiveai2K/test-*
  - config_name: JsonSchemaStore
    data_files:
      - split: train
        path: JsonSchemaStore/train-*
      - split: val
        path: JsonSchemaStore/val-*
      - split: test
        path: JsonSchemaStore/test-*
  - config_name: Kubernetes
    data_files:
      - split: train
        path: Kubernetes/train-*
      - split: val
        path: Kubernetes/val-*
      - split: test
        path: Kubernetes/test-*
  - config_name: Snowplow
    data_files:
      - split: train
        path: Snowplow/train-*
      - split: val
        path: Snowplow/val-*
      - split: test
        path: Snowplow/test-*
  - config_name: WashingtonPost
    data_files:
      - split: train
        path: WashingtonPost/train-*
      - split: val
        path: WashingtonPost/val-*
      - split: test
        path: WashingtonPost/test-*
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: val
        path: data/val-*
      - split: test
        path: data/test-*
license: mit
task_categories:
  - text-generation

JSONSchemaBench

Paper GitHub

JSONSchemaBench is a benchmark of real-world JSON schemas designed to evaluate structured output generation for Large Language Models (LLMs). It contains approximately 10,000 JSON schemas, capturing diverse constraints and complexities.

import datasets
from datasets import load_dataset

def main():
    # Inspect the available subsets of the dataset
    all_subsets = datasets.get_dataset_config_names("epfl-dlab/JSONSchemaBench")
    print("Available subsets:", all_subsets)
    # Example output: ['Github_easy', 'Github_hard', 'Github_medium', 'Github_trivial', 'Github_ultra', 'Glaiveai2K', 'JsonSchemaStore', 'Kubernetes', 'Snowplow', 'WashingtonPost', 'default']

    # Access a specific subset of the dataset
    subset_name = "Github_easy"
    github_easy = load_dataset("epfl-dlab/JSONSchemaBench", subset_name)
    print(f"Loaded subset '{subset_name}':", github_easy)

    # Load the entire dataset as a whole
    entire_dataset = load_dataset("epfl-dlab/JSONSchemaBench", "default")
    print("Loaded entire dataset:", entire_dataset)

if __name__ == "__main__":
    main()

Update (March 31st, 2025)

To improve inference efficiency and streamline data collation, we’ve decided to drop a small number of exceptionally long samples from the dataset.

We’re using the meta-llama/Llama-3.2-1B-instruct tokenizer, and the filtering criteria are as follows:

  • Github_easy: Samples longer than 1024 tokens β€” 5 out of 582 removed
  • Github_medium: Samples longer than 2048 tokens β€” 7 out of 593 removed
  • Github_hard: Samples longer than 8192 tokens β€” 4 out of 372 removed
  • Other subsets are not touched

Since the number of discarded samples is minimal, this change is expected to have at most a 1% impact on results.

⚠️ Important Update (March 10th, 2025)

We have restructured the dataset to include train/val/test splits. If you downloaded the dataset before this date, you might encounter errors like KeyError: 'Github_easy'.

To fix this issue, please follow one of the options below:

  1. Update How Subsets Are Accessed: If you previously used:
from datasets import load_dataset, concatenate_datasets, DatasetDict, Dataset

subset: DatasetDict = load_dataset("epfl-dlab/JSONSchemaBench")
subset["Github_easy"]

You can update it to:

from datasets import load_dataset, concatenate_datasets, DatasetDict, Dataset

subset: DatasetDict = load_dataset("epfl-dlab/JSONSchemaBench", name="Github_easy")
subset: Dataset = concatenate_datasets([subset["train"], subset["val"], subset["test"]])
  1. Load the Dataset in the Old Structure: If you need the previous structure, you can use a specific revision:
dataset = load_dataset("epfl-dlab/JSONSchemaBench", revision="e2ee5fdba65657c60d3a24b321172eb7141f8d73")

We apologize for the inconvenience and appreciate your understanding! 😊

πŸ“Œ Dataset Overview

  • Purpose: Evaluate the efficiency and coverage of structured output generation.
  • Sources: GitHub, Kubernetes, API specifications, curated collections.
  • Schemas: Categorized based on complexity and domain.

πŸ“Š Dataset Breakdown

Dataset Category Count
GlaiveAI-2K Function Call 1707
Github-Trivial Misc 444
Github-Easy Misc 1943
Snowplow Operational API 403
Github-Medium Misc 1976
Kubernetes Kubernetes API 1064
Washington Post Resource Access API 125
Github-Hard Misc 1240
JSONSchemaStore Misc 492
Github-Ultra Misc 164
Total 9558

πŸ“₯ Loading the Dataset

from datasets import load_dataset

dataset = load_dataset("epfl-dlab/JSONSchemaBench")
print(dataset)

πŸ” Data Structure

Each dataset split contains:

  • "json_schema": The schema definition.
  • "unique_id": A unique identifier for the schema.

πŸš€ For more details, check out the paper.

πŸ“š Citation

@misc{geng2025jsonschemabench,
      title={Generating Structured Outputs from Language Models: Benchmark and Studies},
      author={Saibo Geng et al.},
      year={2025},
      eprint={2501.10868},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.10868}
}

License

This dataset is provided under the MIT License. Please ensure that you comply with the license terms when using or distributing this dataset.

Acknowledgements

We would like to thank the contributors and maintainers of the JSON schema projects and the open-source community for their invaluable work and support.