Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
JSONSchemaBench / README.md
Saibo-creator's picture
Update README.md
5bd0f46 verified
---
pretty_name: J
dataset_info:
- config_name: Github_easy
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 1208636
num_examples: 1170
- name: val
num_bytes: 182688
num_examples: 191
- name: test
num_bytes: 539656.0
num_examples: 577
download_size: 540610
dataset_size: 1930980.0
- config_name: Github_hard
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 12816152
num_examples: 746
- name: val
num_bytes: 1607525
num_examples: 122
- name: test
num_bytes: 5754647.483870967
num_examples: 368
download_size: 3562146
dataset_size: 20178324.48387097
- config_name: Github_medium
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 4990832
num_examples: 1189
- name: val
num_bytes: 557390
num_examples: 194
- name: test
num_bytes: 2417201.5784148397
num_examples: 586
download_size: 1580336
dataset_size: 7965423.57841484
- config_name: Github_trivial
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 467333.24324324325
num_examples: 266
- name: val
num_bytes: 77303.24324324324
num_examples: 44
- name: test
num_bytes: 235423.51351351352
num_examples: 134
download_size: 158044
dataset_size: 780060.0
- config_name: Github_ultra
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 7311744.743902439
num_examples: 98
- name: val
num_bytes: 1193754.243902439
num_examples: 16
- name: test
num_bytes: 3730482.012195122
num_examples: 50
download_size: 2221455
dataset_size: 12235981.0
- config_name: Glaiveai2K
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 865943.3989455184
num_examples: 1026
- name: val
num_bytes: 141791.9015817223
num_examples: 168
- name: test
num_bytes: 432971.6994727592
num_examples: 513
download_size: 284264
dataset_size: 1440707.0
- config_name: JsonSchemaStore
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 13308367.977642277
num_examples: 295
- name: val
num_bytes: 2210542.4776422763
num_examples: 49
- name: test
num_bytes: 6676740.544715447
num_examples: 148
download_size: 4019966
dataset_size: 22195651.0
- config_name: Kubernetes
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 15388503.69924812
num_examples: 639
- name: val
num_bytes: 2528627.3684210526
num_examples: 105
- name: test
num_bytes: 7706292.932330827
num_examples: 320
download_size: 6819424
dataset_size: 25623424.0
- config_name: Snowplow
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 969083.2952853598
num_examples: 242
- name: val
num_bytes: 160179.0570719603
num_examples: 40
- name: test
num_bytes: 484541.6476426799
num_examples: 121
download_size: 298277
dataset_size: 1613804.0
- config_name: WashingtonPost
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 1604526.016
num_examples: 74
- name: val
num_bytes: 281876.192
num_examples: 13
- name: test
num_bytes: 823945.792
num_examples: 38
download_size: 565170
dataset_size: 2710348.0
- config_name: default
features:
- name: json_schema
dtype: string
- name: unique_id
dtype: string
splits:
- name: train
num_bytes: 54520620
num_examples: 5754
- name: val
num_bytes: 15255546
num_examples: 937
- name: test
num_bytes: 27031812.394351464
num_examples: 2867
download_size: 20765998
dataset_size: 96807978.39435147
configs:
- config_name: Github_easy
data_files:
- split: train
path: Github_easy/train-*
- split: val
path: Github_easy/val-*
- split: test
path: Github_easy/test-*
- config_name: Github_hard
data_files:
- split: train
path: Github_hard/train-*
- split: val
path: Github_hard/val-*
- split: test
path: Github_hard/test-*
- config_name: Github_medium
data_files:
- split: train
path: Github_medium/train-*
- split: val
path: Github_medium/val-*
- split: test
path: Github_medium/test-*
- config_name: Github_trivial
data_files:
- split: train
path: Github_trivial/train-*
- split: val
path: Github_trivial/val-*
- split: test
path: Github_trivial/test-*
- config_name: Github_ultra
data_files:
- split: train
path: Github_ultra/train-*
- split: val
path: Github_ultra/val-*
- split: test
path: Github_ultra/test-*
- config_name: Glaiveai2K
data_files:
- split: train
path: Glaiveai2K/train-*
- split: val
path: Glaiveai2K/val-*
- split: test
path: Glaiveai2K/test-*
- config_name: JsonSchemaStore
data_files:
- split: train
path: JsonSchemaStore/train-*
- split: val
path: JsonSchemaStore/val-*
- split: test
path: JsonSchemaStore/test-*
- config_name: Kubernetes
data_files:
- split: train
path: Kubernetes/train-*
- split: val
path: Kubernetes/val-*
- split: test
path: Kubernetes/test-*
- config_name: Snowplow
data_files:
- split: train
path: Snowplow/train-*
- split: val
path: Snowplow/val-*
- split: test
path: Snowplow/test-*
- config_name: WashingtonPost
data_files:
- split: train
path: WashingtonPost/train-*
- split: val
path: WashingtonPost/val-*
- split: test
path: WashingtonPost/test-*
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
- split: test
path: data/test-*
license: mit
task_categories:
- text-generation
---
# JSONSchemaBench
[![Paper](https://img.shields.io/badge/Paper-arXiv-blue)](https://arxiv.org/abs/2501.10868)
[![GitHub](https://img.shields.io/badge/Code-GitHub-blue)](https://github.com/guidance-ai/jsonschemabench)
JSONSchemaBench is a benchmark of **real-world JSON schemas** designed to evaluate **structured output generation** for Large Language Models (LLMs). It contains approximately **10,000 JSON schemas**, capturing diverse constraints and complexities.
```python
import datasets
from datasets import load_dataset
def main():
# Inspect the available subsets of the dataset
all_subsets = datasets.get_dataset_config_names("epfl-dlab/JSONSchemaBench")
print("Available subsets:", all_subsets)
# Example output: ['Github_easy', 'Github_hard', 'Github_medium', 'Github_trivial', 'Github_ultra', 'Glaiveai2K', 'JsonSchemaStore', 'Kubernetes', 'Snowplow', 'WashingtonPost', 'default']
# Access a specific subset of the dataset
subset_name = "Github_easy"
github_easy = load_dataset("epfl-dlab/JSONSchemaBench", subset_name)
print(f"Loaded subset '{subset_name}':", github_easy)
# Load the entire dataset as a whole
entire_dataset = load_dataset("epfl-dlab/JSONSchemaBench", "default")
print("Loaded entire dataset:", entire_dataset)
if __name__ == "__main__":
main()
```
## Update (March 31st, 2025)
To improve inference efficiency and streamline data collation, we’ve decided to drop a small number of exceptionally long samples from the dataset.
We’re using the `meta-llama/Llama-3.2-1B-instruct` tokenizer, and the filtering criteria are as follows:
- Github_easy: Samples longer than 1024 tokens β€” 5 out of 582 removed
- Github_medium: Samples longer than 2048 tokens β€” 7 out of 593 removed
- Github_hard: Samples longer than 8192 tokens β€” 4 out of 372 removed
- Other subsets are not touched
Since the number of discarded samples is minimal, this change is expected to have at most a 1% impact on results.
## ⚠️ Important Update (March 10th, 2025)
We have restructured the dataset to include train/val/test splits. If you downloaded the dataset before this date, you might encounter errors like `KeyError: 'Github_easy'`.
To fix this issue, please follow one of the options below:
1. Update How Subsets Are Accessed:
If you previously used:
```python
from datasets import load_dataset, concatenate_datasets, DatasetDict, Dataset
subset: DatasetDict = load_dataset("epfl-dlab/JSONSchemaBench")
subset["Github_easy"]
```
You can update it to:
```python
from datasets import load_dataset, concatenate_datasets, DatasetDict, Dataset
subset: DatasetDict = load_dataset("epfl-dlab/JSONSchemaBench", name="Github_easy")
subset: Dataset = concatenate_datasets([subset["train"], subset["val"], subset["test"]])
```
2. Load the Dataset in the Old Structure:
If you need the previous structure, you can use a specific revision:
```python
dataset = load_dataset("epfl-dlab/JSONSchemaBench", revision="e2ee5fdba65657c60d3a24b321172eb7141f8d73")
```
We apologize for the inconvenience and appreciate your understanding! 😊
## πŸ“Œ Dataset Overview
- **Purpose:** Evaluate the **efficiency** and **coverage** of structured output generation.
- **Sources:** GitHub, Kubernetes, API specifications, curated collections.
- **Schemas:** Categorized based on complexity and domain.
### πŸ“Š Dataset Breakdown
| Dataset | Category | Count |
| --------------- | ------------------- | ----- |
| GlaiveAI-2K | Function Call | 1707 |
| Github-Trivial | Misc | 444 |
| Github-Easy | Misc | 1943 |
| Snowplow | Operational API | 403 |
| Github-Medium | Misc | 1976 |
| Kubernetes | Kubernetes API | 1064 |
| Washington Post | Resource Access API | 125 |
| Github-Hard | Misc | 1240 |
| JSONSchemaStore | Misc | 492 |
| Github-Ultra | Misc | 164 |
| **Total** | | 9558 |
## πŸ“₯ Loading the Dataset
```python
from datasets import load_dataset
dataset = load_dataset("epfl-dlab/JSONSchemaBench")
print(dataset)
```
## πŸ” Data Structure
Each dataset split contains:
- `"json_schema"`: The schema definition.
- `"unique_id"`: A unique identifier for the schema.
πŸš€ **For more details, check out the [paper](https://arxiv.org/abs/2501.10868).**
## πŸ“š Citation
```bibtex
@misc{geng2025jsonschemabench,
title={Generating Structured Outputs from Language Models: Benchmark and Studies},
author={Saibo Geng et al.},
year={2025},
eprint={2501.10868},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.10868}
}
```
## License
This dataset is provided under the [MIT License](https://opensource.org/licenses/MIT). Please ensure that you comply with the license terms when using or distributing this dataset.
## Acknowledgements
We would like to thank the contributors and maintainers of the JSON schema projects and the open-source community for their invaluable work and support.