repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
geodynamics/burnman
contrib/eos_fitting/eos_fitting.py
2
14905
# This file is part of BurnMan - a thermoelastic and thermodynamic toolkit for the Earth and Planetary Sciences # Copyright (C) 2012 - 2015 by the BurnMan team, released under the GNU # GPL v2 or later. """ """ from __future__ import absolute_import from __future__ import print_function import os import sys import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') plt.rcParams['axes.facecolor'] = 'white' plt.rcParams['axes.edgecolor'] = 'black' # hack to allow scripts to be placed in subdirectories next to burnman: if not os.path.exists('burnman') and os.path.exists('../../burnman'): sys.path.insert(1, os.path.abspath('../..')) import burnman from fitting_functions import read_fitting_file if __name__ == "__main__": """ First, please create a data file. This file should be in one of the two following formats: Type, P, T, property Type, P, T, property, Perr, Terr, property_err Type, P, T, property, cov_PP, cov_TT, cov_pp, cov_PT, cov_Pp, cov_Tp where err means standard error, and cov is the covariance matrix of the data observations PLEASE REMEMBER THAT cov_PP = Perr^2. Type is a string describing the property value *as used in burnman*. The property strings could be any of the following: helmholtz gibbs H S V molar_heat_capacity_p molar_heat_capacity_v p_wave_velocity s_wave_velocity K_T K_S Make sure that *all* parameters are in SI units. """ # Input file filename = 'test.dat' # Mineral to optimise (along with tweaks to initial properties if necessary) mineral = burnman.minerals.SLB_2011.periclase() mineral.set_state(1.e5, 300.) mineral.params['F_0'] = mineral.params['F_0'] - mineral.H # Fit parameters fit_params = ['V_0', 'K_0', 'Kprime_0', 'grueneisen_0', 'q_0', 'Debye_0', 'F_0'] # Pressure and temperature sections to plot through the models pressures = np.linspace(1.e5, 100.e9, 101) temperature_sections = [300., 2000.] temperatures = np.linspace(300., 2000., 101) pressure_sections = [1.e5] # Properties to plot which have data in the input file properties_for_data_comparison_plots = [('V', 1.e6, 'Volume (cm^3/mol)'), ('H', 1.e-3, 'Enthalpy (kJ/mol)')] # Properties to plot along with confidence interval properties_for_confidence_plots = [('p_wave_velocity', 1.e-3, 'P wave velocity (km/s)'), ('K_T', 1.e-9, 'Bulk modulus (GPa)'), ('alpha', 1., 'Thermal expansion (/K)'), (['alpha', 'K_T'], 1.e-6, 'Thermal pressure (MPa/K)')] confidence_interval = 0.95 remove_outliers = True good_data_confidence_interval = 0.9 param_tolerance = 1.e-5 # That's it for user inputs. Now just sit back and watch the plots appear... flags, data, data_covariances = read_fitting_file(filename) list_flags = list(set(flags)) print('Starting to fit user-defined data. Please be patient.') fitted_eos = burnman.eos_fitting.fit_PTp_data(mineral = mineral, flags = flags, fit_params = fit_params, data = data, data_covariances = data_covariances, param_tolerance = param_tolerance, verbose = False) # Print the optimized parameters print('Optimized equation of state:') burnman.tools.pretty_print_values(fitted_eos.popt, fitted_eos.pcov, fitted_eos.fit_params) print('\nParameters:') print(fitted_eos.popt) print('\nFull covariance matrix:') print(fitted_eos.pcov) print('\nGoodness of fit:') print(fitted_eos.goodness_of_fit) print('\n') # Create a plot of the residuals fig, ax = plt.subplots() burnman.nonlinear_fitting.plot_residuals(ax=ax, weighted_residuals=fitted_eos.weighted_residuals, flags=fitted_eos.flags) plt.show() confidence_bound, indices, probabilities = burnman.nonlinear_fitting.extreme_values(fitted_eos.weighted_residuals, good_data_confidence_interval) if indices != [] and remove_outliers == True: print('Removing {0:d} outliers (at the {1:.1f}% confidence interval) and refitting. Please wait just a little longer.'.format(len(indices), good_data_confidence_interval*100.)) mask = [i for i in range(len(fitted_eos.weighted_residuals)) if i not in indices] flags = [flag for i, flag in enumerate(flags) if i not in indices] data = data[mask] data_covariances = data_covariances[mask] fitted_eos = burnman.eos_fitting.fit_PTp_data(mineral = mineral, flags = flags, fit_params = fit_params, data = data, data_covariances = data_covariances, param_tolerance = param_tolerance, verbose = False) # Print the optimized parameters print('Optimized equation of state:') burnman.tools.pretty_print_values(fitted_eos.popt, fitted_eos.pcov, fitted_eos.fit_params) print('\nParameters:') print(fitted_eos.popt) print('\nFull covariance matrix:') print(fitted_eos.pcov) print('\nGoodness of fit:') print(fitted_eos.goodness_of_fit) print('\n') # Create a plot of the residuals fig, ax = plt.subplots() burnman.nonlinear_fitting.plot_residuals(ax=ax, weighted_residuals=fitted_eos.weighted_residuals, flags=fitted_eos.flags) plt.show() # Create a corner plot of the covariances fig, ax_array = burnman.nonlinear_fitting.corner_plot(popt=fitted_eos.popt, pcov=fitted_eos.pcov, param_names=fitted_eos.fit_params) plt.show() # Create plots for the weighted residuals of each type of measurement for i, (material_property, scaling, name) in enumerate(properties_for_data_comparison_plots): fig, ax = plt.subplots() burnman.nonlinear_fitting.weighted_residual_plot(ax=ax, model=fitted_eos, flag=material_property, sd_limit=3, cmap=plt.cm.RdYlBu, plot_axes=[0, 1], scale_axes=[1.e-9, 1.]) ax.set_title('Weighted residual plot for {0:s}'.format(name)) ax.set_xlabel('Pressure (GPa)') ax.set_ylabel('Temperature (K)') plt.show() flag_mask = [i for i, flag in enumerate(flags) if flag==material_property] if temperature_sections != []: for T in temperature_sections: PTVs = np.array([pressures, [T]*len(pressures), mineral.evaluate(['V'], pressures, [T]*len(pressures))[0]]).T # Plot confidence bands on the volumes cp_bands = burnman.nonlinear_fitting.confidence_prediction_bands(model=fitted_eos, x_array=PTVs, confidence_interval=confidence_interval, f=burnman.tools.attribute_function(mineral, material_property), flag='V') plt.plot(PTVs[:,0] / 1.e9, (cp_bands[0] + cp_bands[1])/2.*scaling, label='Optimised fit at {0:.0f} K'.format(T)) plt.plot(PTVs[:,0] / 1.e9, (cp_bands[0])*scaling, linestyle='--', color='r', label='{0:.1f}% confidence bands'.format(confidence_interval*100)) plt.plot(PTVs[:,0] / 1.e9, (cp_bands[1])*scaling, linestyle='--', color='r') plt.errorbar(fitted_eos.data[:,0][flag_mask] / 1.e9, fitted_eos.data[:,2][flag_mask]*scaling, xerr=np.sqrt(fitted_eos.data_covariances.T[0][0][flag_mask]) / 1.e9, yerr=np.sqrt(fitted_eos.data_covariances.T[2][2][flag_mask])*scaling, linestyle='None', marker='o', label='Data') plt.plot(fitted_eos.data_mle[:,0][flag_mask] / 1.e9, fitted_eos.data_mle[:,2][flag_mask]*scaling, marker='o', markersize=2, color='k', linestyle='None', label='Maximum likelihood estimates') plt.ylabel('{0:s}'.format(name)) plt.xlabel('Pressure (GPa)') plt.legend(loc='upper right') plt.title('Data comparison for fitted equation of state as a function of pressure') plt.show() if pressure_sections != []: for P in pressure_sections: PTVs = np.array([[P]*len(temperatures), temperatures, mineral.evaluate(['V'], [P]*len(temperatures), temperatures)[0]]).T # Plot confidence bands on the volumes cp_bands = burnman.nonlinear_fitting.confidence_prediction_bands(model=fitted_eos, x_array=PTVs, confidence_interval=confidence_interval, f=burnman.tools.attribute_function(mineral, material_property), flag='V') plt.plot(PTVs[:,1], (cp_bands[0] + cp_bands[1])/2.*scaling, label='Optimised fit at {0:.0f} GPa'.format(P/1.e9)) plt.plot(PTVs[:,1], (cp_bands[0])*scaling, linestyle='--', color='r', label='{0:.1f}% confidence bands'.format(confidence_interval*100)) plt.plot(PTVs[:,1], (cp_bands[1])*scaling, linestyle='--', color='r') plt.errorbar(fitted_eos.data[:,1][flag_mask], fitted_eos.data[:,2][flag_mask]*scaling, xerr=np.sqrt(fitted_eos.data_covariances.T[1][1][flag_mask]), yerr=np.sqrt(fitted_eos.data_covariances.T[2][2][flag_mask])*scaling, linestyle='None', marker='o', label='Data') plt.plot(fitted_eos.data_mle[:,1][flag_mask], fitted_eos.data_mle[:,2][flag_mask]*scaling, marker='o', markersize=2, color='k', linestyle='None', label='Maximum likelihood estimates') plt.ylabel('{0:s}'.format(name)) plt.xlabel('Temperature (K)') plt.legend(loc='upper right') plt.title('Data comparison for fitted equation of state as a function of temperature') plt.show() # We can also look at the uncertainty in other properties # For example, let's look at the uncertainty in P wave velocities, bulk modulus, thermal expansion and thermal pressure def closest_factors(n): d = int(np.floor(np.sqrt(n))) for i in reversed(range(1, d+1)): if (n % i) == 0: return i, int(n/i) nj, ni = closest_factors(len(properties_for_confidence_plots)) if temperature_sections != []: fig = plt.figure() for T in temperature_sections: PTVs = np.array([pressures, [T]*len(pressures), mineral.evaluate(['V'], pressures, [T]*len(pressures))[0]]).T for i, (material_property, scaling, name) in enumerate(properties_for_confidence_plots): ax = fig.add_subplot(ni, nj, i+1) # Plot the confidence bands for the various material properties cp_bands = burnman.nonlinear_fitting.confidence_prediction_bands(model=fitted_eos, x_array=PTVs, confidence_interval=confidence_interval, f=burnman.tools.attribute_function(mineral, material_property), flag='V') ax.plot(PTVs[:,0]/1.e9, (cp_bands[0] + cp_bands[1])/2*scaling, label='Best fit at {0:.0f} K'.format(T)) ax.plot(PTVs[:,0]/1.e9, (cp_bands[0])*scaling, linestyle='--', color='r', label='{0:.1f}% confidence bands'.format(confidence_interval*100)) ax.plot(PTVs[:,0]/1.e9, (cp_bands[1])*scaling, linestyle='--', color='r') plt.ylabel(name) plt.xlabel('Pressure (GPa)') plt.legend(loc='upper right') plt.show() if pressure_sections != []: fig = plt.figure() for P in pressure_sections: PTVs = np.array([[P]*len(temperatures), temperatures, mineral.evaluate(['V'], [P]*len(temperatures), temperatures)[0]]).T for i, (material_property, scaling, name) in enumerate(properties_for_confidence_plots): ax = fig.add_subplot(ni,nj, i+1) # Plot the confidence bands for the various material properties cp_bands = burnman.nonlinear_fitting.confidence_prediction_bands(model=fitted_eos, x_array=PTVs, confidence_interval=confidence_interval, f=burnman.tools.attribute_function(mineral, material_property), flag='V') ax.plot(PTVs[:,1], (cp_bands[0] + cp_bands[1])/2*scaling, label='Best fit at {0:.0f} GPa'.format(P/1.e9)) ax.plot(PTVs[:,1], (cp_bands[0])*scaling, linestyle='--', color='r', label='{0:.1f}% confidence bands'.format(confidence_interval*100)) ax.plot(PTVs[:,1], (cp_bands[1])*scaling, linestyle='--', color='r') plt.ylabel(name) plt.xlabel('Temperature (K)') plt.legend(loc='upper right') plt.show()
gpl-2.0
perryjohnson/biplaneblade
biplane_blade_lib/prep_stn23_mesh.py
1
31016
"""Write initial TrueGrid files for one biplane blade station. Usage ----- start an IPython (qt)console with the pylab flag: $ ipython qtconsole --pylab or $ ipython --pylab Then, from the prompt, run this script: |> %run biplane_blade_lib/prep_stnXX_mesh.py or |> import biplane_blade_lib/prep_stnXX_mesh Author: Perry Roth-Johnson Last updated: April 30, 2014 """ import matplotlib.pyplot as plt import lib.blade as bl reload(bl) import lib.poly_utils as pu reload(pu) from shapely.geometry import Polygon from shapely.affinity import translate # SET THESE PARAMETERS ----------------- station_num = 23 # -------------------------------------- plt.close('all') # load the biplane blade b1 = bl.BiplaneBlade( 'biplane blade, flapwise symmetric, no stagger, rj/R=0.452, g/c=1.25', 'biplane_blade') # pre-process the station dimensions station = b1.list_of_stations[station_num-1] station.airfoil.create_polygon() station.structure.create_all_layers() station.structure.save_all_layer_edges() station.structure.write_all_part_polygons() # plot the parts station.plot_parts() # access the structure and airfoil for this station st = station.structure af = station.airfoil x3_off = af.lower_chord * af.gap_to_chord_ratio * af.gap_fraction # upper spar cap ----------------------------------------------------------- label = 'upper spar cap' # create the bounding polygon usc = st.lower_spar_cap.layer['upper'] is2 = st.lower_internal_surface_2.layer['resin'] points_usc = [ (-0.75, usc.left[0][1]), # lower_SparCap_upper.txt is2.polygon.interiors[0].coords[0], # lower_InternalSurface2_resin.txt is2.polygon.interiors[0].coords[39-28], # lower_InternalSurface2_resin.txt ( 0.75, usc.right[1][1]), # lower_SparCap_upper.txt ( 0.75, 0.0), (-0.75, 0.0) ] bounding_polygon = Polygon(points_usc) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_2, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_2, 'triax', label, bounding_polygon, airfoil='lower') # lower spar cap ----------------------------------------------------------- label = 'lower spar cap' # create the bounding polygon lsc = st.lower_spar_cap.layer['lower'] points_lsc = [ (-0.75,-6.5), ( 0.75,-6.5), ( 0.75000000, lsc.right[0][1]), # lower_SparCap_lower.txt is2.polygon.interiors[0].coords[38-28], # lower_InternalSurface2_resin.txt is2.polygon.interiors[0].coords[1], # lower_InternalSurface2_resin.txt (-0.75000000, lsc.left[1][1]) # lower_SparCap_lower.txt ] bounding_polygon = Polygon(points_lsc) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_2, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_2, 'triax', label, bounding_polygon, airfoil='lower') # TE reinforcement, upper 1 ------------------------------------------------ label = 'TE reinforcement, upper 1' # create the bounding polygon ter = st.lower_TE_reinforcement.layer['foam'] is4 = st.lower_internal_surface_4.layer['resin'] points_teu1 = [ (ter.top[0][0], -1.5), # TE_Reinforcement_foam.txt tuple(ter.top[0]), is4.polygon.interiors[0].coords[525-224], # InternalSurface4_resin.txt (3.3, -2.7), # TE_Reinforcement_foam.txt is4.polygon.interiors[0].coords[518-224], # InternalSurface4_resin.txt (is4.polygon.interiors[0].coords[518-224][0], -1.5) # InternalSurface4_resin.txt ] bounding_polygon = Polygon(points_teu1) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'foam', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'uniax', label, bounding_polygon, airfoil='lower') # TE reinforcement, lower 1 ------------------------------------------------ label = 'TE reinforcement, lower 1' # create the bounding polygon points_tel1 = [ (ter.bottom[0][0], -5.0), # TE_Reinforcement_foam.txt tuple(ter.bottom[1]), is4.polygon.interiors[0].coords[357-224], # InternalSurface4_resin.txt (3.3, -2.7), # TE_Reinforcement_foam.txt is4.polygon.interiors[0].coords[518-224], # InternalSurface4_resin.txt (is4.polygon.interiors[0].coords[518-224][0], -5.0) # InternalSurface4_resin.txt ] bounding_polygon = Polygon(points_tel1) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'foam', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'uniax', label, bounding_polygon, airfoil='lower') # TE reinforcement, upper 2 ------------------------------------------------ label = 'TE reinforcement, upper 2' # create the bounding polygon points_teu2 = [ points_teu1[-1], points_teu1[-2], ter.polygon.exterior.coords[94-3], # lower_TE_reinforcement_foam.txt (ter.polygon.exterior.coords[94-3][0], -1.5) # lower_TE_reinforcement_foam.txt ] bounding_polygon = Polygon(points_teu2) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'foam', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'uniax', label, bounding_polygon, airfoil='lower') # TE reinforcement, lower 2 ------------------------------------------------ label = 'TE reinforcement, lower 2' # create the bounding polygon points_tel2 = [ (points_teu2[0][0], -5.0), points_teu2[1], points_teu2[2], (points_teu2[2][0], -5.0) ] bounding_polygon = Polygon(points_tel2) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'foam', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'uniax', label, bounding_polygon, airfoil='lower') # TE reinforcement, upper 3 ------------------------------------------------ label = 'TE reinforcement, upper 3' # create the bounding polygon points_teu3 = [ points_teu2[-1], points_teu2[-2], ter.polygon.exterior.coords[0], # TE_Reinforcement_foam.txt (ter.polygon.exterior.coords[0][0], -1.5) # TE_Reinforcement_foam.txt ] bounding_polygon = Polygon(points_teu3) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'foam', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'uniax', label, bounding_polygon, airfoil='lower') # TE reinforcement, lower 3 ------------------------------------------------ label = 'TE reinforcement, lower 3' # create the bounding polygon points_tel3 = [ (points_teu3[0][0], -5.0), points_teu3[1], points_teu3[2], (points_teu3[2][0], -5.0) ] bounding_polygon = Polygon(points_tel3) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'foam', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'uniax', label, bounding_polygon, airfoil='lower') # TE reinforcement, upper 4 ------------------------------------------------ label = 'TE reinforcement, upper 4' # create the bounding polygon es = st.lower_external_surface.layer['gelcoat'] teru = st.lower_TE_reinforcement.layer['uniax'] points_teu4 = [ points_teu3[-1], points_teu3[-2], (teru.polygon.exterior.coords[-2][0], -2.87), # TE_Reinforcement_uniax.txt teru.polygon.exterior.coords[-2], # TE_Reinforcement_uniax.txt es.polygon.exterior.coords[-2], (teru.polygon.exterior.coords[-2][0], -1.5) # TE_Reinforcement_uniax.txt ] bounding_polygon = Polygon(points_teu4) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'uniax', label, bounding_polygon, airfoil='lower') # TE reinforcement, lower 4 ------------------------------------------------ label = 'TE reinforcement, lower 4' # create the bounding polygon points_tel4 = [ (points_teu4[0][0], -5.0), points_teu4[1], points_teu4[2], teru.polygon.exterior.coords[-1], # TE_Reinforcement_uniax.txt es.polygon.exterior.coords[-1], (points_teu4[2][0], -5.0) ] bounding_polygon = Polygon(points_tel4) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_TE_reinforcement, 'uniax', label, bounding_polygon, airfoil='lower') # LE panel ----------------------------------------------------------------- label = 'LE panel' # create the bounding polygon lep = st.lower_LE_panel.layer['foam'] is1 = st.lower_internal_surface_1.layer['resin'] points_le = [ (-3.00,-6.5), (-0.836,-6.5), tuple(lep.bottom[0]), # lower_LE_Panel_foam.txt is1.polygon.interiors[0].coords[0], # lower_InternalSurface1_resin.txt (-1.5, -x3_off), is1.polygon.interiors[0].coords[1], # lower_InternalSurface1_resin.txt tuple(lep.top[1]), # lower_LE_Panel_foam.txt (-0.836, 0.0), (-3.00, 0.0) ] bounding_polygon = Polygon(points_le) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_1, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_1, 'triax', label, bounding_polygon, airfoil='lower') # upper aft panel 1 ------------------------------------------------------- label = 'upper aft panel 1' # create the bounding polygon ap1u = st.lower_aft_panel_1.layer['upper'] is3 = st.lower_internal_surface_3.layer['resin'] points_ap1u = [ (0.836, 0.0), (ap1u.right[1][0], 0.0), # lower_AftPanel1_upper.txt tuple(ap1u.right[1]), # lower_AftPanel1_upper.txt is3.polygon.interiors[0].coords[61-35], # lower_InternalSurface3_resin.txt (2.0, -2.7), is3.polygon.interiors[0].coords[-2], # lower_InternalSurface3_resin.txt tuple(ap1u.left[0]) # lower_AftPanel1_upper.txt ] bounding_polygon = Polygon(points_ap1u) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_3, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_3, 'triax', label, bounding_polygon, airfoil='lower') # lower aft panel 1 ------------------------------------------------------- label = 'lower aft panel 1' # create the bounding polygon ap1l = st.lower_aft_panel_1.layer['lower'] points_ap1l = [ (0.836, -6.5), (ap1l.right[0][0], -6.5), # lower_AftPanel1_lower.txt tuple(ap1l.right[0]), # lower_AftPanel1_lower.txt is3.polygon.interiors[0].coords[60-35], # lower_InternalSurface3_resin.txt (2.0, -2.7), is3.polygon.interiors[0].coords[-1], # lower_InternalSurface3_resin.txt tuple(ap1l.left[1]) # lower_AftPanel1_lower.txt ] bounding_polygon = Polygon(points_ap1l) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_3, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_3, 'triax', label, bounding_polygon, airfoil='lower') # upper aft panel 2 ------------------------------------------------------- label = 'upper aft panel 2' # create the bounding polygon ap2u = st.lower_aft_panel_2.layer['upper'] sw3br = st.lower_shear_web_3.layer['biax, right'] points_ap2u = [ (sw3br.right[0][0], 0.0), (ap2u.right[1][0], 0.0), # AftPanel2_upper.txt tuple(ap2u.right[1]), # AftPanel2_upper.txt # is4.polygon.interiors[0].coords[459-224], # InternalSurface4_resin.txt (ap2u.right[1][0], -2.7), (2.5, -2.7), is4.polygon.interiors[0].coords[-2], # InternalSurface4_resin.txt tuple(ap2u.left[0]) # AftPanel2_upper.txt ] bounding_polygon = Polygon(points_ap2u) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'resin', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'triax', label, bounding_polygon) # lower aft panel 2 ------------------------------------------------------- label = 'lower aft panel 2' # create the bounding polygon ap2l = st.lower_aft_panel_2.layer['lower'] points_ap2l = [ (sw3br.right[0][0], -5.4), (ap2l.right[0][0], -5.4), # AftPanel2_lower.txt tuple(ap2l.right[0]), # AftPanel2_lower.txt # is4.polygon.interiors[0].coords[296-224], # InternalSurface4_resin.txt (ap2l.right[0][0], -2.7), (2.5, -2.7), is4.polygon.interiors[0].coords[-1], # InternalSurface4_resin.txt tuple(ap2l.left[1]) # AftPanel2_lower.txt ] bounding_polygon = Polygon(points_ap2l) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'resin', label, bounding_polygon) pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'triax', label, bounding_polygon) # above shear web 1 ---------------------------------------------------------- label = 'above shear web 1' # create the bounding polygon points_asw1 = [ (-0.75, 0.0), (-0.75, -2.7), (-0.836, -2.7), (-0.836, 0.0) ] bounding_polygon = Polygon(points_asw1) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') # below shear web 1 ---------------------------------------------------------- label = 'below shear web 1' # create the bounding polygon points_bsw1 = [ (-0.75, -6.5), (-0.75, -2.7), (-0.836, -2.7), (-0.836, -6.5) ] bounding_polygon = Polygon(points_bsw1) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') # above shear web 2 ---------------------------------------------------------- label = 'above shear web 2' # create the bounding polygon points_asw2 = [ (0.75, 0.0), (0.75, -2.7), (0.836, -2.7), (0.836, 0.0) ] bounding_polygon = Polygon(points_asw2) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') # below shear web 2 ---------------------------------------------------------- label = 'below shear web 2' # create the bounding polygon points_bsw2 = [ (0.75, -6.5), (0.75, -2.7), (0.836, -2.7), (0.836, -6.5) ] bounding_polygon = Polygon(points_bsw2) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') # above shear web 3 ---------------------------------------------------------- label = 'above shear web 3' sw3bl = st.lower_shear_web_3.layer['biax, left'] # create the bounding polygon points_asw3 = [ (sw3bl.left[0][0], 0.0), (sw3bl.left[0][0], -2.7), (sw3br.right[0][0], -2.7), (sw3br.right[0][0], 0.0) ] bounding_polygon = Polygon(points_asw3) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') # below shear web 3 ---------------------------------------------------------- label = 'below shear web 3' # create the bounding polygon points_bsw3 = [ (sw3bl.left[0][0], -6.5), (sw3bl.left[0][0], -2.7), (sw3br.right[0][0], -2.7), (sw3br.right[0][0], -6.5) ] bounding_polygon = Polygon(points_bsw3) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'triax', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_external_surface, 'gelcoat', label, bounding_polygon, airfoil='lower') # left of shear web 1 ------------------------------------------------------- label = 'left of shear web 1' # create the bounding polygon points_lsw1 = points_le[2:-2] bounding_polygon = Polygon(points_lsw1) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_1, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_1, 'triax', label, bounding_polygon, airfoil='lower') # right of shear web 1 ------------------------------------------------------- label = 'right of shear web 1' # create the bounding polygon points_rsw1 = [ points_usc[0], points_usc[1], (0.0, -x3_off), points_lsc[-2], points_lsc[-1] ] bounding_polygon = Polygon(points_rsw1) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_2, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_2, 'triax', label, bounding_polygon, airfoil='lower') # left of shear web 2 ------------------------------------------------------- label = 'left of shear web 2' # create the bounding polygon points_lsw2 = [ points_usc[3], points_usc[2], (0.0, -x3_off), points_lsc[3], points_lsc[2] ] bounding_polygon = Polygon(points_lsw2) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_2, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_2, 'triax', label, bounding_polygon, airfoil='lower') # right of shear web 2 ------------------------------------------------------- label = 'right of shear web 2' # create the bounding polygon points_rsw2 = [ points_ap1u[-1], points_ap1u[-2], (1.5, -x3_off), points_ap1l[-2], points_ap1l[-1] ] bounding_polygon = Polygon(points_rsw2) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_3, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_3, 'triax', label, bounding_polygon, airfoil='lower') # left of shear web 3 ------------------------------------------------------- label = 'left of shear web 3' # create the bounding polygon points_lsw3 = [ points_ap1u[2], points_ap1u[3], (1.5, -2.7), points_ap1l[3], points_ap1l[2] ] bounding_polygon = Polygon(points_lsw3) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_3, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_3, 'triax', label, bounding_polygon, airfoil='lower') # right of shear web 3 ------------------------------------------------------- label = 'right of shear web 3' # create the bounding polygon points_rsw3 = [ points_ap2u[-1], points_ap2u[-2], (3.0, -2.7), points_ap2l[-2], points_ap2l[-1] ] bounding_polygon = Polygon(points_rsw3) pu.plot_polygon(bounding_polygon, 'None', '#000000') # cut the new layer polygons pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'resin', label, bounding_polygon, airfoil='lower') pu.cut_plot_and_write_alt_layer(st.lower_internal_surface_4, 'triax', label, bounding_polygon, airfoil='lower') # ----------------------------------------------------------------------------- list_of_mesh_layers = [] # translate all the alt layers in each part for (name, layer) in st.lower_TE_reinforcement.alt_layer.items(): layer.move(x3_off, alt_layer=True) list_of_mesh_layers.append(layer) for (name, layer) in st.lower_external_surface.alt_layer.items(): layer.move(x3_off, alt_layer=True) list_of_mesh_layers.append(layer) for (name, layer) in st.lower_internal_surface_1.alt_layer.items(): layer.move(x3_off, alt_layer=True) list_of_mesh_layers.append(layer) for (name, layer) in st.lower_internal_surface_2.alt_layer.items(): layer.move(x3_off, alt_layer=True) list_of_mesh_layers.append(layer) for (name, layer) in st.lower_internal_surface_3.alt_layer.items(): layer.move(x3_off, alt_layer=True) list_of_mesh_layers.append(layer) for (name, layer) in st.lower_internal_surface_4.alt_layer.items(): layer.move(x3_off, alt_layer=True) list_of_mesh_layers.append(layer) # translate all the remaining regular layers st.lower_spar_cap.layer['upper'].move(x3_off) st.lower_spar_cap.layer['lower'].move(x3_off) st.lower_aft_panel_1.layer['upper'].move(x3_off) st.lower_aft_panel_1.layer['lower'].move(x3_off) st.lower_aft_panel_2.layer['upper'].move(x3_off) st.lower_aft_panel_2.layer['lower'].move(x3_off) st.lower_LE_panel.layer['foam'].move(x3_off) st.lower_shear_web_1.layer['biax, left'].move(x3_off) st.lower_shear_web_1.layer['foam'].move(x3_off) st.lower_shear_web_1.layer['biax, right'].move(x3_off) st.lower_shear_web_2.layer['biax, left'].move(x3_off) st.lower_shear_web_2.layer['foam'].move(x3_off) st.lower_shear_web_2.layer['biax, right'].move(x3_off) st.lower_shear_web_3.layer['biax, left'].move(x3_off) st.lower_shear_web_3.layer['foam'].move(x3_off) st.lower_shear_web_3.layer['biax, right'].move(x3_off) list_of_mesh_layers.append(st.lower_spar_cap.layer['upper']) list_of_mesh_layers.append(st.lower_spar_cap.layer['lower']) list_of_mesh_layers.append(st.lower_aft_panel_1.layer['upper']) list_of_mesh_layers.append(st.lower_aft_panel_1.layer['lower']) list_of_mesh_layers.append(st.lower_aft_panel_2.layer['upper']) list_of_mesh_layers.append(st.lower_aft_panel_2.layer['lower']) list_of_mesh_layers.append(st.lower_LE_panel.layer['foam']) list_of_mesh_layers.append(st.lower_shear_web_1.layer['biax, left']) list_of_mesh_layers.append(st.lower_shear_web_1.layer['foam']) list_of_mesh_layers.append(st.lower_shear_web_1.layer['biax, right']) list_of_mesh_layers.append(st.lower_shear_web_2.layer['biax, left']) list_of_mesh_layers.append(st.lower_shear_web_2.layer['foam']) list_of_mesh_layers.append(st.lower_shear_web_2.layer['biax, right']) list_of_mesh_layers.append(st.lower_shear_web_3.layer['biax, left']) list_of_mesh_layers.append(st.lower_shear_web_3.layer['foam']) list_of_mesh_layers.append(st.lower_shear_web_3.layer['biax, right']) # plot the lower airfoil in the local beam coordinate system # (translate it up by the appropriate gap distance: x3_off) fig,ax = plt.subplots() fmt1 = "Station #{0}, {1}, {2}% span\n" fmt2 = "lower airfoil in local beam coordinate system (x3-offset = {3:+.4f})" fmt = fmt1 + fmt2 ax.set_title(fmt.format(station.station_num, station.airfoil.name, station.coords.x1, x3_off)) lp2 = translate(af.lower_polygon, yoff=x3_off) (minx, miny, maxx, maxy) = lp2.bounds ax.set_xlim([minx*1.2,maxx*1.2]) ax.set_ylim([miny*1.2,maxy*1.2]) plt.grid('on') ax.set_xlabel('x2 [meters]') ax.set_ylabel('x3 [meters]') ax.set_aspect('equal') for layer in list_of_mesh_layers: station.plot_polygon(layer.polygon, ax, layer.face_color, layer.edge_color, alpha=0.8) # show the plots plt.show() # write the TrueGrid input file for mesh generation --------------------- st.write_truegrid_inputfile( interrupt_flag=True, additional_layers=[ st.lower_spar_cap.layer['upper'], st.lower_spar_cap.layer['lower'], st.lower_aft_panel_1.layer['upper'], st.lower_aft_panel_1.layer['lower'], st.lower_aft_panel_2.layer['upper'], st.lower_aft_panel_2.layer['lower'], st.lower_LE_panel.layer['foam'], st.lower_shear_web_1.layer['biax, left'], st.lower_shear_web_1.layer['foam'], st.lower_shear_web_1.layer['biax, right'], st.lower_shear_web_2.layer['biax, left'], st.lower_shear_web_2.layer['foam'], st.lower_shear_web_2.layer['biax, right'], st.lower_shear_web_3.layer['biax, left'], st.lower_shear_web_3.layer['foam'], st.lower_shear_web_3.layer['biax, right'] ], alt_TE_reinforcement=True, soft_warning=True)
gpl-3.0
theoryno3/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
kenshay/ImageScripter
ProgramData/SystemFiles/Python/Lib/site-packages/pandas/core/frame.py
7
214523
""" DataFrame --------- An efficient 2D container for potentially mixed-type time series or other labeled data series. Similar to its R counterpart, data.frame, except providing automatic data alignment and a host of useful data manipulation methods having to do with the labeling information """ from __future__ import division # pylint: disable=E1101,E1103 # pylint: disable=W0212,W0231,W0703,W0622 import functools import collections import itertools import sys import types import warnings from numpy import nan as NA import numpy as np import numpy.ma as ma from pandas.types.cast import (_maybe_upcast, _infer_dtype_from_scalar, _possibly_cast_to_datetime, _possibly_infer_to_datetimelike, _possibly_convert_platform, _possibly_downcast_to_dtype, _invalidate_string_dtypes, _coerce_to_dtypes, _maybe_upcast_putmask, _find_common_type) from pandas.types.common import (is_categorical_dtype, is_object_dtype, is_extension_type, is_datetimetz, is_datetime64_dtype, is_datetime64tz_dtype, is_bool_dtype, is_integer_dtype, is_float_dtype, is_integer, is_scalar, is_dtype_equal, needs_i8_conversion, _get_dtype_from_object, _ensure_float, _ensure_float64, _ensure_int64, _ensure_platform_int, is_list_like, is_iterator, is_sequence, is_named_tuple) from pandas.types.missing import isnull, notnull from pandas.core.common import (PandasError, _try_sort, _default_index, _values_from_object, _maybe_box_datetimelike, _dict_compat) from pandas.core.generic import NDFrame, _shared_docs from pandas.core.index import Index, MultiIndex, _ensure_index from pandas.core.indexing import (maybe_droplevels, convert_to_index_sliceable, check_bool_indexer) from pandas.core.internals import (BlockManager, create_block_manager_from_arrays, create_block_manager_from_blocks) from pandas.core.series import Series from pandas.core.categorical import Categorical import pandas.computation.expressions as expressions import pandas.core.algorithms as algos from pandas.computation.eval import eval as _eval from pandas.compat import (range, map, zip, lrange, lmap, lzip, StringIO, u, OrderedDict, raise_with_traceback) from pandas import compat from pandas.compat.numpy import function as nv from pandas.util.decorators import deprecate_kwarg, Appender, Substitution from pandas.tseries.period import PeriodIndex from pandas.tseries.index import DatetimeIndex from pandas.tseries.tdi import TimedeltaIndex import pandas.core.base as base import pandas.core.common as com import pandas.core.nanops as nanops import pandas.core.ops as ops import pandas.formats.format as fmt from pandas.formats.printing import pprint_thing import pandas.tools.plotting as gfx import pandas.lib as lib import pandas.algos as _algos from pandas.core.config import get_option # --------------------------------------------------------------------- # Docstring templates _shared_doc_kwargs = dict( axes='index, columns', klass='DataFrame', axes_single_arg="{0 or 'index', 1 or 'columns'}", optional_by=""" by : str or list of str Name or list of names which refer to the axis items.""") _numeric_only_doc = """numeric_only : boolean, default None Include only float, int, boolean data. If None, will attempt to use everything, then use only numeric data """ _merge_doc = """ Merge DataFrame objects by performing a database-style join operation by columns or indexes. If joining columns on columns, the DataFrame indexes *will be ignored*. Otherwise if joining indexes on indexes or indexes on a column or columns, the index will be passed on. Parameters ----------%s right : DataFrame how : {'left', 'right', 'outer', 'inner'}, default 'inner' * left: use only keys from left frame (SQL: left outer join) * right: use only keys from right frame (SQL: right outer join) * outer: use union of keys from both frames (SQL: full outer join) * inner: use intersection of keys from both frames (SQL: inner join) on : label or list Field names to join on. Must be found in both DataFrames. If on is None and not merging on indexes, then it merges on the intersection of the columns by default. left_on : label or list, or array-like Field names to join on in left DataFrame. Can be a vector or list of vectors of the length of the DataFrame to use a particular vector as the join key instead of columns right_on : label or list, or array-like Field names to join on in right DataFrame or vector/list of vectors per left_on docs left_index : boolean, default False Use the index from the left DataFrame as the join key(s). If it is a MultiIndex, the number of keys in the other DataFrame (either the index or a number of columns) must match the number of levels right_index : boolean, default False Use the index from the right DataFrame as the join key. Same caveats as left_index sort : boolean, default False Sort the join keys lexicographically in the result DataFrame suffixes : 2-length sequence (tuple, list, ...) Suffix to apply to overlapping column names in the left and right side, respectively copy : boolean, default True If False, do not copy data unnecessarily indicator : boolean or string, default False If True, adds a column to output DataFrame called "_merge" with information on the source of each row. If string, column with information on source of each row will be added to output DataFrame, and column will be named value of string. Information column is Categorical-type and takes on a value of "left_only" for observations whose merge key only appears in 'left' DataFrame, "right_only" for observations whose merge key only appears in 'right' DataFrame, and "both" if the observation's merge key is found in both. .. versionadded:: 0.17.0 Examples -------- >>> A >>> B lkey value rkey value 0 foo 1 0 foo 5 1 bar 2 1 bar 6 2 baz 3 2 qux 7 3 foo 4 3 bar 8 >>> A.merge(B, left_on='lkey', right_on='rkey', how='outer') lkey value_x rkey value_y 0 foo 1 foo 5 1 foo 4 foo 5 2 bar 2 bar 6 3 bar 2 bar 8 4 baz 3 NaN NaN 5 NaN NaN qux 7 Returns ------- merged : DataFrame The output type will the be same as 'left', if it is a subclass of DataFrame. See also -------- merge_ordered merge_asof """ # ----------------------------------------------------------------------- # DataFrame class class DataFrame(NDFrame): """ Two-dimensional size-mutable, potentially heterogeneous tabular data structure with labeled axes (rows and columns). Arithmetic operations align on both row and column labels. Can be thought of as a dict-like container for Series objects. The primary pandas data structure Parameters ---------- data : numpy ndarray (structured or homogeneous), dict, or DataFrame Dict can contain Series, arrays, constants, or list-like objects index : Index or array-like Index to use for resulting frame. Will default to np.arange(n) if no indexing information part of input data and no index provided columns : Index or array-like Column labels to use for resulting frame. Will default to np.arange(n) if no column labels are provided dtype : dtype, default None Data type to force, otherwise infer copy : boolean, default False Copy data from inputs. Only affects DataFrame / 2d ndarray input Examples -------- >>> d = {'col1': ts1, 'col2': ts2} >>> df = DataFrame(data=d, index=index) >>> df2 = DataFrame(np.random.randn(10, 5)) >>> df3 = DataFrame(np.random.randn(10, 5), ... columns=['a', 'b', 'c', 'd', 'e']) See also -------- DataFrame.from_records : constructor from tuples, also record arrays DataFrame.from_dict : from dicts of Series, arrays, or dicts DataFrame.from_items : from sequence of (key, value) pairs pandas.read_csv, pandas.read_table, pandas.read_clipboard """ @property def _constructor(self): return DataFrame _constructor_sliced = Series @property def _constructor_expanddim(self): from pandas.core.panel import Panel return Panel def __init__(self, data=None, index=None, columns=None, dtype=None, copy=False): if data is None: data = {} if dtype is not None: dtype = self._validate_dtype(dtype) if isinstance(data, DataFrame): data = data._data if isinstance(data, BlockManager): mgr = self._init_mgr(data, axes=dict(index=index, columns=columns), dtype=dtype, copy=copy) elif isinstance(data, dict): mgr = self._init_dict(data, index, columns, dtype=dtype) elif isinstance(data, ma.MaskedArray): import numpy.ma.mrecords as mrecords # masked recarray if isinstance(data, mrecords.MaskedRecords): mgr = _masked_rec_array_to_mgr(data, index, columns, dtype, copy) # a masked array else: mask = ma.getmaskarray(data) if mask.any(): data, fill_value = _maybe_upcast(data, copy=True) data[mask] = fill_value else: data = data.copy() mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (np.ndarray, Series, Index)): if data.dtype.names: data_columns = list(data.dtype.names) data = dict((k, data[k]) for k in data_columns) if columns is None: columns = data_columns mgr = self._init_dict(data, index, columns, dtype=dtype) elif getattr(data, 'name', None): mgr = self._init_dict({data.name: data}, index, columns, dtype=dtype) else: mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) elif isinstance(data, (list, types.GeneratorType)): if isinstance(data, types.GeneratorType): data = list(data) if len(data) > 0: if is_list_like(data[0]) and getattr(data[0], 'ndim', 1) == 1: if is_named_tuple(data[0]) and columns is None: columns = data[0]._fields arrays, columns = _to_arrays(data, columns, dtype=dtype) columns = _ensure_index(columns) # set the index if index is None: if isinstance(data[0], Series): index = _get_names_from_index(data) elif isinstance(data[0], Categorical): index = _default_index(len(data[0])) else: index = _default_index(len(data)) mgr = _arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) else: mgr = self._init_ndarray(data, index, columns, dtype=dtype, copy=copy) else: mgr = self._init_dict({}, index, columns, dtype=dtype) elif isinstance(data, collections.Iterator): raise TypeError("data argument can't be an iterator") else: try: arr = np.array(data, dtype=dtype, copy=copy) except (ValueError, TypeError) as e: exc = TypeError('DataFrame constructor called with ' 'incompatible data and dtype: %s' % e) raise_with_traceback(exc) if arr.ndim == 0 and index is not None and columns is not None: if isinstance(data, compat.string_types) and dtype is None: dtype = np.object_ if dtype is None: dtype, data = _infer_dtype_from_scalar(data) values = np.empty((len(index), len(columns)), dtype=dtype) values.fill(data) mgr = self._init_ndarray(values, index, columns, dtype=dtype, copy=False) else: raise PandasError('DataFrame constructor not properly called!') NDFrame.__init__(self, mgr, fastpath=True) def _init_dict(self, data, index, columns, dtype=None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ if columns is not None: columns = _ensure_index(columns) # GH10856 # raise ValueError if only scalars in dict if index is None: extract_index(list(data.values())) # prefilter if columns passed data = dict((k, v) for k, v in compat.iteritems(data) if k in columns) if index is None: index = extract_index(list(data.values())) else: index = _ensure_index(index) arrays = [] data_names = [] for k in columns: if k not in data: # no obvious "empty" int column if dtype is not None and issubclass(dtype.type, np.integer): continue if dtype is None: # 1783 v = np.empty(len(index), dtype=object) elif np.issubdtype(dtype, np.flexible): v = np.empty(len(index), dtype=object) else: v = np.empty(len(index), dtype=dtype) v.fill(NA) else: v = data[k] data_names.append(k) arrays.append(v) else: keys = list(data.keys()) if not isinstance(data, OrderedDict): keys = _try_sort(keys) columns = data_names = Index(keys) arrays = [data[k] for k in keys] return _arrays_to_mgr(arrays, data_names, index, columns, dtype=dtype) def _init_ndarray(self, values, index, columns, dtype=None, copy=False): # input must be a ndarray, list, Series, index if isinstance(values, Series): if columns is None: if values.name is not None: columns = [values.name] if index is None: index = values.index else: values = values.reindex(index) # zero len case (GH #2234) if not len(values) and columns is not None and len(columns): values = np.empty((0, 1), dtype=object) # helper to create the axes as indexes def _get_axes(N, K, index=index, columns=columns): # return axes or defaults if index is None: index = _default_index(N) else: index = _ensure_index(index) if columns is None: columns = _default_index(K) else: columns = _ensure_index(columns) return index, columns # we could have a categorical type passed or coerced to 'category' # recast this to an _arrays_to_mgr if (is_categorical_dtype(getattr(values, 'dtype', None)) or is_categorical_dtype(dtype)): if not hasattr(values, 'dtype'): values = _prep_ndarray(values, copy=copy) values = values.ravel() elif copy: values = values.copy() index, columns = _get_axes(len(values), 1) return _arrays_to_mgr([values], columns, index, columns, dtype=dtype) elif is_datetimetz(values): return self._init_dict({0: values}, index, columns, dtype=dtype) # by definition an array here # the dtypes will be coerced to a single dtype values = _prep_ndarray(values, copy=copy) if dtype is not None: if values.dtype != dtype: try: values = values.astype(dtype) except Exception as orig: e = ValueError("failed to cast to '%s' (Exception was: %s)" % (dtype, orig)) raise_with_traceback(e) index, columns = _get_axes(*values.shape) values = values.T # if we don't have a dtype specified, then try to convert objects # on the entire block; this is to convert if we have datetimelike's # embedded in an object type if dtype is None and is_object_dtype(values): values = _possibly_infer_to_datetimelike(values) return create_block_manager_from_blocks([values], [columns, index]) @property def axes(self): """ Return a list with the row axis labels and column axis labels as the only members. They are returned in that order. """ return [self.index, self.columns] @property def shape(self): """ Return a tuple representing the dimensionality of the DataFrame. """ return len(self.index), len(self.columns) def _repr_fits_vertical_(self): """ Check length against max_rows. """ max_rows = get_option("display.max_rows") return len(self) <= max_rows def _repr_fits_horizontal_(self, ignore_width=False): """ Check if full repr fits in horizontal boundaries imposed by the display options width and max_columns. In case off non-interactive session, no boundaries apply. ignore_width is here so ipnb+HTML output can behave the way users expect. display.max_columns remains in effect. GH3541, GH3573 """ width, height = fmt.get_console_size() max_columns = get_option("display.max_columns") nb_columns = len(self.columns) # exceed max columns if ((max_columns and nb_columns > max_columns) or ((not ignore_width) and width and nb_columns > (width // 2))): return False # used by repr_html under IPython notebook or scripts ignore terminal # dims if ignore_width or not com.in_interactive_session(): return True if (get_option('display.width') is not None or com.in_ipython_frontend()): # check at least the column row for excessive width max_rows = 1 else: max_rows = get_option("display.max_rows") # when auto-detecting, so width=None and not in ipython front end # check whether repr fits horizontal by actualy checking # the width of the rendered repr buf = StringIO() # only care about the stuff we'll actually print out # and to_string on entire frame may be expensive d = self if not (max_rows is None): # unlimited rows # min of two, where one may be None d = d.iloc[:min(max_rows, len(d))] else: return True d.to_string(buf=buf) value = buf.getvalue() repr_width = max([len(l) for l in value.split('\n')]) return repr_width < width def _info_repr(self): """True if the repr should show the info view.""" info_repr_option = (get_option("display.large_repr") == "info") return info_repr_option and not (self._repr_fits_horizontal_() and self._repr_fits_vertical_()) def __unicode__(self): """ Return a string representation for a particular DataFrame Invoked by unicode(df) in py2 only. Yields a Unicode String in both py2/py3. """ buf = StringIO(u("")) if self._info_repr(): self.info(buf=buf) return buf.getvalue() max_rows = get_option("display.max_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") if get_option("display.expand_frame_repr"): width, _ = fmt.get_console_size() else: width = None self.to_string(buf=buf, max_rows=max_rows, max_cols=max_cols, line_width=width, show_dimensions=show_dimensions) return buf.getvalue() def _repr_html_(self): """ Return a html representation for a particular DataFrame. Mainly for IPython notebook. """ # qtconsole doesn't report its line width, and also # behaves badly when outputting an HTML table # that doesn't fit the window, so disable it. # XXX: In IPython 3.x and above, the Qt console will not attempt to # display HTML, so this check can be removed when support for # IPython 2.x is no longer needed. if com.in_qtconsole(): # 'HTML output is disabled in QtConsole' return None if self._info_repr(): buf = StringIO(u("")) self.info(buf=buf) # need to escape the <class>, should be the first line. val = buf.getvalue().replace('<', r'&lt;', 1) val = val.replace('>', r'&gt;', 1) return '<pre>' + val + '</pre>' if get_option("display.notebook_repr_html"): max_rows = get_option("display.max_rows") max_cols = get_option("display.max_columns") show_dimensions = get_option("display.show_dimensions") return self.to_html(max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, notebook=True) else: return None def _repr_latex_(self): """ Returns a LaTeX representation for a particular Dataframe. Mainly for use with nbconvert (jupyter notebook conversion to pdf). """ if get_option('display.latex.repr'): return self.to_latex() else: return None @property def style(self): """ Property returning a Styler object containing methods for building a styled HTML representation fo the DataFrame. See Also -------- pandas.formats.style.Styler """ from pandas.formats.style import Styler return Styler(self) def iteritems(self): """ Iterator over (column name, Series) pairs. See also -------- iterrows : Iterate over DataFrame rows as (index, Series) pairs. itertuples : Iterate over DataFrame rows as namedtuples of the values. """ if self.columns.is_unique and hasattr(self, '_item_cache'): for k in self.columns: yield k, self._get_item_cache(k) else: for i, k in enumerate(self.columns): yield k, self._ixs(i, axis=1) def iterrows(self): """ Iterate over DataFrame rows as (index, Series) pairs. Notes ----- 1. Because ``iterrows`` returns a Series for each row, it does **not** preserve dtypes across the rows (dtypes are preserved across columns for DataFrames). For example, >>> df = pd.DataFrame([[1, 1.5]], columns=['int', 'float']) >>> row = next(df.iterrows())[1] >>> row int 1.0 float 1.5 Name: 0, dtype: float64 >>> print(row['int'].dtype) float64 >>> print(df['int'].dtype) int64 To preserve dtypes while iterating over the rows, it is better to use :meth:`itertuples` which returns namedtuples of the values and which is generally faster than ``iterrows``. 2. You should **never modify** something you are iterating over. This is not guaranteed to work in all cases. Depending on the data types, the iterator returns a copy and not a view, and writing to it will have no effect. Returns ------- it : generator A generator that iterates over the rows of the frame. See also -------- itertuples : Iterate over DataFrame rows as namedtuples of the values. iteritems : Iterate over (column name, Series) pairs. """ columns = self.columns klass = self._constructor_sliced for k, v in zip(self.index, self.values): s = klass(v, index=columns, name=k) yield k, s def itertuples(self, index=True, name="Pandas"): """ Iterate over DataFrame rows as namedtuples, with index value as first element of the tuple. Parameters ---------- index : boolean, default True If True, return the index as the first element of the tuple. name : string, default "Pandas" The name of the returned namedtuples or None to return regular tuples. Notes ----- The column names will be renamed to positional names if they are invalid Python identifiers, repeated, or start with an underscore. With a large number of columns (>255), regular tuples are returned. See also -------- iterrows : Iterate over DataFrame rows as (index, Series) pairs. iteritems : Iterate over (column name, Series) pairs. Examples -------- >>> df = pd.DataFrame({'col1': [1, 2], 'col2': [0.1, 0.2]}, index=['a', 'b']) >>> df col1 col2 a 1 0.1 b 2 0.2 >>> for row in df.itertuples(): ... print(row) ... Pandas(Index='a', col1=1, col2=0.10000000000000001) Pandas(Index='b', col1=2, col2=0.20000000000000001) """ arrays = [] fields = [] if index: arrays.append(self.index) fields.append("Index") # use integer indexing because of possible duplicate column names arrays.extend(self.iloc[:, k] for k in range(len(self.columns))) # Python 3 supports at most 255 arguments to constructor, and # things get slow with this many fields in Python 2 if name is not None and len(self.columns) + index < 256: # `rename` is unsupported in Python 2.6 try: itertuple = collections.namedtuple(name, fields + list(self.columns), rename=True) return map(itertuple._make, zip(*arrays)) except Exception: pass # fallback to regular tuples return zip(*arrays) if compat.PY3: # pragma: no cover items = iteritems def __len__(self): """Returns length of info axis, but here we use the index """ return len(self.index) def dot(self, other): """ Matrix multiplication with DataFrame or Series objects Parameters ---------- other : DataFrame or Series Returns ------- dot_product : DataFrame or Series """ if isinstance(other, (Series, DataFrame)): common = self.columns.union(other.index) if (len(common) > len(self.columns) or len(common) > len(other.index)): raise ValueError('matrices are not aligned') left = self.reindex(columns=common, copy=False) right = other.reindex(index=common, copy=False) lvals = left.values rvals = right.values else: left = self lvals = self.values rvals = np.asarray(other) if lvals.shape[1] != rvals.shape[0]: raise ValueError('Dot product shape mismatch, %s vs %s' % (lvals.shape, rvals.shape)) if isinstance(other, DataFrame): return self._constructor(np.dot(lvals, rvals), index=left.index, columns=other.columns) elif isinstance(other, Series): return Series(np.dot(lvals, rvals), index=left.index) elif isinstance(rvals, (np.ndarray, Index)): result = np.dot(lvals, rvals) if result.ndim == 2: return self._constructor(result, index=left.index) else: return Series(result, index=left.index) else: # pragma: no cover raise TypeError('unsupported type: %s' % type(other)) # ---------------------------------------------------------------------- # IO methods (to / from other formats) @classmethod def from_dict(cls, data, orient='columns', dtype=None): """ Construct DataFrame from dict of array-like or dicts Parameters ---------- data : dict {field : array-like} or {field : dict} orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the passed dict should be the columns of the resulting DataFrame, pass 'columns' (default). Otherwise if the keys should be rows, pass 'index'. dtype : dtype, default None Data type to force, otherwise infer Returns ------- DataFrame """ index, columns = None, None orient = orient.lower() if orient == 'index': if len(data) > 0: # TODO speed up Series case if isinstance(list(data.values())[0], (Series, dict)): data = _from_nested_dict(data) else: data, index = list(data.values()), list(data.keys()) elif orient != 'columns': # pragma: no cover raise ValueError('only recognize index or columns for orient') return cls(data, index=index, columns=columns, dtype=dtype) def to_dict(self, orient='dict'): """Convert DataFrame to dictionary. Parameters ---------- orient : str {'dict', 'list', 'series', 'split', 'records', 'index'} Determines the type of the values of the dictionary. - dict (default) : dict like {column -> {index -> value}} - list : dict like {column -> [values]} - series : dict like {column -> Series(values)} - split : dict like {index -> [index], columns -> [columns], data -> [values]} - records : list like [{column -> value}, ... , {column -> value}] - index : dict like {index -> {column -> value}} .. versionadded:: 0.17.0 Abbreviations are allowed. `s` indicates `series` and `sp` indicates `split`. Returns ------- result : dict like {column -> {index -> value}} """ if not self.columns.is_unique: warnings.warn("DataFrame columns are not unique, some " "columns will be omitted.", UserWarning) if orient.lower().startswith('d'): return dict((k, v.to_dict()) for k, v in compat.iteritems(self)) elif orient.lower().startswith('l'): return dict((k, v.tolist()) for k, v in compat.iteritems(self)) elif orient.lower().startswith('sp'): return {'index': self.index.tolist(), 'columns': self.columns.tolist(), 'data': lib.map_infer(self.values.ravel(), _maybe_box_datetimelike) .reshape(self.values.shape).tolist()} elif orient.lower().startswith('s'): return dict((k, _maybe_box_datetimelike(v)) for k, v in compat.iteritems(self)) elif orient.lower().startswith('r'): return [dict((k, _maybe_box_datetimelike(v)) for k, v in zip(self.columns, row)) for row in self.values] elif orient.lower().startswith('i'): return dict((k, v.to_dict()) for k, v in self.iterrows()) else: raise ValueError("orient '%s' not understood" % orient) def to_gbq(self, destination_table, project_id, chunksize=10000, verbose=True, reauth=False, if_exists='fail', private_key=None): """Write a DataFrame to a Google BigQuery table. THIS IS AN EXPERIMENTAL LIBRARY Parameters ---------- dataframe : DataFrame DataFrame to be written destination_table : string Name of table to be written, in the form 'dataset.tablename' project_id : str Google BigQuery Account project ID. chunksize : int (default 10000) Number of rows to be inserted in each chunk from the dataframe. verbose : boolean (default True) Show percentage complete reauth : boolean (default False) Force Google BigQuery to reauthenticate the user. This is useful if multiple accounts are used. if_exists : {'fail', 'replace', 'append'}, default 'fail' 'fail': If table exists, do nothing. 'replace': If table exists, drop it, recreate it, and insert data. 'append': If table exists, insert data. Create if does not exist. private_key : str (optional) Service account private key in JSON format. Can be file path or string contents. This is useful for remote server authentication (eg. jupyter iPython notebook on remote host) .. versionadded:: 0.17.0 """ from pandas.io import gbq return gbq.to_gbq(self, destination_table, project_id=project_id, chunksize=chunksize, verbose=verbose, reauth=reauth, if_exists=if_exists, private_key=private_key) @classmethod def from_records(cls, data, index=None, exclude=None, columns=None, coerce_float=False, nrows=None): """ Convert structured or record ndarray to DataFrame Parameters ---------- data : ndarray (structured dtype), list of tuples, dict, or DataFrame index : string, list of fields, array-like Field of array to use as the index, alternately a specific set of input labels to use exclude : sequence, default None Columns or fields to exclude columns : sequence, default None Column names to use. If the passed data do not have names associated with them, this argument provides names for the columns. Otherwise this argument indicates the order of the columns in the result (any names not found in the data will become all-NA columns) coerce_float : boolean, default False Attempt to convert values to non-string, non-numeric objects (like decimal.Decimal) to floating point, useful for SQL result sets Returns ------- df : DataFrame """ # Make a copy of the input columns so we can modify it if columns is not None: columns = _ensure_index(columns) if is_iterator(data): if nrows == 0: return cls() try: first_row = next(data) except StopIteration: return cls(index=index, columns=columns) dtype = None if hasattr(first_row, 'dtype') and first_row.dtype.names: dtype = first_row.dtype values = [first_row] if nrows is None: values += data else: values.extend(itertools.islice(data, nrows - 1)) if dtype is not None: data = np.array(values, dtype=dtype) else: data = values if isinstance(data, dict): if columns is None: columns = arr_columns = _ensure_index(sorted(data)) arrays = [data[k] for k in columns] else: arrays = [] arr_columns = [] for k, v in compat.iteritems(data): if k in columns: arr_columns.append(k) arrays.append(v) arrays, arr_columns = _reorder_arrays(arrays, arr_columns, columns) elif isinstance(data, (np.ndarray, DataFrame)): arrays, columns = _to_arrays(data, columns) if columns is not None: columns = _ensure_index(columns) arr_columns = columns else: arrays, arr_columns = _to_arrays(data, columns, coerce_float=coerce_float) arr_columns = _ensure_index(arr_columns) if columns is not None: columns = _ensure_index(columns) else: columns = arr_columns if exclude is None: exclude = set() else: exclude = set(exclude) result_index = None if index is not None: if (isinstance(index, compat.string_types) or not hasattr(index, "__iter__")): i = columns.get_loc(index) exclude.add(index) if len(arrays) > 0: result_index = Index(arrays[i], name=index) else: result_index = Index([], name=index) else: try: to_remove = [arr_columns.get_loc(field) for field in index] result_index = MultiIndex.from_arrays( [arrays[i] for i in to_remove], names=index) exclude.update(index) except Exception: result_index = index if any(exclude): arr_exclude = [x for x in exclude if x in arr_columns] to_remove = [arr_columns.get_loc(col) for col in arr_exclude] arrays = [v for i, v in enumerate(arrays) if i not in to_remove] arr_columns = arr_columns.drop(arr_exclude) columns = columns.drop(exclude) mgr = _arrays_to_mgr(arrays, arr_columns, result_index, columns) return cls(mgr) def to_records(self, index=True, convert_datetime64=True): """ Convert DataFrame to record array. Index will be put in the 'index' field of the record array if requested Parameters ---------- index : boolean, default True Include index in resulting record array, stored in 'index' field convert_datetime64 : boolean, default True Whether to convert the index to datetime.datetime if it is a DatetimeIndex Returns ------- y : recarray """ if index: if is_datetime64_dtype(self.index) and convert_datetime64: ix_vals = [self.index.to_pydatetime()] else: if isinstance(self.index, MultiIndex): # array of tuples to numpy cols. copy copy copy ix_vals = lmap(np.array, zip(*self.index.values)) else: ix_vals = [self.index.values] arrays = ix_vals + [self[c].get_values() for c in self.columns] count = 0 index_names = list(self.index.names) if isinstance(self.index, MultiIndex): for i, n in enumerate(index_names): if n is None: index_names[i] = 'level_%d' % count count += 1 elif index_names[0] is None: index_names = ['index'] names = lmap(str, index_names) + lmap(str, self.columns) else: arrays = [self[c].get_values() for c in self.columns] names = lmap(str, self.columns) dtype = np.dtype([(x, v.dtype) for x, v in zip(names, arrays)]) return np.rec.fromarrays(arrays, dtype=dtype, names=names) @classmethod def from_items(cls, items, columns=None, orient='columns'): """ Convert (key, value) pairs to DataFrame. The keys will be the axis index (usually the columns, but depends on the specified orientation). The values should be arrays or Series. Parameters ---------- items : sequence of (key, value) pairs Values should be arrays or Series. columns : sequence of column labels, optional Must be passed if orient='index'. orient : {'columns', 'index'}, default 'columns' The "orientation" of the data. If the keys of the input correspond to column labels, pass 'columns' (default). Otherwise if the keys correspond to the index, pass 'index'. Returns ------- frame : DataFrame """ keys, values = lzip(*items) if orient == 'columns': if columns is not None: columns = _ensure_index(columns) idict = dict(items) if len(idict) < len(items): if not columns.equals(_ensure_index(keys)): raise ValueError('With non-unique item names, passed ' 'columns must be identical') arrays = values else: arrays = [idict[k] for k in columns if k in idict] else: columns = _ensure_index(keys) arrays = values return cls._from_arrays(arrays, columns, None) elif orient == 'index': if columns is None: raise TypeError("Must pass columns with orient='index'") keys = _ensure_index(keys) arr = np.array(values, dtype=object).T data = [lib.maybe_convert_objects(v) for v in arr] return cls._from_arrays(data, columns, keys) else: # pragma: no cover raise ValueError("'orient' must be either 'columns' or 'index'") @classmethod def _from_arrays(cls, arrays, columns, index, dtype=None): mgr = _arrays_to_mgr(arrays, columns, index, columns, dtype=dtype) return cls(mgr) @classmethod def from_csv(cls, path, header=0, sep=',', index_col=0, parse_dates=True, encoding=None, tupleize_cols=False, infer_datetime_format=False): """ Read CSV file (DISCOURAGED, please use :func:`pandas.read_csv` instead). It is preferable to use the more powerful :func:`pandas.read_csv` for most general purposes, but ``from_csv`` makes for an easy roundtrip to and from a file (the exact counterpart of ``to_csv``), especially with a DataFrame of time series data. This method only differs from the preferred :func:`pandas.read_csv` in some defaults: - `index_col` is ``0`` instead of ``None`` (take first column as index by default) - `parse_dates` is ``True`` instead of ``False`` (try parsing the index as datetime by default) So a ``pd.DataFrame.from_csv(path)`` can be replaced by ``pd.read_csv(path, index_col=0, parse_dates=True)``. Parameters ---------- path : string file path or file handle / StringIO header : int, default 0 Row to use as header (skip prior rows) sep : string, default ',' Field delimiter index_col : int or sequence, default 0 Column to use for index. If a sequence is given, a MultiIndex is used. Different default from read_table parse_dates : boolean, default True Parse dates. Different default from read_table tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) infer_datetime_format: boolean, default False If True and `parse_dates` is True for a column, try to infer the datetime format based on the first datetime string. If the format can be inferred, there often will be a large parsing speed-up. See also -------- pandas.read_csv Returns ------- y : DataFrame """ from pandas.io.parsers import read_table return read_table(path, header=header, sep=sep, parse_dates=parse_dates, index_col=index_col, encoding=encoding, tupleize_cols=tupleize_cols, infer_datetime_format=infer_datetime_format) def to_sparse(self, fill_value=None, kind='block'): """ Convert to SparseDataFrame Parameters ---------- fill_value : float, default NaN kind : {'block', 'integer'} Returns ------- y : SparseDataFrame """ from pandas.core.sparse import SparseDataFrame return SparseDataFrame(self._series, index=self.index, columns=self.columns, default_kind=kind, default_fill_value=fill_value) def to_panel(self): """ Transform long (stacked) format (DataFrame) into wide (3D, Panel) format. Currently the index of the DataFrame must be a 2-level MultiIndex. This may be generalized later Returns ------- panel : Panel """ # only support this kind for now if (not isinstance(self.index, MultiIndex) or # pragma: no cover len(self.index.levels) != 2): raise NotImplementedError('Only 2-level MultiIndex are supported.') if not self.index.is_unique: raise ValueError("Can't convert non-uniquely indexed " "DataFrame to Panel") self._consolidate_inplace() # minor axis must be sorted if self.index.lexsort_depth < 2: selfsorted = self.sortlevel(0) else: selfsorted = self major_axis, minor_axis = selfsorted.index.levels major_labels, minor_labels = selfsorted.index.labels shape = len(major_axis), len(minor_axis) # preserve names, if any major_axis = major_axis.copy() major_axis.name = self.index.names[0] minor_axis = minor_axis.copy() minor_axis.name = self.index.names[1] # create new axes new_axes = [selfsorted.columns, major_axis, minor_axis] # create new manager new_mgr = selfsorted._data.reshape_nd(axes=new_axes, labels=[major_labels, minor_labels], shape=shape, ref_items=selfsorted.columns) return self._constructor_expanddim(new_mgr) def to_csv(self, path_or_buf=None, sep=",", na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, mode='w', encoding=None, compression=None, quoting=None, quotechar='"', line_terminator='\n', chunksize=None, tupleize_cols=False, date_format=None, doublequote=True, escapechar=None, decimal='.'): r"""Write DataFrame to a comma-separated values (csv) file Parameters ---------- path_or_buf : string or file handle, default None File path or object, if None is provided the result is returned as a string. sep : character, default ',' Field delimiter for the output file. na_rep : string, default '' Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, or False, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. If False do not print fields for index names. Use index_label=False for easier importing in R mode : str Python write mode, default 'w' encoding : string, optional A string representing the encoding to use in the output file, defaults to 'ascii' on Python 2 and 'utf-8' on Python 3. compression : string, optional a string representing the compression to use in the output file, allowed values are 'gzip', 'bz2', 'xz', only used when the first argument is a filename line_terminator : string, default ``'\n'`` The newline character or character sequence to use in the output file quoting : optional constant from csv module defaults to csv.QUOTE_MINIMAL. If you have set a `float_format` then floats are comverted to strings and thus csv.QUOTE_NONNUMERIC will treat them as non-numeric quotechar : string (length 1), default '\"' character used to quote fields doublequote : boolean, default True Control quoting of `quotechar` inside a field escapechar : string (length 1), default None character used to escape `sep` and `quotechar` when appropriate chunksize : int or None rows to write at a time tupleize_cols : boolean, default False write multi_index columns as a list of tuples (if True) or new (expanded format) if False) date_format : string, default None Format string for datetime objects decimal: string, default '.' Character recognized as decimal separator. E.g. use ',' for European data .. versionadded:: 0.16.0 """ formatter = fmt.CSVFormatter(self, path_or_buf, line_terminator=line_terminator, sep=sep, encoding=encoding, compression=compression, quoting=quoting, na_rep=na_rep, float_format=float_format, cols=columns, header=header, index=index, index_label=index_label, mode=mode, chunksize=chunksize, quotechar=quotechar, tupleize_cols=tupleize_cols, date_format=date_format, doublequote=doublequote, escapechar=escapechar, decimal=decimal) formatter.save() if path_or_buf is None: return formatter.path_or_buf.getvalue() def to_excel(self, excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True): """ Write DataFrame to a excel sheet Parameters ---------- excel_writer : string or ExcelWriter object File path or existing ExcelWriter sheet_name : string, default 'Sheet1' Name of sheet which will contain DataFrame na_rep : string, default '' Missing data representation float_format : string, default None Format string for floating point numbers columns : sequence, optional Columns to write header : boolean or list of string, default True Write out column names. If a list of string is given it is assumed to be aliases for the column names index : boolean, default True Write row names (index) index_label : string or sequence, default None Column label for index column(s) if desired. If None is given, and `header` and `index` are True, then the index names are used. A sequence should be given if the DataFrame uses MultiIndex. startrow : upper left cell row to dump data frame startcol : upper left cell column to dump data frame engine : string, default None write engine to use - you can also set this via the options ``io.excel.xlsx.writer``, ``io.excel.xls.writer``, and ``io.excel.xlsm.writer``. merge_cells : boolean, default True Write MultiIndex and Hierarchical Rows as merged cells. encoding: string, default None encoding of the resulting excel file. Only necessary for xlwt, other writers support unicode natively. inf_rep : string, default 'inf' Representation for infinity (there is no native representation for infinity in Excel) Notes ----- If passing an existing ExcelWriter object, then the sheet will be added to the existing workbook. This can be used to save different DataFrames to one workbook: >>> writer = ExcelWriter('output.xlsx') >>> df1.to_excel(writer,'Sheet1') >>> df2.to_excel(writer,'Sheet2') >>> writer.save() For compatibility with to_csv, to_excel serializes lists and dicts to strings before writing. """ from pandas.io.excel import ExcelWriter need_save = False if encoding is None: encoding = 'ascii' if isinstance(excel_writer, compat.string_types): excel_writer = ExcelWriter(excel_writer, engine=engine) need_save = True formatter = fmt.ExcelFormatter(self, na_rep=na_rep, cols=columns, header=header, float_format=float_format, index=index, index_label=index_label, merge_cells=merge_cells, inf_rep=inf_rep) formatted_cells = formatter.get_formatted_cells() excel_writer.write_cells(formatted_cells, sheet_name, startrow=startrow, startcol=startcol) if need_save: excel_writer.save() def to_stata(self, fname, convert_dates=None, write_index=True, encoding="latin-1", byteorder=None, time_stamp=None, data_label=None, variable_labels=None): """ A class for writing Stata binary dta files from array-like objects Parameters ---------- fname : str or buffer String path of file-like object convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when wirting the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information write_index : bool Write the index to Stata dataset. encoding : str Default is latin-1. Unicode is not supported byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder` time_stamp : datetime A datetime to use as file creation date. Default is the current time. dataset_label : str A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. .. versionadded:: 0.19.0 Raises ------ NotImplementedError * If datetimes contain timezone information * Column dtype is not representable in Stata ValueError * Columns listed in convert_dates are noth either datetime64[ns] or datetime.datetime * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters .. versionadded:: 0.19.0 Examples -------- >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() Or with dates >>> writer = StataWriter('./date_data_file.dta', data, {2 : 'tw'}) >>> writer.write_file() """ from pandas.io.stata import StataWriter writer = StataWriter(fname, self, convert_dates=convert_dates, encoding=encoding, byteorder=byteorder, time_stamp=time_stamp, data_label=data_label, write_index=write_index, variable_labels=variable_labels) writer.write_file() @Appender(fmt.docstring_to_string, indents=1) def to_string(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, line_width=None, max_rows=None, max_cols=None, show_dimensions=False): """ Render a DataFrame to a console-friendly tabular output. """ formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, line_width=line_width, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions) formatter.to_string() if buf is None: result = formatter.buf.getvalue() return result @Appender(fmt.docstring_to_string, indents=1) def to_html(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, justify=None, bold_rows=True, classes=None, escape=True, max_rows=None, max_cols=None, show_dimensions=False, notebook=False, decimal='.', border=None): """ Render a DataFrame as an HTML table. `to_html`-specific options: bold_rows : boolean, default True Make the row labels bold in the output classes : str or list or tuple, default None CSS class(es) to apply to the resulting html table escape : boolean, default True Convert the characters <, >, and & to HTML-safe sequences.= max_rows : int, optional Maximum number of rows to show before truncating. If None, show all. max_cols : int, optional Maximum number of columns to show before truncating. If None, show all. decimal : string, default '.' Character recognized as decimal separator, e.g. ',' in Europe .. versionadded:: 0.18.0 border : int A ``border=border`` attribute is included in the opening `<table>` tag. Default ``pd.options.html.border``. .. versionadded:: 0.19.0 """ formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, formatters=formatters, float_format=float_format, sparsify=sparsify, justify=justify, index_names=index_names, header=header, index=index, bold_rows=bold_rows, escape=escape, max_rows=max_rows, max_cols=max_cols, show_dimensions=show_dimensions, decimal=decimal) # TODO: a generic formatter wld b in DataFrameFormatter formatter.to_html(classes=classes, notebook=notebook, border=border) if buf is None: return formatter.buf.getvalue() @Appender(fmt.common_docstring + fmt.return_docstring, indents=1) def to_latex(self, buf=None, columns=None, col_space=None, header=True, index=True, na_rep='NaN', formatters=None, float_format=None, sparsify=None, index_names=True, bold_rows=True, column_format=None, longtable=None, escape=None, encoding=None, decimal='.'): """ Render a DataFrame to a tabular environment table. You can splice this into a LaTeX document. Requires \\usepackage{booktabs}. `to_latex`-specific options: bold_rows : boolean, default True Make the row labels bold in the output column_format : str, default None The columns format as specified in `LaTeX table format <https://en.wikibooks.org/wiki/LaTeX/Tables>`__ e.g 'rcl' for 3 columns longtable : boolean, default will be read from the pandas config module default: False Use a longtable environment instead of tabular. Requires adding a \\usepackage{longtable} to your LaTeX preamble. escape : boolean, default will be read from the pandas config module default: True When set to False prevents from escaping latex special characters in column names. encoding : str, default None A string representing the encoding to use in the output file, defaults to 'ascii' on Python 2 and 'utf-8' on Python 3. decimal : string, default '.' Character recognized as decimal separator, e.g. ',' in Europe .. versionadded:: 0.18.0 """ # Get defaults from the pandas config if longtable is None: longtable = get_option("display.latex.longtable") if escape is None: escape = get_option("display.latex.escape") formatter = fmt.DataFrameFormatter(self, buf=buf, columns=columns, col_space=col_space, na_rep=na_rep, header=header, index=index, formatters=formatters, float_format=float_format, bold_rows=bold_rows, sparsify=sparsify, index_names=index_names, escape=escape, decimal=decimal) formatter.to_latex(column_format=column_format, longtable=longtable, encoding=encoding) if buf is None: return formatter.buf.getvalue() def info(self, verbose=None, buf=None, max_cols=None, memory_usage=None, null_counts=None): """ Concise summary of a DataFrame. Parameters ---------- verbose : {None, True, False}, optional Whether to print the full summary. None follows the `display.max_info_columns` setting. True or False overrides the `display.max_info_columns` setting. buf : writable buffer, defaults to sys.stdout max_cols : int, default None Determines whether full summary or short summary is printed. None follows the `display.max_info_columns` setting. memory_usage : boolean/string, default None Specifies whether total memory usage of the DataFrame elements (including index) should be displayed. None follows the `display.memory_usage` setting. True or False overrides the `display.memory_usage` setting. A value of 'deep' is equivalent of True, with deep introspection. Memory usage is shown in human-readable units (base-2 representation). null_counts : boolean, default None Whether to show the non-null counts - If None, then only show if the frame is smaller than max_info_rows and max_info_columns. - If True, always show counts. - If False, never show counts. """ from pandas.formats.format import _put_lines if buf is None: # pragma: no cover buf = sys.stdout lines = [] lines.append(str(type(self))) lines.append(self.index.summary()) if len(self.columns) == 0: lines.append('Empty %s' % type(self).__name__) _put_lines(buf, lines) return cols = self.columns # hack if max_cols is None: max_cols = get_option('display.max_info_columns', len(self.columns) + 1) max_rows = get_option('display.max_info_rows', len(self) + 1) if null_counts is None: show_counts = ((len(self.columns) <= max_cols) and (len(self) < max_rows)) else: show_counts = null_counts exceeds_info_cols = len(self.columns) > max_cols def _verbose_repr(): lines.append('Data columns (total %d columns):' % len(self.columns)) space = max([len(pprint_thing(k)) for k in self.columns]) + 4 counts = None tmpl = "%s%s" if show_counts: counts = self.count() if len(cols) != len(counts): # pragma: no cover raise AssertionError('Columns must equal counts (%d != %d)' % (len(cols), len(counts))) tmpl = "%s non-null %s" dtypes = self.dtypes for i, col in enumerate(self.columns): dtype = dtypes.iloc[i] col = pprint_thing(col) count = "" if show_counts: count = counts.iloc[i] lines.append(_put_str(col, space) + tmpl % (count, dtype)) def _non_verbose_repr(): lines.append(self.columns.summary(name='Columns')) def _sizeof_fmt(num, size_qualifier): # returns size in human readable format for x in ['bytes', 'KB', 'MB', 'GB', 'TB']: if num < 1024.0: return "%3.1f%s %s" % (num, size_qualifier, x) num /= 1024.0 return "%3.1f%s %s" % (num, size_qualifier, 'PB') if verbose: _verbose_repr() elif verbose is False: # specifically set to False, not nesc None _non_verbose_repr() else: if exceeds_info_cols: _non_verbose_repr() else: _verbose_repr() counts = self.get_dtype_counts() dtypes = ['%s(%d)' % k for k in sorted(compat.iteritems(counts))] lines.append('dtypes: %s' % ', '.join(dtypes)) if memory_usage is None: memory_usage = get_option('display.memory_usage') if memory_usage: # append memory usage of df to display size_qualifier = '' if memory_usage == 'deep': deep = True else: # size_qualifier is just a best effort; not guaranteed to catch # all cases (e.g., it misses categorical data even with object # categories) deep = False if 'object' in counts or is_object_dtype(self.index): size_qualifier = '+' mem_usage = self.memory_usage(index=True, deep=deep).sum() lines.append("memory usage: %s\n" % _sizeof_fmt(mem_usage, size_qualifier)) _put_lines(buf, lines) def memory_usage(self, index=True, deep=False): """Memory usage of DataFrame columns. Parameters ---------- index : bool Specifies whether to include memory usage of DataFrame's index in returned Series. If `index=True` (default is False) the first index of the Series is `Index`. deep : bool Introspect the data deeply, interrogate `object` dtypes for system-level memory consumption Returns ------- sizes : Series A series with column names as index and memory usage of columns with units of bytes. Notes ----- Memory usage does not include memory consumed by elements that are not components of the array if deep=False See Also -------- numpy.ndarray.nbytes """ result = Series([c.memory_usage(index=False, deep=deep) for col, c in self.iteritems()], index=self.columns) if index: result = Series(self.index.memory_usage(deep=deep), index=['Index']).append(result) return result def transpose(self, *args, **kwargs): """Transpose index and columns""" nv.validate_transpose(args, dict()) return super(DataFrame, self).transpose(1, 0, **kwargs) T = property(transpose) # ---------------------------------------------------------------------- # Picklability # legacy pickle formats def _unpickle_frame_compat(self, state): # pragma: no cover from pandas.core.common import _unpickle_array if len(state) == 2: # pragma: no cover series, idx = state columns = sorted(series) else: series, cols, idx = state columns = _unpickle_array(cols) index = _unpickle_array(idx) self._data = self._init_dict(series, index, columns, None) def _unpickle_matrix_compat(self, state): # pragma: no cover from pandas.core.common import _unpickle_array # old unpickling (vals, idx, cols), object_state = state index = _unpickle_array(idx) dm = DataFrame(vals, index=index, columns=_unpickle_array(cols), copy=False) if object_state is not None: ovals, _, ocols = object_state objects = DataFrame(ovals, index=index, columns=_unpickle_array(ocols), copy=False) dm = dm.join(objects) self._data = dm._data # ---------------------------------------------------------------------- # Getting and setting elements def get_value(self, index, col, takeable=False): """ Quickly retrieve single value at passed column and index Parameters ---------- index : row label col : column label takeable : interpret the index/col as indexers, default False Returns ------- value : scalar value """ if takeable: series = self._iget_item_cache(col) return _maybe_box_datetimelike(series._values[index]) series = self._get_item_cache(col) engine = self.index._engine return engine.get_value(series.get_values(), index) def set_value(self, index, col, value, takeable=False): """ Put single value at passed column and index Parameters ---------- index : row label col : column label value : scalar value takeable : interpret the index/col as indexers, default False Returns ------- frame : DataFrame If label pair is contained, will be reference to calling DataFrame, otherwise a new object """ try: if takeable is True: series = self._iget_item_cache(col) return series.set_value(index, value, takeable=True) series = self._get_item_cache(col) engine = self.index._engine engine.set_value(series._values, index, value) return self except (KeyError, TypeError): # set using a non-recursive method & reset the cache self.loc[index, col] = value self._item_cache.pop(col, None) return self def irow(self, i, copy=False): """ DEPRECATED. Use ``.iloc[i]`` instead """ warnings.warn("irow(i) is deprecated. Please use .iloc[i]", FutureWarning, stacklevel=2) return self._ixs(i, axis=0) def icol(self, i): """ DEPRECATED. Use ``.iloc[:, i]`` instead """ warnings.warn("icol(i) is deprecated. Please use .iloc[:,i]", FutureWarning, stacklevel=2) return self._ixs(i, axis=1) def _ixs(self, i, axis=0): """ i : int, slice, or sequence of integers axis : int """ # irow if axis == 0: """ Notes ----- If slice passed, the resulting data will be a view """ if isinstance(i, slice): return self[i] else: label = self.index[i] if isinstance(label, Index): # a location index by definition result = self.take(i, axis=axis) copy = True else: new_values = self._data.fast_xs(i) if is_scalar(new_values): return new_values # if we are a copy, mark as such copy = (isinstance(new_values, np.ndarray) and new_values.base is None) result = self._constructor_sliced(new_values, index=self.columns, name=self.index[i], dtype=new_values.dtype) result._set_is_copy(self, copy=copy) return result # icol else: """ Notes ----- If slice passed, the resulting data will be a view """ label = self.columns[i] if isinstance(i, slice): # need to return view lab_slice = slice(label[0], label[-1]) return self.ix[:, lab_slice] else: if isinstance(label, Index): return self.take(i, axis=1, convert=True) index_len = len(self.index) # if the values returned are not the same length # as the index (iow a not found value), iget returns # a 0-len ndarray. This is effectively catching # a numpy error (as numpy should really raise) values = self._data.iget(i) if index_len and not len(values): values = np.array([np.nan] * index_len, dtype=object) result = self._constructor_sliced.from_array(values, index=self.index, name=label, fastpath=True) # this is a cached value, mark it so result._set_as_cached(label, self) return result def iget_value(self, i, j): """ DEPRECATED. Use ``.iat[i, j]`` instead """ warnings.warn("iget_value(i, j) is deprecated. Please use .iat[i, j]", FutureWarning, stacklevel=2) return self.iat[i, j] def __getitem__(self, key): key = com._apply_if_callable(key, self) # shortcut if we are an actual column is_mi_columns = isinstance(self.columns, MultiIndex) try: if key in self.columns and not is_mi_columns: return self._getitem_column(key) except: pass # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._getitem_slice(indexer) if isinstance(key, (Series, np.ndarray, Index, list)): # either boolean or fancy integer index return self._getitem_array(key) elif isinstance(key, DataFrame): return self._getitem_frame(key) elif is_mi_columns: return self._getitem_multilevel(key) else: return self._getitem_column(key) def _getitem_column(self, key): """ return the actual column """ # get column if self.columns.is_unique: return self._get_item_cache(key) # duplicate columns & possible reduce dimensionality result = self._constructor(self._data.get(key)) if result.columns.is_unique: result = result[key] return result def _getitem_slice(self, key): return self._slice(key, axis=0) def _getitem_array(self, key): # also raises Exception if object array with NA values if com.is_bool_indexer(key): # warning here just in case -- previously __setitem__ was # reindexing but __getitem__ was not; it seems more reasonable to # go with the __setitem__ behavior since that is more consistent # with all other indexing behavior if isinstance(key, Series) and not key.index.equals(self.index): warnings.warn("Boolean Series key will be reindexed to match " "DataFrame index.", UserWarning, stacklevel=3) elif len(key) != len(self.index): raise ValueError('Item wrong length %d instead of %d.' % (len(key), len(self.index))) # check_bool_indexer will throw exception if Series key cannot # be reindexed to match DataFrame rows key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] return self.take(indexer, axis=0, convert=False) else: indexer = self.ix._convert_to_indexer(key, axis=1) return self.take(indexer, axis=1, convert=True) def _getitem_multilevel(self, key): loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): new_columns = self.columns[loc] result_columns = maybe_droplevels(new_columns, key) if self._is_mixed_type: result = self.reindex(columns=new_columns) result.columns = result_columns else: new_values = self.values[:, loc] result = self._constructor(new_values, index=self.index, columns=result_columns) result = result.__finalize__(self) if len(result.columns) == 1: top = result.columns[0] if ((type(top) == str and top == '') or (type(top) == tuple and top[0] == '')): result = result[''] if isinstance(result, Series): result = self._constructor_sliced(result, index=self.index, name=key) result._set_is_copy(self) return result else: return self._get_item_cache(key) def _getitem_frame(self, key): if key.values.size and not is_bool_dtype(key.values): raise ValueError('Must pass DataFrame with boolean values only') return self.where(key) def query(self, expr, inplace=False, **kwargs): """Query the columns of a frame with a boolean expression. .. versionadded:: 0.13 Parameters ---------- expr : string The query string to evaluate. You can refer to variables in the environment by prefixing them with an '@' character like ``@a + b``. inplace : bool Whether the query should modify the data in place or return a modified copy .. versionadded:: 0.18.0 kwargs : dict See the documentation for :func:`pandas.eval` for complete details on the keyword arguments accepted by :meth:`DataFrame.query`. Returns ------- q : DataFrame Notes ----- The result of the evaluation of this expression is first passed to :attr:`DataFrame.loc` and if that fails because of a multidimensional key (e.g., a DataFrame) then the result will be passed to :meth:`DataFrame.__getitem__`. This method uses the top-level :func:`pandas.eval` function to evaluate the passed query. The :meth:`~pandas.DataFrame.query` method uses a slightly modified Python syntax by default. For example, the ``&`` and ``|`` (bitwise) operators have the precedence of their boolean cousins, :keyword:`and` and :keyword:`or`. This *is* syntactically valid Python, however the semantics are different. You can change the semantics of the expression by passing the keyword argument ``parser='python'``. This enforces the same semantics as evaluation in Python space. Likewise, you can pass ``engine='python'`` to evaluate an expression using Python itself as a backend. This is not recommended as it is inefficient compared to using ``numexpr`` as the engine. The :attr:`DataFrame.index` and :attr:`DataFrame.columns` attributes of the :class:`~pandas.DataFrame` instance are placed in the query namespace by default, which allows you to treat both the index and columns of the frame as a column in the frame. The identifier ``index`` is used for the frame index; you can also use the name of the index to identify it in a query. For further details and examples see the ``query`` documentation in :ref:`indexing <indexing.query>`. See Also -------- pandas.eval DataFrame.eval Examples -------- >>> from numpy.random import randn >>> from pandas import DataFrame >>> df = DataFrame(randn(10, 2), columns=list('ab')) >>> df.query('a > b') >>> df[df.a > df.b] # same result as the previous expression """ if not isinstance(expr, compat.string_types): msg = "expr must be a string to be evaluated, {0} given" raise ValueError(msg.format(type(expr))) kwargs['level'] = kwargs.pop('level', 0) + 1 kwargs['target'] = None res = self.eval(expr, **kwargs) try: new_data = self.loc[res] except ValueError: # when res is multi-dimensional loc raises, but this is sometimes a # valid query new_data = self[res] if inplace: self._update_inplace(new_data) else: return new_data def eval(self, expr, inplace=None, **kwargs): """Evaluate an expression in the context of the calling DataFrame instance. Parameters ---------- expr : string The expression string to evaluate. inplace : bool If the expression contains an assignment, whether to return a new DataFrame or mutate the existing. WARNING: inplace=None currently falls back to to True, but in a future version, will default to False. Use inplace=True explicitly rather than relying on the default. .. versionadded:: 0.18.0 kwargs : dict See the documentation for :func:`~pandas.eval` for complete details on the keyword arguments accepted by :meth:`~pandas.DataFrame.query`. Returns ------- ret : ndarray, scalar, or pandas object See Also -------- pandas.DataFrame.query pandas.DataFrame.assign pandas.eval Notes ----- For more details see the API documentation for :func:`~pandas.eval`. For detailed examples see :ref:`enhancing performance with eval <enhancingperf.eval>`. Examples -------- >>> from numpy.random import randn >>> from pandas import DataFrame >>> df = DataFrame(randn(10, 2), columns=list('ab')) >>> df.eval('a + b') >>> df.eval('c = a + b') """ resolvers = kwargs.pop('resolvers', None) kwargs['level'] = kwargs.pop('level', 0) + 1 if resolvers is None: index_resolvers = self._get_index_resolvers() resolvers = dict(self.iteritems()), index_resolvers if 'target' not in kwargs: kwargs['target'] = self kwargs['resolvers'] = kwargs.get('resolvers', ()) + tuple(resolvers) return _eval(expr, inplace=inplace, **kwargs) def select_dtypes(self, include=None, exclude=None): """Return a subset of a DataFrame including/excluding columns based on their ``dtype``. Parameters ---------- include, exclude : list-like A list of dtypes or strings to be included/excluded. You must pass in a non-empty sequence for at least one of these. Raises ------ ValueError * If both of ``include`` and ``exclude`` are empty * If ``include`` and ``exclude`` have overlapping elements * If any kind of string dtype is passed in. TypeError * If either of ``include`` or ``exclude`` is not a sequence Returns ------- subset : DataFrame The subset of the frame including the dtypes in ``include`` and excluding the dtypes in ``exclude``. Notes ----- * To select all *numeric* types use the numpy dtype ``numpy.number`` * To select strings you must use the ``object`` dtype, but note that this will return *all* object dtype columns * See the `numpy dtype hierarchy <http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html>`__ * To select Pandas categorical dtypes, use 'category' Examples -------- >>> df = pd.DataFrame({'a': np.random.randn(6).astype('f4'), ... 'b': [True, False] * 3, ... 'c': [1.0, 2.0] * 3}) >>> df a b c 0 0.3962 True 1 1 0.1459 False 2 2 0.2623 True 1 3 0.0764 False 2 4 -0.9703 True 1 5 -1.2094 False 2 >>> df.select_dtypes(include=['float64']) c 0 1 1 2 2 1 3 2 4 1 5 2 >>> df.select_dtypes(exclude=['floating']) b 0 True 1 False 2 True 3 False 4 True 5 False """ include, exclude = include or (), exclude or () if not (is_list_like(include) and is_list_like(exclude)): raise TypeError('include and exclude must both be non-string' ' sequences') selection = tuple(map(frozenset, (include, exclude))) if not any(selection): raise ValueError('at least one of include or exclude must be ' 'nonempty') # convert the myriad valid dtypes object to a single representation include, exclude = map( lambda x: frozenset(map(_get_dtype_from_object, x)), selection) for dtypes in (include, exclude): _invalidate_string_dtypes(dtypes) # can't both include AND exclude! if not include.isdisjoint(exclude): raise ValueError('include and exclude overlap on %s' % (include & exclude)) # empty include/exclude -> defaults to True # three cases (we've already raised if both are empty) # case 1: empty include, nonempty exclude # we have True, True, ... True for include, same for exclude # in the loop below we get the excluded # and when we call '&' below we get only the excluded # case 2: nonempty include, empty exclude # same as case 1, but with include # case 3: both nonempty # the "union" of the logic of case 1 and case 2: # we get the included and excluded, and return their logical and include_these = Series(not bool(include), index=self.columns) exclude_these = Series(not bool(exclude), index=self.columns) def is_dtype_instance_mapper(column, dtype): return column, functools.partial(issubclass, dtype.type) for column, f in itertools.starmap(is_dtype_instance_mapper, self.dtypes.iteritems()): if include: # checks for the case of empty include or exclude include_these[column] = any(map(f, include)) if exclude: exclude_these[column] = not any(map(f, exclude)) dtype_indexer = include_these & exclude_these return self.loc[com._get_info_slice(self, dtype_indexer)] def _box_item_values(self, key, values): items = self.columns[self.columns.get_loc(key)] if values.ndim == 2: return self._constructor(values.T, columns=items, index=self.index) else: return self._box_col_values(values, items) def _box_col_values(self, values, items): """ provide boxed values for a column """ return self._constructor_sliced.from_array(values, index=self.index, name=items, fastpath=True) def __setitem__(self, key, value): key = com._apply_if_callable(key, self) # see if we can slice the rows indexer = convert_to_index_sliceable(self, key) if indexer is not None: return self._setitem_slice(indexer, value) if isinstance(key, (Series, np.ndarray, list, Index)): self._setitem_array(key, value) elif isinstance(key, DataFrame): self._setitem_frame(key, value) else: # set column self._set_item(key, value) def _setitem_slice(self, key, value): self._check_setitem_copy() self.ix._setitem_with_indexer(key, value) def _setitem_array(self, key, value): # also raises Exception if object array with NA values if com.is_bool_indexer(key): if len(key) != len(self.index): raise ValueError('Item wrong length %d instead of %d!' % (len(key), len(self.index))) key = check_bool_indexer(self.index, key) indexer = key.nonzero()[0] self._check_setitem_copy() self.ix._setitem_with_indexer(indexer, value) else: if isinstance(value, DataFrame): if len(value.columns) != len(key): raise ValueError('Columns must be same length as key') for k1, k2 in zip(key, value.columns): self[k1] = value[k2] else: indexer = self.ix._convert_to_indexer(key, axis=1) self._check_setitem_copy() self.ix._setitem_with_indexer((slice(None), indexer), value) def _setitem_frame(self, key, value): # support boolean setting with DataFrame input, e.g. # df[df > df2] = 0 if key.values.size and not is_bool_dtype(key.values): raise TypeError('Must pass DataFrame with boolean values only') self._check_inplace_setting(value) self._check_setitem_copy() self._where(-key, value, inplace=True) def _ensure_valid_index(self, value): """ ensure that if we don't have an index, that we can create one from the passed value """ # GH5632, make sure that we are a Series convertible if not len(self.index) and is_list_like(value): try: value = Series(value) except: raise ValueError('Cannot set a frame with no defined index ' 'and a value that cannot be converted to a ' 'Series') self._data = self._data.reindex_axis(value.index.copy(), axis=1, fill_value=np.nan) def _set_item(self, key, value): """ Add series to DataFrame in specified column. If series is a numpy-array (not a Series/TimeSeries), it must be the same length as the DataFrames index or an error will be thrown. Series/TimeSeries will be conformed to the DataFrames index to ensure homogeneity. """ self._ensure_valid_index(value) value = self._sanitize_column(key, value) NDFrame._set_item(self, key, value) # check if we are modifying a copy # try to set first as we want an invalid # value exception to occur first if len(self): self._check_setitem_copy() def insert(self, loc, column, value, allow_duplicates=False): """ Insert column into DataFrame at specified location. If `allow_duplicates` is False, raises Exception if column is already contained in the DataFrame. Parameters ---------- loc : int Must have 0 <= loc <= len(columns) column : object value : scalar, Series, or array-like """ self._ensure_valid_index(value) value = self._sanitize_column(column, value, broadcast=False) self._data.insert(loc, column, value, allow_duplicates=allow_duplicates) def assign(self, **kwargs): """ Assign new columns to a DataFrame, returning a new object (a copy) with all the original columns in addition to the new ones. .. versionadded:: 0.16.0 Parameters ---------- kwargs : keyword, value pairs keywords are the column names. If the values are callable, they are computed on the DataFrame and assigned to the new columns. The callable must not change input DataFrame (though pandas doesn't check it). If the values are not callable, (e.g. a Series, scalar, or array), they are simply assigned. Returns ------- df : DataFrame A new DataFrame with the new columns in addition to all the existing columns. Notes ----- Since ``kwargs`` is a dictionary, the order of your arguments may not be preserved. The make things predicatable, the columns are inserted in alphabetical order, at the end of your DataFrame. Assigning multiple columns within the same ``assign`` is possible, but you cannot reference other columns created within the same ``assign`` call. Examples -------- >>> df = DataFrame({'A': range(1, 11), 'B': np.random.randn(10)}) Where the value is a callable, evaluated on `df`: >>> df.assign(ln_A = lambda x: np.log(x.A)) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 Where the value already exists and is inserted: >>> newcol = np.log(df['A']) >>> df.assign(ln_A=newcol) A B ln_A 0 1 0.426905 0.000000 1 2 -0.780949 0.693147 2 3 -0.418711 1.098612 3 4 -0.269708 1.386294 4 5 -0.274002 1.609438 5 6 -0.500792 1.791759 6 7 1.649697 1.945910 7 8 -1.495604 2.079442 8 9 0.549296 2.197225 9 10 -0.758542 2.302585 """ data = self.copy() # do all calculations first... results = {} for k, v in kwargs.items(): results[k] = com._apply_if_callable(v, data) # ... and then assign for k, v in sorted(results.items()): data[k] = v return data def _sanitize_column(self, key, value, broadcast=True): """ Ensures new columns (which go into the BlockManager as new blocks) are always copied and converted into an array. Parameters ---------- key : object value : scalar, Series, or array-like broadcast : bool, default True If ``key`` matches multiple duplicate column names in the DataFrame, this parameter indicates whether ``value`` should be tiled so that the returned array contains a (duplicated) column for each occurrence of the key. If False, ``value`` will not be tiled. Returns ------- sanitized_column : numpy-array """ def reindexer(value): # reindex if necessary if value.index.equals(self.index) or not len(self.index): value = value._values.copy() else: # GH 4107 try: value = value.reindex(self.index)._values except Exception as e: # duplicate axis if not value.index.is_unique: raise e # other raise TypeError('incompatible index of inserted column ' 'with frame index') return value if isinstance(value, Series): value = reindexer(value) elif isinstance(value, DataFrame): # align right-hand-side columns if self.columns # is multi-index and self[key] is a sub-frame if isinstance(self.columns, MultiIndex) and key in self.columns: loc = self.columns.get_loc(key) if isinstance(loc, (slice, Series, np.ndarray, Index)): cols = maybe_droplevels(self.columns[loc], key) if len(cols) and not cols.equals(value.columns): value = value.reindex_axis(cols, axis=1) # now align rows value = reindexer(value).T elif isinstance(value, Categorical): value = value.copy() elif isinstance(value, Index) or is_sequence(value): from pandas.core.series import _sanitize_index # turn me into an ndarray value = _sanitize_index(value, self.index, copy=False) if not isinstance(value, (np.ndarray, Index)): if isinstance(value, list) and len(value) > 0: value = _possibly_convert_platform(value) else: value = com._asarray_tuplesafe(value) elif value.ndim == 2: value = value.copy().T elif isinstance(value, Index): value = value.copy(deep=True) else: value = value.copy() # possibly infer to datetimelike if is_object_dtype(value.dtype): value = _possibly_infer_to_datetimelike(value) else: # upcast the scalar dtype, value = _infer_dtype_from_scalar(value) value = np.repeat(value, len(self.index)).astype(dtype) value = _possibly_cast_to_datetime(value, dtype) # return internal types directly if is_extension_type(value): return value # broadcast across multiple columns if necessary if broadcast and key in self.columns and value.ndim == 1: if (not self.columns.is_unique or isinstance(self.columns, MultiIndex)): existing_piece = self[key] if isinstance(existing_piece, DataFrame): value = np.tile(value, (len(existing_piece.columns), 1)) return np.atleast_2d(np.asarray(value)) @property def _series(self): result = {} for idx, item in enumerate(self.columns): result[item] = Series(self._data.iget(idx), index=self.index, name=item) return result def lookup(self, row_labels, col_labels): """Label-based "fancy indexing" function for DataFrame. Given equal-length arrays of row and column labels, return an array of the values corresponding to each (row, col) pair. Parameters ---------- row_labels : sequence The row labels to use for lookup col_labels : sequence The column labels to use for lookup Notes ----- Akin to:: result = [] for row, col in zip(row_labels, col_labels): result.append(df.get_value(row, col)) Examples -------- values : ndarray The found values """ n = len(row_labels) if n != len(col_labels): raise ValueError('Row labels must have same size as column labels') thresh = 1000 if not self._is_mixed_type or n > thresh: values = self.values ridx = self.index.get_indexer(row_labels) cidx = self.columns.get_indexer(col_labels) if (ridx == -1).any(): raise KeyError('One or more row labels was not found') if (cidx == -1).any(): raise KeyError('One or more column labels was not found') flat_index = ridx * len(self.columns) + cidx result = values.flat[flat_index] else: result = np.empty(n, dtype='O') for i, (r, c) in enumerate(zip(row_labels, col_labels)): result[i] = self.get_value(r, c) if is_object_dtype(result): result = lib.maybe_convert_objects(result) return result # ---------------------------------------------------------------------- # Reindexing and alignment def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy): frame = self columns = axes['columns'] if columns is not None: frame = frame._reindex_columns(columns, copy, level, fill_value, limit, tolerance) index = axes['index'] if index is not None: frame = frame._reindex_index(index, method, copy, level, fill_value, limit, tolerance) return frame def _reindex_index(self, new_index, method, copy, level, fill_value=NA, limit=None, tolerance=None): new_index, indexer = self.index.reindex(new_index, method, level, limit=limit, tolerance=tolerance) return self._reindex_with_indexers({0: [new_index, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False) def _reindex_columns(self, new_columns, copy, level, fill_value=NA, limit=None, tolerance=None): new_columns, indexer = self.columns.reindex(new_columns, level=level, limit=limit, tolerance=tolerance) return self._reindex_with_indexers({1: [new_columns, indexer]}, copy=copy, fill_value=fill_value, allow_dups=False) def _reindex_multi(self, axes, copy, fill_value): """ we are guaranteed non-Nones in the axes! """ new_index, row_indexer = self.index.reindex(axes['index']) new_columns, col_indexer = self.columns.reindex(axes['columns']) if row_indexer is not None and col_indexer is not None: indexer = row_indexer, col_indexer new_values = algos.take_2d_multi(self.values, indexer, fill_value=fill_value) return self._constructor(new_values, index=new_index, columns=new_columns) else: return self._reindex_with_indexers({0: [new_index, row_indexer], 1: [new_columns, col_indexer]}, copy=copy, fill_value=fill_value) @Appender(_shared_docs['align'] % _shared_doc_kwargs) def align(self, other, join='outer', axis=None, level=None, copy=True, fill_value=None, method=None, limit=None, fill_axis=0, broadcast_axis=None): return super(DataFrame, self).align(other, join=join, axis=axis, level=level, copy=copy, fill_value=fill_value, method=method, limit=limit, fill_axis=fill_axis, broadcast_axis=broadcast_axis) @Appender(_shared_docs['reindex'] % _shared_doc_kwargs) def reindex(self, index=None, columns=None, **kwargs): return super(DataFrame, self).reindex(index=index, columns=columns, **kwargs) @Appender(_shared_docs['reindex_axis'] % _shared_doc_kwargs) def reindex_axis(self, labels, axis=0, method=None, level=None, copy=True, limit=None, fill_value=np.nan): return super(DataFrame, self).reindex_axis(labels=labels, axis=axis, method=method, level=level, copy=copy, limit=limit, fill_value=fill_value) @Appender(_shared_docs['rename'] % _shared_doc_kwargs) def rename(self, index=None, columns=None, **kwargs): return super(DataFrame, self).rename(index=index, columns=columns, **kwargs) @Appender(_shared_docs['fillna'] % _shared_doc_kwargs) def fillna(self, value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs): return super(DataFrame, self).fillna(value=value, method=method, axis=axis, inplace=inplace, limit=limit, downcast=downcast, **kwargs) @Appender(_shared_docs['shift'] % _shared_doc_kwargs) def shift(self, periods=1, freq=None, axis=0): return super(DataFrame, self).shift(periods=periods, freq=freq, axis=axis) def set_index(self, keys, drop=True, append=False, inplace=False, verify_integrity=False): """ Set the DataFrame index (row labels) using one or more existing columns. By default yields a new object. Parameters ---------- keys : column label or list of column labels / arrays drop : boolean, default True Delete columns to be used as the new index append : boolean, default False Whether to append columns to existing index inplace : boolean, default False Modify the DataFrame in place (do not create a new object) verify_integrity : boolean, default False Check the new index for duplicates. Otherwise defer the check until necessary. Setting to False will improve the performance of this method Examples -------- >>> indexed_df = df.set_index(['A', 'B']) >>> indexed_df2 = df.set_index(['A', [0, 1, 2, 0, 1, 2]]) >>> indexed_df3 = df.set_index([[0, 1, 2, 0, 1, 2]]) Returns ------- dataframe : DataFrame """ if not isinstance(keys, list): keys = [keys] if inplace: frame = self else: frame = self.copy() arrays = [] names = [] if append: names = [x for x in self.index.names] if isinstance(self.index, MultiIndex): for i in range(self.index.nlevels): arrays.append(self.index.get_level_values(i)) else: arrays.append(self.index) to_remove = [] for col in keys: if isinstance(col, MultiIndex): # append all but the last column so we don't have to modify # the end of this loop for n in range(col.nlevels - 1): arrays.append(col.get_level_values(n)) level = col.get_level_values(col.nlevels - 1) names.extend(col.names) elif isinstance(col, Series): level = col._values names.append(col.name) elif isinstance(col, Index): level = col names.append(col.name) elif isinstance(col, (list, np.ndarray, Index)): level = col names.append(None) else: level = frame[col]._values names.append(col) if drop: to_remove.append(col) arrays.append(level) index = MultiIndex.from_arrays(arrays, names=names) if verify_integrity and not index.is_unique: duplicates = index.get_duplicates() raise ValueError('Index has duplicate keys: %s' % duplicates) for c in to_remove: del frame[c] # clear up memory usage index._cleanup() frame.index = index if not inplace: return frame def reset_index(self, level=None, drop=False, inplace=False, col_level=0, col_fill=''): """ For DataFrame with multi-level index, return new DataFrame with labeling information in the columns under the index names, defaulting to 'level_0', 'level_1', etc. if any are None. For a standard index, the index name will be used (if set), otherwise a default 'index' or 'level_0' (if 'index' is already taken) will be used. Parameters ---------- level : int, str, tuple, or list, default None Only remove the given levels from the index. Removes all levels by default drop : boolean, default False Do not try to insert index into dataframe columns. This resets the index to the default integer index. inplace : boolean, default False Modify the DataFrame in place (do not create a new object) col_level : int or str, default 0 If the columns have multiple levels, determines which level the labels are inserted into. By default it is inserted into the first level. col_fill : object, default '' If the columns have multiple levels, determines how the other levels are named. If None then the index name is repeated. Returns ------- resetted : DataFrame """ if inplace: new_obj = self else: new_obj = self.copy() def _maybe_casted_values(index, labels=None): if isinstance(index, PeriodIndex): values = index.asobject.values elif isinstance(index, DatetimeIndex) and index.tz is not None: values = index else: values = index.values if values.dtype == np.object_: values = lib.maybe_convert_objects(values) # if we have the labels, extract the values with a mask if labels is not None: mask = labels == -1 values = values.take(labels) if mask.any(): values, changed = _maybe_upcast_putmask(values, mask, np.nan) return values new_index = _default_index(len(new_obj)) if isinstance(self.index, MultiIndex): if level is not None: if not isinstance(level, (tuple, list)): level = [level] level = [self.index._get_level_number(lev) for lev in level] if len(level) < len(self.index.levels): new_index = self.index.droplevel(level) if not drop: names = self.index.names zipped = lzip(self.index.levels, self.index.labels) multi_col = isinstance(self.columns, MultiIndex) for i, (lev, lab) in reversed(list(enumerate(zipped))): col_name = names[i] if col_name is None: col_name = 'level_%d' % i if multi_col: if col_fill is None: col_name = tuple([col_name] * self.columns.nlevels) else: name_lst = [col_fill] * self.columns.nlevels lev_num = self.columns._get_level_number(col_level) name_lst[lev_num] = col_name col_name = tuple(name_lst) # to ndarray and maybe infer different dtype level_values = _maybe_casted_values(lev, lab) if level is None or i in level: new_obj.insert(0, col_name, level_values) elif not drop: name = self.index.name if name is None or name == 'index': name = 'index' if 'index' not in self else 'level_0' if isinstance(self.columns, MultiIndex): if col_fill is None: name = tuple([name] * self.columns.nlevels) else: name_lst = [col_fill] * self.columns.nlevels lev_num = self.columns._get_level_number(col_level) name_lst[lev_num] = name name = tuple(name_lst) values = _maybe_casted_values(self.index) new_obj.insert(0, name, values) new_obj.index = new_index if not inplace: return new_obj # ---------------------------------------------------------------------- # Reindex-based selection methods def dropna(self, axis=0, how='any', thresh=None, subset=None, inplace=False): """ Return object with labels on given axis omitted where alternately any or all of the data are missing Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, or tuple/list thereof Pass tuple or list to drop on multiple axes how : {'any', 'all'} * any : if any NA values are present, drop that label * all : if all values are NA, drop that label thresh : int, default None int value : require that many non-NA values subset : array-like Labels along other axis to consider, e.g. if you are dropping rows these would be a list of columns to include inplace : boolean, default False If True, do operation inplace and return None. Returns ------- dropped : DataFrame """ if isinstance(axis, (tuple, list)): result = self for ax in axis: result = result.dropna(how=how, thresh=thresh, subset=subset, axis=ax) else: axis = self._get_axis_number(axis) agg_axis = 1 - axis agg_obj = self if subset is not None: ax = self._get_axis(agg_axis) indices = ax.get_indexer_for(subset) check = indices == -1 if check.any(): raise KeyError(list(np.compress(check, subset))) agg_obj = self.take(indices, axis=agg_axis) count = agg_obj.count(axis=agg_axis) if thresh is not None: mask = count >= thresh elif how == 'any': mask = count == len(agg_obj._get_axis(agg_axis)) elif how == 'all': mask = count > 0 else: if how is not None: raise ValueError('invalid how option: %s' % how) else: raise TypeError('must specify how or thresh') result = self.take(mask.nonzero()[0], axis=axis, convert=False) if inplace: self._update_inplace(result) else: return result @deprecate_kwarg('take_last', 'keep', mapping={True: 'last', False: 'first'}) def drop_duplicates(self, subset=None, keep='first', inplace=False): """ Return DataFrame with duplicate rows removed, optionally only considering certain columns Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Drop duplicates except for the first occurrence. - ``last`` : Drop duplicates except for the last occurrence. - False : Drop all duplicates. take_last : deprecated inplace : boolean, default False Whether to drop duplicates in place or to return a copy Returns ------- deduplicated : DataFrame """ duplicated = self.duplicated(subset, keep=keep) if inplace: inds, = (-duplicated).nonzero() new_data = self._data.take(inds) self._update_inplace(new_data) else: return self[-duplicated] @deprecate_kwarg('take_last', 'keep', mapping={True: 'last', False: 'first'}) def duplicated(self, subset=None, keep='first'): """ Return boolean Series denoting duplicate rows, optionally only considering certain columns Parameters ---------- subset : column label or sequence of labels, optional Only consider certain columns for identifying duplicates, by default use all of the columns keep : {'first', 'last', False}, default 'first' - ``first`` : Mark duplicates as ``True`` except for the first occurrence. - ``last`` : Mark duplicates as ``True`` except for the last occurrence. - False : Mark all duplicates as ``True``. take_last : deprecated Returns ------- duplicated : Series """ from pandas.core.groupby import get_group_index from pandas.hashtable import duplicated_int64, _SIZE_HINT_LIMIT def f(vals): labels, shape = algos.factorize(vals, size_hint=min(len(self), _SIZE_HINT_LIMIT)) return labels.astype('i8', copy=False), len(shape) if subset is None: subset = self.columns elif (not np.iterable(subset) or isinstance(subset, compat.string_types) or isinstance(subset, tuple) and subset in self.columns): subset = subset, vals = (self[col].values for col in subset) labels, shape = map(list, zip(*map(f, vals))) ids = get_group_index(labels, shape, sort=False, xnull=False) return Series(duplicated_int64(ids, keep), index=self.index) # ---------------------------------------------------------------------- # Sorting @Appender(_shared_docs['sort_values'] % _shared_doc_kwargs) def sort_values(self, by, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last'): axis = self._get_axis_number(axis) other_axis = 0 if axis == 1 else 1 if not isinstance(by, list): by = [by] if is_sequence(ascending) and len(by) != len(ascending): raise ValueError('Length of ascending (%d) != length of by (%d)' % (len(ascending), len(by))) if len(by) > 1: from pandas.core.groupby import _lexsort_indexer def trans(v): if needs_i8_conversion(v): return v.view('i8') return v keys = [] for x in by: k = self.xs(x, axis=other_axis).values if k.ndim == 2: raise ValueError('Cannot sort by duplicate column %s' % str(x)) keys.append(trans(k)) indexer = _lexsort_indexer(keys, orders=ascending, na_position=na_position) indexer = _ensure_platform_int(indexer) else: from pandas.core.groupby import _nargsort by = by[0] k = self.xs(by, axis=other_axis).values if k.ndim == 2: # try to be helpful if isinstance(self.columns, MultiIndex): raise ValueError('Cannot sort by column %s in a ' 'multi-index you need to explicity ' 'provide all the levels' % str(by)) raise ValueError('Cannot sort by duplicate column %s' % str(by)) if isinstance(ascending, (tuple, list)): ascending = ascending[0] indexer = _nargsort(k, kind=kind, ascending=ascending, na_position=na_position) new_data = self._data.take(indexer, axis=self._get_block_manager_axis(axis), convert=False, verify=False) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sort(self, columns=None, axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last', **kwargs): """ DEPRECATED: use :meth:`DataFrame.sort_values` Sort DataFrame either by labels (along either axis) or by the values in column(s) Parameters ---------- columns : object Column name(s) in frame. Accepts a column name or a list for a nested sort. A tuple will be interpreted as the levels of a multi-index. ascending : boolean or list, default True Sort ascending vs. descending. Specify list for multiple sort orders axis : {0 or 'index', 1 or 'columns'}, default 0 Sort index/rows versus columns inplace : boolean, default False Sort the DataFrame without creating a new instance kind : {'quicksort', 'mergesort', 'heapsort'}, optional This option is only applied when sorting on a single column or label. na_position : {'first', 'last'} (optional, default='last') 'first' puts NaNs at the beginning 'last' puts NaNs at the end Examples -------- >>> result = df.sort(['A', 'B'], ascending=[1, 0]) Returns ------- sorted : DataFrame """ nv.validate_sort(tuple(), kwargs) if columns is None: warnings.warn("sort(....) is deprecated, use sort_index(.....)", FutureWarning, stacklevel=2) return self.sort_index(axis=axis, ascending=ascending, inplace=inplace) warnings.warn("sort(columns=....) is deprecated, use " "sort_values(by=.....)", FutureWarning, stacklevel=2) return self.sort_values(by=columns, axis=axis, ascending=ascending, inplace=inplace, kind=kind, na_position=na_position) @Appender(_shared_docs['sort_index'] % _shared_doc_kwargs) def sort_index(self, axis=0, level=None, ascending=True, inplace=False, kind='quicksort', na_position='last', sort_remaining=True, by=None): # 10726 if by is not None: warnings.warn("by argument to sort_index is deprecated, pls use " ".sort_values(by=...)", FutureWarning, stacklevel=2) if level is not None: raise ValueError("unable to simultaneously sort by and level") return self.sort_values(by, axis=axis, ascending=ascending, inplace=inplace) axis = self._get_axis_number(axis) labels = self._get_axis(axis) # sort by the index if level is not None: new_axis, indexer = labels.sortlevel(level, ascending=ascending, sort_remaining=sort_remaining) elif isinstance(labels, MultiIndex): from pandas.core.groupby import _lexsort_indexer # make sure that the axis is lexsorted to start # if not we need to reconstruct to get the correct indexer if not labels.is_lexsorted(): labels = MultiIndex.from_tuples(labels.values) indexer = _lexsort_indexer(labels.labels, orders=ascending, na_position=na_position) else: from pandas.core.groupby import _nargsort # GH11080 - Check monotonic-ness before sort an index # if monotonic (already sorted), return None or copy() according # to 'inplace' if ((ascending and labels.is_monotonic_increasing) or (not ascending and labels.is_monotonic_decreasing)): if inplace: return else: return self.copy() indexer = _nargsort(labels, kind=kind, ascending=ascending, na_position=na_position) new_data = self._data.take(indexer, axis=self._get_block_manager_axis(axis), convert=False, verify=False) if inplace: return self._update_inplace(new_data) else: return self._constructor(new_data).__finalize__(self) def sortlevel(self, level=0, axis=0, ascending=True, inplace=False, sort_remaining=True): """ Sort multilevel index by chosen axis and primary level. Data will be lexicographically sorted by the chosen level followed by the other levels (in order) Parameters ---------- level : int axis : {0 or 'index', 1 or 'columns'}, default 0 ascending : boolean, default True inplace : boolean, default False Sort the DataFrame without creating a new instance sort_remaining : boolean, default True Sort by the other levels too. Returns ------- sorted : DataFrame See Also -------- DataFrame.sort_index(level=...) """ return self.sort_index(level=level, axis=axis, ascending=ascending, inplace=inplace, sort_remaining=sort_remaining) def nlargest(self, n, columns, keep='first'): """Get the rows of a DataFrame sorted by the `n` largest values of `columns`. .. versionadded:: 0.17.0 Parameters ---------- n : int Number of items to retrieve columns : list or str Column name or names to order by keep : {'first', 'last', False}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- DataFrame Examples -------- >>> df = DataFrame({'a': [1, 10, 8, 11, -1], ... 'b': list('abdce'), ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]}) >>> df.nlargest(3, 'a') a b c 3 11 c 3 1 10 b 2 2 8 d NaN """ return algos.select_n_frame(self, columns, n, 'nlargest', keep) def nsmallest(self, n, columns, keep='first'): """Get the rows of a DataFrame sorted by the `n` smallest values of `columns`. .. versionadded:: 0.17.0 Parameters ---------- n : int Number of items to retrieve columns : list or str Column name or names to order by keep : {'first', 'last', False}, default 'first' Where there are duplicate values: - ``first`` : take the first occurrence. - ``last`` : take the last occurrence. Returns ------- DataFrame Examples -------- >>> df = DataFrame({'a': [1, 10, 8, 11, -1], ... 'b': list('abdce'), ... 'c': [1.0, 2.0, np.nan, 3.0, 4.0]}) >>> df.nsmallest(3, 'a') a b c 4 -1 e 4 0 1 a 1 2 8 d NaN """ return algos.select_n_frame(self, columns, n, 'nsmallest', keep) def swaplevel(self, i=-2, j=-1, axis=0): """ Swap levels i and j in a MultiIndex on a particular axis Parameters ---------- i, j : int, string (can be mixed) Level of index to be swapped. Can pass level name as string. Returns ------- swapped : type of caller (new object) .. versionchanged:: 0.18.1 The indexes ``i`` and ``j`` are now optional, and default to the two innermost levels of the index. """ result = self.copy() axis = self._get_axis_number(axis) if axis == 0: result.index = result.index.swaplevel(i, j) else: result.columns = result.columns.swaplevel(i, j) return result def reorder_levels(self, order, axis=0): """ Rearrange index levels using input order. May not drop or duplicate levels Parameters ---------- order : list of int or list of str List representing new level order. Reference level by number (position) or by key (label). axis : int Where to reorder levels. Returns ------- type of caller (new object) """ axis = self._get_axis_number(axis) if not isinstance(self._get_axis(axis), MultiIndex): # pragma: no cover raise TypeError('Can only reorder levels on a hierarchical axis.') result = self.copy() if axis == 0: result.index = result.index.reorder_levels(order) else: result.columns = result.columns.reorder_levels(order) return result # ---------------------------------------------------------------------- # Arithmetic / combination related def _combine_frame(self, other, func, fill_value=None, level=None): this, other = self.align(other, join='outer', level=level, copy=False) new_index, new_columns = this.index, this.columns def _arith_op(left, right): if fill_value is not None: left_mask = isnull(left) right_mask = isnull(right) left = left.copy() right = right.copy() # one but not both mask = left_mask ^ right_mask left[left_mask & mask] = fill_value right[right_mask & mask] = fill_value return func(left, right) if this._is_mixed_type or other._is_mixed_type: # unique if this.columns.is_unique: def f(col): r = _arith_op(this[col].values, other[col].values) return self._constructor_sliced(r, index=new_index, dtype=r.dtype) result = dict([(col, f(col)) for col in this]) # non-unique else: def f(i): r = _arith_op(this.iloc[:, i].values, other.iloc[:, i].values) return self._constructor_sliced(r, index=new_index, dtype=r.dtype) result = dict([ (i, f(i)) for i, col in enumerate(this.columns) ]) result = self._constructor(result, index=new_index, copy=False) result.columns = new_columns return result else: result = _arith_op(this.values, other.values) return self._constructor(result, index=new_index, columns=new_columns, copy=False) def _combine_series(self, other, func, fill_value=None, axis=None, level=None): if axis is not None: axis = self._get_axis_name(axis) if axis == 'index': return self._combine_match_index(other, func, level=level, fill_value=fill_value) else: return self._combine_match_columns(other, func, level=level, fill_value=fill_value) return self._combine_series_infer(other, func, level=level, fill_value=fill_value) def _combine_series_infer(self, other, func, level=None, fill_value=None): if len(other) == 0: return self * NA if len(self) == 0: # Ambiguous case, use _series so works with DataFrame return self._constructor(data=self._series, index=self.index, columns=self.columns) return self._combine_match_columns(other, func, level=level, fill_value=fill_value) def _combine_match_index(self, other, func, level=None, fill_value=None): left, right = self.align(other, join='outer', axis=0, level=level, copy=False) if fill_value is not None: raise NotImplementedError("fill_value %r not supported." % fill_value) return self._constructor(func(left.values.T, right.values).T, index=left.index, columns=self.columns, copy=False) def _combine_match_columns(self, other, func, level=None, fill_value=None): left, right = self.align(other, join='outer', axis=1, level=level, copy=False) if fill_value is not None: raise NotImplementedError("fill_value %r not supported" % fill_value) new_data = left._data.eval(func=func, other=right, axes=[left.columns, self.index]) return self._constructor(new_data) def _combine_const(self, other, func, raise_on_error=True): if self.empty: return self new_data = self._data.eval(func=func, other=other, raise_on_error=raise_on_error) return self._constructor(new_data) def _compare_frame_evaluate(self, other, func, str_rep): # unique if self.columns.is_unique: def _compare(a, b): return dict([(col, func(a[col], b[col])) for col in a.columns]) new_data = expressions.evaluate(_compare, str_rep, self, other) return self._constructor(data=new_data, index=self.index, columns=self.columns, copy=False) # non-unique else: def _compare(a, b): return dict([(i, func(a.iloc[:, i], b.iloc[:, i])) for i, col in enumerate(a.columns)]) new_data = expressions.evaluate(_compare, str_rep, self, other) result = self._constructor(data=new_data, index=self.index, copy=False) result.columns = self.columns return result def _compare_frame(self, other, func, str_rep): if not self._indexed_same(other): raise ValueError('Can only compare identically-labeled ' 'DataFrame objects') return self._compare_frame_evaluate(other, func, str_rep) def _flex_compare_frame(self, other, func, str_rep, level): if not self._indexed_same(other): self, other = self.align(other, 'outer', level=level, copy=False) return self._compare_frame_evaluate(other, func, str_rep) def combine(self, other, func, fill_value=None, overwrite=True): """ Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame's value (which might be NaN as well) Parameters ---------- other : DataFrame func : function fill_value : scalar value overwrite : boolean, default True If True then overwrite values for common keys in the calling frame Returns ------- result : DataFrame """ other_idxlen = len(other.index) # save for compare this, other = self.align(other, copy=False) new_index = this.index if other.empty and len(new_index) == len(self.index): return self.copy() if self.empty and len(other) == other_idxlen: return other.copy() # sorts if possible new_columns = this.columns.union(other.columns) do_fill = fill_value is not None result = {} for col in new_columns: series = this[col] otherSeries = other[col] this_dtype = series.dtype other_dtype = otherSeries.dtype this_mask = isnull(series) other_mask = isnull(otherSeries) # don't overwrite columns unecessarily # DO propagate if this column is not in the intersection if not overwrite and other_mask.all(): result[col] = this[col].copy() continue if do_fill: series = series.copy() otherSeries = otherSeries.copy() series[this_mask] = fill_value otherSeries[other_mask] = fill_value # if we have different dtypes, possibily promote new_dtype = this_dtype if not is_dtype_equal(this_dtype, other_dtype): new_dtype = _find_common_type([this_dtype, other_dtype]) if not is_dtype_equal(this_dtype, new_dtype): series = series.astype(new_dtype) if not is_dtype_equal(other_dtype, new_dtype): otherSeries = otherSeries.astype(new_dtype) # see if we need to be represented as i8 (datetimelike) # try to keep us at this dtype needs_i8_conversion_i = needs_i8_conversion(new_dtype) if needs_i8_conversion_i: arr = func(series, otherSeries, True) else: arr = func(series, otherSeries) if do_fill: arr = _ensure_float(arr) arr[this_mask & other_mask] = NA # try to downcast back to the original dtype if needs_i8_conversion_i: # ToDo: This conversion should be handled in # _possibly_cast_to_datetime but the change affects lot... if is_datetime64tz_dtype(new_dtype): arr = DatetimeIndex._simple_new(arr, tz=new_dtype.tz) else: arr = _possibly_cast_to_datetime(arr, new_dtype) else: arr = _possibly_downcast_to_dtype(arr, this_dtype) result[col] = arr # convert_objects just in case return self._constructor(result, index=new_index, columns=new_columns)._convert(datetime=True, copy=False) def combine_first(self, other): """ Combine two DataFrame objects and default to non-null values in frame calling the method. Result index columns will be the union of the respective indexes and columns Parameters ---------- other : DataFrame Examples -------- a's values prioritized, use values from b to fill holes: >>> a.combine_first(b) Returns ------- combined : DataFrame """ def combiner(x, y, needs_i8_conversion=False): x_values = x.values if hasattr(x, 'values') else x y_values = y.values if hasattr(y, 'values') else y if needs_i8_conversion: mask = isnull(x) x_values = x_values.view('i8') y_values = y_values.view('i8') else: mask = isnull(x_values) return expressions.where(mask, y_values, x_values, raise_on_error=True) return self.combine(other, combiner, overwrite=False) def update(self, other, join='left', overwrite=True, filter_func=None, raise_conflict=False): """ Modify DataFrame in place using non-NA values from passed DataFrame. Aligns on indices Parameters ---------- other : DataFrame, or object coercible into a DataFrame join : {'left'}, default 'left' overwrite : boolean, default True If True then overwrite values for common keys in the calling frame filter_func : callable(1d-array) -> 1d-array<boolean>, default None Can choose to replace values other than NA. Return True for values that should be updated raise_conflict : boolean If True, will raise an error if the DataFrame and other both contain data in the same place. """ # TODO: Support other joins if join != 'left': # pragma: no cover raise NotImplementedError("Only left join is supported") if not isinstance(other, DataFrame): other = DataFrame(other) other = other.reindex_like(self) for col in self.columns: this = self[col].values that = other[col].values if filter_func is not None: with np.errstate(all='ignore'): mask = ~filter_func(this) | isnull(that) else: if raise_conflict: mask_this = notnull(that) mask_that = notnull(this) if any(mask_this & mask_that): raise ValueError("Data overlaps.") if overwrite: mask = isnull(that) # don't overwrite columns unecessarily if mask.all(): continue else: mask = notnull(this) self[col] = expressions.where(mask, this, that, raise_on_error=True) # ---------------------------------------------------------------------- # Misc methods def first_valid_index(self): """ Return label for first non-NA/null value """ if len(self) == 0: return None return self.index[self.count(1) > 0][0] def last_valid_index(self): """ Return label for last non-NA/null value """ if len(self) == 0: return None return self.index[self.count(1) > 0][-1] # ---------------------------------------------------------------------- # Data reshaping def pivot(self, index=None, columns=None, values=None): """ Reshape data (produce a "pivot" table) based on column values. Uses unique values from index / columns to form axes of the resulting DataFrame. Parameters ---------- index : string or object, optional Column name to use to make new frame's index. If None, uses existing index. columns : string or object Column name to use to make new frame's columns values : string or object, optional Column name to use for populating new frame's values. If not specified, all remaining columns will be used and the result will have hierarchically indexed columns Returns ------- pivoted : DataFrame See also -------- DataFrame.pivot_table : generalization of pivot that can handle duplicate values for one index/column pair DataFrame.unstack : pivot based on the index values instead of a column Notes ----- For finer-tuned control, see hierarchical indexing documentation along with the related stack/unstack methods Examples -------- >>> df = pd.DataFrame({'foo': ['one','one','one','two','two','two'], 'bar': ['A', 'B', 'C', 'A', 'B', 'C'], 'baz': [1, 2, 3, 4, 5, 6]}) >>> df foo bar baz 0 one A 1 1 one B 2 2 one C 3 3 two A 4 4 two B 5 5 two C 6 >>> df.pivot(index='foo', columns='bar', values='baz') A B C one 1 2 3 two 4 5 6 >>> df.pivot(index='foo', columns='bar')['baz'] A B C one 1 2 3 two 4 5 6 """ from pandas.core.reshape import pivot return pivot(self, index=index, columns=columns, values=values) def stack(self, level=-1, dropna=True): """ Pivot a level of the (possibly hierarchical) column labels, returning a DataFrame (or Series in the case of an object with a single level of column labels) having a hierarchical index with a new inner-most level of row labels. The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default last level Level(s) to stack, can pass level name dropna : boolean, default True Whether to drop rows in the resulting Frame/Series with no valid values Examples ---------- >>> s a b one 1. 2. two 3. 4. >>> s.stack() one a 1 b 2 two a 3 b 4 Returns ------- stacked : DataFrame or Series """ from pandas.core.reshape import stack, stack_multiple if isinstance(level, (tuple, list)): return stack_multiple(self, level, dropna=dropna) else: return stack(self, level, dropna=dropna) def unstack(self, level=-1, fill_value=None): """ Pivot a level of the (necessarily hierarchical) index labels, returning a DataFrame having a new level of column labels whose inner-most level consists of the pivoted index labels. If the index is not a MultiIndex, the output will be a Series (the analogue of stack when the columns are not a MultiIndex). The level involved will automatically get sorted. Parameters ---------- level : int, string, or list of these, default -1 (last level) Level(s) of index to unstack, can pass level name fill_value : replace NaN with this value if the unstack produces missing values .. versionadded: 0.18.0 See also -------- DataFrame.pivot : Pivot a table based on column values. DataFrame.stack : Pivot a level of the column labels (inverse operation from `unstack`). Examples -------- >>> index = pd.MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ... ('two', 'a'), ('two', 'b')]) >>> s = pd.Series(np.arange(1.0, 5.0), index=index) >>> s one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 >>> s.unstack(level=-1) a b one 1.0 2.0 two 3.0 4.0 >>> s.unstack(level=0) one two a 1.0 3.0 b 2.0 4.0 >>> df = s.unstack(level=0) >>> df.unstack() one a 1.0 b 2.0 two a 3.0 b 4.0 dtype: float64 Returns ------- unstacked : DataFrame or Series """ from pandas.core.reshape import unstack return unstack(self, level, fill_value) # ---------------------------------------------------------------------- # Time series-related def diff(self, periods=1, axis=0): """ 1st discrete difference of object Parameters ---------- periods : int, default 1 Periods to shift for forming difference axis : {0 or 'index', 1 or 'columns'}, default 0 Take difference over rows (0) or columns (1). .. versionadded: 0.16.1 Returns ------- diffed : DataFrame """ bm_axis = self._get_block_manager_axis(axis) new_data = self._data.diff(n=periods, axis=bm_axis) return self._constructor(new_data) # ---------------------------------------------------------------------- # Function application def apply(self, func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds): """ Applies function along input axis of DataFrame. Objects passed to functions are Series objects having index either the DataFrame's index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty. Parameters ---------- func : function Function to apply to each column/row axis : {0 or 'index', 1 or 'columns'}, default 0 * 0 or 'index': apply function to each column * 1 or 'columns': apply function to each row broadcast : boolean, default False For aggregation functions, return object of same size with values propagated raw : boolean, default False If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance reduce : boolean or None, default None Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply's return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned. args : tuple Positional arguments to pass to function in addition to the array/series Additional keyword arguments will be passed as keywords to the function Notes ----- In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row. Examples -------- >>> df.apply(numpy.sqrt) # returns DataFrame >>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0) >>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1) See also -------- DataFrame.applymap: For elementwise operations Returns ------- applied : Series or DataFrame """ axis = self._get_axis_number(axis) if kwds or args and not isinstance(func, np.ufunc): def f(x): return func(x, *args, **kwds) else: f = func if len(self.columns) == 0 and len(self.index) == 0: return self._apply_empty_result(func, axis, reduce, *args, **kwds) if isinstance(f, np.ufunc): with np.errstate(all='ignore'): results = f(self.values) return self._constructor(data=results, index=self.index, columns=self.columns, copy=False) else: if not broadcast: if not all(self.shape): return self._apply_empty_result(func, axis, reduce, *args, **kwds) if raw and not self._is_mixed_type: return self._apply_raw(f, axis) else: if reduce is None: reduce = True return self._apply_standard(f, axis, reduce=reduce) else: return self._apply_broadcast(f, axis) def _apply_empty_result(self, func, axis, reduce, *args, **kwds): if reduce is None: reduce = False try: reduce = not isinstance(func(_EMPTY_SERIES, *args, **kwds), Series) except Exception: pass if reduce: return Series(NA, index=self._get_agg_axis(axis)) else: return self.copy() def _apply_raw(self, func, axis): try: result = lib.reduce(self.values, func, axis=axis) except Exception: result = np.apply_along_axis(func, axis, self.values) # TODO: mixed type case if result.ndim == 2: return DataFrame(result, index=self.index, columns=self.columns) else: return Series(result, index=self._get_agg_axis(axis)) def _apply_standard(self, func, axis, ignore_failures=False, reduce=True): # skip if we are mixed datelike and trying reduce across axes # GH6125 if (reduce and axis == 1 and self._is_mixed_type and self._is_datelike_mixed_type): reduce = False # try to reduce first (by default) # this only matters if the reduction in values is of different dtype # e.g. if we want to apply to a SparseFrame, then can't directly reduce if reduce: values = self.values # we cannot reduce using non-numpy dtypes, # as demonstrated in gh-12244 if not is_extension_type(values): # Create a dummy Series from an empty array index = self._get_axis(axis) empty_arr = np.empty(len(index), dtype=values.dtype) dummy = Series(empty_arr, index=self._get_axis(axis), dtype=values.dtype) try: labels = self._get_agg_axis(axis) result = lib.reduce(values, func, axis=axis, dummy=dummy, labels=labels) return Series(result, index=labels) except Exception: pass dtype = object if self._is_mixed_type else None if axis == 0: series_gen = (self._ixs(i, axis=1) for i in range(len(self.columns))) res_index = self.columns res_columns = self.index elif axis == 1: res_index = self.index res_columns = self.columns values = self.values series_gen = (Series.from_array(arr, index=res_columns, name=name, dtype=dtype) for i, (arr, name) in enumerate(zip(values, res_index))) else: # pragma : no cover raise AssertionError('Axis must be 0 or 1, got %s' % str(axis)) i = None keys = [] results = {} if ignore_failures: successes = [] for i, v in enumerate(series_gen): try: results[i] = func(v) keys.append(v.name) successes.append(i) except Exception: pass # so will work with MultiIndex if len(successes) < len(res_index): res_index = res_index.take(successes) else: try: for i, v in enumerate(series_gen): results[i] = func(v) keys.append(v.name) except Exception as e: if hasattr(e, 'args'): # make sure i is defined if i is not None: k = res_index[i] e.args = e.args + ('occurred at index %s' % pprint_thing(k), ) raise if len(results) > 0 and is_sequence(results[0]): if not isinstance(results[0], Series): index = res_columns else: index = None result = self._constructor(data=results, index=index) result.columns = res_index if axis == 1: result = result.T result = result._convert(datetime=True, timedelta=True, copy=False) else: result = Series(results) result.index = res_index return result def _apply_broadcast(self, func, axis): if axis == 0: target = self elif axis == 1: target = self.T else: # pragma: no cover raise AssertionError('Axis must be 0 or 1, got %s' % axis) result_values = np.empty_like(target.values) columns = target.columns for i, col in enumerate(columns): result_values[:, i] = func(target[col]) result = self._constructor(result_values, index=target.index, columns=target.columns) if axis == 1: result = result.T return result def applymap(self, func): """ Apply a function to a DataFrame that is intended to operate elementwise, i.e. like doing map(func, series) for each series in the DataFrame Parameters ---------- func : function Python function, returns a single value from a single value Examples -------- >>> df = pd.DataFrame(np.random.randn(3, 3)) >>> df 0 1 2 0 -0.029638 1.081563 1.280300 1 0.647747 0.831136 -1.549481 2 0.513416 -0.884417 0.195343 >>> df = df.applymap(lambda x: '%.2f' % x) >>> df 0 1 2 0 -0.03 1.08 1.28 1 0.65 0.83 -1.55 2 0.51 -0.88 0.20 Returns ------- applied : DataFrame See also -------- DataFrame.apply : For operations on rows/columns """ # if we have a dtype == 'M8[ns]', provide boxed values def infer(x): return lib.map_infer(x.asobject, func) return self.apply(infer) # ---------------------------------------------------------------------- # Merging / joining methods def append(self, other, ignore_index=False, verify_integrity=False): """ Append rows of `other` to the end of this frame, returning a new object. Columns not in this frame are added as new columns. Parameters ---------- other : DataFrame or Series/dict-like object, or list of these The data to append. ignore_index : boolean, default False If True, do not use the index labels. verify_integrity : boolean, default False If True, raise ValueError on creating index with duplicates. Returns ------- appended : DataFrame Notes ----- If a list of dict/series is passed and the keys are all contained in the DataFrame's index, the order of the columns in the resulting DataFrame will be unchanged. See also -------- pandas.concat : General function to concatenate DataFrame, Series or Panel objects Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=list('AB')) >>> df A B 0 1 2 1 3 4 >>> df2 = pd.DataFrame([[5, 6], [7, 8]], columns=list('AB')) >>> df.append(df2) A B 0 1 2 1 3 4 0 5 6 1 7 8 With `ignore_index` set to True: >>> df.append(df2, ignore_index=True) A B 0 1 2 1 3 4 2 5 6 3 7 8 """ if isinstance(other, (Series, dict)): if isinstance(other, dict): other = Series(other) if other.name is None and not ignore_index: raise TypeError('Can only append a Series if ignore_index=True' ' or if the Series has a name') if other.name is None: index = None else: # other must have the same index name as self, otherwise # index name will be reset index = Index([other.name], name=self.index.name) combined_columns = self.columns.tolist() + self.columns.union( other.index).difference(self.columns).tolist() other = other.reindex(combined_columns, copy=False) other = DataFrame(other.values.reshape((1, len(other))), index=index, columns=combined_columns) other = other._convert(datetime=True, timedelta=True) if not self.columns.equals(combined_columns): self = self.reindex(columns=combined_columns) elif isinstance(other, list) and not isinstance(other[0], DataFrame): other = DataFrame(other) if (self.columns.get_indexer(other.columns) >= 0).all(): other = other.ix[:, self.columns] from pandas.tools.merge import concat if isinstance(other, (list, tuple)): to_concat = [self] + other else: to_concat = [self, other] return concat(to_concat, ignore_index=ignore_index, verify_integrity=verify_integrity) def join(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): """ Join columns with other DataFrame either on index or on a key column. Efficiently Join multiple DataFrame objects by index at once by passing a list. Parameters ---------- other : DataFrame, Series with name field set, or list of DataFrame Index should be similar to one of the columns in this one. If a Series is passed, its name attribute must be set, and that will be used as the column name in the resulting joined DataFrame on : column name, tuple/list of column names, or array-like Column(s) in the caller to join on the index in other, otherwise joins index-on-index. If multiples columns given, the passed DataFrame must have a MultiIndex. Can pass an array as the join key if not already contained in the calling DataFrame. Like an Excel VLOOKUP operation how : {'left', 'right', 'outer', 'inner'}, default: 'left' How to handle the operation of the two objects. * left: use calling frame's index (or column if on is specified) * right: use other frame's index * outer: form union of calling frame's index (or column if on is specified) with other frame's index * inner: form intersection of calling frame's index (or column if on is specified) with other frame's index lsuffix : string Suffix to use from left frame's overlapping columns rsuffix : string Suffix to use from right frame's overlapping columns sort : boolean, default False Order result DataFrame lexicographically by the join key. If False, preserves the index order of the calling (left) DataFrame Notes ----- on, lsuffix, and rsuffix options are not supported when passing a list of DataFrame objects Examples -------- >>> caller = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3', 'K4', 'K5'], ... 'A': ['A0', 'A1', 'A2', 'A3', 'A4', 'A5']}) >>> caller A key 0 A0 K0 1 A1 K1 2 A2 K2 3 A3 K3 4 A4 K4 5 A5 K5 >>> other = pd.DataFrame({'key': ['K0', 'K1', 'K2'], ... 'B': ['B0', 'B1', 'B2']}) >>> other B key 0 B0 K0 1 B1 K1 2 B2 K2 Join DataFrames using their indexes. >>> caller.join(other, lsuffix='_caller', rsuffix='_other') >>> A key_caller B key_other 0 A0 K0 B0 K0 1 A1 K1 B1 K1 2 A2 K2 B2 K2 3 A3 K3 NaN NaN 4 A4 K4 NaN NaN 5 A5 K5 NaN NaN If we want to join using the key columns, we need to set key to be the index in both caller and other. The joined DataFrame will have key as its index. >>> caller.set_index('key').join(other.set_index('key')) >>> A B key K0 A0 B0 K1 A1 B1 K2 A2 B2 K3 A3 NaN K4 A4 NaN K5 A5 NaN Another option to join using the key columns is to use the on parameter. DataFrame.join always uses other's index but we can use any column in the caller. This method preserves the original caller's index in the result. >>> caller.join(other.set_index('key'), on='key') >>> A key B 0 A0 K0 B0 1 A1 K1 B1 2 A2 K2 B2 3 A3 K3 NaN 4 A4 K4 NaN 5 A5 K5 NaN See also -------- DataFrame.merge : For column(s)-on-columns(s) operations Returns ------- joined : DataFrame """ # For SparseDataFrame's benefit return self._join_compat(other, on=on, how=how, lsuffix=lsuffix, rsuffix=rsuffix, sort=sort) def _join_compat(self, other, on=None, how='left', lsuffix='', rsuffix='', sort=False): from pandas.tools.merge import merge, concat if isinstance(other, Series): if other.name is None: raise ValueError('Other Series must have a name') other = DataFrame({other.name: other}) if isinstance(other, DataFrame): return merge(self, other, left_on=on, how=how, left_index=on is None, right_index=True, suffixes=(lsuffix, rsuffix), sort=sort) else: if on is not None: raise ValueError('Joining multiple DataFrames only supported' ' for joining on index') # join indexes only using concat if how == 'left': how = 'outer' join_axes = [self.index] else: join_axes = None frames = [self] + list(other) can_concat = all(df.index.is_unique for df in frames) if can_concat: return concat(frames, axis=1, join=how, join_axes=join_axes, verify_integrity=True) joined = frames[0] for frame in frames[1:]: joined = merge(joined, frame, how=how, left_index=True, right_index=True) return joined @Substitution('') @Appender(_merge_doc, indents=2) def merge(self, right, how='inner', on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False, suffixes=('_x', '_y'), copy=True, indicator=False): from pandas.tools.merge import merge return merge(self, right, how=how, on=on, left_on=left_on, right_on=right_on, left_index=left_index, right_index=right_index, sort=sort, suffixes=suffixes, copy=copy, indicator=indicator) def round(self, decimals=0, *args, **kwargs): """ Round a DataFrame to a variable number of decimal places. .. versionadded:: 0.17.0 Parameters ---------- decimals : int, dict, Series Number of decimal places to round each column to. If an int is given, round each column to the same number of places. Otherwise dict and Series round to variable numbers of places. Column names should be in the keys if `decimals` is a dict-like, or in the index if `decimals` is a Series. Any columns not included in `decimals` will be left as is. Elements of `decimals` which are not columns of the input will be ignored. Examples -------- >>> df = pd.DataFrame(np.random.random([3, 3]), ... columns=['A', 'B', 'C'], index=['first', 'second', 'third']) >>> df A B C first 0.028208 0.992815 0.173891 second 0.038683 0.645646 0.577595 third 0.877076 0.149370 0.491027 >>> df.round(2) A B C first 0.03 0.99 0.17 second 0.04 0.65 0.58 third 0.88 0.15 0.49 >>> df.round({'A': 1, 'C': 2}) A B C first 0.0 0.992815 0.17 second 0.0 0.645646 0.58 third 0.9 0.149370 0.49 >>> decimals = pd.Series([1, 0, 2], index=['A', 'B', 'C']) >>> df.round(decimals) A B C first 0.0 1 0.17 second 0.0 1 0.58 third 0.9 0 0.49 Returns ------- DataFrame object See Also -------- numpy.around Series.round """ from pandas.tools.merge import concat def _dict_round(df, decimals): for col, vals in df.iteritems(): try: yield _series_round(vals, decimals[col]) except KeyError: yield vals def _series_round(s, decimals): if is_integer_dtype(s) or is_float_dtype(s): return s.round(decimals) return s nv.validate_round(args, kwargs) if isinstance(decimals, (dict, Series)): if isinstance(decimals, Series): if not decimals.index.is_unique: raise ValueError("Index of decimals must be unique") new_cols = [col for col in _dict_round(self, decimals)] elif is_integer(decimals): # Dispatch to Series.round new_cols = [_series_round(v, decimals) for _, v in self.iteritems()] else: raise TypeError("decimals must be an integer, a dict-like or a " "Series") if len(new_cols) > 0: return self._constructor(concat(new_cols, axis=1), index=self.index, columns=self.columns) else: return self # ---------------------------------------------------------------------- # Statistical methods, etc. def corr(self, method='pearson', min_periods=1): """ Compute pairwise correlation of columns, excluding NA/null values Parameters ---------- method : {'pearson', 'kendall', 'spearman'} * pearson : standard correlation coefficient * kendall : Kendall Tau correlation coefficient * spearman : Spearman rank correlation min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Currently only available for pearson and spearman correlation Returns ------- y : DataFrame """ numeric_df = self._get_numeric_data() cols = numeric_df.columns mat = numeric_df.values if method == 'pearson': correl = _algos.nancorr(_ensure_float64(mat), minp=min_periods) elif method == 'spearman': correl = _algos.nancorr_spearman(_ensure_float64(mat), minp=min_periods) else: if min_periods is None: min_periods = 1 mat = _ensure_float64(mat).T corrf = nanops.get_corr_func(method) K = len(cols) correl = np.empty((K, K), dtype=float) mask = np.isfinite(mat) for i, ac in enumerate(mat): for j, bc in enumerate(mat): if i > j: continue valid = mask[i] & mask[j] if valid.sum() < min_periods: c = NA elif i == j: c = 1. elif not valid.all(): c = corrf(ac[valid], bc[valid]) else: c = corrf(ac, bc) correl[i, j] = c correl[j, i] = c return self._constructor(correl, index=cols, columns=cols) def cov(self, min_periods=None): """ Compute pairwise covariance of columns, excluding NA/null values Parameters ---------- min_periods : int, optional Minimum number of observations required per pair of columns to have a valid result. Returns ------- y : DataFrame Notes ----- `y` contains the covariance matrix of the DataFrame's time series. The covariance is normalized by N-1 (unbiased estimator). """ numeric_df = self._get_numeric_data() cols = numeric_df.columns mat = numeric_df.values if notnull(mat).all(): if min_periods is not None and min_periods > len(mat): baseCov = np.empty((mat.shape[1], mat.shape[1])) baseCov.fill(np.nan) else: baseCov = np.cov(mat.T) baseCov = baseCov.reshape((len(cols), len(cols))) else: baseCov = _algos.nancorr(_ensure_float64(mat), cov=True, minp=min_periods) return self._constructor(baseCov, index=cols, columns=cols) def corrwith(self, other, axis=0, drop=False): """ Compute pairwise correlation between rows or columns of two DataFrame objects. Parameters ---------- other : DataFrame axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise drop : boolean, default False Drop missing indices from result, default returns union of all Returns ------- correls : Series """ axis = self._get_axis_number(axis) if isinstance(other, Series): return self.apply(other.corr, axis=axis) this = self._get_numeric_data() other = other._get_numeric_data() left, right = this.align(other, join='inner', copy=False) # mask missing values left = left + right * 0 right = right + left * 0 if axis == 1: left = left.T right = right.T # demeaned data ldem = left - left.mean() rdem = right - right.mean() num = (ldem * rdem).sum() dom = (left.count() - 1) * left.std() * right.std() correl = num / dom if not drop: raxis = 1 if axis == 0 else 0 result_index = this._get_axis(raxis).union(other._get_axis(raxis)) correl = correl.reindex(result_index) return correl # ---------------------------------------------------------------------- # ndarray-like stats methods def count(self, axis=0, level=None, numeric_only=False): """ Return Series with number of non-NA/null observations over requested axis. Works with non-floating point data as well (detects NaN and None) Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame numeric_only : boolean, default False Include only float, int, boolean data Returns ------- count : Series (or DataFrame if level specified) """ axis = self._get_axis_number(axis) if level is not None: return self._count_level(level, axis=axis, numeric_only=numeric_only) if numeric_only: frame = self._get_numeric_data() else: frame = self # GH #423 if len(frame._get_axis(axis)) == 0: result = Series(0, index=frame._get_agg_axis(axis)) else: if frame._is_mixed_type: result = notnull(frame).sum(axis=axis) else: counts = notnull(frame.values).sum(axis=axis) result = Series(counts, index=frame._get_agg_axis(axis)) return result.astype('int64') def _count_level(self, level, axis=0, numeric_only=False): if numeric_only: frame = self._get_numeric_data() else: frame = self count_axis = frame._get_axis(axis) agg_axis = frame._get_agg_axis(axis) if not isinstance(count_axis, MultiIndex): raise TypeError("Can only count levels on hierarchical %s." % self._get_axis_name(axis)) if frame._is_mixed_type: # Since we have mixed types, calling notnull(frame.values) might # upcast everything to object mask = notnull(frame).values else: # But use the speedup when we have homogeneous dtypes mask = notnull(frame.values) if axis == 1: # We're transposing the mask rather than frame to avoid potential # upcasts to object, which induces a ~20x slowdown mask = mask.T if isinstance(level, compat.string_types): level = count_axis._get_level_number(level) level_index = count_axis.levels[level] labels = _ensure_int64(count_axis.labels[level]) counts = lib.count_level_2d(mask, labels, len(level_index), axis=0) result = DataFrame(counts, index=level_index, columns=agg_axis) if axis == 1: # Undo our earlier transpose return result.T else: return result def _reduce(self, op, name, axis=0, skipna=True, numeric_only=None, filter_type=None, **kwds): axis = self._get_axis_number(axis) def f(x): return op(x, axis=axis, skipna=skipna, **kwds) labels = self._get_agg_axis(axis) # exclude timedelta/datetime unless we are uniform types if axis == 1 and self._is_mixed_type and self._is_datelike_mixed_type: numeric_only = True if numeric_only is None: try: values = self.values result = f(values) except Exception as e: # try by-column first if filter_type is None and axis == 0: try: # this can end up with a non-reduction # but not always. if the types are mixed # with datelike then need to make sure a series result = self.apply(f, reduce=False) if result.ndim == self.ndim: result = result.iloc[0] return result except: pass if filter_type is None or filter_type == 'numeric': data = self._get_numeric_data() elif filter_type == 'bool': data = self._get_bool_data() else: # pragma: no cover e = NotImplementedError("Handling exception with filter_" "type %s not implemented." % filter_type) raise_with_traceback(e) with np.errstate(all='ignore'): result = f(data.values) labels = data._get_agg_axis(axis) else: if numeric_only: if filter_type is None or filter_type == 'numeric': data = self._get_numeric_data() elif filter_type == 'bool': data = self._get_bool_data() else: # pragma: no cover msg = ("Generating numeric_only data with filter_type %s" "not supported." % filter_type) raise NotImplementedError(msg) values = data.values labels = data._get_agg_axis(axis) else: values = self.values result = f(values) if hasattr(result, 'dtype') and is_object_dtype(result.dtype): try: if filter_type is None or filter_type == 'numeric': result = result.astype(np.float64) elif filter_type == 'bool' and notnull(result).all(): result = result.astype(np.bool_) except (ValueError, TypeError): # try to coerce to the original dtypes item by item if we can if axis == 0: result = _coerce_to_dtypes(result, self.dtypes) return Series(result, index=labels) def idxmin(self, axis=0, skipna=True): """ Return index of first occurrence of minimum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA Returns ------- idxmin : Series Notes ----- This method is the DataFrame version of ``ndarray.argmin``. See Also -------- Series.idxmin """ axis = self._get_axis_number(axis) indices = nanops.nanargmin(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else NA for i in indices] return Series(result, index=self._get_agg_axis(axis)) def idxmax(self, axis=0, skipna=True): """ Return index of first occurrence of maximum over requested axis. NA/null values are excluded. Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 0 or 'index' for row-wise, 1 or 'columns' for column-wise skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be first index. Returns ------- idxmax : Series Notes ----- This method is the DataFrame version of ``ndarray.argmax``. See Also -------- Series.idxmax """ axis = self._get_axis_number(axis) indices = nanops.nanargmax(self.values, axis=axis, skipna=skipna) index = self._get_axis(axis) result = [index[i] if i >= 0 else NA for i in indices] return Series(result, index=self._get_agg_axis(axis)) def _get_agg_axis(self, axis_num): """ let's be explict about this """ if axis_num == 0: return self.columns elif axis_num == 1: return self.index else: raise ValueError('Axis must be 0 or 1 (got %r)' % axis_num) def mode(self, axis=0, numeric_only=False): """ Gets the mode(s) of each element along the axis selected. Empty if nothing has 2+ occurrences. Adds a row for each mode per label, fills in gaps with nan. Note that there could be multiple values returned for the selected axis (when more than one item share the maximum frequency), which is the reason why a dataframe is returned. If you want to impute missing values with the mode in a dataframe ``df``, you can just do this: ``df.fillna(df.mode().iloc[0])`` Parameters ---------- axis : {0 or 'index', 1 or 'columns'}, default 0 * 0 or 'index' : get mode of each column * 1 or 'columns' : get mode of each row numeric_only : boolean, default False if True, only apply to numeric columns Returns ------- modes : DataFrame (sorted) Examples -------- >>> df = pd.DataFrame({'A': [1, 2, 1, 2, 1, 2, 3]}) >>> df.mode() A 0 1 1 2 """ data = self if not numeric_only else self._get_numeric_data() def f(s): return s.mode() return data.apply(f, axis=axis) def quantile(self, q=0.5, axis=0, numeric_only=True, interpolation='linear'): """ Return values at the given quantile over requested axis, a la numpy.percentile. Parameters ---------- q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute axis : {0, 1, 'index', 'columns'} (default 0) 0 or 'index' for row-wise, 1 or 'columns' for column-wise interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} .. versionadded:: 0.18.0 This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points `i` and `j`: * linear: `i + (j - i) * fraction`, where `fraction` is the fractional part of the index surrounded by `i` and `j`. * lower: `i`. * higher: `j`. * nearest: `i` or `j` whichever is nearest. * midpoint: (`i` + `j`) / 2. Returns ------- quantiles : Series or DataFrame - If ``q`` is an array, a DataFrame will be returned where the index is ``q``, the columns are the columns of self, and the values are the quantiles. - If ``q`` is a float, a Series will be returned where the index is the columns of self and the values are the quantiles. Examples -------- >>> df = DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]), columns=['a', 'b']) >>> df.quantile(.1) a 1.3 b 3.7 dtype: float64 >>> df.quantile([.1, .5]) a b 0.1 1.3 3.7 0.5 2.5 55.0 """ self._check_percentile(q) data = self._get_numeric_data() if numeric_only else self axis = self._get_axis_number(axis) is_transposed = axis == 1 if is_transposed: data = data.T result = data._data.quantile(qs=q, axis=1, interpolation=interpolation, transposed=is_transposed) if result.ndim == 2: result = self._constructor(result) else: result = self._constructor_sliced(result, name=q) if is_transposed: result = result.T return result def to_timestamp(self, freq=None, how='start', axis=0, copy=True): """ Cast to DatetimeIndex of timestamps, at *beginning* of period Parameters ---------- freq : string, default frequency of PeriodIndex Desired frequency how : {'s', 'e', 'start', 'end'} Convention for converting period to timestamp; start of period vs. end axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default) copy : boolean, default True If false then underlying input data is not copied Returns ------- df : DataFrame with DatetimeIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_timestamp(freq=freq, how=how)) elif axis == 1: new_data.set_axis(0, self.columns.to_timestamp(freq=freq, how=how)) else: # pragma: no cover raise AssertionError('Axis must be 0 or 1. Got %s' % str(axis)) return self._constructor(new_data) def to_period(self, freq=None, axis=0, copy=True): """ Convert DataFrame from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed) Parameters ---------- freq : string, default axis : {0 or 'index', 1 or 'columns'}, default 0 The axis to convert (the index by default) copy : boolean, default True If False then underlying input data is not copied Returns ------- ts : TimeSeries with PeriodIndex """ new_data = self._data if copy: new_data = new_data.copy() axis = self._get_axis_number(axis) if axis == 0: new_data.set_axis(1, self.index.to_period(freq=freq)) elif axis == 1: new_data.set_axis(0, self.columns.to_period(freq=freq)) else: # pragma: no cover raise AssertionError('Axis must be 0 or 1. Got %s' % str(axis)) return self._constructor(new_data) def isin(self, values): """ Return boolean DataFrame showing whether each element in the DataFrame is contained in values. Parameters ---------- values : iterable, Series, DataFrame or dictionary The result will only be true at a location if all the labels match. If `values` is a Series, that's the index. If `values` is a dictionary, the keys must be the column names, which must match. If `values` is a DataFrame, then both the index and column labels must match. Returns ------- DataFrame of booleans Examples -------- When ``values`` is a list: >>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> df.isin([1, 3, 12, 'a']) A B 0 True True 1 False False 2 True False When ``values`` is a dict: >>> df = DataFrame({'A': [1, 2, 3], 'B': [1, 4, 7]}) >>> df.isin({'A': [1, 3], 'B': [4, 7, 12]}) A B 0 True False # Note that B didn't match the 1 here. 1 False True 2 True True When ``values`` is a Series or DataFrame: >>> df = DataFrame({'A': [1, 2, 3], 'B': ['a', 'b', 'f']}) >>> other = DataFrame({'A': [1, 3, 3, 2], 'B': ['e', 'f', 'f', 'e']}) >>> df.isin(other) A B 0 True False 1 False False # Column A in `other` has a 3, but not at index 1. 2 True True """ if isinstance(values, dict): from collections import defaultdict from pandas.tools.merge import concat values = defaultdict(list, values) return concat((self.iloc[:, [i]].isin(values[col]) for i, col in enumerate(self.columns)), axis=1) elif isinstance(values, Series): if not values.index.is_unique: raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self), axis='index') elif isinstance(values, DataFrame): if not (values.columns.is_unique and values.index.is_unique): raise ValueError("cannot compute isin with " "a duplicate axis.") return self.eq(values.reindex_like(self)) else: if not is_list_like(values): raise TypeError("only list-like or dict-like objects are " "allowed to be passed to DataFrame.isin(), " "you passed a " "{0!r}".format(type(values).__name__)) return DataFrame(lib.ismember(self.values.ravel(), set(values)).reshape(self.shape), self.index, self.columns) # ---------------------------------------------------------------------- # Deprecated stuff def combineAdd(self, other): """ DEPRECATED. Use ``DataFrame.add(other, fill_value=0.)`` instead. Add two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame's value (which might be NaN as well) Parameters ---------- other : DataFrame Returns ------- DataFrame See also -------- DataFrame.add """ warnings.warn("'combineAdd' is deprecated. Use " "'DataFrame.add(other, fill_value=0.)' instead", FutureWarning, stacklevel=2) return self.add(other, fill_value=0.) def combineMult(self, other): """ DEPRECATED. Use ``DataFrame.mul(other, fill_value=1.)`` instead. Multiply two DataFrame objects and do not propagate NaN values, so if for a (column, time) one frame is missing a value, it will default to the other frame's value (which might be NaN as well) Parameters ---------- other : DataFrame Returns ------- DataFrame See also -------- DataFrame.mul """ warnings.warn("'combineMult' is deprecated. Use " "'DataFrame.mul(other, fill_value=1.)' instead", FutureWarning, stacklevel=2) return self.mul(other, fill_value=1.) DataFrame._setup_axes(['index', 'columns'], info_axis=1, stat_axis=0, axes_are_reversed=True, aliases={'rows': 0}) DataFrame._add_numeric_operations() DataFrame._add_series_or_dataframe_operations() _EMPTY_SERIES = Series([]) def _arrays_to_mgr(arrays, arr_names, index, columns, dtype=None): """ Segregate Series based on type and coerce into matrices. Needs to handle a lot of exceptional cases. """ # figure out the index, if necessary if index is None: index = extract_index(arrays) else: index = _ensure_index(index) # don't force copy because getting jammed in an ndarray anyway arrays = _homogenize(arrays, index, dtype) # from BlockManager perspective axes = [_ensure_index(columns), _ensure_index(index)] return create_block_manager_from_arrays(arrays, arr_names, axes) def extract_index(data): from pandas.core.index import _union_indexes index = None if len(data) == 0: index = Index([]) elif len(data) > 0: raw_lengths = [] indexes = [] have_raw_arrays = False have_series = False have_dicts = False for v in data: if isinstance(v, Series): have_series = True indexes.append(v.index) elif isinstance(v, dict): have_dicts = True indexes.append(list(v.keys())) elif is_list_like(v) and getattr(v, 'ndim', 1) == 1: have_raw_arrays = True raw_lengths.append(len(v)) if not indexes and not raw_lengths: raise ValueError('If using all scalar values, you must pass' ' an index') if have_series or have_dicts: index = _union_indexes(indexes) if have_raw_arrays: lengths = list(set(raw_lengths)) if len(lengths) > 1: raise ValueError('arrays must all be same length') if have_dicts: raise ValueError('Mixing dicts with non-Series may lead to ' 'ambiguous ordering.') if have_series: if lengths[0] != len(index): msg = ('array length %d does not match index length %d' % (lengths[0], len(index))) raise ValueError(msg) else: index = _default_index(lengths[0]) return _ensure_index(index) def _prep_ndarray(values, copy=True): if not isinstance(values, (np.ndarray, Series, Index)): if len(values) == 0: return np.empty((0, 0), dtype=object) def convert(v): return _possibly_convert_platform(v) # we could have a 1-dim or 2-dim list here # this is equiv of np.asarray, but does object conversion # and platform dtype preservation try: if is_list_like(values[0]) or hasattr(values[0], 'len'): values = np.array([convert(v) for v in values]) else: values = convert(values) except: values = convert(values) else: # drop subclass info, do not copy data values = np.asarray(values) if copy: values = values.copy() if values.ndim == 1: values = values.reshape((values.shape[0], 1)) elif values.ndim != 2: raise ValueError('Must pass 2-d input') return values def _to_arrays(data, columns, coerce_float=False, dtype=None): """ Return list of arrays, columns """ if isinstance(data, DataFrame): if columns is not None: arrays = [data._ixs(i, axis=1).values for i, col in enumerate(data.columns) if col in columns] else: columns = data.columns arrays = [data._ixs(i, axis=1).values for i in range(len(columns))] return arrays, columns if not len(data): if isinstance(data, np.ndarray): columns = data.dtype.names if columns is not None: return [[]] * len(columns), columns return [], [] # columns if columns is not None else [] if isinstance(data[0], (list, tuple)): return _list_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], collections.Mapping): return _list_of_dict_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], Series): return _list_of_series_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) elif isinstance(data[0], Categorical): if columns is None: columns = _default_index(len(data)) return data, columns elif (isinstance(data, (np.ndarray, Series, Index)) and data.dtype.names is not None): columns = list(data.dtype.names) arrays = [data[k] for k in columns] return arrays, columns else: # last ditch effort data = lmap(tuple, data) return _list_to_arrays(data, columns, coerce_float=coerce_float, dtype=dtype) def _masked_rec_array_to_mgr(data, index, columns, dtype, copy): """ extract from a masked rec array and create the manager """ # essentially process a record array then fill it fill_value = data.fill_value fdata = ma.getdata(data) if index is None: index = _get_names_from_index(fdata) if index is None: index = _default_index(len(data)) index = _ensure_index(index) if columns is not None: columns = _ensure_index(columns) arrays, arr_columns = _to_arrays(fdata, columns) # fill if needed new_arrays = [] for fv, arr, col in zip(fill_value, arrays, arr_columns): mask = ma.getmaskarray(data[col]) if mask.any(): arr, fv = _maybe_upcast(arr, fill_value=fv, copy=True) arr[mask] = fv new_arrays.append(arr) # create the manager arrays, arr_columns = _reorder_arrays(new_arrays, arr_columns, columns) if columns is None: columns = arr_columns mgr = _arrays_to_mgr(arrays, arr_columns, index, columns) if copy: mgr = mgr.copy() return mgr def _reorder_arrays(arrays, arr_columns, columns): # reorder according to the columns if (columns is not None and len(columns) and arr_columns is not None and len(arr_columns)): indexer = _ensure_index(arr_columns).get_indexer(columns) arr_columns = _ensure_index([arr_columns[i] for i in indexer]) arrays = [arrays[i] for i in indexer] return arrays, arr_columns def _list_to_arrays(data, columns, coerce_float=False, dtype=None): if len(data) > 0 and isinstance(data[0], tuple): content = list(lib.to_object_array_tuples(data).T) else: # list of lists content = list(lib.to_object_array(data).T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) def _list_of_series_to_arrays(data, columns, coerce_float=False, dtype=None): from pandas.core.index import _get_combined_index if columns is None: columns = _get_combined_index([ s.index for s in data if getattr(s, 'index', None) is not None ]) indexer_cache = {} aligned_values = [] for s in data: index = getattr(s, 'index', None) if index is None: index = _default_index(len(s)) if id(index) in indexer_cache: indexer = indexer_cache[id(index)] else: indexer = indexer_cache[id(index)] = index.get_indexer(columns) values = _values_from_object(s) aligned_values.append(algos.take_1d(values, indexer)) values = np.vstack(aligned_values) if values.dtype == np.object_: content = list(values.T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) else: return values.T, columns def _list_of_dict_to_arrays(data, columns, coerce_float=False, dtype=None): if columns is None: gen = (list(x.keys()) for x in data) sort = not any(isinstance(d, OrderedDict) for d in data) columns = lib.fast_unique_multiple_list_gen(gen, sort=sort) # assure that they are of the base dict class and not of derived # classes data = [(type(d) is dict) and d or dict(d) for d in data] content = list(lib.dicts_to_array(data, list(columns)).T) return _convert_object_array(content, columns, dtype=dtype, coerce_float=coerce_float) def _convert_object_array(content, columns, coerce_float=False, dtype=None): if columns is None: columns = _default_index(len(content)) else: if len(columns) != len(content): # pragma: no cover # caller's responsibility to check for this... raise AssertionError('%d columns passed, passed data had %s ' 'columns' % (len(columns), len(content))) # provide soft conversion of object dtypes def convert(arr): if dtype != object and dtype != np.object: arr = lib.maybe_convert_objects(arr, try_float=coerce_float) arr = _possibly_cast_to_datetime(arr, dtype) return arr arrays = [convert(arr) for arr in content] return arrays, columns def _get_names_from_index(data): has_some_name = any([getattr(s, 'name', None) is not None for s in data]) if not has_some_name: return _default_index(len(data)) index = lrange(len(data)) count = 0 for i, s in enumerate(data): n = getattr(s, 'name', None) if n is not None: index[i] = n else: index[i] = 'Unnamed %d' % count count += 1 return index def _homogenize(data, index, dtype=None): from pandas.core.series import _sanitize_array oindex = None homogenized = [] for v in data: if isinstance(v, Series): if dtype is not None: v = v.astype(dtype) if v.index is not index: # Forces alignment. No need to copy data since we # are putting it into an ndarray later v = v.reindex(index, copy=False) else: if isinstance(v, dict): if oindex is None: oindex = index.astype('O') if isinstance(index, (DatetimeIndex, TimedeltaIndex)): v = _dict_compat(v) else: v = dict(v) v = lib.fast_multiget(v, oindex.values, default=NA) v = _sanitize_array(v, index, dtype=dtype, copy=False, raise_cast_failure=False) homogenized.append(v) return homogenized def _from_nested_dict(data): # TODO: this should be seriously cythonized new_data = OrderedDict() for index, s in compat.iteritems(data): for col, v in compat.iteritems(s): new_data[col] = new_data.get(col, OrderedDict()) new_data[col][index] = v return new_data def _put_str(s, space): return ('%s' % s)[:space].ljust(space) # ---------------------------------------------------------------------- # Add plotting methods to DataFrame DataFrame.plot = base.AccessorProperty(gfx.FramePlotMethods, gfx.FramePlotMethods) DataFrame.hist = gfx.hist_frame @Appender(_shared_docs['boxplot'] % _shared_doc_kwargs) def boxplot(self, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwds): import pandas.tools.plotting as plots import matplotlib.pyplot as plt ax = plots.boxplot(self, column=column, by=by, ax=ax, fontsize=fontsize, grid=grid, rot=rot, figsize=figsize, layout=layout, return_type=return_type, **kwds) plt.draw_if_interactive() return ax DataFrame.boxplot = boxplot ops.add_flex_arithmetic_methods(DataFrame, **ops.frame_flex_funcs) ops.add_special_arithmetic_methods(DataFrame, **ops.frame_special_funcs) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
gpl-3.0
cbmoore/statsmodels
statsmodels/graphics/tsaplots.py
16
10392
"""Correlation plot functions.""" import numpy as np from statsmodels.graphics import utils from statsmodels.tsa.stattools import acf, pacf def plot_acf(x, ax=None, lags=None, alpha=.05, use_vlines=True, unbiased=False, fft=False, **kwargs): """Plot the autocorrelation function Plots lags on the horizontal and the correlations on vertical axis. Parameters ---------- x : array_like Array of time-series values ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. lags : array_like, optional Array of lag values, used on horizontal axis. If not given, ``lags=np.arange(len(corr))`` is used. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to Bartlett's formula. If None, no confidence intervals are plotted. use_vlines : bool, optional If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is 'o'; it can be overridden with a ``marker`` kwarg. unbiased : bool If True, then denominators for autocovariance are n-k, otherwise n fft : bool, optional If True, computes the ACF via FFT. **kwargs : kwargs, optional Optional keyword arguments that are directly passed on to the Matplotlib ``plot`` and ``axhline`` functions. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- matplotlib.pyplot.xcorr matplotlib.pyplot.acorr mpl_examples/pylab_examples/xcorr_demo.py Notes ----- Adapted from matplotlib's `xcorr`. Data are plotted as ``plot(lags, corr, **kwargs)`` """ fig, ax = utils.create_mpl_ax(ax) if lags is None: lags = np.arange(len(x)) nlags = len(lags) - 1 else: nlags = lags lags = np.arange(lags + 1) # +1 for zero lag confint = None # acf has different return type based on alpha if alpha is None: acf_x = acf(x, nlags=nlags, alpha=alpha, fft=fft, unbiased=unbiased) else: acf_x, confint = acf(x, nlags=nlags, alpha=alpha, fft=fft, unbiased=unbiased) if use_vlines: ax.vlines(lags, [0], acf_x, **kwargs) ax.axhline(**kwargs) kwargs.setdefault('marker', 'o') kwargs.setdefault('markersize', 5) kwargs.setdefault('linestyle', 'None') ax.margins(.05) ax.plot(lags, acf_x, **kwargs) ax.set_title("Autocorrelation") if confint is not None: # center the confidence interval TODO: do in acf? ax.fill_between(lags, confint[:,0] - acf_x, confint[:,1] - acf_x, alpha=.25) return fig def plot_pacf(x, ax=None, lags=None, alpha=.05, method='ywm', use_vlines=True, **kwargs): """Plot the partial autocorrelation function Plots lags on the horizontal and the correlations on vertical axis. Parameters ---------- x : array_like Array of time-series values ax : Matplotlib AxesSubplot instance, optional If given, this subplot is used to plot in instead of a new figure being created. lags : array_like, optional Array of lag values, used on horizontal axis. If not given, ``lags=np.arange(len(corr))`` is used. alpha : scalar, optional If a number is given, the confidence intervals for the given level are returned. For instance if alpha=.05, 95 % confidence intervals are returned where the standard deviation is computed according to 1/sqrt(len(x)) method : 'ywunbiased' (default) or 'ywmle' or 'ols' specifies which method for the calculations to use: - yw or ywunbiased : yule walker with bias correction in denominator for acovf - ywm or ywmle : yule walker without bias correction - ols - regression of time series on lags of it and on constant - ld or ldunbiased : Levinson-Durbin recursion with bias correction - ldb or ldbiased : Levinson-Durbin recursion without bias correction use_vlines : bool, optional If True, vertical lines and markers are plotted. If False, only markers are plotted. The default marker is 'o'; it can be overridden with a ``marker`` kwarg. **kwargs : kwargs, optional Optional keyword arguments that are directly passed on to the Matplotlib ``plot`` and ``axhline`` functions. Returns ------- fig : Matplotlib figure instance If `ax` is None, the created figure. Otherwise the figure to which `ax` is connected. See Also -------- matplotlib.pyplot.xcorr matplotlib.pyplot.acorr mpl_examples/pylab_examples/xcorr_demo.py Notes ----- Adapted from matplotlib's `xcorr`. Data are plotted as ``plot(lags, corr, **kwargs)`` """ fig, ax = utils.create_mpl_ax(ax) if lags is None: lags = np.arange(len(x)) nlags = len(lags) - 1 else: nlags = lags lags = np.arange(lags + 1) # +1 for zero lag confint = None if alpha is None: acf_x = pacf(x, nlags=nlags, alpha=alpha, method=method) else: acf_x, confint = pacf(x, nlags=nlags, alpha=alpha, method=method) if use_vlines: ax.vlines(lags, [0], acf_x, **kwargs) ax.axhline(**kwargs) # center the confidence interval TODO: do in acf? kwargs.setdefault('marker', 'o') kwargs.setdefault('markersize', 5) kwargs.setdefault('linestyle', 'None') ax.margins(.05) ax.plot(lags, acf_x, **kwargs) ax.set_title("Partial Autocorrelation") if confint is not None: # center the confidence interval TODO: do in acf? ax.fill_between(lags, confint[:,0] - acf_x, confint[:,1] - acf_x, alpha=.25) return fig def seasonal_plot(grouped_x, xticklabels, ylabel=None, ax=None): """ Consider using one of month_plot or quarter_plot unless you need irregular plotting. Parameters ---------- grouped_x : iterable of DataFrames Should be a GroupBy object (or similar pair of group_names and groups as DataFrames) with a DatetimeIndex or PeriodIndex """ fig, ax = utils.create_mpl_ax(ax) start = 0 ticks = [] for season, df in grouped_x: df = df.copy() # or sort balks for series. may be better way df.sort() nobs = len(df) x_plot = np.arange(start, start + nobs) ticks.append(x_plot.mean()) ax.plot(x_plot, df.values, 'k') ax.hlines(df.values.mean(), x_plot[0], x_plot[-1], colors='k') start += nobs ax.set_xticks(ticks) ax.set_xticklabels(xticklabels) ax.set_ylabel(ylabel) ax.margins(.1, .05) return fig def month_plot(x, dates=None, ylabel=None, ax=None): """ Seasonal plot of monthly data Parameters ---------- x : array-like Seasonal data to plot. If dates is None, x must be a pandas object with a PeriodIndex or DatetimeIndex with a monthly frequency. dates : array-like, optional If `x` is not a pandas object, then dates must be supplied. ylabel : str, optional The label for the y-axis. Will attempt to use the `name` attribute of the Series. ax : matplotlib.axes, optional Existing axes instance. Returns ------- matplotlib.Figure Examples -------- >>> import statsmodels.api as sm >>> import pandas as pd >>> dta = sm.datasets.elnino.load_pandas().data >>> dta['YEAR'] = dta.YEAR.astype(int).astype(str) >>> dta = dta.set_index('YEAR').T.unstack() >>> dates = map(lambda x : pd.datetools.parse('1 '+' '.join(x)), ... dta.index.values) >>> dta.index = pd.DatetimeIndex(dates, freq='M') >>> fig = sm.graphics.tsa.month_plot(dta) .. plot:: plots/graphics_month_plot.py """ from pandas import DataFrame if dates is None: from statsmodels.tools.data import _check_period_index _check_period_index(x, freq="M") else: from pandas import Series, PeriodIndex x = Series(x, index=PeriodIndex(dates, freq="M")) xticklabels = ['j','f','m','a','m','j','j','a','s','o','n','d'] return seasonal_plot(x.groupby(lambda y : y.month), xticklabels, ylabel=ylabel, ax=ax) def quarter_plot(x, dates=None, ylabel=None, ax=None): """ Seasonal plot of quarterly data Parameters ---------- x : array-like Seasonal data to plot. If dates is None, x must be a pandas object with a PeriodIndex or DatetimeIndex with a monthly frequency. dates : array-like, optional If `x` is not a pandas object, then dates must be supplied. ylabel : str, optional The label for the y-axis. Will attempt to use the `name` attribute of the Series. ax : matplotlib.axes, optional Existing axes instance. Returns ------- matplotlib.Figure """ from pandas import DataFrame if dates is None: from statsmodels.tools.data import _check_period_index _check_period_index(x, freq="Q") else: from pandas import Series, PeriodIndex x = Series(x, index=PeriodIndex(dates, freq="Q")) xticklabels = ['q1', 'q2', 'q3', 'q4'] return seasonal_plot(x.groupby(lambda y : y.quarter), xticklabels, ylabel=ylabel, ax=ax) if __name__ == "__main__": import pandas as pd #R code to run to load that dataset in this directory #data(co2) #library(zoo) #write.csv(as.data.frame(list(date=as.Date(co2), co2=coredata(co2))), "co2.csv", row.names=FALSE) co2 = pd.read_csv("co2.csv", index_col=0, parse_dates=True) month_plot(co2.co2) #will work when dates are sorted #co2 = sm.datasets.get_rdataset("co2", cache=True) x = pd.Series(np.arange(20), index=pd.PeriodIndex(start='1/1/1990', periods=20, freq='Q')) quarter_plot(x)
bsd-3-clause
linsalrob/EdwardsLab
matplotlib graphs/3d_scatter_plot.py
1
1295
""" Plot a 3D scatter plot """ import os import random import sys import matplotlib.lines import argparse import matplotlib.colors import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import pickle if __name__ == '__main__': parser = argparse.ArgumentParser(description="Plot a 3D scatter plot") parser.add_argument('-f', help='text separated data file', required=True) parser.add_argument('-l', help='File has a header line with axis titles', action='store_true') args = parser.parse_args() titles = [] x = [] y = [] z = [] legends = ['what', 'x', 'y', 'z'] with open(args.f, 'r') as fin: if args.l: legends = fin.readline().strip().split("\t") for l in fin: p = l.strip().split("\t") titles.append(p[0]) x.append(float(p[1])) y.append(float(p[2])) z.append(float(p[3])) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(x, y, z) ax.legend() ax.set_xlim(0, max(x)) ax.set_ylim(0, max(y)) ax.set_zlim(0, max(z)) ax.set_xlabel(legends[1]) ax.set_ylabel(legends[2]) ax.set_zlabel(legends[3]) pickle.dump(fig, open('/home/redwards/Desktop/3dfig.pickle', 'wb')) plt.show()
mit
bgris/ODL_bgris
lib/python3.5/site-packages/skimage/viewer/canvastools/recttool.py
43
8886
from matplotlib.widgets import RectangleSelector from ...viewer.canvastools.base import CanvasToolBase from ...viewer.canvastools.base import ToolHandles __all__ = ['RectangleTool'] class RectangleTool(CanvasToolBase, RectangleSelector): """Widget for selecting a rectangular region in a plot. After making the desired selection, press "Enter" to accept the selection and call the `on_enter` callback function. Parameters ---------- manager : Viewer or PlotPlugin. Skimage viewer or plot plugin object. on_move : function Function called whenever a control handle is moved. This function must accept the rectangle extents as the only argument. on_release : function Function called whenever the control handle is released. on_enter : function Function called whenever the "enter" key is pressed. maxdist : float Maximum pixel distance allowed when selecting control handle. rect_props : dict Properties for :class:`matplotlib.patches.Rectangle`. This class redefines defaults in :class:`matplotlib.widgets.RectangleSelector`. Attributes ---------- extents : tuple Rectangle extents: (xmin, xmax, ymin, ymax). Examples ---------- >>> from skimage import data >>> from skimage.viewer import ImageViewer >>> from skimage.viewer.canvastools import RectangleTool >>> from skimage.draw import line >>> from skimage.draw import set_color >>> viewer = ImageViewer(data.coffee()) # doctest: +SKIP >>> def print_the_rect(extents): ... global viewer ... im = viewer.image ... coord = np.int64(extents) ... [rr1, cc1] = line(coord[2],coord[0],coord[2],coord[1]) ... [rr2, cc2] = line(coord[2],coord[1],coord[3],coord[1]) ... [rr3, cc3] = line(coord[3],coord[1],coord[3],coord[0]) ... [rr4, cc4] = line(coord[3],coord[0],coord[2],coord[0]) ... set_color(im, (rr1, cc1), [255, 255, 0]) ... set_color(im, (rr2, cc2), [0, 255, 255]) ... set_color(im, (rr3, cc3), [255, 0, 255]) ... set_color(im, (rr4, cc4), [0, 0, 0]) ... viewer.image=im >>> rect_tool = RectangleTool(viewer, on_enter=print_the_rect) # doctest: +SKIP >>> viewer.show() # doctest: +SKIP """ def __init__(self, manager, on_move=None, on_release=None, on_enter=None, maxdist=10, rect_props=None): self._rect = None props = dict(edgecolor=None, facecolor='r', alpha=0.15) props.update(rect_props if rect_props is not None else {}) if props['edgecolor'] is None: props['edgecolor'] = props['facecolor'] RectangleSelector.__init__(self, manager.ax, lambda *args: None, rectprops=props) CanvasToolBase.__init__(self, manager, on_move=on_move, on_enter=on_enter, on_release=on_release) # Events are handled by the viewer try: self.disconnect_events() except AttributeError: # disconnect the events manually (hack for older mpl versions) [self.canvas.mpl_disconnect(i) for i in range(10)] # Alias rectangle attribute, which is initialized in RectangleSelector. self._rect = self.to_draw self._rect.set_animated(True) self.maxdist = maxdist self.active_handle = None self._extents_on_press = None if on_enter is None: def on_enter(extents): print("(xmin=%.3g, xmax=%.3g, ymin=%.3g, ymax=%.3g)" % extents) self.callback_on_enter = on_enter props = dict(mec=props['edgecolor']) self._corner_order = ['NW', 'NE', 'SE', 'SW'] xc, yc = self.corners self._corner_handles = ToolHandles(self.ax, xc, yc, marker_props=props) self._edge_order = ['W', 'N', 'E', 'S'] xe, ye = self.edge_centers self._edge_handles = ToolHandles(self.ax, xe, ye, marker='s', marker_props=props) self.artists = [self._rect, self._corner_handles.artist, self._edge_handles.artist] self.manager.add_tool(self) @property def _rect_bbox(self): if not self._rect: return 0, 0, 0, 0 x0 = self._rect.get_x() y0 = self._rect.get_y() width = self._rect.get_width() height = self._rect.get_height() return x0, y0, width, height @property def corners(self): """Corners of rectangle from lower left, moving clockwise.""" x0, y0, width, height = self._rect_bbox xc = x0, x0 + width, x0 + width, x0 yc = y0, y0, y0 + height, y0 + height return xc, yc @property def edge_centers(self): """Midpoint of rectangle edges from left, moving clockwise.""" x0, y0, width, height = self._rect_bbox w = width / 2. h = height / 2. xe = x0, x0 + w, x0 + width, x0 + w ye = y0 + h, y0, y0 + h, y0 + height return xe, ye @property def extents(self): """Return (xmin, xmax, ymin, ymax).""" x0, y0, width, height = self._rect_bbox xmin, xmax = sorted([x0, x0 + width]) ymin, ymax = sorted([y0, y0 + height]) return xmin, xmax, ymin, ymax @extents.setter def extents(self, extents): x1, x2, y1, y2 = extents xmin, xmax = sorted([x1, x2]) ymin, ymax = sorted([y1, y2]) # Update displayed rectangle self._rect.set_x(xmin) self._rect.set_y(ymin) self._rect.set_width(xmax - xmin) self._rect.set_height(ymax - ymin) # Update displayed handles self._corner_handles.set_data(*self.corners) self._edge_handles.set_data(*self.edge_centers) self.set_visible(True) self.redraw() def on_mouse_release(self, event): if event.button != 1: return if not self.ax.in_axes(event): self.eventpress = None return RectangleSelector.release(self, event) self._extents_on_press = None # Undo hiding of rectangle and redraw. self.set_visible(True) self.redraw() self.callback_on_release(self.geometry) def on_mouse_press(self, event): if event.button != 1 or not self.ax.in_axes(event): return self._set_active_handle(event) if self.active_handle is None: # Clear previous rectangle before drawing new rectangle. self.set_visible(False) self.redraw() self.set_visible(True) RectangleSelector.press(self, event) def _set_active_handle(self, event): """Set active handle based on the location of the mouse event""" # Note: event.xdata/ydata in data coordinates, event.x/y in pixels c_idx, c_dist = self._corner_handles.closest(event.x, event.y) e_idx, e_dist = self._edge_handles.closest(event.x, event.y) # Set active handle as closest handle, if mouse click is close enough. if c_dist > self.maxdist and e_dist > self.maxdist: self.active_handle = None return elif c_dist < e_dist: self.active_handle = self._corner_order[c_idx] else: self.active_handle = self._edge_order[e_idx] # Save coordinates of rectangle at the start of handle movement. x1, x2, y1, y2 = self.extents # Switch variables so that only x2 and/or y2 are updated on move. if self.active_handle in ['W', 'SW', 'NW']: x1, x2 = x2, event.xdata if self.active_handle in ['N', 'NW', 'NE']: y1, y2 = y2, event.ydata self._extents_on_press = x1, x2, y1, y2 def on_move(self, event): if self.eventpress is None or not self.ax.in_axes(event): return if self.active_handle is None: # New rectangle x1 = self.eventpress.xdata y1 = self.eventpress.ydata x2, y2 = event.xdata, event.ydata else: x1, x2, y1, y2 = self._extents_on_press if self.active_handle in ['E', 'W'] + self._corner_order: x2 = event.xdata if self.active_handle in ['N', 'S'] + self._corner_order: y2 = event.ydata self.extents = (x1, x2, y1, y2) self.callback_on_move(self.geometry) @property def geometry(self): return self.extents if __name__ == '__main__': # pragma: no cover from ...viewer import ImageViewer from ... import data viewer = ImageViewer(data.camera()) rect_tool = RectangleTool(viewer) viewer.show() print("Final selection:") rect_tool.callback_on_enter(rect_tool.extents)
gpl-3.0
rdhyee/working-open-data-2014
notebooks/Day_05_A_Geographical_Hierarchies.py
3
11920
# -*- coding: utf-8 -*- # <nbformat>3.0</nbformat> # <codecell> # our usual pylab import %pylab --no-import-all inline # <headingcell level=1> # Goal # <markdowncell> # For background, see [Mapping Census Data](http://www.udel.edu/johnmack/frec682/census/), including the # [scan of the 10-question form](http://www.udel.edu/johnmack/frec682/census/census_form.png). Keep in mind what people were asked and the range of data available in the census. # # Using the census API to get an understanding of some of the geographic entities in the **2010 census**. We'll specifically be using the variable `P0010001`, the total population. # # What you will do in this notebook: # # * Sum the population of the **states** (or state-like entity like DC) to get the total population of the **nation** # * Add up the **counties** for each **state** and validate the sums # * Add up the **census tracts** for each **county** and validate the sums # # We will make use of `pandas` in this notebook. # <markdowncell> # I often have the following [diagram](http://www.census.gov/geo/reference/pdfs/geodiagram.pdf) in mind to help understand the relationship among entities. Also use the [list of example URLs](http://api.census.gov/data/2010/sf1/geo.html) -- it'll come in handy. # <markdowncell> # <a href="http://www.flickr.com/photos/raymondyee/12297467734/" title="Census Geographic Hierarchies by Raymond Yee, on Flickr"><img src="http://farm4.staticflickr.com/3702/12297467734_af8882d310_c.jpg" width="618" height="800" alt="Census Geographic Hierarchies"></a> # <headingcell level=1> # Working out the geographical hierarchy for Cafe Milano # <markdowncell> # It's helpful to have a concrete instance of a place to work with, especially when dealing with rather intangible entities like census tracts, block groups, and blocks. You can use the [American FactFinder](http://factfinder2.census.gov/faces/nav/jsf/pages/index.xhtml) site to look up for any given US address the corresponding census geographies. # # Let's use Cafe Milano in Berkeley as an example. You can verify the following results by typing in the address into http://factfinder2.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t. # # https://www.evernote.com/shard/s1/sh/dc0bfb96-4965-4fbf-bc28-c9d4d0080782/2bd8c92a045d62521723347d62fa2b9d # # 2522 Bancroft Way, BERKELEY, CA, 94704 # # * State: California # * County: Alameda County # * County Subdivision: Berkeley CCD, Alameda County, California # * Census Tract: Census Tract 4228, Alameda County, California # * Block Group: Block Group 1, Census Tract 4228, Alameda County, California # * Block: Block 1001, Block Group 1, Census Tract 4228, Alameda County, California # # <codecell> # YouTube video I made on how to use the American Factfinder site to look up addresses from IPython.display import YouTubeVideo YouTubeVideo('HeXcliUx96Y') # <codecell> # standard numpy, pandas, matplotlib imports import numpy as np import matplotlib.pyplot as plt from pandas import DataFrame, Series, Index import pandas as pd # <codecell> # check that CENSUS_KEY is defined import census import us import requests import settings assert settings.CENSUS_KEY is not None # <markdowncell> # The census documentation has example URLs but needs your API key to work. In this notebook, we'll use the IPython notebook HTML display mechanism to help out. # <codecell> c = census.Census(key=settings.CENSUS_KEY) # <markdowncell> # Note: we can use `c.sf1` to access 2010 census (SF1: Census Summary File 1 (2010, 2000, 1990) available in API -- 2010 is the default) # # see documentation: [sunlightlabs/census](https://github.com/sunlightlabs/census) # <headingcell level=1> # Summing up populations by state # <markdowncell> # Let's make a `DataFrame` named `states_df` with columns `NAME`, `P0010001` (for population), and `state` (to hold the FIPS code). **Make sure to exclude Puerto Rico.** # <codecell> # call the API and instantiate `df` df = DataFrame(c.sf1.get('NAME,P0010001', geo={'for':'state:*'})) # convert the population to integer df['P0010001'] = df['P0010001'].astype(np.int) df.head() # <markdowncell> # You can filter Puerto Rico (PR) in a number of ways -- use the way you're most comfortable with. # # Optional fun: filter PR in the following way # # * calculate a `np.array` holding the the fips of the states # * then use [numpy.in1d](http://docs.scipy.org/doc/numpy/reference/generated/numpy.in1d.html), which is a analogous to the [in](http://stackoverflow.com/a/3437130/7782) operator to test membership in a list # <codecell> ## FILL IN ## calculate states_fips so that PR not included # <markdowncell> # If `states_df` is calculated properly, the following asserts will pass silently. # <codecell> # check that we have three columns assert set(states_df.columns) == set((u'NAME', u'P0010001', u'state')) # check that the total 2010 census population is correct assert np.sum(states_df.P0010001) == 308745538 # check that the number of states+DC is 51 assert len(states_df) == 51 # <headingcell level=1> # Counties # <markdowncell> # Looking at http://api.census.gov/data/2010/sf1/geo.html, we see # # state-county: http://api.census.gov/data/2010/sf1?get=P0010001&for=county:* # # if we want to grab all counties in one go, or you can grab counties state-by-state: # # http://api.census.gov/data/2010/sf1?get=P0010001&for=county:*&in=state:06 # # for all counties in the state with FIPS code `06` (which is what state?) # <codecell> # Here's a way to use translate # http://api.census.gov/data/2010/sf1?get=P0010001&for=county:* # into a call using the census.Census object r = c.sf1.get('NAME,P0010001', geo={'for':'county:*'}) # ask yourself what len(r) means and what it should be len(r) # <codecell> # let's try out one of the `census` object convenience methods # instead of using `c.sf1.get` r = c.sf1.state_county('NAME,P0010001',census.ALL,census.ALL) r # <codecell> # convert the json from the API into a DataFrame # coerce to integer the P0010001 column df = DataFrame(r) df['P0010001'] = df['P0010001'].astype('int') # display the first records df.head() # <codecell> # calculate the total population # what happens when you google the number you get? np.sum(df['P0010001']) # <codecell> # often you can use dot notation to access a DataFrame column df.P0010001.head() # <codecell> ## FILL IN ## compute counties_df ## counties_df should have same columns as df ## filter out PR -- what's the total population now # <markdowncell> # Check properties of `counties_df` # <codecell> # number of counties assert len(counties_df) == 3143 #3143 county/county-equivs in US # <codecell> # check that the total population by adding all counties == population by adding all states assert np.sum(counties_df['P0010001']) == np.sum(states_df.P0010001) # <codecell> # check we have same columns between counties_df and df set(counties_df.columns) == set(df.columns) # <headingcell level=1> # Using FIPS code as the Index # <markdowncell> # From [Mapping Census Data](http://www.udel.edu/johnmack/frec682/census/): # # * Each state (SUMLEV = 040) has a 2-digit FIPS ID; Delaware's is 10. # * Each county (SUMLEV = 050) within a state has a 3-digit FIPS ID, appended to the 2-digit state ID. New Castle County, Delaware, has FIPS ID 10003. # * Each Census Tract (SUMLEV = 140) within a county has a 6-digit ID, appended to the county code. The Tract in New Castle County DE that contains most of the the UD campus has FIPS ID 10003014502. # * Each Block Group (SUMLEV = 150) within a Tract has a single digit ID appended to the Tract ID. The center of campus in the northwest corner of the tract is Block Group100030145022. # * Each Block (SUMLEV = 750) within a Block Group is identified by three more digits appended to the Block Group ID. Pearson Hall is located in Block 100030145022009. # <codecell> # take a look at the current structure of counties_df counties_df.head() # <markdowncell> # If you add all the counties on a state-by-state basisi, do you get the same populations for each state? # # * use `set_index` to make the FIPS code for the state the index for `states_df` # * calculate the FIPS code for the counties and make the county FIPS code the index of of `county_fips` # * use groupby on `counties_df` to compare the populations of states with that in `states_df` # <codecell> ## FILL IN # <headingcell level=1> # Counties in California # <markdowncell> # Let's look at home: California state and Alameda County # <codecell> # boolean indexing to pull up California states_df[states_df.NAME == 'California'] # <codecell> # use .ix -- most general indexing # http://pandas.pydata.org/pandas-docs/dev/indexing.html#different-choices-for-indexing-loc-iloc-and-ix states_df.ix['06'] # <codecell> # California counties counties_df[counties_df.state=='06'] # <codecell> counties_df[counties_df.NAME == 'Alameda County'] # <codecell> counties_df[counties_df.NAME == 'Alameda County']['P0010001'] # <markdowncell> # Different ways to read off the population of Alameda County -- still looking for the best way # <codecell> counties_df[counties_df.NAME == 'Alameda County']['P0010001'].to_dict().values()[0] # <codecell> list(counties_df[counties_df.NAME == 'Alameda County']['P0010001'].iteritems())[0][1] # <codecell> int(counties_df[counties_df.NAME == 'Alameda County']['P0010001'].values) # <markdowncell> # If you know the FIPS code for Alameda County, just read off the population using `.ix` # <codecell> # this is like accessing a cell in a spreadsheet -- row, col ALAMEDA_COUNTY_FIPS = '06001' counties_df.ix[ALAMEDA_COUNTY_FIPS,'P0010001'] # <headingcell level=1> # Reading off all the tracts in Alameda County # <codecell> counties_df.ix[ALAMEDA_COUNTY_FIPS,'county'] # <codecell> ## FILL IN ## generate a DataFrame named alameda_county_tracts_df by ## calling the census api and the state-county-tract technique ## how many census tracts in Alameda County? ## if you add up the population, what do you get? ## generate the FIPS code for each tract # <codecell> # confirm that you can find the census tract in which Cafe Milano is located # Cafe Milano is in tract 4228 MILANO_TRACT_ID = '422800' alameda_county_tracts_df[alameda_county_tracts_df.tract==MILANO_TRACT_ID] # <headingcell level=1> # Using Generators to yield all the tracts in the country # <markdowncell> # http://www.jeffknupp.com/blog/2013/04/07/improve-your-python-yield-and-generators-explained/ # <codecell> ## FILL IN ## try to reproduce the generator I show in class for all the census tracts ## start to think about how to do this for other geographical entities import time import us from itertools import islice def census_tracts(variable=('NAME','P0010001'), sleep_time=1.0): for state in us.states.STATES: print state for tract in c.sf1.get(variable, geo={'for':"tract:*", 'in':'state:{state_fips}'.format(state_fips=state.fips) }): yield tract # don't hit the API more than once a second time.sleep(sleep_time) # limit the number of tracts we crawl for until we're reading to get all of them tracts_df = DataFrame(list(islice(census_tracts(), 100))) tracts_df['P0010001'] = tracts_df['P0010001'].astype('int') # <codecell> tracts_df.head() # <codecell> ## EXERCISE for next time ## write a generator all census places # <headingcell level=1> # Compare with Tabulations # <markdowncell> # We can compare the total number of tracts we calculate to: # # https://www.census.gov/geo/maps-data/data/tallies/tractblock.html # # and # # https://www.census.gov/geo/maps-data/data/docs/geo_tallies/Tract_Block2010.txt
apache-2.0
rbnvrw/semtracking
semtracking/report.py
1
3303
import numpy from pandas import DataFrame import pandas as pd from os import path, makedirs, sep import os import re def prepare_dataframe(data_frame, microns_per_pixel): # drop unneeded columns allowed_cols = ['r', 'dev', 'x', 'y'] cols = [c for c in data_frame.columns if c in allowed_cols] data_frame = data_frame[cols] # convert to microns data_frame *= microns_per_pixel return data_frame def setup_dir_is_not_exists(filename): """ :param filename: :return: """ directory = path.abspath(path.normpath(path.dirname(filename) + sep + 'report')) if not path.exists(directory): makedirs(directory) return directory def save_circles_to_csv_grouped(data_frame, filename, microns_per_pixel, suffix='_grouped'): """ :param data_frame: :param filename: :param microns_per_pixel: """ if data_frame.empty: return directory = setup_dir_is_not_exists(filename) filename = path.basename(filename) data_frame = prepare_dataframe(data_frame, microns_per_pixel) # Paths file_path_grouped = path.abspath(path.normpath(directory + sep + re.sub("_\d+$", "", filename))) report_file_grouped = file_path_grouped + suffix + '_report.csv' summary_file_grouped = file_path_grouped + suffix + '_summary.csv' # Merge existing if path.isfile(report_file_grouped): existing_df = DataFrame.from_csv(report_file_grouped) data_frame = pd.concat([data_frame, existing_df], ignore_index=True) # Delete summary if path.isfile(summary_file_grouped): os.remove(summary_file_grouped) # save DataFrame data_frame.to_csv(report_file_grouped, encoding='utf-8') # create summary summary = generate_summary(data_frame) # save summary.to_csv(summary_file_grouped, encoding='utf-8') def save_circles_to_csv(data_frame, filename, microns_per_pixel): """ Save fitted circles to csv files in subdir :param data_frame: :param filename: :param microns_per_pixel: """ if data_frame.empty: return directory = setup_dir_is_not_exists(filename) filename = path.basename(filename) data_frame = prepare_dataframe(data_frame, microns_per_pixel) # File paths file_path = path.abspath(path.normpath(directory + sep + filename)) report_file = file_path + '_frame.csv' summary_file = file_path + '_summary.csv' # save DataFrame data_frame.to_csv(report_file, encoding='utf-8') # create summary summary = generate_summary(data_frame) # save summary.to_csv(summary_file, encoding='utf-8') def generate_summary(data_frame): """ :param data_frame: :return: """ number = len(data_frame.index) mean_r = numpy.mean(data_frame['r']) error_r = numpy.sqrt(numpy.dot(data_frame['dev'], data_frame['dev'])) / float(number) std_r = numpy.std(data_frame['r']) data = { 'R, mean (um)': [mean_r], 'R, error (um)': [error_r], 'R, std (um)': [std_r], 'D, mean (um)': [2.0 * mean_r], 'D, error (um)': [2.0 * error_r], 'D, std (um)': [2.0 * std_r], 'D, std (fraction)': [std_r / mean_r], '# particles': [number] } summary = DataFrame(data) return summary
mit
nmayorov/scikit-learn
sklearn/gaussian_process/tests/test_gpc.py
28
6061
"""Testing for Gaussian process classification """ # Author: Jan Hendrik Metzen <[email protected]> # Licence: BSD 3 clause import numpy as np from scipy.optimize import approx_fprime from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from sklearn.utils.testing import (assert_true, assert_greater, assert_equal, assert_almost_equal, assert_array_equal) def f(x): return np.sin(x) X = np.atleast_2d(np.linspace(0, 10, 30)).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = np.array(f(X).ravel() > 0, dtype=int) fX = f(X).ravel() y_mc = np.empty(y.shape, dtype=int) # multi-class y_mc[fX < -0.35] = 0 y_mc[(fX >= -0.35) & (fX < 0.35)] = 1 y_mc[fX > 0.35] = 2 fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=0.1), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3))] def test_predict_consistent(): """ Check binary predict decision has also predicted probability above 0.5. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_array_equal(gpc.predict(X), gpc.predict_proba(X)[:, 1] >= 0.5) def test_lml_improving(): """ Test that hyperparameter-tuning improves log-marginal likelihood. """ for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(kernel.theta)) def test_lml_precomputed(): """ Test that lml of optimized kernel is stored correctly. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) assert_almost_equal(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(), 7) def test_converged_to_local_maximum(): """ Test that we are in local maximum after hyperparameter-optimization.""" for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpc.log_marginal_likelihood(gpc.kernel_.theta, True) assert_true(np.all((np.abs(lml_gradient) < 1e-4) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 0]) | (gpc.kernel_.theta == gpc.kernel_.bounds[:, 1]))) def test_lml_gradient(): """ Compare analytic and numeric gradient of log marginal likelihood. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y) lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpc.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_random_starts(): """ Test that an increasing number of random-starts of GP fitting only increases the log marginal likelihood of the chosen theta. """ n_samples, n_features = 25, 3 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = (np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)) > 0 kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1e-3] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) last_lml = -np.inf for n_restarts_optimizer in range(9): gp = GaussianProcessClassifier( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml def test_custom_optimizer(): """ Test that GPC can use externally defined optimizers. """ # Define a dummy optimizer that simply tests 1000 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(1000): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min for kernel in kernels: if kernel == fixed_kernel: continue gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer) gpc.fit(X, y_mc) # Checks that optimizer improved marginal likelihood assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta), gpc.log_marginal_likelihood(kernel.theta)) def test_multi_class(): """ Test GPC for multi-class classification problems. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) y_prob = gpc.predict_proba(X2) assert_almost_equal(y_prob.sum(1), 1) y_pred = gpc.predict(X2) assert_array_equal(np.argmax(y_prob, 1), y_pred) def test_multi_class_n_jobs(): """ Test that multi-class GPC produces identical results with n_jobs>1. """ for kernel in kernels: gpc = GaussianProcessClassifier(kernel=kernel) gpc.fit(X, y_mc) gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2) gpc_2.fit(X, y_mc) y_prob = gpc.predict_proba(X2) y_prob_2 = gpc_2.predict_proba(X2) assert_almost_equal(y_prob, y_prob_2)
bsd-3-clause
rgommers/statsmodels
statsmodels/datasets/randhie/data.py
25
2667
"""RAND Health Insurance Experiment Data""" __docformat__ = 'restructuredtext' COPYRIGHT = """This is in the public domain.""" TITLE = __doc__ SOURCE = """ The data was collected by the RAND corporation as part of the Health Insurance Experiment (HIE). http://www.rand.org/health/projects/hie.html This data was used in:: Cameron, A.C. amd Trivedi, P.K. 2005. `Microeconometrics: Methods and Applications,` Cambridge: New York. And was obtained from: <http://cameron.econ.ucdavis.edu/mmabook/mmadata.html> See randhie/src for the original data and description. The data included here contains only a subset of the original data. The data varies slightly compared to that reported in Cameron and Trivedi. """ DESCRSHORT = """The RAND Co. Health Insurance Experiment Data""" DESCRLONG = """""" NOTE = """:: Number of observations - 20,190 Number of variables - 10 Variable name definitions:: mdvis - Number of outpatient visits to an MD lncoins - ln(coinsurance + 1), 0 <= coninsurance <= 100 idp - 1 if individual deductible plan, 0 otherwise lpi - ln(max(1, annual participation incentive payment)) fmde - 0 if idp = 1; ln(max(1, MDE/(0.01 coinsurance))) otherwise physlm - 1 if the person has a physical limitation disea - number of chronic diseases hlthg - 1 if self-rated health is good hlthf - 1 if self-rated health is fair hlthp - 1 if self-rated health is poor (Omitted category is excellent self-rated health) """ from numpy import recfromtxt, column_stack, array from statsmodels.datasets import utils as du from os.path import dirname, abspath PATH = '%s/%s' % (dirname(abspath(__file__)), 'randhie.csv') def load(): """ Loads the RAND HIE data and returns a Dataset class. ---------- endog - response variable, mdvis exog - design Returns Load instance: a class of the data with array attrbutes 'endog' and 'exog' """ data = _get_data() return du.process_recarray(data, endog_idx=0, dtype=float) def load_pandas(): """ Loads the RAND HIE data and returns a Dataset class. ---------- endog - response variable, mdvis exog - design Returns Load instance: a class of the data with array attrbutes 'endog' and 'exog' """ from pandas import read_csv data = read_csv(PATH) return du.process_recarray_pandas(data, endog_idx=0) def _get_data(): filepath = dirname(abspath(__file__)) data = recfromtxt(open(PATH, "rb"), delimiter=",", names=True, dtype=float) return data
bsd-3-clause
meren/anvio
anvio/db.py
1
36410
# -*- coding: utf-8 # pylint: disable=line-too-long """ Low-level db operations. """ import os import time import math import numpy import pandas as pd import sqlite3 import warnings import anvio import anvio.tables as tables import anvio.terminal as terminal import anvio.filesnpaths as filesnpaths from anvio.errors import ConfigError __author__ = "Developers of anvi'o (see AUTHORS.txt)" __copyright__ = "Copyleft 2015-2018, the Meren Lab (http://merenlab.org/)" __credits__ = [] __license__ = "GPL 3.0" __version__ = anvio.__version__ __maintainer__ = "A. Murat Eren" __email__ = "[email protected]" __status__ = "Development" # Converts numpy numbers into storable python types that sqlite3 is expecting sqlite3.register_adapter(numpy.int64, int) sqlite3.register_adapter(numpy.float64, float) warnings.simplefilter(action='ignore', category=FutureWarning) def get_list_in_chunks(input_list, num_items_in_each_chunk=5000): """Yield smaller bits of a list""" for index in range(0, len(input_list), num_items_in_each_chunk): yield input_list[index:index + num_items_in_each_chunk] class DB: def __init__(self, db_path, client_version, new_database=False, ignore_version=False, skip_rowid_prepend=False, run=terminal.Run(), progress=terminal.Progress()): self.db_path = db_path self.version = None self.run = run self.progress = progress # these anonymous functions report whether the ROWID will be added # to its rows read from the database or not. if the first column of a given # table does not contain unique variables, anvi'o prepends the ROWID of each # column to index 0, unless `skip_rowid_prepend` is True self.ROWID_PREPENDS_ROW_DATA = lambda table_name: False if skip_rowid_prepend else tables.requires_unique_entry_id[table_name] self.PROPER_SELECT_STATEMENT = lambda table_name: 'ROWID as "entry_id", *' if self.ROWID_PREPENDS_ROW_DATA(table_name) else '*' if new_database: filesnpaths.is_output_file_writable(db_path) else: filesnpaths.is_file_exists(db_path) if new_database and os.path.exists(self.db_path): os.remove(self.db_path) self.check_if_db_writable() try: self.conn = sqlite3.connect(self.db_path) except Exception as e: raise ConfigError(f"This one time someone was not happy with '{self.db_path}' and '{e}', they said.") self.conn.text_factory = str self.cursor = self.conn.cursor() self.table_names_in_db = self.get_table_names() if new_database: self.create_self() self.set_version(client_version) else: self.version = self.get_version() if str(self.version) != str(client_version) and not ignore_version: if int(self.version) > int(client_version): progress.reset() raise ConfigError("Bad news of the day: the database at %s was generated with an anvi'o version that is 'newer' than " "the one you are actively using right now. We know, you hate to hear this, but you need to upgrade " "your anvi'o :(" % self.db_path) else: progress.reset() raise ConfigError(f"The database at '{self.db_path}' is outdated (this database is v{self.version} and your anvi'o installation " f"wants to work with v{client_version}). You can migrate your database without losing any data using the " f"program `anvi-migrate` with either of the flags `--migrate-dbs-safely` or `--migrate-dbs-quickly`.") bad_tables = [table_name for table_name in self.table_names_in_db if table_name not in tables.requires_unique_entry_id] if len(bad_tables): raise ConfigError("You better be a programmer tinkering with anvi'o databases adding new tables or something. Otherwise we " "have quite a serious problem :/ Each table in a given anvi'o database must have an entry in the " "anvio/tables/__init__.py dictionary `requires_unique_entry_id` to explicitly define whether anvi'o " "should add a unique entry id for its contents upon retrieval as a dictionary. The following tables " "in this database do not satisfy that: '%s'. You can solve this problem by adding an entry into that " "dictionary." % (', '.join(bad_tables))) def get_version(self): try: return self.get_meta_value('version') except: raise ConfigError("%s does not seem to be a database generated by anvi'o :/" % self.db_path) def check_if_db_writable(self): check_counter = 0 check_interval = 1 # in seconds check_limit = 300 # 5 minutes, in seconds journal_path = self.db_path + '-journal' while(check_counter < check_limit and filesnpaths.is_file_exists(journal_path, dont_raise=True)): if check_counter == 0: # print only once self.run.info_single("It seems the database at '%s' currently used by another proccess " "for writing operations. Anvi'o refuses to work with this database to avoid corrupting it. " "If you think this is a mistake, you may stop this process and delete the lock file at '%s' after making sure " "no other active process using it for writing. In case this program is ran by automatic workflow manager like snakemake " "Anvi'o will periodically check if the journal file still exists for total of %d minutes. If database is still not writable " "after that time, Anvi'o will stop running. " % (os.path.abspath(self.db_path), os.path.abspath(journal_path), int(check_limit/60))) time.sleep(check_interval) check_counter += check_interval if not check_counter < check_limit: raise ConfigError("Database is not writable.") def create_self(self): self._exec('''CREATE TABLE self (key text, value text)''') def drop_table(self, table_name): """Delete a table in the database if it exists""" self._exec('''DROP TABLE IF EXISTS %s;''' % table_name) def create_table(self, table_name, fields, types): if len(fields) != len(types): raise ConfigError("create_table: The number of fields and types has to match.") db_fields = ', '.join(['%s %s' % (t[0], t[1]) for t in zip(fields, types)]) self._exec('''CREATE TABLE %s (%s)''' % (table_name, db_fields)) self.commit() self.table_names_in_db = self.get_table_names() def set_version(self, version): self.set_meta_value('version', version) self.commit() def set_meta_value(self, key, value): self.remove_meta_key_value_pair(key) self._exec('''INSERT INTO self VALUES(?,?)''', (key, value,)) self.commit() def remove_meta_key_value_pair(self, key): self._exec('''DELETE FROM self WHERE key="%s"''' % key) self.commit() def update_meta_value(self, key, value): self.remove_meta_key_value_pair(key) self.set_meta_value(key, value) def copy_paste(self, table_name, source_db_path, append=False): """Copy `table_name` data from another database (`source_db_path`) into yourself Arguments ========= append : bool, False If True, the table is appened to the source DB, rather than replaced. """ source_db = DB(source_db_path, None, ignore_version=True) num_entries_in_source = source_db.get_row_counts_from_table(table_name) if not num_entries_in_source: return # we are done with the source DB python object. The rest we do in SQL # for huge performance gains source_db.disconnect() if not append: self._exec('''DELETE FROM %s''' % table_name) self._exec('''ATTACH "%s" AS source_db''' % source_db_path) self._exec('''INSERT INTO main.%s SELECT * FROM source_db.%s''' % (table_name, table_name)) self._exec('''DETACH DATABASE "source_db"''') def get_max_value_in_column(self, table_name, column_name, value_if_empty=None, return_min_instead=False): """Get the maximum OR minimum column value in a table Parameters ========== value_if_empty : object, None If not None and table has no entries, value returned is value_if_empty. """ response = self._exec("""SELECT %s(%s) FROM %s""" % ('MIN' if return_min_instead else 'MAX', column_name, table_name)) rows = response.fetchall() val = rows[0][0] if isinstance(val, type(None)): return value_if_empty try: val = int(val) except ValueError: pass return val def get_meta_value(self, key, try_as_type_int=True, return_none_if_not_in_table=False): """if try_as_type_int, value is attempted to be converted to integer. If it fails, no harm no foul.""" response = self._exec("""SELECT value FROM self WHERE key='%s'""" % key) rows = response.fetchall() if not rows and return_none_if_not_in_table: return None if not rows: raise ConfigError("A value for '%s' does not seem to be set in table 'self'." % key) val = rows[0][0] if isinstance(val, type(None)): return None if try_as_type_int: try: val = int(val) except ValueError: pass return val def commit(self): self.conn.commit() def disconnect(self): self.conn.commit() self.conn.close() def _exec(self, sql_query, value=None): if value: ret_val = self.cursor.execute(sql_query, value) else: ret_val = self.cursor.execute(sql_query) self.commit() return ret_val def _exec_many(self, sql_query, values): chunk_counter = 0 for chunk in get_list_in_chunks(values): if anvio.DEBUG: self.progress.reset() self.run.info_single("Adding the chunk %d with %d entries of %d total is being added to the db with " "the SQL command '%s'." \ % (chunk_counter, len(chunk), len(values), sql_query), nl_before=1) self.cursor.executemany(sql_query, chunk) chunk_counter += 1 return True def insert(self, table_name, values=()): query = '''INSERT INTO %s VALUES (%s)''' % (table_name, ','.join(['?'] * len(values))) return self._exec(query, values) def insert_many(self, table_name, entries=None): if len(entries): query = '''INSERT INTO %s VALUES (%s)''' % (table_name, ','.join(['?'] * len(entries[0]))) return self._exec_many(query, entries) def insert_rows_from_dataframe(self, table_name, dataframe, raise_if_no_columns=True): """Insert rows from a dataframe Parameters ========== raise_if_no_columns : bool, True If True, if dataframe has no columns (e.g. dataframe = pd.DataFrame({})), this function returns without raising error. Notes ===== - This should one day be replaced with the following code: if 'entry_id' in structure: # This table has an entry_id of, we have to be aware of it if 'entry_id' in df.columns: # The user already has an 'entry_id' column. We assume they know what they are doing next_available_id = df['entry_id'].max() + 1 else: num_entries = df.shape[0] next_available_id = self.get_max_value_in_column(name, 'entry_id', value_if_empty=-1) + 1 df['entry_id'] = range(next_available_id, next_available_id + num_entries) next_available_id += num_entries else: next_available_id = None # subset columns and reorder according to the table structure df = df[structure] dtypes = dict(zip(structure, types)) df.to_sql( name, self.conn, if_exists='append', chunksize=chunksize, dtype=dtypes, index=False ) return next_available_id """ self.is_table_exists(table_name) if not list(dataframe.columns) and not raise_if_no_columns: # if the dataframe has no colums, we just return return if len(set(dataframe.columns)) != len(list(dataframe.columns)): raise ConfigError("insert_rows_from_dataframe :: There is at least one duplicate column " "name in the dataframe. Here is the list of columns: [{}].".\ format(", ".join(list(dataframe.columns)))) if set(dataframe.columns) != set(self.get_table_structure(table_name)): raise ConfigError("insert_rows_from_dataframe :: The columns in the dataframe " "do not equal the columns of the requested table. " "The columns from each are respectively ({}); and ({}).".\ format(", ".join(list(dataframe.columns)), ", ".join(self.get_table_structure(table_name)))) # conform to the column order of the table structure dataframe = dataframe[self.get_table_structure(table_name)] entries = [tuple(row) for row in dataframe.values] self.insert_many(table_name, entries=entries) def is_table_exists(self, table_name): if table_name not in self.table_names_in_db: raise ConfigError(f"The database at {self.db_path} does seem to have a table `{table_name}` :/ " f"Here is a list of table names this database knows: {', '.join(self.table_names_in_db)}") def get_all_rows_from_table(self, table_name): self.is_table_exists(table_name) response = self._exec('''SELECT %s FROM %s''' % (self.PROPER_SELECT_STATEMENT(table_name), table_name)) return response.fetchall() def get_some_rows_from_table(self, table_name, where_clause): self.is_table_exists(table_name) where_clause = where_clause.replace('"', "'") response = self._exec('''SELECT %s FROM %s WHERE %s''' % (self.PROPER_SELECT_STATEMENT(table_name), table_name, where_clause)) return response.fetchall() def get_row_counts_from_table(self, table_name, where_clause=None): self.is_table_exists(table_name) if where_clause: where_clause = where_clause.replace('"', "'") response = self._exec('''SELECT COUNT(*) FROM %s WHERE %s''' % (table_name, where_clause)) else: response = self._exec('''SELECT COUNT(*) FROM %s''' % (table_name)) return response.fetchall()[0][0] def remove_some_rows_from_table(self, table_name, where_clause): self.is_table_exists(table_name) where_clause = where_clause.replace('"', "'") self._exec('''DELETE FROM %s WHERE %s''' % (table_name, where_clause)) self.commit() def get_single_column_from_table(self, table, column, unique=False, where_clause=None): self.is_table_exists(table) if where_clause: where_clause = where_clause.replace('"', "'") response = self._exec('''SELECT %s %s FROM %s WHERE %s''' % ('DISTINCT' if unique else '', column, table, where_clause)) else: response = self._exec('''SELECT %s %s FROM %s''' % ('DISTINCT' if unique else '', column, table)) return [t[0] for t in response.fetchall()] def get_some_columns_from_table(self, table, comma_separated_column_names, unique=False, where_clause=None): self.is_table_exists(table) if where_clause: where_clause = where_clause.replace('"', "'") response = self._exec('''SELECT %s %s FROM %s WHERE %s''' % ('DISTINCT' if unique else '', comma_separated_column_names, table, where_clause)) else: response = self._exec('''SELECT %s %s FROM %s''' % ('DISTINCT' if unique else '', comma_separated_column_names, table)) return response.fetchall() def get_frequencies_of_values_from_a_column(self, table_name, column_name): self.is_table_exists(table_name) response = self._exec('''select %s, COUNT(*) from %s group by %s''' % (column_name, table_name, column_name)) return response.fetchall() def get_table_column_types(self, table_name): self.is_table_exists(table_name) response = self._exec('PRAGMA TABLE_INFO(%s)' % table_name) return [t[2] for t in response.fetchall()] def get_table_columns_and_types(self, table_name): self.is_table_exists(table_name) response = self._exec('PRAGMA TABLE_INFO(%s)' % table_name) return dict([(t[1], t[2]) for t in response.fetchall()]) def get_table_structure(self, table_name): self.is_table_exists(table_name) response = self._exec('''SELECT * FROM %s''' % table_name) return [t[0] for t in response.description] def get_table_as_list_of_tuples(self, table_name, table_structure=None): return self.get_all_rows_from_table(table_name) def smart_get(self, table_name, column=None, data=None, string_the_key=False, error_if_no_data=True, progress=None, omit_parent_column=False): """A wrapper function for `get_*_table_as_dict` and that is not actually that smart. If the user is interested in only some of the data, they can build a where clause and use `get_some_rows_from_table_as_dict`. If the user is interested in the entire table data, then they would call `get_table_as_dict`. But in situations where it is not certain whether there will be a where clause, the if/else statements clutter the code. Here is an example: ----8<-------8<-------8<-------8<-------8<-------8<-------8<-------8<-------8<-------8<-------8<------- def func(items_of_interest=None): (...) if items_of_interest: where_clause = 'column_name IN (%s)' % (','.join(['"%s"' % item for item in items_of_interest])) d = get_some_rows_from_table_as_dict(table_name, where_clause=where_clause) else: d = get_table_as_dict(table_name) (...) ---->8------->8------->8------->8------->8------->8------->8------->8------->8------->8------->8------- This function cleans up this mess as this call is equivalent to the example code above: ----8<-------8<-------8<-------8<-------8<-------8<-------8<-------8<-------8<-------8<-------8<------- def func(items_of_interest=None): (...) smart_get(table_name, column_name, items_of_interest) (...) ---->8------->8------->8------->8------->8------->8------->8------->8------->8------->8------->8------- Paremeters ========== table_name: str The anvi'o data table name column: str The column name that will be used to select from table data: set A set of item names of interest. If the set is empty, the function will return the entire content of `table_name` """ table_columns_and_types = self.get_table_columns_and_types(table_name) if column not in table_columns_and_types: raise ConfigError(f"The column name `{column}` is not in table `{table_name}` :/") if column and data: if table_columns_and_types[column] in ["numeric", "integer"]: items = ','.join([str(d) for d in data]) else: items = ','.join(['"%s"' % d for d in data]) if progress: progress.update(f'Reading **SOME** data from `{table_name.replace("_", " ")}` table :)') return self.get_some_rows_from_table_as_dict(table_name, where_clause=f"{column} IN ({items})", string_the_key=string_the_key, error_if_no_data=error_if_no_data, omit_parent_column=omit_parent_column) else: if progress: progress.update(f'Reading **ALL** data from `{table_name.replace("_", " ")}` table :(') return self.get_table_as_dict(table_name, string_the_key=string_the_key, error_if_no_data=error_if_no_data, omit_parent_column=omit_parent_column) def get_table_as_dict(self, table_name, string_the_key=False, columns_of_interest=None, keys_of_interest=None, omit_parent_column=False, error_if_no_data=True, log_norm_numeric_values=False): if self.ROWID_PREPENDS_ROW_DATA(table_name): table_structure = ['entry_id'] + self.get_table_structure(table_name) else: table_structure = self.get_table_structure(table_name) columns_to_return = list(range(0, len(table_structure))) if columns_of_interest and not isinstance(columns_of_interest, type([])): raise ConfigError("The parameter `columns_of_interest` must be of type <list>.") if omit_parent_column: if '__parent__' in table_structure: columns_to_return.remove(table_structure.index('__parent__')) table_structure.remove('__parent__') if columns_of_interest: for col in table_structure[1:]: if col not in columns_of_interest: columns_to_return.remove(table_structure.index(col)) if len(columns_to_return) == 1: if error_if_no_data: raise ConfigError("get_table_as_dict :: after removing an column that was not mentioned in the columns " "of interest by the client, nothing was left to return...") else: return {} rows = self.get_all_rows_from_table(table_name) #-----8<-----8<-----8<-----8<-----8<-----8<-----8<-----8<-----8<-----8<-----8<-----8<-----8<-----8<-----8<----- # # SAD TABLES BEGIN # # NOTE from the past: # FIXME FIXME FIXME FIXME FIXME FIXME FIXME FIXME FIXME FIXME FIXME FIXME # this is one of the most critical design mistakes that remain in anvi'o. we set `entry_id` values # in table classes depending on the data that will be entered into the database. this is how it goes: # anvi'o learns the highest entry id in a table (to which it is about to enter some data), for each db # entry assigns a new `entry_id`, enters the data. it is all good when there is a single process doing it. # but when there are multiple processes running in parallel, sometimes race conditions occur: two processes # learn the max entry id about the same time, and when they finally enter the data to the db, some entries # end up not being unique. this is a toughie because sometimes entry ids are used to connect distinct # information from different tables, so they must be known before the data goes into the database, etc. # when these race conditions occur, anvi'o gives an error telling the user kindly that they are fucked. but in # some cases it is possible to recover from that (THE CODE BELOW TRIES TO DO THAT) by reassigning all ids on the # fly to the resulting data dictionary (i.e., not paying atention to entry ids in the database and basically using # new ones to avoid key information to not be overwritten due to the lack of unique entry ids which become keys for # the data dictionary). in other cases there are no ways to fix it, such as for HMM tables.. The ACTUAL SOLUTION to\ # this is to remove `entry_id` columns from every table in anvi'o, and using SQLite indexes as entry ids. # # NOTE from the future # Every SQLite table has an implicit column called ROWID. Does this solve our problem? # # NOTE from a more recent future: we no longer have the entry_id problem for most tables .. except # the hmm_hits table. the reason it has to be there is because we need to know the precise entry ids for # hmm hits to be able to track them in splits. there probably are better ways to do that. So here I am leaving # a FIXME. once this is resolved, the entry_id routines in Table base class can be deleted safely. until then, # we will suffer from race conditions occasionally, and this embarrassment will stay here in the code.. if table_name == tables.hmm_hits_table_name: unique_keys = set([r[0] for r in rows]) if len(unique_keys) != len(rows): if anvio.FIX_SAD_TABLES: if 'hmm' in table_name: raise ConfigError("You asked anvi'o to fix sad tables, but the sad table you're trying to fix happens to " "be related to HMM operations in anvi'o, where supposedly unique entries tie together " "multiple tables. Long story short, solving this while ensuring everything is done right " "is quite difficult and there is no reason to take any risks. The best you can do is to " "remove all HMMs from your contigs database, and re-run them with a single instance of " "`anvi-run-hmms` command (you can use multiple threads, but you shouldn't send multiple " "`anvi-run-hmms` to your cluster to be run on the same contigs database in parallel -- " "that's what led you to this point at the first place). Apologies for this bioinformatics " "poo poo :( It is all on us.") self.run.info_single("You have sad tables. You have used `--fix-sad-tables` flag. Now anvi'o will try to fix them...", mc="red") # here we will update the rows data with a small memory fingerprint: entry_id_counter = 0 for i in range(0, len(rows)): row = rows[i] rows[i] = [entry_id_counter] + list(row[1:]) entry_id_counter += 1 # now we will remove the previous table, and enter the new data with up-to-date entry ids table_structure = self.get_table_structure(table_name) # delete the table content *gulp* self._exec('''DELETE FROM %s''' % table_name) # enter corrected data self._exec_many('''INSERT INTO %s VALUES (%s)''' % (table_name, ','.join(['?'] * len(table_structure))), rows) self.run.info_single("If you are seeing this line, it means anvi'o managed to fix those sad tables. No more sad! " "But please make double sure that nothing looks funny in your results. If you start getting " "errors and you wish to contact us for that, please don't forget to mention that you did try " "to fix your sad tables.", mc="green") else: raise ConfigError("This is one of the core functions of anvi'o you never want to hear from, but there seems " "to be something wrong with the table '%s' that you are trying to read from. While there " "are %d items in this table, there are only %d unique keys, which means some of them are " "going to be overwritten when this function creates a final dictionary of data to return. " "This often happens when the user runs multiple processes in parallel that tries to write " "to the same table. For instance, running a separate instance of `anvi-run-hmms` on the same " "contigs database with different HMM profiles. Anvi'o is very sad for not handling this " "properly, but such database tables need fixin' before things can continue :( If you would " "like anvi'o to try to fix this, please run the same command you just run with the flag " "`--fix-sad-tables`. If you do that it is a great idea to backup your original database " "and then very carefully check the results to make sure things do not look funny." \ % (table_name, len(rows), len(unique_keys))) # # SAD TABLES END # #----->8----->8----->8----->8----->8----->8----->8----->8----->8----->8----->8----->8----->8----->8----->8----- results_dict = {} if keys_of_interest: keys_of_interest = set(keys_of_interest) for row in rows: entry = {} if keys_of_interest: if row[0] in keys_of_interest: # so we are interested in keeping this, reduce the size of the # hash size to improve the next inquiry, and keep going. keys_of_interest.remove(row[0]) else: # we are not intersted in this one, continue: continue for i in columns_to_return[1:]: value = row[i] if log_norm_numeric_values: if type(value) == float or type(value) == int: entry[table_structure[i]] = math.log10(value + 1) else: entry[table_structure[i]] = value if string_the_key: results_dict[str(row[0])] = entry else: results_dict[row[0]] = entry return results_dict def get_table_as_dataframe(self, table_name, where_clause=None, columns_of_interest=None, drop_if_null=False, error_if_no_data=True): """Get the table as a pandas DataFrame object Parameters ========== table_name : str where_clause : str, None SQL WHERE clause. If None, everything is fetched. columns_of_interest : list, None Which columns do you want to return? If None, all are returned. Applied after where_clause. drop_if_null : bool, False Drop columns if they contain all NULL values, i.e. np.nan, or '' error_if_no_data : bool, True Raise an error if the dataframe has 0 rows. Checked after where_clause. """ if self.ROWID_PREPENDS_ROW_DATA(table_name): table_structure = ['entry_id'] + self.get_table_structure(table_name) else: table_structure = self.get_table_structure(table_name) if columns_of_interest: columns_of_interest = list(columns_of_interest) else: columns_of_interest = table_structure if where_clause: where_clause = where_clause.replace('"', "'") results_df = pd.read_sql('''SELECT %s FROM "%s" WHERE %s''' % (self.PROPER_SELECT_STATEMENT(table_name), table_name, where_clause), self.conn, columns=table_structure) else: results_df = pd.read_sql('''SELECT %s FROM "%s"''' % (self.PROPER_SELECT_STATEMENT(table_name), table_name), self.conn, columns=table_structure) if results_df.empty and error_if_no_data: raise ConfigError("DB.get_table_as_dataframe :: The dataframe requested is empty") if drop_if_null: for col in columns_of_interest.copy(): if results_df[col].isna().all(): # Column contains only entries that equate to pandas NA columns_of_interest.remove(col) elif (results_df[col] == '').all(): # Column contains all empty strings columns_of_interest.remove(col) return results_df[columns_of_interest] def get_some_rows_from_table_as_dict(self, table_name, where_clause, error_if_no_data=True, string_the_key=False, row_num_as_key=False, omit_parent_column=False): """This is similar to get_table_as_dict, but much less general. get_table_as_dict can do a lot, but it first reads all data into the memory to operate on it. In some cases the programmer may like to access to only a small fraction of entries in a table by using `WHERE column = value` notation, which is not possible with the more generalized function. Parameters ========== table_name: str which table to get rows from where_clause: str SQL-style where clause for row selection error_if_no_data: bool if true, this function will raise an error if no data is selected from the table. otherwise, it will quietly return the empty dictionary string_the_key: bool if true, the row number will be converted to a string before being used as a key in the dictionary row_num_as_key: bool added as parameter so this function works for KEGG MODULES.db, which does not have unique IDs in the first column. If True, the returned dictionary will be keyed by integers from 0 to (# rows returned - 1) omit_parent_column: bool removes __parent__ column from the data to be returned if __parent__ exists in table structure. Returns ======= results_dict: dictionary contains the requested rows from the table """ results_dict = {} where_clause = where_clause.replace('"', "'") if self.ROWID_PREPENDS_ROW_DATA(table_name): table_structure = ['entry_id'] + self.get_table_structure(table_name) else: table_structure = self.get_table_structure(table_name) if omit_parent_column and '__parent__' in table_structure: table_structure.remove('__parent__') columns_to_return = list(range(0, len(table_structure))) rows = self.get_some_rows_from_table(table_name, where_clause) row_num = 0 for row in rows: entry = {} if row_num_as_key: entry[table_structure[0]] = row[0] for i in columns_to_return[1:]: entry[table_structure[i]] = row[i] if string_the_key: results_dict[str(row_num)] = entry else: results_dict[row_num] = entry else: for i in columns_to_return[1:]: entry[table_structure[i]] = row[i] if string_the_key: results_dict[str(row[0])] = entry else: results_dict[row[0]] = entry row_num += 1 if error_if_no_data and not len(results_dict): raise ConfigError("Query on %s with the where clause of '%s' did not return anything." % (table_name, where_clause)) return results_dict def get_table_names(self): response = self._exec("""select name from sqlite_master where type='table'""") return [r[0] for r in response.fetchall()]
gpl-3.0
cloud9ers/gurumate
environment/lib/python2.7/site-packages/IPython/parallel/tests/test_magics.py
3
12999
# -*- coding: utf-8 -*- """Test Parallel magics Authors: * Min RK """ #------------------------------------------------------------------------------- # Copyright (C) 2011 The IPython Development Team # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- # Imports #------------------------------------------------------------------------------- import re import sys import time import zmq from nose import SkipTest from IPython.testing import decorators as dec from IPython.testing.ipunittest import ParametricTestCase from IPython.utils.io import capture_output from IPython import parallel as pmod from IPython.parallel import error from IPython.parallel import AsyncResult from IPython.parallel.util import interactive from IPython.parallel.tests import add_engines from .clienttest import ClusterTestCase, generate_output def setup(): add_engines(3, total=True) class TestParallelMagics(ClusterTestCase, ParametricTestCase): def test_px_blocking(self): ip = get_ipython() v = self.client[-1:] v.activate() v.block=True ip.magic('px a=5') self.assertEquals(v['a'], [5]) ip.magic('px a=10') self.assertEquals(v['a'], [10]) # just 'print a' works ~99% of the time, but this ensures that # the stdout message has arrived when the result is finished: with capture_output() as io: ip.magic( 'px import sys,time;print(a);sys.stdout.flush();time.sleep(0.2)' ) out = io.stdout self.assertTrue('[stdout:' in out, out) self.assertFalse('\n\n' in out) self.assertTrue(out.rstrip().endswith('10')) self.assertRaisesRemote(ZeroDivisionError, ip.magic, 'px 1/0') def _check_generated_stderr(self, stderr, n): expected = [ r'\[stderr:\d+\]', '^stderr$', '^stderr2$', ] * n self.assertFalse('\n\n' in stderr, stderr) lines = stderr.splitlines() self.assertEquals(len(lines), len(expected), stderr) for line,expect in zip(lines, expected): if isinstance(expect, str): expect = [expect] for ex in expect: self.assertTrue(re.search(ex, line) is not None, "Expected %r in %r" % (ex, line)) def test_cellpx_block_args(self): """%%px --[no]block flags work""" ip = get_ipython() v = self.client[-1:] v.activate() v.block=False for block in (True, False): v.block = block ip.magic("pxconfig --verbose") with capture_output() as io: ip.run_cell_magic("px", "", "1") if block: self.assertTrue(io.stdout.startswith("Parallel"), io.stdout) else: self.assertTrue(io.stdout.startswith("Async"), io.stdout) with capture_output() as io: ip.run_cell_magic("px", "--block", "1") self.assertTrue(io.stdout.startswith("Parallel"), io.stdout) with capture_output() as io: ip.run_cell_magic("px", "--noblock", "1") self.assertTrue(io.stdout.startswith("Async"), io.stdout) def test_cellpx_groupby_engine(self): """%%px --group-outputs=engine""" ip = get_ipython() v = self.client[:] v.block = True v.activate() v['generate_output'] = generate_output with capture_output() as io: ip.run_cell_magic('px', '--group-outputs=engine', 'generate_output()') self.assertFalse('\n\n' in io.stdout) lines = io.stdout.splitlines() expected = [ r'\[stdout:\d+\]', 'stdout', 'stdout2', r'\[output:\d+\]', r'IPython\.core\.display\.HTML', r'IPython\.core\.display\.Math', r'Out\[\d+:\d+\]:.*IPython\.core\.display\.Math', ] * len(v) self.assertEquals(len(lines), len(expected), io.stdout) for line,expect in zip(lines, expected): if isinstance(expect, str): expect = [expect] for ex in expect: self.assertTrue(re.search(ex, line) is not None, "Expected %r in %r" % (ex, line)) self._check_generated_stderr(io.stderr, len(v)) def test_cellpx_groupby_order(self): """%%px --group-outputs=order""" ip = get_ipython() v = self.client[:] v.block = True v.activate() v['generate_output'] = generate_output with capture_output() as io: ip.run_cell_magic('px', '--group-outputs=order', 'generate_output()') self.assertFalse('\n\n' in io.stdout) lines = io.stdout.splitlines() expected = [] expected.extend([ r'\[stdout:\d+\]', 'stdout', 'stdout2', ] * len(v)) expected.extend([ r'\[output:\d+\]', 'IPython.core.display.HTML', ] * len(v)) expected.extend([ r'\[output:\d+\]', 'IPython.core.display.Math', ] * len(v)) expected.extend([ r'Out\[\d+:\d+\]:.*IPython\.core\.display\.Math' ] * len(v)) self.assertEquals(len(lines), len(expected), io.stdout) for line,expect in zip(lines, expected): if isinstance(expect, str): expect = [expect] for ex in expect: self.assertTrue(re.search(ex, line) is not None, "Expected %r in %r" % (ex, line)) self._check_generated_stderr(io.stderr, len(v)) def test_cellpx_groupby_type(self): """%%px --group-outputs=type""" ip = get_ipython() v = self.client[:] v.block = True v.activate() v['generate_output'] = generate_output with capture_output() as io: ip.run_cell_magic('px', '--group-outputs=type', 'generate_output()') self.assertFalse('\n\n' in io.stdout) lines = io.stdout.splitlines() expected = [] expected.extend([ r'\[stdout:\d+\]', 'stdout', 'stdout2', ] * len(v)) expected.extend([ r'\[output:\d+\]', r'IPython\.core\.display\.HTML', r'IPython\.core\.display\.Math', ] * len(v)) expected.extend([ (r'Out\[\d+:\d+\]', r'IPython\.core\.display\.Math') ] * len(v)) self.assertEquals(len(lines), len(expected), io.stdout) for line,expect in zip(lines, expected): if isinstance(expect, str): expect = [expect] for ex in expect: self.assertTrue(re.search(ex, line) is not None, "Expected %r in %r" % (ex, line)) self._check_generated_stderr(io.stderr, len(v)) def test_px_nonblocking(self): ip = get_ipython() v = self.client[-1:] v.activate() v.block=False ip.magic('px a=5') self.assertEquals(v['a'], [5]) ip.magic('px a=10') self.assertEquals(v['a'], [10]) ip.magic('pxconfig --verbose') with capture_output() as io: ar = ip.magic('px print (a)') self.assertTrue(isinstance(ar, AsyncResult)) self.assertTrue('Async' in io.stdout) self.assertFalse('[stdout:' in io.stdout) self.assertFalse('\n\n' in io.stdout) ar = ip.magic('px 1/0') self.assertRaisesRemote(ZeroDivisionError, ar.get) def test_autopx_blocking(self): ip = get_ipython() v = self.client[-1] v.activate() v.block=True with capture_output() as io: ip.magic('autopx') ip.run_cell('\n'.join(('a=5','b=12345','c=0'))) ip.run_cell('b*=2') ip.run_cell('print (b)') ip.run_cell('b') ip.run_cell("b/c") ip.magic('autopx') output = io.stdout self.assertTrue(output.startswith('%autopx enabled'), output) self.assertTrue(output.rstrip().endswith('%autopx disabled'), output) self.assertTrue('ZeroDivisionError' in output, output) self.assertTrue('\nOut[' in output, output) self.assertTrue(': 24690' in output, output) ar = v.get_result(-1) self.assertEquals(v['a'], 5) self.assertEquals(v['b'], 24690) self.assertRaisesRemote(ZeroDivisionError, ar.get) def test_autopx_nonblocking(self): ip = get_ipython() v = self.client[-1] v.activate() v.block=False with capture_output() as io: ip.magic('autopx') ip.run_cell('\n'.join(('a=5','b=10','c=0'))) ip.run_cell('print (b)') ip.run_cell('import time; time.sleep(0.1)') ip.run_cell("b/c") ip.run_cell('b*=2') ip.magic('autopx') output = io.stdout.rstrip() self.assertTrue(output.startswith('%autopx enabled')) self.assertTrue(output.endswith('%autopx disabled')) self.assertFalse('ZeroDivisionError' in output) ar = v.get_result(-2) self.assertRaisesRemote(ZeroDivisionError, ar.get) # prevent TaskAborted on pulls, due to ZeroDivisionError time.sleep(0.5) self.assertEquals(v['a'], 5) # b*=2 will not fire, due to abort self.assertEquals(v['b'], 10) def test_result(self): ip = get_ipython() v = self.client[-1] v.activate() data = dict(a=111,b=222) v.push(data, block=True) for name in ('a', 'b'): ip.magic('px ' + name) with capture_output() as io: ip.magic('pxresult') output = io.stdout msg = "expected %s output to include %s, but got: %s" % \ ('%pxresult', str(data[name]), output) self.assertTrue(str(data[name]) in output, msg) @dec.skipif_not_matplotlib def test_px_pylab(self): """%pylab works on engines""" ip = get_ipython() v = self.client[-1] v.block = True v.activate() with capture_output() as io: ip.magic("px %pylab inline") self.assertTrue("Welcome to pylab" in io.stdout, io.stdout) self.assertTrue("backend_inline" in io.stdout, io.stdout) with capture_output() as io: ip.magic("px plot(rand(100))") self.assertTrue('Out[' in io.stdout, io.stdout) self.assertTrue('matplotlib.lines' in io.stdout, io.stdout) def test_pxconfig(self): ip = get_ipython() rc = self.client v = rc.activate(-1, '_tst') self.assertEquals(v.targets, rc.ids[-1]) ip.magic("%pxconfig_tst -t :") self.assertEquals(v.targets, rc.ids) ip.magic("%pxconfig_tst -t ::2") self.assertEquals(v.targets, rc.ids[::2]) ip.magic("%pxconfig_tst -t 1::2") self.assertEquals(v.targets, rc.ids[1::2]) ip.magic("%pxconfig_tst -t 1") self.assertEquals(v.targets, 1) ip.magic("%pxconfig_tst --block") self.assertEquals(v.block, True) ip.magic("%pxconfig_tst --noblock") self.assertEquals(v.block, False) def test_cellpx_targets(self): """%%px --targets doesn't change defaults""" ip = get_ipython() rc = self.client view = rc.activate(rc.ids) self.assertEquals(view.targets, rc.ids) ip.magic('pxconfig --verbose') for cell in ("pass", "1/0"): with capture_output() as io: try: ip.run_cell_magic("px", "--targets all", cell) except pmod.RemoteError: pass self.assertTrue('engine(s): all' in io.stdout) self.assertEquals(view.targets, rc.ids) def test_cellpx_block(self): """%%px --block doesn't change default""" ip = get_ipython() rc = self.client view = rc.activate(rc.ids) view.block = False self.assertEquals(view.targets, rc.ids) ip.magic('pxconfig --verbose') for cell in ("pass", "1/0"): with capture_output() as io: try: ip.run_cell_magic("px", "--block", cell) except pmod.RemoteError: pass self.assertFalse('Async' in io.stdout) self.assertFalse(view.block)
lgpl-3.0
ZENGXH/scikit-learn
examples/linear_model/plot_theilsen.py
232
3615
""" ==================== Theil-Sen Regression ==================== Computes a Theil-Sen Regression on a synthetic dataset. See :ref:`theil_sen_regression` for more information on the regressor. Compared to the OLS (ordinary least squares) estimator, the Theil-Sen estimator is robust against outliers. It has a breakdown point of about 29.3% in case of a simple linear regression which means that it can tolerate arbitrary corrupted data (outliers) of up to 29.3% in the two-dimensional case. The estimation of the model is done by calculating the slopes and intercepts of a subpopulation of all possible combinations of p subsample points. If an intercept is fitted, p must be greater than or equal to n_features + 1. The final slope and intercept is then defined as the spatial median of these slopes and intercepts. In certain cases Theil-Sen performs better than :ref:`RANSAC <ransac_regression>` which is also a robust method. This is illustrated in the second example below where outliers with respect to the x-axis perturb RANSAC. Tuning the ``residual_threshold`` parameter of RANSAC remedies this but in general a priori knowledge about the data and the nature of the outliers is needed. Due to the computational complexity of Theil-Sen it is recommended to use it only for small problems in terms of number of samples and features. For larger problems the ``max_subpopulation`` parameter restricts the magnitude of all possible combinations of p subsample points to a randomly chosen subset and therefore also limits the runtime. Therefore, Theil-Sen is applicable to larger problems with the drawback of losing some of its mathematical properties since it then works on a random subset. """ # Author: Florian Wilhelm -- <[email protected]> # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression, TheilSenRegressor from sklearn.linear_model import RANSACRegressor print(__doc__) estimators = [('OLS', LinearRegression()), ('Theil-Sen', TheilSenRegressor(random_state=42)), ('RANSAC', RANSACRegressor(random_state=42)), ] ############################################################################## # Outliers only in the y direction np.random.seed(0) n_samples = 200 # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) w = 3. c = 2. noise = 0.1 * np.random.randn(n_samples) y = w * x + c + noise # 10% outliers y[-20:] += -20 * x[-20:] X = x[:, np.newaxis] plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 3]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') ############################################################################## # Outliers in the X direction np.random.seed(0) # Linear model y = 3*x + N(2, 0.1**2) x = np.random.randn(n_samples) noise = 0.1 * np.random.randn(n_samples) y = 3 * x + 2 + noise # 10% outliers x[-20:] = 9.9 y[-20:] += 22 X = x[:, np.newaxis] plt.figure() plt.plot(x, y, 'k+', mew=2, ms=8) line_x = np.array([-3, 10]) for name, estimator in estimators: t0 = time.time() estimator.fit(X, y) elapsed_time = time.time() - t0 y_pred = estimator.predict(line_x.reshape(2, 1)) plt.plot(line_x, y_pred, label='%s (fit time: %.2fs)' % (name, elapsed_time)) plt.axis('tight') plt.legend(loc='upper left') plt.show()
bsd-3-clause
xiaoxiamii/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
215
11427
import numpy as np from sklearn.utils.testing import (assert_array_almost_equal, assert_array_equal, assert_true, assert_raise_message) from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_predict_transform_copy(): # check that the "copy" keyword works d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSCanonical() X_copy = X.copy() Y_copy = Y.copy() clf.fit(X, Y) # check that results are identical with copy assert_array_almost_equal(clf.predict(X), clf.predict(X.copy(), copy=False)) assert_array_almost_equal(clf.transform(X), clf.transform(X.copy(), copy=False)) # check also if passing Y assert_array_almost_equal(clf.transform(X, Y), clf.transform(X.copy(), Y.copy(), copy=False)) # check that copy doesn't destroy # we do want to check exact equality here assert_array_equal(X_copy, X) assert_array_equal(Y_copy, Y) # also check that mean wasn't zero before (to make sure we didn't touch it) assert_true(np.all(X.mean(axis=0) != 0)) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y) def test_pls_errors(): d = load_linnerud() X = d.data Y = d.target for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.n_components = 4 assert_raise_message(ValueError, "Invalid number of components", clf.fit, X, Y)
bsd-3-clause
poldrack/myconnectome
myconnectome/rnaseq/get_ImmPort_eigengenes.py
2
2781
""" get eigengene for each cluster """ import os,sys import numpy from sklearn.decomposition import PCA import sklearn.linear_model stdir=os.environ['MYCONNECTOME_DIR'] rnaseqdir=os.path.join(stdir,'rna-seq') immportdir=os.path.join(rnaseqdir,'ImmPort') def get_ImmPort_eigengenes(): if not os.path.exists(immportdir): os.mkdir(immportdir) genelists={} f=open(os.path.join(immportdir,'all_ImmPort_pathways.txt')) for l in f.readlines(): l_s=l.strip().split('\t') genelists[l_s[0]]=l_s[1:] f.close() varstabfile=os.path.join(rnaseqdir,'varstab_data_prefiltered_rin_3PC_regressed.txt') pca = PCA(n_components=1) f=open(varstabfile) header=f.readline() exprdata={} gene_names=[] for l in f.readlines(): l_s=l.strip().split() gene_name=l_s[0].replace('"','') gene_names.append(gene_name) exprdata[gene_name]=[float(i) for i in l_s[1:]] setdata={} setdata_genes={} for k in genelists.iterkeys(): if not setdata.has_key(k): setdata[k]=[] setgenes=genelists[k] #print k, setgenes tmp=[] tmp_genes=[] for g in setgenes: try: tmp.append(exprdata[g]) tmp_genes.append(g) except: print g,'missing from data' pass if not setdata.has_key(k): setdata[k]=[] setdata[k]=numpy.array(tmp) setdata_genes[k]=tmp_genes rin=numpy.loadtxt(os.path.join(rnaseqdir,'rin.txt')) seteig=numpy.zeros((48,len(genelists))) setexplained=numpy.zeros(len(genelists)) genelistkeys=genelists.keys() genelistkeys.sort() for i in range(len(genelists)): k=genelistkeys[i] pca.fit(setdata[k].T) seteig[:,i]=pca.transform(setdata[k].T)[:,0] print numpy.corrcoef(seteig[:,i],numpy.mean(setdata[k],0))[0,1] if numpy.corrcoef(seteig[:,i],numpy.mean(setdata[k],0))[0,1] < 0: #print 'flippping sign of PC to match data' seteig[:,i]=-1.0*seteig[:,i] setexplained[i]=pca.explained_variance_ratio_ print k,setdata[k].shape,setexplained[i],numpy.corrcoef(seteig[:,i],rin)[0,1] f=open(os.path.join(immportdir,'ImmPort_eigengenes_prefilt_rin3PCreg.txt'),'w') for i in range(len(genelists)): f.write('%s\t%s\n'%(genelistkeys[i],'\t'.join(['%f'%j for j in seteig[:,i]]))) f.close() numpy.savetxt(os.path.join(immportdir,'ImmPort_eigengenes_prefilt_rin3PCreg_explainedvariance.txt'),setexplained) if __name__ == "__main__": get_ImmPort_eigengenes()
mit
Akshay0724/scikit-learn
sklearn/gaussian_process/tests/test_gpr.py
36
11813
"""Testing for Gaussian process regression """ # Author: Jan Hendrik Metzen <[email protected]> # License: BSD 3 clause import numpy as np from scipy.optimize import approx_fprime from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels \ import RBF, ConstantKernel as C, WhiteKernel from sklearn.utils.testing \ import (assert_true, assert_greater, assert_array_less, assert_almost_equal, assert_equal) def f(x): return x * np.sin(x) X = np.atleast_2d([1., 3., 5., 6., 7., 8.]).T X2 = np.atleast_2d([2., 4., 5.5, 6.5, 7.5]).T y = f(X).ravel() fixed_kernel = RBF(length_scale=1.0, length_scale_bounds="fixed") kernels = [RBF(length_scale=1.0), fixed_kernel, RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)), C(1.0, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) + C(1e-5, (1e-5, 1e2)), C(0.1, (1e-2, 1e2)) * RBF(length_scale=1.0, length_scale_bounds=(1e-3, 1e3)) + C(1e-5, (1e-5, 1e2))] def test_gpr_interpolation(): # Test the interpolating property for different kernels. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_pred, y_cov = gpr.predict(X, return_cov=True) assert_almost_equal(y_pred, y) assert_almost_equal(np.diag(y_cov), 0.) def test_lml_improving(): # Test that hyperparameter-tuning improves log-marginal likelihood. for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(kernel.theta)) def test_lml_precomputed(): # Test that lml of optimized kernel is stored correctly. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_equal(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood()) def test_converged_to_local_maximum(): # Test that we are in local maximum after hyperparameter-optimization. for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) lml, lml_gradient = \ gpr.log_marginal_likelihood(gpr.kernel_.theta, True) assert_true(np.all((np.abs(lml_gradient) < 1e-4) | (gpr.kernel_.theta == gpr.kernel_.bounds[:, 0]) | (gpr.kernel_.theta == gpr.kernel_.bounds[:, 1]))) def test_solution_inside_bounds(): # Test that hyperparameter-optimization remains in bounds# for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) bounds = gpr.kernel_.bounds max_ = np.finfo(gpr.kernel_.theta.dtype).max tiny = 1e-10 bounds[~np.isfinite(bounds[:, 1]), 1] = max_ assert_array_less(bounds[:, 0], gpr.kernel_.theta + tiny) assert_array_less(gpr.kernel_.theta, bounds[:, 1] + tiny) def test_lml_gradient(): # Compare analytic and numeric gradient of log marginal likelihood. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) lml, lml_gradient = gpr.log_marginal_likelihood(kernel.theta, True) lml_gradient_approx = \ approx_fprime(kernel.theta, lambda theta: gpr.log_marginal_likelihood(theta, False), 1e-10) assert_almost_equal(lml_gradient, lml_gradient_approx, 3) def test_prior(): # Test that GP prior has mean 0 and identical variances. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel) y_mean, y_cov = gpr.predict(X, return_cov=True) assert_almost_equal(y_mean, 0, 5) if len(gpr.kernel.theta) > 1: # XXX: quite hacky, works only for current kernels assert_almost_equal(np.diag(y_cov), np.exp(kernel.theta[0]), 5) else: assert_almost_equal(np.diag(y_cov), 1, 5) def test_sample_statistics(): # Test that statistics of samples drawn from GP are correct. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_mean, y_cov = gpr.predict(X2, return_cov=True) samples = gpr.sample_y(X2, 300000) # More digits accuracy would require many more samples assert_almost_equal(y_mean, np.mean(samples, 1), 1) assert_almost_equal(np.diag(y_cov) / np.diag(y_cov).max(), np.var(samples, 1) / np.diag(y_cov).max(), 1) def test_no_optimizer(): # Test that kernel parameters are unmodified when optimizer is None. kernel = RBF(1.0) gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None).fit(X, y) assert_equal(np.exp(gpr.kernel_.theta), 1.0) def test_predict_cov_vs_std(): # Test that predicted std.-dev. is consistent with cov's diagonal. for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) y_mean, y_cov = gpr.predict(X2, return_cov=True) y_mean, y_std = gpr.predict(X2, return_std=True) assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std) def test_anisotropic_kernel(): # Test that GPR can identify meaningful anisotropic length-scales. # We learn a function which varies in one dimension ten-times slower # than in the other. The corresponding length-scales should differ by at # least a factor 5 rng = np.random.RandomState(0) X = rng.uniform(-1, 1, (50, 2)) y = X[:, 0] + 0.1 * X[:, 1] kernel = RBF([1.0, 1.0]) gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y) assert_greater(np.exp(gpr.kernel_.theta[1]), np.exp(gpr.kernel_.theta[0]) * 5) def test_random_starts(): # Test that an increasing number of random-starts of GP fitting only # increases the log marginal likelihood of the chosen theta. n_samples, n_features = 25, 2 np.random.seed(0) rng = np.random.RandomState(0) X = rng.randn(n_samples, n_features) * 2 - 1 y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1) \ + rng.normal(scale=0.1, size=n_samples) kernel = C(1.0, (1e-2, 1e2)) \ * RBF(length_scale=[1.0] * n_features, length_scale_bounds=[(1e-4, 1e+2)] * n_features) \ + WhiteKernel(noise_level=1e-5, noise_level_bounds=(1e-5, 1e1)) last_lml = -np.inf for n_restarts_optimizer in range(5): gp = GaussianProcessRegressor( kernel=kernel, n_restarts_optimizer=n_restarts_optimizer, random_state=0,).fit(X, y) lml = gp.log_marginal_likelihood(gp.kernel_.theta) assert_greater(lml, last_lml - np.finfo(np.float32).eps) last_lml = lml def test_y_normalization(): # Test normalization of the target values in GP # Fitting non-normalizing GP on normalized y and fitting normalizing GP # on unnormalized y should yield identical results y_mean = y.mean(0) y_norm = y - y_mean for kernel in kernels: # Fit non-normalizing GP on normalized y gpr = GaussianProcessRegressor(kernel=kernel) gpr.fit(X, y_norm) # Fit normalizing GP on unnormalized y gpr_norm = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr_norm.fit(X, y) # Compare predicted mean, std-devs and covariances y_pred, y_pred_std = gpr.predict(X2, return_std=True) y_pred = y_mean + y_pred y_pred_norm, y_pred_std_norm = gpr_norm.predict(X2, return_std=True) assert_almost_equal(y_pred, y_pred_norm) assert_almost_equal(y_pred_std, y_pred_std_norm) _, y_cov = gpr.predict(X2, return_cov=True) _, y_cov_norm = gpr_norm.predict(X2, return_cov=True) assert_almost_equal(y_cov, y_cov_norm) def test_y_multioutput(): # Test that GPR can deal with multi-dimensional target values y_2d = np.vstack((y, y * 2)).T # Test for fixed kernel that first dimension of 2d GP equals the output # of 1d GP and that second dimension is twice as large kernel = RBF(length_scale=1.0) gpr = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False) gpr.fit(X, y) gpr_2d = GaussianProcessRegressor(kernel=kernel, optimizer=None, normalize_y=False) gpr_2d.fit(X, y_2d) y_pred_1d, y_std_1d = gpr.predict(X2, return_std=True) y_pred_2d, y_std_2d = gpr_2d.predict(X2, return_std=True) _, y_cov_1d = gpr.predict(X2, return_cov=True) _, y_cov_2d = gpr_2d.predict(X2, return_cov=True) assert_almost_equal(y_pred_1d, y_pred_2d[:, 0]) assert_almost_equal(y_pred_1d, y_pred_2d[:, 1] / 2) # Standard deviation and covariance do not depend on output assert_almost_equal(y_std_1d, y_std_2d) assert_almost_equal(y_cov_1d, y_cov_2d) y_sample_1d = gpr.sample_y(X2, n_samples=10) y_sample_2d = gpr_2d.sample_y(X2, n_samples=10) assert_almost_equal(y_sample_1d, y_sample_2d[:, 0]) # Test hyperparameter optimization for kernel in kernels: gpr = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr.fit(X, y) gpr_2d = GaussianProcessRegressor(kernel=kernel, normalize_y=True) gpr_2d.fit(X, np.vstack((y, y)).T) assert_almost_equal(gpr.kernel_.theta, gpr_2d.kernel_.theta, 4) def test_custom_optimizer(): # Test that GPR can use externally defined optimizers. # Define a dummy optimizer that simply tests 50 random hyperparameters def optimizer(obj_func, initial_theta, bounds): rng = np.random.RandomState(0) theta_opt, func_min = \ initial_theta, obj_func(initial_theta, eval_gradient=False) for _ in range(50): theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]), np.minimum(1, bounds[:, 1]))) f = obj_func(theta, eval_gradient=False) if f < func_min: theta_opt, func_min = theta, f return theta_opt, func_min for kernel in kernels: if kernel == fixed_kernel: continue gpr = GaussianProcessRegressor(kernel=kernel, optimizer=optimizer) gpr.fit(X, y) # Checks that optimizer improved marginal likelihood assert_greater(gpr.log_marginal_likelihood(gpr.kernel_.theta), gpr.log_marginal_likelihood(gpr.kernel.theta)) def test_duplicate_input(): # Test GPR can handle two different output-values for the same input. for kernel in kernels: gpr_equal_inputs = \ GaussianProcessRegressor(kernel=kernel, alpha=1e-2) gpr_similar_inputs = \ GaussianProcessRegressor(kernel=kernel, alpha=1e-2) X_ = np.vstack((X, X[0])) y_ = np.hstack((y, y[0] + 1)) gpr_equal_inputs.fit(X_, y_) X_ = np.vstack((X, X[0] + 1e-15)) y_ = np.hstack((y, y[0] + 1)) gpr_similar_inputs.fit(X_, y_) X_test = np.linspace(0, 10, 100)[:, None] y_pred_equal, y_std_equal = \ gpr_equal_inputs.predict(X_test, return_std=True) y_pred_similar, y_std_similar = \ gpr_similar_inputs.predict(X_test, return_std=True) assert_almost_equal(y_pred_equal, y_pred_similar) assert_almost_equal(y_std_equal, y_std_similar)
bsd-3-clause
vinodkc/spark
python/pyspark/pandas/plot/plotly.py
14
7646
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import TYPE_CHECKING, Union import pandas as pd from pyspark.pandas.plot import ( HistogramPlotBase, name_like_string, PandasOnSparkPlotAccessor, BoxPlotBase, KdePlotBase, ) if TYPE_CHECKING: import pyspark.pandas as ps # noqa: F401 (SPARK-34943) def plot_pandas_on_spark(data: Union["ps.DataFrame", "ps.Series"], kind: str, **kwargs): import plotly # pandas-on-Spark specific plots if kind == "pie": return plot_pie(data, **kwargs) if kind == "hist": return plot_histogram(data, **kwargs) if kind == "box": return plot_box(data, **kwargs) if kind == "kde" or kind == "density": return plot_kde(data, **kwargs) # Other plots. return plotly.plot(PandasOnSparkPlotAccessor.pandas_plot_data_map[kind](data), kind, **kwargs) def plot_pie(data: Union["ps.DataFrame", "ps.Series"], **kwargs): from plotly import express data = PandasOnSparkPlotAccessor.pandas_plot_data_map["pie"](data) if isinstance(data, pd.Series): pdf = data.to_frame() return express.pie(pdf, values=pdf.columns[0], names=pdf.index, **kwargs) elif isinstance(data, pd.DataFrame): values = kwargs.pop("y", None) default_names = None if values is not None: default_names = data.index return express.pie( data, values=kwargs.pop("values", values), names=kwargs.pop("names", default_names), **kwargs, ) else: raise RuntimeError("Unexpected type: [%s]" % type(data)) def plot_histogram(data: Union["ps.DataFrame", "ps.Series"], **kwargs): import plotly.graph_objs as go import pyspark.pandas as ps bins = kwargs.get("bins", 10) y = kwargs.get("y") if y and isinstance(data, ps.DataFrame): # Note that the results here are matched with matplotlib. x and y # handling is different from pandas' plotly output. data = data[y] psdf, bins = HistogramPlotBase.prepare_hist_data(data, bins) assert len(bins) > 2, "the number of buckets must be higher than 2." output_series = HistogramPlotBase.compute_hist(psdf, bins) prev = float("%.9f" % bins[0]) # to make it prettier, truncate. text_bins = [] for b in bins[1:]: norm_b = float("%.9f" % b) text_bins.append("[%s, %s)" % (prev, norm_b)) prev = norm_b text_bins[-1] = text_bins[-1][:-1] + "]" # replace ) to ] for the last bucket. bins = 0.5 * (bins[:-1] + bins[1:]) output_series = list(output_series) bars = [] for series in output_series: bars.append( go.Bar( x=bins, y=series, name=name_like_string(series.name), text=text_bins, hovertemplate=( "variable=" + name_like_string(series.name) + "<br>value=%{text}<br>count=%{y}" ), ) ) fig = go.Figure(data=bars, layout=go.Layout(barmode="stack")) fig["layout"]["xaxis"]["title"] = "value" fig["layout"]["yaxis"]["title"] = "count" return fig def plot_box(data: Union["ps.DataFrame", "ps.Series"], **kwargs): import plotly.graph_objs as go import pyspark.pandas as ps if isinstance(data, ps.DataFrame): raise RuntimeError( "plotly does not support a box plot with pandas-on-Spark DataFrame. Use Series instead." ) # 'whis' isn't actually an argument in plotly (but in matplotlib). But seems like # plotly doesn't expose the reach of the whiskers to the beyond the first and # third quartiles (?). Looks they use default 1.5. whis = kwargs.pop("whis", 1.5) # 'precision' is pandas-on-Spark specific to control precision for approx_percentile precision = kwargs.pop("precision", 0.01) # Plotly options boxpoints = kwargs.pop("boxpoints", "suspectedoutliers") notched = kwargs.pop("notched", False) if boxpoints not in ["suspectedoutliers", False]: raise ValueError( "plotly plotting backend does not support 'boxpoints' set to '%s'. " "Set to 'suspectedoutliers' or False." % boxpoints ) if notched: raise ValueError( "plotly plotting backend does not support 'notched' set to '%s'. " "Set to False." % notched ) colname = name_like_string(data.name) spark_column_name = data._internal.spark_column_name_for(data._column_label) # Computes mean, median, Q1 and Q3 with approx_percentile and precision col_stats, col_fences = BoxPlotBase.compute_stats(data, spark_column_name, whis, precision) # Creates a column to flag rows as outliers or not outliers = BoxPlotBase.outliers(data, spark_column_name, *col_fences) # Computes min and max values of non-outliers - the whiskers whiskers = BoxPlotBase.calc_whiskers(spark_column_name, outliers) fliers = None if boxpoints: fliers = BoxPlotBase.get_fliers(spark_column_name, outliers, whiskers[0]) fliers = [fliers] if len(fliers) > 0 else None fig = go.Figure() fig.add_trace( go.Box( name=colname, q1=[col_stats["q1"]], median=[col_stats["med"]], q3=[col_stats["q3"]], mean=[col_stats["mean"]], lowerfence=[whiskers[0]], upperfence=[whiskers[1]], y=fliers, boxpoints=boxpoints, notched=notched, **kwargs, # this is for workarounds. Box takes different options from express.box. ) ) fig["layout"]["xaxis"]["title"] = colname fig["layout"]["yaxis"]["title"] = "value" return fig def plot_kde(data: Union["ps.DataFrame", "ps.Series"], **kwargs): from plotly import express import pyspark.pandas as ps if isinstance(data, ps.DataFrame) and "color" not in kwargs: kwargs["color"] = "names" psdf = KdePlotBase.prepare_kde_data(data) sdf = psdf._internal.spark_frame data_columns = psdf._internal.data_spark_columns ind = KdePlotBase.get_ind(sdf.select(*data_columns), kwargs.pop("ind", None)) bw_method = kwargs.pop("bw_method", None) pdfs = [] for label in psdf._internal.column_labels: pdfs.append( pd.DataFrame( { "Density": KdePlotBase.compute_kde( sdf.select(psdf._internal.spark_column_for(label)), ind=ind, bw_method=bw_method, ), "names": name_like_string(label), "index": ind, } ) ) pdf = pd.concat(pdfs) fig = express.line(pdf, x="index", y="Density", **kwargs) fig["layout"]["xaxis"]["title"] = None return fig
apache-2.0
xiaohan2012/capitalization-restoration-train
hmm.py
1
2186
""" This implementation is based on the HMM description in Chapter 8, Huang, Acero and Hon, Spoken Language Processing and includes an extension for training shallow HMM parsers or specialized HMMs as in Molina et. al, 2002. """ from nltk.tag.hmm import HiddenMarkovModelTagger from data import load_labeled_data from cap_transform import transform_data from util import (make_uppercase_title, make_lowercase_title, make_capitalized_title) def main(train_data, test_data): print "Training" m = HiddenMarkovModelTagger.train(train_data) print "Predicting" predicted_labels = [] for i, sent in enumerate(test_data): if i % 500 == 0: print "%d / %d" %(i, len(test_data)) predicted_labels += [tag for _, tag in m.tag( [word for word, _ in sent] )] correct_labels = [tag for sent in test_data for _, tag in sent] # print predicted_labels # print correct_labels from sklearn.metrics import classification_report print classification_report(correct_labels, predicted_labels) correct_n = len([1 for p, c in zip(predicted_labels, correct_labels) if p == c]) print "Item accuracy:", float(correct_n) / len(correct_labels) if __name__ == "__main__": import sys try: oper = sys.argv[1] except IndexError: print "Please specify the mode" sys.exit(-1) oper_map = { "upper": make_uppercase_title, "lower": make_lowercase_title, "cap": make_capitalized_title } transform_func = oper_map.get(oper) if not transform_func: raise ValueError("Invalid oper") else: print "Oper: %s" %(oper) train_data = transform_data(list(load_labeled_data("corpus/titles_train.txt")), transform_func) test_data = transform_data(list(load_labeled_data("corpus/titles_test.txt")), transform_func) main(train_data, test_data)
mit
hotpxl/mxnet
example/gluon/dcgan.py
1
8007
import matplotlib as mpl mpl.use('Agg') from matplotlib import pyplot as plt import argparse import mxnet as mx from mxnet import gluon from mxnet.gluon import nn from mxnet import autograd import numpy as np import logging from datetime import datetime import os import time def fill_buf(buf, i, img, shape): n = buf.shape[0]/shape[1] m = buf.shape[1]/shape[0] sx = (i%m)*shape[0] sy = (i/m)*shape[1] buf[sy:sy+shape[1], sx:sx+shape[0], :] = img return None def visual(title, X, name): assert len(X.shape) == 4 X = X.transpose((0, 2, 3, 1)) X = np.clip((X - np.min(X))*(255.0/(np.max(X) - np.min(X))), 0, 255).astype(np.uint8) n = np.ceil(np.sqrt(X.shape[0])) buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8) for i, img in enumerate(X): fill_buf(buff, i, img, X.shape[1:3]) buff = buff[:,:,::-1] plt.imshow(buff) plt.title(title) plt.savefig(name) parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default='cifar10', help='dataset to use. options are cifar10 and imagenet.') parser.add_argument('--batch-size', type=int, default=64, help='input batch size') parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector') parser.add_argument('--ngf', type=int, default=64) parser.add_argument('--ndf', type=int, default=64) parser.add_argument('--nepoch', type=int, default=25, help='number of epochs to train for') parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') parser.add_argument('--cuda', action='store_true', help='enables cuda') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') parser.add_argument('--netG', default='', help="path to netG (to continue training)") parser.add_argument('--netD', default='', help="path to netD (to continue training)") parser.add_argument('--outf', default='./results', help='folder to output images and model checkpoints') parser.add_argument('--check-point', default=True, help="save results at each epoch or not") opt = parser.parse_args() print(opt) logging.basicConfig(level=logging.DEBUG) ngpu = int(opt.ngpu) nz = int(opt.nz) ngf = int(opt.ngf) ndf = int(opt.ndf) nc = 3 if opt.cuda: ctx = mx.gpu(0) else: ctx = mx.cpu() check_point = bool(opt.check_point) outf = opt.outf if not os.path.exists(outf): os.makedirs(outf) def transformer(data, label): # resize to 64x64 data = mx.image.imresize(data, 64, 64) # transpose from (64, 64, 3) to (3, 64, 64) data = mx.nd.transpose(data, (2,0,1)) # normalize to [-1, 1] data = data.astype(np.float32)/128 - 1 # if image is greyscale, repeat 3 times to get RGB image. if data.shape[0] == 1: data = mx.nd.tile(data, (3, 1, 1)) return data, label train_data = gluon.data.DataLoader( gluon.data.vision.MNIST('./data', train=True, transform=transformer), batch_size=opt.batch_size, shuffle=True, last_batch='discard') val_data = gluon.data.DataLoader( gluon.data.vision.MNIST('./data', train=False, transform=transformer), batch_size=opt.batch_size, shuffle=False) # build the generator netG = nn.Sequential() with netG.name_scope(): # input is Z, going into a convolution netG.add(nn.Conv2DTranspose(ngf * 8, 4, 1, 0, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 4 x 4 netG.add(nn.Conv2DTranspose(ngf * 4, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 8 x 8 netG.add(nn.Conv2DTranspose(ngf * 2, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 16 x 16 netG.add(nn.Conv2DTranspose(ngf, 4, 2, 1, use_bias=False)) netG.add(nn.BatchNorm()) netG.add(nn.Activation('relu')) # state size. (ngf*8) x 32 x 32 netG.add(nn.Conv2DTranspose(nc, 4, 2, 1, use_bias=False)) netG.add(nn.Activation('tanh')) # state size. (nc) x 64 x 64 # build the discriminator netD = nn.Sequential() with netD.name_scope(): # input is (nc) x 64 x 64 netD.add(nn.Conv2D(ndf, 4, 2, 1, use_bias=False)) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 32 x 32 netD.add(nn.Conv2D(ndf * 2, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 16 x 16 netD.add(nn.Conv2D(ndf * 4, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 8 x 8 netD.add(nn.Conv2D(ndf * 8, 4, 2, 1, use_bias=False)) netD.add(nn.BatchNorm()) netD.add(nn.LeakyReLU(0.2)) # state size. (ndf) x 4 x 4 netD.add(nn.Conv2D(2, 4, 1, 0, use_bias=False)) # loss loss = gluon.loss.SoftmaxCrossEntropyLoss() # initialize the generator and the discriminator netG.initialize(mx.init.Normal(0.02), ctx=ctx) netD.initialize(mx.init.Normal(0.02), ctx=ctx) # trainer for the generator and the discriminator trainerG = gluon.Trainer(netG.collect_params(), 'adam', {'learning_rate': opt.lr, 'beta1': opt.beta1}) trainerD = gluon.Trainer(netD.collect_params(), 'adam', {'learning_rate': opt.lr, 'beta1': opt.beta1}) # ============printing============== real_label = mx.nd.ones((opt.batch_size,), ctx=ctx) fake_label = mx.nd.zeros((opt.batch_size,), ctx=ctx) metric = mx.metric.Accuracy() print('Training... ') stamp = datetime.now().strftime('%Y_%m_%d-%H_%M') iter = 0 for epoch in range(opt.nepoch): tic = time.time() btic = time.time() for data, _ in train_data: ############################ # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z))) ########################### # train with real_t data = data.as_in_context(ctx) noise = mx.nd.random_normal(0, 1, shape=(opt.batch_size, nz, 1, 1), ctx=ctx) with autograd.record(): output = netD(data) output = output.reshape((opt.batch_size, 2)) errD_real = loss(output, real_label) metric.update([real_label,], [output,]) fake = netG(noise) output = netD(fake.detach()) output = output.reshape((opt.batch_size, 2)) errD_fake = loss(output, fake_label) errD = errD_real + errD_fake errD.backward() metric.update([fake_label,], [output,]) trainerD.step(opt.batch_size) ############################ # (2) Update G network: maximize log(D(G(z))) ########################### with autograd.record(): output = netD(fake) output = output.reshape((-1, 2)) errG = loss(output, real_label) errG.backward() trainerG.step(opt.batch_size) name, acc = metric.get() # logging.info('speed: {} samples/s'.format(opt.batch_size / (time.time() - btic))) logging.info('discriminator loss = %f, generator loss = %f, binary training acc = %f at iter %d epoch %d' %(mx.nd.mean(errD).asscalar(), mx.nd.mean(errG).asscalar(), acc, iter, epoch)) if iter % 1 == 0: visual('gout', fake.asnumpy(), name=os.path.join(outf,'fake_img_iter_%d.png' %iter)) visual('data', data.asnumpy(), name=os.path.join(outf,'real_img_iter_%d.png' %iter)) iter = iter + 1 btic = time.time() name, acc = metric.get() metric.reset() logging.info('\nbinary training acc at epoch %d: %s=%f' % (epoch, name, acc)) logging.info('time: %f' % (time.time() - tic)) if check_point: netG.save_params(os.path.join(outf,'generator_epoch_%d.params' %epoch)) netD.save_params(os.path.join(outf,'discriminator_epoch_%d.params' % epoch)) netG.save_params(os.path.join(outf, 'generator.params')) netD.save_params(os.path.join(outf, 'discriminator.params'))
apache-2.0
YetAnotherTomek/egfrd
samples/mapk/rebind_ratio/plot_hist.py
6
6368
#!/usr/bin/env python # D=1 # python plot_hist.py "." mapk3_1e-15_1_fixed_1e-1_normal_ALL_reactions.rebind mapk3_1e-15_1_fixed_1e-2_normal_ALL_reactions.rebind mapk3_1e-15_1_fixed_1e-3_normal_ALL_reactions.rebind mapk3_1e-15_1_fixed_1e-4_normal_ALL_reactions.rebind mapk3_1e-15_1_fixed_1e-5_normal_ALL_reactions.rebind mapk3_1e-15_1_fixed_1e-6_normal_ALL_reactions.rebind mapk3_1e-15_1_fixed_0_normal_ALL_reactions.rebind # t_half = 1e-6 rfiles = ['mapk3_1e-15_0.03125_fixed_1e-6_normal_ALL_reactions.rebind', 'mapk3_1e-15_0.0625_fixed_1e-6_normal_ALL_reactions.rebind', 'mapk3_1e-15_0.25_fixed_1e-6_normal_ALL_reactions.rebind', 'mapk3_1e-15_1_fixed_1e-6_normal_ALL_reactions.rebind', 'mapk3_1e-15_4_fixed_1e-6_normal_ALL_reactions.rebind'] sfiles = [] # t_half = 1e-2 rfiles = ['mapk3_1e-15_0.03125_fixed_1e-2_normal_ALL_reactions.rebind', 'mapk3_1e-15_0.0625_fixed_1e-2_normal_ALL_reactions.rebind', 'mapk3_1e-15_0.25_fixed_1e-2_normal_ALL_reactions.rebind', 'mapk3_1e-15_1_fixed_1e-2_normal_ALL_reactions.rebind', 'mapk3_1e-15_4_fixed_1e-2_normal_ALL_reactions.rebind'] sfiles=[] sdir = 's02/data/' sfiles = ['model3-smallt_0.03125_1e-2_ALL_t.dat', 'model3-smallt_0.0625_1e-2_ALL_t.dat', 'model3-smallt_0.25_1e-2_ALL_t.dat', 'model3-smallt_1_1e-2_ALL_t.dat', 'model3-smallt_4_1e-2_ALL_t.dat'] from matplotlib.pylab import * import math import numpy import sys import re import glob def load_sfile(sfile): sfile = sfile.replace('ALL', '*') filelist = glob.glob(sdir + sfile) print filelist N = 0 data = [] for fname in filelist: f = open(fname) firstline = f.readline() n = int(firstline) #print 'N', n d = [float(line) for line in f.readlines()] f.close() N += n data.extend(d) print 'supplementary data:', N, '(', len(data), ')' return data, N def plot_hist(filename, xmin, xmax, BINS, pattern=None, factor=1.0, sfile=None): if sfile != None: thr = 1e-5 else: thr = 1e-20 file = open(filename) data=[] for line in file.readlines(): line = line.split() t = float(line[0]) event_type = line[1] if t == 0: print 'skip zero' continue if pattern == None or pattern.match(event_type): data.append(t) file.close() data = numpy.array(data) N = len(data) data = data.compress(data != numpy.inf) n, bins = numpy.histogram(numpy.log10(data), range=(numpy.log10(thr),numpy.log10(data.max())), bins=BINS/2, new=True) n = n.astype(numpy.floating) n /= float(N) n *= factor #x = 10**bins[:-1] x = (10**bins[1:] + 10**bins[:-1]) / 2 dx = (10**bins[1:]- 10**bins[:-1]) y = n / dx # n+1e-10 print x, y if sfile != None: print sfile sdata, sN = load_sfile(sfile) sdata = numpy.array(sdata) #sdata = numpy.compress(sdata <= thr,sdata) sn, sbins = numpy.histogram(numpy.log10(sdata), range=(numpy.log10(sdata.min()), numpy.log10(thr)), bins=BINS/3, new=True) sn = sn.astype(numpy.floating) sn /= float(sN) sn *= factor sx = (10**sbins[1:] + 10**sbins[:-1]) / 2 sdx = (10**sbins[1:]- 10**sbins[:-1]) sy = sn / sdx # n+1e-10 x = numpy.concatenate((sx, x)) y = numpy.concatenate((sy, y)) print N, sN, len(sdata) return loglog(x, y)#, label=filename ) def plot_hist2(filename, xmin, xmax, N, pattern=None, factor=1.0): file = open(filename) data=[] for line in file.readlines(): line = line.split() t = float(line[0]) event_type = line[1] if t == 0: print 'skip zero' continue if pattern == None or pattern.match(event_type): data.append(t) data = numpy.array(data) data.sort() i = 0 p = 5 x = [] y = [] ld = len(data) while i+p < ld: slice = data[i:i+p] min, max = slice.min(), slice.max() x.append((min + max) / 2) y.append(1.0 / (max - min)) i += p y = numpy.array(y,numpy.floating) y /= float(len(data)) y *= factor return loglog(x, y)#, label=filename ) if __name__ == '__main__': import numpy BINS=50 #pattern = re.compile(sys.argv[1]) #xmin = 1e-12 xmin = 1e-8 xmax = 100 axes([.16,.16,.8,.8]) Dlist = [0.03e-12,0.06e-12,0.25e-12,1e-12, 4e-12] lines=[] for n, filename in enumerate(rfiles): D = Dlist[n] if len(sfiles) >= 1: sfile = sfiles[n] else: sfile = None sigma = 5e-9 kD = 4 * numpy.pi * sigma * D k_a = 9.2e-20#1.6e9 / (1000*6e23) #factor = D * (1 + (k_a / kD)) factor = 1 print 'factor', factor line = plot_hist(filename, xmin, xmax, BINS, None, factor, sfile = sfile) lines.append(line) xlabel('Second association times', size=26) ylabel('Relative frequency', size=26) #ylabel(r'$p(t) \cdot D (1 + (k_a / kD))$', size=26) xticks([1e-12, 1e-9, 1e-6, 1e-3, 1], [r'${\rm 1 ps}$', r'${\rm 1 ns}$', r'${\rm 1 \mu s}$', r'${\rm 1 ms}$', r'${\rm 1 s}$'], size=24) yticks(size=18) xlim(xmin, xmax) ylim(5e-5, 5e5) leg = legend( lines, (r'$D=0.03 \ \ {\rm \mu m^2 / s}$', r'$D=0.06 \ \ {\rm \mu m^2 / s}$', # # r'$D=0.13 \ \ {\rm \mu m^2 / s}$', r'$D=0.25 \ \ {\rm \mu m^2 / s}$', r'$D=1.0 \ \ {\rm \mu m^2 / s}$', r'$D=4.0 \ \ {\rm \mu m^2 / s}$', ), loc=3, shadow=True, pad=0.05, labelsep=0 ) for l in leg.get_lines(): l.set_linewidth(1.5) # the legend line width show()
gpl-2.0
pratapvardhan/scikit-learn
sklearn/neural_network/tests/test_mlp.py
46
18585
""" Testing for Multi-layer Perceptron module (sklearn.neural_network) """ # Author: Issam H. Laradji # Licence: BSD 3 clause import sys import warnings import numpy as np from numpy.testing import assert_almost_equal, assert_array_equal from sklearn.datasets import load_digits, load_boston from sklearn.datasets import make_regression, make_multilabel_classification from sklearn.externals.six.moves import cStringIO as StringIO from sklearn.metrics import roc_auc_score from sklearn.neural_network import MLPClassifier from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import StandardScaler, MinMaxScaler from scipy.sparse import csr_matrix from sklearn.utils.testing import (assert_raises, assert_greater, assert_equal, assert_false) np.seterr(all='warn') ACTIVATION_TYPES = ["logistic", "tanh", "relu"] digits_dataset_multi = load_digits(n_class=3) X_digits_multi = MinMaxScaler().fit_transform(digits_dataset_multi.data[:200]) y_digits_multi = digits_dataset_multi.target[:200] digits_dataset_binary = load_digits(n_class=2) X_digits_binary = MinMaxScaler().fit_transform( digits_dataset_binary.data[:200]) y_digits_binary = digits_dataset_binary.target[:200] classification_datasets = [(X_digits_multi, y_digits_multi), (X_digits_binary, y_digits_binary)] boston = load_boston() Xboston = StandardScaler().fit_transform(boston.data)[: 200] yboston = boston.target[:200] def test_alpha(): # Test that larger alpha yields weights closer to zero""" X = X_digits_binary[:100] y = y_digits_binary[:100] alpha_vectors = [] alpha_values = np.arange(2) absolute_sum = lambda x: np.sum(np.abs(x)) for alpha in alpha_values: mlp = MLPClassifier(hidden_layer_sizes=10, alpha=alpha, random_state=1) mlp.fit(X, y) alpha_vectors.append(np.array([absolute_sum(mlp.coefs_[0]), absolute_sum(mlp.coefs_[1])])) for i in range(len(alpha_values) - 1): assert (alpha_vectors[i] > alpha_vectors[i + 1]).all() def test_fit(): # Test that the algorithm solution is equal to a worked out example.""" X = np.array([[0.6, 0.8, 0.7]]) y = np.array([0]) mlp = MLPClassifier(algorithm='sgd', learning_rate_init=0.1, alpha=0.1, activation='logistic', random_state=1, max_iter=1, hidden_layer_sizes=2, momentum=0) # set weights mlp.coefs_ = [0] * 2 mlp.intercepts_ = [0] * 2 mlp.classes_ = [0, 1] mlp.n_outputs_ = 1 mlp.coefs_[0] = np.array([[0.1, 0.2], [0.3, 0.1], [0.5, 0]]) mlp.coefs_[1] = np.array([[0.1], [0.2]]) mlp.intercepts_[0] = np.array([0.1, 0.1]) mlp.intercepts_[1] = np.array([1.0]) mlp._coef_grads = [] * 2 mlp._intercept_grads = [] * 2 mlp.label_binarizer_.y_type_ = 'binary' # Initialize parameters mlp.n_iter_ = 0 mlp.learning_rate_ = 0.1 # Compute the number of layers mlp.n_layers_ = 3 # Pre-allocate gradient matrices mlp._coef_grads = [0] * (mlp.n_layers_ - 1) mlp._intercept_grads = [0] * (mlp.n_layers_ - 1) mlp.out_activation_ = 'logistic' mlp.t_ = 0 mlp.best_loss_ = np.inf mlp.loss_curve_ = [] mlp._no_improvement_count = 0 mlp._intercept_velocity = [np.zeros_like(intercepts) for intercepts in mlp.intercepts_] mlp._coef_velocity = [np.zeros_like(coefs) for coefs in mlp.coefs_] mlp.partial_fit(X, y, classes=[0, 1]) # Manually worked out example # h1 = g(X1 * W_i1 + b11) = g(0.6 * 0.1 + 0.8 * 0.3 + 0.7 * 0.5 + 0.1) # = 0.679178699175393 # h2 = g(X2 * W_i2 + b12) = g(0.6 * 0.2 + 0.8 * 0.1 + 0.7 * 0 + 0.1) # = 0.574442516811659 # o1 = g(h * W2 + b21) = g(0.679 * 0.1 + 0.574 * 0.2 + 1) # = 0.7654329236196236 # d21 = -(0 - 0.765) = 0.765 # d11 = (1 - 0.679) * 0.679 * 0.765 * 0.1 = 0.01667 # d12 = (1 - 0.574) * 0.574 * 0.765 * 0.2 = 0.0374 # W1grad11 = X1 * d11 + alpha * W11 = 0.6 * 0.01667 + 0.1 * 0.1 = 0.0200 # W1grad11 = X1 * d12 + alpha * W12 = 0.6 * 0.0374 + 0.1 * 0.2 = 0.04244 # W1grad21 = X2 * d11 + alpha * W13 = 0.8 * 0.01667 + 0.1 * 0.3 = 0.043336 # W1grad22 = X2 * d12 + alpha * W14 = 0.8 * 0.0374 + 0.1 * 0.1 = 0.03992 # W1grad31 = X3 * d11 + alpha * W15 = 0.6 * 0.01667 + 0.1 * 0.5 = 0.060002 # W1grad32 = X3 * d12 + alpha * W16 = 0.6 * 0.0374 + 0.1 * 0 = 0.02244 # W2grad1 = h1 * d21 + alpha * W21 = 0.679 * 0.765 + 0.1 * 0.1 = 0.5294 # W2grad2 = h2 * d21 + alpha * W22 = 0.574 * 0.765 + 0.1 * 0.2 = 0.45911 # b1grad1 = d11 = 0.01667 # b1grad2 = d12 = 0.0374 # b2grad = d21 = 0.765 # W1 = W1 - eta * [W1grad11, .., W1grad32] = [[0.1, 0.2], [0.3, 0.1], # [0.5, 0]] - 0.1 * [[0.0200, 0.04244], [0.043336, 0.03992], # [0.060002, 0.02244]] = [[0.098, 0.195756], [0.2956664, # 0.096008], [0.4939998, -0.002244]] # W2 = W2 - eta * [W2grad1, W2grad2] = [[0.1], [0.2]] - 0.1 * # [[0.5294], [0.45911]] = [[0.04706], [0.154089]] # b1 = b1 - eta * [b1grad1, b1grad2] = 0.1 - 0.1 * [0.01667, 0.0374] # = [0.098333, 0.09626] # b2 = b2 - eta * b2grad = 1.0 - 0.1 * 0.765 = 0.9235 assert_almost_equal(mlp.coefs_[0], np.array([[0.098, 0.195756], [0.2956664, 0.096008], [0.4939998, -0.002244]]), decimal=3) assert_almost_equal(mlp.coefs_[1], np.array([[0.04706], [0.154089]]), decimal=3) assert_almost_equal(mlp.intercepts_[0], np.array([0.098333, 0.09626]), decimal=3) assert_almost_equal(mlp.intercepts_[1], np.array(0.9235), decimal=3) # Testing output # h1 = g(X1 * W_i1 + b11) = g(0.6 * 0.098 + 0.8 * 0.2956664 + # 0.7 * 0.4939998 + 0.098333) = 0.677 # h2 = g(X2 * W_i2 + b12) = g(0.6 * 0.195756 + 0.8 * 0.096008 + # 0.7 * -0.002244 + 0.09626) = 0.572 # o1 = h * W2 + b21 = 0.677 * 0.04706 + # 0.572 * 0.154089 + 0.9235 = 1.043 assert_almost_equal(mlp.decision_function(X), 1.043, decimal=3) def test_gradient(): # Test gradient. # This makes sure that the activation functions and their derivatives # are correct. The numerical and analytical computation of the gradient # should be close. for n_labels in [2, 3]: n_samples = 5 n_features = 10 X = np.random.random((n_samples, n_features)) y = 1 + np.mod(np.arange(n_samples) + 1, n_labels) Y = LabelBinarizer().fit_transform(y) for activation in ACTIVATION_TYPES: mlp = MLPClassifier(activation=activation, hidden_layer_sizes=10, algorithm='l-bfgs', alpha=1e-5, learning_rate_init=0.2, max_iter=1, random_state=1) mlp.fit(X, y) theta = np.hstack([l.ravel() for l in mlp.coefs_ + mlp.intercepts_]) layer_units = ([X.shape[1]] + [mlp.hidden_layer_sizes] + [mlp.n_outputs_]) activations = [] deltas = [] coef_grads = [] intercept_grads = [] activations.append(X) for i in range(mlp.n_layers_ - 1): activations.append(np.empty((X.shape[0], layer_units[i + 1]))) deltas.append(np.empty((X.shape[0], layer_units[i + 1]))) fan_in = layer_units[i] fan_out = layer_units[i + 1] coef_grads.append(np.empty((fan_in, fan_out))) intercept_grads.append(np.empty(fan_out)) # analytically compute the gradients def loss_grad_fun(t): return mlp._loss_grad_lbfgs(t, X, Y, activations, deltas, coef_grads, intercept_grads) [value, grad] = loss_grad_fun(theta) numgrad = np.zeros(np.size(theta)) n = np.size(theta, 0) E = np.eye(n) epsilon = 1e-5 # numerically compute the gradients for i in range(n): dtheta = E[:, i] * epsilon numgrad[i] = ((loss_grad_fun(theta + dtheta)[0] - loss_grad_fun(theta - dtheta)[0]) / (epsilon * 2.0)) assert_almost_equal(numgrad, grad) def test_lbfgs_classification(): # Test lbfgs on classification. # It should achieve a score higher than 0.95 for the binary and multi-class # versions of the digits dataset. for X, y in classification_datasets: X_train = X[:150] y_train = y[:150] X_test = X[150:] expected_shape_dtype = (X_test.shape[0], y_train.dtype.kind) for activation in ACTIVATION_TYPES: mlp = MLPClassifier(algorithm='l-bfgs', hidden_layer_sizes=50, max_iter=150, shuffle=True, random_state=1, activation=activation) mlp.fit(X_train, y_train) y_predict = mlp.predict(X_test) assert_greater(mlp.score(X_train, y_train), 0.95) assert_equal((y_predict.shape[0], y_predict.dtype.kind), expected_shape_dtype) def test_lbfgs_regression(): # Test lbfgs on the boston dataset, a regression problems.""" X = Xboston y = yboston for activation in ACTIVATION_TYPES: mlp = MLPRegressor(algorithm='l-bfgs', hidden_layer_sizes=50, max_iter=150, shuffle=True, random_state=1, activation=activation) mlp.fit(X, y) assert_greater(mlp.score(X, y), 0.95) def test_learning_rate_warmstart(): # Tests that warm_start reuses past solution.""" X = [[3, 2], [1, 6], [5, 6], [-2, -4]] y = [1, 1, 1, 0] for learning_rate in ["invscaling", "constant"]: mlp = MLPClassifier(algorithm='sgd', hidden_layer_sizes=4, learning_rate=learning_rate, max_iter=1, power_t=0.25, warm_start=True) mlp.fit(X, y) prev_eta = mlp._optimizer.learning_rate mlp.fit(X, y) post_eta = mlp._optimizer.learning_rate if learning_rate == 'constant': assert_equal(prev_eta, post_eta) elif learning_rate == 'invscaling': assert_equal(mlp.learning_rate_init / pow(8 + 1, mlp.power_t), post_eta) def test_multilabel_classification(): # Test that multi-label classification works as expected.""" # test fit method X, y = make_multilabel_classification(n_samples=50, random_state=0, return_indicator=True) mlp = MLPClassifier(algorithm='l-bfgs', hidden_layer_sizes=50, alpha=1e-5, max_iter=150, random_state=0, activation='logistic', learning_rate_init=0.2) mlp.fit(X, y) assert_equal(mlp.score(X, y), 1) # test partial fit method mlp = MLPClassifier(algorithm='sgd', hidden_layer_sizes=50, max_iter=150, random_state=0, activation='logistic', alpha=1e-5, learning_rate_init=0.2) for i in range(100): mlp.partial_fit(X, y, classes=[0, 1, 2, 3, 4]) assert_greater(mlp.score(X, y), 0.9) def test_multioutput_regression(): # Test that multi-output regression works as expected""" X, y = make_regression(n_samples=200, n_targets=5) mlp = MLPRegressor(algorithm='l-bfgs', hidden_layer_sizes=50, max_iter=200, random_state=1) mlp.fit(X, y) assert_greater(mlp.score(X, y), 0.9) def test_partial_fit_classes_error(): # Tests that passing different classes to partial_fit raises an error""" X = [[3, 2]] y = [0] clf = MLPClassifier(algorithm='sgd') clf.partial_fit(X, y, classes=[0, 1]) assert_raises(ValueError, clf.partial_fit, X, y, classes=[1, 2]) def test_partial_fit_classification(): # Test partial_fit on classification. # `partial_fit` should yield the same results as 'fit'for binary and # multi-class classification. for X, y in classification_datasets: X = X y = y mlp = MLPClassifier(algorithm='sgd', max_iter=100, random_state=1, tol=0, alpha=1e-5, learning_rate_init=0.2) mlp.fit(X, y) pred1 = mlp.predict(X) mlp = MLPClassifier(algorithm='sgd', random_state=1, alpha=1e-5, learning_rate_init=0.2) for i in range(100): mlp.partial_fit(X, y, classes=np.unique(y)) pred2 = mlp.predict(X) assert_array_equal(pred1, pred2) assert_greater(mlp.score(X, y), 0.95) def test_partial_fit_regression(): # Test partial_fit on regression. # `partial_fit` should yield the same results as 'fit' for regression. X = Xboston y = yboston for momentum in [0, .9]: mlp = MLPRegressor(algorithm='sgd', max_iter=100, activation='relu', random_state=1, learning_rate_init=0.01, batch_size=X.shape[0], momentum=momentum) with warnings.catch_warnings(record=True): # catch convergence warning mlp.fit(X, y) pred1 = mlp.predict(X) mlp = MLPRegressor(algorithm='sgd', activation='relu', learning_rate_init=0.01, random_state=1, batch_size=X.shape[0], momentum=momentum) for i in range(100): mlp.partial_fit(X, y) pred2 = mlp.predict(X) assert_almost_equal(pred1, pred2, decimal=2) score = mlp.score(X, y) assert_greater(score, 0.75) def test_partial_fit_errors(): # Test partial_fit error handling.""" X = [[3, 2], [1, 6]] y = [1, 0] # no classes passed assert_raises(ValueError, MLPClassifier( algorithm='sgd').partial_fit, X, y, classes=[2]) # l-bfgs doesn't support partial_fit assert_false(hasattr(MLPClassifier(algorithm='l-bfgs'), 'partial_fit')) def test_params_errors(): # Test that invalid parameters raise value error""" X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier assert_raises(ValueError, clf(hidden_layer_sizes=-1).fit, X, y) assert_raises(ValueError, clf(max_iter=-1).fit, X, y) assert_raises(ValueError, clf(shuffle='true').fit, X, y) assert_raises(ValueError, clf(alpha=-1).fit, X, y) assert_raises(ValueError, clf(learning_rate_init=-1).fit, X, y) assert_raises(ValueError, clf(algorithm='hadoken').fit, X, y) assert_raises(ValueError, clf(learning_rate='converge').fit, X, y) assert_raises(ValueError, clf(activation='cloak').fit, X, y) def test_predict_proba_binary(): # Test that predict_proba works as expected for binary class.""" X = X_digits_binary[:50] y = y_digits_binary[:50] clf = MLPClassifier(hidden_layer_sizes=5) clf.fit(X, y) y_proba = clf.predict_proba(X) y_log_proba = clf.predict_log_proba(X) (n_samples, n_classes) = y.shape[0], 2 proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert_equal(y_proba.shape, (n_samples, n_classes)) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba)) assert_equal(roc_auc_score(y, y_proba[:, 1]), 1.0) def test_predict_proba_multi(): # Test that predict_proba works as expected for multi class.""" X = X_digits_multi[:10] y = y_digits_multi[:10] clf = MLPClassifier(hidden_layer_sizes=5) clf.fit(X, y) y_proba = clf.predict_proba(X) y_log_proba = clf.predict_log_proba(X) (n_samples, n_classes) = y.shape[0], np.unique(y).size proba_max = y_proba.argmax(axis=1) proba_log_max = y_log_proba.argmax(axis=1) assert_equal(y_proba.shape, (n_samples, n_classes)) assert_array_equal(proba_max, proba_log_max) assert_array_equal(y_log_proba, np.log(y_proba)) def test_sparse_matrices(): # Test that sparse and dense input matrices output the same results.""" X = X_digits_binary[:50] y = y_digits_binary[:50] X_sparse = csr_matrix(X) mlp = MLPClassifier(random_state=1, hidden_layer_sizes=15) mlp.fit(X, y) pred1 = mlp.decision_function(X) mlp.fit(X_sparse, y) pred2 = mlp.decision_function(X_sparse) assert_almost_equal(pred1, pred2) pred1 = mlp.predict(X) pred2 = mlp.predict(X_sparse) assert_array_equal(pred1, pred2) def test_tolerance(): # Test tolerance. # It should force the algorithm to exit the loop when it converges. X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(tol=0.5, max_iter=3000, algorithm='sgd', verbose=10) clf.fit(X, y) assert_greater(clf.max_iter, clf.n_iter_) def test_verbose_sgd(): # Test verbose. X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(algorithm='sgd', max_iter=2, verbose=10, hidden_layer_sizes=2) old_stdout = sys.stdout sys.stdout = output = StringIO() clf.fit(X, y) clf.partial_fit(X, y) sys.stdout = old_stdout assert 'Iteration' in output.getvalue() def test_early_stopping(): X = X_digits_binary[:100] y = y_digits_binary[:100] tol = 0.2 clf = MLPClassifier(tol=tol, max_iter=3000, algorithm='sgd', early_stopping=True) clf.fit(X, y) assert_greater(clf.max_iter, clf.n_iter_) valid_scores = clf.validation_scores_ best_valid_score = clf.best_validation_score_ assert_equal(max(valid_scores), best_valid_score) assert_greater(best_valid_score + tol, valid_scores[-2]) assert_greater(best_valid_score + tol, valid_scores[-1]) def test_adaptive_learning_rate(): X = [[3, 2], [1, 6]] y = [1, 0] clf = MLPClassifier(tol=0.5, max_iter=3000, algorithm='sgd', learning_rate='adaptive', verbose=10) clf.fit(X, y) assert_greater(clf.max_iter, clf.n_iter_) assert_greater(1e-6, clf._optimizer.learning_rate)
bsd-3-clause
lthurlow/Network-Grapher
proj/external/matplotlib-1.2.1/examples/api/histogram_path_demo.py
6
1464
""" This example shows how to use a path patch to draw a bunch of rectangles. The technique of using lots of Rectangle instances, or the faster method of using PolyCollections, were implemented before we had proper paths with moveto/lineto, closepoly etc in mpl. Now that we have them, we can draw collections of regularly shaped objects with homogeous properties more efficiently with a PathCollection. This example makes a histogram -- its more work to set up the vertex arrays at the outset, but it should be much faster for large numbers of objects """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as path fig = plt.figure() ax = fig.add_subplot(111) # histogram our data with numpy data = np.random.randn(1000) n, bins = np.histogram(data, 50) # get the corners of the rectangles for the histogram left = np.array(bins[:-1]) right = np.array(bins[1:]) bottom = np.zeros(len(left)) top = bottom + n # we need a (numrects x numsides x 2) numpy array for the path helper # function to build a compound path XY = np.array([[left,left,right,right], [bottom,top,top,bottom]]).T # get the Path object barpath = path.Path.make_compound_path_from_polys(XY) # make a patch out of it patch = patches.PathPatch(barpath, facecolor='blue', edgecolor='gray', alpha=0.8) ax.add_patch(patch) # update the view limits ax.set_xlim(left[0], right[-1]) ax.set_ylim(bottom.min(), top.max()) plt.show()
mit
dariocorral/panoanda
panoanda/tickers.py
1
2954
""" Created on Sat Sep 16 18:32:01 2017 @author: dariocorral """ import os import oandapy import pandas as pd class Tickers(object): """ Basic info about tickers available for OANDA trading """ #oanda_api private attribute _oanda_api = oandapy.API(environment = os.environ['ENV'], access_token = os.environ['TOKEN']) @property def dataframe(self): """ Tickers Dataframe with basic info: :param : no params :return : dataFrame object * Pip value * DisplayName * Max Trade Units * Base * Quote * Pip Decimals """ #Call dict OANDA API and transform to DataFrame df = self._oanda_api.get_instruments(os.environ['ACCOUNT']) df = df.get('instruments') df = pd.DataFrame.from_dict(df) base = df['instrument'].str.split('_', expand = True) df = df.join(base) df.set_index ('instrument',inplace = True) #Rename columns df.columns = (u'displayName', u'maxTradeUnits', u'pip', u'base', u'quote') #Change tick Value to float df['pip'] = df['pip'].astype(float) return df def tick_value(self,ticker): """ Minimum tick value :param: ticker :type : string, list or tuple :return: float or dataframe """ return self.dataframe.loc[ticker]['pip'] def display_name(self,ticker): """ ticker Display Name :param: ticker :type : string, list or tuple :return : string or datrame """ return self.dataframe.loc[ticker]['displayName'] def max_trade_units(self,ticker): """ Max Trade Units allowed :param: ticker :type : string, list or tuple :return : integer or dataframe """ return self.dataframe.loc[ticker]['maxTradeUnits'] def base(self,ticker): """ ticker base part :param: ticker :type : string, list or tuple :return : string or dataframe """ return self.dataframe.loc[ticker]['base'] def quote(self,ticker): """ ticker quote part :param: ticker :type : string, list or tuple :return : string or dataframe """ return self.dataframe.loc[ticker]['quote'] def pip_decimals(self,ticker): """ ticker decimals (for rounding quotes) :param: ticker :type : string :return : int """ inverse = 1 / self.tick_value(ticker) return str(inverse).count('0')
mit
noelevans/sandpit
boston/categorise_with_scalers.py
1
1162
import numpy as np from scipy import stats from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.cross_validation import train_test_split def main(): boston = datasets.load_boston() y = boston.target # House prices mean = np.mean(y) y = y > mean # y now means is_above_average_house_price fns = boston.feature_names predictors = np.array([ 'NOX', # Air concentration of nitrous-oxide 'CRIM', # Crime rate per capita ]) X_idx = np.in1d(fns, predictors) X = boston.data[:, X_idx] X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=33) for p, x in zip(predictors, np.rollaxis(X, 1)): print('%s vs House price - srcc: %f, p_value: %f' % ( (p, ) + stats.spearmanr(x, y))) model = GaussianNB() model.fit(X_train, y_train) y_hat = model.predict(X_test) matches = y_hat == y_test print('Success rate: %i / %i = %f' % ( matches.sum(), matches.size, float(matches.sum()) / matches.size)) if __name__ == '__main__': main()
mit
wlamond/scikit-learn
sklearn/preprocessing/data.py
8
68191
# Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Andreas Mueller <[email protected]> # Eric Martin <[email protected]> # Giorgio Patrini <[email protected]> # License: BSD 3 clause from itertools import chain, combinations import numbers import warnings from itertools import combinations_with_replacement as combinations_w_r import numpy as np from scipy import sparse from ..base import BaseEstimator, TransformerMixin from ..externals import six from ..utils import check_array from ..utils.extmath import row_norms from ..utils.extmath import _incremental_mean_and_var from ..utils.fixes import bincount from ..utils.sparsefuncs_fast import (inplace_csr_row_normalize_l1, inplace_csr_row_normalize_l2) from ..utils.sparsefuncs import (inplace_column_scale, mean_variance_axis, incr_mean_variance_axis, min_max_axis) from ..utils.validation import check_is_fitted, FLOAT_DTYPES zip = six.moves.zip map = six.moves.map range = six.moves.range __all__ = [ 'Binarizer', 'KernelCenterer', 'MinMaxScaler', 'MaxAbsScaler', 'Normalizer', 'OneHotEncoder', 'RobustScaler', 'StandardScaler', 'add_dummy_feature', 'binarize', 'normalize', 'scale', 'robust_scale', 'maxabs_scale', 'minmax_scale', ] def _handle_zeros_in_scale(scale, copy=True): ''' Makes sure that whenever scale is zero, we handle it correctly. This happens in most scalers when we have constant features.''' # if we are fitting on 1D arrays, scale might be a scalar if np.isscalar(scale): if scale == .0: scale = 1. return scale elif isinstance(scale, np.ndarray): if copy: # New array to avoid side-effects scale = scale.copy() scale[scale == 0.0] = 1.0 return scale def scale(X, axis=0, with_mean=True, with_std=True, copy=True): """Standardize a dataset along any axis Center to the mean and component wise scale to unit variance. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : {array-like, sparse matrix} The data to center and scale. axis : int (0 by default) axis used to compute the means and standard deviations along. If 0, independently standardize each feature, otherwise (if 1) standardize each sample. with_mean : boolean, True by default If True, center the data before scaling. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSC matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_mean=False` (in that case, only variance scaling will be performed on the features of the CSC matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSC matrix. See also -------- StandardScaler: Performs scaling to unit variance using the``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ # noqa X = check_array(X, accept_sparse='csc', copy=copy, ensure_2d=False, warn_on_dtype=True, estimator='the scale function', dtype=FLOAT_DTYPES) if sparse.issparse(X): if with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` instead" " See docstring for motivation and alternatives.") if axis != 0: raise ValueError("Can only scale sparse matrix on axis=0, " " got axis=%d" % axis) if with_std: _, var = mean_variance_axis(X, axis=0) var = _handle_zeros_in_scale(var, copy=False) inplace_column_scale(X, 1 / np.sqrt(var)) else: X = np.asarray(X) if with_mean: mean_ = np.mean(X, axis) if with_std: scale_ = np.std(X, axis) # Xr is a view on the original array that enables easy use of # broadcasting on the axis in which we are interested in Xr = np.rollaxis(X, axis) if with_mean: Xr -= mean_ mean_1 = Xr.mean(axis=0) # Verify that mean_1 is 'close to zero'. If X contains very # large values, mean_1 can also be very large, due to a lack of # precision of mean_. In this case, a pre-scaling of the # concerned feature is efficient, for instance by its mean or # maximum. if not np.allclose(mean_1, 0): warnings.warn("Numerical issues were encountered " "when centering the data " "and might not be solved. Dataset may " "contain too large values. You may need " "to prescale your features.") Xr -= mean_1 if with_std: scale_ = _handle_zeros_in_scale(scale_, copy=False) Xr /= scale_ if with_mean: mean_2 = Xr.mean(axis=0) # If mean_2 is not 'close to zero', it comes from the fact that # scale_ is very small so that mean_2 = mean_1/scale_ > 0, even # if mean_1 was close to zero. The problem is thus essentially # due to the lack of precision of mean_. A solution is then to # subtract the mean again: if not np.allclose(mean_2, 0): warnings.warn("Numerical issues were encountered " "when scaling the data " "and might not be solved. The standard " "deviation of the data is probably " "very close to 0. ") Xr -= mean_2 return X class MinMaxScaler(BaseEstimator, TransformerMixin): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- feature_range : tuple (min, max), default=(0, 1) Desired range of transformed data. copy : boolean, optional, default True Set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array). Attributes ---------- min_ : ndarray, shape (n_features,) Per feature adjustment for minimum. scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. data_min_ : ndarray, shape (n_features,) Per feature minimum seen in the data .. versionadded:: 0.17 *data_min_* data_max_ : ndarray, shape (n_features,) Per feature maximum seen in the data .. versionadded:: 0.17 *data_max_* data_range_ : ndarray, shape (n_features,) Per feature range ``(data_max_ - data_min_)`` seen in the data .. versionadded:: 0.17 *data_range_* See also -------- minmax_scale: Equivalent function without the object oriented API. """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.min_ del self.n_samples_seen_ del self.data_min_ del self.data_max_ del self.data_range_ def fit(self, X, y=None): """Compute the minimum and maximum to be used for later scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of min and max on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility. """ feature_range = self.feature_range if feature_range[0] >= feature_range[1]: raise ValueError("Minimum of desired feature range must be smaller" " than maximum. Got %s." % str(feature_range)) if sparse.issparse(X): raise TypeError("MinMaxScaler does no support sparse input. " "You may consider to use MaxAbsScaler instead.") X = check_array(X, copy=self.copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) data_min = np.min(X, axis=0) data_max = np.max(X, axis=0) # First pass if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = X.shape[0] # Next steps else: data_min = np.minimum(self.data_min_, data_min) data_max = np.maximum(self.data_max_, data_max) self.n_samples_seen_ += X.shape[0] data_range = data_max - data_min self.scale_ = ((feature_range[1] - feature_range[0]) / _handle_zeros_in_scale(data_range)) self.min_ = feature_range[0] - data_min * self.scale_ self.data_min_ = data_min self.data_max_ = data_max self.data_range_ = data_range return self def transform(self, X): """Scaling features of X according to feature_range. Parameters ---------- X : array-like, shape [n_samples, n_features] Input data that will be transformed. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES) X *= self.scale_ X += self.min_ return X def inverse_transform(self, X): """Undo the scaling of X according to feature_range. Parameters ---------- X : array-like, shape [n_samples, n_features] Input data that will be transformed. It cannot be sparse. """ check_is_fitted(self, 'scale_') X = check_array(X, copy=self.copy, dtype=FLOAT_DTYPES) X -= self.min_ X /= self.scale_ return X def minmax_scale(X, feature_range=(0, 1), axis=0, copy=True): """Transforms features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, i.e. between zero and one. The transformation is given by:: X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X_scaled = X_std * (max - min) + min where min, max = feature_range. This transformation is often used as an alternative to zero mean, unit variance scaling. Read more in the :ref:`User Guide <preprocessing_scaler>`. .. versionadded:: 0.17 *minmax_scale* function interface to :class:`sklearn.preprocessing.MinMaxScaler`. Parameters ---------- feature_range : tuple (min, max), default=(0, 1) Desired range of transformed data. axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). See also -------- MinMaxScaler: Performs scaling to a given range using the``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ # noqa # Unlike the scaler object, this function allows 1d input. # If copy is required, it will be done inside the scaler object. X = check_array(X, copy=False, ensure_2d=False, warn_on_dtype=True, dtype=FLOAT_DTYPES) original_ndim = X.ndim if original_ndim == 1: X = X.reshape(X.shape[0], 1) s = MinMaxScaler(feature_range=feature_range, copy=copy) if axis == 0: X = s.fit_transform(X) else: X = s.fit_transform(X.T).T if original_ndim == 1: X = X.ravel() return X class StandardScaler(BaseEstimator, TransformerMixin): """Standardize features by removing the mean and scaling to unit variance Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Mean and standard deviation are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators: they might behave badly if the individual feature do not more or less look like standard normally distributed data (e.g. Gaussian with 0 mean and unit variance). For instance many elements used in the objective function of a learning algorithm (such as the RBF kernel of Support Vector Machines or the L1 and L2 regularizers of linear models) assume that all features are centered around 0 and have variance in the same order. If a feature has a variance that is orders of magnitude larger that others, it might dominate the objective function and make the estimator unable to learn from other features correctly as expected. This scaler can also be applied to sparse CSR or CSC matrices by passing `with_mean=False` to avoid breaking the sparsity structure of the data. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_mean : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_std : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). copy : boolean, optional, default True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* mean_ : array of floats with shape [n_features] The mean value for each feature in the training set. var_ : array of floats with shape [n_features] The variance for each feature in the training set. Used to compute `scale_` n_samples_seen_ : int The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. See also -------- scale: Equivalent function without the object oriented API. :class:`sklearn.decomposition.PCA` Further removes the linear correlation across features with 'whiten=True'. """ # noqa def __init__(self, copy=True, with_mean=True, with_std=True): self.with_mean = with_mean self.with_std = with_std self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.mean_ del self.var_ def fit(self, X, y=None): """Compute the mean and std to be used for later scaling. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of mean and std on X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. The algorithm for incremental mean and std is given in Equation 1.5a,b in Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. "Algorithms for computing the sample variance: Analysis and recommendations." The American Statistician 37.3 (1983): 242-247: Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) # Even in the case of `with_mean=False`, we update the mean anyway # This is needed for the incremental computation of the var # See incr_mean_variance_axis and _incremental_mean_variance_axis if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.with_std: # First pass if not hasattr(self, 'n_samples_seen_'): self.mean_, self.var_ = mean_variance_axis(X, axis=0) self.n_samples_seen_ = X.shape[0] # Next passes else: self.mean_, self.var_, self.n_samples_seen_ = \ incr_mean_variance_axis(X, axis=0, last_mean=self.mean_, last_var=self.var_, last_n=self.n_samples_seen_) else: self.mean_ = None self.var_ = None else: # First pass if not hasattr(self, 'n_samples_seen_'): self.mean_ = .0 self.n_samples_seen_ = 0 if self.with_std: self.var_ = .0 else: self.var_ = None self.mean_, self.var_, self.n_samples_seen_ = \ _incremental_mean_and_var(X, self.mean_, self.var_, self.n_samples_seen_) if self.with_std: self.scale_ = _handle_zeros_in_scale(np.sqrt(self.var_)) else: self.scale_ = None return self def transform(self, X, y=None, copy=None): """Perform standardization by centering and scaling Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'scale_') copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr', copy=copy, warn_on_dtype=True, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot center sparse matrices: pass `with_mean=False` " "instead. See docstring for motivation and alternatives.") if self.scale_ is not None: inplace_column_scale(X, 1 / self.scale_) else: if self.with_mean: X -= self.mean_ if self.with_std: X /= self.scale_ return X def inverse_transform(self, X, copy=None): """Scale back the data to the original representation Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to scale along the features axis. """ check_is_fitted(self, 'scale_') copy = copy if copy is not None else self.copy if sparse.issparse(X): if self.with_mean: raise ValueError( "Cannot uncenter sparse matrices: pass `with_mean=False` " "instead See docstring for motivation and alternatives.") if not sparse.isspmatrix_csr(X): X = X.tocsr() copy = False if copy: X = X.copy() if self.scale_ is not None: inplace_column_scale(X, self.scale_) else: X = np.asarray(X) if copy: X = X.copy() if self.with_std: X *= self.scale_ if self.with_mean: X += self.mean_ return X class MaxAbsScaler(BaseEstimator, TransformerMixin): """Scale each feature by its maximum absolute value. This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity. This scaler can also be applied to sparse CSR or CSC matrices. .. versionadded:: 0.17 Parameters ---------- copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). Attributes ---------- scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. .. versionadded:: 0.17 *scale_* attribute. max_abs_ : ndarray, shape (n_features,) Per feature maximum absolute value. n_samples_seen_ : int The number of samples processed by the estimator. Will be reset on new calls to fit, but increments across ``partial_fit`` calls. See also -------- maxabs_scale: Equivalent function without the object oriented API. """ def __init__(self, copy=True): self.copy = copy def _reset(self): """Reset internal data-dependent state of the scaler, if necessary. __init__ parameters are not touched. """ # Checking one attribute is enough, becase they are all set together # in partial_fit if hasattr(self, 'scale_'): del self.scale_ del self.n_samples_seen_ del self.max_abs_ def fit(self, X, y=None): """Compute the maximum absolute value to be used for later scaling. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the per-feature minimum and maximum used for later scaling along the features axis. """ # Reset internal state before fitting self._reset() return self.partial_fit(X, y) def partial_fit(self, X, y=None): """Online computation of max absolute value of X for later scaling. All of X is processed as a single batch. This is intended for cases when `fit` is not feasible due to very large number of `n_samples` or because X is read from a continuous stream. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data used to compute the mean and standard deviation used for later scaling along the features axis. y : Passthrough for ``Pipeline`` compatibility. """ X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): mins, maxs = min_max_axis(X, axis=0) max_abs = np.maximum(np.abs(mins), np.abs(maxs)) else: max_abs = np.abs(X).max(axis=0) # First pass if not hasattr(self, 'n_samples_seen_'): self.n_samples_seen_ = X.shape[0] # Next passes else: max_abs = np.maximum(self.max_abs_, max_abs) self.n_samples_seen_ += X.shape[0] self.max_abs_ = max_abs self.scale_ = _handle_zeros_in_scale(max_abs) return self def transform(self, X, y=None): """Scale the data Parameters ---------- X : {array-like, sparse matrix} The data that should be scaled. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): inplace_column_scale(X, 1.0 / self.scale_) else: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : {array-like, sparse matrix} The data that should be transformed back. """ check_is_fitted(self, 'scale_') X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): inplace_column_scale(X, self.scale_) else: X *= self.scale_ return X def maxabs_scale(X, axis=0, copy=True): """Scale each feature to the [-1, 1] range without breaking the sparsity. This estimator scales each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. This scaler can also be applied to sparse CSR or CSC matrices. Parameters ---------- axis : int (0 by default) axis used to scale along. If 0, independently scale each feature, otherwise (if 1) scale each sample. copy : boolean, optional, default is True Set to False to perform inplace scaling and avoid a copy (if the input is already a numpy array). See also -------- MaxAbsScaler: Performs scaling to the [-1, 1] range using the``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ # noqa # Unlike the scaler object, this function allows 1d input. # If copy is required, it will be done inside the scaler object. X = check_array(X, accept_sparse=('csr', 'csc'), copy=False, ensure_2d=False, dtype=FLOAT_DTYPES) original_ndim = X.ndim if original_ndim == 1: X = X.reshape(X.shape[0], 1) s = MaxAbsScaler(copy=copy) if axis == 0: X = s.fit_transform(X) else: X = s.fit_transform(X.T).T if original_ndim == 1: X = X.ravel() return X class RobustScaler(BaseEstimator, TransformerMixin): """Scale features using statistics that are robust to outliers. This Scaler removes the median and scales the data according to the quantile range (defaults to IQR: Interquartile Range). The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering and scaling happen independently on each feature (or each sample, depending on the `axis` argument) by computing the relevant statistics on the samples in the training set. Median and interquartile range are then stored to be used on later data using the `transform` method. Standardization of a dataset is a common requirement for many machine learning estimators. Typically this is done by removing the mean and scaling to unit variance. However, outliers can often influence the sample mean / variance in a negative way. In such cases, the median and the interquartile range often give better results. .. versionadded:: 0.17 Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- with_centering : boolean, True by default If True, center the data before scaling. This does not work (and will raise an exception) when attempted on sparse matrices, because centering them entails building a dense matrix which in common use cases is likely to be too large to fit in memory. with_scaling : boolean, True by default If True, scale the data to interquartile range. quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0 Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR Quantile range used to calculate ``scale_``. .. versionadded:: 0.18 copy : boolean, optional, default is True If False, try to avoid a copy and do inplace scaling instead. This is not guaranteed to always work inplace; e.g. if the data is not a NumPy array or scipy.sparse CSR matrix, a copy may still be returned. Attributes ---------- center_ : array of floats The median value for each feature in the training set. scale_ : array of floats The (scaled) interquartile range for each feature in the training set. .. versionadded:: 0.17 *scale_* attribute. See also -------- robust_scale: Equivalent function without the object oriented API. :class:`sklearn.decomposition.PCA` Further removes the linear correlation across features with 'whiten=True'. Notes ----- See examples/preprocessing/plot_robust_scaling.py for an example. https://en.wikipedia.org/wiki/Median_(statistics) https://en.wikipedia.org/wiki/Interquartile_range """ def __init__(self, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True): self.with_centering = with_centering self.with_scaling = with_scaling self.quantile_range = quantile_range self.copy = copy def _check_array(self, X, copy): """Makes sure centering is not enabled for sparse matrices.""" X = check_array(X, accept_sparse=('csr', 'csc'), copy=self.copy, estimator=self, dtype=FLOAT_DTYPES) if sparse.issparse(X): if self.with_centering: raise ValueError( "Cannot center sparse matrices: use `with_centering=False`" " instead. See docstring for motivation and alternatives.") return X def fit(self, X, y=None): """Compute the median and quantiles to be used for scaling. Parameters ---------- X : array-like, shape [n_samples, n_features] The data used to compute the median and quantiles used for later scaling along the features axis. """ if sparse.issparse(X): raise TypeError("RobustScaler cannot be fitted on sparse inputs") X = self._check_array(X, self.copy) if self.with_centering: self.center_ = np.median(X, axis=0) if self.with_scaling: q_min, q_max = self.quantile_range if not 0 <= q_min <= q_max <= 100: raise ValueError("Invalid quantile range: %s" % str(self.quantile_range)) q = np.percentile(X, self.quantile_range, axis=0) self.scale_ = (q[1] - q[0]) self.scale_ = _handle_zeros_in_scale(self.scale_, copy=False) return self def transform(self, X, y=None): """Center and scale the data Parameters ---------- X : array-like The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: inplace_column_scale(X, 1.0 / self.scale_) else: if self.with_centering: X -= self.center_ if self.with_scaling: X /= self.scale_ return X def inverse_transform(self, X): """Scale back the data to the original representation Parameters ---------- X : array-like The data used to scale along the specified axis. """ if self.with_centering: check_is_fitted(self, 'center_') if self.with_scaling: check_is_fitted(self, 'scale_') X = self._check_array(X, self.copy) if sparse.issparse(X): if self.with_scaling: inplace_column_scale(X, self.scale_) else: if self.with_scaling: X *= self.scale_ if self.with_centering: X += self.center_ return X def robust_scale(X, axis=0, with_centering=True, with_scaling=True, quantile_range=(25.0, 75.0), copy=True): """Standardize a dataset along any axis Center to the median and component wise scale according to the interquartile range. Read more in the :ref:`User Guide <preprocessing_scaler>`. Parameters ---------- X : array-like The data to center and scale. axis : int (0 by default) axis used to compute the medians and IQR along. If 0, independently scale each feature, otherwise (if 1) scale each sample. with_centering : boolean, True by default If True, center the data before scaling. with_scaling : boolean, True by default If True, scale the data to unit variance (or equivalently, unit standard deviation). quantile_range : tuple (q_min, q_max), 0.0 < q_min < q_max < 100.0 Default: (25.0, 75.0) = (1st quantile, 3rd quantile) = IQR Quantile range used to calculate ``scale_``. .. versionadded:: 0.18 copy : boolean, optional, default is True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). Notes ----- This implementation will refuse to center scipy.sparse matrices since it would make them non-sparse and would potentially crash the program with memory exhaustion problems. Instead the caller is expected to either set explicitly `with_centering=False` (in that case, only variance scaling will be performed on the features of the CSR matrix) or to call `X.toarray()` if he/she expects the materialized dense array to fit in memory. To avoid memory copy the caller should pass a CSR matrix. See also -------- RobustScaler: Performs centering and scaling using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ s = RobustScaler(with_centering=with_centering, with_scaling=with_scaling, quantile_range=quantile_range, copy=copy) if axis == 0: return s.fit_transform(X) else: return s.fit_transform(X.T).T class PolynomialFeatures(BaseEstimator, TransformerMixin): """Generate polynomial and interaction features. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). Examples -------- >>> X = np.arange(6).reshape(3, 2) >>> X array([[0, 1], [2, 3], [4, 5]]) >>> poly = PolynomialFeatures(2) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0., 0., 1.], [ 1., 2., 3., 4., 6., 9.], [ 1., 4., 5., 16., 20., 25.]]) >>> poly = PolynomialFeatures(interaction_only=True) >>> poly.fit_transform(X) array([[ 1., 0., 1., 0.], [ 1., 2., 3., 6.], [ 1., 4., 5., 20.]]) Attributes ---------- powers_ : array, shape (n_output_features, n_input_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. See :ref:`examples/linear_model/plot_polynomial_interpolation.py <sphx_glr_auto_examples_linear_model_plot_polynomial_interpolation.py>` """ def __init__(self, degree=2, interaction_only=False, include_bias=True): self.degree = degree self.interaction_only = interaction_only self.include_bias = include_bias @staticmethod def _combinations(n_features, degree, interaction_only, include_bias): comb = (combinations if interaction_only else combinations_w_r) start = int(not include_bias) return chain.from_iterable(comb(range(n_features), i) for i in range(start, degree + 1)) @property def powers_(self): check_is_fitted(self, 'n_input_features_') combinations = self._combinations(self.n_input_features_, self.degree, self.interaction_only, self.include_bias) return np.vstack(bincount(c, minlength=self.n_input_features_) for c in combinations) def get_feature_names(self, input_features=None): """ Return feature names for output features Parameters ---------- input_features : list of string, length n_features, optional String names for input features if available. By default, "x0", "x1", ... "xn_features" is used. Returns ------- output_feature_names : list of string, length n_output_features """ powers = self.powers_ if input_features is None: input_features = ['x%d' % i for i in range(powers.shape[1])] feature_names = [] for row in powers: inds = np.where(row)[0] if len(inds): name = " ".join("%s^%d" % (input_features[ind], exp) if exp != 1 else input_features[ind] for ind, exp in zip(inds, row[inds])) else: name = "1" feature_names.append(name) return feature_names def fit(self, X, y=None): """ Compute number of output features. """ n_samples, n_features = check_array(X).shape combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) self.n_input_features_ = n_features self.n_output_features_ = sum(1 for _ in combinations) return self def transform(self, X, y=None): """Transform data to polynomial features Parameters ---------- X : array-like, shape [n_samples, n_features] The data to transform, row by row. Returns ------- XP : np.ndarray shape [n_samples, NP] The matrix of features, where NP is the number of polynomial features generated from the combination of inputs. """ check_is_fitted(self, ['n_input_features_', 'n_output_features_']) X = check_array(X, dtype=FLOAT_DTYPES) n_samples, n_features = X.shape if n_features != self.n_input_features_: raise ValueError("X shape does not match training shape") # allocate output data XP = np.empty((n_samples, self.n_output_features_), dtype=X.dtype) combinations = self._combinations(n_features, self.degree, self.interaction_only, self.include_bias) for i, c in enumerate(combinations): XP[:, i] = X[:, c].prod(1) return XP def normalize(X, norm='l2', axis=1, copy=True, return_norm=False): """Scale input vectors individually to unit norm (vector length). Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to normalize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample (or each non-zero feature if axis is 0). axis : 0 or 1, optional (1 by default) axis used to normalize the data along. If 1, independently normalize each sample, otherwise (if 0) normalize each feature. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix and if axis is 1). return_norm : boolean, default False whether to return the computed norms Returns ------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Normalized input X. norms : array, shape [n_samples] if axis=1 else [n_features] An array of norms along given axis for X. When X is sparse, a NotImplementedError will be raised for norm 'l1' or 'l2'. See also -------- Normalizer: Performs normalization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ if norm not in ('l1', 'l2', 'max'): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = 'csc' elif axis == 1: sparse_format = 'csr' else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array(X, sparse_format, copy=copy, estimator='the normalize function', dtype=FLOAT_DTYPES) if axis == 0: X = X.T if sparse.issparse(X): if return_norm and norm in ('l1', 'l2'): raise NotImplementedError("return_norm=True is not implemented " "for sparse matrices with norm 'l1' " "or norm 'l2'") if norm == 'l1': inplace_csr_row_normalize_l1(X) elif norm == 'l2': inplace_csr_row_normalize_l2(X) elif norm == 'max': _, norms = min_max_axis(X, 1) norms_elementwise = norms.repeat(np.diff(X.indptr)) mask = norms_elementwise != 0 X.data[mask] /= norms_elementwise[mask] else: if norm == 'l1': norms = np.abs(X).sum(axis=1) elif norm == 'l2': norms = row_norms(X) elif norm == 'max': norms = np.max(X, axis=1) norms = _handle_zeros_in_scale(norms, copy=False) X /= norms[:, np.newaxis] if axis == 0: X = X.T if return_norm: return X, norms else: return X class Normalizer(BaseEstimator, TransformerMixin): """Normalize samples individually to unit norm. Each sample (i.e. each row of the data matrix) with at least one non zero component is rescaled independently of other samples so that its norm (l1 or l2) equals one. This transformer is able to work both with dense numpy arrays and scipy.sparse matrix (use CSR format if you want to avoid the burden of a copy / conversion). Scaling inputs to unit norms is a common operation for text classification or clustering for instance. For instance the dot product of two l2-normalized TF-IDF vectors is the cosine similarity of the vectors and is the base similarity metric for the Vector Space Model commonly used by the Information Retrieval community. Read more in the :ref:`User Guide <preprocessing_normalization>`. Parameters ---------- norm : 'l1', 'l2', or 'max', optional ('l2' by default) The norm to use to normalize each non zero sample. copy : boolean, optional, default True set to False to perform inplace row normalization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- normalize: Equivalent function without the object oriented API. """ def __init__(self, norm='l2', copy=True): self.norm = norm self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ X = check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Scale each non zero row of X to unit norm Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to normalize, row by row. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy X = check_array(X, accept_sparse='csr') return normalize(X, norm=self.norm, axis=1, copy=copy) def binarize(X, threshold=0.0, copy=True): """Boolean thresholding of array-like or scipy.sparse matrix Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR or CSC format to avoid an un-necessary copy. threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR / CSC matrix and if axis is 1). See also -------- Binarizer: Performs binarization using the ``Transformer`` API (e.g. as part of a preprocessing :class:`sklearn.pipeline.Pipeline`). """ X = check_array(X, accept_sparse=['csr', 'csc'], copy=copy) if sparse.issparse(X): if threshold < 0: raise ValueError('Cannot binarize a sparse matrix with threshold ' '< 0') cond = X.data > threshold not_cond = np.logical_not(cond) X.data[cond] = 1 X.data[not_cond] = 0 X.eliminate_zeros() else: cond = X > threshold not_cond = np.logical_not(cond) X[cond] = 1 X[not_cond] = 0 return X class Binarizer(BaseEstimator, TransformerMixin): """Binarize data (set feature values to 0 or 1) according to a threshold Values greater than the threshold map to 1, while values less than or equal to the threshold map to 0. With the default threshold of 0, only positive values map to 1. Binarization is a common operation on text count data where the analyst can decide to only consider the presence or absence of a feature rather than a quantified number of occurrences for instance. It can also be used as a pre-processing step for estimators that consider boolean random variables (e.g. modelled using the Bernoulli distribution in a Bayesian setting). Read more in the :ref:`User Guide <preprocessing_binarization>`. Parameters ---------- threshold : float, optional (0.0 by default) Feature values below or equal to this are replaced by 0, above it by 1. Threshold may not be less than 0 for operations on sparse matrices. copy : boolean, optional, default True set to False to perform inplace binarization and avoid a copy (if the input is already a numpy array or a scipy.sparse CSR matrix). Notes ----- If the input is a sparse matrix, only the non-zero values are subject to update by the Binarizer class. This estimator is stateless (besides constructor parameters), the fit method does nothing but is useful when used in a pipeline. See also -------- binarize: Equivalent function without the object oriented API. """ def __init__(self, threshold=0.0, copy=True): self.threshold = threshold self.copy = copy def fit(self, X, y=None): """Do nothing and return the estimator unchanged This method is just there to implement the usual API and hence work in pipelines. """ check_array(X, accept_sparse='csr') return self def transform(self, X, y=None, copy=None): """Binarize each element of X Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. """ copy = copy if copy is not None else self.copy return binarize(X, threshold=self.threshold, copy=copy) class KernelCenterer(BaseEstimator, TransformerMixin): """Center a kernel matrix Let K(x, z) be a kernel defined by phi(x)^T phi(z), where phi is a function mapping x to a Hilbert space. KernelCenterer centers (i.e., normalize to have zero mean) the data without explicitly computing phi(x). It is equivalent to centering phi(x) with sklearn.preprocessing.StandardScaler(with_std=False). Read more in the :ref:`User Guide <kernel_centering>`. """ def fit(self, K, y=None): """Fit KernelCenterer Parameters ---------- K : numpy array of shape [n_samples, n_samples] Kernel matrix. Returns ------- self : returns an instance of self. """ K = check_array(K, dtype=FLOAT_DTYPES) n_samples = K.shape[0] self.K_fit_rows_ = np.sum(K, axis=0) / n_samples self.K_fit_all_ = self.K_fit_rows_.sum() / n_samples return self def transform(self, K, y=None, copy=True): """Center kernel matrix. Parameters ---------- K : numpy array of shape [n_samples1, n_samples2] Kernel matrix. copy : boolean, optional, default True Set to False to perform inplace computation. Returns ------- K_new : numpy array of shape [n_samples1, n_samples2] """ check_is_fitted(self, 'K_fit_all_') K = check_array(K, copy=copy, dtype=FLOAT_DTYPES) K_pred_cols = (np.sum(K, axis=1) / self.K_fit_rows_.shape[0])[:, np.newaxis] K -= self.K_fit_rows_ K -= K_pred_cols K += self.K_fit_all_ return K @property def _pairwise(self): return True def add_dummy_feature(X, value=1.0): """Augment dataset with an additional dummy feature. This is useful for fitting an intercept term with implementations which cannot otherwise fit it directly. Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Data. value : float Value to use for the dummy feature. Returns ------- X : {array, sparse matrix}, shape [n_samples, n_features + 1] Same data with dummy feature added as first column. Examples -------- >>> from sklearn.preprocessing import add_dummy_feature >>> add_dummy_feature([[0, 1], [1, 0]]) array([[ 1., 0., 1.], [ 1., 1., 0.]]) """ X = check_array(X, accept_sparse=['csc', 'csr', 'coo'], dtype=FLOAT_DTYPES) n_samples, n_features = X.shape shape = (n_samples, n_features + 1) if sparse.issparse(X): if sparse.isspmatrix_coo(X): # Shift columns to the right. col = X.col + 1 # Column indices of dummy feature are 0 everywhere. col = np.concatenate((np.zeros(n_samples), col)) # Row indices of dummy feature are 0, ..., n_samples-1. row = np.concatenate((np.arange(n_samples), X.row)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.coo_matrix((data, (row, col)), shape) elif sparse.isspmatrix_csc(X): # Shift index pointers since we need to add n_samples elements. indptr = X.indptr + n_samples # indptr[0] must be 0. indptr = np.concatenate((np.array([0]), indptr)) # Row indices of dummy feature are 0, ..., n_samples-1. indices = np.concatenate((np.arange(n_samples), X.indices)) # Prepend the dummy feature n_samples times. data = np.concatenate((np.ones(n_samples) * value, X.data)) return sparse.csc_matrix((data, indices, indptr), shape) else: klass = X.__class__ return klass(add_dummy_feature(X.tocoo(), value)) else: return np.hstack((np.ones((n_samples, 1)) * value, X)) def _transform_selected(X, transform, selected="all", copy=True): """Apply a transform function to portion of selected features Parameters ---------- X : {array-like, sparse matrix}, shape [n_samples, n_features] Dense array or sparse matrix. transform : callable A callable transform(X) -> X_transformed copy : boolean, optional Copy X even if it could be avoided. selected: "all" or array of indices or mask Specify which features to apply the transform to. Returns ------- X : array or sparse matrix, shape=(n_samples, n_features_new) """ X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES) if isinstance(selected, six.string_types) and selected == "all": return transform(X) if len(selected) == 0: return X n_features = X.shape[1] ind = np.arange(n_features) sel = np.zeros(n_features, dtype=bool) sel[np.asarray(selected)] = True not_sel = np.logical_not(sel) n_selected = np.sum(sel) if n_selected == 0: # No features selected. return X elif n_selected == n_features: # All features selected. return transform(X) else: X_sel = transform(X[:, ind[sel]]) X_not_sel = X[:, ind[not_sel]] if sparse.issparse(X_sel) or sparse.issparse(X_not_sel): return sparse.hstack((X_sel, X_not_sel)) else: return np.hstack((X_sel, X_not_sel)) class OneHotEncoder(BaseEstimator, TransformerMixin): """Encode categorical integer features using a one-hot aka one-of-K scheme. The input to this transformer should be a matrix of integers, denoting the values taken on by categorical (discrete) features. The output will be a sparse matrix where each column corresponds to one possible value of one feature. It is assumed that input features take on values in the range [0, n_values). This encoding is needed for feeding categorical data to many scikit-learn estimators, notably linear models and SVMs with the standard kernels. Note: a one-hot encoding of y labels should use a LabelBinarizer instead. Read more in the :ref:`User Guide <preprocessing_categorical_features>`. Parameters ---------- n_values : 'auto', int or array of ints Number of values per feature. - 'auto' : determine value range from training data. - int : number of categorical values per feature. Each feature value should be in ``range(n_values)`` - array : ``n_values[i]`` is the number of categorical values in ``X[:, i]``. Each feature value should be in ``range(n_values[i])`` categorical_features : "all" or array of indices or mask Specify what features are treated as categorical. - 'all' (default): All features are treated as categorical. - array of indices: Array of categorical feature indices. - mask: Array of length n_features and with dtype=bool. Non-categorical features are always stacked to the right of the matrix. dtype : number type, default=np.float Desired dtype of output. sparse : boolean, default=True Will return sparse matrix if set True else will return an array. handle_unknown : str, 'error' or 'ignore' Whether to raise an error or ignore if a unknown categorical feature is present during transform. Attributes ---------- active_features_ : array Indices for active features, meaning values that actually occur in the training set. Only available when n_values is ``'auto'``. feature_indices_ : array of shape (n_features,) Indices to feature ranges. Feature ``i`` in the original data is mapped to features from ``feature_indices_[i]`` to ``feature_indices_[i+1]`` (and then potentially masked by `active_features_` afterwards) n_values_ : array of shape (n_features,) Maximum number of values per feature. Examples -------- Given a dataset with three features and four samples, we let the encoder find the maximum value per feature and transform the data to a binary one-hot encoding. >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], \ [1, 0, 2]]) # doctest: +ELLIPSIS OneHotEncoder(categorical_features='all', dtype=<... 'numpy.float64'>, handle_unknown='error', n_values='auto', sparse=True) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]]) See also -------- sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of dictionary items (also handles string-valued features). sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot encoding of dictionary items or strings. sklearn.preprocessing.LabelBinarizer : binarizes labels in a one-vs-all fashion. sklearn.preprocessing.MultiLabelBinarizer : transforms between iterable of iterables and a multilabel format, e.g. a (samples x classes) binary matrix indicating the presence of a class label. sklearn.preprocessing.LabelEncoder : encodes labels with values between 0 and n_classes-1. """ def __init__(self, n_values="auto", categorical_features="all", dtype=np.float64, sparse=True, handle_unknown='error'): self.n_values = n_values self.categorical_features = categorical_features self.dtype = dtype self.sparse = sparse self.handle_unknown = handle_unknown def fit(self, X, y=None): """Fit OneHotEncoder to X. Parameters ---------- X : array-like, shape [n_samples, n_feature] Input array of type int. Returns ------- self """ self.fit_transform(X) return self def _fit_transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape if (isinstance(self.n_values, six.string_types) and self.n_values == 'auto'): n_values = np.max(X, axis=0) + 1 elif isinstance(self.n_values, numbers.Integral): if (np.max(X, axis=0) >= self.n_values).any(): raise ValueError("Feature out of bounds for n_values=%d" % self.n_values) n_values = np.empty(n_features, dtype=np.int) n_values.fill(self.n_values) else: try: n_values = np.asarray(self.n_values, dtype=int) except (ValueError, TypeError): raise TypeError("Wrong type for parameter `n_values`. Expected" " 'auto', int or array of ints, got %r" % type(X)) if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]: raise ValueError("Shape mismatch: if n_values is an array," " it has to be of shape (n_features,).") self.n_values_ = n_values n_values = np.hstack([[0], n_values]) indices = np.cumsum(n_values) self.feature_indices_ = indices column_indices = (X + indices[:-1]).ravel() row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features) data = np.ones(n_samples * n_features) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if (isinstance(self.n_values, six.string_types) and self.n_values == 'auto'): mask = np.array(out.sum(axis=0)).ravel() != 0 active_features = np.where(mask)[0] out = out[:, active_features] self.active_features_ = active_features return out if self.sparse else out.toarray() def fit_transform(self, X, y=None): """Fit OneHotEncoder to X, then transform X. Equivalent to self.fit(X).transform(X), but more convenient and more efficient. See fit for the parameters, transform for the return value. """ return _transform_selected(X, self._fit_transform, self.categorical_features, copy=True) def _transform(self, X): """Assumes X contains only categorical features.""" X = check_array(X, dtype=np.int) if np.any(X < 0): raise ValueError("X needs to contain only non-negative integers.") n_samples, n_features = X.shape indices = self.feature_indices_ if n_features != indices.shape[0] - 1: raise ValueError("X has different shape than during fitting." " Expected %d, got %d." % (indices.shape[0] - 1, n_features)) # We use only those categorical features of X that are known using fit. # i.e lesser than n_values_ using mask. # This means, if self.handle_unknown is "ignore", the row_indices and # col_indices corresponding to the unknown categorical feature are # ignored. mask = (X < self.n_values_).ravel() if np.any(~mask): if self.handle_unknown not in ['error', 'ignore']: raise ValueError("handle_unknown should be either error or " "unknown got %s" % self.handle_unknown) if self.handle_unknown == 'error': raise ValueError("unknown categorical feature present %s " "during transform." % X.ravel()[~mask]) column_indices = (X + indices[:-1]).ravel()[mask] row_indices = np.repeat(np.arange(n_samples, dtype=np.int32), n_features)[mask] data = np.ones(np.sum(mask)) out = sparse.coo_matrix((data, (row_indices, column_indices)), shape=(n_samples, indices[-1]), dtype=self.dtype).tocsr() if (isinstance(self.n_values, six.string_types) and self.n_values == 'auto'): out = out[:, self.active_features_] return out if self.sparse else out.toarray() def transform(self, X): """Transform X using one-hot encoding. Parameters ---------- X : array-like, shape [n_samples, n_features] Input array of type int. Returns ------- X_out : sparse matrix if sparse=True else a 2-d array, dtype=int Transformed input. """ return _transform_selected(X, self._transform, self.categorical_features, copy=True)
bsd-3-clause
shoyer/xray
xarray/core/indexing.py
1
47782
import functools import operator from collections import defaultdict from contextlib import suppress from datetime import timedelta from typing import Sequence import numpy as np import pandas as pd from . import duck_array_ops, nputils, utils from .pycompat import dask_array_type, integer_types from .utils import is_dict_like def expanded_indexer(key, ndim): """Given a key for indexing an ndarray, return an equivalent key which is a tuple with length equal to the number of dimensions. The expansion is done by replacing all `Ellipsis` items with the right number of full slices and then padding the key with full slices so that it reaches the appropriate dimensionality. """ if not isinstance(key, tuple): # numpy treats non-tuple keys equivalent to tuples of length 1 key = (key,) new_key = [] # handling Ellipsis right is a little tricky, see: # http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing found_ellipsis = False for k in key: if k is Ellipsis: if not found_ellipsis: new_key.extend((ndim + 1 - len(key)) * [slice(None)]) found_ellipsis = True else: new_key.append(slice(None)) else: new_key.append(k) if len(new_key) > ndim: raise IndexError('too many indices') new_key.extend((ndim - len(new_key)) * [slice(None)]) return tuple(new_key) def _expand_slice(slice_, size): return np.arange(*slice_.indices(size)) def _sanitize_slice_element(x): from .variable import Variable from .dataarray import DataArray if isinstance(x, (Variable, DataArray)): x = x.values if isinstance(x, np.ndarray): if x.ndim != 0: raise ValueError('cannot use non-scalar arrays in a slice for ' 'xarray indexing: {}'.format(x)) x = x[()] if isinstance(x, np.timedelta64): # pandas does not support indexing with np.timedelta64 yet: # https://github.com/pandas-dev/pandas/issues/20393 x = pd.Timedelta(x) return x def _asarray_tuplesafe(values): """ Convert values into a numpy array of at most 1-dimension, while preserving tuples. Adapted from pandas.core.common._asarray_tuplesafe """ if isinstance(values, tuple): result = utils.to_0d_object_array(values) else: result = np.asarray(values) if result.ndim == 2: result = np.empty(len(values), dtype=object) result[:] = values return result def _is_nested_tuple(possible_tuple): return (isinstance(possible_tuple, tuple) and any(isinstance(value, (tuple, list, slice)) for value in possible_tuple)) def _index_method_kwargs(method, tolerance): # backwards compatibility for pandas<0.16 (method) or pandas<0.17 # (tolerance) kwargs = {} if method is not None: kwargs['method'] = method if tolerance is not None: kwargs['tolerance'] = tolerance return kwargs def get_loc(index, label, method=None, tolerance=None): kwargs = _index_method_kwargs(method, tolerance) return index.get_loc(label, **kwargs) def get_indexer_nd(index, labels, method=None, tolerance=None): """ Call pd.Index.get_indexer(labels). """ kwargs = _index_method_kwargs(method, tolerance) flat_labels = np.ravel(labels) flat_indexer = index.get_indexer(flat_labels, **kwargs) indexer = flat_indexer.reshape(labels.shape) return indexer def convert_label_indexer(index, label, index_name='', method=None, tolerance=None): """Given a pandas.Index and labels (e.g., from __getitem__) for one dimension, return an indexer suitable for indexing an ndarray along that dimension. If `index` is a pandas.MultiIndex and depending on `label`, return a new pandas.Index or pandas.MultiIndex (otherwise return None). """ new_index = None if isinstance(label, slice): if method is not None or tolerance is not None: raise NotImplementedError( 'cannot use ``method`` argument if any indexers are ' 'slice objects') indexer = index.slice_indexer(_sanitize_slice_element(label.start), _sanitize_slice_element(label.stop), _sanitize_slice_element(label.step)) if not isinstance(indexer, slice): # unlike pandas, in xarray we never want to silently convert a # slice indexer into an array indexer raise KeyError('cannot represent labeled-based slice indexer for ' 'dimension %r with a slice over integer positions; ' 'the index is unsorted or non-unique' % index_name) elif is_dict_like(label): is_nested_vals = _is_nested_tuple(tuple(label.values())) if not isinstance(index, pd.MultiIndex): raise ValueError('cannot use a dict-like object for selection on ' 'a dimension that does not have a MultiIndex') elif len(label) == index.nlevels and not is_nested_vals: indexer = index.get_loc(tuple((label[k] for k in index.names))) else: for k, v in label.items(): # index should be an item (i.e. Hashable) not an array-like if isinstance(v, Sequence) and not isinstance(v, str): raise ValueError('Vectorized selection is not ' 'available along level variable: ' + k) indexer, new_index = index.get_loc_level( tuple(label.values()), level=tuple(label.keys())) # GH2619. Raise a KeyError if nothing is chosen if indexer.dtype.kind == 'b' and indexer.sum() == 0: raise KeyError('{} not found'.format(label)) elif isinstance(label, tuple) and isinstance(index, pd.MultiIndex): if _is_nested_tuple(label): indexer = index.get_locs(label) elif len(label) == index.nlevels: indexer = index.get_loc(label) else: indexer, new_index = index.get_loc_level( label, level=list(range(len(label))) ) else: label = (label if getattr(label, 'ndim', 1) > 1 # vectorized-indexing else _asarray_tuplesafe(label)) if label.ndim == 0: if isinstance(index, pd.MultiIndex): indexer, new_index = index.get_loc_level(label.item(), level=0) else: indexer = get_loc(index, label.item(), method, tolerance) elif label.dtype.kind == 'b': indexer = label else: if isinstance(index, pd.MultiIndex) and label.ndim > 1: raise ValueError('Vectorized selection is not available along ' 'MultiIndex variable: ' + index_name) indexer = get_indexer_nd(index, label, method, tolerance) if np.any(indexer < 0): raise KeyError('not all values found in index %r' % index_name) return indexer, new_index def get_dim_indexers(data_obj, indexers): """Given a xarray data object and label based indexers, return a mapping of label indexers with only dimension names as keys. It groups multiple level indexers given on a multi-index dimension into a single, dictionary indexer for that dimension (Raise a ValueError if it is not possible). """ invalid = [k for k in indexers if k not in data_obj.dims and k not in data_obj._level_coords] if invalid: raise ValueError("dimensions or multi-index levels %r do not exist" % invalid) level_indexers = defaultdict(dict) dim_indexers = {} for key, label in indexers.items(): dim, = data_obj[key].dims if key != dim: # assume here multi-index level indexer level_indexers[dim][key] = label else: dim_indexers[key] = label for dim, level_labels in level_indexers.items(): if dim_indexers.get(dim, False): raise ValueError("cannot combine multi-index level indexers " "with an indexer for dimension %s" % dim) dim_indexers[dim] = level_labels return dim_indexers def remap_label_indexers(data_obj, indexers, method=None, tolerance=None): """Given an xarray data object and label based indexers, return a mapping of equivalent location based indexers. Also return a mapping of updated pandas index objects (in case of multi-index level drop). """ if method is not None and not isinstance(method, str): raise TypeError('``method`` must be a string') pos_indexers = {} new_indexes = {} dim_indexers = get_dim_indexers(data_obj, indexers) for dim, label in dim_indexers.items(): try: index = data_obj.indexes[dim] except KeyError: # no index for this dimension: reuse the provided labels if method is not None or tolerance is not None: raise ValueError('cannot supply ``method`` or ``tolerance`` ' 'when the indexed dimension does not have ' 'an associated coordinate.') pos_indexers[dim] = label else: idxr, new_idx = convert_label_indexer(index, label, dim, method, tolerance) pos_indexers[dim] = idxr if new_idx is not None: new_indexes[dim] = new_idx return pos_indexers, new_indexes def slice_slice(old_slice, applied_slice, size): """Given a slice and the size of the dimension to which it will be applied, index it with another slice to return a new slice equivalent to applying the slices sequentially """ step = (old_slice.step or 1) * (applied_slice.step or 1) # For now, use the hack of turning old_slice into an ndarray to reconstruct # the slice start and stop. This is not entirely ideal, but it is still # definitely better than leaving the indexer as an array. items = _expand_slice(old_slice, size)[applied_slice] if len(items) > 0: start = items[0] stop = items[-1] + int(np.sign(step)) if stop < 0: stop = None else: start = 0 stop = 0 return slice(start, stop, step) def _index_indexer_1d(old_indexer, applied_indexer, size): assert isinstance(applied_indexer, integer_types + (slice, np.ndarray)) if isinstance(applied_indexer, slice) and applied_indexer == slice(None): # shortcut for the usual case return old_indexer if isinstance(old_indexer, slice): if isinstance(applied_indexer, slice): indexer = slice_slice(old_indexer, applied_indexer, size) else: indexer = _expand_slice(old_indexer, size)[applied_indexer] else: indexer = old_indexer[applied_indexer] return indexer class ExplicitIndexer: """Base class for explicit indexer objects. ExplicitIndexer objects wrap a tuple of values given by their ``tuple`` property. These tuples should always have length equal to the number of dimensions on the indexed array. Do not instantiate BaseIndexer objects directly: instead, use one of the sub-classes BasicIndexer, OuterIndexer or VectorizedIndexer. """ def __init__(self, key): if type(self) is ExplicitIndexer: # noqa raise TypeError('cannot instantiate base ExplicitIndexer objects') self._key = tuple(key) @property def tuple(self): return self._key def __repr__(self): return '{}({})'.format(type(self).__name__, self.tuple) def as_integer_or_none(value): return None if value is None else operator.index(value) def as_integer_slice(value): start = as_integer_or_none(value.start) stop = as_integer_or_none(value.stop) step = as_integer_or_none(value.step) return slice(start, stop, step) class BasicIndexer(ExplicitIndexer): """Tuple for basic indexing. All elements should be int or slice objects. Indexing follows NumPy's rules for basic indexing: each axis is independently sliced and axes indexed with an integer are dropped from the result. """ def __init__(self, key): if not isinstance(key, tuple): raise TypeError('key must be a tuple: {!r}'.format(key)) new_key = [] for k in key: if isinstance(k, integer_types): k = int(k) elif isinstance(k, slice): k = as_integer_slice(k) else: raise TypeError('unexpected indexer type for {}: {!r}' .format(type(self).__name__, k)) new_key.append(k) super(BasicIndexer, self).__init__(new_key) class OuterIndexer(ExplicitIndexer): """Tuple for outer/orthogonal indexing. All elements should be int, slice or 1-dimensional np.ndarray objects with an integer dtype. Indexing is applied independently along each axis, and axes indexed with an integer are dropped from the result. This type of indexing works like MATLAB/Fortran. """ def __init__(self, key): if not isinstance(key, tuple): raise TypeError('key must be a tuple: {!r}'.format(key)) new_key = [] for k in key: if isinstance(k, integer_types): k = int(k) elif isinstance(k, slice): k = as_integer_slice(k) elif isinstance(k, np.ndarray): if not np.issubdtype(k.dtype, np.integer): raise TypeError('invalid indexer array, does not have ' 'integer dtype: {!r}'.format(k)) if k.ndim != 1: raise TypeError('invalid indexer array for {}, must have ' 'exactly 1 dimension: ' .format(type(self).__name__, k)) k = np.asarray(k, dtype=np.int64) else: raise TypeError('unexpected indexer type for {}: {!r}' .format(type(self).__name__, k)) new_key.append(k) super(OuterIndexer, self).__init__(new_key) class VectorizedIndexer(ExplicitIndexer): """Tuple for vectorized indexing. All elements should be slice or N-dimensional np.ndarray objects with an integer dtype and the same number of dimensions. Indexing follows proposed rules for np.ndarray.vindex, which matches NumPy's advanced indexing rules (including broadcasting) except sliced axes are always moved to the end: https://github.com/numpy/numpy/pull/6256 """ def __init__(self, key): if not isinstance(key, tuple): raise TypeError('key must be a tuple: {!r}'.format(key)) new_key = [] ndim = None for k in key: if isinstance(k, slice): k = as_integer_slice(k) elif isinstance(k, np.ndarray): if not np.issubdtype(k.dtype, np.integer): raise TypeError('invalid indexer array, does not have ' 'integer dtype: {!r}'.format(k)) if ndim is None: ndim = k.ndim elif ndim != k.ndim: ndims = [k.ndim for k in key if isinstance(k, np.ndarray)] raise ValueError('invalid indexer key: ndarray arguments ' 'have different numbers of dimensions: {}' .format(ndims)) k = np.asarray(k, dtype=np.int64) else: raise TypeError('unexpected indexer type for {}: {!r}' .format(type(self).__name__, k)) new_key.append(k) super(VectorizedIndexer, self).__init__(new_key) class ExplicitlyIndexed: """Mixin to mark support for Indexer subclasses in indexing.""" class ExplicitlyIndexedNDArrayMixin(utils.NDArrayMixin, ExplicitlyIndexed): def __array__(self, dtype=None): key = BasicIndexer((slice(None),) * self.ndim) return np.asarray(self[key], dtype=dtype) class ImplicitToExplicitIndexingAdapter(utils.NDArrayMixin): """Wrap an array, converting tuples into the indicated explicit indexer.""" def __init__(self, array, indexer_cls=BasicIndexer): self.array = as_indexable(array) self.indexer_cls = indexer_cls def __array__(self, dtype=None): return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): key = expanded_indexer(key, self.ndim) result = self.array[self.indexer_cls(key)] if isinstance(result, ExplicitlyIndexed): return type(self)(result, self.indexer_cls) else: # Sometimes explicitly indexed arrays return NumPy arrays or # scalars. return result class LazilyOuterIndexedArray(ExplicitlyIndexedNDArrayMixin): """Wrap an array to make basic and outer indexing lazy. """ def __init__(self, array, key=None): """ Parameters ---------- array : array_like Array like object to index. key : ExplicitIndexer, optional Array indexer. If provided, it is assumed to already be in canonical expanded form. """ if isinstance(array, type(self)) and key is None: # unwrap key = array.key array = array.array if key is None: key = BasicIndexer((slice(None),) * array.ndim) self.array = as_indexable(array) self.key = key def _updated_key(self, new_key): iter_new_key = iter(expanded_indexer(new_key.tuple, self.ndim)) full_key = [] for size, k in zip(self.array.shape, self.key.tuple): if isinstance(k, integer_types): full_key.append(k) else: full_key.append(_index_indexer_1d(k, next(iter_new_key), size)) full_key = tuple(full_key) if all(isinstance(k, integer_types + (slice, )) for k in full_key): return BasicIndexer(full_key) return OuterIndexer(full_key) @property def shape(self): shape = [] for size, k in zip(self.array.shape, self.key.tuple): if isinstance(k, slice): shape.append(len(range(*k.indices(size)))) elif isinstance(k, np.ndarray): shape.append(k.size) return tuple(shape) def __array__(self, dtype=None): array = as_indexable(self.array) return np.asarray(array[self.key], dtype=None) def transpose(self, order): return LazilyVectorizedIndexedArray( self.array, self.key).transpose(order) def __getitem__(self, indexer): if isinstance(indexer, VectorizedIndexer): array = LazilyVectorizedIndexedArray(self.array, self.key) return array[indexer] return type(self)(self.array, self._updated_key(indexer)) def __setitem__(self, key, value): if isinstance(key, VectorizedIndexer): raise NotImplementedError( 'Lazy item assignment with the vectorized indexer is not yet ' 'implemented. Load your data first by .load() or compute().') full_key = self._updated_key(key) self.array[full_key] = value def __repr__(self): return ('%s(array=%r, key=%r)' % (type(self).__name__, self.array, self.key)) class LazilyVectorizedIndexedArray(ExplicitlyIndexedNDArrayMixin): """Wrap an array to make vectorized indexing lazy. """ def __init__(self, array, key): """ Parameters ---------- array : array_like Array like object to index. key : VectorizedIndexer """ if isinstance(key, (BasicIndexer, OuterIndexer)): self.key = _outer_to_vectorized_indexer(key, array.shape) else: self.key = _arrayize_vectorized_indexer(key, array.shape) self.array = as_indexable(array) @property def shape(self): return np.broadcast(*self.key.tuple).shape def __array__(self, dtype=None): return np.asarray(self.array[self.key], dtype=None) def _updated_key(self, new_key): return _combine_indexers(self.key, self.shape, new_key) def __getitem__(self, indexer): # If the indexed array becomes a scalar, return LazilyOuterIndexedArray if all(isinstance(ind, integer_types) for ind in indexer.tuple): key = BasicIndexer(tuple(k[indexer.tuple] for k in self.key.tuple)) return LazilyOuterIndexedArray(self.array, key) return type(self)(self.array, self._updated_key(indexer)) def transpose(self, order): key = VectorizedIndexer(tuple( k.transpose(order) for k in self.key.tuple)) return type(self)(self.array, key) def __setitem__(self, key, value): raise NotImplementedError( 'Lazy item assignment with the vectorized indexer is not yet ' 'implemented. Load your data first by .load() or compute().') def __repr__(self): return ('%s(array=%r, key=%r)' % (type(self).__name__, self.array, self.key)) def _wrap_numpy_scalars(array): """Wrap NumPy scalars in 0d arrays.""" if np.isscalar(array): return np.array(array) else: return array class CopyOnWriteArray(ExplicitlyIndexedNDArrayMixin): def __init__(self, array): self.array = as_indexable(array) self._copied = False def _ensure_copied(self): if not self._copied: self.array = as_indexable(np.array(self.array)) self._copied = True def __array__(self, dtype=None): return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): return type(self)(_wrap_numpy_scalars(self.array[key])) def transpose(self, order): return self.array.transpose(order) def __setitem__(self, key, value): self._ensure_copied() self.array[key] = value class MemoryCachedArray(ExplicitlyIndexedNDArrayMixin): def __init__(self, array): self.array = _wrap_numpy_scalars(as_indexable(array)) def _ensure_cached(self): if not isinstance(self.array, NumpyIndexingAdapter): self.array = NumpyIndexingAdapter(np.asarray(self.array)) def __array__(self, dtype=None): self._ensure_cached() return np.asarray(self.array, dtype=dtype) def __getitem__(self, key): return type(self)(_wrap_numpy_scalars(self.array[key])) def transpose(self, order): return self.array.transpose(order) def __setitem__(self, key, value): self.array[key] = value def as_indexable(array): """ This function always returns a ExplicitlyIndexed subclass, so that the vectorized indexing is always possible with the returned object. """ if isinstance(array, ExplicitlyIndexed): return array if isinstance(array, np.ndarray): return NumpyIndexingAdapter(array) if isinstance(array, pd.Index): return PandasIndexAdapter(array) if isinstance(array, dask_array_type): return DaskIndexingAdapter(array) raise TypeError('Invalid array type: {}'.format(type(array))) def _outer_to_vectorized_indexer(key, shape): """Convert an OuterIndexer into an vectorized indexer. Parameters ---------- key : Outer/Basic Indexer An indexer to convert. shape : tuple Shape of the array subject to the indexing. Returns ------- VectorizedIndexer Tuple suitable for use to index a NumPy array with vectorized indexing. Each element is an array: broadcasting them together gives the shape of the result. """ key = key.tuple n_dim = len([k for k in key if not isinstance(k, integer_types)]) i_dim = 0 new_key = [] for k, size in zip(key, shape): if isinstance(k, integer_types): new_key.append(np.array(k).reshape((1,) * n_dim)) else: # np.ndarray or slice if isinstance(k, slice): k = np.arange(*k.indices(size)) assert k.dtype.kind in {'i', 'u'} shape = [(1,) * i_dim + (k.size, ) + (1,) * (n_dim - i_dim - 1)] new_key.append(k.reshape(*shape)) i_dim += 1 return VectorizedIndexer(tuple(new_key)) def _outer_to_numpy_indexer(key, shape): """Convert an OuterIndexer into an indexer for NumPy. Parameters ---------- key : Basic/OuterIndexer An indexer to convert. shape : tuple Shape of the array subject to the indexing. Returns ------- tuple Tuple suitable for use to index a NumPy array. """ if len([k for k in key.tuple if not isinstance(k, slice)]) <= 1: # If there is only one vector and all others are slice, # it can be safely used in mixed basic/advanced indexing. # Boolean index should already be converted to integer array. return key.tuple else: return _outer_to_vectorized_indexer(key, shape).tuple def _combine_indexers(old_key, shape, new_key): """ Combine two indexers. Parameters ---------- old_key: ExplicitIndexer The first indexer for the original array shape: tuple of ints Shape of the original array to be indexed by old_key new_key: The second indexer for indexing original[old_key] """ if not isinstance(old_key, VectorizedIndexer): old_key = _outer_to_vectorized_indexer(old_key, shape) if len(old_key.tuple) == 0: return new_key new_shape = np.broadcast(*old_key.tuple).shape if isinstance(new_key, VectorizedIndexer): new_key = _arrayize_vectorized_indexer(new_key, new_shape) else: new_key = _outer_to_vectorized_indexer(new_key, new_shape) return VectorizedIndexer(tuple(o[new_key.tuple] for o in np.broadcast_arrays(*old_key.tuple))) class IndexingSupport: # could inherit from enum.Enum on Python 3 # for backends that support only basic indexer BASIC = 'BASIC' # for backends that support basic / outer indexer OUTER = 'OUTER' # for backends that support outer indexer including at most 1 vector. OUTER_1VECTOR = 'OUTER_1VECTOR' # for backends that support full vectorized indexer. VECTORIZED = 'VECTORIZED' def explicit_indexing_adapter( key, shape, indexing_support, raw_indexing_method): """Support explicit indexing by delegating to a raw indexing method. Outer and/or vectorized indexers are supported by indexing a second time with a NumPy array. Parameters ---------- key : ExplicitIndexer Explicit indexing object. shape : Tuple[int, ...] Shape of the indexed array. indexing_support : IndexingSupport enum Form of indexing supported by raw_indexing_method. raw_indexing_method: callable Function (like ndarray.__getitem__) that when called with indexing key in the form of a tuple returns an indexed array. Returns ------- Indexing result, in the form of a duck numpy-array. """ raw_key, numpy_indices = decompose_indexer(key, shape, indexing_support) result = raw_indexing_method(raw_key.tuple) if numpy_indices.tuple: # index the loaded np.ndarray result = NumpyIndexingAdapter(np.asarray(result))[numpy_indices] return result def decompose_indexer(indexer, shape, indexing_support): if isinstance(indexer, VectorizedIndexer): return _decompose_vectorized_indexer(indexer, shape, indexing_support) if isinstance(indexer, (BasicIndexer, OuterIndexer)): return _decompose_outer_indexer(indexer, shape, indexing_support) raise TypeError('unexpected key type: {}'.format(indexer)) def _decompose_slice(key, size): """ convert a slice to successive two slices. The first slice always has a positive step. """ start, stop, step = key.indices(size) if step > 0: # If key already has a positive step, use it as is in the backend return key, slice(None) else: # determine stop precisely for step > 1 case # e.g. [98:2:-2] -> [98:3:-2] stop = start + int((stop - start - 1) / step) * step + 1 start, stop = stop + 1, start + 1 return slice(start, stop, -step), slice(None, None, -1) def _decompose_vectorized_indexer(indexer, shape, indexing_support): """ Decompose vectorized indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index loaded on-memory np.ndarray. Parameters ---------- indexer: VectorizedIndexer indexing_support: one of IndexerSupport entries Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (VectorizedIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a vectorized indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports outer indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = OuterIndexer([0, 1, 3], [2, 3]) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = VectorizedIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # vectorized indexing for on-memory np.ndarray. """ assert isinstance(indexer, VectorizedIndexer) if indexing_support is IndexingSupport.VECTORIZED: return indexer, BasicIndexer(()) backend_indexer = [] np_indexer = [] # convert negative indices indexer = [np.where(k < 0, k + s, k) if isinstance(k, np.ndarray) else k for k, s in zip(indexer.tuple, shape)] for k, s in zip(indexer, shape): if isinstance(k, slice): # If it is a slice, then we will slice it as-is # (but make its step positive) in the backend, # and then use all of it (slice(None)) for the in-memory portion. bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) else: # If it is a (multidimensional) np.ndarray, just pickup the used # keys without duplication and store them as a 1d-np.ndarray. oind, vind = np.unique(k, return_inverse=True) backend_indexer.append(oind) np_indexer.append(vind.reshape(*k.shape)) backend_indexer = OuterIndexer(tuple(backend_indexer)) np_indexer = VectorizedIndexer(tuple(np_indexer)) if indexing_support is IndexingSupport.OUTER: return backend_indexer, np_indexer # If the backend does not support outer indexing, # backend_indexer (OuterIndexer) is also decomposed. backend_indexer, np_indexer1 = _decompose_outer_indexer( backend_indexer, shape, indexing_support) np_indexer = _combine_indexers(np_indexer1, shape, np_indexer) return backend_indexer, np_indexer def _decompose_outer_indexer(indexer, shape, indexing_support): """ Decompose outer indexer to the successive two indexers, where the first indexer will be used to index backend arrays, while the second one is used to index the loaded on-memory np.ndarray. Parameters ---------- indexer: VectorizedIndexer indexing_support: One of the entries of IndexingSupport Returns ------- backend_indexer: OuterIndexer or BasicIndexer np_indexers: an ExplicitIndexer (OuterIndexer / BasicIndexer) Notes ----- This function is used to realize the vectorized indexing for the backend arrays that only support basic or outer indexing. As an example, let us consider to index a few elements from a backend array with a orthogonal indexer ([0, 3, 1], [2, 3, 2]). Even if the backend array only supports basic indexing, it is more efficient to load a subslice of the array than loading the entire array, >>> backend_indexer = BasicIndexer(slice(0, 3), slice(2, 3)) >>> array = array[backend_indexer] # load subslice of the array >>> np_indexer = OuterIndexer([0, 2, 1], [0, 1, 0]) >>> array[np_indexer] # outer indexing for on-memory np.ndarray. """ if indexing_support == IndexingSupport.VECTORIZED: return indexer, BasicIndexer(()) assert isinstance(indexer, (OuterIndexer, BasicIndexer)) backend_indexer = [] np_indexer = [] # make indexer positive pos_indexer = [] for k, s in zip(indexer.tuple, shape): if isinstance(k, np.ndarray): pos_indexer.append(np.where(k < 0, k + s, k)) elif isinstance(k, integer_types) and k < 0: pos_indexer.append(k + s) else: pos_indexer.append(k) indexer = pos_indexer if indexing_support is IndexingSupport.OUTER_1VECTOR: # some backends such as h5py supports only 1 vector in indexers # We choose the most efficient axis gains = [(np.max(k) - np.min(k) + 1.0) / len(np.unique(k)) if isinstance(k, np.ndarray) else 0 for k in indexer] array_index = np.argmax(np.array(gains)) if len(gains) > 0 else None for i, (k, s) in enumerate(zip(indexer, shape)): if isinstance(k, np.ndarray) and i != array_index: # np.ndarray key is converted to slice that covers the entire # entries of this key. backend_indexer.append(slice(np.min(k), np.max(k) + 1)) np_indexer.append(k - np.min(k)) elif isinstance(k, np.ndarray): # Remove duplicates and sort them in the increasing order pkey, ekey = np.unique(k, return_inverse=True) backend_indexer.append(pkey) np_indexer.append(ekey) elif isinstance(k, integer_types): backend_indexer.append(k) else: # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) if indexing_support == IndexingSupport.OUTER: for k, s in zip(indexer, shape): if isinstance(k, slice): # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) elif isinstance(k, integer_types): backend_indexer.append(k) elif isinstance(k, np.ndarray) and (np.diff(k) >= 0).all(): backend_indexer.append(k) np_indexer.append(slice(None)) else: # Remove duplicates and sort them in the increasing order oind, vind = np.unique(k, return_inverse=True) backend_indexer.append(oind) np_indexer.append(vind.reshape(*k.shape)) return (OuterIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) # basic indexer assert indexing_support == IndexingSupport.BASIC for k, s in zip(indexer, shape): if isinstance(k, np.ndarray): # np.ndarray key is converted to slice that covers the entire # entries of this key. backend_indexer.append(slice(np.min(k), np.max(k) + 1)) np_indexer.append(k - np.min(k)) elif isinstance(k, integer_types): backend_indexer.append(k) else: # slice: convert positive step slice for backend bk_slice, np_slice = _decompose_slice(k, s) backend_indexer.append(bk_slice) np_indexer.append(np_slice) return (BasicIndexer(tuple(backend_indexer)), OuterIndexer(tuple(np_indexer))) def _arrayize_vectorized_indexer(indexer, shape): """ Return an identical vindex but slices are replaced by arrays """ slices = [v for v in indexer.tuple if isinstance(v, slice)] if len(slices) == 0: return indexer arrays = [v for v in indexer.tuple if isinstance(v, np.ndarray)] n_dim = arrays[0].ndim if len(arrays) > 0 else 0 i_dim = 0 new_key = [] for v, size in zip(indexer.tuple, shape): if isinstance(v, np.ndarray): new_key.append(np.reshape(v, v.shape + (1, ) * len(slices))) else: # slice shape = ((1,) * (n_dim + i_dim) + (-1,) + (1,) * (len(slices) - i_dim - 1)) new_key.append(np.arange(*v.indices(size)).reshape(shape)) i_dim += 1 return VectorizedIndexer(tuple(new_key)) def _dask_array_with_chunks_hint(array, chunks): """Create a dask array using the chunks hint for dimensions of size > 1.""" import dask.array as da if len(chunks) < array.ndim: raise ValueError('not enough chunks in hint') new_chunks = [] for chunk, size in zip(chunks, array.shape): new_chunks.append(chunk if size > 1 else (1,)) return da.from_array(array, new_chunks) def _logical_any(args): return functools.reduce(operator.or_, args) def _masked_result_drop_slice(key, chunks_hint=None): key = (k for k in key if not isinstance(k, slice)) if chunks_hint is not None: key = [_dask_array_with_chunks_hint(k, chunks_hint) if isinstance(k, np.ndarray) else k for k in key] return _logical_any(k == -1 for k in key) def create_mask(indexer, shape, chunks_hint=None): """Create a mask for indexing with a fill-value. Parameters ---------- indexer : ExplicitIndexer Indexer with -1 in integer or ndarray value to indicate locations in the result that should be masked. shape : tuple Shape of the array being indexed. chunks_hint : tuple, optional Optional tuple indicating desired chunks for the result. If provided, used as a hint for chunks on the resulting dask. Must have a hint for each dimension on the result array. Returns ------- mask : bool, np.ndarray or dask.array.Array with dtype=bool Dask array if chunks_hint is provided, otherwise a NumPy array. Has the same shape as the indexing result. """ if isinstance(indexer, OuterIndexer): key = _outer_to_vectorized_indexer(indexer, shape).tuple assert not any(isinstance(k, slice) for k in key) mask = _masked_result_drop_slice(key, chunks_hint) elif isinstance(indexer, VectorizedIndexer): key = indexer.tuple base_mask = _masked_result_drop_slice(key, chunks_hint) slice_shape = tuple(np.arange(*k.indices(size)).size for k, size in zip(key, shape) if isinstance(k, slice)) expanded_mask = base_mask[ (Ellipsis,) + (np.newaxis,) * len(slice_shape)] mask = duck_array_ops.broadcast_to( expanded_mask, base_mask.shape + slice_shape) elif isinstance(indexer, BasicIndexer): mask = any(k == -1 for k in indexer.tuple) else: raise TypeError('unexpected key type: {}'.format(type(indexer))) return mask def _posify_mask_subindexer(index): """Convert masked indices in a flat array to the nearest unmasked index. Parameters ---------- index : np.ndarray One dimensional ndarray with dtype=int. Returns ------- np.ndarray One dimensional ndarray with all values equal to -1 replaced by an adjacent non-masked element. """ masked = index == -1 unmasked_locs = np.flatnonzero(~masked) if not unmasked_locs.size: # indexing unmasked_locs is invalid return np.zeros_like(index) masked_locs = np.flatnonzero(masked) prev_value = np.maximum(0, np.searchsorted(unmasked_locs, masked_locs) - 1) new_index = index.copy() new_index[masked_locs] = index[unmasked_locs[prev_value]] return new_index def posify_mask_indexer(indexer): """Convert masked values (-1) in an indexer to nearest unmasked values. This routine is useful for dask, where it can be much faster to index adjacent points than arbitrary points from the end of an array. Parameters ---------- indexer : ExplicitIndexer Input indexer. Returns ------- ExplicitIndexer Same type of input, with all values in ndarray keys equal to -1 replaced by an adjacent non-masked element. """ key = tuple(_posify_mask_subindexer(k.ravel()).reshape(k.shape) if isinstance(k, np.ndarray) else k for k in indexer.tuple) return type(indexer)(key) class NumpyIndexingAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a NumPy array to use explicit indexing.""" def __init__(self, array): # In NumpyIndexingAdapter we only allow to store bare np.ndarray if not isinstance(array, np.ndarray): raise TypeError('NumpyIndexingAdapter only wraps np.ndarray. ' 'Trying to wrap {}'.format(type(array))) self.array = array def _indexing_array_and_key(self, key): if isinstance(key, OuterIndexer): array = self.array key = _outer_to_numpy_indexer(key, self.array.shape) elif isinstance(key, VectorizedIndexer): array = nputils.NumpyVIndexAdapter(self.array) key = key.tuple elif isinstance(key, BasicIndexer): array = self.array # We want 0d slices rather than scalars. This is achieved by # appending an ellipsis (see # https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#detailed-notes). # noqa key = key.tuple + (Ellipsis,) else: raise TypeError('unexpected key type: {}'.format(type(key))) return array, key def transpose(self, order): return self.array.transpose(order) def __getitem__(self, key): array, key = self._indexing_array_and_key(key) return array[key] def __setitem__(self, key, value): array, key = self._indexing_array_and_key(key) array[key] = value class DaskIndexingAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a dask array to support explicit indexing.""" def __init__(self, array): """ This adapter is created in Variable.__getitem__ in Variable._broadcast_indexes. """ self.array = array def __getitem__(self, key): if isinstance(key, BasicIndexer): return self.array[key.tuple] elif isinstance(key, VectorizedIndexer): return self.array.vindex[key.tuple] else: assert isinstance(key, OuterIndexer) key = key.tuple try: return self.array[key] except NotImplementedError: # manual orthogonal indexing. # TODO: port this upstream into dask in a saner way. value = self.array for axis, subkey in reversed(list(enumerate(key))): value = value[(slice(None),) * axis + (subkey,)] return value def __setitem__(self, key, value): raise TypeError("this variable's data is stored in a dask array, " 'which does not support item assignment. To ' 'assign to this variable, you must first load it ' 'into memory explicitly using the .load() ' 'method or accessing its .values attribute.') def transpose(self, order): return self.array.transpose(order) class PandasIndexAdapter(ExplicitlyIndexedNDArrayMixin): """Wrap a pandas.Index to preserve dtypes and handle explicit indexing.""" def __init__(self, array, dtype=None): self.array = utils.safe_cast_to_index(array) if dtype is None: if isinstance(array, pd.PeriodIndex): dtype = np.dtype('O') elif hasattr(array, 'categories'): # category isn't a real numpy dtype dtype = array.categories.dtype elif not utils.is_valid_numpy_dtype(array.dtype): dtype = np.dtype('O') else: dtype = array.dtype self._dtype = dtype @property def dtype(self): return self._dtype def __array__(self, dtype=None): if dtype is None: dtype = self.dtype array = self.array if isinstance(array, pd.PeriodIndex): with suppress(AttributeError): # this might not be public API array = array.astype('object') return np.asarray(array.values, dtype=dtype) @property def shape(self): # .shape is broken on pandas prior to v0.15.2 return (len(self.array),) def __getitem__(self, indexer): key = indexer.tuple if isinstance(key, tuple) and len(key) == 1: # unpack key so it can index a pandas.Index object (pandas.Index # objects don't like tuples) key, = key if getattr(key, 'ndim', 0) > 1: # Return np-array if multidimensional return NumpyIndexingAdapter(self.array.values)[indexer] result = self.array[key] if isinstance(result, pd.Index): result = PandasIndexAdapter(result, dtype=self.dtype) else: # result is a scalar if result is pd.NaT: # work around the impossibility of casting NaT with asarray # note: it probably would be better in general to return # pd.Timestamp rather np.than datetime64 but this is easier # (for now) result = np.datetime64('NaT', 'ns') elif isinstance(result, timedelta): result = np.timedelta64(getattr(result, 'value', result), 'ns') elif isinstance(result, pd.Timestamp): # Work around for GH: pydata/xarray#1932 and numpy/numpy#10668 # numpy fails to convert pd.Timestamp to np.datetime64[ns] result = np.asarray(result.to_datetime64()) elif self.dtype != object: result = np.asarray(result, dtype=self.dtype) # as for numpy.ndarray indexing, we always want the result to be # a NumPy array. result = utils.to_0d_array(result) return result def transpose(self, order): return self.array # self.array should be always one-dimensional def __repr__(self): return ('%s(array=%r, dtype=%r)' % (type(self).__name__, self.array, self.dtype))
apache-2.0
Agent007/deepchem
deepchem/models/tests/test_reload.py
2
1376
""" Test reload for trained models. """ from __future__ import division from __future__ import unicode_literals __author__ = "Bharath Ramsundar" __copyright__ = "Copyright 2016, Stanford University" __license__ = "MIT" import unittest import tempfile import numpy as np import deepchem as dc import tensorflow as tf from sklearn.ensemble import RandomForestClassifier class TestReload(unittest.TestCase): def test_sklearn_reload(self): """Test that trained model can be reloaded correctly.""" n_samples = 10 n_features = 3 n_tasks = 1 # Generate dummy dataset np.random.seed(123) ids = np.arange(n_samples) X = np.random.rand(n_samples, n_features) y = np.random.randint(2, size=(n_samples, n_tasks)) w = np.ones((n_samples, n_tasks)) dataset = dc.data.NumpyDataset(X, y, w, ids) classification_metric = dc.metrics.Metric(dc.metrics.roc_auc_score) sklearn_model = RandomForestClassifier() model_dir = tempfile.mkdtemp() model = dc.models.SklearnModel(sklearn_model, model_dir) # Fit trained model model.fit(dataset) model.save() # Load trained model reloaded_model = dc.models.SklearnModel(None, model_dir) reloaded_model.reload() # Eval model on train scores = reloaded_model.evaluate(dataset, [classification_metric]) assert scores[classification_metric.name] > .9
mit
alephu5/Soundbyte
environment/lib/python3.3/site-packages/mpl_toolkits/axes_grid1/axes_divider.py
1
29627
""" The axes_divider module provide helper classes to adjust the positions of multiple axes at the drawing time. Divider: this is the class that is used calculates the axes position. It divides the given rectangular area into several sub rectangles. You initialize the divider by setting the horizontal and vertical list of sizes that the division will be based on. You then use the new_locator method, whose return value is a callable object that can be used to set the axes_locator of the axes. """ import matplotlib.transforms as mtransforms from matplotlib.axes import SubplotBase from . import axes_size as Size class Divider(object): """ This is the class that is used calculates the axes position. It divides the given rectangular area into several sub-rectangles. You initialize the divider by setting the horizontal and vertical lists of sizes (:mod:`mpl_toolkits.axes_grid.axes_size`) that the division will be based on. You then use the new_locator method to create a callable object that can be used to as the axes_locator of the axes. """ def __init__(self, fig, pos, horizontal, vertical, aspect=None, anchor="C"): """ :param fig: matplotlib figure :param pos: position (tuple of 4 floats) of the rectangle that will be divided. :param horizontal: list of sizes (:mod:`~mpl_toolkits.axes_grid.axes_size`) for horizontal division :param vertical: list of sizes (:mod:`~mpl_toolkits.axes_grid.axes_size`) for vertical division :param aspect: if True, the overall rectangular area is reduced so that the relative part of the horizontal and vertical scales have same scale. :param anchor: Determine how the reduced rectangle is placed when aspect is True. """ self._fig = fig self._pos = pos self._horizontal = horizontal self._vertical = vertical self._anchor = anchor self._aspect = aspect self._xrefindex = 0 self._yrefindex = 0 self._locator = None def get_horizontal_sizes(self, renderer): return [s.get_size(renderer) for s in self.get_horizontal()] def get_vertical_sizes(self, renderer): return [s.get_size(renderer) for s in self.get_vertical()] def get_vsize_hsize(self): from .axes_size import AddList vsize = AddList(self.get_vertical()) hsize = AddList(self.get_horizontal()) return vsize, hsize @staticmethod def _calc_k(l, total_size): rs_sum, as_sum = 0., 0. for _rs, _as in l: rs_sum += _rs as_sum += _as if rs_sum != 0.: k = (total_size - as_sum) / rs_sum return k else: return 0. @staticmethod def _calc_offsets(l, k): offsets = [0.] #for s in l: for _rs, _as in l: #_rs, _as = s.get_size(renderer) offsets.append(offsets[-1] + _rs*k + _as) return offsets def set_position(self, pos): """ set the position of the rectangle. :param pos: position (tuple of 4 floats) of the rectangle that will be divided. """ self._pos = pos def get_position(self): "return the position of the rectangle." return self._pos def set_anchor(self, anchor): """ :param anchor: anchor position ===== ============ value description ===== ============ 'C' Center 'SW' bottom left 'S' bottom 'SE' bottom right 'E' right 'NE' top right 'N' top 'NW' top left 'W' left ===== ============ """ if anchor in list(mtransforms.Bbox.coefs.keys()) or len(anchor) == 2: self._anchor = anchor else: raise ValueError('argument must be among %s' % ', '.join(list(mtransforms.BBox.coefs.keys()))) def get_anchor(self): "return the anchor" return self._anchor def set_horizontal(self, h): """ :param horizontal: list of sizes (:mod:`~mpl_toolkits.axes_grid.axes_size`) for horizontal division . """ self._horizontal = h def get_horizontal(self): "return horizontal sizes" return self._horizontal def set_vertical(self, v): """ :param horizontal: list of sizes (:mod:`~mpl_toolkits.axes_grid.axes_size`) for horizontal division . """ self._vertical = v def get_vertical(self): "return vertical sizes" return self._vertical def set_aspect(self, aspect=False): """ :param anchor: True or False """ self._aspect = aspect def get_aspect(self): "return aspect" return self._aspect def set_locator(self, _locator): self._locator = _locator def get_locator(self): return self._locator def get_position_runtime(self, ax, renderer): if self._locator is None: return self.get_position() else: return self._locator(ax, renderer).bounds def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None): """ :param nx, nx1: Integers specifying the column-position of the cell. When nx1 is None, a single nx-th column is specified. Otherwise location of columns spanning between nx to nx1 (but excluding nx1-th column) is specified. :param ny, ny1: same as nx and nx1, but for row positions. """ figW,figH = self._fig.get_size_inches() x, y, w, h = self.get_position_runtime(axes, renderer) hsizes = self.get_horizontal_sizes(renderer) vsizes = self.get_vertical_sizes(renderer) k_h = self._calc_k(hsizes, figW*w) k_v = self._calc_k(vsizes, figH*h) if self.get_aspect(): k = min(k_h, k_v) ox = self._calc_offsets(hsizes, k) oy = self._calc_offsets(vsizes, k) ww = (ox[-1] - ox[0])/figW hh = (oy[-1] - oy[0])/figH pb = mtransforms.Bbox.from_bounds(x, y, w, h) pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh) pb1_anchored = pb1.anchored(self.get_anchor(), pb) x0, y0 = pb1_anchored.x0, pb1_anchored.y0 else: ox = self._calc_offsets(hsizes, k_h) oy = self._calc_offsets(vsizes, k_v) x0, y0 = x, y if nx1 is None: nx1=nx+1 if ny1 is None: ny1=ny+1 x1, w1 = x0 + ox[nx]/figW, (ox[nx1] - ox[nx])/figW y1, h1 = y0 + oy[ny]/figH, (oy[ny1] - oy[ny])/figH return mtransforms.Bbox.from_bounds(x1, y1, w1, h1) def new_locator(self, nx, ny, nx1=None, ny1=None): """ returns a new locator (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for specified cell. :param nx, nx1: Integers specifying the column-position of the cell. When nx1 is None, a single nx-th column is specified. Otherwise location of columns spanning between nx to nx1 (but excluding nx1-th column) is specified. :param ny, ny1: same as nx and nx1, but for row positions. """ return AxesLocator(self, nx, ny, nx1, ny1) def append_size(self, position, size): if position == "left": self._horizontal.insert(0, size) self._xrefindex += 1 elif position == "right": self._horizontal.append(size) elif position == "bottom": self._vertical.insert(0, size) self._yrefindex += 1 elif position == "top": self._vertical.append(size) else: raise ValueError("the position must be one of left, right, bottom, or top") def add_auto_adjustable_area(self, use_axes, pad=0.1, adjust_dirs=["left", "right", "bottom", "top"], ): from .axes_size import Padded, SizeFromFunc, GetExtentHelper for d in adjust_dirs: helper = GetExtentHelper(use_axes, d) size = SizeFromFunc(helper) padded_size = Padded(size, pad) # pad in inch self.append_size(d, padded_size) class AxesLocator(object): """ A simple callable object, initialized with AxesDivider class, returns the position and size of the given cell. """ def __init__(self, axes_divider, nx, ny, nx1=None, ny1=None): """ :param axes_divider: An instance of AxesDivider class. :param nx, nx1: Integers specifying the column-position of the cell. When nx1 is None, a single nx-th column is specified. Otherwise location of columns spanning between nx to nx1 (but excluding nx1-th column) is is specified. :param ny, ny1: same as nx and nx1, but for row positions. """ self._axes_divider = axes_divider _xrefindex = axes_divider._xrefindex _yrefindex = axes_divider._yrefindex self._nx, self._ny = nx - _xrefindex, ny - _yrefindex if nx1 is None: nx1 = nx+1 if ny1 is None: ny1 = ny+1 self._nx1 = nx1 - _xrefindex self._ny1 = ny1 - _yrefindex def __call__(self, axes, renderer): _xrefindex = self._axes_divider._xrefindex _yrefindex = self._axes_divider._yrefindex return self._axes_divider.locate(self._nx + _xrefindex, self._ny + _yrefindex, self._nx1 + _xrefindex, self._ny1 + _yrefindex, axes, renderer) def get_subplotspec(self): if hasattr(self._axes_divider, "get_subplotspec"): return self._axes_divider.get_subplotspec() else: return None from matplotlib.gridspec import SubplotSpec, GridSpec class SubplotDivider(Divider): """ The Divider class whose rectangle area is specified as a subplot geometry. """ def __init__(self, fig, *args, **kwargs): """ *fig* is a :class:`matplotlib.figure.Figure` instance. *args* is the tuple (*numRows*, *numCols*, *plotNum*), where the array of subplots in the figure has dimensions *numRows*, *numCols*, and where *plotNum* is the number of the subplot being created. *plotNum* starts at 1 in the upper left corner and increases to the right. If *numRows* <= *numCols* <= *plotNum* < 10, *args* can be the decimal integer *numRows* * 100 + *numCols* * 10 + *plotNum*. """ self.figure = fig if len(args)==1: if isinstance(args[0], SubplotSpec): self._subplotspec = args[0] else: try: s = str(int(args[0])) rows, cols, num = list(map(int, s)) except ValueError: raise ValueError( 'Single argument to subplot must be a 3-digit integer') self._subplotspec = GridSpec(rows, cols)[num-1] # num - 1 for converting from MATLAB to python indexing elif len(args)==3: rows, cols, num = args rows = int(rows) cols = int(cols) if isinstance(num, tuple) and len(num) == 2: num = [int(n) for n in num] self._subplotspec = GridSpec(rows, cols)[num[0]-1:num[1]] else: self._subplotspec = GridSpec(rows, cols)[int(num)-1] # num - 1 for converting from MATLAB to python indexing else: raise ValueError('Illegal argument(s) to subplot: %s' % (args,)) # total = rows*cols # num -= 1 # convert from matlab to python indexing # # ie num in range(0,total) # if num >= total: # raise ValueError( 'Subplot number exceeds total subplots') # self._rows = rows # self._cols = cols # self._num = num # self.update_params() # sets self.fixbox self.update_params() pos = self.figbox.bounds horizontal = kwargs.pop("horizontal", []) vertical = kwargs.pop("vertical", []) aspect = kwargs.pop("aspect", None) anchor = kwargs.pop("anchor", "C") if kwargs: raise Exception("") Divider.__init__(self, fig, pos, horizontal, vertical, aspect=aspect, anchor=anchor) def get_position(self): "return the bounds of the subplot box" self.update_params() # update self.figbox return self.figbox.bounds # def update_params(self): # 'update the subplot position from fig.subplotpars' # rows = self._rows # cols = self._cols # num = self._num # pars = self.figure.subplotpars # left = pars.left # right = pars.right # bottom = pars.bottom # top = pars.top # wspace = pars.wspace # hspace = pars.hspace # totWidth = right-left # totHeight = top-bottom # figH = totHeight/(rows + hspace*(rows-1)) # sepH = hspace*figH # figW = totWidth/(cols + wspace*(cols-1)) # sepW = wspace*figW # rowNum, colNum = divmod(num, cols) # figBottom = top - (rowNum+1)*figH - rowNum*sepH # figLeft = left + colNum*(figW + sepW) # self.figbox = mtransforms.Bbox.from_bounds(figLeft, figBottom, # figW, figH) def update_params(self): 'update the subplot position from fig.subplotpars' self.figbox = self.get_subplotspec().get_position(self.figure) def get_geometry(self): 'get the subplot geometry, eg 2,2,3' rows, cols, num1, num2 = self.get_subplotspec().get_geometry() return rows, cols, num1+1 # for compatibility # COVERAGE NOTE: Never used internally or from examples def change_geometry(self, numrows, numcols, num): 'change subplot geometry, e.g., from 1,1,1 to 2,2,3' self._subplotspec = GridSpec(numrows, numcols)[num-1] self.update_params() self.set_position(self.figbox) def get_subplotspec(self): 'get the SubplotSpec instance' return self._subplotspec def set_subplotspec(self, subplotspec): 'set the SubplotSpec instance' self._subplotspec = subplotspec class AxesDivider(Divider): """ Divider based on the pre-existing axes. """ def __init__(self, axes, xref=None, yref=None): """ :param axes: axes """ self._axes = axes if xref==None: self._xref = Size.AxesX(axes) else: self._xref = xref if yref==None: self._yref = Size.AxesY(axes) else: self._yref = yref Divider.__init__(self, fig=axes.get_figure(), pos=None, horizontal=[self._xref], vertical=[self._yref], aspect=None, anchor="C") def _get_new_axes(self, **kwargs): axes = self._axes axes_class = kwargs.pop("axes_class", None) if axes_class is None: if isinstance(axes, SubplotBase): axes_class = axes._axes_class else: axes_class = type(axes) ax = axes_class(axes.get_figure(), axes.get_position(original=True), **kwargs) return ax def new_horizontal(self, size, pad=None, pack_start=False, **kwargs): """ Add a new axes on the right (or left) side of the main axes. :param size: A width of the axes. A :mod:`~mpl_toolkits.axes_grid.axes_size` instance or if float or string is given, *from_any* function is used to create one, with *ref_size* set to AxesX instance of the current axes. :param pad: pad between the axes. It takes same argument as *size*. :param pack_start: If False, the new axes is appended at the end of the list, i.e., it became the right-most axes. If True, it is inserted at the start of the list, and becomes the left-most axes. All extra keywords arguments are passed to the created axes. If *axes_class* is given, the new axes will be created as an instance of the given class. Otherwise, the same class of the main axes will be used. """ if pad: if not isinstance(pad, Size._Base): pad = Size.from_any(pad, fraction_ref=self._xref) if pack_start: self._horizontal.insert(0, pad) self._xrefindex += 1 else: self._horizontal.append(pad) if not isinstance(size, Size._Base): size = Size.from_any(size, fraction_ref=self._xref) if pack_start: self._horizontal.insert(0, size) self._xrefindex += 1 locator = self.new_locator(nx=0, ny=0) else: self._horizontal.append(size) locator = self.new_locator(nx=len(self._horizontal)-1, ny=0) ax = self._get_new_axes(**kwargs) ax.set_axes_locator(locator) return ax def new_vertical(self, size, pad=None, pack_start=False, **kwargs): """ Add a new axes on the top (or bottom) side of the main axes. :param size: A height of the axes. A :mod:`~mpl_toolkits.axes_grid.axes_size` instance or if float or string is given, *from_any* function is used to create one, with *ref_size* set to AxesX instance of the current axes. :param pad: pad between the axes. It takes same argument as *size*. :param pack_start: If False, the new axes is appended at the end of the list, i.e., it became the top-most axes. If True, it is inserted at the start of the list, and becomes the bottom-most axes. All extra keywords arguments are passed to the created axes. If *axes_class* is given, the new axes will be created as an instance of the given class. Otherwise, the same class of the main axes will be used. """ if pad: if not isinstance(pad, Size._Base): pad = Size.from_any(pad, fraction_ref=self._yref) if pack_start: self._vertical.insert(0, pad) self._yrefindex += 1 else: self._vertical.append(pad) if not isinstance(size, Size._Base): size = Size.from_any(size, fraction_ref=self._yref) if pack_start: self._vertical.insert(0, size) self._yrefindex += 1 locator = self.new_locator(nx=0, ny=0) else: self._vertical.append(size) locator = self.new_locator(nx=0, ny=len(self._vertical)-1) ax = self._get_new_axes(**kwargs) ax.set_axes_locator(locator) return ax def append_axes(self, position, size, pad=None, add_to_figure=True, **kwargs): """ create an axes at the given *position* with the same height (or width) of the main axes. *position* ["left"|"right"|"bottom"|"top"] *size* and *pad* should be axes_grid.axes_size compatible. """ if position == "left": ax = self.new_horizontal(size, pad, pack_start=True, **kwargs) elif position == "right": ax = self.new_horizontal(size, pad, pack_start=False, **kwargs) elif position == "bottom": ax = self.new_vertical(size, pad, pack_start=True, **kwargs) elif position == "top": ax = self.new_vertical(size, pad, pack_start=False, **kwargs) else: raise ValueError("the position must be one of left, right, bottom, or top") if add_to_figure: self._fig.add_axes(ax) return ax def get_aspect(self): if self._aspect is None: aspect = self._axes.get_aspect() if aspect == "auto": return False else: return True else: return self._aspect def get_position(self): if self._pos is None: bbox = self._axes.get_position(original=True) return bbox.bounds else: return self._pos def get_anchor(self): if self._anchor is None: return self._axes.get_anchor() else: return self._anchor def get_subplotspec(self): if hasattr(self._axes, "get_subplotspec"): return self._axes.get_subplotspec() else: return None class HBoxDivider(SubplotDivider): def __init__(self, fig, *args, **kwargs): SubplotDivider.__init__(self, fig, *args, **kwargs) @staticmethod def _determine_karray(equivalent_sizes, appended_sizes, max_equivalent_size, total_appended_size): n = len(equivalent_sizes) import numpy as np A = np.mat(np.zeros((n+1, n+1), dtype="d")) B = np.zeros((n+1), dtype="d") # AxK = B # populated A for i, (r, a) in enumerate(equivalent_sizes): A[i,i] = r A[i,-1] = -1 B[i] = -a A[-1,:-1] = [r for r, a in appended_sizes] B[-1] = total_appended_size - sum([a for rs, a in appended_sizes]) karray_H = (A.I*np.mat(B).T).A1 karray = karray_H[:-1] H = karray_H[-1] if H > max_equivalent_size: karray = (max_equivalent_size - \ np.array([a for r, a in equivalent_sizes])) \ / np.array([r for r, a in equivalent_sizes]) return karray @staticmethod def _calc_offsets(appended_sizes, karray): offsets = [0.] #for s in l: for (r, a), k in zip(appended_sizes, karray): offsets.append(offsets[-1] + r*k + a) return offsets def new_locator(self, nx, nx1=None): """ returns a new locator (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for specified cell. :param nx, nx1: Integers specifying the column-position of the cell. When nx1 is None, a single nx-th column is specified. Otherwise location of columns spanning between nx to nx1 (but excluding nx1-th column) is specified. :param ny, ny1: same as nx and nx1, but for row positions. """ return AxesLocator(self, nx, 0, nx1, None) def _locate(self, x, y, w, h, y_equivalent_sizes, x_appended_sizes, figW, figH): """ :param nx, nx1: Integers specifying the column-position of the cell. When nx1 is None, a single nx-th column is specified. Otherwise location of columns spanning between nx to nx1 (but excluding nx1-th column) is specified. :param ny, ny1: same as nx and nx1, but for row positions. """ equivalent_sizes = y_equivalent_sizes appended_sizes = x_appended_sizes max_equivalent_size = figH*h total_appended_size = figW*w karray = self._determine_karray(equivalent_sizes, appended_sizes, max_equivalent_size, total_appended_size) ox = self._calc_offsets(appended_sizes, karray) ww = (ox[-1] - ox[0])/figW ref_h = equivalent_sizes[0] hh = (karray[0]*ref_h[0] + ref_h[1])/figH pb = mtransforms.Bbox.from_bounds(x, y, w, h) pb1 = mtransforms.Bbox.from_bounds(x, y, ww, hh) pb1_anchored = pb1.anchored(self.get_anchor(), pb) x0, y0 = pb1_anchored.x0, pb1_anchored.y0 return x0, y0, ox, hh def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None): """ :param nx, nx1: Integers specifying the column-position of the cell. When nx1 is None, a single nx-th column is specified. Otherwise location of columns spanning between nx to nx1 (but excluding nx1-th column) is specified. :param ny, ny1: same as nx and nx1, but for row positions. """ figW,figH = self._fig.get_size_inches() x, y, w, h = self.get_position_runtime(axes, renderer) y_equivalent_sizes = self.get_vertical_sizes(renderer) x_appended_sizes = self.get_horizontal_sizes(renderer) x0, y0, ox, hh = self._locate(x, y, w, h, y_equivalent_sizes, x_appended_sizes, figW, figH) if nx1 is None: nx1=nx+1 x1, w1 = x0 + ox[nx]/figW, (ox[nx1] - ox[nx])/figW y1, h1 = y0, hh return mtransforms.Bbox.from_bounds(x1, y1, w1, h1) class VBoxDivider(HBoxDivider): """ The Divider class whose rectangle area is specified as a subplot geometry. """ def new_locator(self, ny, ny1=None): """ returns a new locator (:class:`mpl_toolkits.axes_grid.axes_divider.AxesLocator`) for specified cell. :param nx, nx1: Integers specifying the column-position of the cell. When nx1 is None, a single nx-th column is specified. Otherwise location of columns spanning between nx to nx1 (but excluding nx1-th column) is specified. :param ny, ny1: same as nx and nx1, but for row positions. """ return AxesLocator(self, 0, ny, None, ny1) def locate(self, nx, ny, nx1=None, ny1=None, axes=None, renderer=None): """ :param nx, nx1: Integers specifying the column-position of the cell. When nx1 is None, a single nx-th column is specified. Otherwise location of columns spanning between nx to nx1 (but excluding nx1-th column) is specified. :param ny, ny1: same as nx and nx1, but for row positions. """ figW,figH = self._fig.get_size_inches() x, y, w, h = self.get_position_runtime(axes, renderer) x_equivalent_sizes = self.get_horizontal_sizes(renderer) y_appended_sizes = self.get_vertical_sizes(renderer) y0, x0, oy, ww = self._locate(y, x, h, w, x_equivalent_sizes, y_appended_sizes, figH, figW) if ny1 is None: ny1=ny+1 x1, w1 = x0, ww y1, h1 = y0 + oy[ny]/figH, (oy[ny1] - oy[ny])/figH return mtransforms.Bbox.from_bounds(x1, y1, w1, h1) class LocatableAxesBase: def __init__(self, *kl, **kw): self._axes_class.__init__(self, *kl, **kw) self._locator = None self._locator_renderer = None def set_axes_locator(self, locator): self._locator = locator def get_axes_locator(self): return self._locator def apply_aspect(self, position=None): if self.get_axes_locator() is None: self._axes_class.apply_aspect(self, position) else: pos = self.get_axes_locator()(self, self._locator_renderer) self._axes_class.apply_aspect(self, position=pos) def draw(self, renderer=None, inframe=False): self._locator_renderer = renderer self._axes_class.draw(self, renderer, inframe) _locatableaxes_classes = {} def locatable_axes_factory(axes_class): new_class = _locatableaxes_classes.get(axes_class) if new_class is None: new_class = type("Locatable%s" % (axes_class.__name__), (LocatableAxesBase, axes_class), {'_axes_class': axes_class}) _locatableaxes_classes[axes_class] = new_class return new_class #if hasattr(maxes.Axes, "get_axes_locator"): # LocatableAxes = maxes.Axes #else: def make_axes_locatable(axes): if not hasattr(axes, "set_axes_locator"): new_class = locatable_axes_factory(type(axes)) axes.__class__ = new_class divider = AxesDivider(axes) locator = divider.new_locator(nx=0, ny=0) axes.set_axes_locator(locator) return divider def make_axes_area_auto_adjustable(ax, use_axes=None, pad=0.1, adjust_dirs=["left", "right", "bottom", "top"]): divider = make_axes_locatable(ax) if use_axes is None: use_axes = ax divider.add_auto_adjustable_area(use_axes=use_axes, pad=pad, adjust_dirs=adjust_dirs) #from matplotlib.axes import Axes from .mpl_axes import Axes LocatableAxes = locatable_axes_factory(Axes)
gpl-3.0
devs1991/test_edx_docmode
venv/lib/python2.7/site-packages/sklearn/datasets/species_distributions.py
7
7758
""" ============================= Species distribution dataset ============================= This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. References: * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes: * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset """ # Authors: Peter Prettenhofer <[email protected]> # Jake Vanderplas <[email protected]> # # License: Simplified BSD from cStringIO import StringIO from os import makedirs from os.path import join from os.path import exists import urllib2 import numpy as np from sklearn.datasets.base import get_data_home, Bunch from sklearn.externals import joblib DIRECTORY_URL = "http://www.cs.princeton.edu/~schapire/maxent/datasets/" SAMPLES_URL = join(DIRECTORY_URL, "samples.zip") COVERAGES_URL = join(DIRECTORY_URL, "coverages.zip") DATA_ARCHIVE_NAME = "species_coverage.pkz" def _load_coverage(F, header_length=6, dtype=np.int16): """ load a coverage file. This will return a numpy array of the given dtype """ try: header = [F.readline() for i in range(header_length)] except: F = open(F) header = [F.readline() for i in range(header_length)] make_tuple = lambda t: (t.split()[0], float(t.split()[1])) header = dict([make_tuple(line) for line in header]) M = np.loadtxt(F, dtype=dtype) nodata = header['NODATA_value'] if nodata != -9999: M[nodata] = -9999 return M def _load_csv(F): """Load csv file. Paramters --------- F : string or file object file object or name of file Returns ------- rec : np.ndarray record array representing the data """ try: names = F.readline().strip().split(',') except: F = open(F) names = F.readline().strip().split(',') rec = np.loadtxt(F, skiprows=1, delimiter=',', dtype='a22,f4,f4') rec.dtype.names = names return rec def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid) def fetch_species_distributions(data_home=None, download_if_missing=True): """Loader for species distribution dataset from Phillips et. al. (2006) Parameters ---------- data_home : optional, default: None Specify another download and cache folder for the datasets. By default all scikit learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing: optional, True by default If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. Notes ------ This dataset represents the geographic distribution of species. The dataset is provided by Phillips et. al. (2006). The two species are: - `"Bradypus variegatus" <http://www.iucnredlist.org/apps/redlist/details/3038/0>`_ , the Brown-throated Sloth. - `"Microryzomys minutus" <http://www.iucnredlist.org/apps/redlist/details/13408/0>`_ , also known as the Forest Small Rice Rat, a rodent that lives in Peru, Colombia, Ecuador, Peru, and Venezuela. The data is returned as a Bunch object with the following attributes: coverages : array, shape = [14, 1592, 1212] These represent the 14 features measured at each point of the map grid. The latitude/longitude values for the grid are discussed below. Missing data is represented by the value -9999. train : record array, shape = (1623,) The training points for the data. Each point has three fields: - train['species'] is the species name - train['dd long'] is the longitude, in degrees - train['dd lat'] is the latitude, in degrees test : record array, shape = (619,) The test points for the data. Same format as the training data. Nx, Ny : integers The number of longitudes (x) and latitudes (y) in the grid x_left_lower_corner, y_left_lower_corner : floats The (x,y) position of the lower-left corner, in degrees grid_size : float The spacing between points of the grid, in degrees References ---------- * `"Maximum entropy modeling of species geographic distributions" <http://www.cs.princeton.edu/~schapire/papers/ecolmod.pdf>`_ S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling, 190:231-259, 2006. Notes ----- * See examples/applications/plot_species_distribution_modeling.py for an example of using this dataset with scikit-learn """ data_home = get_data_home(data_home) if not exists(data_home): makedirs(data_home) # Define parameters for the data files. These should not be changed # unless the data model changes. They will be saved in the npz file # with the downloaded data. extra_params = dict(x_left_lower_corner=-94.8, Nx=1212, y_left_lower_corner=-56.05, Ny=1592, grid_size=0.05) dtype = np.int16 if not exists(join(data_home, DATA_ARCHIVE_NAME)): print 'Downloading species data from %s to %s' % (SAMPLES_URL, data_home) X = np.load(StringIO(urllib2.urlopen(SAMPLES_URL).read())) for f in X.files: fhandle = StringIO(X[f]) if 'train' in f: train = _load_csv(fhandle) if 'test' in f: test = _load_csv(fhandle) print 'Downloading coverage data from %s to %s' % (COVERAGES_URL, data_home) X = np.load(StringIO(urllib2.urlopen(COVERAGES_URL).read())) coverages = [] for f in X.files: fhandle = StringIO(X[f]) print ' - converting', f coverages.append(_load_coverage(fhandle)) coverages = np.asarray(coverages, dtype=dtype) bunch = Bunch(coverages=coverages, test=test, train=train, **extra_params) joblib.dump(bunch, join(data_home, DATA_ARCHIVE_NAME), compress=9) else: bunch = joblib.load(join(data_home, DATA_ARCHIVE_NAME)) return bunch
agpl-3.0
kernc/scikit-learn
sklearn/neighbors/base.py
30
30564
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import check_X_y, check_array, _get_n_jobs, gen_even_slices from ..utils.fixes import argpartition from ..utils.multiclass import check_classification_targets from ..externals import six from ..externals.joblib import Parallel, delayed from ..exceptions import NotFittedError from ..exceptions import DataConversionWarning VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist: ndarray The input distances weights: {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr: array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': # if user attempts to classify a point that was zero distance from one # or more training points, those training points are weighted as 1.0 # and the other points as 0.0 if dist.dtype is np.dtype(object): for point_dist_i, point_dist in enumerate(dist): # check if point_dist is iterable # (ex: RadiusNeighborClassifier.predict may set an element of # dist to 1e-6 to represent an 'outlier') if hasattr(point_dist, '__contains__') and 0. in point_dist: dist[point_dist_i] = point_dist == 0. else: dist[point_dist_i] = 1. / point_dist else: with np.errstate(divide='ignore'): dist = 1. / dist inf_mask = np.isinf(dist) inf_row = np.any(inf_mask, axis=1) dist[inf_row] = inf_mask[inf_row] return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1): self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p self.n_jobs = n_jobs if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': if metric == 'precomputed': alg_check = 'brute' else: alg_check = 'ball_tree' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if ((self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2) and self.metric != 'precomputed'): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' else: self._fit_method = 'ball_tree' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) if self.n_neighbors is not None: if self.n_neighbors <= 0: raise ValueError( "Expected n_neighbors > 0. Got %d" % self.n_neighbors ) return self @property def _pairwise(self): # For cross-validation routines to split data correctly return self.metric == 'precomputed' class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X=None, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point. Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to points, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([[1., 1., 1.]])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if n_neighbors is None: n_neighbors = self.n_neighbors if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X # Include an extra neighbor to account for the sample itself being # returned, which is removed later n_neighbors += 1 train_size = self._fit_X.shape[0] if n_neighbors > train_size: raise ValueError( "Expected n_neighbors <= n_samples, " " but n_samples = %d, n_neighbors = %d" % (train_size, n_neighbors) ) n_samples, _ = X.shape sample_range = np.arange(n_samples)[:, None] n_jobs = _get_n_jobs(self.n_jobs) if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', n_jobs=n_jobs, squared=True) else: dist = pairwise_distances( X, self._fit_X, self.effective_metric_, n_jobs=n_jobs, **self.effective_metric_params_) neigh_ind = argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again neigh_ind = neigh_ind[ sample_range, np.argsort(dist[sample_range, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind else: result = dist[sample_range, neigh_ind], neigh_ind else: result = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) result = Parallel(n_jobs, backend='threading')( delayed(self._tree.query, check_pickle=False)( X[s], n_neighbors, return_distance) for s in gen_even_slices(X.shape[0], n_jobs) ) if return_distance: dist, neigh_ind = tuple(zip(*result)) result = np.vstack(dist), np.vstack(neigh_ind) else: result = np.vstack(result) else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return result else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = result else: neigh_ind = result sample_mask = neigh_ind != sample_range # Corner case: When the number of duplicates are more # than the number of neighbors, the first NN will not # be the sample, but a duplicate. # In that case mask the first duplicate. dup_gr_nbrs = np.all(sample_mask, axis=1) sample_mask[:, 0][dup_gr_nbrs] = False neigh_ind = np.reshape( neigh_ind[sample_mask], (n_samples, n_neighbors - 1)) if return_distance: dist = np.reshape( dist[sample_mask], (n_samples, n_neighbors - 1)) return dist, neigh_ind return neigh_ind def kneighbors_graph(self, X=None, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ if n_neighbors is None: n_neighbors = self.n_neighbors # kneighbors does the None handling. if X is not None: X = check_array(X, accept_sparse='csr') n_samples1 = X.shape[0] else: n_samples1 = self._fit_X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones(n_samples1 * n_neighbors) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': A_data, A_ind = self.kneighbors( X, n_neighbors, return_distance=True) A_data = np.ravel(A_data) else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) kneighbors_graph = csr_matrix((A_data, A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) return kneighbors_graph class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X=None, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1, 1, 1]: >>> import numpy as np >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> rng = neigh.radius_neighbors([[1., 1., 1.]]) >>> print(np.asarray(rng[0][0])) # doctest: +ELLIPSIS [ 1.5 0.5] >>> print(np.asarray(rng[1][0])) # doctest: +ELLIPSIS [1 2] The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X if radius is None: radius = self.radius n_samples = X.shape[0] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, **self.effective_metric_params_) neigh_ind_list = [np.where(d <= radius)[0] for d in dist] # See https://github.com/numpy/numpy/issues/5456 # if you want to understand why this is initialized this way. neigh_ind = np.empty(n_samples, dtype='object') neigh_ind[:] = neigh_ind_list if return_distance: dist_array = np.empty(n_samples, dtype='object') if self.effective_metric_ == 'euclidean': dist_list = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)] else: dist_list = [d[neigh_ind[i]] for i, d in enumerate(dist)] dist_array[:] = dist_list results = dist_array, neigh_ind else: results = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: results = results[::-1] else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return results else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = results else: neigh_ind = results for ind, ind_neighbor in enumerate(neigh_ind): mask = ind_neighbor != ind neigh_ind[ind] = ind_neighbor[mask] if return_distance: dist[ind] = dist[ind][mask] if return_distance: return dist, neigh_ind return neigh_ind def radius_neighbors_graph(self, X=None, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if X is not None: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) n_samples2 = self._fit_X.shape[0] if radius is None: radius = self.radius # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_samples1 = A_ind.shape[0] n_neighbors = np.array([len(a) for a in A_ind]) A_ind = np.concatenate(list(A_ind)) if A_data is None: A_data = np.ones(len(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True check_classification_targets(y) self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. """ return self._fit(X)
bsd-3-clause
robin-lai/scikit-learn
sklearn/neural_network/rbm.py
206
12292
"""Restricted Boltzmann Machine """ # Authors: Yann N. Dauphin <[email protected]> # Vlad Niculae # Gabriel Synnaeve # Lars Buitinck # License: BSD 3 clause import time import numpy as np import scipy.sparse as sp from ..base import BaseEstimator from ..base import TransformerMixin from ..externals.six.moves import xrange from ..utils import check_array from ..utils import check_random_state from ..utils import gen_even_slices from ..utils import issparse from ..utils.extmath import safe_sparse_dot from ..utils.extmath import log_logistic from ..utils.fixes import expit # logistic function from ..utils.validation import check_is_fitted class BernoulliRBM(BaseEstimator, TransformerMixin): """Bernoulli Restricted Boltzmann Machine (RBM). A Restricted Boltzmann Machine with binary visible units and binary hiddens. Parameters are estimated using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) [2]. The time complexity of this implementation is ``O(d ** 2)`` assuming d ~ n_features ~ n_components. Read more in the :ref:`User Guide <rbm>`. Parameters ---------- n_components : int, optional Number of binary hidden units. learning_rate : float, optional The learning rate for weight updates. It is *highly* recommended to tune this hyper-parameter. Reasonable values are in the 10**[0., -3.] range. batch_size : int, optional Number of examples per minibatch. n_iter : int, optional Number of iterations/sweeps over the training dataset to perform during training. verbose : int, optional The verbosity level. The default, zero, means silent mode. random_state : integer or numpy.RandomState, optional A random number generator instance to define the state of the random permutations generator. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- intercept_hidden_ : array-like, shape (n_components,) Biases of the hidden units. intercept_visible_ : array-like, shape (n_features,) Biases of the visible units. components_ : array-like, shape (n_components, n_features) Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units. Examples -------- >>> import numpy as np >>> from sklearn.neural_network import BernoulliRBM >>> X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]]) >>> model = BernoulliRBM(n_components=2) >>> model.fit(X) BernoulliRBM(batch_size=10, learning_rate=0.1, n_components=2, n_iter=10, random_state=None, verbose=0) References ---------- [1] Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation 18, pp 1527-1554. http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf [2] Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. International Conference on Machine Learning (ICML) 2008 """ def __init__(self, n_components=256, learning_rate=0.1, batch_size=10, n_iter=10, verbose=0, random_state=None): self.n_components = n_components self.learning_rate = learning_rate self.batch_size = batch_size self.n_iter = n_iter self.verbose = verbose self.random_state = random_state def transform(self, X): """Compute the hidden layer activation probabilities, P(h=1|v=X). Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) The data to be transformed. Returns ------- h : array, shape (n_samples, n_components) Latent representations of the data. """ check_is_fitted(self, "components_") X = check_array(X, accept_sparse='csr', dtype=np.float) return self._mean_hiddens(X) def _mean_hiddens(self, v): """Computes the probabilities P(h=1|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- h : array-like, shape (n_samples, n_components) Corresponding mean field values for the hidden layer. """ p = safe_sparse_dot(v, self.components_.T) p += self.intercept_hidden_ return expit(p, out=p) def _sample_hiddens(self, v, rng): """Sample from the distribution P(h|v). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to sample from. rng : RandomState Random number generator to use. Returns ------- h : array-like, shape (n_samples, n_components) Values of the hidden layer. """ p = self._mean_hiddens(v) return (rng.random_sample(size=p.shape) < p) def _sample_visibles(self, h, rng): """Sample from the distribution P(v|h). Parameters ---------- h : array-like, shape (n_samples, n_components) Values of the hidden layer to sample from. rng : RandomState Random number generator to use. Returns ------- v : array-like, shape (n_samples, n_features) Values of the visible layer. """ p = np.dot(h, self.components_) p += self.intercept_visible_ expit(p, out=p) return (rng.random_sample(size=p.shape) < p) def _free_energy(self, v): """Computes the free energy F(v) = - log sum_h exp(-E(v,h)). Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer. Returns ------- free_energy : array-like, shape (n_samples,) The value of the free energy. """ return (- safe_sparse_dot(v, self.intercept_visible_) - np.logaddexp(0, safe_sparse_dot(v, self.components_.T) + self.intercept_hidden_).sum(axis=1)) def gibbs(self, v): """Perform one Gibbs sampling step. Parameters ---------- v : array-like, shape (n_samples, n_features) Values of the visible layer to start from. Returns ------- v_new : array-like, shape (n_samples, n_features) Values of the visible layer after one Gibbs step. """ check_is_fitted(self, "components_") if not hasattr(self, "random_state_"): self.random_state_ = check_random_state(self.random_state) h_ = self._sample_hiddens(v, self.random_state_) v_ = self._sample_visibles(h_, self.random_state_) return v_ def partial_fit(self, X, y=None): """Fit the model to the data X which should contain a partial segment of the data. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float) if not hasattr(self, 'random_state_'): self.random_state_ = check_random_state(self.random_state) if not hasattr(self, 'components_'): self.components_ = np.asarray( self.random_state_.normal( 0, 0.01, (self.n_components, X.shape[1]) ), order='fortran') if not hasattr(self, 'intercept_hidden_'): self.intercept_hidden_ = np.zeros(self.n_components, ) if not hasattr(self, 'intercept_visible_'): self.intercept_visible_ = np.zeros(X.shape[1], ) if not hasattr(self, 'h_samples_'): self.h_samples_ = np.zeros((self.batch_size, self.n_components)) self._fit(X, self.random_state_) def _fit(self, v_pos, rng): """Inner fit for one mini-batch. Adjust the parameters to maximize the likelihood of v using Stochastic Maximum Likelihood (SML). Parameters ---------- v_pos : array-like, shape (n_samples, n_features) The data to use for training. rng : RandomState Random number generator to use for sampling. """ h_pos = self._mean_hiddens(v_pos) v_neg = self._sample_visibles(self.h_samples_, rng) h_neg = self._mean_hiddens(v_neg) lr = float(self.learning_rate) / v_pos.shape[0] update = safe_sparse_dot(v_pos.T, h_pos, dense_output=True).T update -= np.dot(h_neg.T, v_neg) self.components_ += lr * update self.intercept_hidden_ += lr * (h_pos.sum(axis=0) - h_neg.sum(axis=0)) self.intercept_visible_ += lr * (np.asarray( v_pos.sum(axis=0)).squeeze() - v_neg.sum(axis=0)) h_neg[rng.uniform(size=h_neg.shape) < h_neg] = 1.0 # sample binomial self.h_samples_ = np.floor(h_neg, h_neg) def score_samples(self, X): """Compute the pseudo-likelihood of X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Values of the visible layer. Must be all-boolean (not checked). Returns ------- pseudo_likelihood : array-like, shape (n_samples,) Value of the pseudo-likelihood (proxy for likelihood). Notes ----- This method is not deterministic: it computes a quantity called the free energy on X, then on a randomly corrupted version of X, and returns the log of the logistic function of the difference. """ check_is_fitted(self, "components_") v = check_array(X, accept_sparse='csr') rng = check_random_state(self.random_state) # Randomly corrupt one feature in each sample in v. ind = (np.arange(v.shape[0]), rng.randint(0, v.shape[1], v.shape[0])) if issparse(v): data = -2 * v[ind] + 1 v_ = v + sp.csr_matrix((data.A.ravel(), ind), shape=v.shape) else: v_ = v.copy() v_[ind] = 1 - v_[ind] fe = self._free_energy(v) fe_ = self._free_energy(v_) return v.shape[1] * log_logistic(fe_ - fe) def fit(self, X, y=None): """Fit the model to the data X. Parameters ---------- X : {array-like, sparse matrix} shape (n_samples, n_features) Training data. Returns ------- self : BernoulliRBM The fitted model. """ X = check_array(X, accept_sparse='csr', dtype=np.float) n_samples = X.shape[0] rng = check_random_state(self.random_state) self.components_ = np.asarray( rng.normal(0, 0.01, (self.n_components, X.shape[1])), order='fortran') self.intercept_hidden_ = np.zeros(self.n_components, ) self.intercept_visible_ = np.zeros(X.shape[1], ) self.h_samples_ = np.zeros((self.batch_size, self.n_components)) n_batches = int(np.ceil(float(n_samples) / self.batch_size)) batch_slices = list(gen_even_slices(n_batches * self.batch_size, n_batches, n_samples)) verbose = self.verbose begin = time.time() for iteration in xrange(1, self.n_iter + 1): for batch_slice in batch_slices: self._fit(X[batch_slice], rng) if verbose: end = time.time() print("[%s] Iteration %d, pseudo-likelihood = %.2f," " time = %.2fs" % (type(self).__name__, iteration, self.score_samples(X).mean(), end - begin)) begin = end return self
bsd-3-clause
florentchandelier/zipline
tests/pipeline/test_classifier.py
2
17221
from functools import reduce from operator import or_ import numpy as np import pandas as pd from zipline.lib.labelarray import LabelArray from zipline.pipeline import Classifier from zipline.testing import parameter_space from zipline.testing.fixtures import ZiplineTestCase from zipline.testing.predicates import assert_equal from zipline.utils.numpy_utils import ( categorical_dtype, int64_dtype, ) from .base import BasePipelineTestCase bytes_dtype = np.dtype('S3') unicode_dtype = np.dtype('U3') class ClassifierTestCase(BasePipelineTestCase): @parameter_space(mv=[-1, 0, 1, 999]) def test_integral_isnull(self, mv): class C(Classifier): dtype = int64_dtype missing_value = mv inputs = () window_length = 0 c = C() # There's no significance to the values here other than that they # contain a mix of missing and non-missing values. data = np.array([[-1, 1, 0, 2], [3, 0, 1, 0], [-5, 0, -1, 0], [-3, 1, 2, 2]], dtype=int64_dtype) self.check_terms( terms={ 'isnull': c.isnull(), 'notnull': c.notnull() }, expected={ 'isnull': data == mv, 'notnull': data != mv, }, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) @parameter_space(mv=['0', None]) def test_string_isnull(self, mv): class C(Classifier): dtype = categorical_dtype missing_value = mv inputs = () window_length = 0 c = C() # There's no significance to the values here other than that they # contain a mix of missing and non-missing values. raw = np.asarray( [['', 'a', 'ab', 'ba'], ['z', 'ab', 'a', 'ab'], ['aa', 'ab', '', 'ab'], ['aa', 'a', 'ba', 'ba']], dtype=categorical_dtype, ) data = LabelArray(raw, missing_value=mv) self.check_terms( terms={ 'isnull': c.isnull(), 'notnull': c.notnull() }, expected={ 'isnull': np.equal(raw, mv), 'notnull': np.not_equal(raw, mv), }, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) @parameter_space(compval=[0, 1, 999]) def test_eq(self, compval): class C(Classifier): dtype = int64_dtype missing_value = -1 inputs = () window_length = 0 c = C() # There's no significance to the values here other than that they # contain a mix of the comparison value and other values. data = np.array([[-1, 1, 0, 2], [3, 0, 1, 0], [-5, 0, -1, 0], [-3, 1, 2, 2]], dtype=int64_dtype) self.check_terms( terms={ 'eq': c.eq(compval), }, expected={ 'eq': (data == compval), }, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) @parameter_space( __fail_fast=True, compval=['a', 'ab', 'not in the array'], labelarray_dtype=(bytes_dtype, categorical_dtype, unicode_dtype), ) def test_string_eq(self, compval, labelarray_dtype): compval = labelarray_dtype.type(compval) class C(Classifier): dtype = categorical_dtype missing_value = '' inputs = () window_length = 0 c = C() # There's no significance to the values here other than that they # contain a mix of the comparison value and other values. data = LabelArray( np.asarray( [['', 'a', 'ab', 'ba'], ['z', 'ab', 'a', 'ab'], ['aa', 'ab', '', 'ab'], ['aa', 'a', 'ba', 'ba']], dtype=labelarray_dtype, ), missing_value='', ) self.check_terms( terms={ 'eq': c.eq(compval), }, expected={ 'eq': (data == compval), }, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) @parameter_space( missing=[-1, 0, 1], dtype_=[int64_dtype, categorical_dtype], ) def test_disallow_comparison_to_missing_value(self, missing, dtype_): if dtype_ == categorical_dtype: missing = str(missing) class C(Classifier): dtype = dtype_ missing_value = missing inputs = () window_length = 0 with self.assertRaises(ValueError) as e: C().eq(missing) errmsg = str(e.exception) self.assertEqual( errmsg, "Comparison against self.missing_value ({v!r}) in C.eq().\n" "Missing values have NaN semantics, so the requested comparison" " would always produce False.\n" "Use the isnull() method to check for missing values.".format( v=missing, ), ) @parameter_space(compval=[0, 1, 999], missing=[-1, 0, 999]) def test_not_equal(self, compval, missing): class C(Classifier): dtype = int64_dtype missing_value = missing inputs = () window_length = 0 c = C() # There's no significance to the values here other than that they # contain a mix of the comparison value and other values. data = np.array([[-1, 1, 0, 2], [3, 0, 1, 0], [-5, 0, -1, 0], [-3, 1, 2, 2]], dtype=int64_dtype) self.check_terms( terms={ 'ne': c != compval, }, expected={ 'ne': (data != compval) & (data != C.missing_value), }, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) @parameter_space( __fail_fast=True, compval=['a', 'ab', '', 'not in the array'], missing=['a', 'ab', '', 'not in the array'], labelarray_dtype=(bytes_dtype, unicode_dtype, categorical_dtype), ) def test_string_not_equal(self, compval, missing, labelarray_dtype): compval = labelarray_dtype.type(compval) class C(Classifier): dtype = categorical_dtype missing_value = missing inputs = () window_length = 0 c = C() # There's no significance to the values here other than that they # contain a mix of the comparison value and other values. data = LabelArray( np.asarray( [['', 'a', 'ab', 'ba'], ['z', 'ab', 'a', 'ab'], ['aa', 'ab', '', 'ab'], ['aa', 'a', 'ba', 'ba']], dtype=labelarray_dtype, ), missing_value=missing, ) expected = ( (data.as_int_array() != data.reverse_categories.get(compval, -1)) & (data.as_int_array() != data.reverse_categories[C.missing_value]) ) self.check_terms( terms={ 'ne': c != compval, }, expected={ 'ne': expected, }, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) @parameter_space( __fail_fast=True, compval=[u'a', u'b', u'ab', u'not in the array'], missing=[u'a', u'ab', u'', u'not in the array'], labelarray_dtype=(categorical_dtype, bytes_dtype, unicode_dtype), ) def test_string_elementwise_predicates(self, compval, missing, labelarray_dtype): if labelarray_dtype == bytes_dtype: compval = compval.encode('utf-8') missing = missing.encode('utf-8') startswith_re = b'^' + compval + b'.*' endswith_re = b'.*' + compval + b'$' substring_re = b'.*' + compval + b'.*' else: startswith_re = '^' + compval + '.*' endswith_re = '.*' + compval + '$' substring_re = '.*' + compval + '.*' class C(Classifier): dtype = categorical_dtype missing_value = missing inputs = () window_length = 0 c = C() # There's no significance to the values here other than that they # contain a mix of the comparison value and other values. data = LabelArray( np.asarray( [['', 'a', 'ab', 'ba'], ['z', 'ab', 'a', 'ab'], ['aa', 'ab', '', 'ab'], ['aa', 'a', 'ba', 'ba']], dtype=labelarray_dtype, ), missing_value=missing, ) terms = { 'startswith': c.startswith(compval), 'endswith': c.endswith(compval), 'has_substring': c.has_substring(compval), # Equivalent filters using regex matching. 'startswith_re': c.matches(startswith_re), 'endswith_re': c.matches(endswith_re), 'has_substring_re': c.matches(substring_re), } expected = { 'startswith': (data.startswith(compval) & (data != missing)), 'endswith': (data.endswith(compval) & (data != missing)), 'has_substring': (data.has_substring(compval) & (data != missing)), } for key in list(expected): expected[key + '_re'] = expected[key] self.check_terms( terms=terms, expected=expected, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) @parameter_space( __fail_fast=True, container_type=(set, list, tuple, frozenset), labelarray_dtype=(categorical_dtype, bytes_dtype, unicode_dtype), ) def test_element_of_strings(self, container_type, labelarray_dtype): missing = labelarray_dtype.type("not in the array") class C(Classifier): dtype = categorical_dtype missing_value = missing inputs = () window_length = 0 c = C() raw = np.asarray( [['', 'a', 'ab', 'ba'], ['z', 'ab', 'a', 'ab'], ['aa', 'ab', '', 'ab'], ['aa', 'a', 'ba', 'ba']], dtype=labelarray_dtype, ) data = LabelArray(raw, missing_value=missing) choices = [ container_type(choices) for choices in [ [], ['a', ''], ['a', 'a', 'a', 'ab', 'a'], set(data.reverse_categories) - {missing}, ['random value', 'ab'], ['_' * i for i in range(30)], ] ] def make_expected(choice_set): return np.vectorize(choice_set.__contains__, otypes=[bool])(raw) terms = {str(i): c.element_of(s) for i, s in enumerate(choices)} expected = {str(i): make_expected(s) for i, s in enumerate(choices)} self.check_terms( terms=terms, expected=expected, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) def test_element_of_integral(self): """ Element of is well-defined for integral classifiers. """ class C(Classifier): dtype = int64_dtype missing_value = -1 inputs = () window_length = 0 c = C() # There's no significance to the values here other than that they # contain a mix of missing and non-missing values. data = np.array([[-1, 1, 0, 2], [3, 0, 1, 0], [-5, 0, -1, 0], [-3, 1, 2, 2]], dtype=int64_dtype) terms = {} expected = {} for choices in [(0,), (0, 1), (0, 1, 2)]: terms[str(choices)] = c.element_of(choices) expected[str(choices)] = reduce( or_, (data == elem for elem in choices), np.zeros_like(data, dtype=bool), ) self.check_terms( terms=terms, expected=expected, initial_workspace={c: data}, mask=self.build_mask(self.ones_mask(shape=data.shape)), ) def test_element_of_rejects_missing_value(self): """ Test that element_of raises a useful error if we attempt to pass it an array of choices that include the classifier's missing_value. """ missing = "not in the array" class C(Classifier): dtype = categorical_dtype missing_value = missing inputs = () window_length = 0 c = C() for bad_elems in ([missing], [missing, 'random other value']): with self.assertRaises(ValueError) as e: c.element_of(bad_elems) errmsg = str(e.exception) expected = ( "Found self.missing_value ('not in the array') in choices" " supplied to C.element_of().\n" "Missing values have NaN semantics, so the requested" " comparison would always produce False.\n" "Use the isnull() method to check for missing values.\n" "Received choices were {}.".format(bad_elems) ) self.assertEqual(errmsg, expected) @parameter_space(dtype_=Classifier.ALLOWED_DTYPES) def test_element_of_rejects_unhashable_type(self, dtype_): class C(Classifier): dtype = dtype_ missing_value = dtype.type('1') inputs = () window_length = 0 c = C() with self.assertRaises(TypeError) as e: c.element_of([{'a': 1}]) errmsg = str(e.exception) expected = ( "Expected `choices` to be an iterable of hashable values," " but got [{'a': 1}] instead.\n" "This caused the following error: " "TypeError(\"unhashable type: 'dict'\",)." ) self.assertEqual(errmsg, expected) class TestPostProcessAndToWorkSpaceValue(ZiplineTestCase): def test_reversability_categorical(self): class F(Classifier): inputs = () window_length = 0 dtype = categorical_dtype missing_value = '<missing>' f = F() column_data = LabelArray( np.array( [['a', f.missing_value], ['b', f.missing_value], ['c', 'd']], ), missing_value=f.missing_value, ) assert_equal( f.postprocess(column_data.ravel()), pd.Categorical( ['a', f.missing_value, 'b', f.missing_value, 'c', 'd'], ), ) # only include the non-missing data pipeline_output = pd.Series( data=['a', 'b', 'c', 'd'], index=pd.MultiIndex.from_arrays([ [pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-02'), pd.Timestamp('2014-01-03'), pd.Timestamp('2014-01-03')], [0, 0, 0, 1], ]), dtype='category', ) assert_equal( f.to_workspace_value(pipeline_output, pd.Index([0, 1])), column_data, ) def test_reversability_int64(self): class F(Classifier): inputs = () window_length = 0 dtype = int64_dtype missing_value = -1 f = F() column_data = np.array( [[0, f.missing_value], [1, f.missing_value], [2, 3]], ) assert_equal(f.postprocess(column_data.ravel()), column_data.ravel()) # only include the non-missing data pipeline_output = pd.Series( data=[0, 1, 2, 3], index=pd.MultiIndex.from_arrays([ [pd.Timestamp('2014-01-01'), pd.Timestamp('2014-01-02'), pd.Timestamp('2014-01-03'), pd.Timestamp('2014-01-03')], [0, 0, 0, 1], ]), dtype=int64_dtype, ) assert_equal( f.to_workspace_value(pipeline_output, pd.Index([0, 1])), column_data, )
apache-2.0
alubbock/pysb
pysb/tests/test_simulator_scipy.py
5
19613
from pysb.testing import * import sys import copy import numpy as np from pysb import Monomer, Parameter, Initial, Observable, Rule, Expression from pysb.simulator import ScipyOdeSimulator, InconsistentParameterError from pysb.simulator.scipyode import CythonRhsBuilder from pysb.examples import robertson, earm_1_0, tyson_oscillator, localfunc import unittest import pandas as pd class TestScipySimulatorBase(object): @with_model def setUp(self): Monomer('A', ['a']) Monomer('B', ['b']) Parameter('ksynthA', 100) Parameter('ksynthB', 100) Parameter('kbindAB', 100) Parameter('A_init', 0) Parameter('B_init', 0) Initial(A(a=None), A_init) Initial(B(b=None), B_init) Observable("A_free", A(a=None)) Observable("B_free", B(b=None)) Observable("AB_complex", A(a=1) % B(b=1)) Rule('A_synth', None >> A(a=None), ksynthA) Rule('B_synth', None >> B(b=None), ksynthB) Rule('AB_bind', A(a=None) + B(b=None) >> A(a=1) % B(b=1), kbindAB) self.model = model # Convenience shortcut for accessing model monomer objects self.mon = lambda m: self.model.monomers[m] # This timespan is chosen to be enough to trigger a Jacobian evaluation # on the various solvers. self.time = np.linspace(0, 1) self.sim = ScipyOdeSimulator(self.model, tspan=self.time, integrator='vode') def tearDown(self): self.model = None self.time = None self.sim = None class TestScipySimulatorSingle(TestScipySimulatorBase): def test_vode_solver_run(self): """Test vode.""" simres = self.sim.run() assert simres._nsims == 1 @raises(ValueError) def test_invalid_init_kwarg(self): ScipyOdeSimulator(self.model, tspan=self.time, spam='eggs') def test_lsoda_solver_run(self): """Test lsoda.""" solver_lsoda = ScipyOdeSimulator(self.model, tspan=self.time, integrator='lsoda') solver_lsoda.run() def test_lsoda_jac_solver_run(self): """Test lsoda and analytic jacobian.""" solver_lsoda_jac = ScipyOdeSimulator(self.model, tspan=self.time, integrator='lsoda', use_analytic_jacobian=True) solver_lsoda_jac.run() def test_y0_as_list(self): """Test y0 with list of initial conditions""" # Test the initials getter method before anything is changed assert np.allclose( self.sim.initials[0][0:2], [ic.value.value for ic in self.model.initials] ) initials = [10, 20, 0] simres = self.sim.run(initials=initials) assert np.allclose(simres.initials[0], initials) assert np.allclose(simres.observables['A_free'][0], 10) def test_y0_as_ndarray(self): """Test y0 with numpy ndarray of initial conditions""" simres = self.sim.run(initials=np.asarray([10, 20, 0])) assert np.allclose(simres.observables['A_free'][0], 10) def test_y0_as_dictionary_monomer_species(self): """Test y0 with model-defined species.""" self.sim.initials = {self.mon('A')(a=None): 17} base_initials = self.sim.initials assert base_initials[0][0] == 17 simres = self.sim.run(initials={self.mon('A')(a=None): 10, self.mon('B')(b=1) % self.mon('A')(a=1): 0, self.mon('B')(b=None): 0}) assert np.allclose(simres.initials, [10, 0, 0]) assert np.allclose(simres.observables['A_free'][0], 10) # Initials should reset to base values assert np.allclose(self.sim.initials, base_initials) def test_y0_as_dictionary_with_bound_species(self): """Test y0 with dynamically generated species.""" simres = self.sim.run(initials={self.mon('A')(a=None): 0, self.mon('B')(b=1) % self.mon('A')(a=1): 100, self.mon('B')(b=None): 0}) assert np.allclose(simres.observables['AB_complex'][0], 100) def test_y0_as_dataframe(self): initials_dict = {self.mon('A')(a=None): [0], self.mon('B')(b=1) % self.mon('A')(a=1): [100], self.mon('B')(b=None): [0]} initials_df = pd.DataFrame(initials_dict) simres = self.sim.run(initials=initials_df) assert np.allclose(simres.observables['AB_complex'][0], 100) @raises(ValueError) def test_y0_as_pandas_series(self): self.sim.run(initials=pd.Series()) @raises(TypeError) def test_y0_non_numeric_value(self): """Test y0 with non-numeric value.""" self.sim.run(initials={self.mon('A')(a=None): 'eggs'}) def test_param_values_as_dictionary(self): """Test param_values as a dictionary.""" simres = self.sim.run(param_values={'kbindAB': 0}) # kbindAB=0 should ensure no AB_complex is produced. assert np.allclose(simres.observables["AB_complex"], 0) def test_param_values_as_dataframe(self): simres = self.sim.run(param_values=pd.DataFrame({'kbindAB': [0]})) assert np.allclose(simres.observables['AB_complex'], 0) @raises(ValueError) def test_param_values_as_pandas_series(self): self.sim.run(param_values=pd.Series()) def test_param_values_as_list_ndarray(self): """Test param_values as a list and ndarray.""" orig_param_values = self.sim.param_values param_values = [50, 60, 70, 0, 0] self.sim.param_values = param_values simres = self.sim.run() assert np.allclose(self.sim.param_values, param_values) assert np.allclose(simres.param_values, param_values) # Reset to original param values self.sim.param_values = orig_param_values # Same thing, but with a numpy array, applied as a run argument param_values = np.asarray([55, 65, 75, 0, 0]) simres = self.sim.run(param_values=param_values) assert np.allclose(simres.param_values, param_values) # param_values should reset to originals after the run assert np.allclose(self.sim.param_values, orig_param_values) @raises(IndexError) def test_param_values_invalid_dictionary_key(self): """Test param_values with invalid parameter name.""" self.sim.run(param_values={'spam': 150}) @raises(ValueError, TypeError) def test_param_values_non_numeric_value(self): """Test param_values with non-numeric value.""" self.sim.run(param_values={'ksynthA': 'eggs'}) def test_result_dataframe(self): df = self.sim.run().dataframe class TestScipyOdeCompilerTests(TestScipySimulatorBase): """Test vode and analytic jacobian with different compiler backends""" def setUp(self): super(TestScipyOdeCompilerTests, self).setUp() self.args = {'model': self.model, 'tspan': self.time, 'integrator': 'vode', 'use_analytic_jacobian': True} self.python_sim = ScipyOdeSimulator(compiler='python', **self.args) self.python_res = self.python_sim.run() def test_cython(self): sim = ScipyOdeSimulator(compiler='cython', **self.args) simres = sim.run() assert simres.species.shape[0] == self.args['tspan'].shape[0] assert np.allclose(self.python_res.dataframe, simres.dataframe) class TestScipySimulatorSequential(TestScipySimulatorBase): def test_sequential_initials(self): simres = self.sim.run() orig_initials = self.sim.initials new_initials = [10, 20, 30] simres = self.sim.run(initials=new_initials) # Check that single-run initials applied properly to the result assert np.allclose(simres.species[0], new_initials) assert np.allclose(simres.initials, new_initials) # Check that the single-run initials were removed after the run assert np.allclose(self.sim.initials, orig_initials) def test_sequential_initials_dict_then_list(self): A, B = self.model.monomers base_sim = ScipyOdeSimulator( self.model, initials={A(a=None): 10, B(b=None): 20}) assert np.allclose(base_sim.initials, [10, 20, 0]) assert len(base_sim.initials_dict) == 2 # Now set initials using a list, which should overwrite the dict base_sim.initials = [30, 40, 50] assert np.allclose(base_sim.initials, [30, 40, 50]) assert np.allclose( sorted([x[0] for x in base_sim.initials_dict.values()]), base_sim.initials) def test_sequential_param_values(self): orig_param_values = self.sim.param_values new_param_values = {'kbindAB': 0} new_initials = [15, 25, 35] simres = self.sim.run(param_values=new_param_values, initials=new_initials) # No new AB_complex should be formed assert np.allclose(simres.observables['AB_complex'], new_initials[2]) assert simres.nsims == 1 # Original param_values should be restored after run assert np.allclose(self.sim.param_values, orig_param_values) # Check that per-run param override works when a base param # dictionary is also specified self.sim.param_values = new_param_values base_param_values = new_param_values new_param_values = {'ksynthB': 50} simres = self.sim.run(param_values=new_param_values) # Check that new param value override applied assert np.allclose(simres.param_values[0][1], new_param_values['ksynthB']) # Check that simulator reverts to base param values assert np.allclose(self.sim.param_values[0][2], base_param_values['kbindAB']) # Reset to original param values self.sim.param_values = orig_param_values def test_sequential_tspan(self): tspan = np.linspace(0, 10, 11) orig_tspan = self.sim.tspan simres = self.sim.run(tspan=tspan) # Check that new tspan applied properly assert np.allclose(simres.tout, tspan) # Check that simulator instance reset to original tspan assert np.allclose(self.sim.tspan, orig_tspan) class TestScipySimulatorMultiple(TestScipySimulatorBase): def test_initials_and_param_values_two_lists(self): initials = [[10, 20, 30], [50, 60, 70]] param_values = [[55, 65, 75, 0, 0], [90, 100, 110, 5, 6]] import pysb.bng pysb.bng.generate_equations(self.sim.model) simres = self.sim.run(initials=initials, param_values=param_values) assert np.allclose(simres.species[0][0], initials[0]) assert np.allclose(simres.species[1][0], initials[1]) assert np.allclose(simres.param_values[0], param_values[0]) assert np.allclose(simres.param_values[1], param_values[1]) assert simres.nsims == 2 # Check the methods underlying these properties work df = simres.dataframe all = simres.all # Try overriding above lists of initials/params with dicts self.sim.initials = initials self.sim.param_values = param_values simres = self.sim.run( initials={self.mon('A')(a=None): [103, 104]}, param_values={'ksynthA': [101, 102]}) # Simulator initials and params should not persist run() overrides assert np.allclose(self.sim.initials, initials) assert np.allclose(self.sim.param_values, param_values) # Create the expected initials/params arrays and compare to result initials = np.array(initials) initials[:, 0] = [103, 104] param_values = np.array(param_values) param_values[:, 0] = [101, 102] assert np.allclose(simres.initials, initials) assert np.allclose(simres.param_values, param_values) @raises(ValueError) def test_run_initials_different_length_to_base(self): initials = [[10, 20, 30, 40], [50, 60, 70, 80]] self.sim.initials = initials self.sim.run(initials=initials[0]) @raises(ValueError) def test_run_params_different_length_to_base(self): param_values = [[55, 65, 75, 0, 0, 1], [90, 100, 110, 5, 6, 7]] self.sim.param_values = param_values self.sim.run(param_values=param_values[0]) @raises(InconsistentParameterError) def test_run_params_inconsistent_parameter_list(self): param_values = [55, 65, 75, 0, -3] self.sim.param_values = param_values self.sim.run(param_values=param_values[0]) @raises(InconsistentParameterError) def test_run_params_inconsistent_parameter_dict(self): param_values = {'A_init': [0, -4]} self.sim.param_values = param_values self.sim.run(param_values=param_values[0]) def test_param_values_dict(self): param_values = {'A_init': [0, 100]} initials = {self.model.monomers['B'](b=None): [250, 350]} simres = self.sim.run(param_values=param_values) assert np.allclose(simres.dataframe.loc[(slice(None), 0.0), 'A_free'], [0, 100]) simres = self.sim.run(param_values={'B_init': [200, 300]}) assert np.allclose(simres.dataframe.loc[(slice(None), 0.0), 'A_free'], [0, 0]) assert np.allclose(simres.dataframe.loc[(slice(None), 0.0), 'B_free'], [200, 300]) simres = self.sim.run(initials=initials, param_values=param_values) assert np.allclose(simres.dataframe.loc[(slice(None), 0.0), 'A_free'], [0, 100]) assert np.allclose(simres.dataframe.loc[(slice(None), 0.0), 'B_free'], [250, 350]) @raises(ValueError) def test_initials_and_param_values_differing_lengths(self): initials = [[10, 20, 30, 40], [50, 60, 70, 80]] param_values = [[55, 65, 75, 0, 0], [90, 100, 110, 5, 6], [90, 100, 110, 5, 6]] self.sim.run(initials=initials, param_values=param_values) @unittest.skipIf(sys.version_info.major < 3, 'Parallel execution requires Python >= 3.3') def test_parallel(self): for integrator in ('vode', 'lsoda'): for use_analytic_jacobian in (True, False): yield self._check_parallel, integrator, use_analytic_jacobian def _check_parallel(self, integrator, use_analytic_jacobian): initials = [[10, 20, 30], [50, 60, 70]] sim = ScipyOdeSimulator( self.model, self.sim.tspan, initials=initials, integrator=integrator, use_analytic_jacobian=use_analytic_jacobian ) base_res = sim.run(initials=initials) res = sim.run(initials=initials, num_processors=2) assert np.allclose(res.species, base_res.species) @with_model def test_integrate_with_expression(): """Ensure a model with Expressions simulates.""" Monomer('s1') Monomer('s9') Monomer('s16') Monomer('s20') # Parameters should be able to contain s(\d+) without error Parameter('ks0',2e-5) Parameter('ka20', 1e5) Initial(s9(), Parameter('s9_0', 10000)) Observable('s1_obs', s1()) Observable('s9_obs', s9()) Observable('s16_obs', s16()) Observable('s20_obs', s20()) Expression('keff', (ks0*ka20)/(ka20+s9_obs)) Rule('R1', None >> s16(), ks0) Rule('R2', None >> s20(), ks0) Rule('R3', s16() + s20() >> s16() + s1(), keff) time = np.linspace(0, 40) sim = ScipyOdeSimulator(model, tspan=time) simres = sim.run() keff_vals = simres.expressions['keff'] assert len(keff_vals) == len(time) assert np.allclose(keff_vals, 1.8181818181818182e-05) def test_set_initial_to_zero(): sim = ScipyOdeSimulator(robertson.model, tspan=np.linspace(0, 100)) simres = sim.run(initials={robertson.model.monomers['A'](): 0}) assert np.allclose(simres.observables['A_total'], 0) def test_robertson_integration(): """Ensure robertson model simulates.""" t = np.linspace(0, 100) sim = ScipyOdeSimulator(robertson.model, tspan=t, compiler="python") simres = sim.run() assert simres.species.shape[0] == t.shape[0] # Also run with cython compiler if available. if CythonRhsBuilder.check_safe(): sim = ScipyOdeSimulator(robertson.model, tspan=t, compiler="cython") simres = sim.run() assert simres.species.shape[0] == t.shape[0] def test_earm_integration(): """Ensure earm_1_0 model simulates.""" t = np.linspace(0, 1e3) sim = ScipyOdeSimulator(earm_1_0.model, tspan=t, compiler="python") sim.run() # Also run with cython compiler if available. if CythonRhsBuilder.check_safe(): ScipyOdeSimulator(earm_1_0.model, tspan=t, compiler="cython").run() @raises(ValueError) def test_simulation_no_tspan(): ScipyOdeSimulator(robertson.model).run() @raises(UserWarning) def test_nonexistent_integrator(): """Ensure nonexistent integrator raises.""" ScipyOdeSimulator(robertson.model, tspan=np.linspace(0, 1, 2), integrator='does_not_exist') def test_unicode_obsname_ascii(): """Ensure ascii-convetible unicode observable names are handled.""" t = np.linspace(0, 100) rob_copy = copy.deepcopy(robertson.model) rob_copy.observables[0].name = u'A_total' sim = ScipyOdeSimulator(rob_copy) simres = sim.run(tspan=t) simres.all simres.dataframe if sys.version_info[0] < 3: @raises(ValueError) def test_unicode_obsname_nonascii(): """Ensure non-ascii unicode observable names error in python 2.""" t = np.linspace(0, 100) rob_copy = copy.deepcopy(robertson.model) rob_copy.observables[0].name = u'A_total\u1234' sim = ScipyOdeSimulator(rob_copy) simres = sim.run(tspan=t) def test_unicode_exprname_ascii(): """Ensure ascii-convetible unicode expression names are handled.""" t = np.linspace(0, 100) rob_copy = copy.deepcopy(robertson.model) ab = rob_copy.observables['A_total'] + rob_copy.observables['B_total'] expr = Expression(u'A_plus_B', ab, _export=False) rob_copy.add_component(expr) sim = ScipyOdeSimulator(rob_copy) simres = sim.run(tspan=t) simres.all simres.dataframe if sys.version_info[0] < 3: @raises(ValueError) def test_unicode_exprname_nonascii(): """Ensure non-ascii unicode expression names error in python 2.""" t = np.linspace(0, 100) rob_copy = copy.deepcopy(robertson.model) ab = rob_copy.observables['A_total'] + rob_copy.observables['B_total'] expr = Expression(u'A_plus_B\u1234', ab, _export=False) rob_copy.add_component(expr) sim = ScipyOdeSimulator(rob_copy) simres = sim.run(tspan=t) def test_multiprocessing_lambdify(): model = tyson_oscillator.model pars = [p.value for p in model.parameters] tspan = np.linspace(0, 100, 100) ScipyOdeSimulator( model, tspan=tspan, compiler='python', use_analytic_jacobian=True ).run(param_values=[pars, pars], num_processors=2) def test_lambdify_localfunc(): model = localfunc.model ScipyOdeSimulator(model, tspan=range(100), compiler='python').run()
bsd-2-clause
gengliangwang/spark
python/pyspark/pandas/internal.py
1
57972
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ An internal immutable DataFrame with some metadata to manage indexes. """ import re from typing import Dict, List, Optional, Sequence, Tuple, Union, TYPE_CHECKING, cast from itertools import accumulate import py4j import numpy as np import pandas as pd from pandas.api.types import CategoricalDtype, is_datetime64_dtype, is_datetime64tz_dtype from pyspark import sql as spark from pyspark._globals import _NoValue, _NoValueType from pyspark.sql import functions as F, Window from pyspark.sql.functions import PandasUDFType, pandas_udf from pyspark.sql.types import BooleanType, DataType, StructField, StructType, LongType # For running doctests and reference resolution in PyCharm. from pyspark import pandas as ps # noqa: F401 if TYPE_CHECKING: # This is required in old Python 3.5 to prevent circular reference. from pyspark.pandas.series import Series # noqa: F401 (SPARK-34943) from pyspark.pandas.config import get_option from pyspark.pandas.typedef import ( Dtype, as_spark_type, extension_dtypes, infer_pd_series_spark_type, spark_type_to_pandas_dtype, ) from pyspark.pandas.utils import ( column_labels_level, default_session, is_name_like_tuple, is_testing, lazy_property, name_like_string, scol_for, spark_column_equals, verify_temp_column_name, ) # A function to turn given numbers to Spark columns that represent pandas-on-Spark index. SPARK_INDEX_NAME_FORMAT = "__index_level_{}__".format SPARK_DEFAULT_INDEX_NAME = SPARK_INDEX_NAME_FORMAT(0) # A pattern to check if the name of a Spark column is a pandas-on-Spark index name or not. SPARK_INDEX_NAME_PATTERN = re.compile(r"__index_level_[0-9]+__") NATURAL_ORDER_COLUMN_NAME = "__natural_order__" HIDDEN_COLUMNS = {NATURAL_ORDER_COLUMN_NAME} DEFAULT_SERIES_NAME = 0 SPARK_DEFAULT_SERIES_NAME = str(DEFAULT_SERIES_NAME) class InternalFrame(object): """ The internal immutable DataFrame which manages Spark DataFrame and column names and index information. .. note:: this is an internal class. It is not supposed to be exposed to users and users should not directly access to it. The internal immutable DataFrame represents the index information for a DataFrame it belongs to. For instance, if we have a pandas-on-Spark DataFrame as below, pandas DataFrame does not store the index as columns. >>> psdf = ps.DataFrame({ ... 'A': [1, 2, 3, 4], ... 'B': [5, 6, 7, 8], ... 'C': [9, 10, 11, 12], ... 'D': [13, 14, 15, 16], ... 'E': [17, 18, 19, 20]}, columns = ['A', 'B', 'C', 'D', 'E']) >>> psdf # doctest: +NORMALIZE_WHITESPACE A B C D E 0 1 5 9 13 17 1 2 6 10 14 18 2 3 7 11 15 19 3 4 8 12 16 20 However, all columns including index column are also stored in Spark DataFrame internally as below. >>> psdf._internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +-----------------+---+---+---+---+---+ |__index_level_0__| A| B| C| D| E| +-----------------+---+---+---+---+---+ | 0| 1| 5| 9| 13| 17| | 1| 2| 6| 10| 14| 18| | 2| 3| 7| 11| 15| 19| | 3| 4| 8| 12| 16| 20| +-----------------+---+---+---+---+---+ In order to fill this gap, the current metadata is used by mapping Spark's internal column to pandas-on-Spark's index. See the method below: * `spark_frame` represents the internal Spark DataFrame * `data_spark_column_names` represents non-indexing Spark column names * `data_spark_columns` represents non-indexing Spark columns * `data_dtypes` represents external non-indexing dtypes * `index_spark_column_names` represents internal index Spark column names * `index_spark_columns` represents internal index Spark columns * `index_dtypes` represents external index dtypes * `spark_column_names` represents all columns * `index_names` represents the external index name as a label * `to_internal_spark_frame` represents Spark DataFrame derived by the metadata. Includes index. * `to_pandas_frame` represents pandas DataFrame derived by the metadata >>> internal = psdf._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+---+---+---+---+---+-----------------+ |__index_level_0__| A| B| C| D| E|__natural_order__| +-----------------+---+---+---+---+---+-----------------+ | 0| 1| 5| 9| 13| 17| ...| | 1| 2| 6| 10| 14| 18| ...| | 2| 3| 7| 11| 15| 19| ...| | 3| 4| 8| 12| 16| 20| ...| +-----------------+---+---+---+---+---+-----------------+ >>> internal.data_spark_column_names ['A', 'B', 'C', 'D', 'E'] >>> internal.index_spark_column_names ['__index_level_0__'] >>> internal.spark_column_names ['__index_level_0__', 'A', 'B', 'C', 'D', 'E'] >>> internal.index_names [None] >>> internal.data_dtypes [dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64')] >>> internal.index_dtypes [dtype('int64')] >>> internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +-----------------+---+---+---+---+---+ |__index_level_0__| A| B| C| D| E| +-----------------+---+---+---+---+---+ | 0| 1| 5| 9| 13| 17| | 1| 2| 6| 10| 14| 18| | 2| 3| 7| 11| 15| 19| | 3| 4| 8| 12| 16| 20| +-----------------+---+---+---+---+---+ >>> internal.to_pandas_frame A B C D E 0 1 5 9 13 17 1 2 6 10 14 18 2 3 7 11 15 19 3 4 8 12 16 20 In case that index is set to one of the existing column as below: >>> psdf1 = psdf.set_index("A") >>> psdf1 # doctest: +NORMALIZE_WHITESPACE B C D E A 1 5 9 13 17 2 6 10 14 18 3 7 11 15 19 4 8 12 16 20 >>> psdf1._internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +---+---+---+---+---+ | A| B| C| D| E| +---+---+---+---+---+ | 1| 5| 9| 13| 17| | 2| 6| 10| 14| 18| | 3| 7| 11| 15| 19| | 4| 8| 12| 16| 20| +---+---+---+---+---+ >>> internal = psdf1._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+---+---+---+---+---+-----------------+ |__index_level_0__| A| B| C| D| E|__natural_order__| +-----------------+---+---+---+---+---+-----------------+ | 0| 1| 5| 9| 13| 17| ...| | 1| 2| 6| 10| 14| 18| ...| | 2| 3| 7| 11| 15| 19| ...| | 3| 4| 8| 12| 16| 20| ...| +-----------------+---+---+---+---+---+-----------------+ >>> internal.data_spark_column_names ['B', 'C', 'D', 'E'] >>> internal.index_spark_column_names ['A'] >>> internal.spark_column_names ['A', 'B', 'C', 'D', 'E'] >>> internal.index_names [('A',)] >>> internal.data_dtypes [dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64')] >>> internal.index_dtypes [dtype('int64')] >>> internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +---+---+---+---+---+ | A| B| C| D| E| +---+---+---+---+---+ | 1| 5| 9| 13| 17| | 2| 6| 10| 14| 18| | 3| 7| 11| 15| 19| | 4| 8| 12| 16| 20| +---+---+---+---+---+ >>> internal.to_pandas_frame # doctest: +NORMALIZE_WHITESPACE B C D E A 1 5 9 13 17 2 6 10 14 18 3 7 11 15 19 4 8 12 16 20 In case that index becomes a multi index as below: >>> psdf2 = psdf.set_index("A", append=True) >>> psdf2 # doctest: +NORMALIZE_WHITESPACE B C D E A 0 1 5 9 13 17 1 2 6 10 14 18 2 3 7 11 15 19 3 4 8 12 16 20 >>> psdf2._internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +-----------------+---+---+---+---+---+ |__index_level_0__| A| B| C| D| E| +-----------------+---+---+---+---+---+ | 0| 1| 5| 9| 13| 17| | 1| 2| 6| 10| 14| 18| | 2| 3| 7| 11| 15| 19| | 3| 4| 8| 12| 16| 20| +-----------------+---+---+---+---+---+ >>> internal = psdf2._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+---+---+---+---+---+-----------------+ |__index_level_0__| A| B| C| D| E|__natural_order__| +-----------------+---+---+---+---+---+-----------------+ | 0| 1| 5| 9| 13| 17| ...| | 1| 2| 6| 10| 14| 18| ...| | 2| 3| 7| 11| 15| 19| ...| | 3| 4| 8| 12| 16| 20| ...| +-----------------+---+---+---+---+---+-----------------+ >>> internal.data_spark_column_names ['B', 'C', 'D', 'E'] >>> internal.index_spark_column_names ['__index_level_0__', 'A'] >>> internal.spark_column_names ['__index_level_0__', 'A', 'B', 'C', 'D', 'E'] >>> internal.index_names [None, ('A',)] >>> internal.data_dtypes [dtype('int64'), dtype('int64'), dtype('int64'), dtype('int64')] >>> internal.index_dtypes [dtype('int64'), dtype('int64')] >>> internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +-----------------+---+---+---+---+---+ |__index_level_0__| A| B| C| D| E| +-----------------+---+---+---+---+---+ | 0| 1| 5| 9| 13| 17| | 1| 2| 6| 10| 14| 18| | 2| 3| 7| 11| 15| 19| | 3| 4| 8| 12| 16| 20| +-----------------+---+---+---+---+---+ >>> internal.to_pandas_frame # doctest: +NORMALIZE_WHITESPACE B C D E A 0 1 5 9 13 17 1 2 6 10 14 18 2 3 7 11 15 19 3 4 8 12 16 20 For multi-level columns, it also holds column_labels >>> columns = pd.MultiIndex.from_tuples([('X', 'A'), ('X', 'B'), ... ('Y', 'C'), ('Y', 'D')]) >>> psdf3 = ps.DataFrame([ ... [1, 2, 3, 4], ... [5, 6, 7, 8], ... [9, 10, 11, 12], ... [13, 14, 15, 16], ... [17, 18, 19, 20]], columns = columns) >>> psdf3 # doctest: +NORMALIZE_WHITESPACE X Y A B C D 0 1 2 3 4 1 5 6 7 8 2 9 10 11 12 3 13 14 15 16 4 17 18 19 20 >>> internal = psdf3._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+------+------+------+------+-----------------+ |__index_level_0__|(X, A)|(X, B)|(Y, C)|(Y, D)|__natural_order__| +-----------------+------+------+------+------+-----------------+ | 0| 1| 2| 3| 4| ...| | 1| 5| 6| 7| 8| ...| | 2| 9| 10| 11| 12| ...| | 3| 13| 14| 15| 16| ...| | 4| 17| 18| 19| 20| ...| +-----------------+------+------+------+------+-----------------+ >>> internal.data_spark_column_names ['(X, A)', '(X, B)', '(Y, C)', '(Y, D)'] >>> internal.column_labels [('X', 'A'), ('X', 'B'), ('Y', 'C'), ('Y', 'D')] For Series, it also holds scol to represent the column. >>> psseries = psdf1.B >>> psseries A 1 5 2 6 3 7 4 8 Name: B, dtype: int64 >>> internal = psseries._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+---+---+---+---+---+-----------------+ |__index_level_0__| A| B| C| D| E|__natural_order__| +-----------------+---+---+---+---+---+-----------------+ | 0| 1| 5| 9| 13| 17| ...| | 1| 2| 6| 10| 14| 18| ...| | 2| 3| 7| 11| 15| 19| ...| | 3| 4| 8| 12| 16| 20| ...| +-----------------+---+---+---+---+---+-----------------+ >>> internal.data_spark_column_names ['B'] >>> internal.index_spark_column_names ['A'] >>> internal.spark_column_names ['A', 'B'] >>> internal.index_names [('A',)] >>> internal.data_dtypes [dtype('int64')] >>> internal.index_dtypes [dtype('int64')] >>> internal.to_internal_spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +---+---+ | A| B| +---+---+ | 1| 5| | 2| 6| | 3| 7| | 4| 8| +---+---+ >>> internal.to_pandas_frame # doctest: +NORMALIZE_WHITESPACE B A 1 5 2 6 3 7 4 8 """ def __init__( self, spark_frame: spark.DataFrame, index_spark_columns: Optional[List[spark.Column]], index_names: Optional[List[Optional[Tuple]]] = None, index_dtypes: Optional[List[Dtype]] = None, column_labels: Optional[List[Tuple]] = None, data_spark_columns: Optional[List[spark.Column]] = None, data_dtypes: Optional[List[Dtype]] = None, column_label_names: Optional[List[Optional[Tuple]]] = None, ): """ Create a new internal immutable DataFrame to manage Spark DataFrame, column fields and index fields and names. :param spark_frame: Spark DataFrame to be managed. :param index_spark_columns: list of Spark Column Spark Columns for the index. :param index_names: list of tuples the index names. :param index_dtypes: list of dtypes the index dtypes. :param column_labels: list of tuples with the same length The multi-level values in the tuples. :param data_spark_columns: list of Spark Column Spark Columns to appear as columns. If this is None, calculated from spark_frame. :param data_dtypes: list of dtypes. the data dtypes. :param column_label_names: Names for each of the column index levels. See the examples below to refer what each parameter means. >>> column_labels = pd.MultiIndex.from_tuples( ... [('a', 'x'), ('a', 'y'), ('b', 'z')], names=["column_labels_a", "column_labels_b"]) >>> row_index = pd.MultiIndex.from_tuples( ... [('foo', 'bar'), ('foo', 'bar'), ('zoo', 'bar')], ... names=["row_index_a", "row_index_b"]) >>> psdf = ps.DataFrame( ... [[1, 2, 3], [4, 5, 6], [7, 8, 9]], index=row_index, columns=column_labels) >>> psdf.set_index(('a', 'x'), append=True, inplace=True) >>> psdf # doctest: +NORMALIZE_WHITESPACE column_labels_a a b column_labels_b y z row_index_a row_index_b (a, x) foo bar 1 2 3 4 5 6 zoo bar 7 8 9 >>> internal = psdf._internal >>> internal.spark_frame.show() # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS +-----------------+-----------------+------+------+------+... |__index_level_0__|__index_level_1__|(a, x)|(a, y)|(b, z)|... +-----------------+-----------------+------+------+------+... | foo| bar| 1| 2| 3|... | foo| bar| 4| 5| 6|... | zoo| bar| 7| 8| 9|... +-----------------+-----------------+------+------+------+... >>> internal.index_spark_columns # doctest: +SKIP [Column<'__index_level_0__'>, Column<'__index_level_1__'>, Column<'(a, x)'>] >>> internal.index_names [('row_index_a',), ('row_index_b',), ('a', 'x')] >>> internal.index_dtypes [dtype('O'), dtype('O'), dtype('int64')] >>> internal.column_labels [('a', 'y'), ('b', 'z')] >>> internal.data_spark_columns # doctest: +SKIP [Column<'(a, y)'>, Column<'(b, z)'>] >>> internal.data_dtypes [dtype('int64'), dtype('int64')] >>> internal.column_label_names [('column_labels_a',), ('column_labels_b',)] """ assert isinstance(spark_frame, spark.DataFrame) assert not spark_frame.isStreaming, "pandas-on-Spark does not support Structured Streaming." if not index_spark_columns: if data_spark_columns is not None: if column_labels is not None: data_spark_columns = [ scol.alias(name_like_string(label)) for scol, label in zip(data_spark_columns, column_labels) ] spark_frame = spark_frame.select(data_spark_columns) assert not any(SPARK_INDEX_NAME_PATTERN.match(name) for name in spark_frame.columns), ( "Index columns should not appear in columns of the Spark DataFrame. Avoid " "index column names [%s]." % SPARK_INDEX_NAME_PATTERN ) # Create default index. spark_frame = InternalFrame.attach_default_index(spark_frame) index_spark_columns = [scol_for(spark_frame, SPARK_DEFAULT_INDEX_NAME)] if data_spark_columns is not None: data_spark_columns = [ scol_for(spark_frame, col) for col in spark_frame.columns if col != SPARK_DEFAULT_INDEX_NAME ] if NATURAL_ORDER_COLUMN_NAME not in spark_frame.columns: spark_frame = spark_frame.withColumn( NATURAL_ORDER_COLUMN_NAME, F.monotonically_increasing_id() ) self._sdf = spark_frame # type: spark.DataFrame # index_spark_columns assert all( isinstance(index_scol, spark.Column) for index_scol in index_spark_columns ), index_spark_columns self._index_spark_columns = index_spark_columns # type: List[spark.Column] # index_names if not index_names: index_names = [None] * len(index_spark_columns) assert len(index_spark_columns) == len(index_names), ( len(index_spark_columns), len(index_names), ) assert all( is_name_like_tuple(index_name, check_type=True) for index_name in index_names ), index_names self._index_names = index_names # type: List[Optional[Tuple]] # index_dtypes if not index_dtypes: index_dtypes = [None] * len(index_spark_columns) assert len(index_spark_columns) == len(index_dtypes), ( len(index_spark_columns), len(index_dtypes), ) index_dtypes = [ spark_type_to_pandas_dtype(spark_frame.select(scol).schema[0].dataType) if dtype is None or dtype == np.dtype("object") else dtype for dtype, scol in zip(index_dtypes, index_spark_columns) ] assert all( isinstance(dtype, Dtype.__args__) # type: ignore and (dtype == np.dtype("object") or as_spark_type(dtype, raise_error=False) is not None) for dtype in index_dtypes ), index_dtypes self._index_dtypes = index_dtypes # type: List[Dtype] # data_spark-columns if data_spark_columns is None: data_spark_columns = [ scol_for(spark_frame, col) for col in spark_frame.columns if all( not spark_column_equals(scol_for(spark_frame, col), index_scol) for index_scol in index_spark_columns ) and col not in HIDDEN_COLUMNS ] self._data_spark_columns = data_spark_columns # type: List[spark.Column] else: assert all(isinstance(scol, spark.Column) for scol in data_spark_columns) self._data_spark_columns = data_spark_columns # column_labels if column_labels is None: self._column_labels = [ (col,) for col in spark_frame.select(self._data_spark_columns).columns ] # type: List[Tuple] else: assert len(column_labels) == len(self._data_spark_columns), ( len(column_labels), len(self._data_spark_columns), ) if len(column_labels) == 1: column_label = column_labels[0] assert is_name_like_tuple(column_label, check_type=True), column_label else: assert all( is_name_like_tuple(column_label, check_type=True) for column_label in column_labels ), column_labels assert len(set(len(label) for label in column_labels)) <= 1, column_labels self._column_labels = column_labels # data_dtypes if not data_dtypes: data_dtypes = [None] * len(data_spark_columns) assert len(data_spark_columns) == len(data_dtypes), ( len(data_spark_columns), len(data_dtypes), ) data_dtypes = [ spark_type_to_pandas_dtype(spark_frame.select(scol).schema[0].dataType) if dtype is None or dtype == np.dtype("object") else dtype for dtype, scol in zip(data_dtypes, data_spark_columns) ] assert all( isinstance(dtype, Dtype.__args__) # type: ignore and (dtype == np.dtype("object") or as_spark_type(dtype, raise_error=False) is not None) for dtype in data_dtypes ), data_dtypes self._data_dtypes = data_dtypes # type: List[Dtype] # column_label_names if column_label_names is None: self._column_label_names = [None] * column_labels_level( self._column_labels ) # type: List[Optional[Tuple]] else: if len(self._column_labels) > 0: assert len(column_label_names) == column_labels_level(self._column_labels), ( len(column_label_names), column_labels_level(self._column_labels), ) else: assert len(column_label_names) > 0, len(column_label_names) assert all( is_name_like_tuple(column_label_name, check_type=True) for column_label_name in column_label_names ), column_label_names self._column_label_names = column_label_names @staticmethod def attach_default_index( sdf: spark.DataFrame, default_index_type: Optional[str] = None ) -> spark.DataFrame: """ This method attaches a default index to Spark DataFrame. Spark does not have the index notion so corresponding column should be generated. There are several types of default index can be configured by `compute.default_index_type`. >>> spark_frame = ps.range(10).to_spark() >>> spark_frame DataFrame[id: bigint] It adds the default index column '__index_level_0__'. >>> spark_frame = InternalFrame.attach_default_index(spark_frame) >>> spark_frame DataFrame[__index_level_0__: bigint, id: bigint] It throws an exception if the given column name already exists. >>> InternalFrame.attach_default_index(spark_frame) ... # doctest: +ELLIPSIS Traceback (most recent call last): ... AssertionError: '__index_level_0__' already exists... """ index_column = SPARK_DEFAULT_INDEX_NAME assert ( index_column not in sdf.columns ), "'%s' already exists in the Spark column names '%s'" % (index_column, sdf.columns) if default_index_type is None: default_index_type = get_option("compute.default_index_type") if default_index_type == "sequence": return InternalFrame.attach_sequence_column(sdf, column_name=index_column) elif default_index_type == "distributed-sequence": return InternalFrame.attach_distributed_sequence_column(sdf, column_name=index_column) elif default_index_type == "distributed": return InternalFrame.attach_distributed_column(sdf, column_name=index_column) else: raise ValueError( "'compute.default_index_type' should be one of 'sequence'," " 'distributed-sequence' and 'distributed'" ) @staticmethod def attach_sequence_column(sdf: spark.DataFrame, column_name: str) -> spark.DataFrame: scols = [scol_for(sdf, column) for column in sdf.columns] sequential_index = ( F.row_number().over(Window.orderBy(F.monotonically_increasing_id())).cast("long") - 1 ) return sdf.select(sequential_index.alias(column_name), *scols) @staticmethod def attach_distributed_column(sdf: spark.DataFrame, column_name: str) -> spark.DataFrame: scols = [scol_for(sdf, column) for column in sdf.columns] return sdf.select(F.monotonically_increasing_id().alias(column_name), *scols) @staticmethod def attach_distributed_sequence_column( sdf: spark.DataFrame, column_name: str ) -> spark.DataFrame: """ This method attaches a Spark column that has a sequence in a distributed manner. This is equivalent to the column assigned when default index type 'distributed-sequence'. >>> sdf = ps.DataFrame(['a', 'b', 'c']).to_spark() >>> sdf = InternalFrame.attach_distributed_sequence_column(sdf, column_name="sequence") >>> sdf.show() # doctest: +NORMALIZE_WHITESPACE +--------+---+ |sequence| 0| +--------+---+ | 0| a| | 1| b| | 2| c| +--------+---+ """ if len(sdf.columns) > 0: try: jdf = sdf._jdf.toDF() # type: ignore sql_ctx = sdf.sql_ctx encoders = sql_ctx._jvm.org.apache.spark.sql.Encoders # type: ignore encoder = encoders.tuple(jdf.exprEnc(), encoders.scalaLong()) jrdd = jdf.localCheckpoint(False).rdd().zipWithIndex() df = spark.DataFrame( sql_ctx.sparkSession._jsparkSession.createDataset( # type: ignore jrdd, encoder ).toDF(), sql_ctx, ) columns = df.columns return df.selectExpr( "`{}` as `{}`".format(columns[1], column_name), "`{}`.*".format(columns[0]) ) except py4j.protocol.Py4JError: if is_testing(): raise return InternalFrame._attach_distributed_sequence_column(sdf, column_name) else: cnt = sdf.count() if cnt > 0: return default_session().range(cnt).toDF(column_name) else: return default_session().createDataFrame( [], schema=StructType().add(column_name, data_type=LongType(), nullable=False) ) @staticmethod def _attach_distributed_sequence_column( sdf: spark.DataFrame, column_name: str ) -> spark.DataFrame: """ >>> sdf = ps.DataFrame(['a', 'b', 'c']).to_spark() >>> sdf = InternalFrame._attach_distributed_sequence_column(sdf, column_name="sequence") >>> sdf.sort("sequence").show() # doctest: +NORMALIZE_WHITESPACE +--------+---+ |sequence| 0| +--------+---+ | 0| a| | 1| b| | 2| c| +--------+---+ """ scols = [scol_for(sdf, column) for column in sdf.columns] spark_partition_column = verify_temp_column_name(sdf, "__spark_partition_id__") offset_column = verify_temp_column_name(sdf, "__offset__") row_number_column = verify_temp_column_name(sdf, "__row_number__") # 1. Calculates counts per each partition ID. `counts` here is, for instance, # { # 1: 83, # 6: 83, # 3: 83, # ... # } sdf = sdf.withColumn(spark_partition_column, F.spark_partition_id()) # Checkpoint the DataFrame to fix the partition ID. sdf = sdf.localCheckpoint(eager=False) counts = map( lambda x: (x["key"], x["count"]), sdf.groupby(sdf[spark_partition_column].alias("key")).count().collect(), ) # 2. Calculates cumulative sum in an order of partition id. # Note that it does not matter if partition id guarantees its order or not. # We just need a one-by-one sequential id. # sort by partition key. sorted_counts = sorted(counts, key=lambda x: x[0]) # get cumulative sum in an order of partition key. cumulative_counts = [0] + list(accumulate(map(lambda count: count[1], sorted_counts))) # zip it with partition key. sums = dict(zip(map(lambda count: count[0], sorted_counts), cumulative_counts)) # 3. Attach offset for each partition. @pandas_udf(LongType(), PandasUDFType.SCALAR) def offset(id: pd.Series) -> pd.Series: current_partition_offset = sums[id.iloc[0]] return pd.Series(current_partition_offset).repeat(len(id)) sdf = sdf.withColumn(offset_column, offset(spark_partition_column)) # 4. Calculate row_number in each partition. w = Window.partitionBy(spark_partition_column).orderBy(F.monotonically_increasing_id()) row_number = F.row_number().over(w) sdf = sdf.withColumn(row_number_column, row_number) # 5. Calculate the index. return sdf.select( (sdf[offset_column] + sdf[row_number_column] - 1).alias(column_name), *scols ) def spark_column_for(self, label: Tuple) -> spark.Column: """ Return Spark Column for the given column label. """ column_labels_to_scol = dict(zip(self.column_labels, self.data_spark_columns)) if label in column_labels_to_scol: return column_labels_to_scol[label] else: raise KeyError(name_like_string(label)) def spark_column_name_for(self, label_or_scol: Union[Tuple, spark.Column]) -> str: """ Return the actual Spark column name for the given column label. """ if isinstance(label_or_scol, spark.Column): scol = label_or_scol else: scol = self.spark_column_for(label_or_scol) return self.spark_frame.select(scol).columns[0] def spark_type_for(self, label_or_scol: Union[Tuple, spark.Column]) -> DataType: """ Return DataType for the given column label. """ if isinstance(label_or_scol, spark.Column): scol = label_or_scol else: scol = self.spark_column_for(label_or_scol) return self.spark_frame.select(scol).schema[0].dataType def spark_column_nullable_for(self, label_or_scol: Union[Tuple, spark.Column]) -> bool: """ Return nullability for the given column label. """ if isinstance(label_or_scol, spark.Column): scol = label_or_scol else: scol = self.spark_column_for(label_or_scol) return self.spark_frame.select(scol).schema[0].nullable def dtype_for(self, label: Tuple) -> Dtype: """ Return dtype for the given column label. """ column_labels_to_dtype = dict(zip(self.column_labels, self.data_dtypes)) if label in column_labels_to_dtype: return column_labels_to_dtype[label] else: raise KeyError(name_like_string(label)) @property def spark_frame(self) -> spark.DataFrame: """ Return the managed Spark DataFrame. """ return self._sdf @lazy_property def data_spark_column_names(self) -> List[str]: """ Return the managed column field names. """ return self.spark_frame.select(self.data_spark_columns).columns @property def data_spark_columns(self) -> List[spark.Column]: """ Return Spark Columns for the managed data columns. """ return self._data_spark_columns @property def index_spark_column_names(self) -> List[str]: """ Return the managed index field names. """ return self.spark_frame.select(self.index_spark_columns).columns @property def index_spark_columns(self) -> List[spark.Column]: """ Return Spark Columns for the managed index columns. """ return self._index_spark_columns @lazy_property def spark_column_names(self) -> List[str]: """ Return all the field names including index field names. """ return self.spark_frame.select(self.spark_columns).columns @lazy_property def spark_columns(self) -> List[spark.Column]: """ Return Spark Columns for the managed columns including index columns. """ index_spark_columns = self.index_spark_columns return index_spark_columns + [ spark_column for spark_column in self.data_spark_columns if all( not spark_column_equals(spark_column, scol) for scol in index_spark_columns ) ] @property def index_names(self) -> List[Optional[Tuple]]: """ Return the managed index names. """ return self._index_names @lazy_property def index_level(self) -> int: """ Return the level of the index. """ return len(self._index_names) @property def column_labels(self) -> List[Tuple]: """ Return the managed column index. """ return self._column_labels @lazy_property def column_labels_level(self) -> int: """ Return the level of the column index. """ return len(self._column_label_names) @property def column_label_names(self) -> List[Optional[Tuple]]: """ Return names of the index levels. """ return self._column_label_names @property def index_dtypes(self) -> List[Dtype]: """ Return dtypes for the managed index columns. """ return self._index_dtypes @property def data_dtypes(self) -> List[Dtype]: """ Return dtypes for the managed columns. """ return self._data_dtypes @lazy_property def to_internal_spark_frame(self) -> spark.DataFrame: """ Return as Spark DataFrame. This contains index columns as well and should be only used for internal purposes. """ index_spark_columns = self.index_spark_columns data_columns = [] for spark_column in self.data_spark_columns: if all( not spark_column_equals(spark_column, scol) for scol in index_spark_columns ): data_columns.append(spark_column) return self.spark_frame.select(index_spark_columns + data_columns) @lazy_property def to_pandas_frame(self) -> pd.DataFrame: """ Return as pandas DataFrame. """ sdf = self.to_internal_spark_frame pdf = sdf.toPandas() if len(pdf) == 0 and len(sdf.schema) > 0: pdf = pdf.astype( {field.name: spark_type_to_pandas_dtype(field.dataType) for field in sdf.schema} ) return InternalFrame.restore_index(pdf, **self.arguments_for_restore_index) @lazy_property def arguments_for_restore_index(self) -> Dict: """ Create arguments for `restore_index`. """ column_names = [] ext_dtypes = { col: dtype for col, dtype in zip(self.index_spark_column_names, self.index_dtypes) if isinstance(dtype, extension_dtypes) } categorical_dtypes = { col: dtype for col, dtype in zip(self.index_spark_column_names, self.index_dtypes) if isinstance(dtype, CategoricalDtype) } for spark_column, column_name, dtype in zip( self.data_spark_columns, self.data_spark_column_names, self.data_dtypes ): for index_spark_column_name, index_spark_column in zip( self.index_spark_column_names, self.index_spark_columns ): if spark_column_equals(spark_column, index_spark_column): column_names.append(index_spark_column_name) break else: column_names.append(column_name) if isinstance(dtype, extension_dtypes): ext_dtypes[column_name] = dtype elif isinstance(dtype, CategoricalDtype): categorical_dtypes[column_name] = dtype return dict( index_columns=self.index_spark_column_names, index_names=self.index_names, data_columns=column_names, column_labels=self.column_labels, column_label_names=self.column_label_names, ext_dtypes=ext_dtypes, categorical_dtypes=categorical_dtypes, ) @staticmethod def restore_index( pdf: pd.DataFrame, *, index_columns: List[str], index_names: List[Tuple], data_columns: List[str], column_labels: List[Tuple], column_label_names: List[Tuple], ext_dtypes: Dict[str, Dtype] = None, categorical_dtypes: Dict[str, CategoricalDtype] = None ) -> pd.DataFrame: """ Restore pandas DataFrame indices using the metadata. :param pdf: the pandas DataFrame to be processed. :param index_columns: the original column names for index columns. :param index_names: the index names after restored. :param data_columns: the original column names for data columns. :param column_labels: the column labels after restored. :param column_label_names: the column label names after restored. :param ext_dtypes: the map from the original column names to extension data types. :param categorical_dtypes: the map from the original column names to categorical types. :return: the restored pandas DataFrame >>> pdf = pd.DataFrame({"index": [10, 20, 30], "a": ['a', 'b', 'c'], "b": [0, 2, 1]}) >>> InternalFrame.restore_index( ... pdf, ... index_columns=["index"], ... index_names=[("idx",)], ... data_columns=["a", "b", "index"], ... column_labels=[("x",), ("y",), ("z",)], ... column_label_names=[("lv1",)], ... ext_dtypes=None, ... categorical_dtypes={"b": CategoricalDtype(categories=["i", "j", "k"])} ... ) # doctest: +NORMALIZE_WHITESPACE lv1 x y z idx 10 a i 10 20 b k 20 30 c j 30 """ if ext_dtypes is not None and len(ext_dtypes) > 0: pdf = pdf.astype(ext_dtypes, copy=True) if categorical_dtypes is not None: for col, dtype in categorical_dtypes.items(): pdf[col] = pd.Categorical.from_codes( pdf[col], categories=dtype.categories, ordered=dtype.ordered ) append = False for index_field in index_columns: drop = index_field not in data_columns pdf = pdf.set_index(index_field, drop=drop, append=append) append = True pdf = pdf[data_columns] pdf.index.names = [ name if name is None or len(name) > 1 else name[0] for name in index_names ] names = [name if name is None or len(name) > 1 else name[0] for name in column_label_names] if len(column_label_names) > 1: pdf.columns = pd.MultiIndex.from_tuples(column_labels, names=names) else: pdf.columns = pd.Index( [None if label is None else label[0] for label in column_labels], name=names[0], ) return pdf @lazy_property def resolved_copy(self) -> "InternalFrame": """ Copy the immutable InternalFrame with the updates resolved. """ sdf = self.spark_frame.select(self.spark_columns + list(HIDDEN_COLUMNS)) return self.copy( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in self.index_spark_column_names], data_spark_columns=[scol_for(sdf, col) for col in self.data_spark_column_names], ) def with_new_sdf( self, spark_frame: spark.DataFrame, *, index_dtypes: Optional[List[Dtype]] = None, data_columns: Optional[List[str]] = None, data_dtypes: Optional[List[Dtype]] = None ) -> "InternalFrame": """ Copy the immutable InternalFrame with the updates by the specified Spark DataFrame. :param spark_frame: the new Spark DataFrame :param index_dtypes: the index dtypes. If None, the original dtyeps are used. :param data_columns: the new column names. If None, the original one is used. :param data_dtypes: the data dtypes. If None, the original dtyeps are used. :return: the copied InternalFrame. """ if index_dtypes is None: index_dtypes = self.index_dtypes else: assert len(index_dtypes) == len(self.index_dtypes), ( len(index_dtypes), len(self.index_dtypes), ) if data_columns is None: data_columns = self.data_spark_column_names else: assert len(data_columns) == len(self.column_labels), ( len(data_columns), len(self.column_labels), ) if data_dtypes is None: data_dtypes = self.data_dtypes else: assert len(data_dtypes) == len(self.column_labels), ( len(data_dtypes), len(self.column_labels), ) sdf = spark_frame.drop(NATURAL_ORDER_COLUMN_NAME) return self.copy( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in self.index_spark_column_names], index_dtypes=index_dtypes, data_spark_columns=[scol_for(sdf, col) for col in data_columns], data_dtypes=data_dtypes, ) def with_new_columns( self, scols_or_pssers: Sequence[Union[spark.Column, "Series"]], *, column_labels: Optional[List[Tuple]] = None, data_dtypes: Optional[List[Dtype]] = None, column_label_names: Union[Optional[List[Optional[Tuple]]], _NoValueType] = _NoValue, keep_order: bool = True ) -> "InternalFrame": """ Copy the immutable InternalFrame with the updates by the specified Spark Columns or Series. :param scols_or_pssers: the new Spark Columns or Series. :param column_labels: the new column index. If None, the column_labels of the corresponding `scols_or_pssers` is used if it is Series; otherwise the original one is used. :param data_dtypes: the new dtypes. If None, the dtypes of the corresponding `scols_or_pssers` is used if it is Series; otherwise the dtypes will be inferred from the corresponding `scols_or_pssers`. :param column_label_names: the new names of the column index levels. :return: the copied InternalFrame. """ from pyspark.pandas.series import Series if column_labels is None: if all(isinstance(scol_or_psser, Series) for scol_or_psser in scols_or_pssers): column_labels = [cast(Series, psser)._column_label for psser in scols_or_pssers] else: assert len(scols_or_pssers) == len(self.column_labels), ( len(scols_or_pssers), len(self.column_labels), ) column_labels = [] for scol_or_psser, label in zip(scols_or_pssers, self.column_labels): if isinstance(scol_or_psser, Series): column_labels.append(scol_or_psser._column_label) else: column_labels.append(label) else: assert len(scols_or_pssers) == len(column_labels), ( len(scols_or_pssers), len(column_labels), ) data_spark_columns = [] for scol_or_psser in scols_or_pssers: if isinstance(scol_or_psser, Series): scol = scol_or_psser.spark.column else: scol = scol_or_psser data_spark_columns.append(scol) if data_dtypes is None: data_dtypes = [] for scol_or_psser in scols_or_pssers: if isinstance(scol_or_psser, Series): data_dtypes.append(scol_or_psser.dtype) else: data_dtypes.append(None) else: assert len(scols_or_pssers) == len(data_dtypes), ( len(scols_or_pssers), len(data_dtypes), ) sdf = self.spark_frame if not keep_order: sdf = self.spark_frame.select(self.index_spark_columns + data_spark_columns) index_spark_columns = [scol_for(sdf, col) for col in self.index_spark_column_names] data_spark_columns = [ scol_for(sdf, col) for col in self.spark_frame.select(data_spark_columns).columns ] else: index_spark_columns = self.index_spark_columns if column_label_names is _NoValue: column_label_names = self._column_label_names return self.copy( spark_frame=sdf, index_spark_columns=index_spark_columns, column_labels=column_labels, data_spark_columns=data_spark_columns, data_dtypes=data_dtypes, column_label_names=column_label_names, ) def with_filter(self, pred: Union[spark.Column, "Series"]) -> "InternalFrame": """ Copy the immutable InternalFrame with the updates by the predicate. :param pred: the predicate to filter. :return: the copied InternalFrame. """ from pyspark.pandas.series import Series if isinstance(pred, Series): assert isinstance(pred.spark.data_type, BooleanType), pred.spark.data_type condition = pred.spark.column else: spark_type = self.spark_frame.select(pred).schema[0].dataType assert isinstance(spark_type, BooleanType), spark_type condition = pred return self.with_new_sdf(self.spark_frame.filter(condition).select(self.spark_columns)) def with_new_spark_column( self, column_label: Tuple, scol: spark.Column, *, dtype: Optional[Dtype] = None, keep_order: bool = True ) -> "InternalFrame": """ Copy the immutable InternalFrame with the updates by the specified Spark Column. :param column_label: the column label to be updated. :param scol: the new Spark Column :param dtype: the new dtype. If not specified, the dtypes will be inferred from the spark Column. :return: the copied InternalFrame. """ assert column_label in self.column_labels, column_label idx = self.column_labels.index(column_label) data_spark_columns = self.data_spark_columns.copy() data_spark_columns[idx] = scol data_dtypes = self.data_dtypes.copy() data_dtypes[idx] = dtype return self.with_new_columns( data_spark_columns, data_dtypes=data_dtypes, keep_order=keep_order ) def select_column(self, column_label: Tuple) -> "InternalFrame": """ Copy the immutable InternalFrame with the specified column. :param column_label: the column label to use. :return: the copied InternalFrame. """ assert column_label in self.column_labels, column_label return self.copy( column_labels=[column_label], data_spark_columns=[self.spark_column_for(column_label)], data_dtypes=[self.dtype_for(column_label)], column_label_names=None, ) def copy( self, *, spark_frame: Union[spark.DataFrame, _NoValueType] = _NoValue, index_spark_columns: Union[List[spark.Column], _NoValueType] = _NoValue, index_names: Union[Optional[List[Optional[Tuple]]], _NoValueType] = _NoValue, index_dtypes: Union[Optional[List[Dtype]], _NoValueType] = _NoValue, column_labels: Union[Optional[List[Tuple]], _NoValueType] = _NoValue, data_spark_columns: Union[Optional[List[spark.Column]], _NoValueType] = _NoValue, data_dtypes: Union[Optional[List[Dtype]], _NoValueType] = _NoValue, column_label_names: Union[Optional[List[Optional[Tuple]]], _NoValueType] = _NoValue ) -> "InternalFrame": """ Copy the immutable InternalFrame. :param spark_frame: the new Spark DataFrame. If not specified, the original one is used. :param index_spark_columns: the list of Spark Column. If not specified, the original ones are used. :param index_names: the index names. If not specified, the original ones are used. :param index_dtypes: the index dtypes. If not specified, the original dtyeps are used. :param column_labels: the new column labels. If not specified, the original ones are used. :param data_spark_columns: the new Spark Columns. If not specified, the original ones are used. :param data_dtypes: the data dtypes. If not specified, the original dtyeps are used. :param column_label_names: the new names of the column index levels. If not specified, the original ones are used. :return: the copied immutable InternalFrame. """ if spark_frame is _NoValue: spark_frame = self.spark_frame if index_spark_columns is _NoValue: index_spark_columns = self.index_spark_columns if index_names is _NoValue: index_names = self.index_names if index_dtypes is _NoValue: index_dtypes = self.index_dtypes if column_labels is _NoValue: column_labels = self.column_labels if data_spark_columns is _NoValue: data_spark_columns = self.data_spark_columns if data_dtypes is _NoValue: data_dtypes = self.data_dtypes if column_label_names is _NoValue: column_label_names = self.column_label_names return InternalFrame( spark_frame=cast(spark.DataFrame, spark_frame), index_spark_columns=cast(List[spark.Column], index_spark_columns), index_names=cast(Optional[List[Optional[Tuple]]], index_names), index_dtypes=cast(Optional[List[Dtype]], index_dtypes), column_labels=cast(Optional[List[Tuple]], column_labels), data_spark_columns=cast(Optional[List[spark.Column]], data_spark_columns), data_dtypes=cast(Optional[List[Dtype]], data_dtypes), column_label_names=cast(Optional[List[Optional[Tuple]]], column_label_names), ) @staticmethod def from_pandas(pdf: pd.DataFrame) -> "InternalFrame": """ Create an immutable DataFrame from pandas DataFrame. :param pdf: :class:`pd.DataFrame` :return: the created immutable DataFrame """ index_names = [ name if name is None or isinstance(name, tuple) else (name,) for name in pdf.index.names ] columns = pdf.columns if isinstance(columns, pd.MultiIndex): column_labels = columns.tolist() else: column_labels = [(col,) for col in columns] column_label_names = [ name if name is None or isinstance(name, tuple) else (name,) for name in columns.names ] ( pdf, index_columns, index_dtypes, data_columns, data_dtypes, ) = InternalFrame.prepare_pandas_frame(pdf) schema = StructType( [ StructField( name, infer_pd_series_spark_type(col, dtype), nullable=bool(col.isnull().any()), ) for (name, col), dtype in zip(pdf.iteritems(), index_dtypes + data_dtypes) ] ) sdf = default_session().createDataFrame(pdf, schema=schema) return InternalFrame( spark_frame=sdf, index_spark_columns=[scol_for(sdf, col) for col in index_columns], index_names=index_names, index_dtypes=index_dtypes, column_labels=column_labels, data_spark_columns=[scol_for(sdf, col) for col in data_columns], data_dtypes=data_dtypes, column_label_names=column_label_names, ) @staticmethod def prepare_pandas_frame( pdf: pd.DataFrame, *, retain_index: bool = True ) -> Tuple[pd.DataFrame, List[str], List[Dtype], List[str], List[Dtype]]: """ Prepare pandas DataFrame for creating Spark DataFrame. :param pdf: the pandas DataFrame to be prepared. :param retain_index: whether the indices should be retained. :return: the tuple of - the prepared pandas dataFrame - index column names for Spark DataFrame - index dtypes of the given pandas DataFrame - data column names for Spark DataFrame - data dtypes of the given pandas DataFrame >>> pdf = pd.DataFrame( ... {("x", "a"): ['a', 'b', 'c'], ... ("y", "b"): pd.Categorical(["i", "k", "j"], categories=["i", "j", "k"])}, ... index=[10, 20, 30]) >>> prepared, index_columns, index_dtypes, data_columns, data_dtypes = ( ... InternalFrame.prepare_pandas_frame(pdf)) >>> prepared __index_level_0__ (x, a) (y, b) 0 10 a 0 1 20 b 2 2 30 c 1 >>> index_columns ['__index_level_0__'] >>> index_dtypes [dtype('int64')] >>> data_columns ['(x, a)', '(y, b)'] >>> data_dtypes [dtype('O'), CategoricalDtype(categories=['i', 'j', 'k'], ordered=False)] """ pdf = pdf.copy() data_columns = [name_like_string(col) for col in pdf.columns] pdf.columns = data_columns if retain_index: index_nlevels = pdf.index.nlevels index_columns = [SPARK_INDEX_NAME_FORMAT(i) for i in range(index_nlevels)] pdf.index.names = index_columns reset_index = pdf.reset_index() else: index_nlevels = 0 index_columns = [] reset_index = pdf index_dtypes = list(reset_index.dtypes)[:index_nlevels] data_dtypes = list(reset_index.dtypes)[index_nlevels:] for name, col in reset_index.iteritems(): dt = col.dtype if is_datetime64_dtype(dt) or is_datetime64tz_dtype(dt): continue elif isinstance(dt, CategoricalDtype): col = col.cat.codes reset_index[name] = col.replace({np.nan: None}) return reset_index, index_columns, index_dtypes, data_columns, data_dtypes def _test() -> None: import os import doctest import sys from pyspark.sql import SparkSession import pyspark.pandas.internal os.chdir(os.environ["SPARK_HOME"]) globs = pyspark.pandas.internal.__dict__.copy() globs["ps"] = pyspark.pandas spark = ( SparkSession.builder.master("local[4]") .appName("pyspark.pandas.internal tests") .getOrCreate() ) (failure_count, test_count) = doctest.testmod( pyspark.pandas.internal, globs=globs, optionflags=doctest.ELLIPSIS | doctest.NORMALIZE_WHITESPACE, ) spark.stop() if failure_count: sys.exit(-1) if __name__ == "__main__": _test()
apache-2.0
spennihana/h2o-3
h2o-py/tests/testdir_misc/pyunit_mojo_predict.py
1
10966
import sys import tempfile import shutil import time import os import pandas sys.path.insert(1, "../../") import h2o import h2o.utils.shared_utils as h2o_utils from tests import pyunit_utils from h2o.estimators.gbm import H2OGradientBoostingEstimator genmodel_name = "h2o-genmodel.jar" def download_mojo(model, mojo_zip_path, genmodel_path=None): mojo_zip_path = os.path.abspath(mojo_zip_path) parent_dir = os.path.dirname(mojo_zip_path) print("\nDownloading MOJO @... " + parent_dir) time0 = time.time() if genmodel_path is None: genmodel_path = os.path.join(parent_dir, genmodel_name) mojo_file = model.download_mojo(path=mojo_zip_path, get_genmodel_jar=True, genmodel_name=genmodel_path) print(" => %s (%d bytes)" % (mojo_file, os.stat(mojo_file).st_size)) assert os.path.exists(mojo_file) print(" Time taken = %.3fs" % (time.time() - time0)) assert os.path.exists(mojo_zip_path) print(" => %s (%d bytes)" % (mojo_zip_path, os.stat(mojo_zip_path).st_size)) assert os.path.exists(genmodel_path) print(" => %s (%d bytes)" % (genmodel_path, os.stat(genmodel_path).st_size)) def mojo_predict_api_test(sandbox_dir): data = h2o.import_file(path=pyunit_utils.locate("smalldata/logreg/prostate.csv")) input_csv = "%s/in.csv" % sandbox_dir output_csv = "%s/prediction.csv" % sandbox_dir h2o.export_file(data[1, 2:], input_csv) data[1] = data[1].asfactor() model = H2OGradientBoostingEstimator(distribution="bernoulli") model.train(x=[2, 3, 4, 5, 6, 7, 8], y=1, training_frame=data) # download mojo model_zip_path = os.path.join(sandbox_dir, 'model.zip') genmodel_path = os.path.join(sandbox_dir, 'h2o-genmodel.jar') download_mojo(model, model_zip_path) assert os.path.isfile(model_zip_path) assert os.path.isfile(genmodel_path) # test that we can predict using default paths h2o_utils.mojo_predict_csv(input_csv_path=input_csv, mojo_zip_path=model_zip_path, verbose=True) h2o_utils.mojo_predict_csv(input_csv_path=input_csv, mojo_zip_path=model_zip_path, genmodel_jar_path=genmodel_path, verbose=True) assert os.path.isfile(output_csv) os.remove(model_zip_path) os.remove(genmodel_path) os.remove(output_csv) # test that we can predict using custom genmodel path other_sandbox_dir = tempfile.mkdtemp() try: genmodel_path = os.path.join(other_sandbox_dir, 'h2o-genmodel-custom.jar') download_mojo(model, model_zip_path, genmodel_path) assert os.path.isfile(model_zip_path) assert os.path.isfile(genmodel_path) try: h2o_utils.mojo_predict_csv(input_csv_path=input_csv, mojo_zip_path=model_zip_path, verbose=True) assert False, "There should be no h2o-genmodel.jar at %s" % sandbox_dir except RuntimeError: pass assert not os.path.isfile(output_csv) h2o_utils.mojo_predict_csv(input_csv_path=input_csv, mojo_zip_path=model_zip_path, genmodel_jar_path=genmodel_path, verbose=True) assert os.path.isfile(output_csv) os.remove(output_csv) output_csv = "%s/out.prediction" % other_sandbox_dir # test that we can predict using default paths h2o_utils.mojo_predict_csv(input_csv_path=input_csv, mojo_zip_path=model_zip_path, genmodel_jar_path=genmodel_path, verbose=True, output_csv_path=output_csv) assert os.path.isfile(output_csv) os.remove(model_zip_path) os.remove(genmodel_path) os.remove(output_csv) finally: shutil.rmtree(other_sandbox_dir) def mojo_predict_csv_test(target_dir): mojo_file_name = "prostate_gbm_model.zip" mojo_zip_path = os.path.join(target_dir, mojo_file_name) prostate = h2o.import_file(path=pyunit_utils.locate("smalldata/logreg/prostate.csv")) r = prostate[0].runif() train = prostate[r < 0.70] test = prostate[r >= 0.70] # Getting first row from test data frame pdf = test[1, 2:] input_csv = "%s/in.csv" % target_dir output_csv = "%s/output.csv" % target_dir h2o.export_file(pdf, input_csv) # ================================================================= # Regression # ================================================================= regression_gbm1 = H2OGradientBoostingEstimator(distribution="gaussian") regression_gbm1.train(x=[2, 3, 4, 5, 6, 7, 8], y=1, training_frame=train) pred_reg = regression_gbm1.predict(pdf) p1 = pred_reg[0, 0] print("Regression prediction: " + str(p1)) download_mojo(regression_gbm1, mojo_zip_path) print("\nPerforming Regression Prediction using MOJO @... " + target_dir) prediction_result = h2o_utils.mojo_predict_csv(input_csv_path=input_csv, mojo_zip_path=mojo_zip_path, output_csv_path=output_csv) print("Prediction result: " + str(prediction_result)) assert p1 == float(prediction_result[0]['predict']), "expected predictions to be the same for binary and MOJO model for regression" # ================================================================= # Binomial # ================================================================= train[1] = train[1].asfactor() bernoulli_gbm1 = H2OGradientBoostingEstimator(distribution="bernoulli") bernoulli_gbm1.train(x=[2, 3, 4, 5, 6, 7, 8], y=1, training_frame=train) pred_bin = bernoulli_gbm1.predict(pdf) binary_prediction_0 = pred_bin[0, 1] binary_prediction_1 = pred_bin[0, 2] print("Binomial prediction: p0: " + str(binary_prediction_0)) print("Binomial prediction: p1: " + str(binary_prediction_1)) download_mojo(bernoulli_gbm1, mojo_zip_path) print("\nPerforming Binomial Prediction using MOJO @... " + target_dir) prediction_result = h2o_utils.mojo_predict_csv(input_csv_path=input_csv, mojo_zip_path=mojo_zip_path, output_csv_path=output_csv) mojo_prediction_0 = float(prediction_result[0]['0']) mojo_prediction_1 = float(prediction_result[0]['1']) print("Binomial prediction: p0: " + str(mojo_prediction_0)) print("Binomial prediction: p1: " + str(mojo_prediction_1)) assert binary_prediction_0 == mojo_prediction_0, "expected predictions to be the same for binary and MOJO model for Binomial - p0" assert binary_prediction_1 == mojo_prediction_1, "expected predictions to be the same for binary and MOJO model for Binomial - p1" # ================================================================= # Multinomial # ================================================================= iris = h2o.import_file(path=pyunit_utils.locate("smalldata/iris/iris.csv")) r = iris[0].runif() train = iris[r < 0.90] test = iris[r >= 0.10] # Getting first row from test data frame pdf = test[1, 0:4] input_csv = "%s/in-multi.csv" % target_dir output_csv = "%s/output.csv" % target_dir h2o.export_file(pdf, input_csv) multi_gbm = H2OGradientBoostingEstimator() multi_gbm.train(x=['C1', 'C2', 'C3', 'C4'], y='C5', training_frame=train) pred_multi = multi_gbm.predict(pdf) multinomial_prediction_1 = pred_multi[0, 1] multinomial_prediction_2 = pred_multi[0, 2] multinomial_prediction_3 = pred_multi[0, 3] print("Multinomial prediction (Binary): p0: " + str(multinomial_prediction_1)) print("Multinomial prediction (Binary): p1: " + str(multinomial_prediction_2)) print("Multinomial prediction (Binary): p2: " + str(multinomial_prediction_3)) download_mojo(multi_gbm, mojo_zip_path) print("\nPerforming Binomial Prediction using MOJO @... " + target_dir) prediction_result = h2o_utils.mojo_predict_csv(input_csv_path=input_csv, mojo_zip_path=mojo_zip_path, output_csv_path=output_csv) mojo_prediction_1 = float(prediction_result[0]['Iris-setosa']) mojo_prediction_2 = float(prediction_result[0]['Iris-versicolor']) mojo_prediction_3 = float(prediction_result[0]['Iris-virginica']) print("Multinomial prediction (MOJO): p0: " + str(mojo_prediction_1)) print("Multinomial prediction (MOJO): p1: " + str(mojo_prediction_2)) print("Multinomial prediction (MOJO): p2: " + str(mojo_prediction_3)) assert multinomial_prediction_1 == mojo_prediction_1, "expected predictions to be the same for binary and MOJO model for Multinomial - p0" assert multinomial_prediction_2 == mojo_prediction_2, "expected predictions to be the same for binary and MOJO model for Multinomial - p1" assert multinomial_prediction_3 == mojo_prediction_3, "expected predictions to be the same for binary and MOJO model for Multinomial - p2" def mojo_predict_pandas_test(sandbox_dir): data = h2o.import_file(path=pyunit_utils.locate("smalldata/logreg/prostate.csv")) input_csv = "%s/in.csv" % sandbox_dir pdf = data[1, 2:] h2o.export_file(pdf, input_csv) data[1] = data[1].asfactor() model = H2OGradientBoostingEstimator(distribution="bernoulli") model.train(x=[2, 3, 4, 5, 6, 7, 8], y=1, training_frame=data) h2o_prediction = model.predict(pdf) # download mojo model_zip_path = os.path.join(sandbox_dir, 'model.zip') genmodel_path = os.path.join(sandbox_dir, 'h2o-genmodel.jar') download_mojo(model, model_zip_path) assert os.path.isfile(model_zip_path) assert os.path.isfile(genmodel_path) pandas_frame = pandas.read_csv(input_csv) mojo_prediction = h2o_utils.mojo_predict_pandas(dataframe=pandas_frame, mojo_zip_path=model_zip_path, genmodel_jar_path=genmodel_path) print("Binomial Prediction (Binary) - p0: %f" % h2o_prediction[0,1]) print("Binomial Prediction (Binary) - p1: %f" % h2o_prediction[0,2]) print("Binomial Prediction (MOJO) - p0: %f" % mojo_prediction['0'].iloc[0]) print("Binomial Prediction (MOJO) - p1: %f" % mojo_prediction['1'].iloc[0]) assert h2o_prediction[0,1] == mojo_prediction['0'].iloc[0], "expected predictions to be the same for binary and MOJO model - p0" assert h2o_prediction[0,2] == mojo_prediction['1'].iloc[0], "expected predictions to be the same for binary and MOJO model - p0" csv_test_dir = tempfile.mkdtemp() api_test_dir = tempfile.mkdtemp() pandas_test_dir = tempfile.mkdtemp() try: if __name__ == "__main__": pyunit_utils.standalone_test(lambda: mojo_predict_api_test(api_test_dir)) pyunit_utils.standalone_test(lambda: mojo_predict_csv_test(csv_test_dir)) pyunit_utils.standalone_test(lambda: mojo_predict_pandas_test(pandas_test_dir)) else: mojo_predict_api_test(api_test_dir) mojo_predict_csv_test(csv_test_dir) mojo_predict_pandas_test(pandas_test_dir) finally: shutil.rmtree(csv_test_dir) shutil.rmtree(api_test_dir) shutil.rmtree(pandas_test_dir)
apache-2.0
zlpure/CS231n
assignment2/cs231n/features.py
30
4807
import matplotlib import numpy as np from scipy.ndimage import uniform_filter def extract_features(imgs, feature_fns, verbose=False): """ Given pixel data for images and several feature functions that can operate on single images, apply all feature functions to all images, concatenating the feature vectors for each image and storing the features for all images in a single matrix. Inputs: - imgs: N x H X W X C array of pixel data for N images. - feature_fns: List of k feature functions. The ith feature function should take as input an H x W x D array and return a (one-dimensional) array of length F_i. - verbose: Boolean; if true, print progress. Returns: An array of shape (N, F_1 + ... + F_k) where each column is the concatenation of all features for a single image. """ num_images = imgs.shape[0] if num_images == 0: return np.array([]) # Use the first image to determine feature dimensions feature_dims = [] first_image_features = [] for feature_fn in feature_fns: feats = feature_fn(imgs[0].squeeze()) assert len(feats.shape) == 1, 'Feature functions must be one-dimensional' feature_dims.append(feats.size) first_image_features.append(feats) # Now that we know the dimensions of the features, we can allocate a single # big array to store all features as columns. total_feature_dim = sum(feature_dims) imgs_features = np.zeros((num_images, total_feature_dim)) imgs_features[0] = np.hstack(first_image_features).T # Extract features for the rest of the images. for i in xrange(1, num_images): idx = 0 for feature_fn, feature_dim in zip(feature_fns, feature_dims): next_idx = idx + feature_dim imgs_features[i, idx:next_idx] = feature_fn(imgs[i].squeeze()) idx = next_idx if verbose and i % 1000 == 0: print 'Done extracting features for %d / %d images' % (i, num_images) return imgs_features def rgb2gray(rgb): """Convert RGB image to grayscale Parameters: rgb : RGB image Returns: gray : grayscale image """ return np.dot(rgb[...,:3], [0.299, 0.587, 0.144]) def hog_feature(im): """Compute Histogram of Gradient (HOG) feature for an image Modified from skimage.feature.hog http://pydoc.net/Python/scikits-image/0.4.2/skimage.feature.hog Reference: Histograms of Oriented Gradients for Human Detection Navneet Dalal and Bill Triggs, CVPR 2005 Parameters: im : an input grayscale or rgb image Returns: feat: Histogram of Gradient (HOG) feature """ # convert rgb to grayscale if needed if im.ndim == 3: image = rgb2gray(im) else: image = np.at_least_2d(im) sx, sy = image.shape # image size orientations = 9 # number of gradient bins cx, cy = (8, 8) # pixels per cell gx = np.zeros(image.shape) gy = np.zeros(image.shape) gx[:, :-1] = np.diff(image, n=1, axis=1) # compute gradient on x-direction gy[:-1, :] = np.diff(image, n=1, axis=0) # compute gradient on y-direction grad_mag = np.sqrt(gx ** 2 + gy ** 2) # gradient magnitude grad_ori = np.arctan2(gy, (gx + 1e-15)) * (180 / np.pi) + 90 # gradient orientation n_cellsx = int(np.floor(sx / cx)) # number of cells in x n_cellsy = int(np.floor(sy / cy)) # number of cells in y # compute orientations integral images orientation_histogram = np.zeros((n_cellsx, n_cellsy, orientations)) for i in range(orientations): # create new integral image for this orientation # isolate orientations in this range temp_ori = np.where(grad_ori < 180 / orientations * (i + 1), grad_ori, 0) temp_ori = np.where(grad_ori >= 180 / orientations * i, temp_ori, 0) # select magnitudes for those orientations cond2 = temp_ori > 0 temp_mag = np.where(cond2, grad_mag, 0) orientation_histogram[:,:,i] = uniform_filter(temp_mag, size=(cx, cy))[cx/2::cx, cy/2::cy].T return orientation_histogram.ravel() def color_histogram_hsv(im, nbin=10, xmin=0, xmax=255, normalized=True): """ Compute color histogram for an image using hue. Inputs: - im: H x W x C array of pixel data for an RGB image. - nbin: Number of histogram bins. (default: 10) - xmin: Minimum pixel value (default: 0) - xmax: Maximum pixel value (default: 255) - normalized: Whether to normalize the histogram (default: True) Returns: 1D vector of length nbin giving the color histogram over the hue of the input image. """ ndim = im.ndim bins = np.linspace(xmin, xmax, nbin+1) hsv = matplotlib.colors.rgb_to_hsv(im/xmax) * xmax imhist, bin_edges = np.histogram(hsv[:,:,0], bins=bins, density=normalized) imhist = imhist * np.diff(bin_edges) # return histogram return imhist pass
mit
dpshelio/sunpy
sunpy/visualization/animator/line.py
2
7232
import numpy as np from sunpy.visualization.animator.base import ArrayAnimator, edges_to_centers_nd __all__ = ['LineAnimator'] class LineAnimator(ArrayAnimator): """ Create a matplotlib backend independent data explorer for 1D plots. The following keyboard shortcuts are defined in the viewer: * 'left': previous step on active slider. * 'right': next step on active slider. * 'top': change the active slider up one. * 'bottom': change the active slider down one. * 'p': play/pause active slider. This viewer can have user defined buttons added by specifying the labels and functions called when those buttons are clicked as keyword arguments. Parameters ---------- data: `numpy.ndarray` The y-axis to be visualized. plot_axis_index: `int`, optional The axis used to plot against ``data``. Defaults to ``-1``, i.e., the last dimension of the array. axis_ranges: `list` of physical coordinates for the `numpy.ndarray`, optional Defaults to `None` and array indices will be used for all axes. The `list` should contain one element for each axis of the `numpy.ndarray`. For the image axes a ``[min, max]`` pair should be specified which will be passed to `matplotlib.pyplot.imshow` as an extent. For the slider axes a ``[min, max]`` pair can be specified or an array the same length as the axis which will provide all values for that slider. For more information, see the Notes section of this docstring. xlabel: `str`, optional Label of x-axis. Defaults to `None`. ylabel: `str`, optional Label of y-axis. Defaults to `None`. xlim: `tuple`, optional Limits of x-axis of plot. Defaults to `None`. ylim: `tuple`, optional Limits of y-axis of plot. Defaults to `None`. Notes ----- Additional information on API of ``axes_ranges`` keyword argument. #. x-axis values must be supplied (if desired) as an array in the element of the ``axis_ranges`` `list` corresponding to the ``plot_axis_index ``in the data array, i.e., ``x_axis_values == axis_ranges[plot_axis_index]`` #. The x-axis values represent the edges of the pixels/bins along the plotted axis, not the centers. Therefore there must be 1 more x-axis value than there are data points along the x-axis. #. The shape of the x-axis values array can take two forms. a) First, it can have a length 1 greater than the length of the data array along the dimension corresponding to the x-axis, i.e., ``len(axis_ranges[plot_axis_index]) == len(data[plot_axis_index])+1``. In this scenario the same x-axis values are used in every frame of the animation. b) Second, the x-axis array can have the same shape as the data array, with the exception of the plotted axis which, as above, must be 1 greater than the length of the data array along that dimension. In this scenario the x-axis is refreshed for each frame. For example, if ``data.shape == axis_ranges[plot_axis_index].shape == (4, 3)``, where ``plot_axis_index == 0``, the 0th frame of the animation will show data from ``data[:, 0]`` with the x-axis described by ``axis_ranges[plot_axis_index][:, 0]``, while the 1st frame will show data from ``data[:, 1]`` with the x-axis described by ``axis_ranges[plot_axis_index][:, 1]``. #. This API holds for slider axes. Extra keywords are passed to `~sunpy.visualization.animator.ArrayAnimator`. """ def __init__(self, data, plot_axis_index=-1, axis_ranges=None, ylabel=None, xlabel=None, xlim=None, ylim=None, aspect='auto', **kwargs): # Check inputs. self.plot_axis_index = int(plot_axis_index) if self.plot_axis_index not in range(-data.ndim, data.ndim): raise ValueError("plot_axis_index must be within range of number of data dimensions" " (or equivalent negative indices).") if data.ndim < 2: raise ValueError("data must have at least two dimensions. One for data " "for each single plot and at least one for time/iteration.") # Define number of slider axes. self.naxis = data.ndim self.num_sliders = self.naxis-1 # Attach data to class. if axis_ranges is not None and all(axis_range is None for axis_range in axis_ranges): axis_ranges = None if axis_ranges is None or axis_ranges[self.plot_axis_index] is None: self.xdata = np.arange(data.shape[self.plot_axis_index]) else: # Else derive the xdata as the centers of the pixel/bin edges # supplied by the user for the plotted axis. self.xdata = edges_to_centers_nd(np.asarray(axis_ranges[self.plot_axis_index]), plot_axis_index) if ylim is None: ylim = (data.min(), data.max()) if xlim is None: xlim = (self.xdata.min(), self.xdata.max()) self.ylim = ylim self.xlim = xlim self.xlabel = xlabel self.ylabel = ylabel self.aspect = aspect # Run init for base class super().__init__(data, image_axes=[self.plot_axis_index], axis_ranges=axis_ranges, **kwargs) def plot_start_image(self, ax): """ Sets up a plot of initial image. """ ax.set_xlim(self.xlim) ax.set_ylim(self.ylim) ax.set_aspect(self.aspect, adjustable = 'datalim') if self.xlabel is not None: ax.set_xlabel(self.xlabel) if self.ylabel is not None: ax.set_ylabel(self.ylabel) plot_args = {} plot_args.update(self.imshow_kwargs) if self.xdata.shape == self.data.shape: item = [0] * self.data.ndim item[self.plot_axis_index] = slice(None) xdata = np.squeeze(self.xdata[tuple(item)]) else: xdata = self.xdata line, = ax.plot(xdata, self.data[self.frame_index], **plot_args) return line def update_plot(self, val, line, slider): """ Updates plot based on slider/array dimension being iterated. """ val = int(val) ax_ind = self.slider_axes[slider.slider_ind] ind = int(np.argmin(np.abs(self.axis_ranges[ax_ind] - val))) self.frame_slice[ax_ind] = ind if val != slider.cval: line.set_ydata(self.data[self.frame_index]) if self.xdata.shape == self.data.shape: item = [int(slid._slider.val) for slid in self.sliders] item[ax_ind] = val if self.plot_axis_index < 0: i = self.data.ndim + self.plot_axis_index else: i = self.plot_axis_index item.insert(i, slice(None)) line.set_xdata(self.xdata[tuple(item)]) slider.cval = val # Update slider label to reflect real world values in axis_ranges. super().update_plot(val, line, slider)
bsd-2-clause
tomevans/planetc
planetc/transit.py
1
22091
from __future__ import print_function import numpy as np import matplotlib.pyplot as plt import pdb, sys, os from . import keporb, ma02 from . import phys_consts as consts # 15Jul2013 TME: # Actually, I think I worked out that the 'bug' mentioned # in the previous comment was an artefact of the equations, # rather than a bug in the code. It might be to do with the # fact that the equations implemented in the code are # themselves an approximation that is very good for moderate # eccentricities, but starts breaking down for higher # eccentricity orbits. # 3Mar2013 TME: # There appears to be a bug in the code for calculating # eccentric transits that manifests itself as an egress # (haven't seen an ingress case yet) that isn't perfectly # smooth - it looks basically right but it's definitely # a bit funny. Need to fix this bug. # # Nov2012 TME: # This module provides python wrappers for underlying # C routines that compute Mandel & Agol (2002) transit # lightcurves. def ma02_aRs( t, **pars ): """ Uses the Mandel & Agol (2002) analytic equations to compute transit lightcurves. This routine takes the semimajor axis directly as an input parameter, and therefore does not require either the star or planet mass; this differs from the ma02_RsMsMp() routine which uses the star and planet masses with Kepler's third law to calculate the semimajor axis. CALLING F = transit.ma02_aRs( t, **pars ) INPUTS ** t - a numpy array containing the times that the lightcurve is to be evaluated for. KEYWORD INPUTS ** pars - a dictionary containing the keyword arguments. ['tr_type'] a flag that can be set to either 'primary', 'secondary' or 'both'; if it is set to 'both', the Z-coordinate will be calculated along with the normalised separation in order to distinguish between primary transits and secondary eclipses, and to scale the alternating flux changes accordingly; on the other hand, if it is set to either 'primary' or 'secondary', the Z-coordinate will not be calculated and all transit events will have the same shape and depth depending on which is chosen; the latter saves time and should almost always be used when modelling on a per-transit basis. ['T0'] time of periapse passage, which this routine will force to be the same as the mid-transit time if the orbit is circular, by setting the argument of periapse to 3pi/2. ['P'] orbital period in same units of time as 'T0'. ['aRs'] semimajor axis in units of stellar radii. ['RpRs'] planetary radius in units of stellar radii. ['incl'] orbital inclination in degrees. ['b'] = aRs*cos(i), which can be provided instead of 'incl' ['ecc'] orbital eccentricity. ['SecDepth'] depth of the secondary eclipse; will be set to zero if not explicitly specified. ['omega'] argument of periapse in degrees; this must be explicitly specified if the eccentricity is nonzero; if the orbit is circular, it will be forced to 3pi/2 regardless of the input value, to ensure that T0 corresponds to the time of mid-transit. ['ld'] an optional flag that can be set to either None, 'quad' or 'nonlin' to specify the type of limb darkening law to be used; if it is not set, then no limb darkening will be used, and this would also be the case if it is set to None. ['gam1']+['gam2'] quadratic limb darkening coeffs; required if the 'ld' flag is set to 'quad'. ['c1']+['c2']+['c3']+['c4'] nonlinear limb darkening coeffs; required if the 'ld' flag is set to 'nonlin'. OUTPUT ** F - a numpy array containing the relative flux values of the model transit lightcurve. """ # Start unpacking paramteres: T0 = pars[ 'T0' ] P = pars[ 'P' ] aRs = pars[ 'aRs' ] RpRs = pars[ 'RpRs' ] try: incl_rad = np.deg2rad( pars['incl'] ) except: try: incl_rad = np.arccos( pars['b']/aRs ) except: raise StandardError( 'Must provide at least one of incl or b' ) ecc = pars[ 'ecc' ] try: foot = pars[ 'foot' ] except: foot = 1. try: grad = pars[ 'grad' ] except: grad = 0. try: SecDepth = pars[ 'SecDepth' ] except: SecDepth = 0. try: tr_type = pars['tr_type'] except: tr_type = 'both' # Following the naming convention of the original # Mandel & Agol (2002) paper for the limb darkening # coefficients: #print( pars['ld'] ) #pdb.set_trace() try: if pars['ld']=='quad': gam1 = pars[ 'gam1' ] gam2 = pars[ 'gam2' ] elif pars['ld']=='nonlin': c1 = pars[ 'c1' ] c2 = pars[ 'c2' ] c3 = pars[ 'c3' ] c4 = pars[ 'c4' ] elif pars['ld']==None: pars['ld'] = 'quad' pars['gam1'] = 0. pars['gam2'] = 0. except: pars['ld'] = 'quad' pars['gam1'] = 0. pars['gam2'] = 0. # Calculate the mean anomaly: t = t.flatten() MeanAnom = ( 2*np.pi/P )*( t - T0 ) # Calculate the normalised separation between the # planetary and stellar discs: if ecc != 0.: omega_rad = pars['omega'] * np.pi/180. NormSep = keporb.NormSep( MeanAnom, aRs, ecc, omega_rad, incl_rad ) else: omega_rad = 3.*np.pi/2. try: b = pars['b'] except: b = aRs*np.cos( incl_rad ) NormSep = np.sqrt( ( ( aRs*np.sin( MeanAnom ) )**2. ) \ + ( ( b*np.cos( MeanAnom ) )**2. ) ) # If we want to model both primary transits and secondary # eclipses, we need to compute the Z coordinate to determine # when the planet is in front of the star (Z<0) and behind # the star (Z>0): if tr_type=='both': F = np.ones( len( t ) ) zcoord = keporb.Zcoord( MeanAnom, aRs, ecc, omega_rad, incl_rad ) ixsf = ( zcoord < 0 ) if ixsf.max()==True: if pars['ld']=='quad': F[ixsf] = ma02.F_quad( NormSep[ixsf], RpRs, \ pars['gam1'], pars['gam2'] ) elif pars['ld']=='nonlin': F[ixsf] = ma02.F_nonlin( NormSep[ixsf], RpRs, \ pars['c1'], pars['c2'], \ pars['c3'], pars['c4'] ) else: pdb.set_trace() ixsb = ( zcoord >= 0 ) if ixsb.max()==True: temp = ma02.F_quad( NormSep[ixsb], RpRs, 0.0, 0.0 ) - 1. F[ixsb] = 1 + temp*SecDepth/( temp.max() - temp.min() ) #/( RpRs**2. ) # If we're only interested in the primary transits then # we must take stellar limb darkening into account # while treating the planet as an non-luminous disc: elif tr_type=='primary': if pars['ld']=='quad': F = ma02.F_quad( NormSep, RpRs, \ pars['gam1'], pars['gam2'] ) elif pars['ld']=='nonlin': F = ma02.F_nonlin( NormSep, RpRs, \ pars['c1'], pars['c2'], \ pars['c3'], pars['c4'] ) else: print( '\n\n\n{0:s} not recognised as limb darkening type'\ .format( pars['ld'] ) ) pdb.set_trace() # If we're only interested in the secondary eclipses # we treat the planet as a uniform disc with no limb # darkening: elif tr_type=='secondary': temp = ma02.F_quad( NormSep, RpRs, 0.0, 0.0 ) - 1. F = 1 + temp*SecDepth/( temp.max() - temp.min() ) #/( RpRs**2. ) # If requested, re-scale the lightcurve by a linear # trend before returning the output: if ( grad!=0. )+( foot!=1. ): twid = t.max() - t.min() tmid = t.min() + 0.5*twid F = F * ( foot + grad*( t - tmid ) ) # NOTE: This will change the absolute value of the # eclipse depth, but the fractional value of the # eclipse depth will remain the same. return F def ma02_RsMsRpMp( t, **pars ): """ Uses the Mandel & Agol (2002) analytic equations to compute transit lightcurves. This routine takes the mass and radius for both the star and planet as input parameters. The masses are used with Kepler's third law to calculate the semimajor axis. This differs from the ma02_aRs() routine which takes the semimajor axis directly as an input parameter. CALLING F = transit.ma02_RsMsMp( t, **pars ) INPUTS ** t - a numpy array containing the times that the lightcurve is to be evaluated for. KEYWORD INPUTS ** pars - a dictionary containing the keyword arguments: ['tr_type'] a flag that can be set to either 'primary', 'secondary' or 'both'; if it is set to 'both', the Z-coordinate will be calculated along with the normalised separation in order to distinguish between primary transits and secondary eclipses, and to scale the alternating flux changes accordingly; on the other hand, if it is set to either 'primary' or 'secondary', the Z-coordinate will not be calculated and all transit events will have the same shape and depth depending on which is chosen; the latter saves time and should almost always be used when modelling on a per-transit basis. ['T0'] time of periapse passage, which this routine will force to be the same as the mid-transit time if the orbit is circular, by setting the argument of periapse to 3pi/2. ['P'] orbital period in same units of time as 'T0'. ['Rs'] stellar radius in solar radii. ['Ms'] stellar mass in solar masses. ['Rp'] planetary radius in Jupiter radii. ['Mp'] planetary mass in Jupiter masses. ['incl'] orbital inclination in degrees. ['ecc'] orbital eccentricity. ['SecDepth'] depth of the secondary eclipse; will be set to zero if not explicitly specified. ['omega'] argument of periapse in degrees; this must be explicitly specified if the eccentricity is nonzero; if the orbit is circular, it will be forced to 3pi/2 regardless of the input value, to ensure that T0 corresponds to the time of mid-transit. ['ld'] an optional flag that can be set to either None, 'quad' or 'nonlin' to specify the type of limb darkening law to be used; if it is not set, then no limb darkening will be used, and this would also be the case if it is set to None. ['gam1']+['gam2'] quadratic limb darkening coeffs; required if the 'ld' flag is set to 'quad'. ['c1']+['c2']+['c3']+['c4'] nonlinear limb darkening coeffs; required if the 'ld' flag is set to 'nonlin'. OUTPUT ** F - a numpy array containing the relative flux values of the model transit lightcurve. """ # Start unpacking paramteres: T0 = pars['T0'] P = pars['P'] Rs = pars['Rs'] Ms = pars['Ms'] Rp = pars['Rp'] Mp = pars['Mp'] SecDepth = pars['SecDepth'] incl_rad = pars['incl'] * np.pi/180. ecc = pars['ecc'] try: foot = pars[ 'foot' ] except: foot = 1. try: grad = pars[ 'grad' ] except: grad = 0. try: SecDepth = pars[ 'SecDepth' ] except: SecDepth = 0. try: tr_type = pars['tr_type'] except: tr_type = 'both' # Convert some of the units: Rs *= consts.RSun Ms *= consts.MSun Rp *= consts.RJup Mp *= consts.MJup # Assuming a 2-body Keplerian orbit, use Kepler's # third law to calculate the semimajor axis: a = np.power( ( ( ( ( P*24.*60.*60./( 2*np.pi ) )**2 ) \ * consts.G * ( Ms + Mp) ) ) , (1./3.) ) aRs = a/Rs RpRs = Rp/Rs # Following the naming convention of the original # Mandel & Agol (2002) paper for the limb darkening # coefficients: try: if pars['ld']=='quad': gam1 = pars[ 'gam1' ] gam2 = pars[ 'gam2' ] elif pars['ld']=='nonlin': c1 = pars[ 'c1' ] c2 = pars[ 'c2' ] c3 = pars[ 'c3' ] c4 = pars[ 'c4' ] elif pars['ld']==None: pars['ld'] = 'quad' pars['gam1'] = 0. pars['gam2'] = 0. except: pars['ld'] = 'quad' pars['gam1'] = 0. pars['gam2'] = 0. # Calculate the mean anomaly: MeanAnom = ( 2*np.pi/P )*( t - T0 ) # Calculate the normalised separation between the # planetary and stellar discs: if ecc != 0.: omega_rad = pars['omega'] * np.pi/180. NormSep = keporb.NormSep( MeanAnom, aRs, ecc, omega_rad, incl_rad ) else: omega_rad = 3.*np.pi/2. b = aRs*np.cos( incl_rad ) NormSep = np.sqrt( ( ( aRs*np.sin( MeanAnom ) )**2. ) \ + ( ( b*np.cos( MeanAnom ) )**2. ) ) # If we want to model both primary transits and secondary # eclipses, we need to compute the Z coordinate to determine # when the planet is in front of the star (Z<0) and behind # the star (Z>0): if tr_type=='both': F = np.ones( len( t ) ) zcoord = keporb.Zcoord( MeanAnom, aRs, ecc, omega_rad, incl_rad ) ixsf = ( zcoord < 0 ) if pars['ld']=='quad': F[ixsf] = ma02.F_quad( NormSep[ixsf], RpRs, \ pars['gam1'], pars['gam2'] ) elif pars['ld']=='nonlin': F[ixsf] = ma02.F_nonlin( NormSep[ixsf], RpRs, \ pars['c1'], pars['c2'], \ pars['c3'], pars['c4'] ) else: pdb.set_trace() ixsb = ( zcoord >= 0 ) temp = ma02.F_quad( NormSep[ixsb], RpRs, 0.0, 0.0 ) - 1. F[ixsb] = 1 + temp*SecDepth/( temp.max() - temp.min() ) #/( RpRs**2. ) # If we're only interested in the primary transits then # we must take stellar limb darkening into account # while treating the planet as an non-luminous disc: elif tr_type=='primary': if pars['ld']=='quad': F = ma02.F_quad( NormSep, RpRs, \ pars['gam1'], pars['gam2'] ) elif pars['ld']=='nonlin': F = ma02.F_nonlin( NormSep, RpRs, \ pars['c1'], pars['c2'], \ pars['c3'], pars['c4'] ) else: pdb.set_trace() # If we're only interested in the secondary eclipses # we treat the planet as a uniform disc with no limb # darkening: elif tr_type=='secondary': temp = ma02.F_quad( NormSep, RpRs, 0.0, 0.0 ) - 1. F = 1 + temp*SecDepth/( temp.max() - temp.min() ) #/( RpRs**2. ) # If requested, re-scale the lightcurve by a linear # trend before returning the output: if ( grad!=0. )+( foot!=1. ): twid = t.max() - t.min() tmid = t.min() + 0.5*twid F = F * ( foot + grad*( t - tmid ) ) return F def calc_T0( Ttr, P, ecc, omega, transit='primary' ): """ SUMMARY Computes time of periapse passage given the mid-time of either the primary transit or the secondary eclipse. CALLING T0 = transit.calc_T0( Ttr, P, ecc, omega, transit='primary' ) INPUTS ** Ttr - transit/eclipse mid-time. ** P - orbital period. ** ecc - orbital eccentricity. ** omega - argument of periapse in degrees. KEYWORD INPUTS ** transit - 'primary' or 'secondary' depending on whether the mid-time Ttr is for the primary transit or secondary eclipse; default is 'primary'. OUTPUT ** T0 - the time of periapse passage. NOTES: ** Ttr and P must have the same units of time, and the output T0 will also have the same units. ** By default, the longitude of the ascending node (big Omega) is implicitly taken to be 180 degrees in the calculations. """ # Convert omega from degrees to radians: omega *= np.pi / 180. # Make sure omega has been provided between 0-2pi: while omega >= 2*np.pi: omega -= 2*pi while omega < 0: omega += 2*np.pi # Calculate the true anomaly corresponding to the # midpoint of the transit/eclipse, and ensure that # the value lies in the 0-2pi range: if transit=='primary': TrueAnom_tr = 3*np.pi/2. - omega elif transit=='secondary': TrueAnom_tr = np.pi/2. - omega else: pdb.set_trace() while TrueAnom_tr >= 2*np.pi: TrueAnom_tr -= 2*pi while TrueAnom_tr < 0: TrueAnom_tr += 2*np.pi # Calculate the value of the eccentric anomaly at the time # of transit/eclipse: EccAnom_tr = 2 * np.arctan2( np.sqrt( 1. - ecc )*np.sin( TrueAnom_tr/2. ), \ np.sqrt( 1. + ecc )*np.cos( TrueAnom_tr/2. ) ) # Use the eccentric anomaly at the time of transit/eclipse # to calculate the mean anomaly: MeanAnom_tr = EccAnom_tr - ecc*np.sin( EccAnom_tr ) # Convert the mean anomaly to a time elapsed since the # time of periastron passage: delt = P * ( MeanAnom_tr/2./np.pi ) # Calculate the time of periastron passage: T0 = Ttr - delt return T0 def example(): """ Simple routine that demonstrates various ways of computing lightcurves, and plots the results. """ # Time values: t = np.linspace( 0., 7., 10000 ) # Orbit properties: ecc = 0.0 P = 2.1 # days incl = 88.2 # degrees omega = 90.0 # degrees T_tr = 0.0 # time of transit T0 = calc_T0( T_tr, P, ecc, omega, transit='primary' ) # Star-planet physical: Rp = 1.0 # Jupiter radii Mp = 1.0 # Jupiter masses Rs = 1.0 # solar radii Ms = 1.0 # solar masses # Lightcurve properties: SecDepth = 1e-3 foot = 1.0 grad = 0.0 # Calculate the semimajor axis using Kepler's # third law: a = np.power( ( ( ( ( P*24.*60.*60./( 2*np.pi ) )**2 ) * consts.G \ * ( Ms*consts.MSun + Mp*consts.MJup ) ) ) , (1./3.) ) RpRs = ( Rp*consts.RJup )/( Rs*consts.RSun ) aRs = a / ( Rs*consts.RSun ) # Nonlinear limb darkening coeffs: c1 = -0.1 c2 = +1.4 c3 = -1.2 c4 = +0.5 # Quadratic limb darkening coeffs: gam1 = 0.5 gam2 = 0.1 # Quadratic limb darkening + RsMsRpMp parameterisation: pars_RsMsRpMp_q = { 'T0':T0, 'P':P, 'Ms':Ms, 'Mp':Mp, 'Rs':Rs, \ 'Rp':Rp, 'SecDepth':SecDepth, 'incl':incl, \ 'ecc':ecc, 'omega':omega, 'gam1':gam1, 'gam2':gam2, \ 'ld':'quad', 'foot':foot, 'grad':grad } F_RsMsRpMp_q = ma02_RsMsRpMp( t, **pars_RsMsRpMp_q ) # Nonlinear limb darkening + RsMsRpMp parameterisation: pars_RsMsRpMp_nl = { 'T0':T0, 'P':P, 'Ms':Ms, 'Mp':Mp, 'Rs':Rs, \ 'Rp':Rp, 'SecDepth':SecDepth, 'incl':incl, \ 'ecc':ecc, 'omega':omega, 'c1':c1, 'c2':c2, \ 'c3':c3, 'c4':c4, 'ld':'nonlin', \ 'foot':foot, 'grad':grad } F_RsMsRpMp_nl = ma02_RsMsRpMp( t, **pars_RsMsRpMp_nl ) # No limb darkening + RsMsRpMp parameterisation: pars_RsMsRpMp_n = { 'T0':T0, 'P':P, 'Ms':Ms, 'Mp':Mp, 'Rs':Rs, \ 'Rp':Rp, 'SecDepth':SecDepth, 'incl':incl, \ 'ecc':ecc, 'omega':omega, 'ld':None, \ 'foot':foot, 'grad':grad } F_RsMsRpMp_n = ma02_RsMsRpMp( t, **pars_RsMsRpMp_n ) # Quadratic limb darkening + aRs parameterisation: pars_aRs_q = { 'T0':T0, 'P':P, 'aRs':aRs, 'RpRs':RpRs, \ 'SecDepth':SecDepth, 'incl':incl, 'ecc':ecc, \ 'omega':omega, 'gam1':gam1, 'gam2':gam2, 'ld':'quad', 'foot':foot, 'grad':grad } F_aRs_q = ma02_aRs( t, **pars_aRs_q ) # Nonlinear limb darkening + aRs parameterisation: pars_aRs_nl = { 'T0':T0, 'P':P, 'aRs':aRs, 'RpRs':RpRs, \ 'SecDepth':SecDepth, 'incl':incl, 'ecc':ecc, \ 'omega':omega, 'c1':c1, 'c2':c2, 'c3':c3, 'c4':c4, 'ld':'nonlin', 'foot':foot, 'grad':grad } F_aRs_nl = ma02_aRs( t, **pars_aRs_nl ) # No limb darkening + aRs parameterisation: pars_aRs_n = { 'T0':T0, 'P':P, 'aRs':aRs, 'RpRs':RpRs, \ 'SecDepth':SecDepth, 'incl':incl, 'ecc':ecc, \ 'omega':omega, 'ld':None, \ 'foot':foot, 'grad':grad } F_aRs_n = ma02_aRs( t, **pars_aRs_n ) # Plot the results: fig = plt.figure() ax1 = fig.add_subplot( 211 ) ax1.plot( t, F_aRs_n, '--g', lw=1 ) ax1.plot( t, F_aRs_nl, '-m', lw=1 ) ax1.plot( t, F_aRs_q, '-b', lw=1 ) #ax1.set_ylim( [ 1-1.4*(RpRs**2.), 1+0.2*(RpRs**2.) ] ) ax1.set_ylim( [ 1. - 1.4*foot*(RpRs**2.), 1. + 0.2*foot*(RpRs**2.) ] ) ax2 = fig.add_subplot( 212, sharex=ax1 ) ax2.plot( t, F_RsMsRpMp_n, '--g', lw=1 ) ax2.plot( t, F_RsMsRpMp_nl, '-m', lw=1 ) ax2.plot( t, F_RsMsRpMp_q, '-b', lw=1 ) #ax2.set_ylim( [ 1-1.4*(RpRs**2.), 1+0.2*(RpRs**2.) ] ) ax2.set_ylim( [ 1. - 1.4*foot*(RpRs**2.), 1. + 0.2*foot*(RpRs**2.) ] ) ax2.set_xlabel( 'Time' ) # Discrepencies between output from routines # using different parameterisations: print( 'This should be zero --> {0:.10f}'\ .format( ( F_RsMsRpMp_q - F_aRs_q ).max() ) ) print( 'This should be zero --> {0:.10f}'\ .format( ( F_RsMsRpMp_nl - F_aRs_nl ).max() ) ) return None
gpl-2.0
JanNash/sms-tools
lectures/05-Sinusoidal-model/plots-code/spectral-peaks-interpolation.py
22
1234
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris from scipy.fftpack import fft, ifft import math import sys, os, functools, time sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') N = 512*2 M = 511 t = -60 w = np.hamming(M) start = .8*fs hN = N/2 hM = (M+1)/2 x1 = x[start:start+M] mX, pX = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX, t) iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) pmag = mX[ploc] freqaxis = fs*np.arange(mX.size)/float(N) plt.figure(1, figsize=(9.5, 5.5)) plt.subplot (2,1,1) plt.plot(freqaxis,mX,'r', lw=1.5) plt.axis([300,2500,-70,max(mX)]) plt.plot(fs * iploc / N, ipmag, marker='x', color='b', linestyle='', markeredgewidth=1.5) plt.title('mX + spectral peaks (oboe-A4.wav)') plt.subplot (2,1,2) plt.plot(freqaxis,pX,'c', lw=1.5) plt.axis([300,2500,min(pX),-1]) plt.plot(fs * iploc / N, ipphase, marker='x', color='b', linestyle='', markeredgewidth=1.5) plt.title('pX + spectral peaks') plt.tight_layout() plt.savefig('spectral-peaks-interpolation.png') plt.show()
agpl-3.0
robbymeals/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
melgor/autograd
examples/sinusoid.py
3
1120
from __future__ import absolute_import from __future__ import print_function import autograd.numpy as np import matplotlib.pyplot as plt from autograd import grad from six.moves import map from six.moves import range def fun(x): return np.sin(x) d_fun = grad(fun) # First derivative dd_fun = grad(d_fun) # Second derivative x = np.linspace(-10, 10, 100) plt.plot(x, list(map(fun, x)), x, list(map(d_fun, x)), x, list(map(dd_fun, x))) plt.xlim([-10, 10]) plt.ylim([-1.2, 1.2]) plt.axis('off') plt.savefig("sinusoid.png") plt.clf() # Taylor approximation to sin function def fun(x): currterm = x ans = currterm for i in range(1000): print(i, end=' ') currterm = - currterm * x ** 2 / ((2 * i + 3) * (2 * i + 2)) ans = ans + currterm if np.abs(currterm) < 0.2: break # (Very generous tolerance!) return ans d_fun = grad(fun) dd_fun = grad(d_fun) x = np.linspace(-10, 10, 100) plt.plot(x, list(map(fun, x)), x, list(map(d_fun, x)), x, list(map(dd_fun, x))) plt.xlim([-10, 10]) plt.ylim([-1.2, 1.2]) plt.axis('off') plt.savefig("sinusoid_taylor.png") plt.clf()
mit
kevin-intel/scikit-learn
examples/exercises/plot_cv_diabetes.py
23
2755
""" =============================================== Cross-validation on diabetes Dataset Exercise =============================================== A tutorial exercise which uses cross-validation with linear models. This exercise is used in the :ref:`cv_estimators_tut` part of the :ref:`model_selection_tut` section of the :ref:`stat_learn_tut_index`. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.linear_model import LassoCV from sklearn.linear_model import Lasso from sklearn.model_selection import KFold from sklearn.model_selection import GridSearchCV X, y = datasets.load_diabetes(return_X_y=True) X = X[:150] y = y[:150] lasso = Lasso(random_state=0, max_iter=10000) alphas = np.logspace(-4, -0.5, 30) tuned_parameters = [{'alpha': alphas}] n_folds = 5 clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds, refit=False) clf.fit(X, y) scores = clf.cv_results_['mean_test_score'] scores_std = clf.cv_results_['std_test_score'] plt.figure().set_size_inches(8, 6) plt.semilogx(alphas, scores) # plot error lines showing +/- std. errors of the scores std_error = scores_std / np.sqrt(n_folds) plt.semilogx(alphas, scores + std_error, 'b--') plt.semilogx(alphas, scores - std_error, 'b--') # alpha=0.2 controls the translucency of the fill color plt.fill_between(alphas, scores + std_error, scores - std_error, alpha=0.2) plt.ylabel('CV score +/- std error') plt.xlabel('alpha') plt.axhline(np.max(scores), linestyle='--', color='.5') plt.xlim([alphas[0], alphas[-1]]) # ############################################################################# # Bonus: how much can you trust the selection of alpha? # To answer this question we use the LassoCV object that sets its alpha # parameter automatically from the data by internal cross-validation (i.e. it # performs cross-validation on the training data it receives). # We use external cross-validation to see how much the automatically obtained # alphas differ across different cross-validation folds. lasso_cv = LassoCV(alphas=alphas, random_state=0, max_iter=10000) k_fold = KFold(3) print("Answer to the bonus question:", "how much can you trust the selection of alpha?") print() print("Alpha parameters maximising the generalization score on different") print("subsets of the data:") for k, (train, test) in enumerate(k_fold.split(X, y)): lasso_cv.fit(X[train], y[train]) print("[fold {0}] alpha: {1:.5f}, score: {2:.5f}". format(k, lasso_cv.alpha_, lasso_cv.score(X[test], y[test]))) print() print("Answer: Not very much since we obtained different alphas for different") print("subsets of the data and moreover, the scores for these alphas differ") print("quite substantially.") plt.show()
bsd-3-clause
jm-begon/scikit-learn
examples/linear_model/plot_lasso_lars.py
363
1080
#!/usr/bin/env python """ ===================== Lasso path using LARS ===================== Computes Lasso Path along the regularization parameter using the LARS algorithm on the diabetes dataset. Each color represents a different feature of the coefficient vector, and this is displayed as a function of the regularization parameter. """ print(__doc__) # Author: Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target print("Computing regularization path using the LARS ...") alphas, _, coefs = linear_model.lars_path(X, y, method='lasso', verbose=True) xx = np.sum(np.abs(coefs.T), axis=1) xx /= xx[-1] plt.plot(xx, coefs.T) ymin, ymax = plt.ylim() plt.vlines(xx, ymin, ymax, linestyle='dashed') plt.xlabel('|coef| / max|coef|') plt.ylabel('Coefficients') plt.title('LASSO Path') plt.axis('tight') plt.show()
bsd-3-clause
neuroidss/nupic.research
projects/capybara/sandbox/classification/plot_raw_sensortag_data.py
9
2428
#!/usr/bin/env python # ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- import csv import os import matplotlib.pyplot as plt from settings.acc_data import (INPUT_FILES, METRICS, DATA_DIR) numRecordsToPlot = 500 plt.figure(figsize=(20, 13)) for inputFile in INPUT_FILES: filePath = os.path.join(DATA_DIR, inputFile) with open(filePath, 'rU') as f: reader = csv.reader(f) headers = reader.next() reader.next() t = [] x = [] y = [] z = [] for i, values in enumerate(reader): record = dict(zip(headers, values)) try: for metric in METRICS: float(record[metric]) x.append(float(record['x'])) y.append(float(record['y'])) z.append(float(record['z'])) t.append(i) except ValueError: print "Not possible to convert some values of %s to a float" % record if i > numRecordsToPlot: break subplot_index = INPUT_FILES.index(inputFile) ax = plt.subplot(4, 1, subplot_index + 1) ax.plot(t, x, 'r', label='x') ax.plot(t, y, 'b', label='y') ax.plot(t, z, 'g', label='z') handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) plt.tight_layout() plt.title(inputFile) plt.xlim([0, numRecordsToPlot]) plt.ylim([-8, 8]) plt.xlabel('timestep') plt.ylabel('accelerometer') plt.grid() plt.savefig(outputFile = '%s.png' % inputFile[:-4]) plt.show()
agpl-3.0
pllim/ginga
ginga/rv/plugins/Histogram.py
3
24097
# This is open-source software licensed under a BSD license. # Please see the file LICENSE.txt for details. """ ``Histogram`` plots a histogram for a region drawn in the image, or for the entire image. **Plugin Type: Local** ``Histogram`` is a local plugin, which means it is associated with a channel. An instance can be opened for each channel. **Usage** Click and drag to define a region within the image that will be used to calculate the histogram. To take the histogram of the full image, click the button in the UI labeled "Full Image". .. note:: Depending on the size of the image, calculating the full histogram may take time. If a new image is selected for the channel, the histogram plot will be recalculated based on the current parameters with the new data. Unless disabled in the settings file for the histogram plugin, a line of simple statistics for the box is calculated and shown in a line below the plot. **UI Controls** Three radio buttons at the bottom of the UI are used to control the effects of the click/drag action: * select "Move" to drag the region to a different location * select "Draw" to draw a new region * select "Edit" to edit the region To make a log plot of the histogram, check the "Log Histogram" checkbox. To plot by the full range of values in the image instead of by the range within the cut values, uncheck the "Plot By Cuts" checkbox. The "NumBins" parameter determines how many bins are used in calculating the histogram. Type a number in the box and press "Enter" to change the default value. **Cut Levels Convenience Controls** Because a histogram is useful feedback for setting the cut levels, controls are provided in the UI for setting the low and high cut levels in the image, as well as for performing an auto cut levels, according to the auto cut levels settings in the channel preferences. You can set cut levels by clicking in the histogram plot: * left click: set low cut * middle click: reset (auto cut levels) * right click: set high cut In addition, you can dynamically adjust the gap between low and high cuts by scrolling the wheel in the plot (i.e. the "width" of the histogram plot curve). This has the effect of increasing or decreasing the contrast within the image. The amount that is changed for each wheel click is set by the plugin configuration file setting ``scroll_pct``. The default is 10%. **User Configuration** """ import numpy as np from ginga.gw import Widgets from ginga import GingaPlugin from ginga import AutoCuts try: from ginga.gw import Plot from ginga.util import plots have_mpl = True except ImportError: have_mpl = False __all__ = ['Histogram'] class Histogram(GingaPlugin.LocalPlugin): def __init__(self, fv, fitsimage): # superclass defines some variables for us, like logger super(Histogram, self).__init__(fv, fitsimage) self.layertag = 'histogram-canvas' self.histtag = None # If True, limits X axis to lo/hi cut levels self.xlimbycuts = True # percentage to adjust plotting X limits when xlimbycuts is True self.lim_adj_pct = 0.03 self._split_sizes = [400, 500] # get Histogram preferences prefs = self.fv.get_preferences() self.settings = prefs.create_category('plugin_Histogram') self.settings.add_defaults(draw_then_move=True, num_bins=2048, hist_color='aquamarine', show_stats=True, maxdigits=7, scroll_pct=0.10) self.settings.load(onError='silent') # Set up histogram control parameters self.histcolor = self.settings.get('hist_color', 'aquamarine') self.numbins = self.settings.get('num_bins', 2048) self.autocuts = AutoCuts.Histogram(self.logger) # percentage to adjust cuts gap when scrolling in histogram self.scroll_pct = self.settings.get('scroll_pct', 0.10) # for formatting statistics line self.show_stats = self.settings.get('show_stats', True) maxdigits = self.settings.get('maxdigits', 7) self.fmt_cell = '{:< %d.%dg}' % (maxdigits - 1, maxdigits // 2) self.dc = self.fv.get_draw_classes() canvas = self.dc.DrawingCanvas() canvas.enable_draw(True) canvas.enable_edit(True) canvas.set_drawtype('rectangle', color='cyan', linestyle='dash', drawdims=True) canvas.set_callback('draw-event', self.draw_cb) canvas.set_callback('edit-event', self.edit_cb) canvas.add_draw_mode('move', down=self.drag, move=self.drag, up=self.update) canvas.register_for_cursor_drawing(self.fitsimage) canvas.set_surface(self.fitsimage) canvas.set_draw_mode('draw') self.canvas = canvas fitssettings = fitsimage.get_settings() for name in ['cuts']: fitssettings.get_setting(name).add_callback( 'set', self.cutset_ext_cb, fitsimage) self.gui_up = False def build_gui(self, container): if not have_mpl: raise ImportError('Install matplotlib to use this plugin') top = Widgets.VBox() top.set_border_width(4) # Make the cuts plot box, sw, orientation = Widgets.get_oriented_box(container, orientation=self.settings.get('orientation', None)) box.set_border_width(4) box.set_spacing(2) paned = Widgets.Splitter(orientation=orientation) self.w.splitter = paned self.plot = plots.Plot(logger=self.logger, width=400, height=400) ax = self.plot.add_axis() ax.grid(True) self.plot.add_callback('button-press', self.set_cut_by_click) self.plot.add_callback('scroll', self.adjust_cuts_scroll) w = Plot.PlotWidget(self.plot) self.plot.connect_ui() w.resize(400, 400) paned.add_widget(Widgets.hadjust(w, orientation)) vbox = Widgets.VBox() vbox.set_border_width(2) # for statistics line self.w.stats1 = Widgets.Label('') vbox.add_widget(self.w.stats1) captions = (('Cut Low:', 'label', 'Cut Low', 'entry'), ('Cut High:', 'label', 'Cut High', 'entry', 'Cut Levels', 'button'), ('Auto Levels', 'button'), ('Log Histogram', 'checkbutton', 'Plot By Cuts', 'checkbutton'), ('NumBins:', 'label', 'NumBins', 'entry'), ('Full Image', 'button'), ) w, b = Widgets.build_info(captions, orientation=orientation) self.w.update(b) b.cut_levels.set_tooltip("Set cut levels manually") b.auto_levels.set_tooltip("Set cut levels by algorithm") b.cut_low.set_tooltip("Set low cut level (press Enter)") b.cut_high.set_tooltip("Set high cut level (press Enter)") b.log_histogram.set_tooltip("Use the log of the pixel values for the " "histogram (empty bins map to 10^-1)") b.plot_by_cuts.set_tooltip("Only show the part of the histogram " "between the cuts") b.numbins.set_tooltip("Number of bins for the histogram") b.full_image.set_tooltip("Use the full image for calculating the " "histogram") b.numbins.set_text(str(self.numbins)) b.cut_low.add_callback('activated', lambda w: self.cut_levels()) b.cut_high.add_callback('activated', lambda w: self.cut_levels()) b.cut_levels.add_callback('activated', lambda w: self.cut_levels()) b.auto_levels.add_callback('activated', lambda w: self.auto_levels()) b.log_histogram.set_state(self.plot.logy) b.log_histogram.add_callback('activated', self.log_histogram_cb) b.plot_by_cuts.set_state(self.xlimbycuts) b.plot_by_cuts.add_callback('activated', self.plot_by_cuts_cb) b.numbins.add_callback('activated', lambda w: self.set_numbins_cb()) b.full_image.add_callback('activated', lambda w: self.full_image_cb()) fr = Widgets.Frame("Histogram") vbox.add_widget(w) fr.set_widget(vbox) box.add_widget(fr, stretch=0) paned.add_widget(sw) paned.set_sizes(self._split_sizes) mode = self.canvas.get_draw_mode() hbox = Widgets.HBox() btn1 = Widgets.RadioButton("Move") btn1.set_state(mode == 'move') btn1.add_callback('activated', lambda w, val: self.set_mode_cb('move', val)) btn1.set_tooltip("Choose this to position box") self.w.btn_move = btn1 hbox.add_widget(btn1) btn2 = Widgets.RadioButton("Draw", group=btn1) btn2.set_state(mode == 'draw') btn2.add_callback('activated', lambda w, val: self.set_mode_cb('draw', val)) btn2.set_tooltip("Choose this to draw a replacement box") self.w.btn_draw = btn2 hbox.add_widget(btn2) btn3 = Widgets.RadioButton("Edit", group=btn1) btn3.set_state(mode == 'edit') btn3.add_callback('activated', lambda w, val: self.set_mode_cb('edit', val)) btn3.set_tooltip("Choose this to edit a box") self.w.btn_edit = btn3 hbox.add_widget(btn3) if self.histtag is None: self.w.btn_move.set_enabled(False) self.w.btn_edit.set_enabled(False) hbox.add_widget(Widgets.Label(''), stretch=1) top.add_widget(paned, stretch=5) top.add_widget(hbox, stretch=0) btns = Widgets.HBox() btns.set_border_width(4) btns.set_spacing(3) btn = Widgets.Button("Close") btn.add_callback('activated', lambda w: self.close()) btns.add_widget(btn, stretch=0) btn = Widgets.Button("Help") btn.add_callback('activated', lambda w: self.help()) btns.add_widget(btn, stretch=0) btns.add_widget(Widgets.Label(''), stretch=1) top.add_widget(btns, stretch=0) container.add_widget(top, stretch=1) self.gui_up = True def close(self): self.fv.stop_local_plugin(self.chname, str(self)) return True def start(self): self.plot.set_titles(rtitle="Histogram") # insert canvas, if not already p_canvas = self.fitsimage.get_canvas() try: p_canvas.get_object_by_tag(self.layertag) except KeyError: # Add ruler layer p_canvas.add(self.canvas, tag=self.layertag) #self.canvas.delete_all_objects() self.resume() def pause(self): self.canvas.ui_set_active(False) def resume(self): # turn off any mode user may be in self.modes_off() self.canvas.ui_set_active(True, viewer=self.fitsimage) self.fv.show_status("Draw a rectangle with the right mouse button") def stop(self): self.gui_up = False self._split_sizes = self.w.splitter.get_sizes() # remove the rect from the canvas ## try: ## self.canvas.delete_object_by_tag(self.histtag) ## except Exception: ## pass ##self.histtag = None # remove the canvas from the image p_canvas = self.fitsimage.get_canvas() try: p_canvas.delete_object_by_tag(self.layertag) except Exception: pass self.fv.show_status("") def full_image_cb(self): canvas = self.canvas try: canvas.delete_object_by_tag(self.histtag) except Exception: pass image = self.fitsimage.get_vip() width, height = image.get_size() x1, y1, x2, y2 = 0, 0, width - 1, height - 1 tag = canvas.add(self.dc.Rectangle(x1, y1, x2, y2, color='cyan', linestyle='dash')) self.draw_cb(canvas, tag) def get_data(self, image, x1, y1, x2, y2, z=0): tup = image.cutout_adjust(x1, y1, x2 + 1, y2 + 1, z=z) return tup[0] def histogram(self, image, x1, y1, x2, y2, z=None, pct=1.0, numbins=2048): self.logger.warning("This call will be deprecated soon. " "Use get_data() and histogram_data().") data_np = self.get_data(image, x1, y1, x2, y2, z=z) return self.histogram_data(data_np, pct=pct, numbins=numbins) def histogram_data(self, data, pct=1.0, numbins=2048): return self.autocuts.calc_histogram(data, pct=pct, numbins=numbins) def redo(self): if self.histtag is None: return obj = self.canvas.get_object_by_tag(self.histtag) if obj.kind != 'compound': return True bbox = obj.objects[0] # Do histogram on the points within the rect image = self.fitsimage.get_vip() self.plot.clear() numbins = self.numbins depth = image.get_depth() if depth != 3: data_np = self.get_data(image, int(bbox.x1), int(bbox.y1), int(bbox.x2), int(bbox.y2)) res = self.histogram_data(data_np, pct=1.0, numbins=numbins) # used with 'steps-post' drawstyle, this x and y assignment # gives correct histogram-steps x = res.bins y = np.append(res.dist, res.dist[-1]) ymax = y.max() if self.plot.logy: y = np.choose(y > 0, (.1, y)) self.plot.plot(x, y, xtitle="Pixel value", ytitle="Number", title="Pixel Value Distribution", color='blue', alpha=1.0, drawstyle='steps-post') else: colors = ('red', 'green', 'blue') ymax = 0 for z in range(depth): data_np = self.get_data(image, int(bbox.x1), int(bbox.y1), int(bbox.x2), int(bbox.y2), z=z) res = self.histogram_data(data_np, pct=1.0, numbins=numbins) # used with 'steps-post' drawstyle, this x and y assignment # gives correct histogram-steps x = res.bins y = np.append(res.dist, res.dist[-1]) ymax = max(ymax, y.max()) if self.plot.logy: y = np.choose(y > 0, (.1, y)) self.plot.plot(x, y, xtitle="Pixel value", ytitle="Number", title="Pixel Value Distribution", color=colors[z], alpha=0.33, drawstyle='steps-post') # show cut levels loval, hival = self.fitsimage.get_cut_levels() self.loline = self.plot.ax.axvline(loval, 0.0, 0.99, linestyle='-', color='brown') self.hiline = self.plot.ax.axvline(hival, 0.0, 0.99, linestyle='-', color='green') if self.xlimbycuts: # user wants "plot by cuts"--adjust plot limits to show only area # between locut and high cut "plus a little" so that lo and hi cut # markers are shown incr = np.fabs(self.lim_adj_pct * (hival - loval)) self.plot.ax.set_xlim(loval - incr, hival + incr) # Make x axis labels a little more readable ## lbls = self.plot.ax.xaxis.get_ticklabels() ## for lbl in lbls: ## lbl.set(rotation=45, horizontalalignment='right') self.w.cut_low.set_text(str(loval)) self.w.cut_high.set_text(str(hival)) self.plot.fig.canvas.draw() if self.show_stats: # calculate statistics on finite elements in box i = np.isfinite(data_np) if np.any(i): maxval = np.max(data_np[i]) minval = np.min(data_np[i]) meanval = np.mean(data_np[i]) rmsval = np.sqrt(np.mean(np.square(data_np[i]))) fmt_stat = " Min: %s Max: %s Mean: %s Rms: %s" % ( self.fmt_cell, self.fmt_cell, self.fmt_cell, self.fmt_cell) sum_text = fmt_stat.format(minval, maxval, meanval, rmsval) else: sum_text = "No finite data elements in cutout" self.w.stats1.set_text(sum_text) self.fv.show_status("Click or drag left mouse button to move region") return True def update(self, canvas, event, data_x, data_y, viewer): obj = self.canvas.get_object_by_tag(self.histtag) if obj.kind == 'compound': bbox = obj.objects[0] elif obj.kind == 'rectangle': bbox = obj else: return True # calculate center of bbox wd = bbox.x2 - bbox.x1 dw = wd // 2 ht = bbox.y2 - bbox.y1 dh = ht // 2 x, y = bbox.x1 + dw, bbox.y1 + dh # calculate offsets of move dx = (data_x - x) dy = (data_y - y) # calculate new coords x1, y1, x2, y2 = bbox.x1 + dx, bbox.y1 + dy, bbox.x2 + dx, bbox.y2 + dy try: canvas.delete_object_by_tag(self.histtag) except Exception: pass tag = canvas.add(self.dc.Rectangle( x1, y1, x2, y2, color='cyan', linestyle='dash')) self.draw_cb(canvas, tag) return True def drag(self, canvas, event, data_x, data_y, viewer): obj = self.canvas.get_object_by_tag(self.histtag) if obj.kind == 'compound': bbox = obj.objects[0] elif obj.kind == 'rectangle': bbox = obj else: return True # calculate center of bbox wd = bbox.x2 - bbox.x1 dw = wd // 2 ht = bbox.y2 - bbox.y1 dh = ht // 2 x, y = bbox.x1 + dw, bbox.y1 + dh # calculate offsets of move dx = (data_x - x) dy = (data_y - y) # calculate new coords x1, y1, x2, y2 = bbox.x1 + dx, bbox.y1 + dy, bbox.x2 + dx, bbox.y2 + dy if obj.kind == 'compound': try: canvas.delete_object_by_tag(self.histtag) except Exception: pass self.histtag = canvas.add(self.dc.Rectangle( x1, y1, x2, y2, color='cyan', linestyle='dash')) else: bbox.x1, bbox.y1, bbox.x2, bbox.y2 = x1, y1, x2, y2 canvas.redraw(whence=3) return True def draw_cb(self, canvas, tag): obj = canvas.get_object_by_tag(tag) if obj.kind != 'rectangle': return True canvas.delete_object_by_tag(tag) if self.histtag: try: canvas.delete_object_by_tag(self.histtag) except Exception: pass x1, y1, x2, y2 = obj.get_llur() tag = canvas.add(self.dc.CompoundObject( self.dc.Rectangle(x1, y1, x2, y2, color=self.histcolor), self.dc.Text(x1, y2, "Histogram", color=self.histcolor))) self.histtag = tag self.w.btn_move.set_enabled(True) self.w.btn_edit.set_enabled(True) move_flag = self.settings.get('draw_then_move', True) if move_flag: self.set_mode('move') return self.redo() def edit_cb(self, canvas, obj): if obj.kind != 'rectangle': return True # Get the compound object that sits on the canvas. # Make sure edited rectangle was our histogram rectangle. c_obj = self.canvas.get_object_by_tag(self.histtag) if ((c_obj.kind != 'compound') or (len(c_obj.objects) < 2) or (c_obj.objects[0] != obj)): return False # reposition other elements to match x1, y1, x2, y2 = obj.get_llur() text = c_obj.objects[1] text.x, text.y = x1, y2 + 4 self.fitsimage.redraw(whence=3) return self.redo() def cut_levels(self): reslvls = None try: loval = float(self.w.cut_low.get_text()) hival = float(self.w.cut_high.get_text()) reslvls = self.fitsimage.cut_levels(loval, hival) except Exception as e: errmsg = 'Error cutting levels: {0}'.format(str(e)) self.fv.show_status(errmsg) self.logger.error(errmsg) else: if self.xlimbycuts: self.redo() return reslvls def auto_levels(self): self.fitsimage.auto_levels() def set_cut_by_click(self, plot, event): """Set cut levels by a mouse click in the histogram plot: left: set low cut middle: reset (auto cuts) right: set high cut """ data_x = event.xdata lo, hi = self.fitsimage.get_cut_levels() if event.button == 1: lo = data_x self.fitsimage.cut_levels(lo, hi) elif event.button == 2: self.fitsimage.auto_levels() elif event.button == 3: hi = data_x self.fitsimage.cut_levels(lo, hi) def adjust_cuts_scroll(self, plot, event): """Adjust the width of the histogram by scrolling. """ bm = self.fitsimage.get_bindings() pct = -self.scroll_pct if event.step > 0: pct = -pct bm.cut_pct(self.fitsimage, pct) def cutset_ext_cb(self, setting, value, fitsimage): if not self.gui_up: return t_ = fitsimage.get_settings() loval, hival = t_['cuts'] try: self.loline.remove() self.hiline.remove() except Exception: pass self.loline = self.plot.ax.axvline(loval, 0.0, 0.99, linestyle='-', color='black') self.hiline = self.plot.ax.axvline(hival, 0.0, 0.99, linestyle='-', color='black') self.w.cut_low.set_text(str(loval)) self.w.cut_high.set_text(str(hival)) #self.plot.fig.canvas.draw() self.redo() def set_numbins_cb(self): self.numbins = int(self.w.numbins.get_text()) self.redo() def log_histogram_cb(self, w, val): self.plot.logy = val if (self.histtag is not None) and self.gui_up: # self.histtag is None means no data is loaded yet self.redo() def plot_by_cuts_cb(self, w, val): self.xlimbycuts = val if (self.histtag is not None) and self.gui_up: # self.histtag is None means no data is loaded yet self.redo() def edit_select_box(self): if self.histtag is not None: obj = self.canvas.get_object_by_tag(self.histtag) if obj.kind != 'compound': return True # drill down to reference shape bbox = obj.objects[0] self.canvas.edit_select(bbox) else: self.canvas.clear_selected() self.canvas.update_canvas() def set_mode_cb(self, mode, tf): """Called when one of the Move/Draw/Edit radio buttons is selected.""" if tf: self.canvas.set_draw_mode(mode) if mode == 'edit': self.edit_select_box() return True def set_mode(self, mode): self.canvas.set_draw_mode(mode) self.w.btn_move.set_state(mode == 'move') self.w.btn_draw.set_state(mode == 'draw') self.w.btn_edit.set_state(mode == 'edit') def __str__(self): return 'histogram' # Append module docstring with config doc for auto insert by Sphinx. from ginga.util.toolbox import generate_cfg_example # noqa if __doc__ is not None: __doc__ += generate_cfg_example('plugin_Histogram', package='ginga') # END
bsd-3-clause
thientu/scikit-learn
examples/svm/plot_svm_regression.py
249
1451
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt ############################################################################### # Generate sample data X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() ############################################################################### # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) ############################################################################### # Fit regression model svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) ############################################################################### # look at the results plt.scatter(X, y, c='k', label='data') plt.hold('on') plt.plot(X, y_rbf, c='g', label='RBF model') plt.plot(X, y_lin, c='r', label='Linear model') plt.plot(X, y_poly, c='b', label='Polynomial model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show()
bsd-3-clause
Guneet-Dhillon/mxnet
example/kaggle-ndsb1/submission_dsb.py
52
5048
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function import pandas as pd import os import time as time ## Receives an array with probabilities for each class (columns) X images in test set (as listed in test.lst) and formats in Kaggle submission format, saves and compresses in submission_path def gen_sub(predictions,test_lst_path="test.lst",submission_path="submission.csv"): ## append time to avoid overwriting previous submissions ## submission_path=time.strftime("%Y%m%d%H%M%S_")+submission_path ### Make submission ## check sampleSubmission.csv from kaggle website to view submission format header = "acantharia_protist_big_center,acantharia_protist_halo,acantharia_protist,amphipods,appendicularian_fritillaridae,appendicularian_s_shape,appendicularian_slight_curve,appendicularian_straight,artifacts_edge,artifacts,chaetognath_non_sagitta,chaetognath_other,chaetognath_sagitta,chordate_type1,copepod_calanoid_eggs,copepod_calanoid_eucalanus,copepod_calanoid_flatheads,copepod_calanoid_frillyAntennae,copepod_calanoid_large_side_antennatucked,copepod_calanoid_large,copepod_calanoid_octomoms,copepod_calanoid_small_longantennae,copepod_calanoid,copepod_cyclopoid_copilia,copepod_cyclopoid_oithona_eggs,copepod_cyclopoid_oithona,copepod_other,crustacean_other,ctenophore_cestid,ctenophore_cydippid_no_tentacles,ctenophore_cydippid_tentacles,ctenophore_lobate,decapods,detritus_blob,detritus_filamentous,detritus_other,diatom_chain_string,diatom_chain_tube,echinoderm_larva_pluteus_brittlestar,echinoderm_larva_pluteus_early,echinoderm_larva_pluteus_typeC,echinoderm_larva_pluteus_urchin,echinoderm_larva_seastar_bipinnaria,echinoderm_larva_seastar_brachiolaria,echinoderm_seacucumber_auricularia_larva,echinopluteus,ephyra,euphausiids_young,euphausiids,fecal_pellet,fish_larvae_deep_body,fish_larvae_leptocephali,fish_larvae_medium_body,fish_larvae_myctophids,fish_larvae_thin_body,fish_larvae_very_thin_body,heteropod,hydromedusae_aglaura,hydromedusae_bell_and_tentacles,hydromedusae_h15,hydromedusae_haliscera_small_sideview,hydromedusae_haliscera,hydromedusae_liriope,hydromedusae_narco_dark,hydromedusae_narco_young,hydromedusae_narcomedusae,hydromedusae_other,hydromedusae_partial_dark,hydromedusae_shapeA_sideview_small,hydromedusae_shapeA,hydromedusae_shapeB,hydromedusae_sideview_big,hydromedusae_solmaris,hydromedusae_solmundella,hydromedusae_typeD_bell_and_tentacles,hydromedusae_typeD,hydromedusae_typeE,hydromedusae_typeF,invertebrate_larvae_other_A,invertebrate_larvae_other_B,jellies_tentacles,polychaete,protist_dark_center,protist_fuzzy_olive,protist_noctiluca,protist_other,protist_star,pteropod_butterfly,pteropod_theco_dev_seq,pteropod_triangle,radiolarian_chain,radiolarian_colony,shrimp_caridean,shrimp_sergestidae,shrimp_zoea,shrimp-like_other,siphonophore_calycophoran_abylidae,siphonophore_calycophoran_rocketship_adult,siphonophore_calycophoran_rocketship_young,siphonophore_calycophoran_sphaeronectes_stem,siphonophore_calycophoran_sphaeronectes_young,siphonophore_calycophoran_sphaeronectes,siphonophore_other_parts,siphonophore_partial,siphonophore_physonect_young,siphonophore_physonect,stomatopod,tornaria_acorn_worm_larvae,trichodesmium_bowtie,trichodesmium_multiple,trichodesmium_puff,trichodesmium_tuft,trochophore_larvae,tunicate_doliolid_nurse,tunicate_doliolid,tunicate_partial,tunicate_salp_chains,tunicate_salp,unknown_blobs_and_smudges,unknown_sticks,unknown_unclassified".split(',') # read first line to know the number of columns and column to use img_lst = pd.read_csv(test_lst_path,sep="/",header=None, nrows=1) columns = img_lst.columns.tolist() # get the columns cols_to_use = columns[len(columns)-1] # drop the last one cols_to_use= map(int, str(cols_to_use)) ## convert scalar to list img_lst= pd.read_csv(test_lst_path,sep="/",header=None, usecols=cols_to_use) ## reads lst, use / as sep to goet last column with filenames img_lst=img_lst.values.T.tolist() df = pd.DataFrame(predictions,columns = header, index=img_lst) df.index.name = 'image' print("Saving csv to %s" % submission_path) df.to_csv(submission_path) print("Compress with gzip") os.system("gzip -f %s" % submission_path) print(" stored in %s.gz" % submission_path)
apache-2.0
ellisztamas/faps
tests/test_sires.py
1
1472
from faps.sibshipCluster import sibshipCluster import numpy as np import pandas as pd import faps as fp ndraws=1000 np.random.seed(867) allele_freqs = np.random.uniform(0.3,0.5,50) adults = fp.make_parents(100, allele_freqs, family_name='a') def test_sires(): # Example with a single family progeny = fp.make_sibships(adults, 0, [1,2,3], 5, 'x') mothers = adults.subset(progeny.mothers) patlik = fp.paternity_array(progeny, mothers, adults, mu = 0.0015, missing_parents=0.01) sc = fp.sibship_clustering(patlik) me = sc.sires() assert isinstance(me, pd.DataFrame) list(me['label']) def test_summarise_sires(): # Example with multiple half-sib families progeny = fp.make_offspring(parents = adults, dam_list=[7,7,7,7,7,1,8,8,0], sire_list=[2,4,4,4,4,6,3,0,7]) mothers = adults.subset(individuals=progeny.mothers) patlik = fp.paternity_array(progeny, mothers, adults, mu = 0.0013 ) patlik = patlik.split(by=progeny.mothers) sibships = fp.sibship_clustering(patlik) me2 = fp.summarise_sires(sibships) assert (me2['father'].isin(progeny.fathers)).all() # Remove a father patlik = fp.paternity_array(progeny, mothers, adults, mu = 0.0013, missing_parents=0.2, purge="base_4") patlik = patlik.split(by=progeny.mothers) sibships = fp.sibship_clustering(patlik) me3 = fp.summarise_sires(sibships) assert me3['father'].str.contains("base_7").any() assert not "base_4" in me3['father']
mit
wazeerzulfikar/scikit-learn
sklearn/cluster/bicluster.py
11
20245
"""Spectral biclustering algorithms. Authors : Kemal Eren License: BSD 3 clause """ from abc import ABCMeta, abstractmethod import numpy as np from scipy.linalg import norm from scipy.sparse import dia_matrix, issparse from scipy.sparse.linalg import eigsh, svds from . import KMeans, MiniBatchKMeans from ..base import BaseEstimator, BiclusterMixin from ..externals import six from ..utils import check_random_state from ..utils.extmath import (make_nonnegative, randomized_svd, safe_sparse_dot) from ..utils.validation import assert_all_finite, check_array __all__ = ['SpectralCoclustering', 'SpectralBiclustering'] def _scale_normalize(X): """Normalize ``X`` by scaling rows and columns independently. Returns the normalized matrix and the row and column scaling factors. """ X = make_nonnegative(X) row_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=1))).squeeze() col_diag = np.asarray(1.0 / np.sqrt(X.sum(axis=0))).squeeze() row_diag = np.where(np.isnan(row_diag), 0, row_diag) col_diag = np.where(np.isnan(col_diag), 0, col_diag) if issparse(X): n_rows, n_cols = X.shape r = dia_matrix((row_diag, [0]), shape=(n_rows, n_rows)) c = dia_matrix((col_diag, [0]), shape=(n_cols, n_cols)) an = r * X * c else: an = row_diag[:, np.newaxis] * X * col_diag return an, row_diag, col_diag def _bistochastic_normalize(X, max_iter=1000, tol=1e-5): """Normalize rows and columns of ``X`` simultaneously so that all rows sum to one constant and all columns sum to a different constant. """ # According to paper, this can also be done more efficiently with # deviation reduction and balancing algorithms. X = make_nonnegative(X) X_scaled = X dist = None for _ in range(max_iter): X_new, _, _ = _scale_normalize(X_scaled) if issparse(X): dist = norm(X_scaled.data - X.data) else: dist = norm(X_scaled - X_new) X_scaled = X_new if dist is not None and dist < tol: break return X_scaled def _log_normalize(X): """Normalize ``X`` according to Kluger's log-interactions scheme.""" X = make_nonnegative(X, min_value=1) if issparse(X): raise ValueError("Cannot compute log of a sparse matrix," " because log(x) diverges to -infinity as x" " goes to 0.") L = np.log(X) row_avg = L.mean(axis=1)[:, np.newaxis] col_avg = L.mean(axis=0) avg = L.mean() return L - row_avg - col_avg + avg class BaseSpectral(six.with_metaclass(ABCMeta, BaseEstimator, BiclusterMixin)): """Base class for spectral biclustering.""" @abstractmethod def __init__(self, n_clusters=3, svd_method="randomized", n_svd_vecs=None, mini_batch=False, init="k-means++", n_init=10, n_jobs=1, random_state=None): self.n_clusters = n_clusters self.svd_method = svd_method self.n_svd_vecs = n_svd_vecs self.mini_batch = mini_batch self.init = init self.n_init = n_init self.n_jobs = n_jobs self.random_state = random_state def _check_parameters(self): legal_svd_methods = ('randomized', 'arpack') if self.svd_method not in legal_svd_methods: raise ValueError("Unknown SVD method: '{0}'. svd_method must be" " one of {1}.".format(self.svd_method, legal_svd_methods)) def fit(self, X, y=None): """Creates a biclustering for X. Parameters ---------- X : array-like, shape (n_samples, n_features) """ X = check_array(X, accept_sparse='csr', dtype=np.float64) self._check_parameters() self._fit(X) return self def _svd(self, array, n_components, n_discard): """Returns first `n_components` left and right singular vectors u and v, discarding the first `n_discard`. """ if self.svd_method == 'randomized': kwargs = {} if self.n_svd_vecs is not None: kwargs['n_oversamples'] = self.n_svd_vecs u, _, vt = randomized_svd(array, n_components, random_state=self.random_state, **kwargs) elif self.svd_method == 'arpack': u, _, vt = svds(array, k=n_components, ncv=self.n_svd_vecs) if np.any(np.isnan(vt)): # some eigenvalues of A * A.T are negative, causing # sqrt() to be np.nan. This causes some vectors in vt # to be np.nan. A = safe_sparse_dot(array.T, array) random_state = check_random_state(self.random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, A.shape[0]) _, v = eigsh(A, ncv=self.n_svd_vecs, v0=v0) vt = v.T if np.any(np.isnan(u)): A = safe_sparse_dot(array, array.T) random_state = check_random_state(self.random_state) # initialize with [-1,1] as in ARPACK v0 = random_state.uniform(-1, 1, A.shape[0]) _, u = eigsh(A, ncv=self.n_svd_vecs, v0=v0) assert_all_finite(u) assert_all_finite(vt) u = u[:, n_discard:] vt = vt[n_discard:] return u, vt.T def _k_means(self, data, n_clusters): if self.mini_batch: model = MiniBatchKMeans(n_clusters, init=self.init, n_init=self.n_init, random_state=self.random_state) else: model = KMeans(n_clusters, init=self.init, n_init=self.n_init, n_jobs=self.n_jobs, random_state=self.random_state) model.fit(data) centroid = model.cluster_centers_ labels = model.labels_ return centroid, labels class SpectralCoclustering(BaseSpectral): """Spectral Co-Clustering algorithm (Dhillon, 2001). Clusters rows and columns of an array `X` to solve the relaxed normalized cut of the bipartite graph created from `X` as follows: the edge between row vertex `i` and column vertex `j` has weight `X[i, j]`. The resulting bicluster structure is block-diagonal, since each row and each column belongs to exactly one bicluster. Supports sparse matrices, as long as they are nonnegative. Read more in the :ref:`User Guide <spectral_coclustering>`. Parameters ---------- n_clusters : integer, optional, default: 3 The number of biclusters to find. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', use :func:`sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', use :func:`scipy.sparse.linalg.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) The bicluster label of each row. column_labels_ : array-like, shape (n_cols,) The bicluster label of each column. References ---------- * Dhillon, Inderjit S, 2001. `Co-clustering documents and words using bipartite spectral graph partitioning <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.3011>`__. """ def __init__(self, n_clusters=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralCoclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) def _fit(self, X): normalized_data, row_diag, col_diag = _scale_normalize(X) n_sv = 1 + int(np.ceil(np.log2(self.n_clusters))) u, v = self._svd(normalized_data, n_sv, n_discard=1) z = np.vstack((row_diag[:, np.newaxis] * u, col_diag[:, np.newaxis] * v)) _, labels = self._k_means(z, self.n_clusters) n_rows = X.shape[0] self.row_labels_ = labels[:n_rows] self.column_labels_ = labels[n_rows:] self.rows_ = np.vstack(self.row_labels_ == c for c in range(self.n_clusters)) self.columns_ = np.vstack(self.column_labels_ == c for c in range(self.n_clusters)) class SpectralBiclustering(BaseSpectral): """Spectral biclustering (Kluger, 2003). Partitions rows and columns under the assumption that the data has an underlying checkerboard structure. For instance, if there are two row partitions and three column partitions, each row will belong to three biclusters, and each column will belong to two biclusters. The outer product of the corresponding row and column label vectors gives this checkerboard structure. Read more in the :ref:`User Guide <spectral_biclustering>`. Parameters ---------- n_clusters : integer or tuple (n_row_clusters, n_column_clusters) The number of row and column clusters in the checkerboard structure. method : string, optional, default: 'bistochastic' Method of normalizing and converting singular vectors into biclusters. May be one of 'scale', 'bistochastic', or 'log'. The authors recommend using 'log'. If the data is sparse, however, log normalization will not work, which is why the default is 'bistochastic'. CAUTION: if `method='log'`, the data must not be sparse. n_components : integer, optional, default: 6 Number of singular vectors to check. n_best : integer, optional, default: 3 Number of best singular vectors to which to project the data for clustering. svd_method : string, optional, default: 'randomized' Selects the algorithm for finding singular vectors. May be 'randomized' or 'arpack'. If 'randomized', uses `sklearn.utils.extmath.randomized_svd`, which may be faster for large matrices. If 'arpack', uses `scipy.sparse.linalg.svds`, which is more accurate, but possibly slower in some cases. n_svd_vecs : int, optional, default: None Number of vectors to use in calculating the SVD. Corresponds to `ncv` when `svd_method=arpack` and `n_oversamples` when `svd_method` is 'randomized`. mini_batch : bool, optional, default: False Whether to use mini-batch k-means, which is faster but may get different results. init : {'k-means++', 'random' or an ndarray} Method for initialization of k-means algorithm; defaults to 'k-means++'. n_init : int, optional, default: 10 Number of random initializations that are tried with the k-means algorithm. If mini-batch k-means is used, the best initialization is chosen and the algorithm runs once. Otherwise, the algorithm is run for each initialization and the best solution chosen. n_jobs : int, optional, default: 1 The number of jobs to use for the computation. This works by breaking down the pairwise matrix into n_jobs even slices and computing them in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. random_state : int, RandomState instance or None, optional, default: None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Attributes ---------- rows_ : array-like, shape (n_row_clusters, n_rows) Results of the clustering. `rows[i, r]` is True if cluster `i` contains row `r`. Available only after calling ``fit``. columns_ : array-like, shape (n_column_clusters, n_columns) Results of the clustering, like `rows`. row_labels_ : array-like, shape (n_rows,) Row partition labels. column_labels_ : array-like, shape (n_cols,) Column partition labels. References ---------- * Kluger, Yuval, et. al., 2003. `Spectral biclustering of microarray data: coclustering genes and conditions <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.1608>`__. """ def __init__(self, n_clusters=3, method='bistochastic', n_components=6, n_best=3, svd_method='randomized', n_svd_vecs=None, mini_batch=False, init='k-means++', n_init=10, n_jobs=1, random_state=None): super(SpectralBiclustering, self).__init__(n_clusters, svd_method, n_svd_vecs, mini_batch, init, n_init, n_jobs, random_state) self.method = method self.n_components = n_components self.n_best = n_best def _check_parameters(self): super(SpectralBiclustering, self)._check_parameters() legal_methods = ('bistochastic', 'scale', 'log') if self.method not in legal_methods: raise ValueError("Unknown method: '{0}'. method must be" " one of {1}.".format(self.method, legal_methods)) try: int(self.n_clusters) except TypeError: try: r, c = self.n_clusters int(r) int(c) except (ValueError, TypeError): raise ValueError("Incorrect parameter n_clusters has value:" " {}. It should either be a single integer" " or an iterable with two integers:" " (n_row_clusters, n_column_clusters)") if self.n_components < 1: raise ValueError("Parameter n_components must be greater than 0," " but its value is {}".format(self.n_components)) if self.n_best < 1: raise ValueError("Parameter n_best must be greater than 0," " but its value is {}".format(self.n_best)) if self.n_best > self.n_components: raise ValueError("n_best cannot be larger than" " n_components, but {} > {}" "".format(self.n_best, self.n_components)) def _fit(self, X): n_sv = self.n_components if self.method == 'bistochastic': normalized_data = _bistochastic_normalize(X) n_sv += 1 elif self.method == 'scale': normalized_data, _, _ = _scale_normalize(X) n_sv += 1 elif self.method == 'log': normalized_data = _log_normalize(X) n_discard = 0 if self.method == 'log' else 1 u, v = self._svd(normalized_data, n_sv, n_discard) ut = u.T vt = v.T try: n_row_clusters, n_col_clusters = self.n_clusters except TypeError: n_row_clusters = n_col_clusters = self.n_clusters best_ut = self._fit_best_piecewise(ut, self.n_best, n_row_clusters) best_vt = self._fit_best_piecewise(vt, self.n_best, n_col_clusters) self.row_labels_ = self._project_and_cluster(X, best_vt.T, n_row_clusters) self.column_labels_ = self._project_and_cluster(X.T, best_ut.T, n_col_clusters) self.rows_ = np.vstack(self.row_labels_ == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) self.columns_ = np.vstack(self.column_labels_ == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) def _fit_best_piecewise(self, vectors, n_best, n_clusters): """Find the ``n_best`` vectors that are best approximated by piecewise constant vectors. The piecewise vectors are found by k-means; the best is chosen according to Euclidean distance. """ def make_piecewise(v): centroid, labels = self._k_means(v.reshape(-1, 1), n_clusters) return centroid[labels].ravel() piecewise_vectors = np.apply_along_axis(make_piecewise, axis=1, arr=vectors) dists = np.apply_along_axis(norm, axis=1, arr=(vectors - piecewise_vectors)) result = vectors[np.argsort(dists)[:n_best]] return result def _project_and_cluster(self, data, vectors, n_clusters): """Project ``data`` to ``vectors`` and cluster the result.""" projected = safe_sparse_dot(data, vectors) _, labels = self._k_means(projected, n_clusters) return labels
bsd-3-clause
qrqiuren/sms-tools
software/models_interface/sineModel_function.py
21
2749
# function to call the main analysis/synthesis functions in software/models/sineModel.py import numpy as np import matplotlib.pyplot as plt from scipy.signal import get_window import os, sys sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../models/')) import utilFunctions as UF import sineModel as SM def main(inputFile='../../sounds/bendir.wav', window='hamming', M=2001, N=2048, t=-80, minSineDur=0.02, maxnSines=150, freqDevOffset=10, freqDevSlope=0.001): """ Perform analysis/synthesis using the sinusoidal model inputFile: input sound file (monophonic with sampling rate of 44100) window: analysis window type (rectangular, hanning, hamming, blackman, blackmanharris) M: analysis window size; N: fft size (power of two, bigger or equal than M) t: magnitude threshold of spectral peaks; minSineDur: minimum duration of sinusoidal tracks maxnSines: maximum number of parallel sinusoids freqDevOffset: frequency deviation allowed in the sinusoids from frame to frame at frequency 0 freqDevSlope: slope of the frequency deviation, higher frequencies have bigger deviation """ # size of fft used in synthesis Ns = 512 # hop size (has to be 1/4 of Ns) H = 128 # read input sound fs, x = UF.wavread(inputFile) # compute analysis window w = get_window(window, M) # analyze the sound with the sinusoidal model tfreq, tmag, tphase = SM.sineModelAnal(x, fs, w, N, H, t, maxnSines, minSineDur, freqDevOffset, freqDevSlope) # synthesize the output sound from the sinusoidal representation y = SM.sineModelSynth(tfreq, tmag, tphase, Ns, H, fs) # output sound file name outputFile = 'output_sounds/' + os.path.basename(inputFile)[:-4] + '_sineModel.wav' # write the synthesized sound obtained from the sinusoidal synthesis UF.wavwrite(y, fs, outputFile) # create figure to show plots plt.figure(figsize=(12, 9)) # frequency range to plot maxplotfreq = 5000.0 # plot the input sound plt.subplot(3,1,1) plt.plot(np.arange(x.size)/float(fs), x) plt.axis([0, x.size/float(fs), min(x), max(x)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('input sound: x') # plot the sinusoidal frequencies plt.subplot(3,1,2) if (tfreq.shape[1] > 0): numFrames = tfreq.shape[0] frmTime = H*np.arange(numFrames)/float(fs) tfreq[tfreq<=0] = np.nan plt.plot(frmTime, tfreq) plt.axis([0, x.size/float(fs), 0, maxplotfreq]) plt.title('frequencies of sinusoidal tracks') # plot the output sound plt.subplot(3,1,3) plt.plot(np.arange(y.size)/float(fs), y) plt.axis([0, y.size/float(fs), min(y), max(y)]) plt.ylabel('amplitude') plt.xlabel('time (sec)') plt.title('output sound: y') plt.tight_layout() plt.show() if __name__ == "__main__": main()
agpl-3.0
unnikrishnankgs/va
venv/lib/python3.5/site-packages/tensorflow/models/cognitive_mapping_and_planning/tfcode/cmp_utils.py
14
6936
# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Utility functions for setting up the CMP graph. """ import os, numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.contrib import slim from tensorflow.contrib.slim import arg_scope import logging from src import utils import src.file_utils as fu from tfcode import tf_utils resnet_v2 = tf_utils.resnet_v2 custom_residual_block = tf_utils.custom_residual_block def value_iteration_network( fr, num_iters, val_neurons, action_neurons, kernel_size, share_wts=False, name='vin', wt_decay=0.0001, activation_fn=None, shape_aware=False): """ Constructs a Value Iteration Network, convolutions and max pooling across channels. Input: fr: NxWxHxC val_neurons: Number of channels for maintaining the value. action_neurons: Computes action_neurons * val_neurons at each iteration to max pool over. Output: value image: NxHxWx(val_neurons) """ init_var = np.sqrt(2.0/(kernel_size**2)/(val_neurons*action_neurons)) vals = [] with tf.variable_scope(name) as varscope: if shape_aware == False: fr_shape = tf.unstack(tf.shape(fr)) val_shape = tf.stack(fr_shape[:-1] + [val_neurons]) val = tf.zeros(val_shape, name='val_init') else: val = tf.expand_dims(tf.zeros_like(fr[:,:,:,0]), dim=-1) * \ tf.constant(0., dtype=tf.float32, shape=[1,1,1,val_neurons]) val_shape = tf.shape(val) vals.append(val) for i in range(num_iters): if share_wts: # The first Value Iteration maybe special, so it can have its own # paramterss. scope = 'conv' if i == 0: scope = 'conv_0' if i > 1: varscope.reuse_variables() else: scope = 'conv_{:d}'.format(i) val = slim.conv2d(tf.concat([val, fr], 3, name='concat_{:d}'.format(i)), num_outputs=action_neurons*val_neurons, kernel_size=kernel_size, stride=1, activation_fn=activation_fn, scope=scope, normalizer_fn=None, weights_regularizer=slim.l2_regularizer(wt_decay), weights_initializer=tf.random_normal_initializer(stddev=init_var), biases_initializer=tf.zeros_initializer()) val = tf.reshape(val, [-1, action_neurons*val_neurons, 1, 1], name='re_{:d}'.format(i)) val = slim.max_pool2d(val, kernel_size=[action_neurons,1], stride=[action_neurons,1], padding='VALID', scope='val_{:d}'.format(i)) val = tf.reshape(val, val_shape, name='unre_{:d}'.format(i)) vals.append(val) return val, vals def rotate_preds(loc_on_map, relative_theta, map_size, preds, output_valid_mask): with tf.name_scope('rotate'): flow_op = tf_utils.get_flow(loc_on_map, relative_theta, map_size=map_size) if type(preds) != list: rotated_preds, valid_mask_warps = tf_utils.dense_resample(preds, flow_op, output_valid_mask) else: rotated_preds = [] ;valid_mask_warps = [] for pred in preds: rotated_pred, valid_mask_warp = tf_utils.dense_resample(pred, flow_op, output_valid_mask) rotated_preds.append(rotated_pred) valid_mask_warps.append(valid_mask_warp) return rotated_preds, valid_mask_warps def get_visual_frustum(map_size, shape_like, expand_dims=[0,0]): with tf.name_scope('visual_frustum'): l = np.tril(np.ones(map_size)) ;l = l + l[:,::-1] l = (l == 2).astype(np.float32) for e in expand_dims: l = np.expand_dims(l, axis=e) confs_probs = tf.constant(l, dtype=tf.float32) confs_probs = tf.ones_like(shape_like, dtype=tf.float32) * confs_probs return confs_probs def deconv(x, is_training, wt_decay, neurons, strides, layers_per_block, kernel_size, conv_fn, name, offset=0): """Generates a up sampling network with residual connections. """ batch_norm_param = {'center': True, 'scale': True, 'activation_fn': tf.nn.relu, 'is_training': is_training} outs = [] for i, (neuron, stride) in enumerate(zip(neurons, strides)): for s in range(layers_per_block): scope = '{:s}_{:d}_{:d}'.format(name, i+1+offset,s+1) x = custom_residual_block(x, neuron, kernel_size, stride, scope, is_training, wt_decay, use_residual=True, residual_stride_conv=True, conv_fn=conv_fn, batch_norm_param=batch_norm_param) stride = 1 outs.append((x,True)) return x, outs def fr_v2(x, output_neurons, inside_neurons, is_training, name='fr', wt_decay=0.0001, stride=1, updates_collections=tf.GraphKeys.UPDATE_OPS): """Performs fusion of information between the map and the reward map. Inputs x: NxHxWxC1 Outputs fr map: NxHxWx(output_neurons) """ if type(stride) != list: stride = [stride] with slim.arg_scope(resnet_v2.resnet_utils.resnet_arg_scope( is_training=is_training, weight_decay=wt_decay)): with slim.arg_scope([slim.batch_norm], updates_collections=updates_collections) as arg_sc: # Change the updates_collections for the conv normalizer_params to None for i in range(len(arg_sc.keys())): if 'convolution' in arg_sc.keys()[i]: arg_sc.values()[i]['normalizer_params']['updates_collections'] = updates_collections with slim.arg_scope(arg_sc): bottleneck = resnet_v2.bottleneck blocks = [] for i, s in enumerate(stride): b = resnet_v2.resnet_utils.Block( 'block{:d}'.format(i + 1), bottleneck, [{ 'depth': output_neurons, 'depth_bottleneck': inside_neurons, 'stride': stride[i] }]) blocks.append(b) x, outs = resnet_v2.resnet_v2(x, blocks, num_classes=None, global_pool=False, output_stride=None, include_root_block=False, reuse=False, scope=name) return x, outs
bsd-2-clause
ephes/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
254
2253
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a an vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import pylab as pl #pl.matshow(cm, cmap=pl.cm.jet) #pl.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
gtoonstra/airflow
tests/contrib/hooks/test_bigquery_hook.py
4
17580
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # import unittest import warnings from google.auth.exceptions import GoogleAuthError import mock from airflow.contrib.hooks import bigquery_hook as hook from airflow.contrib.hooks.bigquery_hook import _cleanse_time_partitioning bq_available = True try: hook.BigQueryHook().get_service() except GoogleAuthError: bq_available = False class TestBigQueryDataframeResults(unittest.TestCase): def setUp(self): self.instance = hook.BigQueryHook() @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_output_is_dataframe_with_valid_query(self): import pandas as pd df = self.instance.get_pandas_df('select 1') self.assertIsInstance(df, pd.DataFrame) @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_throws_exception_with_invalid_query(self): with self.assertRaises(Exception) as context: self.instance.get_pandas_df('from `1`') self.assertIn('Reason: ', str(context.exception), "") @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_succeeds_with_explicit_legacy_query(self): df = self.instance.get_pandas_df('select 1', dialect='legacy') self.assertEqual(df.iloc(0)[0][0], 1) @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_succeeds_with_explicit_std_query(self): df = self.instance.get_pandas_df( 'select * except(b) from (select 1 a, 2 b)', dialect='standard') self.assertEqual(df.iloc(0)[0][0], 1) @unittest.skipIf(not bq_available, 'BQ is not available to run tests') def test_throws_exception_with_incompatible_syntax(self): with self.assertRaises(Exception) as context: self.instance.get_pandas_df( 'select * except(b) from (select 1 a, 2 b)', dialect='legacy') self.assertIn('Reason: ', str(context.exception), "") class TestBigQueryTableSplitter(unittest.TestCase): def test_internal_need_default_project(self): with self.assertRaises(Exception) as context: hook._split_tablename('dataset.table', None) self.assertIn('INTERNAL: No default project is specified', str(context.exception), "") def test_split_dataset_table(self): project, dataset, table = hook._split_tablename('dataset.table', 'project') self.assertEqual("project", project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_split_project_dataset_table(self): project, dataset, table = hook._split_tablename('alternative:dataset.table', 'project') self.assertEqual("alternative", project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_sql_split_project_dataset_table(self): project, dataset, table = hook._split_tablename('alternative.dataset.table', 'project') self.assertEqual("alternative", project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_colon_in_project(self): project, dataset, table = hook._split_tablename('alt1:alt.dataset.table', 'project') self.assertEqual('alt1:alt', project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_valid_double_column(self): project, dataset, table = hook._split_tablename('alt1:alt:dataset.table', 'project') self.assertEqual('alt1:alt', project) self.assertEqual("dataset", dataset) self.assertEqual("table", table) def test_invalid_syntax_triple_colon(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1:alt2:alt3:dataset.table', 'project') self.assertIn('Use either : or . to specify project', str(context.exception), "") self.assertFalse('Format exception for' in str(context.exception)) def test_invalid_syntax_triple_dot(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1.alt.dataset.table', 'project') self.assertIn('Expect format of (<project.|<project:)<dataset>.<table>', str(context.exception), "") self.assertFalse('Format exception for' in str(context.exception)) def test_invalid_syntax_column_double_project_var(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1:alt2:alt.dataset.table', 'project', 'var_x') self.assertIn('Use either : or . to specify project', str(context.exception), "") self.assertIn('Format exception for var_x:', str(context.exception), "") def test_invalid_syntax_triple_colon_project_var(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1:alt2:alt:dataset.table', 'project', 'var_x') self.assertIn('Use either : or . to specify project', str(context.exception), "") self.assertIn('Format exception for var_x:', str(context.exception), "") def test_invalid_syntax_triple_dot_var(self): with self.assertRaises(Exception) as context: hook._split_tablename('alt1.alt.dataset.table', 'project', 'var_x') self.assertIn('Expect format of (<project.|<project:)<dataset>.<table>', str(context.exception), "") self.assertIn('Format exception for var_x:', str(context.exception), "") class TestBigQueryHookSourceFormat(unittest.TestCase): def test_invalid_source_format(self): with self.assertRaises(Exception) as context: hook.BigQueryBaseCursor("test", "test").run_load( "test.test", "test_schema.json", ["test_data.json"], source_format="json" ) # since we passed 'json' in, and it's not valid, make sure it's present in the # error string. self.assertIn("JSON", str(context.exception)) class TestBigQueryExternalTableSourceFormat(unittest.TestCase): def test_invalid_source_format(self): with self.assertRaises(Exception) as context: hook.BigQueryBaseCursor("test", "test").create_external_table( external_project_dataset_table='test.test', schema_fields='test_schema.json', source_uris=['test_data.json'], source_format='json' ) # since we passed 'csv' in, and it's not valid, make sure it's present in the # error string. self.assertIn("JSON", str(context.exception)) # Helpers to test_cancel_queries that have mock_poll_job_complete returning false, # unless mock_job_cancel was called with the same job_id mock_canceled_jobs = [] def mock_poll_job_complete(job_id): return job_id in mock_canceled_jobs def mock_job_cancel(projectId, jobId): mock_canceled_jobs.append(jobId) return mock.Mock() class TestBigQueryBaseCursor(unittest.TestCase): def test_invalid_schema_update_options(self): with self.assertRaises(Exception) as context: hook.BigQueryBaseCursor("test", "test").run_load( "test.test", "test_schema.json", ["test_data.json"], schema_update_options=["THIS IS NOT VALID"] ) self.assertIn("THIS IS NOT VALID", str(context.exception)) @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_bql_deprecation_warning(self, mock_rwc): with warnings.catch_warnings(record=True) as w: hook.BigQueryBaseCursor("test", "test").run_query( bql='select * from test_table' ) self.assertIn( 'Deprecated parameter `bql`', w[0].message.args[0]) def test_nobql_nosql_param_error(self): with self.assertRaises(TypeError) as context: hook.BigQueryBaseCursor("test", "test").run_query( sql=None, bql=None ) self.assertIn( 'missing 1 required positional', str(context.exception)) def test_invalid_schema_update_and_write_disposition(self): with self.assertRaises(Exception) as context: hook.BigQueryBaseCursor("test", "test").run_load( "test.test", "test_schema.json", ["test_data.json"], schema_update_options=['ALLOW_FIELD_ADDITION'], write_disposition='WRITE_EMPTY' ) self.assertIn("schema_update_options is only", str(context.exception)) @mock.patch("airflow.contrib.hooks.bigquery_hook.LoggingMixin") @mock.patch("airflow.contrib.hooks.bigquery_hook.time") def test_cancel_queries(self, mocked_time, mocked_logging): project_id = 12345 running_job_id = 3 mock_jobs = mock.Mock() mock_jobs.cancel = mock.Mock(side_effect=mock_job_cancel) mock_service = mock.Mock() mock_service.jobs = mock.Mock(return_value=mock_jobs) bq_hook = hook.BigQueryBaseCursor(mock_service, project_id) bq_hook.running_job_id = running_job_id bq_hook.poll_job_complete = mock.Mock(side_effect=mock_poll_job_complete) bq_hook.cancel_query() mock_jobs.cancel.assert_called_with(projectId=project_id, jobId=running_job_id) @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_run_query_sql_dialect_default(self, run_with_config): cursor = hook.BigQueryBaseCursor(mock.Mock(), "project_id") cursor.run_query('query') args, kwargs = run_with_config.call_args self.assertIs(args[0]['query']['useLegacySql'], True) @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_run_query_sql_dialect_override(self, run_with_config): for bool_val in [True, False]: cursor = hook.BigQueryBaseCursor(mock.Mock(), "project_id") cursor.run_query('query', use_legacy_sql=bool_val) args, kwargs = run_with_config.call_args self.assertIs(args[0]['query']['useLegacySql'], bool_val) class TestLabelsInRunJob(unittest.TestCase): @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_run_query_with_arg(self, mocked_rwc): project_id = 12345 def run_with_config(config): self.assertEqual( config['labels'], {'label1': 'test1', 'label2': 'test2'} ) mocked_rwc.side_effect = run_with_config bq_hook = hook.BigQueryBaseCursor(mock.Mock(), project_id) bq_hook.run_query( sql='select 1', destination_dataset_table='my_dataset.my_table', labels={'label1': 'test1', 'label2': 'test2'} ) mocked_rwc.assert_called_once() class TestTimePartitioningInRunJob(unittest.TestCase): @mock.patch("airflow.contrib.hooks.bigquery_hook.LoggingMixin") @mock.patch("airflow.contrib.hooks.bigquery_hook.time") @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_run_load_default(self, mocked_rwc, mocked_time, mocked_logging): project_id = 12345 def run_with_config(config): self.assertIsNone(config['load'].get('timePartitioning')) mocked_rwc.side_effect = run_with_config bq_hook = hook.BigQueryBaseCursor(mock.Mock(), project_id) bq_hook.run_load( destination_project_dataset_table='my_dataset.my_table', schema_fields=[], source_uris=[], ) mocked_rwc.assert_called_once() @mock.patch("airflow.contrib.hooks.bigquery_hook.LoggingMixin") @mock.patch("airflow.contrib.hooks.bigquery_hook.time") @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_run_load_with_arg(self, mocked_rwc, mocked_time, mocked_logging): project_id = 12345 def run_with_config(config): self.assertEqual( config['load']['timePartitioning'], { 'field': 'test_field', 'type': 'DAY', 'expirationMs': 1000 } ) mocked_rwc.side_effect = run_with_config bq_hook = hook.BigQueryBaseCursor(mock.Mock(), project_id) bq_hook.run_load( destination_project_dataset_table='my_dataset.my_table', schema_fields=[], source_uris=[], time_partitioning={'type': 'DAY', 'field': 'test_field', 'expirationMs': 1000} ) mocked_rwc.assert_called_once() @mock.patch("airflow.contrib.hooks.bigquery_hook.LoggingMixin") @mock.patch("airflow.contrib.hooks.bigquery_hook.time") @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_run_query_default(self, mocked_rwc, mocked_time, mocked_logging): project_id = 12345 def run_with_config(config): self.assertIsNone(config['query'].get('timePartitioning')) mocked_rwc.side_effect = run_with_config bq_hook = hook.BigQueryBaseCursor(mock.Mock(), project_id) bq_hook.run_query(sql='select 1') mocked_rwc.assert_called_once() @mock.patch("airflow.contrib.hooks.bigquery_hook.LoggingMixin") @mock.patch("airflow.contrib.hooks.bigquery_hook.time") @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_run_query_with_arg(self, mocked_rwc, mocked_time, mocked_logging): project_id = 12345 def run_with_config(config): self.assertEqual( config['query']['timePartitioning'], { 'field': 'test_field', 'type': 'DAY', 'expirationMs': 1000 } ) mocked_rwc.side_effect = run_with_config bq_hook = hook.BigQueryBaseCursor(mock.Mock(), project_id) bq_hook.run_query( sql='select 1', destination_dataset_table='my_dataset.my_table', time_partitioning={'type': 'DAY', 'field': 'test_field', 'expirationMs': 1000} ) mocked_rwc.assert_called_once() def test_dollar_makes_partition(self): tp_out = _cleanse_time_partitioning('test.teast$20170101', {}) expect = { 'type': 'DAY' } self.assertEqual(tp_out, expect) def test_extra_time_partitioning_options(self): tp_out = _cleanse_time_partitioning( 'test.teast', {'type': 'DAY', 'field': 'test_field', 'expirationMs': 1000} ) expect = { 'type': 'DAY', 'field': 'test_field', 'expirationMs': 1000 } self.assertEqual(tp_out, expect) def test_cant_add_dollar_and_field_name(self): with self.assertRaises(ValueError): _cleanse_time_partitioning( 'test.teast$20170101', {'type': 'DAY', 'field': 'test_field', 'expirationMs': 1000} ) class TestBigQueryHookLegacySql(unittest.TestCase): """Ensure `use_legacy_sql` param in `BigQueryHook` propagates properly.""" @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_hook_uses_legacy_sql_by_default(self, run_with_config): with mock.patch.object(hook.BigQueryHook, 'get_service'): bq_hook = hook.BigQueryHook() bq_hook.get_first('query') args, kwargs = run_with_config.call_args self.assertIs(args[0]['query']['useLegacySql'], True) @mock.patch.object(hook.BigQueryBaseCursor, 'run_with_configuration') def test_legacy_sql_override_propagates_properly(self, run_with_config): with mock.patch.object(hook.BigQueryHook, 'get_service'): bq_hook = hook.BigQueryHook(use_legacy_sql=False) bq_hook.get_first('query') args, kwargs = run_with_config.call_args self.assertIs(args[0]['query']['useLegacySql'], False) if __name__ == '__main__': unittest.main()
apache-2.0
RachitKansal/scikit-learn
sklearn/utils/arpack.py
265
64837
""" This contains a copy of the future version of scipy.sparse.linalg.eigen.arpack.eigsh It's an upgraded wrapper of the ARPACK library which allows the use of shift-invert mode for symmetric matrices. Find a few eigenvectors and eigenvalues of a matrix. Uses ARPACK: http://www.caam.rice.edu/software/ARPACK/ """ # Wrapper implementation notes # # ARPACK Entry Points # ------------------- # The entry points to ARPACK are # - (s,d)seupd : single and double precision symmetric matrix # - (s,d,c,z)neupd: single,double,complex,double complex general matrix # This wrapper puts the *neupd (general matrix) interfaces in eigs() # and the *seupd (symmetric matrix) in eigsh(). # There is no Hermetian complex/double complex interface. # To find eigenvalues of a Hermetian matrix you # must use eigs() and not eigsh() # It might be desirable to handle the Hermetian case differently # and, for example, return real eigenvalues. # Number of eigenvalues returned and complex eigenvalues # ------------------------------------------------------ # The ARPACK nonsymmetric real and double interface (s,d)naupd return # eigenvalues and eigenvectors in real (float,double) arrays. # Since the eigenvalues and eigenvectors are, in general, complex # ARPACK puts the real and imaginary parts in consecutive entries # in real-valued arrays. This wrapper puts the real entries # into complex data types and attempts to return the requested eigenvalues # and eigenvectors. # Solver modes # ------------ # ARPACK and handle shifted and shift-inverse computations # for eigenvalues by providing a shift (sigma) and a solver. __docformat__ = "restructuredtext en" __all__ = ['eigs', 'eigsh', 'svds', 'ArpackError', 'ArpackNoConvergence'] import warnings from scipy.sparse.linalg.eigen.arpack import _arpack import numpy as np from scipy.sparse.linalg.interface import aslinearoperator, LinearOperator from scipy.sparse import identity, isspmatrix, isspmatrix_csr from scipy.linalg import lu_factor, lu_solve from scipy.sparse.sputils import isdense from scipy.sparse.linalg import gmres, splu import scipy from distutils.version import LooseVersion _type_conv = {'f': 's', 'd': 'd', 'F': 'c', 'D': 'z'} _ndigits = {'f': 5, 'd': 12, 'F': 5, 'D': 12} DNAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found. IPARAM(5) " "returns the number of wanted converged Ritz values.", 2: "No longer an informational error. Deprecated starting " "with release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the " "Implicitly restarted Arnoldi iteration. One possibility " "is to increase the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: " WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation;", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatible.", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated." } SNAUPD_ERRORS = DNAUPD_ERRORS ZNAUPD_ERRORS = DNAUPD_ERRORS.copy() ZNAUPD_ERRORS[-10] = "IPARAM(7) must be 1,2,3." CNAUPD_ERRORS = ZNAUPD_ERRORS DSAUPD_ERRORS = { 0: "Normal exit.", 1: "Maximum number of iterations taken. " "All possible eigenvalues of OP has been found.", 2: "No longer an informational error. Deprecated starting with " "release 2 of ARPACK.", 3: "No shifts could be applied during a cycle of the Implicitly " "restarted Arnoldi iteration. One possibility is to increase " "the size of NCV relative to NEV. ", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -4: "The maximum number of Arnoldi update iterations allowed " "must be greater than zero.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work array WORKL is not sufficient.", -8: "Error return from trid. eigenvalue calculation; " "Informational error from LAPACK routine dsteqr .", -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "IPARAM(1) must be equal to 0 or 1.", -13: "NEV and WHICH = 'BE' are incompatible. ", -9999: "Could not build an Arnoldi factorization. " "IPARAM(5) returns the size of the current Arnoldi " "factorization. The user is advised to check that " "enough workspace and array storage has been allocated.", } SSAUPD_ERRORS = DSAUPD_ERRORS DNEUPD_ERRORS = { 0: "Normal exit.", 1: "The Schur form computed by LAPACK routine dlahqr " "could not be reordered by LAPACK routine dtrsen. " "Re-enter subroutine dneupd with IPARAM(5)NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least NCV " "columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 2 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from calculation of a real Schur form. " "Informational error from LAPACK routine dlahqr .", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine dtrevc.", -10: "IPARAM(7) must be 1,2,3,4.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "DNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "DNEUPD got a different count of the number of converged " "Ritz values than DNAUPD got. This indicates the user " "probably made an error in passing data from DNAUPD to " "DNEUPD or that the data was modified before entering " "DNEUPD", } SNEUPD_ERRORS = DNEUPD_ERRORS.copy() SNEUPD_ERRORS[1] = ("The Schur form computed by LAPACK routine slahqr " "could not be reordered by LAPACK routine strsen . " "Re-enter subroutine dneupd with IPARAM(5)=NCV and " "increase the size of the arrays DR and DI to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.") SNEUPD_ERRORS[-14] = ("SNAUPD did not find any eigenvalues to sufficient " "accuracy.") SNEUPD_ERRORS[-15] = ("SNEUPD got a different count of the number of " "converged Ritz values than SNAUPD got. This indicates " "the user probably made an error in passing data from " "SNAUPD to SNEUPD or that the data was modified before " "entering SNEUPD") ZNEUPD_ERRORS = {0: "Normal exit.", 1: "The Schur form computed by LAPACK routine csheqr " "could not be reordered by LAPACK routine ztrsen. " "Re-enter subroutine zneupd with IPARAM(5)=NCV and " "increase the size of the array D to have " "dimension at least dimension NCV and allocate at least " "NCV columns for Z. NOTE: Not necessary if Z and V share " "the same space. Please notify the authors if this error " "occurs.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV-NEV >= 1 and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LR', 'SR', 'LI', 'SI'", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: "Error return from LAPACK eigenvalue calculation. " "This should never happened.", -9: "Error return from calculation of eigenvectors. " "Informational error from LAPACK routine ztrevc.", -10: "IPARAM(7) must be 1,2,3", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "HOWMNY = 'S' not yet implemented", -13: "HOWMNY must be one of 'A' or 'P' if RVEC = .true.", -14: "ZNAUPD did not find any eigenvalues to sufficient " "accuracy.", -15: "ZNEUPD got a different count of the number of " "converged Ritz values than ZNAUPD got. This " "indicates the user probably made an error in passing " "data from ZNAUPD to ZNEUPD or that the data was " "modified before entering ZNEUPD"} CNEUPD_ERRORS = ZNEUPD_ERRORS.copy() CNEUPD_ERRORS[-14] = ("CNAUPD did not find any eigenvalues to sufficient " "accuracy.") CNEUPD_ERRORS[-15] = ("CNEUPD got a different count of the number of " "converged Ritz values than CNAUPD got. This indicates " "the user probably made an error in passing data from " "CNAUPD to CNEUPD or that the data was modified before " "entering CNEUPD") DSEUPD_ERRORS = { 0: "Normal exit.", -1: "N must be positive.", -2: "NEV must be positive.", -3: "NCV must be greater than NEV and less than or equal to N.", -5: "WHICH must be one of 'LM', 'SM', 'LA', 'SA' or 'BE'.", -6: "BMAT must be one of 'I' or 'G'.", -7: "Length of private work WORKL array is not sufficient.", -8: ("Error return from trid. eigenvalue calculation; " "Information error from LAPACK routine dsteqr."), -9: "Starting vector is zero.", -10: "IPARAM(7) must be 1,2,3,4,5.", -11: "IPARAM(7) = 1 and BMAT = 'G' are incompatible.", -12: "NEV and WHICH = 'BE' are incompatible.", -14: "DSAUPD did not find any eigenvalues to sufficient accuracy.", -15: "HOWMNY must be one of 'A' or 'S' if RVEC = .true.", -16: "HOWMNY = 'S' not yet implemented", -17: ("DSEUPD got a different count of the number of converged " "Ritz values than DSAUPD got. This indicates the user " "probably made an error in passing data from DSAUPD to " "DSEUPD or that the data was modified before entering " "DSEUPD.") } SSEUPD_ERRORS = DSEUPD_ERRORS.copy() SSEUPD_ERRORS[-14] = ("SSAUPD did not find any eigenvalues " "to sufficient accuracy.") SSEUPD_ERRORS[-17] = ("SSEUPD got a different count of the number of " "converged " "Ritz values than SSAUPD got. This indicates the user " "probably made an error in passing data from SSAUPD to " "SSEUPD or that the data was modified before entering " "SSEUPD.") _SAUPD_ERRORS = {'d': DSAUPD_ERRORS, 's': SSAUPD_ERRORS} _NAUPD_ERRORS = {'d': DNAUPD_ERRORS, 's': SNAUPD_ERRORS, 'z': ZNAUPD_ERRORS, 'c': CNAUPD_ERRORS} _SEUPD_ERRORS = {'d': DSEUPD_ERRORS, 's': SSEUPD_ERRORS} _NEUPD_ERRORS = {'d': DNEUPD_ERRORS, 's': SNEUPD_ERRORS, 'z': ZNEUPD_ERRORS, 'c': CNEUPD_ERRORS} # accepted values of parameter WHICH in _SEUPD _SEUPD_WHICH = ['LM', 'SM', 'LA', 'SA', 'BE'] # accepted values of parameter WHICH in _NAUPD _NEUPD_WHICH = ['LM', 'SM', 'LR', 'SR', 'LI', 'SI'] class ArpackError(RuntimeError): """ ARPACK error """ def __init__(self, info, infodict=_NAUPD_ERRORS): msg = infodict.get(info, "Unknown error") RuntimeError.__init__(self, "ARPACK error %d: %s" % (info, msg)) class ArpackNoConvergence(ArpackError): """ ARPACK iteration did not converge Attributes ---------- eigenvalues : ndarray Partial result. Converged eigenvalues. eigenvectors : ndarray Partial result. Converged eigenvectors. """ def __init__(self, msg, eigenvalues, eigenvectors): ArpackError.__init__(self, -1, {-1: msg}) self.eigenvalues = eigenvalues self.eigenvectors = eigenvectors class _ArpackParams(object): def __init__(self, n, k, tp, mode=1, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): if k <= 0: raise ValueError("k must be positive, k=%d" % k) if maxiter is None: maxiter = n * 10 if maxiter <= 0: raise ValueError("maxiter must be positive, maxiter=%d" % maxiter) if tp not in 'fdFD': raise ValueError("matrix type must be 'f', 'd', 'F', or 'D'") if v0 is not None: # ARPACK overwrites its initial resid, make a copy self.resid = np.array(v0, copy=True) info = 1 else: self.resid = np.zeros(n, tp) info = 0 if sigma is None: #sigma not used self.sigma = 0 else: self.sigma = sigma if ncv is None: ncv = 2 * k + 1 ncv = min(ncv, n) self.v = np.zeros((n, ncv), tp) # holds Ritz vectors self.iparam = np.zeros(11, "int") # set solver mode and parameters ishfts = 1 self.mode = mode self.iparam[0] = ishfts self.iparam[2] = maxiter self.iparam[3] = 1 self.iparam[6] = mode self.n = n self.tol = tol self.k = k self.maxiter = maxiter self.ncv = ncv self.which = which self.tp = tp self.info = info self.converged = False self.ido = 0 def _raise_no_convergence(self): msg = "No convergence (%d iterations, %d/%d eigenvectors converged)" k_ok = self.iparam[4] num_iter = self.iparam[2] try: ev, vec = self.extract(True) except ArpackError as err: msg = "%s [%s]" % (msg, err) ev = np.zeros((0,)) vec = np.zeros((self.n, 0)) k_ok = 0 raise ArpackNoConvergence(msg % (num_iter, k_ok, self.k), ev, vec) class _SymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x : # A - symmetric # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the general eigenvalue problem: # A*x = lambda*M*x # A - symmetric # M - symmetric positive definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # # mode = 4: # Solve the general eigenvalue problem in Buckling mode: # A*x = lambda*AG*x # A - symmetric positive semi-definite # AG - symmetric indefinite # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = left multiplication by [A-sigma*AG]^-1 # # mode = 5: # Solve the general eigenvalue problem in Cayley-transformed mode: # A*x = lambda*M*x # A - symmetric # M - symmetric positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode == 3: if matvec is not None: raise ValueError("matvec must not be specified for mode=3") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=3") if M_matvec is None: self.OP = Minv_matvec self.OPa = Minv_matvec self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(M_matvec(x)) self.OPa = Minv_matvec self.B = M_matvec self.bmat = 'G' elif mode == 4: if matvec is None: raise ValueError("matvec must be specified for mode=4") if M_matvec is not None: raise ValueError("M_matvec must not be specified for mode=4") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=4") self.OPa = Minv_matvec self.OP = lambda x: self.OPa(matvec(x)) self.B = matvec self.bmat = 'G' elif mode == 5: if matvec is None: raise ValueError("matvec must be specified for mode=5") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=5") self.OPa = Minv_matvec self.A_matvec = matvec if M_matvec is None: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * x) self.B = lambda x: x self.bmat = 'I' else: self.OP = lambda x: Minv_matvec(matvec(x) + sigma * M_matvec(x)) self.B = M_matvec self.bmat = 'G' else: raise ValueError("mode=%i not implemented" % mode) if which not in _SEUPD_WHICH: raise ValueError("which must be one of %s" % ' '.join(_SEUPD_WHICH)) if k >= n: raise ValueError("k must be less than rank(A), k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k: raise ValueError("ncv must be k<ncv<=n, ncv=%s" % self.ncv) self.workd = np.zeros(3 * n, self.tp) self.workl = np.zeros(self.ncv * (self.ncv + 8), self.tp) ltr = _type_conv[self.tp] if ltr not in ["s", "d"]: raise ValueError("Input matrix is not real-valued.") self._arpack_solver = _arpack.__dict__[ltr + 'saupd'] self._arpack_extract = _arpack.__dict__[ltr + 'seupd'] self.iterate_infodict = _SAUPD_ERRORS[ltr] self.extract_infodict = _SEUPD_ERRORS[ltr] self.ipntr = np.zeros(11, "int") def iterate(self): self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info = \ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n) yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n) if self.ido == -1: # initialization self.workd[yslice] = self.OP(self.workd[xslice]) elif self.ido == 1: # compute y = Op*x if self.mode == 1: self.workd[yslice] = self.OP(self.workd[xslice]) elif self.mode == 2: self.workd[xslice] = self.OPb(self.workd[xslice]) self.workd[yslice] = self.OPa(self.workd[xslice]) elif self.mode == 5: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) Ax = self.A_matvec(self.workd[xslice]) self.workd[yslice] = self.OPa(Ax + (self.sigma * self.workd[Bxslice])) else: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) self.workd[yslice] = self.OPa(self.workd[Bxslice]) elif self.ido == 2: self.workd[yslice] = self.B(self.workd[xslice]) elif self.ido == 3: raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0") else: self.converged = True if self.info == 0: pass elif self.info == 1: self._raise_no_convergence() else: raise ArpackError(self.info, infodict=self.iterate_infodict) def extract(self, return_eigenvectors): rvec = return_eigenvectors ierr = 0 howmny = 'A' # return all eigenvectors sselect = np.zeros(self.ncv, 'int') # unused d, z, ierr = self._arpack_extract(rvec, howmny, sselect, self.sigma, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam[0:7], self.ipntr, self.workd[0:2 * self.n], self.workl, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d class _UnsymmetricArpackParams(_ArpackParams): def __init__(self, n, k, tp, matvec, mode=1, M_matvec=None, Minv_matvec=None, sigma=None, ncv=None, v0=None, maxiter=None, which="LM", tol=0): # The following modes are supported: # mode = 1: # Solve the standard eigenvalue problem: # A*x = lambda*x # A - square matrix # Arguments should be # matvec = left multiplication by A # M_matvec = None [not used] # Minv_matvec = None [not used] # # mode = 2: # Solve the generalized eigenvalue problem: # A*x = lambda*M*x # A - square matrix # M - symmetric, positive semi-definite # Arguments should be # matvec = left multiplication by A # M_matvec = left multiplication by M # Minv_matvec = left multiplication by M^-1 # # mode = 3,4: # Solve the general eigenvalue problem in shift-invert mode: # A*x = lambda*M*x # A - square matrix # M - symmetric, positive semi-definite # Arguments should be # matvec = None [not used] # M_matvec = left multiplication by M # or None, if M is the identity # Minv_matvec = left multiplication by [A-sigma*M]^-1 # if A is real and mode==3, use the real part of Minv_matvec # if A is real and mode==4, use the imag part of Minv_matvec # if A is complex and mode==3, # use real and imag parts of Minv_matvec if mode == 1: if matvec is None: raise ValueError("matvec must be specified for mode=1") if M_matvec is not None: raise ValueError("M_matvec cannot be specified for mode=1") if Minv_matvec is not None: raise ValueError("Minv_matvec cannot be specified for mode=1") self.OP = matvec self.B = lambda x: x self.bmat = 'I' elif mode == 2: if matvec is None: raise ValueError("matvec must be specified for mode=2") if M_matvec is None: raise ValueError("M_matvec must be specified for mode=2") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified for mode=2") self.OP = lambda x: Minv_matvec(matvec(x)) self.OPa = Minv_matvec self.OPb = matvec self.B = M_matvec self.bmat = 'G' elif mode in (3, 4): if matvec is None: raise ValueError("matvec must be specified " "for mode in (3,4)") if Minv_matvec is None: raise ValueError("Minv_matvec must be specified " "for mode in (3,4)") self.matvec = matvec if tp in 'DF': # complex type if mode == 3: self.OPa = Minv_matvec else: raise ValueError("mode=4 invalid for complex A") else: # real type if mode == 3: self.OPa = lambda x: np.real(Minv_matvec(x)) else: self.OPa = lambda x: np.imag(Minv_matvec(x)) if M_matvec is None: self.B = lambda x: x self.bmat = 'I' self.OP = self.OPa else: self.B = M_matvec self.bmat = 'G' self.OP = lambda x: self.OPa(M_matvec(x)) else: raise ValueError("mode=%i not implemented" % mode) if which not in _NEUPD_WHICH: raise ValueError("Parameter which must be one of %s" % ' '.join(_NEUPD_WHICH)) if k >= n - 1: raise ValueError("k must be less than rank(A)-1, k=%d" % k) _ArpackParams.__init__(self, n, k, tp, mode, sigma, ncv, v0, maxiter, which, tol) if self.ncv > n or self.ncv <= k + 1: raise ValueError("ncv must be k+1<ncv<=n, ncv=%s" % self.ncv) self.workd = np.zeros(3 * n, self.tp) self.workl = np.zeros(3 * self.ncv * (self.ncv + 2), self.tp) ltr = _type_conv[self.tp] self._arpack_solver = _arpack.__dict__[ltr + 'naupd'] self._arpack_extract = _arpack.__dict__[ltr + 'neupd'] self.iterate_infodict = _NAUPD_ERRORS[ltr] self.extract_infodict = _NEUPD_ERRORS[ltr] self.ipntr = np.zeros(14, "int") if self.tp in 'FD': self.rwork = np.zeros(self.ncv, self.tp.lower()) else: self.rwork = None def iterate(self): if self.tp in 'fd': self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) else: self.ido, self.resid, self.v, self.iparam, self.ipntr, self.info =\ self._arpack_solver(self.ido, self.bmat, self.which, self.k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, self.info) xslice = slice(self.ipntr[0] - 1, self.ipntr[0] - 1 + self.n) yslice = slice(self.ipntr[1] - 1, self.ipntr[1] - 1 + self.n) if self.ido == -1: # initialization self.workd[yslice] = self.OP(self.workd[xslice]) elif self.ido == 1: # compute y = Op*x if self.mode in (1, 2): self.workd[yslice] = self.OP(self.workd[xslice]) else: Bxslice = slice(self.ipntr[2] - 1, self.ipntr[2] - 1 + self.n) self.workd[yslice] = self.OPa(self.workd[Bxslice]) elif self.ido == 2: self.workd[yslice] = self.B(self.workd[xslice]) elif self.ido == 3: raise ValueError("ARPACK requested user shifts. Assure ISHIFT==0") else: self.converged = True if self.info == 0: pass elif self.info == 1: self._raise_no_convergence() else: raise ArpackError(self.info, infodict=self.iterate_infodict) def extract(self, return_eigenvectors): k, n = self.k, self.n ierr = 0 howmny = 'A' # return all eigenvectors sselect = np.zeros(self.ncv, 'int') # unused sigmar = np.real(self.sigma) sigmai = np.imag(self.sigma) workev = np.zeros(3 * self.ncv, self.tp) if self.tp in 'fd': dr = np.zeros(k + 1, self.tp) di = np.zeros(k + 1, self.tp) zr = np.zeros((n, k + 1), self.tp) dr, di, zr, ierr = \ self._arpack_extract( return_eigenvectors, howmny, sselect, sigmar, sigmai, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.info) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) nreturned = self.iparam[4] # number of good eigenvalues returned # Build complex eigenvalues from real and imaginary parts d = dr + 1.0j * di # Arrange the eigenvectors: complex eigenvectors are stored as # real,imaginary in consecutive columns z = zr.astype(self.tp.upper()) # The ARPACK nonsymmetric real and double interface (s,d)naupd # return eigenvalues and eigenvectors in real (float,double) # arrays. # Efficiency: this should check that return_eigenvectors == True # before going through this construction. if sigmai == 0: i = 0 while i <= k: # check if complex if abs(d[i].imag) != 0: # this is a complex conjugate pair with eigenvalues # in consecutive columns if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 else: # real matrix, mode 3 or 4, imag(sigma) is nonzero: # see remark 3 in <s,d>neupd.f # Build complex eigenvalues from real and imaginary parts i = 0 while i <= k: if abs(d[i].imag) == 0: d[i] = np.dot(zr[:, i], self.matvec(zr[:, i])) else: if i < k: z[:, i] = zr[:, i] + 1.0j * zr[:, i + 1] z[:, i + 1] = z[:, i].conjugate() d[i] = ((np.dot(zr[:, i], self.matvec(zr[:, i])) + np.dot(zr[:, i + 1], self.matvec(zr[:, i + 1]))) + 1j * (np.dot(zr[:, i], self.matvec(zr[:, i + 1])) - np.dot(zr[:, i + 1], self.matvec(zr[:, i])))) d[i + 1] = d[i].conj() i += 1 else: #last eigenvalue is complex: the imaginary part of # the eigenvector has not been returned #this can only happen if nreturned > k, so we'll # throw out this case. nreturned -= 1 i += 1 # Now we have k+1 possible eigenvalues and eigenvectors # Return the ones specified by the keyword "which" if nreturned <= k: # we got less or equal as many eigenvalues we wanted d = d[:nreturned] z = z[:, :nreturned] else: # we got one extra eigenvalue (likely a cc pair, but which?) # cut at approx precision for sorting rd = np.round(d, decimals=_ndigits[self.tp]) if self.which in ['LR', 'SR']: ind = np.argsort(rd.real) elif self.which in ['LI', 'SI']: # for LI,SI ARPACK returns largest,smallest # abs(imaginary) why? ind = np.argsort(abs(rd.imag)) else: ind = np.argsort(abs(rd)) if self.which in ['LR', 'LM', 'LI']: d = d[ind[-k:]] z = z[:, ind[-k:]] if self.which in ['SR', 'SM', 'SI']: d = d[ind[:k]] z = z[:, ind[:k]] else: # complex is so much simpler... d, z, ierr =\ self._arpack_extract( return_eigenvectors, howmny, sselect, self.sigma, workev, self.bmat, self.which, k, self.tol, self.resid, self.v, self.iparam, self.ipntr, self.workd, self.workl, self.rwork, ierr) if ierr != 0: raise ArpackError(ierr, infodict=self.extract_infodict) k_ok = self.iparam[4] d = d[:k_ok] z = z[:, :k_ok] if return_eigenvectors: return d, z else: return d def _aslinearoperator_with_dtype(m): m = aslinearoperator(m) if not hasattr(m, 'dtype'): x = np.zeros(m.shape[1]) m.dtype = (m * x).dtype return m class SpLuInv(LinearOperator): """ SpLuInv: helper class to repeatedly solve M*x=b using a sparse LU-decopposition of M """ def __init__(self, M): self.M_lu = splu(M) LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype) self.isreal = not np.issubdtype(self.dtype, np.complexfloating) def _matvec(self, x): # careful here: splu.solve will throw away imaginary # part of x if M is real if self.isreal and np.issubdtype(x.dtype, np.complexfloating): return (self.M_lu.solve(np.real(x)) + 1j * self.M_lu.solve(np.imag(x))) else: return self.M_lu.solve(x) class LuInv(LinearOperator): """ LuInv: helper class to repeatedly solve M*x=b using an LU-decomposition of M """ def __init__(self, M): self.M_lu = lu_factor(M) LinearOperator.__init__(self, M.shape, self._matvec, dtype=M.dtype) def _matvec(self, x): return lu_solve(self.M_lu, x) class IterInv(LinearOperator): """ IterInv: helper class to repeatedly solve M*x=b using an iterative method. """ def __init__(self, M, ifunc=gmres, tol=0): if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = np.finfo(M.dtype).eps self.M = M self.ifunc = ifunc self.tol = tol if hasattr(M, 'dtype'): dtype = M.dtype else: x = np.zeros(M.shape[1]) dtype = (M * x).dtype LinearOperator.__init__(self, M.shape, self._matvec, dtype=dtype) def _matvec(self, x): b, info = self.ifunc(self.M, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting M: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b class IterOpInv(LinearOperator): """ IterOpInv: helper class to repeatedly solve [A-sigma*M]*x = b using an iterative method """ def __init__(self, A, M, sigma, ifunc=gmres, tol=0): if tol <= 0: # when tol=0, ARPACK uses machine tolerance as calculated # by LAPACK's _LAMCH function. We should match this tol = np.finfo(A.dtype).eps self.A = A self.M = M self.sigma = sigma self.ifunc = ifunc self.tol = tol x = np.zeros(A.shape[1]) if M is None: dtype = self.mult_func_M_None(x).dtype self.OP = LinearOperator(self.A.shape, self.mult_func_M_None, dtype=dtype) else: dtype = self.mult_func(x).dtype self.OP = LinearOperator(self.A.shape, self.mult_func, dtype=dtype) LinearOperator.__init__(self, A.shape, self._matvec, dtype=dtype) def mult_func(self, x): return self.A.matvec(x) - self.sigma * self.M.matvec(x) def mult_func_M_None(self, x): return self.A.matvec(x) - self.sigma * x def _matvec(self, x): b, info = self.ifunc(self.OP, x, tol=self.tol) if info != 0: raise ValueError("Error in inverting [A-sigma*M]: function " "%s did not converge (info = %i)." % (self.ifunc.__name__, info)) return b def get_inv_matvec(M, symmetric=False, tol=0): if isdense(M): return LuInv(M).matvec elif isspmatrix(M): if isspmatrix_csr(M) and symmetric: M = M.T return SpLuInv(M).matvec else: return IterInv(M, tol=tol).matvec def get_OPinv_matvec(A, M, sigma, symmetric=False, tol=0): if sigma == 0: return get_inv_matvec(A, symmetric=symmetric, tol=tol) if M is None: #M is the identity matrix if isdense(A): if (np.issubdtype(A.dtype, np.complexfloating) or np.imag(sigma) == 0): A = np.copy(A) else: A = A + 0j A.flat[::A.shape[1] + 1] -= sigma return LuInv(A).matvec elif isspmatrix(A): A = A - sigma * identity(A.shape[0]) if symmetric and isspmatrix_csr(A): A = A.T return SpLuInv(A.tocsc()).matvec else: return IterOpInv(_aslinearoperator_with_dtype(A), M, sigma, tol=tol).matvec else: if ((not isdense(A) and not isspmatrix(A)) or (not isdense(M) and not isspmatrix(M))): return IterOpInv(_aslinearoperator_with_dtype(A), _aslinearoperator_with_dtype(M), sigma, tol=tol).matvec elif isdense(A) or isdense(M): return LuInv(A - sigma * M).matvec else: OP = A - sigma * M if symmetric and isspmatrix_csr(OP): OP = OP.T return SpLuInv(OP.tocsc()).matvec def _eigs(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, OPpart=None): """ Find k eigenvalues and eigenvectors of the square matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : An N x N matrix, array, sparse matrix, or LinearOperator representing \ the operation A * x, where A is a real or complex square matrix. k : int, default 6 The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. return_eigenvectors : boolean, default True Whether to return the eigenvectors along with the eigenvalues. M : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation M*x for the generalized eigenvalue problem ``A * x = w * M * x`` M must represent a real symmetric matrix. For best results, M should be of the same type as A. Additionally: * If sigma==None, M is positive definite * If sigma is specified, M is positive semi-definite If sigma==None, eigs requires an operator to compute the solution of the linear equation `M * x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives x = Minv * b = M^-1 * b sigma : real or complex Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] * x = b`, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x = OPinv * b = [A - sigma * M]^-1 * b. For a real matrix A, shift-invert can either be done in imaginary mode or real mode, specified by the parameter OPpart ('r' or 'i'). Note that when sigma is specified, the keyword 'which' (below) refers to the shifted eigenvalues w'[i] where: * If A is real and OPpart == 'r' (default), w'[i] = 1/2 * [ 1/(w[i]-sigma) + 1/(w[i]-conj(sigma)) ] * If A is real and OPpart == 'i', w'[i] = 1/2i * [ 1/(w[i]-sigma) - 1/(w[i]-conj(sigma)) ] * If A is complex, w'[i] = 1/(w[i]-sigma) v0 : array Starting vector for iteration. ncv : integer The number of Lanczos vectors generated `ncv` must be greater than `k`; it is recommended that ``ncv > 2*k``. which : string ['LM' | 'SM' | 'LR' | 'SR' | 'LI' | 'SI'] Which `k` eigenvectors and eigenvalues to find: - 'LM' : largest magnitude - 'SM' : smallest magnitude - 'LR' : largest real part - 'SR' : smallest real part - 'LI' : largest imaginary part - 'SI' : smallest imaginary part When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : integer Maximum number of Arnoldi update iterations allowed tol : float Relative accuracy for eigenvalues (stopping criterion) The default value of 0 implies machine precision. return_eigenvectors : boolean Return eigenvectors (True) in addition to eigenvalues Minv : N x N matrix, array, sparse matrix, or linear operator See notes in M, above. OPinv : N x N matrix, array, sparse matrix, or linear operator See notes in sigma, above. OPpart : 'r' or 'i'. See notes in sigma, above Returns ------- w : array Array of k eigenvalues. v : array An array of `k` eigenvectors. ``v[:, i]`` is the eigenvector corresponding to the eigenvalue w[i]. Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigsh : eigenvalues and eigenvectors for symmetric matrix A svds : singular value decomposition for a matrix A Examples -------- Find 6 eigenvectors of the identity matrix: >>> from sklearn.utils.arpack import eigs >>> id = np.identity(13) >>> vals, vecs = eigs(id, k=6) >>> vals array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> vecs.shape (13, 6) Notes ----- This function is a wrapper to the ARPACK [1]_ SNEUPD, DNEUPD, CNEUPD, ZNEUPD, functions which use the Implicitly Restarted Arnoldi Method to find the eigenvalues and eigenvectors [2]_. References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. """ if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0 or k >= n: raise ValueError("k must be between 1 and rank(A)-1") if sigma is None: matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if OPpart is not None: raise ValueError("OPpart should not be specified with " "sigma = None or complex A") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: #sigma is not None: shift-invert mode if np.issubdtype(A.dtype, np.complexfloating): if OPpart is not None: raise ValueError("OPpart should not be specified " "with sigma=None or complex A") mode = 3 elif OPpart is None or OPpart.lower() == 'r': mode = 3 elif OPpart.lower() == 'i': if np.imag(sigma) == 0: raise ValueError("OPpart cannot be 'i' if sigma is real") mode = 4 else: raise ValueError("OPpart must be one of ('r','i')") matvec = _aslinearoperator_with_dtype(A).matvec if Minv is not None: raise ValueError("Minv should not be specified when sigma is") if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=False, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec params = _UnsymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _eigsh(A, k=6, M=None, sigma=None, which='LM', v0=None, ncv=None, maxiter=None, tol=0, return_eigenvectors=True, Minv=None, OPinv=None, mode='normal'): """ Find k eigenvalues and eigenvectors of the real symmetric square matrix or complex hermitian matrix A. Solves ``A * x[i] = w[i] * x[i]``, the standard eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i]. If M is specified, solves ``A * x[i] = w[i] * M * x[i]``, the generalized eigenvalue problem for w[i] eigenvalues with corresponding eigenvectors x[i] Parameters ---------- A : An N x N matrix, array, sparse matrix, or LinearOperator representing the operation A * x, where A is a real symmetric matrix For buckling mode (see below) A must additionally be positive-definite k : integer The number of eigenvalues and eigenvectors desired. `k` must be smaller than N. It is not possible to compute all eigenvectors of a matrix. M : An N x N matrix, array, sparse matrix, or linear operator representing the operation M * x for the generalized eigenvalue problem ``A * x = w * M * x``. M must represent a real, symmetric matrix. For best results, M should be of the same type as A. Additionally: * If sigma == None, M is symmetric positive definite * If sigma is specified, M is symmetric positive semi-definite * In buckling mode, M is symmetric indefinite. If sigma == None, eigsh requires an operator to compute the solution of the linear equation `M * x = b`. This is done internally via a (sparse) LU decomposition for an explicit matrix M, or via an iterative solver for a general linear operator. Alternatively, the user can supply the matrix or operator Minv, which gives x = Minv * b = M^-1 * b sigma : real Find eigenvalues near sigma using shift-invert mode. This requires an operator to compute the solution of the linear system `[A - sigma * M] x = b`, where M is the identity matrix if unspecified. This is computed internally via a (sparse) LU decomposition for explicit matrices A & M, or via an iterative solver if either A or M is a general linear operator. Alternatively, the user can supply the matrix or operator OPinv, which gives x = OPinv * b = [A - sigma * M]^-1 * b. Note that when sigma is specified, the keyword 'which' refers to the shifted eigenvalues w'[i] where: - if mode == 'normal', w'[i] = 1 / (w[i] - sigma) - if mode == 'cayley', w'[i] = (w[i] + sigma) / (w[i] - sigma) - if mode == 'buckling', w'[i] = w[i] / (w[i] - sigma) (see further discussion in 'mode' below) v0 : array Starting vector for iteration. ncv : integer The number of Lanczos vectors generated ncv must be greater than k and smaller than n; it is recommended that ncv > 2*k which : string ['LM' | 'SM' | 'LA' | 'SA' | 'BE'] If A is a complex hermitian matrix, 'BE' is invalid. Which `k` eigenvectors and eigenvalues to find - 'LM' : Largest (in magnitude) eigenvalues - 'SM' : Smallest (in magnitude) eigenvalues - 'LA' : Largest (algebraic) eigenvalues - 'SA' : Smallest (algebraic) eigenvalues - 'BE' : Half (k/2) from each end of the spectrum When k is odd, return one more (k/2+1) from the high end When sigma != None, 'which' refers to the shifted eigenvalues w'[i] (see discussion in 'sigma', above). ARPACK is generally better at finding large values than small values. If small eigenvalues are desired, consider using shift-invert mode for better performance. maxiter : integer Maximum number of Arnoldi update iterations allowed tol : float Relative accuracy for eigenvalues (stopping criterion). The default value of 0 implies machine precision. Minv : N x N matrix, array, sparse matrix, or LinearOperator See notes in M, above OPinv : N x N matrix, array, sparse matrix, or LinearOperator See notes in sigma, above. return_eigenvectors : boolean Return eigenvectors (True) in addition to eigenvalues mode : string ['normal' | 'buckling' | 'cayley'] Specify strategy to use for shift-invert mode. This argument applies only for real-valued A and sigma != None. For shift-invert mode, ARPACK internally solves the eigenvalue problem ``OP * x'[i] = w'[i] * B * x'[i]`` and transforms the resulting Ritz vectors x'[i] and Ritz values w'[i] into the desired eigenvectors and eigenvalues of the problem ``A * x[i] = w[i] * M * x[i]``. The modes are as follows: - 'normal' : OP = [A - sigma * M]^-1 * M B = M w'[i] = 1 / (w[i] - sigma) - 'buckling' : OP = [A - sigma * M]^-1 * A B = A w'[i] = w[i] / (w[i] - sigma) - 'cayley' : OP = [A - sigma * M]^-1 * [A + sigma * M] B = M w'[i] = (w[i] + sigma) / (w[i] - sigma) The choice of mode will affect which eigenvalues are selected by the keyword 'which', and can also impact the stability of convergence (see [2] for a discussion) Returns ------- w : array Array of k eigenvalues v : array An array of k eigenvectors The v[i] is the eigenvector corresponding to the eigenvector w[i] Raises ------ ArpackNoConvergence When the requested convergence is not obtained. The currently converged eigenvalues and eigenvectors can be found as ``eigenvalues`` and ``eigenvectors`` attributes of the exception object. See Also -------- eigs : eigenvalues and eigenvectors for a general (nonsymmetric) matrix A svds : singular value decomposition for a matrix A Notes ----- This function is a wrapper to the ARPACK [1]_ SSEUPD and DSEUPD functions which use the Implicitly Restarted Lanczos Method to find the eigenvalues and eigenvectors [2]_. Examples -------- >>> from sklearn.utils.arpack import eigsh >>> id = np.identity(13) >>> vals, vecs = eigsh(id, k=6) >>> vals # doctest: +SKIP array([ 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j]) >>> print(vecs.shape) (13, 6) References ---------- .. [1] ARPACK Software, http://www.caam.rice.edu/software/ARPACK/ .. [2] R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK USERS GUIDE: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA, 1998. """ # complex hermitian matrices should be solved with eigs if np.issubdtype(A.dtype, np.complexfloating): if mode != 'normal': raise ValueError("mode=%s cannot be used with " "complex matrix A" % mode) if which == 'BE': raise ValueError("which='BE' cannot be used with complex matrix A") elif which == 'LA': which = 'LR' elif which == 'SA': which = 'SR' ret = eigs(A, k, M=M, sigma=sigma, which=which, v0=v0, ncv=ncv, maxiter=maxiter, tol=tol, return_eigenvectors=return_eigenvectors, Minv=Minv, OPinv=OPinv) if return_eigenvectors: return ret[0].real, ret[1] else: return ret.real if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix (shape=%s)' % (A.shape,)) if M is not None: if M.shape != A.shape: raise ValueError('wrong M dimensions %s, should be %s' % (M.shape, A.shape)) if np.dtype(M.dtype).char.lower() != np.dtype(A.dtype).char.lower(): warnings.warn('M does not have the same type precision as A. ' 'This may adversely affect ARPACK convergence') n = A.shape[0] if k <= 0 or k >= n: raise ValueError("k must be between 1 and rank(A)-1") if sigma is None: A = _aslinearoperator_with_dtype(A) matvec = A.matvec if OPinv is not None: raise ValueError("OPinv should not be specified " "with sigma = None.") if M is None: #standard eigenvalue problem mode = 1 M_matvec = None Minv_matvec = None if Minv is not None: raise ValueError("Minv should not be " "specified with M = None.") else: #general eigenvalue problem mode = 2 if Minv is None: Minv_matvec = get_inv_matvec(M, symmetric=True, tol=tol) else: Minv = _aslinearoperator_with_dtype(Minv) Minv_matvec = Minv.matvec M_matvec = _aslinearoperator_with_dtype(M).matvec else: # sigma is not None: shift-invert mode if Minv is not None: raise ValueError("Minv should not be specified when sigma is") # normal mode if mode == 'normal': mode = 3 matvec = None if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: OPinv = _aslinearoperator_with_dtype(OPinv) Minv_matvec = OPinv.matvec if M is None: M_matvec = None else: M = _aslinearoperator_with_dtype(M) M_matvec = M.matvec # buckling mode elif mode == 'buckling': mode = 4 if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec matvec = _aslinearoperator_with_dtype(A).matvec M_matvec = None # cayley-transform mode elif mode == 'cayley': mode = 5 matvec = _aslinearoperator_with_dtype(A).matvec if OPinv is None: Minv_matvec = get_OPinv_matvec(A, M, sigma, symmetric=True, tol=tol) else: Minv_matvec = _aslinearoperator_with_dtype(OPinv).matvec if M is None: M_matvec = None else: M_matvec = _aslinearoperator_with_dtype(M).matvec # unrecognized mode else: raise ValueError("unrecognized mode '%s'" % mode) params = _SymmetricArpackParams(n, k, A.dtype.char, matvec, mode, M_matvec, Minv_matvec, sigma, ncv, v0, maxiter, which, tol) while not params.converged: params.iterate() return params.extract(return_eigenvectors) def _svds(A, k=6, ncv=None, tol=0): """Compute k singular values/vectors for a sparse matrix using ARPACK. Parameters ---------- A : sparse matrix Array to compute the SVD on k : int, optional Number of singular values and vectors to compute. ncv : integer The number of Lanczos vectors generated ncv must be greater than k+1 and smaller than n; it is recommended that ncv > 2*k tol : float, optional Tolerance for singular values. Zero (default) means machine precision. Notes ----- This is a naive implementation using an eigensolver on A.H * A or A * A.H, depending on which one is more efficient. """ if not (isinstance(A, np.ndarray) or isspmatrix(A)): A = np.asarray(A) n, m = A.shape if np.issubdtype(A.dtype, np.complexfloating): herm = lambda x: x.T.conjugate() eigensolver = eigs else: herm = lambda x: x.T eigensolver = eigsh if n > m: X = A XH = herm(A) else: XH = A X = herm(A) if hasattr(XH, 'dot'): def matvec_XH_X(x): return XH.dot(X.dot(x)) else: def matvec_XH_X(x): return np.dot(XH, np.dot(X, x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=X.dtype, shape=(X.shape[1], X.shape[1])) # Ignore deprecation warnings here: dot on matrices is deprecated, # but this code is a backport anyhow with warnings.catch_warnings(): warnings.simplefilter('ignore', DeprecationWarning) eigvals, eigvec = eigensolver(XH_X, k=k, tol=tol ** 2) s = np.sqrt(eigvals) if n > m: v = eigvec if hasattr(X, 'dot'): u = X.dot(v) / s else: u = np.dot(X, v) / s vh = herm(v) else: u = eigvec if hasattr(X, 'dot'): vh = herm(X.dot(u) / s) else: vh = herm(np.dot(X, u) / s) return u, s, vh # check if backport is actually needed: if scipy.version.version >= LooseVersion('0.10'): from scipy.sparse.linalg import eigs, eigsh, svds else: eigs, eigsh, svds = _eigs, _eigsh, _svds
bsd-3-clause
xguse/ggplot
ggplot/stats/stat_bin2d.py
4
2678
from __future__ import (absolute_import, division, print_function, unicode_literals) from collections import defaultdict import pandas as pd import numpy as np from ggplot.utils import make_iterable_ntimes from .stat import stat _MSG_STATUS = """stat_bin2d is still under construction. The resulting plot lacks color to indicate the counts/density in each bin and if grouping/facetting is used you get more bins than specified and they vary in size between the groups. see: https://github.com/yhat/ggplot/pull/266#issuecomment-41355513 https://github.com/yhat/ggplot/issues/283 """ class stat_bin2d(stat): REQUIRED_AES = {'x', 'y'} DEFAULT_PARAMS = {'geom': 'rect', 'position': 'identity', 'bins': 30, 'drop': True, 'weight': 1, 'right': False} CREATES = {'xmin', 'xmax', 'ymin', 'ymax', 'fill'} def _calculate(self, data): self._print_warning(_MSG_STATUS) x = data.pop('x') y = data.pop('y') bins = self.params['bins'] drop = self.params['drop'] right = self.params['right'] weight = make_iterable_ntimes(self.params['weight'], len(x)) # create the cutting parameters x_assignments, xbreaks = pd.cut(x, bins=bins, labels=False, right=right, retbins=True) y_assignments, ybreaks = pd.cut(y, bins=bins, labels=False, right=right, retbins=True) # create rectangles # xmin, xmax, ymin, ymax, fill=count df = pd.DataFrame({'xbin': x_assignments, 'ybin': y_assignments, 'weights': weight}) table = pd.pivot_table(df, values='weights', rows=['xbin', 'ybin'], aggfunc=np.sum) rects = np.array([[xbreaks[i], xbreaks[i+1], ybreaks[j], ybreaks[j+1], table[(i, j)]] for (i, j) in table.keys()]) new_data = pd.DataFrame(rects, columns=['xmin', 'xmax', 'ymin', 'ymax', 'fill']) # !!! assign colors??? # TODO: Remove this when visual mapping is applied after # computing the stats new_data['fill'] = ['#333333'] * len(new_data) # Copy the other aesthetics into the new dataframe # Note: There probably shouldn't be any for this stat n = len(new_data) for ae in data: new_data[ae] = make_iterable_ntimes(data[ae].iloc[0], n) return new_data
bsd-2-clause
BrainIntensive/OnlineBrainIntensive
resources/HCP/mne-hcp/tutorials/plot_temporal_searchlight_decoding.py
3
3094
# -*- coding: utf-8 -*- """ .. _tut_searchlight_decoding: ======================================================= Run temporal searchlight decoding on event related data ======================================================= In this tutorial we show how to run a temporal window decoding on event related data. We'll try to decode tools VS faces in the working memory data. """ # Author: Denis A. Engemann # License: BSD 3 clause import os.path as op import numpy as np import mne import hcp from hcp import preprocessing as preproc from sklearn.preprocessing import LabelBinarizer from sklearn.metrics import roc_auc_score from sklearn.cross_validation import StratifiedKFold from mne.decoding import GeneralizationAcrossTime mne.set_log_level('WARNING') # we assume our data is inside its designated folder under $HOME storage_dir = op.expanduser('~') hcp_params = dict( hcp_path=op.join(storage_dir, 'mne-hcp-data', 'HCP'), subject='105923', data_type='task_working_memory') # these values are looked up from the HCP manual tmin, tmax = -1.5, 2.5 decim = 3 ############################################################################## # We know from studying either the manual or the trial info about the mapping # of events. event_id = dict(face=1, tool=2) ############################################################################## # we first collect epochs across runs and essentially adopt the code # shown in :ref:`tut_reproduce_erf`. epochs = list() for run_index in [0, 1]: hcp_params['run_index'] = run_index trial_info = hcp.read_trial_info(**hcp_params) events = np.c_[ trial_info['stim']['codes'][:, 6] - 1, # time sample np.zeros(len(trial_info['stim']['codes'])), trial_info['stim']['codes'][:, 3] # event codes ].astype(int) # for some reason in the HCP data the time events may not always be unique unique_subset = np.nonzero(np.r_[1, np.diff(events[:, 0])])[0] events = events[unique_subset] # use diff to find first unique events subset = np.in1d(events[:, 2], event_id.values()) epochs_hcp = hcp.read_epochs(**hcp_params).decimate(decim) epochs_hcp = epochs_hcp[unique_subset][subset] epochs_hcp.events[:, 2] = events[subset, 2] epochs_hcp.event_id = event_id epochs_hcp.crop(-0.1, 0.5) epochs.append(preproc.interpolate_missing(epochs_hcp, **hcp_params)) epochs = mne.concatenate_epochs(epochs) del epochs_hcp ############################################################################## # Now we can proceed as shown in the MNE-Python decoding tutorials y = LabelBinarizer().fit_transform(epochs.events[:, 2]).ravel() cv = StratifiedKFold(y=y) # do a stratified cross-validation gat = GeneralizationAcrossTime(predict_mode='cross-validation', n_jobs=1, cv=cv, scorer=roc_auc_score) # fit and score gat.fit(epochs, y=y) gat.score(epochs) ############################################################################## # Ploting the temporal connectome and the evolution of discriminability. gat.plot() gat.plot_diagonal()
mit
amchagas/python-neo
doc/source/images/generate_diagram.py
7
7892
# -*- coding: utf-8 -*- """ This generate diagram in .png and .svg from neo.core Author: sgarcia """ from datetime import datetime import numpy as np import quantities as pq from matplotlib import pyplot from matplotlib.patches import Rectangle, ArrowStyle, FancyArrowPatch from matplotlib.font_manager import FontProperties from neo.test.generate_datasets import fake_neo line_heigth = .22 fontsize = 10.5 left_text_shift = .1 dpi = 100 def get_rect_height(name, obj): ''' calculate rectangle height ''' nlines = 1.5 nlines += len(getattr(obj, '_all_attrs', [])) nlines += len(getattr(obj, '_single_child_objects', [])) nlines += len(getattr(obj, '_multi_child_objects', [])) nlines += len(getattr(obj, '_multi_parent_objects', [])) return nlines*line_heigth def annotate(ax, coord1, coord2, connectionstyle, color, alpha): arrowprops = dict(arrowstyle='fancy', #~ patchB=p, shrinkA=.3, shrinkB=.3, fc=color, ec=color, connectionstyle=connectionstyle, alpha=alpha) bbox = dict(boxstyle="square", fc="w") a = ax.annotate('', coord1, coord2, #xycoords="figure fraction", #textcoords="figure fraction", ha="right", va="center", size=fontsize, arrowprops=arrowprops, bbox=bbox) a.set_zorder(-4) def calc_coordinates(pos, height): x = pos[0] y = pos[1] + height - line_heigth*.5 return pos[0], y def generate_diagram(filename, rect_pos, rect_width, figsize): rw = rect_width fig = pyplot.figure(figsize=figsize) ax = fig.add_axes([0, 0, 1, 1]) all_h = {} objs = {} for name in rect_pos: objs[name] = fake_neo(name) all_h[name] = get_rect_height(name, objs[name]) # draw connections color = ['c', 'm', 'y'] alpha = [1., 1., 0.3] for name, pos in rect_pos.items(): obj = objs[name] relationships = [getattr(obj, '_single_child_objects', []), getattr(obj, '_multi_child_objects', []), getattr(obj, '_child_properties', [])] for r in range(3): for ch_name in relationships[r]: x1, y1 = calc_coordinates(rect_pos[ch_name], all_h[ch_name]) x2, y2 = calc_coordinates(pos, all_h[name]) if r in [0, 2]: x2 += rect_width connectionstyle = "arc3,rad=-0.2" elif y2 >= y1: connectionstyle = "arc3,rad=0.7" else: connectionstyle = "arc3,rad=-0.7" annotate(ax=ax, coord1=(x1, y1), coord2=(x2, y2), connectionstyle=connectionstyle, color=color[r], alpha=alpha[r]) # draw boxes for name, pos in rect_pos.items(): htotal = all_h[name] obj = objs[name] allrelationship = (getattr(obj, '_child_containers', []) + getattr(obj, '_multi_parent_containers', [])) rect = Rectangle(pos, rect_width, htotal, facecolor='w', edgecolor='k', linewidth=2.) ax.add_patch(rect) # title green pos2 = pos[0], pos[1]+htotal - line_heigth*1.5 rect = Rectangle(pos2, rect_width, line_heigth*1.5, facecolor='g', edgecolor='k', alpha=.5, linewidth=2.) ax.add_patch(rect) # single relationship relationship = getattr(obj, '_single_child_objects', []) pos2 = pos[1] + htotal - line_heigth*(1.5+len(relationship)) rect_height = len(relationship)*line_heigth rect = Rectangle((pos[0], pos2), rect_width, rect_height, facecolor='c', edgecolor='k', alpha=.5) ax.add_patch(rect) # multi relationship relationship = (getattr(obj, '_multi_child_objects', []) + getattr(obj, '_multi_parent_containers', [])) pos2 = (pos[1]+htotal - line_heigth*(1.5+len(relationship)) - rect_height) rect_height = len(relationship)*line_heigth rect = Rectangle((pos[0], pos2), rect_width, rect_height, facecolor='m', edgecolor='k', alpha=.5) ax.add_patch(rect) # necessary attr pos2 = (pos[1]+htotal - line_heigth*(1.5+len(allrelationship) + len(obj._necessary_attrs))) rect = Rectangle((pos[0], pos2), rect_width, line_heigth*len(obj._necessary_attrs), facecolor='r', edgecolor='k', alpha=.5) ax.add_patch(rect) # name if hasattr(obj, '_quantity_attr'): post = '* ' else: post = '' ax.text(pos[0]+rect_width/2., pos[1]+htotal - line_heigth*1.5/2., name+post, horizontalalignment='center', verticalalignment='center', fontsize=fontsize+2, fontproperties=FontProperties(weight='bold'), ) #relationship for i, relat in enumerate(allrelationship): ax.text(pos[0]+left_text_shift, pos[1]+htotal - line_heigth*(i+2), relat+': list', horizontalalignment='left', verticalalignment='center', fontsize=fontsize, ) # attributes for i, attr in enumerate(obj._all_attrs): attrname, attrtype = attr[0], attr[1] t1 = attrname if (hasattr(obj, '_quantity_attr') and obj._quantity_attr == attrname): t1 = attrname+'(object itself)' else: t1 = attrname if attrtype == pq.Quantity: if attr[2] == 0: t2 = 'Quantity scalar' else: t2 = 'Quantity %dD' % attr[2] elif attrtype == np.ndarray: t2 = "np.ndarray %dD dt='%s'" % (attr[2], attr[3].kind) elif attrtype == datetime: t2 = 'datetime' else: t2 = attrtype.__name__ t = t1+' : '+t2 ax.text(pos[0]+left_text_shift, pos[1]+htotal - line_heigth*(i+len(allrelationship)+2), t, horizontalalignment='left', verticalalignment='center', fontsize=fontsize, ) xlim, ylim = figsize ax.set_xlim(0, xlim) ax.set_ylim(0, ylim) ax.set_xticks([]) ax.set_yticks([]) fig.savefig(filename, dpi=dpi) def generate_diagram_simple(): figsize = (18, 12) rw = rect_width = 3. bf = blank_fact = 1.2 rect_pos = {'Block': (.5+rw*bf*0, 4), 'Segment': (.5+rw*bf*1, .5), 'Event': (.5+rw*bf*4, 6), 'EventArray': (.5+rw*bf*4, 4), 'Epoch': (.5+rw*bf*4, 2), 'EpochArray': (.5+rw*bf*4, .2), 'RecordingChannelGroup': (.5+rw*bf*.8, 8.5), 'RecordingChannel': (.5+rw*bf*1.2, 5.5), 'Unit': (.5+rw*bf*2., 9.5), 'SpikeTrain': (.5+rw*bf*3, 9.5), 'Spike': (.5+rw*bf*3, 7.5), 'IrregularlySampledSignal': (.5+rw*bf*3, 4.9), 'AnalogSignal': (.5+rw*bf*3, 2.7), 'AnalogSignalArray': (.5+rw*bf*3, .5), } generate_diagram('simple_generated_diagram.svg', rect_pos, rect_width, figsize) generate_diagram('simple_generated_diagram.png', rect_pos, rect_width, figsize) if __name__ == '__main__': generate_diagram_simple() pyplot.show()
bsd-3-clause
kevinpetersavage/BOUT-dev
examples/elm-pb/Python/plotmode2.py
3
1596
from __future__ import print_function from __future__ import division from builtins import str from builtins import range from past.utils import old_div from numpy import *; #from scipy.io import readsav; import matplotlib.pyplot as plt; from boutdata import collect # Dynamic matplotlib settings from matplotlib import rcParams; rcParams['font.size'] = 20; rcParams['legend.fontsize'] = 'small'; rcParams['legend.labelspacing'] = 0.1; rcParams['lines.linewidth'] = 2; rcParams['savefig.bbox'] = 'tight'; # Create image directory if not exists import os; if not os.path.exists('image'): os.makedirs('image'); path='./data/' data=collect('P',path=path) #fphi = transpose(readsav('fphi.idl.dat')['fphi'])[:,:,:,]; fphi = fft.fft(data, axis=3) plt.figure(); for i in range(1, 9): print("Growth rate for mode number", i) print(gradient(log(abs(fphi[:,34, 32, i])))) plt.semilogy(((abs(fphi[:,34, 32, i]))), label = 'n=' + str(i * 5)); plt.legend(loc=2); plt.xlabel('Time'); plt.savefig('image/plotmode.png'); plt.savefig('image/plotmode.eps'); plt.show(block=False); plt.figure(); for i in range(1, 9): plt.plot(abs(fphi[-1, :, 32, i]), label = 'n=' + str(i * 5)); plt.legend(); plt.xlabel('X index'); plt.savefig('image/plotmodeamp.png'); plt.savefig('image/plotmodeamp.eps'); plt.show(block=False); plt.figure(); for i in range(1, 9): plt.plot(old_div(abs(fphi[-1, :, 32, i]),abs(fphi[-1, :, 32, i]).max()), label = 'n=' + str(i * 5)); plt.legend(); plt.xlabel('X index'); plt.savefig('image/plotmodenorm.png'); plt.savefig('image/plotmodenorm.eps'); plt.show();
gpl-3.0
rudischilder/gr10_2
sw/airborne/test/ahrs/ahrs_utils.py
86
4923
#! /usr/bin/env python # Copyright (C) 2011 Antoine Drouin # # This file is part of Paparazzi. # # Paparazzi is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # Paparazzi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Paparazzi; see the file COPYING. If not, write to # the Free Software Foundation, 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # from __future__ import print_function import subprocess import numpy as np import matplotlib.pyplot as plt def run_simulation(ahrs_type, build_opt, traj_nb): print("\nBuilding ahrs") args = ["make", "clean", "run_ahrs_on_synth", "AHRS_TYPE=AHRS_TYPE_" + ahrs_type] + build_opt #print(args) p = subprocess.Popen(args=args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=False) outputlines = p.stdout.readlines() p.wait() for i in outputlines: print(" # " + i, end=' ') print() print("Running simulation") print(" using traj " + str(traj_nb)) p = subprocess.Popen(args=["./run_ahrs_on_synth", str(traj_nb)], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=False) outputlines = p.stdout.readlines() p.wait() # for i in outputlines: # print(" "+i, end=' ') # print("\n") ahrs_data_type = [('time', 'float32'), ('phi_true', 'float32'), ('theta_true', 'float32'), ('psi_true', 'float32'), ('p_true', 'float32'), ('q_true', 'float32'), ('r_true', 'float32'), ('bp_true', 'float32'), ('bq_true', 'float32'), ('br_true', 'float32'), ('phi_ahrs', 'float32'), ('theta_ahrs', 'float32'), ('psi_ahrs', 'float32'), ('p_ahrs', 'float32'), ('q_ahrs', 'float32'), ('r_ahrs', 'float32'), ('bp_ahrs', 'float32'), ('bq_ahrs', 'float32'), ('br_ahrs', 'float32')] mydescr = np.dtype(ahrs_data_type) data = [[] for dummy in xrange(len(mydescr))] # import code; code.interact(local=locals()) for line in outputlines: if line.startswith("#"): print(" " + line, end=' ') else: fields = line.strip().split(' ') #print(fields) for i, number in enumerate(fields): data[i].append(number) print() for i in xrange(len(mydescr)): data[i] = np.cast[mydescr[i]](data[i]) return np.rec.array(data, dtype=mydescr) def plot_simulation_results(plot_true_state, lsty, label, sim_res): print("Plotting Results") # f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=True) plt.subplot(3, 3, 1) plt.plot(sim_res.time, sim_res.phi_ahrs, lsty, label=label) plt.ylabel('degres') plt.title('phi') plt.legend() plt.subplot(3, 3, 2) plt.plot(sim_res.time, sim_res.theta_ahrs, lsty) plt.title('theta') plt.subplot(3, 3, 3) plt.plot(sim_res.time, sim_res.psi_ahrs, lsty) plt.title('psi') plt.subplot(3, 3, 4) plt.plot(sim_res.time, sim_res.p_ahrs, lsty) plt.ylabel('degres/s') plt.title('p') plt.subplot(3, 3, 5) plt.plot(sim_res.time, sim_res.q_ahrs, lsty) plt.title('q') plt.subplot(3, 3, 6) plt.plot(sim_res.time, sim_res.r_ahrs, lsty) plt.title('r') plt.subplot(3, 3, 7) plt.plot(sim_res.time, sim_res.bp_ahrs, lsty) plt.ylabel('degres/s') plt.xlabel('time in s') plt.title('bp') plt.subplot(3, 3, 8) plt.plot(sim_res.time, sim_res.bq_ahrs, lsty) plt.xlabel('time in s') plt.title('bq') plt.subplot(3, 3, 9) plt.plot(sim_res.time, sim_res.br_ahrs, lsty) plt.xlabel('time in s') plt.title('br') if plot_true_state: plt.subplot(3, 3, 1) plt.plot(sim_res.time, sim_res.phi_true, 'r--') plt.subplot(3, 3, 2) plt.plot(sim_res.time, sim_res.theta_true, 'r--') plt.subplot(3, 3, 3) plt.plot(sim_res.time, sim_res.psi_true, 'r--') plt.subplot(3, 3, 4) plt.plot(sim_res.time, sim_res.p_true, 'r--') plt.subplot(3, 3, 5) plt.plot(sim_res.time, sim_res.q_true, 'r--') plt.subplot(3, 3, 6) plt.plot(sim_res.time, sim_res.r_true, 'r--') plt.subplot(3, 3, 7) plt.plot(sim_res.time, sim_res.bp_true, 'r--') plt.subplot(3, 3, 8) plt.plot(sim_res.time, sim_res.bq_true, 'r--') plt.subplot(3, 3, 9) plt.plot(sim_res.time, sim_res.br_true, 'r--') def show_plot(): plt.show()
gpl-2.0
LeagueForHacker/Python-Prototypes-Demo
model/sms_spam_detection.py
1
9268
# -*- coding: UTF-8 -*- """ Description: SMS Spam Detection Author: Wallace Huang Date: 2019/7/22 Version: 1.0 """ import os import re import string from collections import Counter import nltk import pandas as pd from nltk.corpus import stopwords from scipy.sparse import csr_matrix from sklearn.base import BaseEstimator, TransformerMixin from sklearn.linear_model import LogisticRegression from sklearn.linear_model import SGDClassifier from sklearn.model_selection import cross_val_score from sklearn.model_selection import train_test_split from sklearn.naive_bayes import BernoulliNB from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import FeatureUnion from sklearn.pipeline import Pipeline from sklearn.preprocessing import LabelEncoder class DataFrameSelector(BaseEstimator, TransformerMixin): def __init__(self, attr): self.attr_names = attr def fit(self, X, y=None): return self def transform(self, X): X = X.rename(columns={"v1": "Type", "v2": "Text"}) return X[self.attr_names] class AddExtraAttr(BaseEstimator, TransformerMixin): def __init__(self, attr): self.attr_name = attr def fit(self, X, y=None): return self def transform(self, X): X = X.values X = pd.DataFrame(X, columns=[self.attr_name]) X['Length'] = X[self.attr_name].apply(len) # findCapitalCount = lambda x: sum(map(str.isupper, x[self.attr_name].split())) # X["CapitalCount"] = X.apply(findCapitalCount, axis=1) # findWordCount = lambda x: len(x[self.attr_name].split()) # X["WordCount"] = X.apply(findWordCount, axis=1) # X["CapitalRate"] = X["CapitalCount"] / X["WordCount"] return X[["Length"]] class FindCount(BaseEstimator, TransformerMixin): def __init__(self, attr): self.attr_name = attr def fit(self, X, y=None): return self def transform(self, X): Y = [] for index, row in X.iterrows(): row[self.attr_name] = re.sub(r'\d+(?:\.\d*(?:[eE]\d+))?', 'NUMBER', row[self.attr_name]) no_punc = [ch for ch in row[self.attr_name] if ch not in string.punctuation] punc = [(" " + ch + " ") for ch in row[self.attr_name] if ch in string.punctuation] word_list = "".join(no_punc + punc).split() useful_words = [word.lower() for word in word_list if word.lower() not in stopwords.words("english")] word_counts = Counter(useful_words) stemmed_word_counts = Counter() for word, count in word_counts.items(): stemmed_word = stemmer.stem(word) stemmed_word_counts[stemmed_word] += count word_counts = stemmed_word_counts Y.append(word_counts) return Y class ConvertToVector(BaseEstimator, TransformerMixin): def __init__(self, vocabulary_size=1000): self.vocabulary_size = vocabulary_size def fit(self, X, y=None): total_count = Counter() for word_count in X: for word, count in word_count.items(): total_count[word] += count most_common = total_count.most_common()[:self.vocabulary_size] self.most_common_ = most_common self.vocabulary_ = {word: index + 1 for index, (word, count) in enumerate(most_common)} return self def transform(self, X, y=None): rows = [] cols = [] data = [] for row, word_count in enumerate(X): for word, count in word_count.items(): rows.append(row) cols.append(self.vocabulary_.get(word, 0)) data.append(count) return csr_matrix((data, (rows, cols)), shape=(len(X), self.vocabulary_size + 1)) if __name__ == '__main__': sample_file = '../resources/spam.csv' if not os.access(sample_file, os.F_OK): print('FileNotFoundError: %s not found.' % sample_file) exit(-1) else: data = pd.read_csv(sample_file, encoding='latin-1', low_memory=True) print(data.head(1)) # print(data.info) unimportant_col = ["Unnamed: 2", "Unnamed: 3", "Unnamed: 4"] data.drop(unimportant_col, axis=1, inplace=True) print(data.head(1)) data.rename(columns={"v1": "Type", "v2": "Text"}, inplace=True) print(data.head(1)) train_data, test_data = train_test_split(data, test_size=0.2, random_state=42) train_data.info() test_data.info() print(train_data.describe()) print(train_data.groupby("Type").describe()) # train_data.Type.value_counts().plot.pie(autopct='%0.2f%%', shadow=True) # plt.show() train_data['Length'] = train_data['Text'].apply(len) print(train_data.head(5)) # train_data.hist(column='Length', by='Type', bins=60, figsize=(12, 4)) # plt.show() findCapitalCount = lambda x: sum(map(str.isupper, x['Text'].split())) train_data["CapitalCount"] = train_data.apply(findCapitalCount, axis=1) print(train_data.head(5)) # train_data.hist(column='CapitalCount', by='Type', bins=30, figsize=(12, 4)) # plt.show() findWordCount = lambda x: len(x['Text'].split()) train_data["WordCount"] = train_data.apply(findWordCount, axis=1) print(train_data.head(5)) train_data["CapitalRate"] = train_data["CapitalCount"] / train_data["WordCount"] print(train_data.head(5)) # train_data.hist(column='CapitalRate',by='Type',bins=30,figsize=(12,4)) # plt.show() stopwords.words("english") stemmer = nltk.PorterStemmer() for word in ("Computations", "Computation", "Computing", "Computed", "Compute", "Compulsive"): print(word, "=>", stemmer.stem(word)) cat_attr = ["Text"] main_pipeline = Pipeline([ ('selector', DataFrameSelector(cat_attr)), ('find_count', FindCount(cat_attr[0])), ('convert_to_vector', ConvertToVector()), ]) extra_pipeline = Pipeline([ ('selector', DataFrameSelector(cat_attr)), ('add_extra', AddExtraAttr(cat_attr[0])), ]) full_pipeline = FeatureUnion(transformer_list=[ ('main_pipeline', main_pipeline), ('extra_pipeline', extra_pipeline), ]) train_prepared = full_pipeline.fit_transform(train_data) y_train = train_data["Type"] encoder = LabelEncoder() type_encoded = encoder.fit_transform(y_train) # Logistic Regression log_clf = LogisticRegression(solver="liblinear", random_state=42) score = cross_val_score(log_clf, train_prepared, type_encoded, cv=3, verbose=3) score.mean() # SGD sgd_clf = SGDClassifier(random_state=42) score = cross_val_score(sgd_clf, train_prepared, type_encoded, cv=3, verbose=3) score.mean() # MultinomialNB mnb_clf = MultinomialNB() score = cross_val_score(mnb_clf, train_prepared, type_encoded, cv=3, verbose=3) score.mean() # BernoulliNB bnb_clf = BernoulliNB() score = cross_val_score(bnb_clf, train_prepared, type_encoded, cv=3, verbose=3) score.mean() from sklearn.metrics import precision_score, recall_score y_test = test_data["Type"] encoder = LabelEncoder() type_encoded = encoder.fit_transform(y_test) X_test_transformed = full_pipeline.transform(test_data) bnb_clf = BernoulliNB() bnb_clf.fit(train_prepared, y_train) y_pred = bnb_clf.predict(X_test_transformed) encoder = LabelEncoder() y_pred = encoder.fit_transform(y_pred) print("Precision BernoulliNB: {:.2f}%".format(100 * precision_score(type_encoded, y_pred))) print("Recall BernoulliNB: {:.2f}%\n".format(100 * recall_score(type_encoded, y_pred))) mnb_clf = MultinomialNB() mnb_clf.fit(train_prepared, y_train) y_pred = mnb_clf.predict(X_test_transformed) encoder = LabelEncoder() y_pred = encoder.fit_transform(y_pred) print("Precision MultinomialNB: {:.2f}%".format(100 * precision_score(type_encoded, y_pred))) print("Recall MultinomialNB: {:.2f}%\n".format(100 * recall_score(type_encoded, y_pred))) sgd_clf = SGDClassifier(random_state=42) sgd_clf.fit(train_prepared, y_train) y_pred = sgd_clf.predict(X_test_transformed) encoder = LabelEncoder() y_pred = encoder.fit_transform(y_pred) print("Precision SGD: {:.2f}%".format(100 * precision_score(type_encoded, y_pred))) print("Recall SGD: {:.2f}%\n".format(100 * recall_score(type_encoded, y_pred))) log_clf = LogisticRegression(solver="liblinear", random_state=42) log_clf.fit(train_prepared, y_train) y_pred = log_clf.predict(X_test_transformed) encoder = LabelEncoder() y_pred = encoder.fit_transform(y_pred) print("Precision Logistic Regression: {:.2f}%".format(100 * precision_score(type_encoded, y_pred))) print("Recall Logistic Regression: {:.2f}%".format(100 * recall_score(type_encoded, y_pred)))
gpl-2.0
vigilv/scikit-learn
sklearn/covariance/__init__.py
389
1157
""" The :mod:`sklearn.covariance` module includes methods and algorithms to robustly estimate the covariance of features given a set of points. The precision matrix defined as the inverse of the covariance is also estimated. Covariance estimation is closely related to the theory of Gaussian Graphical Models. """ from .empirical_covariance_ import empirical_covariance, EmpiricalCovariance, \ log_likelihood from .shrunk_covariance_ import shrunk_covariance, ShrunkCovariance, \ ledoit_wolf, ledoit_wolf_shrinkage, \ LedoitWolf, oas, OAS from .robust_covariance import fast_mcd, MinCovDet from .graph_lasso_ import graph_lasso, GraphLasso, GraphLassoCV from .outlier_detection import EllipticEnvelope __all__ = ['EllipticEnvelope', 'EmpiricalCovariance', 'GraphLasso', 'GraphLassoCV', 'LedoitWolf', 'MinCovDet', 'OAS', 'ShrunkCovariance', 'empirical_covariance', 'fast_mcd', 'graph_lasso', 'ledoit_wolf', 'ledoit_wolf_shrinkage', 'log_likelihood', 'oas', 'shrunk_covariance']
bsd-3-clause
miguelinux/ejemplos-opencv
python/ocv4/common.py
3
6679
#!/usr/bin/env python ''' This module contains some common routines used by other samples. ''' # Python 2/3 compatibility from __future__ import print_function import sys PY3 = sys.version_info[0] == 3 if PY3: from functools import reduce import numpy as np import cv2 as cv # built-in modules import os import itertools as it from contextlib import contextmanager image_extensions = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.tiff', '.pbm', '.pgm', '.ppm'] class Bunch(object): def __init__(self, **kw): self.__dict__.update(kw) def __str__(self): return str(self.__dict__) def splitfn(fn): path, fn = os.path.split(fn) name, ext = os.path.splitext(fn) return path, name, ext def anorm2(a): return (a*a).sum(-1) def anorm(a): return np.sqrt( anorm2(a) ) def homotrans(H, x, y): xs = H[0, 0]*x + H[0, 1]*y + H[0, 2] ys = H[1, 0]*x + H[1, 1]*y + H[1, 2] s = H[2, 0]*x + H[2, 1]*y + H[2, 2] return xs/s, ys/s def to_rect(a): a = np.ravel(a) if len(a) == 2: a = (0, 0, a[0], a[1]) return np.array(a, np.float64).reshape(2, 2) def rect2rect_mtx(src, dst): src, dst = to_rect(src), to_rect(dst) cx, cy = (dst[1] - dst[0]) / (src[1] - src[0]) tx, ty = dst[0] - src[0] * (cx, cy) M = np.float64([[ cx, 0, tx], [ 0, cy, ty], [ 0, 0, 1]]) return M def lookat(eye, target, up = (0, 0, 1)): fwd = np.asarray(target, np.float64) - eye fwd /= anorm(fwd) right = np.cross(fwd, up) right /= anorm(right) down = np.cross(fwd, right) R = np.float64([right, down, fwd]) tvec = -np.dot(R, eye) return R, tvec def mtx2rvec(R): w, u, vt = cv.SVDecomp(R - np.eye(3)) p = vt[0] + u[:,0]*w[0] # same as np.dot(R, vt[0]) c = np.dot(vt[0], p) s = np.dot(vt[1], p) axis = np.cross(vt[0], vt[1]) return axis * np.arctan2(s, c) def draw_str(dst, target, s): x, y = target cv.putText(dst, s, (x+1, y+1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv.LINE_AA) cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA) class Sketcher: def __init__(self, windowname, dests, colors_func): self.prev_pt = None self.windowname = windowname self.dests = dests self.colors_func = colors_func self.dirty = False self.show() cv.setMouseCallback(self.windowname, self.on_mouse) def show(self): cv.imshow(self.windowname, self.dests[0]) def on_mouse(self, event, x, y, flags, param): pt = (x, y) if event == cv.EVENT_LBUTTONDOWN: self.prev_pt = pt elif event == cv.EVENT_LBUTTONUP: self.prev_pt = None if self.prev_pt and flags & cv.EVENT_FLAG_LBUTTON: for dst, color in zip(self.dests, self.colors_func()): cv.line(dst, self.prev_pt, pt, color, 5) self.dirty = True self.prev_pt = pt self.show() # palette data from matplotlib/_cm.py _jet_data = {'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89,1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125,0, 0), (0.375,1, 1), (0.64,1, 1), (0.91,0,0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0), (1, 0, 0))} cmap_data = { 'jet' : _jet_data } def make_cmap(name, n=256): data = cmap_data[name] xs = np.linspace(0.0, 1.0, n) channels = [] eps = 1e-6 for ch_name in ['blue', 'green', 'red']: ch_data = data[ch_name] xp, yp = [], [] for x, y1, y2 in ch_data: xp += [x, x+eps] yp += [y1, y2] ch = np.interp(xs, xp, yp) channels.append(ch) return np.uint8(np.array(channels).T*255) def nothing(*arg, **kw): pass def clock(): return cv.getTickCount() / cv.getTickFrequency() @contextmanager def Timer(msg): print(msg, '...',) start = clock() try: yield finally: print("%.2f ms" % ((clock()-start)*1000)) class StatValue: def __init__(self, smooth_coef = 0.5): self.value = None self.smooth_coef = smooth_coef def update(self, v): if self.value is None: self.value = v else: c = self.smooth_coef self.value = c * self.value + (1.0-c) * v class RectSelector: def __init__(self, win, callback): self.win = win self.callback = callback cv.setMouseCallback(win, self.onmouse) self.drag_start = None self.drag_rect = None def onmouse(self, event, x, y, flags, param): x, y = np.int16([x, y]) # BUG if event == cv.EVENT_LBUTTONDOWN: self.drag_start = (x, y) return if self.drag_start: if flags & cv.EVENT_FLAG_LBUTTON: xo, yo = self.drag_start x0, y0 = np.minimum([xo, yo], [x, y]) x1, y1 = np.maximum([xo, yo], [x, y]) self.drag_rect = None if x1-x0 > 0 and y1-y0 > 0: self.drag_rect = (x0, y0, x1, y1) else: rect = self.drag_rect self.drag_start = None self.drag_rect = None if rect: self.callback(rect) def draw(self, vis): if not self.drag_rect: return False x0, y0, x1, y1 = self.drag_rect cv.rectangle(vis, (x0, y0), (x1, y1), (0, 255, 0), 2) return True @property def dragging(self): return self.drag_rect is not None def grouper(n, iterable, fillvalue=None): '''grouper(3, 'ABCDEFG', 'x') --> ABC DEF Gxx''' args = [iter(iterable)] * n if PY3: output = it.zip_longest(fillvalue=fillvalue, *args) else: output = it.izip_longest(fillvalue=fillvalue, *args) return output def mosaic(w, imgs): '''Make a grid from images. w -- number of grid columns imgs -- images (must have same size and format) ''' imgs = iter(imgs) if PY3: img0 = next(imgs) else: img0 = imgs.next() pad = np.zeros_like(img0) imgs = it.chain([img0], imgs) rows = grouper(w, imgs, pad) return np.vstack(map(np.hstack, rows)) def getsize(img): h, w = img.shape[:2] return w, h def mdot(*args): return reduce(np.dot, args) def draw_keypoints(vis, keypoints, color = (0, 255, 255)): for kp in keypoints: x, y = kp.pt cv.circle(vis, (int(x), int(y)), 2, color)
bsd-3-clause
ChinaQuants/zipline
tests/test_munge.py
34
1794
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import pandas as pd import numpy as np from numpy.testing import assert_almost_equal from unittest import TestCase from zipline.utils.munge import bfill, ffill class MungeTests(TestCase): def test_bfill(self): # test ndim=1 N = 100 s = pd.Series(np.random.randn(N)) mask = random.sample(range(N), 10) s.iloc[mask] = np.nan correct = s.bfill().values test = bfill(s.values) assert_almost_equal(correct, test) # test ndim=2 df = pd.DataFrame(np.random.randn(N, N)) df.iloc[mask] = np.nan correct = df.bfill().values test = bfill(df.values) assert_almost_equal(correct, test) def test_ffill(self): # test ndim=1 N = 100 s = pd.Series(np.random.randn(N)) mask = random.sample(range(N), 10) s.iloc[mask] = np.nan correct = s.ffill().values test = ffill(s.values) assert_almost_equal(correct, test) # test ndim=2 df = pd.DataFrame(np.random.randn(N, N)) df.iloc[mask] = np.nan correct = df.ffill().values test = ffill(df.values) assert_almost_equal(correct, test)
apache-2.0
danlwo/Hadoop-Spark-Python-Log-Parser
def_400_visualizations/def_400_pickle2CSV_distCount/def_400_pickle2CSV_distCount.py
1
4777
# Christina CJ Chen & Dan Lwo from Logitech # python 2.7.10 $ spark-2.1.1-bin-hadoop2.7 # --- CAUTION! SAFETY RISK! --- import credencialInfo # --- Make sure env. variables set! --- import findspark findspark.init() print '--- [INfO] FINDSPARK session successfully FINISHED. ---' # --- Improt necessary modules --- import boto3 import csv import geoip2.database import gzip import itertools import logging import numpy as np import os import pandas as pd import pickle import smtplib import sys import traceback from operator import add from os.path import expanduser from pyspark import SparkContext, SparkConf from pyspark import SparkFiles # --- Functions for save / load pickle files --- def loadPickle(obj): with open(obj) as f: pickleContent = pickle.load(f) return pickleContent def savePickle(filename, save_obj): with open(filename+'.pickle','w') as f: pickle.dump(save_obj,f) # --- Walk through S3 bucket for needed source data file --- def awsS3FileWalker(srcDataBucket,year,month): s3 = boto3.resource('s3') bucket = s3.Bucket(srcDataBucket) executionTimeRange = year+'_'+month for obj in bucket.objects.filter(Prefix = executionTimeRange): # print '--- [INFO] Find: ',obj srcFileCollection.append(obj.key) return srcFileCollection # --- Group source data files by hour and sort --- def fileGrouper(srcFileCollection): lines = sc.parallelize(srcFileCollection) groupedFileList = lines.map(lambda x:(x[:10],x)).groupByKey().map(lambda x:(x[0], list(x[1]))).sortBy(lambda x:x[0]).collect() return groupedFileList def canaryMail(errMsg, sender, senderpwd, receiver): server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login(sender,senderpwd) msg = errMsg server.sendmail(sender,receiver,msg) server.quit() # --- Functions for save / load files to / from AWS S3--- def s3Uploader(outputbucket, filename): s3 = boto3.resource('s3') print '--- [INfO] Now uploading:',filename,'to',outputbucket,'! ---' s3.meta.client.upload_file(filename,outputbucket,filename) print '--- [INfO] Now deleting:',filename os.remove(filename) def s3Downloader(srcDataBucket,s3_obj_key,download_obj_filename): s3 = boto3.resource('s3') bucket = s3.Bucket(srcDataBucket) bucket.download_file(s3_obj_key, download_obj_filename) if __name__ == "__main__": # --- Start main program here --- # --- Set global variables --- year = str(sys.argv[1]) month = str(sys.argv[2]) keyID = credencialInfo.keyID() key = credencialInfo.key() srcDataBucket = credencialInfo.srcDataBucket() outputbucket = credencialInfo.outputbucket() sender = credencialInfo.sender() senderpwd = credencialInfo.senderpwd() receiver = credencialInfo.receiver() sc = SparkContext.getOrCreate() print '--- [INfO] Execution parameters successfully set! ---' # --- Locate & group & sort source data files --- srcFileCollection = [] groupedFileList = [] print '--- [INfO] Now retreating source data files from s3://',srcDataBucket,' ---' srcFileCollection = awsS3FileWalker(srcDataBucket, year, month) print '--- [INfO] Successfully retreat file list of ',month,' in ',year,' from ',srcDataBucket,' ---' print '--- [INfO] Now regrouping and sorting......' groupedFileList = fileGrouper(srcFileCollection) print '--- [INfO] Successfully regroup and sort file list of ',month,' in ',year,' ---' # --- Core loop here --- dist_user_trans_collection = [] for date, hour in groupedFileList: everymonth_day = date[8:10] for h in hour: everyday_hour = h[11:13] print '--- [INfO] Now processing: ',h s3Downloader(srcDataBucket,h,h) preRenderPickle = loadPickle(h) flat = sc.parallelize(preRenderPickle) unique_id_count = flat.map(lambda x:x[0]).distinct().count() id_trans_rdd = flat.reduceByKey(add).sortBy(lambda x:-x[1]) total_trans_count = id_trans_rdd.map(lambda x:x[1]).sum() dist_user_trans_collection.append([year,month,everymonth_day,everyday_hour,unique_id_count,total_trans_count]) os.remove(h) # --- Write & save & upload & wipe result .csv file --- df = pd.DataFrame(dist_user_trans_collection) filename = year+'_'+ month+'_distUserTransList.csv' df.to_csv(filename,index=False,header=['year','month','day','hour','unique_id_count','total_trans_count']) s3Uploader(outputbucket,filename) # --- Send ending msg --- completeMsg = '--- [INFO] Session successfully executed: '+str(year)+' '+str(month)+' def_400_pickle2CSV_distCount ---' canaryMail(completeMsg,sender,senderpwd,receiver) print completeMsg
mit
blueburningcoder/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/backends/backend_tkagg.py
69
24593
# Todd Miller [email protected] from __future__ import division import os, sys, math import Tkinter as Tk, FileDialog import tkagg # Paint image to Tk photo blitter extension from backend_agg import FigureCanvasAgg import os.path import matplotlib from matplotlib.cbook import is_string_like from matplotlib.backend_bases import RendererBase, GraphicsContextBase, \ FigureManagerBase, FigureCanvasBase, NavigationToolbar2, cursors from matplotlib.figure import Figure from matplotlib._pylab_helpers import Gcf import matplotlib.windowing as windowing from matplotlib.widgets import SubplotTool import matplotlib.cbook as cbook rcParams = matplotlib.rcParams verbose = matplotlib.verbose backend_version = Tk.TkVersion # the true dots per inch on the screen; should be display dependent # see http://groups.google.com/groups?q=screen+dpi+x11&hl=en&lr=&ie=UTF-8&oe=UTF-8&safe=off&selm=7077.26e81ad5%40swift.cs.tcd.ie&rnum=5 for some info about screen dpi PIXELS_PER_INCH = 75 cursord = { cursors.MOVE: "fleur", cursors.HAND: "hand2", cursors.POINTER: "arrow", cursors.SELECT_REGION: "tcross", } def round(x): return int(math.floor(x+0.5)) def raise_msg_to_str(msg): """msg is a return arg from a raise. Join with new lines""" if not is_string_like(msg): msg = '\n'.join(map(str, msg)) return msg def error_msg_tkpaint(msg, parent=None): import tkMessageBox tkMessageBox.showerror("matplotlib", msg) def draw_if_interactive(): if matplotlib.is_interactive(): figManager = Gcf.get_active() if figManager is not None: figManager.show() def show(): """ Show all the figures and enter the gtk mainloop This should be the last line of your script. This function sets interactive mode to True, as detailed on http://matplotlib.sf.net/interactive.html """ for manager in Gcf.get_all_fig_managers(): manager.show() import matplotlib matplotlib.interactive(True) if rcParams['tk.pythoninspect']: os.environ['PYTHONINSPECT'] = '1' if show._needmain: Tk.mainloop() show._needmain = False show._needmain = True def new_figure_manager(num, *args, **kwargs): """ Create a new figure manager instance """ _focus = windowing.FocusManager() FigureClass = kwargs.pop('FigureClass', Figure) figure = FigureClass(*args, **kwargs) window = Tk.Tk() canvas = FigureCanvasTkAgg(figure, master=window) figManager = FigureManagerTkAgg(canvas, num, window) if matplotlib.is_interactive(): figManager.show() return figManager class FigureCanvasTkAgg(FigureCanvasAgg): keyvald = {65507 : 'control', 65505 : 'shift', 65513 : 'alt', 65508 : 'control', 65506 : 'shift', 65514 : 'alt', 65361 : 'left', 65362 : 'up', 65363 : 'right', 65364 : 'down', 65307 : 'escape', 65470 : 'f1', 65471 : 'f2', 65472 : 'f3', 65473 : 'f4', 65474 : 'f5', 65475 : 'f6', 65476 : 'f7', 65477 : 'f8', 65478 : 'f9', 65479 : 'f10', 65480 : 'f11', 65481 : 'f12', 65300 : 'scroll_lock', 65299 : 'break', 65288 : 'backspace', 65293 : 'enter', 65379 : 'insert', 65535 : 'delete', 65360 : 'home', 65367 : 'end', 65365 : 'pageup', 65366 : 'pagedown', 65438 : '0', 65436 : '1', 65433 : '2', 65435 : '3', 65430 : '4', 65437 : '5', 65432 : '6', 65429 : '7', 65431 : '8', 65434 : '9', 65451 : '+', 65453 : '-', 65450 : '*', 65455 : '/', 65439 : 'dec', 65421 : 'enter', } def __init__(self, figure, master=None, resize_callback=None): FigureCanvasAgg.__init__(self, figure) self._idle = True t1,t2,w,h = self.figure.bbox.bounds w, h = int(w), int(h) self._tkcanvas = Tk.Canvas( master=master, width=w, height=h, borderwidth=4) self._tkphoto = Tk.PhotoImage( master=self._tkcanvas, width=w, height=h) self._tkcanvas.create_image(w/2, h/2, image=self._tkphoto) self._resize_callback = resize_callback self._tkcanvas.bind("<Configure>", self.resize) self._tkcanvas.bind("<Key>", self.key_press) self._tkcanvas.bind("<Motion>", self.motion_notify_event) self._tkcanvas.bind("<KeyRelease>", self.key_release) for name in "<Button-1>", "<Button-2>", "<Button-3>": self._tkcanvas.bind(name, self.button_press_event) for name in "<ButtonRelease-1>", "<ButtonRelease-2>", "<ButtonRelease-3>": self._tkcanvas.bind(name, self.button_release_event) # Mouse wheel on Linux generates button 4/5 events for name in "<Button-4>", "<Button-5>": self._tkcanvas.bind(name, self.scroll_event) # Mouse wheel for windows goes to the window with the focus. # Since the canvas won't usually have the focus, bind the # event to the window containing the canvas instead. # See http://wiki.tcl.tk/3893 (mousewheel) for details root = self._tkcanvas.winfo_toplevel() root.bind("<MouseWheel>", self.scroll_event_windows) self._master = master self._tkcanvas.focus_set() # a dict from func-> cbook.Scheduler threads self.sourced = dict() # call the idle handler def on_idle(*ignore): self.idle_event() return True # disable until you figure out how to handle threads and interrupts #t = cbook.Idle(on_idle) #self._tkcanvas.after_idle(lambda *ignore: t.start()) def resize(self, event): width, height = event.width, event.height if self._resize_callback is not None: self._resize_callback(event) # compute desired figure size in inches dpival = self.figure.dpi winch = width/dpival hinch = height/dpival self.figure.set_size_inches(winch, hinch) self._tkcanvas.delete(self._tkphoto) self._tkphoto = Tk.PhotoImage( master=self._tkcanvas, width=width, height=height) self._tkcanvas.create_image(width/2,height/2,image=self._tkphoto) self.resize_event() self.show() def draw(self): FigureCanvasAgg.draw(self) tkagg.blit(self._tkphoto, self.renderer._renderer, colormode=2) self._master.update_idletasks() def blit(self, bbox=None): tkagg.blit(self._tkphoto, self.renderer._renderer, bbox=bbox, colormode=2) self._master.update_idletasks() show = draw def draw_idle(self): 'update drawing area only if idle' d = self._idle self._idle = False def idle_draw(*args): self.draw() self._idle = True if d: self._tkcanvas.after_idle(idle_draw) def get_tk_widget(self): """returns the Tk widget used to implement FigureCanvasTkAgg. Although the initial implementation uses a Tk canvas, this routine is intended to hide that fact. """ return self._tkcanvas def motion_notify_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y FigureCanvasBase.motion_notify_event(self, x, y, guiEvent=event) def button_press_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if sys.platform=='darwin': # 2 and 3 were reversed on the OSX platform I # tested under tkagg if num==2: num=3 elif num==3: num=2 FigureCanvasBase.button_press_event(self, x, y, num, guiEvent=event) def button_release_event(self, event): x = event.x # flipy so y=0 is bottom of canvas y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if sys.platform=='darwin': # 2 and 3 were reversed on the OSX platform I # tested under tkagg if num==2: num=3 elif num==3: num=2 FigureCanvasBase.button_release_event(self, x, y, num, guiEvent=event) def scroll_event(self, event): x = event.x y = self.figure.bbox.height - event.y num = getattr(event, 'num', None) if num==4: step = -1 elif num==5: step = +1 else: step = 0 FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=event) def scroll_event_windows(self, event): """MouseWheel event processor""" # need to find the window that contains the mouse w = event.widget.winfo_containing(event.x_root, event.y_root) if w == self._tkcanvas: x = event.x_root - w.winfo_rootx() y = event.y_root - w.winfo_rooty() y = self.figure.bbox.height - y step = event.delta/120. FigureCanvasBase.scroll_event(self, x, y, step, guiEvent=event) def _get_key(self, event): val = event.keysym_num if val in self.keyvald: key = self.keyvald[val] elif val<256: key = chr(val) else: key = None return key def key_press(self, event): key = self._get_key(event) FigureCanvasBase.key_press_event(self, key, guiEvent=event) def key_release(self, event): key = self._get_key(event) FigureCanvasBase.key_release_event(self, key, guiEvent=event) def flush_events(self): self._master.update() def start_event_loop(self,timeout): FigureCanvasBase.start_event_loop_default(self,timeout) start_event_loop.__doc__=FigureCanvasBase.start_event_loop_default.__doc__ def stop_event_loop(self): FigureCanvasBase.stop_event_loop_default(self) stop_event_loop.__doc__=FigureCanvasBase.stop_event_loop_default.__doc__ class FigureManagerTkAgg(FigureManagerBase): """ Public attributes canvas : The FigureCanvas instance num : The Figure number toolbar : The tk.Toolbar window : The tk.Window """ def __init__(self, canvas, num, window): FigureManagerBase.__init__(self, canvas, num) self.window = window self.window.withdraw() self.window.wm_title("Figure %d" % num) self.canvas = canvas self._num = num t1,t2,w,h = canvas.figure.bbox.bounds w, h = int(w), int(h) self.window.minsize(int(w*3/4),int(h*3/4)) if matplotlib.rcParams['toolbar']=='classic': self.toolbar = NavigationToolbar( canvas, self.window ) elif matplotlib.rcParams['toolbar']=='toolbar2': self.toolbar = NavigationToolbar2TkAgg( canvas, self.window ) else: self.toolbar = None if self.toolbar is not None: self.toolbar.update() self.canvas._tkcanvas.pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) self._shown = False def notify_axes_change(fig): 'this will be called whenever the current axes is changed' if self.toolbar != None: self.toolbar.update() self.canvas.figure.add_axobserver(notify_axes_change) # attach a show method to the figure for pylab ease of use self.canvas.figure.show = lambda *args: self.show() def resize(self, event): width, height = event.width, event.height self.toolbar.configure(width=width) # , height=height) def show(self): """ this function doesn't segfault but causes the PyEval_RestoreThread: NULL state bug on win32 """ def destroy(*args): self.window = None Gcf.destroy(self._num) if not self._shown: self.canvas._tkcanvas.bind("<Destroy>", destroy) _focus = windowing.FocusManager() if not self._shown: self.window.deiconify() # anim.py requires this if sys.platform=='win32' : self.window.update() else: self.canvas.draw() self._shown = True def destroy(self, *args): if Gcf.get_num_fig_managers()==0 and not matplotlib.is_interactive(): if self.window is not None: self.window.quit() if self.window is not None: #self.toolbar.destroy() self.window.destroy() pass self.window = None def set_window_title(self, title): self.window.wm_title(title) class AxisMenu: def __init__(self, master, naxes): self._master = master self._naxes = naxes self._mbar = Tk.Frame(master=master, relief=Tk.RAISED, borderwidth=2) self._mbar.pack(side=Tk.LEFT) self._mbutton = Tk.Menubutton( master=self._mbar, text="Axes", underline=0) self._mbutton.pack(side=Tk.LEFT, padx="2m") self._mbutton.menu = Tk.Menu(self._mbutton) self._mbutton.menu.add_command( label="Select All", command=self.select_all) self._mbutton.menu.add_command( label="Invert All", command=self.invert_all) self._axis_var = [] self._checkbutton = [] for i in range(naxes): self._axis_var.append(Tk.IntVar()) self._axis_var[i].set(1) self._checkbutton.append(self._mbutton.menu.add_checkbutton( label = "Axis %d" % (i+1), variable=self._axis_var[i], command=self.set_active)) self._mbutton.menu.invoke(self._mbutton.menu.index("Select All")) self._mbutton['menu'] = self._mbutton.menu self._mbar.tk_menuBar(self._mbutton) self.set_active() def adjust(self, naxes): if self._naxes < naxes: for i in range(self._naxes, naxes): self._axis_var.append(Tk.IntVar()) self._axis_var[i].set(1) self._checkbutton.append( self._mbutton.menu.add_checkbutton( label = "Axis %d" % (i+1), variable=self._axis_var[i], command=self.set_active)) elif self._naxes > naxes: for i in range(self._naxes-1, naxes-1, -1): del self._axis_var[i] self._mbutton.menu.forget(self._checkbutton[i]) del self._checkbutton[i] self._naxes = naxes self.set_active() def get_indices(self): a = [i for i in range(len(self._axis_var)) if self._axis_var[i].get()] return a def set_active(self): self._master.set_active(self.get_indices()) def invert_all(self): for a in self._axis_var: a.set(not a.get()) self.set_active() def select_all(self): for a in self._axis_var: a.set(1) self.set_active() class NavigationToolbar(Tk.Frame): """ Public attriubutes canvas - the FigureCanvas (gtk.DrawingArea) win - the gtk.Window """ def _Button(self, text, file, command): file = os.path.join(rcParams['datapath'], 'images', file) im = Tk.PhotoImage(master=self, file=file) b = Tk.Button( master=self, text=text, padx=2, pady=2, image=im, command=command) b._ntimage = im b.pack(side=Tk.LEFT) return b def __init__(self, canvas, window): self.canvas = canvas self.window = window xmin, xmax = canvas.figure.bbox.intervalx height, width = 50, xmax-xmin Tk.Frame.__init__(self, master=self.window, width=width, height=height, borderwidth=2) self.update() # Make axes menu self.bLeft = self._Button( text="Left", file="stock_left.ppm", command=lambda x=-1: self.panx(x)) self.bRight = self._Button( text="Right", file="stock_right.ppm", command=lambda x=1: self.panx(x)) self.bZoomInX = self._Button( text="ZoomInX",file="stock_zoom-in.ppm", command=lambda x=1: self.zoomx(x)) self.bZoomOutX = self._Button( text="ZoomOutX", file="stock_zoom-out.ppm", command=lambda x=-1: self.zoomx(x)) self.bUp = self._Button( text="Up", file="stock_up.ppm", command=lambda y=1: self.pany(y)) self.bDown = self._Button( text="Down", file="stock_down.ppm", command=lambda y=-1: self.pany(y)) self.bZoomInY = self._Button( text="ZoomInY", file="stock_zoom-in.ppm", command=lambda y=1: self.zoomy(y)) self.bZoomOutY = self._Button( text="ZoomOutY",file="stock_zoom-out.ppm", command=lambda y=-1: self.zoomy(y)) self.bSave = self._Button( text="Save", file="stock_save_as.ppm", command=self.save_figure) self.pack(side=Tk.BOTTOM, fill=Tk.X) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def panx(self, direction): for a in self._active: a.xaxis.pan(direction) self.canvas.draw() def pany(self, direction): for a in self._active: a.yaxis.pan(direction) self.canvas.draw() def zoomx(self, direction): for a in self._active: a.xaxis.zoom(direction) self.canvas.draw() def zoomy(self, direction): for a in self._active: a.yaxis.zoom(direction) self.canvas.draw() def save_figure(self): fs = FileDialog.SaveFileDialog(master=self.window, title='Save the figure') try: self.lastDir except AttributeError: self.lastDir = os.curdir fname = fs.go(dir_or_file=self.lastDir) # , pattern="*.png") if fname is None: # Cancel return self.lastDir = os.path.dirname(fname) try: self.canvas.print_figure(fname) except IOError, msg: err = '\n'.join(map(str, msg)) msg = 'Failed to save %s: Error msg was\n\n%s' % ( fname, err) error_msg_tkpaint(msg) def update(self): _focus = windowing.FocusManager() self._axes = self.canvas.figure.axes naxes = len(self._axes) if not hasattr(self, "omenu"): self.set_active(range(naxes)) self.omenu = AxisMenu(master=self, naxes=naxes) else: self.omenu.adjust(naxes) class NavigationToolbar2TkAgg(NavigationToolbar2, Tk.Frame): """ Public attriubutes canvas - the FigureCanvas (gtk.DrawingArea) win - the gtk.Window """ def __init__(self, canvas, window): self.canvas = canvas self.window = window self._idle = True #Tk.Frame.__init__(self, master=self.canvas._tkcanvas) NavigationToolbar2.__init__(self, canvas) def destroy(self, *args): del self.message Tk.Frame.destroy(self, *args) def set_message(self, s): self.message.set(s) def draw_rubberband(self, event, x0, y0, x1, y1): height = self.canvas.figure.bbox.height y0 = height-y0 y1 = height-y1 try: self.lastrect except AttributeError: pass else: self.canvas._tkcanvas.delete(self.lastrect) self.lastrect = self.canvas._tkcanvas.create_rectangle(x0, y0, x1, y1) #self.canvas.draw() def release(self, event): try: self.lastrect except AttributeError: pass else: self.canvas._tkcanvas.delete(self.lastrect) del self.lastrect def set_cursor(self, cursor): self.window.configure(cursor=cursord[cursor]) def _Button(self, text, file, command): file = os.path.join(rcParams['datapath'], 'images', file) im = Tk.PhotoImage(master=self, file=file) b = Tk.Button( master=self, text=text, padx=2, pady=2, image=im, command=command) b._ntimage = im b.pack(side=Tk.LEFT) return b def _init_toolbar(self): xmin, xmax = self.canvas.figure.bbox.intervalx height, width = 50, xmax-xmin Tk.Frame.__init__(self, master=self.window, width=width, height=height, borderwidth=2) self.update() # Make axes menu self.bHome = self._Button( text="Home", file="home.ppm", command=self.home) self.bBack = self._Button( text="Back", file="back.ppm", command = self.back) self.bForward = self._Button(text="Forward", file="forward.ppm", command = self.forward) self.bPan = self._Button( text="Pan", file="move.ppm", command = self.pan) self.bZoom = self._Button( text="Zoom", file="zoom_to_rect.ppm", command = self.zoom) self.bsubplot = self._Button( text="Configure Subplots", file="subplots.ppm", command = self.configure_subplots) self.bsave = self._Button( text="Save", file="filesave.ppm", command = self.save_figure) self.message = Tk.StringVar(master=self) self._message_label = Tk.Label(master=self, textvariable=self.message) self._message_label.pack(side=Tk.RIGHT) self.pack(side=Tk.BOTTOM, fill=Tk.X) def configure_subplots(self): toolfig = Figure(figsize=(6,3)) window = Tk.Tk() canvas = FigureCanvasTkAgg(toolfig, master=window) toolfig.subplots_adjust(top=0.9) tool = SubplotTool(self.canvas.figure, toolfig) canvas.show() canvas.get_tk_widget().pack(side=Tk.TOP, fill=Tk.BOTH, expand=1) def save_figure(self): from tkFileDialog import asksaveasfilename from tkMessageBox import showerror filetypes = self.canvas.get_supported_filetypes().copy() default_filetype = self.canvas.get_default_filetype() # Tk doesn't provide a way to choose a default filetype, # so we just have to put it first default_filetype_name = filetypes[default_filetype] del filetypes[default_filetype] sorted_filetypes = filetypes.items() sorted_filetypes.sort() sorted_filetypes.insert(0, (default_filetype, default_filetype_name)) tk_filetypes = [ (name, '*.%s' % ext) for (ext, name) in sorted_filetypes] fname = asksaveasfilename( master=self.window, title='Save the figure', filetypes = tk_filetypes, defaultextension = self.canvas.get_default_filetype() ) if fname == "" or fname == (): return else: try: # This method will handle the delegation to the correct type self.canvas.print_figure(fname) except Exception, e: showerror("Error saving file", str(e)) def set_active(self, ind): self._ind = ind self._active = [ self._axes[i] for i in self._ind ] def update(self): _focus = windowing.FocusManager() self._axes = self.canvas.figure.axes naxes = len(self._axes) #if not hasattr(self, "omenu"): # self.set_active(range(naxes)) # self.omenu = AxisMenu(master=self, naxes=naxes) #else: # self.omenu.adjust(naxes) NavigationToolbar2.update(self) def dynamic_update(self): 'update drawing area only if idle' # legacy method; new method is canvas.draw_idle self.canvas.draw_idle() FigureManager = FigureManagerTkAgg
agpl-3.0
madjelan/scikit-learn
sklearn/feature_extraction/hashing.py
183
6155
# Author: Lars Buitinck <[email protected]> # License: BSD 3 clause import numbers import numpy as np import scipy.sparse as sp from . import _hashing from ..base import BaseEstimator, TransformerMixin def _iteritems(d): """Like d.iteritems, but accepts any collections.Mapping.""" return d.iteritems() if hasattr(d, "iteritems") else d.items() class FeatureHasher(BaseEstimator, TransformerMixin): """Implements feature hashing, aka the hashing trick. This class turns sequences of symbolic feature names (strings) into scipy.sparse matrices, using a hash function to compute the matrix column corresponding to a name. The hash function employed is the signed 32-bit version of Murmurhash3. Feature names of type byte string are used as-is. Unicode strings are converted to UTF-8 first, but no Unicode normalization is done. Feature values must be (finite) numbers. This class is a low-memory alternative to DictVectorizer and CountVectorizer, intended for large-scale (online) learning and situations where memory is tight, e.g. when running prediction code on embedded devices. Read more in the :ref:`User Guide <feature_hashing>`. Parameters ---------- n_features : integer, optional The number of features (columns) in the output matrices. Small numbers of features are likely to cause hash collisions, but large numbers will cause larger coefficient dimensions in linear learners. dtype : numpy type, optional The type of feature values. Passed to scipy.sparse matrix constructors as the dtype argument. Do not set this to bool, np.boolean or any unsigned integer type. input_type : string, optional Either "dict" (the default) to accept dictionaries over (feature_name, value); "pair" to accept pairs of (feature_name, value); or "string" to accept single strings. feature_name should be a string, while value should be a number. In the case of "string", a value of 1 is implied. The feature_name is hashed to find the appropriate column for the feature. The value's sign might be flipped in the output (but see non_negative, below). non_negative : boolean, optional, default np.float64 Whether output matrices should contain non-negative values only; effectively calls abs on the matrix prior to returning it. When True, output values can be interpreted as frequencies. When False, output values will have expected value zero. Examples -------- >>> from sklearn.feature_extraction import FeatureHasher >>> h = FeatureHasher(n_features=10) >>> D = [{'dog': 1, 'cat':2, 'elephant':4},{'dog': 2, 'run': 5}] >>> f = h.transform(D) >>> f.toarray() array([[ 0., 0., -4., -1., 0., 0., 0., 0., 0., 2.], [ 0., 0., 0., -2., -5., 0., 0., 0., 0., 0.]]) See also -------- DictVectorizer : vectorizes string-valued features using a hash table. sklearn.preprocessing.OneHotEncoder : handles nominal/categorical features encoded as columns of integers. """ def __init__(self, n_features=(2 ** 20), input_type="dict", dtype=np.float64, non_negative=False): self._validate_params(n_features, input_type) self.dtype = dtype self.input_type = input_type self.n_features = n_features self.non_negative = non_negative @staticmethod def _validate_params(n_features, input_type): # strangely, np.int16 instances are not instances of Integral, # while np.int64 instances are... if not isinstance(n_features, (numbers.Integral, np.integer)): raise TypeError("n_features must be integral, got %r (%s)." % (n_features, type(n_features))) elif n_features < 1 or n_features >= 2 ** 31: raise ValueError("Invalid number of features (%d)." % n_features) if input_type not in ("dict", "pair", "string"): raise ValueError("input_type must be 'dict', 'pair' or 'string'," " got %r." % input_type) def fit(self, X=None, y=None): """No-op. This method doesn't do anything. It exists purely for compatibility with the scikit-learn transformer API. Returns ------- self : FeatureHasher """ # repeat input validation for grid search (which calls set_params) self._validate_params(self.n_features, self.input_type) return self def transform(self, raw_X, y=None): """Transform a sequence of instances to a scipy.sparse matrix. Parameters ---------- raw_X : iterable over iterable over raw features, length = n_samples Samples. Each sample must be iterable an (e.g., a list or tuple) containing/generating feature names (and optionally values, see the input_type constructor argument) which will be hashed. raw_X need not support the len function, so it can be the result of a generator; n_samples is determined on the fly. y : (ignored) Returns ------- X : scipy.sparse matrix, shape = (n_samples, self.n_features) Feature matrix, for use with estimators or further transformers. """ raw_X = iter(raw_X) if self.input_type == "dict": raw_X = (_iteritems(d) for d in raw_X) elif self.input_type == "string": raw_X = (((f, 1) for f in x) for x in raw_X) indices, indptr, values = \ _hashing.transform(raw_X, self.n_features, self.dtype) n_samples = indptr.shape[0] - 1 if n_samples == 0: raise ValueError("Cannot vectorize empty sequence.") X = sp.csr_matrix((values, indices, indptr), dtype=self.dtype, shape=(n_samples, self.n_features)) X.sum_duplicates() # also sorts the indices if self.non_negative: np.abs(X.data, X.data) return X
bsd-3-clause
OpenDA-Association/OpenDA
course/exercise_black_box_calibration_polution_NOT_WORKING/plot_movie.py
1
1300
#! /usr/bin/python # -*- coding: utf-8 -*- """ Plot movie of model simulation output. Uses directly the output of the model, not the output from OpenDA @author: verlaanm """ import shutil import numpy as np import matplotlib.pyplot as plt from time import sleep #load data import reactive_pollution_model_original as ori import reactive_pollution_model_truth as truth plt.close("all") f,ax = plt.subplots(2,1) plt.ion() # split sources and outputs based on substance stypeisone=np.array(ori.source_substance)==1 stypeistwo=np.array(ori.source_substance)==2 sloc1=np.array(ori.source_locations)[stypeisone] sloc2=np.array(ori.source_locations)[stypeistwo] otypeisone=np.array(ori.output_substance)==1 otypeistwo=np.array(ori.output_substance)==2 oloc1=np.array(ori.output_locations)[otypeisone] oloc2=np.array(ori.output_locations)[otypeistwo] for i in ori.c1_map.keys(): ax[0].clear(); ax[1].clear(); ax[0].plot(ori.c1_map[i],'b') ax[0].plot(truth.c1_map[i],'k') ax[0].plot(oloc1,0*oloc1+1,'*') ax[0].plot(sloc1,0*sloc1+1,'d') ax[0].set_ylabel("c_1") ax[1].plot(ori.c2_map[i],'b') ax[1].plot(truth.c2_map[i],'k') ax[1].plot(oloc2,0*oloc2+1,'*') ax[1].plot(sloc2,0*sloc2+1,'d') ax[1].set_ylabel("c_1") plt.draw() sleep(0.1) plt.savefig("figure_2.png")
lgpl-3.0
maxrosan/NS-3-support-for-OBS
src/core/examples/sample-rng-plot.py
188
1246
# -*- Mode:Python; -*- # /* # * This program is free software; you can redistribute it and/or modify # * it under the terms of the GNU General Public License version 2 as # * published by the Free Software Foundation # * # * This program is distributed in the hope that it will be useful, # * but WITHOUT ANY WARRANTY; without even the implied warranty of # * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # * GNU General Public License for more details. # * # * You should have received a copy of the GNU General Public License # * along with this program; if not, write to the Free Software # * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # */ # Demonstrate use of ns-3 as a random number generator integrated with # plotting tools; adapted from Gustavo Carneiro's ns-3 tutorial import numpy as np import matplotlib.pyplot as plt import ns.core # mu, var = 100, 225 rng = ns.core.NormalVariable(100.0, 225.0) x = [rng.GetValue() for t in range(10000)] # the histogram of the data n, bins, patches = plt.hist(x, 50, normed=1, facecolor='g', alpha=0.75) plt.title('ns-3 histogram') plt.text(60, .025, r'$\mu=100,\ \sigma=15$') plt.axis([40, 160, 0, 0.03]) plt.grid(True) plt.show()
gpl-2.0
potash/scikit-learn
sklearn/model_selection/_split.py
7
61646
""" The :mod:`sklearn.model_selection._split` module includes classes and functions to split the data based on a preset strategy. """ # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]>, # Olivier Grisel <[email protected]> # Raghav R V <[email protected]> # License: BSD 3 clause from __future__ import print_function from __future__ import division import warnings from itertools import chain, combinations from collections import Iterable from math import ceil, floor import numbers from abc import ABCMeta, abstractmethod import numpy as np from scipy.misc import comb from ..utils import indexable, check_random_state, safe_indexing from ..utils.validation import _num_samples, column_or_1d from ..utils.multiclass import type_of_target from ..externals.six import with_metaclass from ..externals.six.moves import zip from ..utils.fixes import bincount from ..utils.fixes import signature from ..utils.random import choice from ..base import _pprint from ..gaussian_process.kernels import Kernel as GPKernel __all__ = ['BaseCrossValidator', 'KFold', 'GroupKFold', 'LeaveOneGroupOut', 'LeaveOneOut', 'LeavePGroupsOut', 'LeavePOut', 'ShuffleSplit', 'GroupShuffleSplit', 'StratifiedKFold', 'StratifiedShuffleSplit', 'PredefinedSplit', 'train_test_split', 'check_cv'] class BaseCrossValidator(with_metaclass(ABCMeta)): """Base class for all cross-validators Implementations must define `_iter_test_masks` or `_iter_test_indices`. """ def __init__(self): # We need this for the build_repr to work properly in py2.7 # see #6304 pass def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, of length n_samples The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) indices = np.arange(_num_samples(X)) for test_index in self._iter_test_masks(X, y, groups): train_index = indices[np.logical_not(test_index)] test_index = indices[test_index] yield train_index, test_index # Since subclasses must implement either _iter_test_masks or # _iter_test_indices, neither can be abstract. def _iter_test_masks(self, X=None, y=None, groups=None): """Generates boolean masks corresponding to test sets. By default, delegates to _iter_test_indices(X, y, groups) """ for test_index in self._iter_test_indices(X, y, groups): test_mask = np.zeros(_num_samples(X), dtype=np.bool) test_mask[test_index] = True yield test_mask def _iter_test_indices(self, X=None, y=None, groups=None): """Generates integer indices corresponding to test sets.""" raise NotImplementedError @abstractmethod def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator""" def __repr__(self): return _build_repr(self) class LeaveOneOut(BaseCrossValidator): """Leave-One-Out cross-validator Provides train/test indices to split data in train/test sets. Each sample is used once as a test set (singleton) while the remaining samples form the training set. Note: ``LeaveOneOut()`` is equivalent to ``KFold(n_splits=n)`` and ``LeavePOut(p=1)`` where ``n`` is the number of samples. Due to the high number of test sets (which is the same as the number of samples) this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`ShuffleSplit` or :class:`StratifiedKFold`. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneOut >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = LeaveOneOut() >>> loo.get_n_splits(X) 2 >>> print(loo) LeaveOneOut() >>> for train_index, test_index in loo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2] See also -------- LeaveOneGroupOut For splitting the data according to explicit, domain-specific stratification of the dataset. GroupKFold: K-fold iterator variant with non-overlapping groups. """ def _iter_test_indices(self, X, y=None, groups=None): return range(_num_samples(X)) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if X is None: raise ValueError("The X parameter should not be None") return _num_samples(X) class LeavePOut(BaseCrossValidator): """Leave-P-Out cross-validator Provides train/test indices to split data in train/test sets. This results in testing on all distinct samples of size p, while the remaining n - p samples form the training set in each iteration. Note: ``LeavePOut(p)`` is NOT equivalent to ``KFold(n_splits=n_samples // p)`` which creates non-overlapping test sets. Due to the high number of iterations which grows combinatorically with the number of samples this cross-validation method can be very costly. For large datasets one should favor :class:`KFold`, :class:`StratifiedKFold` or :class:`ShuffleSplit`. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- p : int Size of the test sets. Examples -------- >>> from sklearn.model_selection import LeavePOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> lpo = LeavePOut(2) >>> lpo.get_n_splits(X) 6 >>> print(lpo) LeavePOut(p=2) >>> for train_index, test_index in lpo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [1 3] TEST: [0 2] TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 1] TEST: [2 3] """ def __init__(self, p): self.p = p def _iter_test_indices(self, X, y=None, groups=None): for combination in combinations(range(_num_samples(X)), self.p): yield np.array(combination) def get_n_splits(self, X, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. """ if X is None: raise ValueError("The X parameter should not be None") return int(comb(_num_samples(X), self.p, exact=True)) class _BaseKFold(with_metaclass(ABCMeta, BaseCrossValidator)): """Base class for KFold, GroupKFold, and StratifiedKFold""" @abstractmethod def __init__(self, n_splits, shuffle, random_state): if not isinstance(n_splits, numbers.Integral): raise ValueError('The number of folds must be of Integral type. ' '%s of type %s was passed.' % (n_splits, type(n_splits))) n_splits = int(n_splits) if n_splits <= 1: raise ValueError( "k-fold cross-validation requires at least one" " train/test split by setting n_splits=2 or more," " got n_splits={0}.".format(n_splits)) if not isinstance(shuffle, bool): raise TypeError("shuffle must be True or False;" " got {0}".format(shuffle)) self.n_splits = n_splits self.shuffle = shuffle self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) if self.n_splits > n_samples: raise ValueError( ("Cannot have number of splits n_splits={0} greater" " than the number of samples: {1}.").format(self.n_splits, n_samples)) for train, test in super(_BaseKFold, self).split(X, y, groups): yield train, test def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits class KFold(_BaseKFold): """K-Folds cross-validator Provides train/test indices to split data in train/test sets. Split dataset into k consecutive folds (without shuffling by default). Each fold is then used once as a validation while the k - 1 remaining folds form the training set. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.model_selection import KFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> kf = KFold(n_splits=2) >>> kf.get_n_splits(X) 2 >>> print(kf) # doctest: +NORMALIZE_WHITESPACE KFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in kf.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [2 3] TEST: [0 1] TRAIN: [0 1] TEST: [2 3] Notes ----- The first ``n_samples % n_splits`` folds have size ``n_samples // n_splits + 1``, other folds have size ``n_samples // n_splits``, where ``n_samples`` is the number of samples. See also -------- StratifiedKFold Takes group information into account to avoid building folds with imbalanced class distributions (for binary or multiclass classification tasks). GroupKFold: K-fold iterator variant with non-overlapping groups. """ def __init__(self, n_splits=3, shuffle=False, random_state=None): super(KFold, self).__init__(n_splits, shuffle, random_state) def _iter_test_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) indices = np.arange(n_samples) if self.shuffle: check_random_state(self.random_state).shuffle(indices) n_splits = self.n_splits fold_sizes = (n_samples // n_splits) * np.ones(n_splits, dtype=np.int) fold_sizes[:n_samples % n_splits] += 1 current = 0 for fold_size in fold_sizes: start, stop = current, current + fold_size yield indices[start:stop] current = stop class GroupKFold(_BaseKFold): """K-fold iterator variant with non-overlapping groups. The same group will not appear in two different folds (the number of distinct groups has to be at least equal to the number of folds). The folds are approximately balanced in the sense that the number of distinct groups is approximately the same in each fold. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. Examples -------- >>> from sklearn.model_selection import GroupKFold >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 3, 4]) >>> groups = np.array([0, 0, 2, 2]) >>> group_kfold = GroupKFold(n_splits=2) >>> group_kfold.get_n_splits(X, y, groups) 2 >>> print(group_kfold) GroupKFold(n_splits=2) >>> for train_index, test_index in group_kfold.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) ... TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [3 4] TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [3 4] [1 2] See also -------- LeaveOneGroupOut For splitting the data according to explicit domain-specific stratification of the dataset. """ def __init__(self, n_splits=3): super(GroupKFold, self).__init__(n_splits, shuffle=False, random_state=None) def _iter_test_indices(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") unique_groups, groups = np.unique(groups, return_inverse=True) n_groups = len(unique_groups) if self.n_splits > n_groups: raise ValueError("Cannot have number of splits n_splits=%d greater" " than the number of groups: %d." % (self.n_splits, n_groups)) # Weight groups by their number of occurrences n_samples_per_group = np.bincount(groups) # Distribute the most frequent groups first indices = np.argsort(n_samples_per_group)[::-1] n_samples_per_group = n_samples_per_group[indices] # Total weight of each fold n_samples_per_fold = np.zeros(self.n_splits) # Mapping from group index to fold index group_to_fold = np.zeros(len(unique_groups)) # Distribute samples by adding the largest weight to the lightest fold for group_index, weight in enumerate(n_samples_per_group): lightest_fold = np.argmin(n_samples_per_fold) n_samples_per_fold[lightest_fold] += weight group_to_fold[indices[group_index]] = lightest_fold indices = group_to_fold[groups] for f in range(self.n_splits): yield np.where(indices == f)[0] class StratifiedKFold(_BaseKFold): """Stratified K-Folds cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of samples for each class. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : None, int or RandomState When shuffle=True, pseudo-random number generator state used for shuffling. If None, use default numpy RNG for shuffling. Examples -------- >>> from sklearn.model_selection import StratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(n_splits=2) >>> skf.get_n_splits(X, y) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE StratifiedKFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in skf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size ``trunc(n_samples / n_splits)``, the last one has the complementary. """ def __init__(self, n_splits=3, shuffle=False, random_state=None): super(StratifiedKFold, self).__init__(n_splits, shuffle, random_state) def _make_test_folds(self, X, y=None, groups=None): if self.shuffle: rng = check_random_state(self.random_state) else: rng = self.random_state y = np.asarray(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = bincount(y_inversed) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError("All the n_groups for individual classes" " are less than n_splits=%d." % (self.n_splits)) if self.n_splits > min_groups: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of groups for any class cannot" " be less than n_splits=%d." % (min_groups, self.n_splits)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_splits)) as data to the KFold per_cls_cvs = [ KFold(self.n_splits, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_splits))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_splits)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds def _iter_test_masks(self, X, y=None, groups=None): test_folds = self._make_test_folds(X, y) for i in range(self.n_splits): yield test_folds == i def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ return super(StratifiedKFold, self).split(X, y, groups) class TimeSeriesSplit(_BaseKFold): """Time Series cross-validator Provides train/test indices to split time series data samples that are observed at fixed time intervals, in train/test sets. In each split, test indices must be higher than before, and thus shuffling in cross validator is inappropriate. This cross-validation object is a variation of :class:`KFold`. In the kth split, it returns first k folds as train set and the (k+1)th fold as test set. Note that unlike standard cross-validation methods, successive training sets are supersets of those that come before them. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=3 Number of splits. Must be at least 1. Examples -------- >>> from sklearn.model_selection import TimeSeriesSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([1, 2, 3, 4]) >>> tscv = TimeSeriesSplit(n_splits=3) >>> print(tscv) # doctest: +NORMALIZE_WHITESPACE TimeSeriesSplit(n_splits=3) >>> for train_index, test_index in tscv.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [0] TEST: [1] TRAIN: [0 1] TEST: [2] TRAIN: [0 1 2] TEST: [3] Notes ----- The training set has size ``i * n_samples // (n_splits + 1) + n_samples % (n_splits + 1)`` in the ``i``th split, with a test set of size ``n_samples//(n_splits + 1)``, where ``n_samples`` is the number of samples. """ def __init__(self, n_splits=3): super(TimeSeriesSplit, self).__init__(n_splits, shuffle=False, random_state=None) def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) n_samples = _num_samples(X) n_splits = self.n_splits n_folds = n_splits + 1 if n_folds > n_samples: raise ValueError( ("Cannot have number of folds ={0} greater" " than the number of samples: {1}.").format(n_folds, n_samples)) indices = np.arange(n_samples) test_size = (n_samples // n_folds) test_starts = range(test_size + n_samples % n_folds, n_samples, test_size) for test_start in test_starts: yield (indices[:test_start], indices[test_start:test_start + test_size]) class LeaveOneGroupOut(BaseCrossValidator): """Leave One Group Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import LeaveOneGroupOut >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> groups = np.array([1, 1, 2, 2]) >>> lol = LeaveOneGroupOut() >>> lol.get_n_splits(X, y, groups) 2 >>> print(lol) LeaveOneGroupOut() >>> for train_index, test_index in lol.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2 3] TEST: [0 1] [[5 6] [7 8]] [[1 2] [3 4]] [1 2] [1 2] TRAIN: [0 1] TEST: [2 3] [[1 2] [3 4]] [[5 6] [7 8]] [1 2] [1 2] """ def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") # We make a copy of groups to avoid side-effects during iteration groups = np.array(groups, copy=True) unique_groups = np.unique(groups) for i in unique_groups: yield groups == i def get_n_splits(self, X, y, groups): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The groups parameter should not be None") return len(np.unique(groups)) class LeavePGroupsOut(BaseCrossValidator): """Leave P Group(s) Out cross-validator Provides train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and LeaveOneGroupOut is that the former builds the test sets with all the samples assigned to ``p`` different values of the groups while the latter uses samples all assigned the same groups. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_groups : int Number of groups (``p``) to leave out in the test split. Examples -------- >>> from sklearn.model_selection import LeavePGroupsOut >>> X = np.array([[1, 2], [3, 4], [5, 6]]) >>> y = np.array([1, 2, 1]) >>> groups = np.array([1, 2, 3]) >>> lpl = LeavePGroupsOut(n_groups=2) >>> lpl.get_n_splits(X, y, groups) 3 >>> print(lpl) LeavePGroupsOut(n_groups=2) >>> for train_index, test_index in lpl.split(X, y, groups): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [2] TEST: [0 1] [[5 6]] [[1 2] [3 4]] [1] [1 2] TRAIN: [1] TEST: [0 2] [[3 4]] [[1 2] [5 6]] [2] [1 1] TRAIN: [0] TEST: [1 2] [[1 2]] [[3 4] [5 6]] [1] [2 1] See also -------- GroupKFold: K-fold iterator variant with non-overlapping groups. """ def __init__(self, n_groups): self.n_groups = n_groups def _iter_test_masks(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") groups = np.array(groups, copy=True) unique_groups = np.unique(groups) combi = combinations(range(len(unique_groups)), self.n_groups) for indices in combi: test_index = np.zeros(_num_samples(X), dtype=np.bool) for l in unique_groups[np.array(indices)]: test_index[groups == l] = True yield test_index def get_n_splits(self, X, y, groups): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ if groups is None: raise ValueError("The groups parameter should not be None") return int(comb(len(np.unique(groups)), self.n_groups, exact=True)) class BaseShuffleSplit(with_metaclass(ABCMeta)): """Base class for ShuffleSplit and StratifiedShuffleSplit""" def __init__(self, n_splits=10, test_size=0.1, train_size=None, random_state=None): _validate_shuffle_split_init(test_size, train_size) self.n_splits = n_splits self.test_size = test_size self.train_size = train_size self.random_state = random_state def split(self, X, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ X, y, groups = indexable(X, y, groups) for train, test in self._iter_indices(X, y, groups): yield train, test @abstractmethod def _iter_indices(self, X, y=None, groups=None): """Generate (train, test) indices""" def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return self.n_splits def __repr__(self): return _build_repr(self) class ShuffleSplit(BaseShuffleSplit): """Random permutation cross-validator Yields indices to split data into training and test sets. Note: contrary to other cross-validation strategies, random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int (default 10) Number of re-shuffling & splitting iterations. test_size : float, int, or None, default 0.1 If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.model_selection import ShuffleSplit >>> X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) >>> y = np.array([1, 2, 1, 2]) >>> rs = ShuffleSplit(n_splits=3, test_size=.25, random_state=0) >>> rs.get_n_splits(X) 3 >>> print(rs) ShuffleSplit(n_splits=3, random_state=0, test_size=0.25, train_size=None) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1 0] TEST: [2] TRAIN: [2 1 3] TEST: [0] TRAIN: [0 2 1] TEST: [3] >>> rs = ShuffleSplit(n_splits=3, train_size=0.5, test_size=.25, ... random_state=0) >>> for train_index, test_index in rs.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... # doctest: +ELLIPSIS TRAIN: [3 1] TEST: [2] TRAIN: [2 1] TEST: [0] TRAIN: [0 2] TEST: [3] """ def _iter_indices(self, X, y=None, groups=None): n_samples = _num_samples(X) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) rng = check_random_state(self.random_state) for i in range(self.n_splits): # random partition permutation = rng.permutation(n_samples) ind_test = permutation[:n_test] ind_train = permutation[n_test:(n_test + n_train)] yield ind_train, ind_test class GroupShuffleSplit(ShuffleSplit): '''Shuffle-Group(s)-Out cross-validation iterator Provides randomized train/test indices to split data according to a third-party provided group. This group information can be used to encode arbitrary domain specific stratifications of the samples as integers. For instance the groups could be the year of collection of the samples and thus allow for cross-validation against time-based splits. The difference between LeavePGroupsOut and GroupShuffleSplit is that the former generates splits using all subsets of size ``p`` unique groups, whereas GroupShuffleSplit generates a user-determined number of random test splits, each with a user-determined fraction of unique groups. For example, a less computationally intensive alternative to ``LeavePGroupsOut(p=10)`` would be ``GroupShuffleSplit(test_size=10, n_splits=100)``. Note: The parameters ``test_size`` and ``train_size`` refer to groups, and not to samples, as in ShuffleSplit. Parameters ---------- n_splits : int (default 5) Number of re-shuffling & splitting iterations. test_size : float (default 0.2), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the groups to include in the test split. If int, represents the absolute number of test groups. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the groups to include in the train split. If int, represents the absolute number of train groups. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. ''' def __init__(self, n_splits=5, test_size=0.2, train_size=None, random_state=None): super(GroupShuffleSplit, self).__init__( n_splits=n_splits, test_size=test_size, train_size=train_size, random_state=random_state) def _iter_indices(self, X, y, groups): if groups is None: raise ValueError("The groups parameter should not be None") classes, group_indices = np.unique(groups, return_inverse=True) for group_train, group_test in super( GroupShuffleSplit, self)._iter_indices(X=classes): # these are the indices of classes in the partition # invert them into data indices train = np.flatnonzero(np.in1d(group_indices, group_train)) test = np.flatnonzero(np.in1d(group_indices, group_test)) yield train, test def _approximate_mode(class_counts, n_draws, rng): """Computes approximate mode of multivariate hypergeometric. This is an approximation to the mode of the multivariate hypergeometric given by class_counts and n_draws. It shouldn't be off by more than one. It is the mostly likely outcome of drawing n_draws many samples from the population given by class_counts. Parameters ---------- class_counts : ndarray of int Population per class. n_draws : int Number of draws (samples to draw) from the overall population. rng : random state Used to break ties. Returns ------- sampled_classes : ndarray of int Number of samples drawn from each class. np.sum(sampled_classes) == n_draws Examples -------- >>> from sklearn.model_selection._split import _approximate_mode >>> _approximate_mode(class_counts=np.array([4, 2]), n_draws=3, rng=0) array([2, 1]) >>> _approximate_mode(class_counts=np.array([5, 2]), n_draws=4, rng=0) array([3, 1]) >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]), ... n_draws=2, rng=0) array([0, 1, 1, 0]) >>> _approximate_mode(class_counts=np.array([2, 2, 2, 1]), ... n_draws=2, rng=42) array([1, 1, 0, 0]) """ # this computes a bad approximation to the mode of the # multivariate hypergeometric given by class_counts and n_draws continuous = n_draws * class_counts / class_counts.sum() # floored means we don't overshoot n_samples, but probably undershoot floored = np.floor(continuous) # we add samples according to how much "left over" probability # they had, until we arrive at n_samples need_to_add = int(n_draws - floored.sum()) if need_to_add > 0: remainder = continuous - floored values = np.sort(np.unique(remainder))[::-1] # add according to remainder, but break ties # randomly to avoid biases for value in values: inds, = np.where(remainder == value) # if we need_to_add less than what's in inds # we draw randomly from them. # if we need to add more, we add them all and # go to the next value add_now = min(len(inds), need_to_add) inds = choice(inds, size=add_now, replace=False, random_state=rng) floored[inds] += 1 need_to_add -= add_now if need_to_add == 0: break return floored.astype(np.int) class StratifiedShuffleSplit(BaseShuffleSplit): """Stratified ShuffleSplit cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a merge of StratifiedKFold and ShuffleSplit, which returns stratified randomized folds. The folds are made by preserving the percentage of samples for each class. Note: like the ShuffleSplit strategy, stratified random splits do not guarantee that all folds will be different, although this is still very likely for sizeable datasets. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int (default 10) Number of re-shuffling & splitting iterations. test_size : float (default 0.1), int, or None If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Examples -------- >>> from sklearn.model_selection import StratifiedShuffleSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> sss = StratifiedShuffleSplit(n_splits=3, test_size=0.5, random_state=0) >>> sss.get_n_splits(X, y) 3 >>> print(sss) # doctest: +ELLIPSIS StratifiedShuffleSplit(n_splits=3, random_state=0, ...) >>> for train_index, test_index in sss.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2] TEST: [3 0] TRAIN: [0 2] TEST: [1 3] TRAIN: [0 2] TEST: [3 1] """ def __init__(self, n_splits=10, test_size=0.1, train_size=None, random_state=None): super(StratifiedShuffleSplit, self).__init__( n_splits, test_size, train_size, random_state) def _iter_indices(self, X, y, groups=None): n_samples = _num_samples(X) n_train, n_test = _validate_shuffle_split(n_samples, self.test_size, self.train_size) classes, y_indices = np.unique(y, return_inverse=True) n_classes = classes.shape[0] class_counts = bincount(y_indices) if np.min(class_counts) < 2: raise ValueError("The least populated class in y has only 1" " member, which is too few. The minimum" " number of groups for any class cannot" " be less than 2.") if n_train < n_classes: raise ValueError('The train_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_train, n_classes)) if n_test < n_classes: raise ValueError('The test_size = %d should be greater or ' 'equal to the number of classes = %d' % (n_test, n_classes)) rng = check_random_state(self.random_state) for _ in range(self.n_splits): # if there are ties in the class-counts, we want # to make sure to break them anew in each iteration n_i = _approximate_mode(class_counts, n_train, rng) class_counts_remaining = class_counts - n_i t_i = _approximate_mode(class_counts_remaining, n_test, rng) train = [] test = [] for i, class_i in enumerate(classes): permutation = rng.permutation(class_counts[i]) perm_indices_class_i = np.where((y == class_i))[0][permutation] train.extend(perm_indices_class_i[:n_i[i]]) test.extend(perm_indices_class_i[n_i[i]:n_i[i] + t_i[i]]) train = rng.permutation(train) test = rng.permutation(test) yield train, test def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples,) The target variable for supervised learning problems. groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ return super(StratifiedShuffleSplit, self).split(X, y, groups) def _validate_shuffle_split_init(test_size, train_size): """Validation helper to check the test_size and train_size at init NOTE This does not take into account the number of samples which is known only at split """ if test_size is None and train_size is None: raise ValueError('test_size and train_size can not both be None') if test_size is not None: if np.asarray(test_size).dtype.kind == 'f': if test_size >= 1.: raise ValueError( 'test_size=%f should be smaller ' 'than 1.0 or be an integer' % test_size) elif np.asarray(test_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for test_size: %r" % test_size) if train_size is not None: if np.asarray(train_size).dtype.kind == 'f': if train_size >= 1.: raise ValueError("train_size=%f should be smaller " "than 1.0 or be an integer" % train_size) elif (np.asarray(test_size).dtype.kind == 'f' and (train_size + test_size) > 1.): raise ValueError('The sum of test_size and train_size = %f, ' 'should be smaller than 1.0. Reduce ' 'test_size and/or train_size.' % (train_size + test_size)) elif np.asarray(train_size).dtype.kind != 'i': # int values are checked during split based on the input raise ValueError("Invalid value for train_size: %r" % train_size) def _validate_shuffle_split(n_samples, test_size, train_size): """ Validation helper to check if the test/test sizes are meaningful wrt to the size of the data (n_samples) """ if (test_size is not None and np.asarray(test_size).dtype.kind == 'i' and test_size >= n_samples): raise ValueError('test_size=%d should be smaller than the number of ' 'samples %d' % (test_size, n_samples)) if (train_size is not None and np.asarray(train_size).dtype.kind == 'i' and train_size >= n_samples): raise ValueError("train_size=%d should be smaller than the number of" " samples %d" % (train_size, n_samples)) if np.asarray(test_size).dtype.kind == 'f': n_test = ceil(test_size * n_samples) elif np.asarray(test_size).dtype.kind == 'i': n_test = float(test_size) if train_size is None: n_train = n_samples - n_test elif np.asarray(train_size).dtype.kind == 'f': n_train = floor(train_size * n_samples) else: n_train = float(train_size) if test_size is None: n_test = n_samples - n_train if n_train + n_test > n_samples: raise ValueError('The sum of train_size and test_size = %d, ' 'should be smaller than the number of ' 'samples %d. Reduce test_size and/or ' 'train_size.' % (n_train + n_test, n_samples)) return int(n_train), int(n_test) class PredefinedSplit(BaseCrossValidator): """Predefined split cross-validator Splits the data into training/test set folds according to a predefined scheme. Each sample can be assigned to at most one test set fold, as specified by the user through the ``test_fold`` parameter. Read more in the :ref:`User Guide <cross_validation>`. Examples -------- >>> from sklearn.model_selection import PredefinedSplit >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> test_fold = [0, 1, -1, 1] >>> ps = PredefinedSplit(test_fold) >>> ps.get_n_splits() 2 >>> print(ps) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS PredefinedSplit(test_fold=array([ 0, 1, -1, 1])) >>> for train_index, test_index in ps.split(): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 2 3] TEST: [0] TRAIN: [0 2] TEST: [1 3] """ def __init__(self, test_fold): self.test_fold = np.array(test_fold, dtype=np.int) self.test_fold = column_or_1d(self.test_fold) self.unique_folds = np.unique(self.test_fold) self.unique_folds = self.unique_folds[self.unique_folds != -1] def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ ind = np.arange(len(self.test_fold)) for test_index in self._iter_test_masks(): train_index = ind[np.logical_not(test_index)] test_index = ind[test_index] yield train_index, test_index def _iter_test_masks(self): """Generates boolean masks corresponding to test sets.""" for f in self.unique_folds: test_index = np.where(self.test_fold == f)[0] test_mask = np.zeros(len(self.test_fold), dtype=np.bool) test_mask[test_index] = True yield test_mask def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.unique_folds) class _CVIterableWrapper(BaseCrossValidator): """Wrapper class for old style cv objects and iterables.""" def __init__(self, cv): self.cv = cv def get_n_splits(self, X=None, y=None, groups=None): """Returns the number of splitting iterations in the cross-validator Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- n_splits : int Returns the number of splitting iterations in the cross-validator. """ return len(self.cv) # Both iterables and old-cv objects support len def split(self, X=None, y=None, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : object Always ignored, exists for compatibility. y : object Always ignored, exists for compatibility. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. """ for train, test in self.cv: yield train, test def check_cv(cv=3, y=None, classifier=False): """Input checker utility for building a cross-validator Parameters ---------- cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if classifier is True and ``y`` is either binary or multiclass, :class:`StratifiedKFold` is used. In all other cases, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. y : array-like, optional The target variable for supervised learning problems. classifier : boolean, optional, default False Whether the task is a classification task, in which case stratified KFold will be used. Returns ------- checked_cv : a cross-validator instance. The return value is a cross-validator which generates the train/test splits via the ``split`` method. """ if cv is None: cv = 3 if isinstance(cv, numbers.Integral): if (classifier and (y is not None) and (type_of_target(y) in ('binary', 'multiclass'))): return StratifiedKFold(cv) else: return KFold(cv) if not hasattr(cv, 'split') or isinstance(cv, str): if not isinstance(cv, Iterable) or isinstance(cv, str): raise ValueError("Expected cv as an integer, cross-validation " "object (from sklearn.model_selection) " "or an iterable. Got %s." % cv) return _CVIterableWrapper(cv) return cv # New style cv objects are passed without any modification def train_test_split(*arrays, **options): """Split arrays or matrices into random train and test subsets Quick utility that wraps input validation and ``next(ShuffleSplit().split(X, y))`` and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- *arrays : sequence of indexables with same length / shape[0] Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes. test_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is automatically set to the complement of the train size. If train size is also None, test size is set to 0.25. train_size : float, int, or None (default is None) If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size. random_state : int or RandomState Pseudo-random number generator state used for random sampling. stratify : array-like or None (default is None) If not None, data is split in a stratified fashion, using this as the groups array. Returns ------- splitting : list, length=2 * len(arrays) List containing train-test split of inputs. .. versionadded:: 0.16 If the input is sparse, the output will be a ``scipy.sparse.csr_matrix``. Else, output type is the same as the input type. Examples -------- >>> import numpy as np >>> from sklearn.model_selection import train_test_split >>> X, y = np.arange(10).reshape((5, 2)), range(5) >>> X array([[0, 1], [2, 3], [4, 5], [6, 7], [8, 9]]) >>> list(y) [0, 1, 2, 3, 4] >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, test_size=0.33, random_state=42) ... >>> X_train array([[4, 5], [0, 1], [6, 7]]) >>> y_train [2, 0, 3] >>> X_test array([[2, 3], [8, 9]]) >>> y_test [1, 4] """ n_arrays = len(arrays) if n_arrays == 0: raise ValueError("At least one array required as input") test_size = options.pop('test_size', None) train_size = options.pop('train_size', None) random_state = options.pop('random_state', None) stratify = options.pop('stratify', None) if options: raise TypeError("Invalid parameters passed: %s" % str(options)) if test_size is None and train_size is None: test_size = 0.25 arrays = indexable(*arrays) if stratify is not None: CVClass = StratifiedShuffleSplit else: CVClass = ShuffleSplit cv = CVClass(test_size=test_size, train_size=train_size, random_state=random_state) train, test = next(cv.split(X=arrays[0], y=stratify)) return list(chain.from_iterable((safe_indexing(a, train), safe_indexing(a, test)) for a in arrays)) train_test_split.__test__ = False # to avoid a pb with nosetests def _build_repr(self): # XXX This is copied from BaseEstimator's get_params cls = self.__class__ init = getattr(cls.__init__, 'deprecated_original', cls.__init__) # Ignore varargs, kw and default values and pop self init_signature = signature(init) # Consider the constructor parameters excluding 'self' if init is object.__init__: args = [] else: args = sorted([p.name for p in init_signature.parameters.values() if p.name != 'self' and p.kind != p.VAR_KEYWORD]) class_name = self.__class__.__name__ params = dict() for key in args: # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category == DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) params[key] = value return '%s(%s)' % (class_name, _pprint(params, offset=len(class_name)))
bsd-3-clause
smartscheduling/scikit-learn-categorical-tree
doc/tutorial/text_analytics/skeletons/exercise_02_sentiment.py
256
2406
"""Build a sentiment analysis / polarity model Sentiment analysis can be casted as a binary text classification problem, that is fitting a linear classifier on features extracted from the text of the user messages so as to guess wether the opinion of the author is positive or negative. In this examples we will use a movie review dataset. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.datasets import load_files from sklearn.cross_validation import train_test_split from sklearn import metrics if __name__ == "__main__": # NOTE: we put the following in a 'if __name__ == "__main__"' protected # block to be able to use a multi-core grid search that also works under # Windows, see: http://docs.python.org/library/multiprocessing.html#windows # The multiprocessing module is used as the backend of joblib.Parallel # that is used when n_jobs != 1 in GridSearchCV # the training data folder must be passed as first argument movie_reviews_data_folder = sys.argv[1] dataset = load_files(movie_reviews_data_folder, shuffle=False) print("n_samples: %d" % len(dataset.data)) # split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.25, random_state=None) # TASK: Build a vectorizer / classifier pipeline that filters out tokens # that are too rare or too frequent # TASK: Build a grid search to find out whether unigrams or bigrams are # more useful. # Fit the pipeline on the training set using grid search for the parameters # TASK: print the cross-validated scores for the each parameters set # explored by the grid search # TASK: Predict the outcome on the testing set and store it in a variable # named y_predicted # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Print and plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) # import matplotlib.pyplot as plt # plt.matshow(cm) # plt.show()
bsd-3-clause
Jailander/COSMOS
penetrometer_tools/scripts/data_drawer.py
1
1948
#!/usr/bin/env python # license removed for brevity import rospy from std_msgs.msg import String import time from auto_soil_probe.msg import Controller import matplotlib.pyplot as plt import numpy as np class get_penetromter_data(object): def __init__(self) : self.n60s=0 self.wpn=0 self.wpfdata=[] self.wptdata=[] filename= "Waypoint"+str(self.wpn)+".log" rospy.on_shutdown(self.on_shutdown) self.fileo = open(filename, 'w+') rospy.Subscriber("/auto_soil_probe/data", Controller, self.data_callback) rospy.spin() #self.fileo.close() def data_callback(self, msg): force= msg.z_axis_force targ = msg.z_axis_target_position if targ <= 400.0: self.n60s+=1 else: self.n60s=0 if self.n60s < 250: self.wpfdata.append(force) self.wptdata.append(msg.header.stamp.secs) txt = str(msg.header.stamp.secs) + ', ' + str(force) + ', ' + str(msg.z_axis_target_position) + ', ' + str(msg.z_axis_speed) + '\n' print txt self.fileo.write(txt) if self.n60s == 250: self.create_graph() self.wpn+=1 self.fileo.close() filename= "Waypoint"+str(self.wpn)+".log" self.fileo = open(filename, 'w+') self.wpfdata=[] self.wptdata=[] print filename def create_graph(self): plt.plot(self.wptdata, self.wpfdata) plt.xlabel('time (s)') plt.ylabel('current') title="Waypoint"+str(self.wpn)+".png" plt.title(title) plt.grid(True) plt.savefig(title) plt.clf() def on_shutdown(self): self.create_graph() self.fileo.close() if __name__ == '__main__': rospy.init_node('data_logger') server = get_penetromter_data()
mit
xuewei4d/scikit-learn
benchmarks/bench_plot_nmf.py
19
15492
""" Benchmarks of Non-Negative Matrix Factorization """ # Authors: Tom Dupre la Tour (benchmark) # Chih-Jen Linn (original projected gradient NMF implementation) # Anthony Di Franco (projected gradient, Python and NumPy port) # License: BSD 3 clause from time import time import sys import warnings import numbers import numpy as np import matplotlib.pyplot as plt from joblib import Memory import pandas from sklearn.utils._testing import ignore_warnings from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.decomposition import NMF from sklearn.decomposition._nmf import _initialize_nmf from sklearn.decomposition._nmf import _beta_divergence from sklearn.decomposition._nmf import _check_init from sklearn.exceptions import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot, squared_norm from sklearn.utils import check_array from sklearn.utils.validation import check_is_fitted, check_non_negative mem = Memory(cachedir='.', verbose=0) ################### # Start of _PGNMF # ################### # This class implements a projected gradient solver for the NMF. # The projected gradient solver was removed from scikit-learn in version 0.19, # and a simplified copy is used here for comparison purpose only. # It is not tested, and it may change or disappear without notice. def _norm(x): """Dot product-based Euclidean norm implementation See: http://fseoane.net/blog/2011/computing-the-vector-norm/ """ return np.sqrt(squared_norm(x)) def _nls_subproblem(X, W, H, tol, max_iter, alpha=0., l1_ratio=0., sigma=0.01, beta=0.1): """Non-negative least square solver Solves a non-negative least squares subproblem using the projected gradient descent algorithm. Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix. W : array-like, shape (n_samples, n_components) Constant matrix. H : array-like, shape (n_components, n_features) Initial guess for the solution. tol : float Tolerance of the stopping condition. max_iter : int Maximum number of iterations before timing out. alpha : double, default: 0. Constant that multiplies the regularization terms. Set it to zero to have no regularization. l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an L2 penalty. For l1_ratio = 1 it is an L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2. sigma : float Constant used in the sufficient decrease condition checked by the line search. Smaller values lead to a looser sufficient decrease condition, thus reducing the time taken by the line search, but potentially increasing the number of iterations of the projected gradient procedure. 0.01 is a commonly used value in the optimization literature. beta : float Factor by which the step size is decreased (resp. increased) until (resp. as long as) the sufficient decrease condition is satisfied. Larger values allow to find a better step size but lead to longer line search. 0.1 is a commonly used value in the optimization literature. Returns ------- H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem. grad : array-like, shape (n_components, n_features) The gradient. n_iter : int The number of iterations done by the algorithm. References ---------- C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation, 19(2007), 2756-2779. https://www.csie.ntu.edu.tw/~cjlin/nmf/ """ WtX = safe_sparse_dot(W.T, X) WtW = np.dot(W.T, W) # values justified in the paper (alpha is renamed gamma) gamma = 1 for n_iter in range(1, max_iter + 1): grad = np.dot(WtW, H) - WtX if alpha > 0 and l1_ratio == 1.: grad += alpha elif alpha > 0: grad += alpha * (l1_ratio + (1 - l1_ratio) * H) # The following multiplication with a boolean array is more than twice # as fast as indexing into grad. if _norm(grad * np.logical_or(grad < 0, H > 0)) < tol: break Hp = H for inner_iter in range(20): # Gradient step. Hn = H - gamma * grad # Projection step. Hn *= Hn > 0 d = Hn - H gradd = np.dot(grad.ravel(), d.ravel()) dQd = np.dot(np.dot(WtW, d).ravel(), d.ravel()) suff_decr = (1 - sigma) * gradd + 0.5 * dQd < 0 if inner_iter == 0: decr_gamma = not suff_decr if decr_gamma: if suff_decr: H = Hn break else: gamma *= beta elif not suff_decr or (Hp == Hn).all(): H = Hp break else: gamma /= beta Hp = Hn if n_iter == max_iter: warnings.warn("Iteration limit reached in nls subproblem.", ConvergenceWarning) return H, grad, n_iter def _fit_projected_gradient(X, W, H, tol, max_iter, nls_max_iter, alpha, l1_ratio): gradW = (np.dot(W, np.dot(H, H.T)) - safe_sparse_dot(X, H.T, dense_output=True)) gradH = (np.dot(np.dot(W.T, W), H) - safe_sparse_dot(W.T, X, dense_output=True)) init_grad = squared_norm(gradW) + squared_norm(gradH.T) # max(0.001, tol) to force alternating minimizations of W and H tolW = max(0.001, tol) * np.sqrt(init_grad) tolH = tolW for n_iter in range(1, max_iter + 1): # stopping condition as discussed in paper proj_grad_W = squared_norm(gradW * np.logical_or(gradW < 0, W > 0)) proj_grad_H = squared_norm(gradH * np.logical_or(gradH < 0, H > 0)) if (proj_grad_W + proj_grad_H) / init_grad < tol ** 2: break # update W Wt, gradWt, iterW = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) W, gradW = Wt.T, gradWt.T if iterW == 1: tolW = 0.1 * tolW # update H H, gradH, iterH = _nls_subproblem(X, W, H, tolH, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) if iterH == 1: tolH = 0.1 * tolH H[H == 0] = 0 # fix up negative zeros if n_iter == max_iter: Wt, _, _ = _nls_subproblem(X.T, H.T, W.T, tolW, nls_max_iter, alpha=alpha, l1_ratio=l1_ratio) W = Wt.T return W, H, n_iter class _PGNMF(NMF): """Non-Negative Matrix Factorization (NMF) with projected gradient solver. This class is private and for comparison purpose only. It may change or disappear without notice. """ def __init__(self, n_components=None, solver='pg', init=None, tol=1e-4, max_iter=200, random_state=None, alpha=0., l1_ratio=0., nls_max_iter=10): super().__init__( n_components=n_components, init=init, solver=solver, tol=tol, max_iter=max_iter, random_state=random_state, alpha=alpha, l1_ratio=l1_ratio) self.nls_max_iter = nls_max_iter def fit(self, X, y=None, **params): self.fit_transform(X, **params) return self def transform(self, X): check_is_fitted(self) H = self.components_ W, _, self.n_iter_ = self._fit_transform(X, H=H, update_H=False) return W def inverse_transform(self, W): check_is_fitted(self) return np.dot(W, self.components_) def fit_transform(self, X, y=None, W=None, H=None): W, H, self.n_iter = self._fit_transform(X, W=W, H=H, update_H=True) self.components_ = H return W def _fit_transform(self, X, y=None, W=None, H=None, update_H=True): X = check_array(X, accept_sparse=('csr', 'csc')) check_non_negative(X, "NMF (input X)") n_samples, n_features = X.shape n_components = self.n_components if n_components is None: n_components = n_features if (not isinstance(n_components, numbers.Integral) or n_components <= 0): raise ValueError("Number of components must be a positive integer;" " got (n_components=%r)" % n_components) if (not isinstance(self.max_iter, numbers.Integral) or self.max_iter < 0): raise ValueError("Maximum number of iterations must be a positive " "integer; got (max_iter=%r)" % self.max_iter) if not isinstance(self.tol, numbers.Number) or self.tol < 0: raise ValueError("Tolerance for stopping criteria must be " "positive; got (tol=%r)" % self.tol) # check W and H, or initialize them if self.init == 'custom' and update_H: _check_init(H, (n_components, n_features), "NMF (input H)") _check_init(W, (n_samples, n_components), "NMF (input W)") elif not update_H: _check_init(H, (n_components, n_features), "NMF (input H)") W = np.zeros((n_samples, n_components)) else: W, H = _initialize_nmf(X, n_components, init=self.init, random_state=self.random_state) if update_H: # fit_transform W, H, n_iter = _fit_projected_gradient( X, W, H, self.tol, self.max_iter, self.nls_max_iter, self.alpha, self.l1_ratio) else: # transform Wt, _, n_iter = _nls_subproblem(X.T, H.T, W.T, self.tol, self.nls_max_iter, alpha=self.alpha, l1_ratio=self.l1_ratio) W = Wt.T if n_iter == self.max_iter and self.tol > 0: warnings.warn("Maximum number of iteration %d reached. Increase it" " to improve convergence." % self.max_iter, ConvergenceWarning) return W, H, n_iter ################# # End of _PGNMF # ################# def plot_results(results_df, plot_name): if results_df is None: return None plt.figure(figsize=(16, 6)) colors = 'bgr' markers = 'ovs' ax = plt.subplot(1, 3, 1) for i, init in enumerate(np.unique(results_df['init'])): plt.subplot(1, 3, i + 1, sharex=ax, sharey=ax) for j, method in enumerate(np.unique(results_df['method'])): mask = np.logical_and(results_df['init'] == init, results_df['method'] == method) selected_items = results_df[mask] plt.plot(selected_items['time'], selected_items['loss'], color=colors[j % len(colors)], ls='-', marker=markers[j % len(markers)], label=method) plt.legend(loc=0, fontsize='x-small') plt.xlabel("Time (s)") plt.ylabel("loss") plt.title("%s" % init) plt.suptitle(plot_name, fontsize=16) @ignore_warnings(category=ConvergenceWarning) # use joblib to cache the results. # X_shape is specified in arguments for avoiding hashing X @mem.cache(ignore=['X', 'W0', 'H0']) def bench_one(name, X, W0, H0, X_shape, clf_type, clf_params, init, n_components, random_state): W = W0.copy() H = H0.copy() clf = clf_type(**clf_params) st = time() W = clf.fit_transform(X, W=W, H=H) end = time() H = clf.components_ this_loss = _beta_divergence(X, W, H, 2.0, True) duration = end - st return this_loss, duration def run_bench(X, clfs, plot_name, n_components, tol, alpha, l1_ratio): start = time() results = [] for name, clf_type, iter_range, clf_params in clfs: print("Training %s:" % name) for rs, init in enumerate(('nndsvd', 'nndsvdar', 'random')): print(" %s %s: " % (init, " " * (8 - len(init))), end="") W, H = _initialize_nmf(X, n_components, init, 1e-6, rs) for max_iter in iter_range: clf_params['alpha'] = alpha clf_params['l1_ratio'] = l1_ratio clf_params['max_iter'] = max_iter clf_params['tol'] = tol clf_params['random_state'] = rs clf_params['init'] = 'custom' clf_params['n_components'] = n_components this_loss, duration = bench_one(name, X, W, H, X.shape, clf_type, clf_params, init, n_components, rs) init_name = "init='%s'" % init results.append((name, this_loss, duration, init_name)) # print("loss: %.6f, time: %.3f sec" % (this_loss, duration)) print(".", end="") sys.stdout.flush() print(" ") # Use a panda dataframe to organize the results results_df = pandas.DataFrame(results, columns="method loss time init".split()) print("Total time = %0.3f sec\n" % (time() - start)) # plot the results plot_results(results_df, plot_name) return results_df def load_20news(): print("Loading 20 newsgroups dataset") print("-----------------------------") from sklearn.datasets import fetch_20newsgroups dataset = fetch_20newsgroups(shuffle=True, random_state=1, remove=('headers', 'footers', 'quotes')) vectorizer = TfidfVectorizer(max_df=0.95, min_df=2, stop_words='english') tfidf = vectorizer.fit_transform(dataset.data) return tfidf def load_faces(): print("Loading Olivetti face dataset") print("-----------------------------") from sklearn.datasets import fetch_olivetti_faces faces = fetch_olivetti_faces(shuffle=True) return faces.data def build_clfs(cd_iters, pg_iters, mu_iters): clfs = [("Coordinate Descent", NMF, cd_iters, {'solver': 'cd'}), ("Projected Gradient", _PGNMF, pg_iters, {'solver': 'pg'}), ("Multiplicative Update", NMF, mu_iters, {'solver': 'mu'}), ] return clfs if __name__ == '__main__': alpha = 0. l1_ratio = 0.5 n_components = 10 tol = 1e-15 # first benchmark on 20 newsgroup dataset: sparse, shape(11314, 39116) plot_name = "20 Newsgroups sparse dataset" cd_iters = np.arange(1, 30) pg_iters = np.arange(1, 6) mu_iters = np.arange(1, 30) clfs = build_clfs(cd_iters, pg_iters, mu_iters) X_20news = load_20news() run_bench(X_20news, clfs, plot_name, n_components, tol, alpha, l1_ratio) # second benchmark on Olivetti faces dataset: dense, shape(400, 4096) plot_name = "Olivetti Faces dense dataset" cd_iters = np.arange(1, 30) pg_iters = np.arange(1, 12) mu_iters = np.arange(1, 30) clfs = build_clfs(cd_iters, pg_iters, mu_iters) X_faces = load_faces() run_bench(X_faces, clfs, plot_name, n_components, tol, alpha, l1_ratio,) plt.show()
bsd-3-clause
tillschumann/nest-simulator
examples/nest/plot_tsodyks_depr_fac.py
17
1135
# -*- coding: utf-8 -*- # # plot_tsodyks_depr_fac.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. from scipy import * from matplotlib.pylab import * from matplotlib.mlab import * def plot_spikes(): dt = 0.1 # time resolution nbins = 1000 N = 500 # number of neurons vm = load('voltmeter-4-0.dat') figure(1) clf() plot(vm[:, 0], vm[:, 1], 'r') xlabel('time / ms') ylabel('$V_m [mV]$') savefig('test_tsodyks_depressing.png') plot_spikes() show()
gpl-2.0
anurag313/scikit-learn
sklearn/feature_extraction/tests/test_text.py
110
34127
from __future__ import unicode_literals import warnings from sklearn.feature_extraction.text import strip_tags from sklearn.feature_extraction.text import strip_accents_unicode from sklearn.feature_extraction.text import strip_accents_ascii from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from sklearn.cross_validation import train_test_split from sklearn.cross_validation import cross_val_score from sklearn.grid_search import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.base import clone import numpy as np from nose import SkipTest from nose.tools import assert_equal from nose.tools import assert_false from nose.tools import assert_not_equal from nose.tools import assert_true from nose.tools import assert_almost_equal from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_raises from sklearn.utils.testing import (assert_in, assert_less, assert_greater, assert_warns_message, assert_raise_message, clean_warning_registry) from collections import defaultdict, Mapping from functools import partial import pickle from io import StringIO JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) NOTJUNK_FOOD_DOCS = ( "the salad celeri copyright", "the salad salad sparkling water copyright", "the the celeri celeri copyright", "the tomato tomato salad water", "the tomato salad water copyright", ) ALL_FOOD_DOCS = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS def uppercase(s): return strip_accents_unicode(s).upper() def strip_eacute(s): return s.replace('\xe9', 'e') def split_tokenize(s): return s.split() def lazy_analyze(s): return ['the_ultimate_feature'] def test_strip_accents(): # check some classical latin accentuated symbols a = '\xe0\xe1\xe2\xe3\xe4\xe5\xe7\xe8\xe9\xea\xeb' expected = 'aaaaaaceeee' assert_equal(strip_accents_unicode(a), expected) a = '\xec\xed\xee\xef\xf1\xf2\xf3\xf4\xf5\xf6\xf9\xfa\xfb\xfc\xfd' expected = 'iiiinooooouuuuy' assert_equal(strip_accents_unicode(a), expected) # check some arabic a = '\u0625' # halef with a hamza below expected = '\u0627' # simple halef assert_equal(strip_accents_unicode(a), expected) # mix letters accentuated and not a = "this is \xe0 test" expected = 'this is a test' assert_equal(strip_accents_unicode(a), expected) def test_to_ascii(): # check some classical latin accentuated symbols a = '\xe0\xe1\xe2\xe3\xe4\xe5\xe7\xe8\xe9\xea\xeb' expected = 'aaaaaaceeee' assert_equal(strip_accents_ascii(a), expected) a = '\xec\xed\xee\xef\xf1\xf2\xf3\xf4\xf5\xf6\xf9\xfa\xfb\xfc\xfd' expected = 'iiiinooooouuuuy' assert_equal(strip_accents_ascii(a), expected) # check some arabic a = '\u0625' # halef with a hamza below expected = '' # halef has no direct ascii match assert_equal(strip_accents_ascii(a), expected) # mix letters accentuated and not a = "this is \xe0 test" expected = 'this is a test' assert_equal(strip_accents_ascii(a), expected) def test_word_analyzer_unigrams(): for Vectorizer in (CountVectorizer, HashingVectorizer): wa = Vectorizer(strip_accents='ascii').build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " "c'\xe9tait pas tr\xeas bon.") expected = ['ai', 'mange', 'du', 'kangourou', 'ce', 'midi', 'etait', 'pas', 'tres', 'bon'] assert_equal(wa(text), expected) text = "This is a test, really.\n\n I met Harry yesterday." expected = ['this', 'is', 'test', 'really', 'met', 'harry', 'yesterday'] assert_equal(wa(text), expected) wa = Vectorizer(input='file').build_analyzer() text = StringIO("This is a test with a file-like object!") expected = ['this', 'is', 'test', 'with', 'file', 'like', 'object'] assert_equal(wa(text), expected) # with custom preprocessor wa = Vectorizer(preprocessor=uppercase).build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " " c'\xe9tait pas tr\xeas bon.") expected = ['AI', 'MANGE', 'DU', 'KANGOUROU', 'CE', 'MIDI', 'ETAIT', 'PAS', 'TRES', 'BON'] assert_equal(wa(text), expected) # with custom tokenizer wa = Vectorizer(tokenizer=split_tokenize, strip_accents='ascii').build_analyzer() text = ("J'ai mang\xe9 du kangourou ce midi, " "c'\xe9tait pas tr\xeas bon.") expected = ["j'ai", 'mange', 'du', 'kangourou', 'ce', 'midi,', "c'etait", 'pas', 'tres', 'bon.'] assert_equal(wa(text), expected) def test_word_analyzer_unigrams_and_bigrams(): wa = CountVectorizer(analyzer="word", strip_accents='unicode', ngram_range=(1, 2)).build_analyzer() text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon." expected = ['ai', 'mange', 'du', 'kangourou', 'ce', 'midi', 'etait', 'pas', 'tres', 'bon', 'ai mange', 'mange du', 'du kangourou', 'kangourou ce', 'ce midi', 'midi etait', 'etait pas', 'pas tres', 'tres bon'] assert_equal(wa(text), expected) def test_unicode_decode_error(): # decode_error default to strict, so this should fail # First, encode (as bytes) a unicode string. text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon." text_bytes = text.encode('utf-8') # Then let the Analyzer try to decode it as ascii. It should fail, # because we have given it an incorrect encoding. wa = CountVectorizer(ngram_range=(1, 2), encoding='ascii').build_analyzer() assert_raises(UnicodeDecodeError, wa, text_bytes) ca = CountVectorizer(analyzer='char', ngram_range=(3, 6), encoding='ascii').build_analyzer() assert_raises(UnicodeDecodeError, ca, text_bytes) def test_char_ngram_analyzer(): cnga = CountVectorizer(analyzer='char', strip_accents='unicode', ngram_range=(3, 6)).build_analyzer() text = "J'ai mang\xe9 du kangourou ce midi, c'\xe9tait pas tr\xeas bon" expected = ["j'a", "'ai", 'ai ', 'i m', ' ma'] assert_equal(cnga(text)[:5], expected) expected = ['s tres', ' tres ', 'tres b', 'res bo', 'es bon'] assert_equal(cnga(text)[-5:], expected) text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = ['thi', 'his', 'is ', 's i', ' is'] assert_equal(cnga(text)[:5], expected) expected = [' yeste', 'yester', 'esterd', 'sterda', 'terday'] assert_equal(cnga(text)[-5:], expected) cnga = CountVectorizer(input='file', analyzer='char', ngram_range=(3, 6)).build_analyzer() text = StringIO("This is a test with a file-like object!") expected = ['thi', 'his', 'is ', 's i', ' is'] assert_equal(cnga(text)[:5], expected) def test_char_wb_ngram_analyzer(): cnga = CountVectorizer(analyzer='char_wb', strip_accents='unicode', ngram_range=(3, 6)).build_analyzer() text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = [' th', 'thi', 'his', 'is ', ' thi'] assert_equal(cnga(text)[:5], expected) expected = ['yester', 'esterd', 'sterda', 'terday', 'erday '] assert_equal(cnga(text)[-5:], expected) cnga = CountVectorizer(input='file', analyzer='char_wb', ngram_range=(3, 6)).build_analyzer() text = StringIO("A test with a file-like object!") expected = [' a ', ' te', 'tes', 'est', 'st ', ' tes'] assert_equal(cnga(text)[:6], expected) def test_countvectorizer_custom_vocabulary(): vocab = {"pizza": 0, "beer": 1} terms = set(vocab.keys()) # Try a few of the supported types. for typ in [dict, list, iter, partial(defaultdict, int)]: v = typ(vocab) vect = CountVectorizer(vocabulary=v) vect.fit(JUNK_FOOD_DOCS) if isinstance(v, Mapping): assert_equal(vect.vocabulary_, vocab) else: assert_equal(set(vect.vocabulary_), terms) X = vect.transform(JUNK_FOOD_DOCS) assert_equal(X.shape[1], len(terms)) def test_countvectorizer_custom_vocabulary_pipeline(): what_we_like = ["pizza", "beer"] pipe = Pipeline([ ('count', CountVectorizer(vocabulary=what_we_like)), ('tfidf', TfidfTransformer())]) X = pipe.fit_transform(ALL_FOOD_DOCS) assert_equal(set(pipe.named_steps['count'].vocabulary_), set(what_we_like)) assert_equal(X.shape[1], len(what_we_like)) def test_countvectorizer_custom_vocabulary_repeated_indeces(): vocab = {"pizza": 0, "beer": 0} try: CountVectorizer(vocabulary=vocab) except ValueError as e: assert_in("vocabulary contains repeated indices", str(e).lower()) def test_countvectorizer_custom_vocabulary_gap_index(): vocab = {"pizza": 1, "beer": 2} try: CountVectorizer(vocabulary=vocab) except ValueError as e: assert_in("doesn't contain index", str(e).lower()) def test_countvectorizer_stop_words(): cv = CountVectorizer() cv.set_params(stop_words='english') assert_equal(cv.get_stop_words(), ENGLISH_STOP_WORDS) cv.set_params(stop_words='_bad_str_stop_') assert_raises(ValueError, cv.get_stop_words) cv.set_params(stop_words='_bad_unicode_stop_') assert_raises(ValueError, cv.get_stop_words) stoplist = ['some', 'other', 'words'] cv.set_params(stop_words=stoplist) assert_equal(cv.get_stop_words(), set(stoplist)) def test_countvectorizer_empty_vocabulary(): try: vect = CountVectorizer(vocabulary=[]) vect.fit(["foo"]) assert False, "we shouldn't get here" except ValueError as e: assert_in("empty vocabulary", str(e).lower()) try: v = CountVectorizer(max_df=1.0, stop_words="english") # fit on stopwords only v.fit(["to be or not to be", "and me too", "and so do you"]) assert False, "we shouldn't get here" except ValueError as e: assert_in("empty vocabulary", str(e).lower()) def test_fit_countvectorizer_twice(): cv = CountVectorizer() X1 = cv.fit_transform(ALL_FOOD_DOCS[:5]) X2 = cv.fit_transform(ALL_FOOD_DOCS[5:]) assert_not_equal(X1.shape[1], X2.shape[1]) def test_tf_idf_smoothing(): X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) # check normalization assert_array_almost_equal((tfidf ** 2).sum(axis=1), [1., 1., 1.]) # this is robust to features with only zeros X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) def test_tfidf_no_smoothing(): X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=False, norm='l2') tfidf = tr.fit_transform(X).toarray() assert_true((tfidf >= 0).all()) # check normalization assert_array_almost_equal((tfidf ** 2).sum(axis=1), [1., 1., 1.]) # the lack of smoothing make IDF fragile in the presence of feature with # only zeros X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=False, norm='l2') clean_warning_registry() with warnings.catch_warnings(record=True) as w: 1. / np.array([0.]) numpy_provides_div0_warning = len(w) == 1 in_warning_message = 'divide by zero' tfidf = assert_warns_message(RuntimeWarning, in_warning_message, tr.fit_transform, X).toarray() if not numpy_provides_div0_warning: raise SkipTest("Numpy does not provide div 0 warnings.") def test_sublinear_tf(): X = [[1], [2], [3]] tr = TfidfTransformer(sublinear_tf=True, use_idf=False, norm=None) tfidf = tr.fit_transform(X).toarray() assert_equal(tfidf[0], 1) assert_greater(tfidf[1], tfidf[0]) assert_greater(tfidf[2], tfidf[1]) assert_less(tfidf[1], 2) assert_less(tfidf[2], 3) def test_vectorizer(): # raw documents as an iterator train_data = iter(ALL_FOOD_DOCS[:-1]) test_data = [ALL_FOOD_DOCS[-1]] n_train = len(ALL_FOOD_DOCS) - 1 # test without vocabulary v1 = CountVectorizer(max_df=0.5) counts_train = v1.fit_transform(train_data) if hasattr(counts_train, 'tocsr'): counts_train = counts_train.tocsr() assert_equal(counts_train[0, v1.vocabulary_["pizza"]], 2) # build a vectorizer v1 with the same vocabulary as the one fitted by v1 v2 = CountVectorizer(vocabulary=v1.vocabulary_) # compare that the two vectorizer give the same output on the test sample for v in (v1, v2): counts_test = v.transform(test_data) if hasattr(counts_test, 'tocsr'): counts_test = counts_test.tocsr() vocabulary = v.vocabulary_ assert_equal(counts_test[0, vocabulary["salad"]], 1) assert_equal(counts_test[0, vocabulary["tomato"]], 1) assert_equal(counts_test[0, vocabulary["water"]], 1) # stop word from the fixed list assert_false("the" in vocabulary) # stop word found automatically by the vectorizer DF thresholding # words that are high frequent across the complete corpus are likely # to be not informative (either real stop words of extraction # artifacts) assert_false("copyright" in vocabulary) # not present in the sample assert_equal(counts_test[0, vocabulary["coke"]], 0) assert_equal(counts_test[0, vocabulary["burger"]], 0) assert_equal(counts_test[0, vocabulary["beer"]], 0) assert_equal(counts_test[0, vocabulary["pizza"]], 0) # test tf-idf t1 = TfidfTransformer(norm='l1') tfidf = t1.fit(counts_train).transform(counts_train).toarray() assert_equal(len(t1.idf_), len(v1.vocabulary_)) assert_equal(tfidf.shape, (n_train, len(v1.vocabulary_))) # test tf-idf with new data tfidf_test = t1.transform(counts_test).toarray() assert_equal(tfidf_test.shape, (len(test_data), len(v1.vocabulary_))) # test tf alone t2 = TfidfTransformer(norm='l1', use_idf=False) tf = t2.fit(counts_train).transform(counts_train).toarray() assert_equal(t2.idf_, None) # test idf transform with unlearned idf vector t3 = TfidfTransformer(use_idf=True) assert_raises(ValueError, t3.transform, counts_train) # test idf transform with incompatible n_features X = [[1, 1, 5], [1, 1, 0]] t3.fit(X) X_incompt = [[1, 3], [1, 3]] assert_raises(ValueError, t3.transform, X_incompt) # L1-normalized term frequencies sum to one assert_array_almost_equal(np.sum(tf, axis=1), [1.0] * n_train) # test the direct tfidf vectorizer # (equivalent to term count vectorizer + tfidf transformer) train_data = iter(ALL_FOOD_DOCS[:-1]) tv = TfidfVectorizer(norm='l1') tv.max_df = v1.max_df tfidf2 = tv.fit_transform(train_data).toarray() assert_false(tv.fixed_vocabulary_) assert_array_almost_equal(tfidf, tfidf2) # test the direct tfidf vectorizer with new data tfidf_test2 = tv.transform(test_data).toarray() assert_array_almost_equal(tfidf_test, tfidf_test2) # test transform on unfitted vectorizer with empty vocabulary v3 = CountVectorizer(vocabulary=None) assert_raises(ValueError, v3.transform, train_data) # ascii preprocessor? v3.set_params(strip_accents='ascii', lowercase=False) assert_equal(v3.build_preprocessor(), strip_accents_ascii) # error on bad strip_accents param v3.set_params(strip_accents='_gabbledegook_', preprocessor=None) assert_raises(ValueError, v3.build_preprocessor) # error with bad analyzer type v3.set_params = '_invalid_analyzer_type_' assert_raises(ValueError, v3.build_analyzer) def test_tfidf_vectorizer_setters(): tv = TfidfVectorizer(norm='l2', use_idf=False, smooth_idf=False, sublinear_tf=False) tv.norm = 'l1' assert_equal(tv._tfidf.norm, 'l1') tv.use_idf = True assert_true(tv._tfidf.use_idf) tv.smooth_idf = True assert_true(tv._tfidf.smooth_idf) tv.sublinear_tf = True assert_true(tv._tfidf.sublinear_tf) def test_hashing_vectorizer(): v = HashingVectorizer() X = v.transform(ALL_FOOD_DOCS) token_nnz = X.nnz assert_equal(X.shape, (len(ALL_FOOD_DOCS), v.n_features)) assert_equal(X.dtype, v.dtype) # By default the hashed values receive a random sign and l2 normalization # makes the feature values bounded assert_true(np.min(X.data) > -1) assert_true(np.min(X.data) < 0) assert_true(np.max(X.data) > 0) assert_true(np.max(X.data) < 1) # Check that the rows are normalized for i in range(X.shape[0]): assert_almost_equal(np.linalg.norm(X[0].data, 2), 1.0) # Check vectorization with some non-default parameters v = HashingVectorizer(ngram_range=(1, 2), non_negative=True, norm='l1') X = v.transform(ALL_FOOD_DOCS) assert_equal(X.shape, (len(ALL_FOOD_DOCS), v.n_features)) assert_equal(X.dtype, v.dtype) # ngrams generate more non zeros ngrams_nnz = X.nnz assert_true(ngrams_nnz > token_nnz) assert_true(ngrams_nnz < 2 * token_nnz) # makes the feature values bounded assert_true(np.min(X.data) > 0) assert_true(np.max(X.data) < 1) # Check that the rows are normalized for i in range(X.shape[0]): assert_almost_equal(np.linalg.norm(X[0].data, 1), 1.0) def test_feature_names(): cv = CountVectorizer(max_df=0.5) # test for Value error on unfitted/empty vocabulary assert_raises(ValueError, cv.get_feature_names) X = cv.fit_transform(ALL_FOOD_DOCS) n_samples, n_features = X.shape assert_equal(len(cv.vocabulary_), n_features) feature_names = cv.get_feature_names() assert_equal(len(feature_names), n_features) assert_array_equal(['beer', 'burger', 'celeri', 'coke', 'pizza', 'salad', 'sparkling', 'tomato', 'water'], feature_names) for idx, name in enumerate(feature_names): assert_equal(idx, cv.vocabulary_.get(name)) def test_vectorizer_max_features(): vec_factories = ( CountVectorizer, TfidfVectorizer, ) expected_vocabulary = set(['burger', 'beer', 'salad', 'pizza']) expected_stop_words = set([u'celeri', u'tomato', u'copyright', u'coke', u'sparkling', u'water', u'the']) for vec_factory in vec_factories: # test bounded number of extracted features vectorizer = vec_factory(max_df=0.6, max_features=4) vectorizer.fit(ALL_FOOD_DOCS) assert_equal(set(vectorizer.vocabulary_), expected_vocabulary) assert_equal(vectorizer.stop_words_, expected_stop_words) def test_count_vectorizer_max_features(): # Regression test: max_features didn't work correctly in 0.14. cv_1 = CountVectorizer(max_features=1) cv_3 = CountVectorizer(max_features=3) cv_None = CountVectorizer(max_features=None) counts_1 = cv_1.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) counts_3 = cv_3.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) counts_None = cv_None.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) features_1 = cv_1.get_feature_names() features_3 = cv_3.get_feature_names() features_None = cv_None.get_feature_names() # The most common feature is "the", with frequency 7. assert_equal(7, counts_1.max()) assert_equal(7, counts_3.max()) assert_equal(7, counts_None.max()) # The most common feature should be the same assert_equal("the", features_1[np.argmax(counts_1)]) assert_equal("the", features_3[np.argmax(counts_3)]) assert_equal("the", features_None[np.argmax(counts_None)]) def test_vectorizer_max_df(): test_data = ['abc', 'dea', 'eat'] vect = CountVectorizer(analyzer='char', max_df=1.0) vect.fit(test_data) assert_true('a' in vect.vocabulary_.keys()) assert_equal(len(vect.vocabulary_.keys()), 6) assert_equal(len(vect.stop_words_), 0) vect.max_df = 0.5 # 0.5 * 3 documents -> max_doc_count == 1.5 vect.fit(test_data) assert_true('a' not in vect.vocabulary_.keys()) # {ae} ignored assert_equal(len(vect.vocabulary_.keys()), 4) # {bcdt} remain assert_true('a' in vect.stop_words_) assert_equal(len(vect.stop_words_), 2) vect.max_df = 1 vect.fit(test_data) assert_true('a' not in vect.vocabulary_.keys()) # {ae} ignored assert_equal(len(vect.vocabulary_.keys()), 4) # {bcdt} remain assert_true('a' in vect.stop_words_) assert_equal(len(vect.stop_words_), 2) def test_vectorizer_min_df(): test_data = ['abc', 'dea', 'eat'] vect = CountVectorizer(analyzer='char', min_df=1) vect.fit(test_data) assert_true('a' in vect.vocabulary_.keys()) assert_equal(len(vect.vocabulary_.keys()), 6) assert_equal(len(vect.stop_words_), 0) vect.min_df = 2 vect.fit(test_data) assert_true('c' not in vect.vocabulary_.keys()) # {bcdt} ignored assert_equal(len(vect.vocabulary_.keys()), 2) # {ae} remain assert_true('c' in vect.stop_words_) assert_equal(len(vect.stop_words_), 4) vect.min_df = 0.8 # 0.8 * 3 documents -> min_doc_count == 2.4 vect.fit(test_data) assert_true('c' not in vect.vocabulary_.keys()) # {bcdet} ignored assert_equal(len(vect.vocabulary_.keys()), 1) # {a} remains assert_true('c' in vect.stop_words_) assert_equal(len(vect.stop_words_), 5) def test_count_binary_occurrences(): # by default multiple occurrences are counted as longs test_data = ['aaabc', 'abbde'] vect = CountVectorizer(analyzer='char', max_df=1.0) X = vect.fit_transform(test_data).toarray() assert_array_equal(['a', 'b', 'c', 'd', 'e'], vect.get_feature_names()) assert_array_equal([[3, 1, 1, 0, 0], [1, 2, 0, 1, 1]], X) # using boolean features, we can fetch the binary occurrence info # instead. vect = CountVectorizer(analyzer='char', max_df=1.0, binary=True) X = vect.fit_transform(test_data).toarray() assert_array_equal([[1, 1, 1, 0, 0], [1, 1, 0, 1, 1]], X) # check the ability to change the dtype vect = CountVectorizer(analyzer='char', max_df=1.0, binary=True, dtype=np.float32) X_sparse = vect.fit_transform(test_data) assert_equal(X_sparse.dtype, np.float32) def test_hashed_binary_occurrences(): # by default multiple occurrences are counted as longs test_data = ['aaabc', 'abbde'] vect = HashingVectorizer(analyzer='char', non_negative=True, norm=None) X = vect.transform(test_data) assert_equal(np.max(X[0:1].data), 3) assert_equal(np.max(X[1:2].data), 2) assert_equal(X.dtype, np.float64) # using boolean features, we can fetch the binary occurrence info # instead. vect = HashingVectorizer(analyzer='char', non_negative=True, binary=True, norm=None) X = vect.transform(test_data) assert_equal(np.max(X.data), 1) assert_equal(X.dtype, np.float64) # check the ability to change the dtype vect = HashingVectorizer(analyzer='char', non_negative=True, binary=True, norm=None, dtype=np.float64) X = vect.transform(test_data) assert_equal(X.dtype, np.float64) def test_vectorizer_inverse_transform(): # raw documents data = ALL_FOOD_DOCS for vectorizer in (TfidfVectorizer(), CountVectorizer()): transformed_data = vectorizer.fit_transform(data) inversed_data = vectorizer.inverse_transform(transformed_data) analyze = vectorizer.build_analyzer() for doc, inversed_terms in zip(data, inversed_data): terms = np.sort(np.unique(analyze(doc))) inversed_terms = np.sort(np.unique(inversed_terms)) assert_array_equal(terms, inversed_terms) # Test that inverse_transform also works with numpy arrays transformed_data = transformed_data.toarray() inversed_data2 = vectorizer.inverse_transform(transformed_data) for terms, terms2 in zip(inversed_data, inversed_data2): assert_array_equal(np.sort(terms), np.sort(terms2)) def test_count_vectorizer_pipeline_grid_selection(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) # split the dataset for model development and final evaluation train_data, test_data, target_train, target_test = train_test_split( data, target, test_size=.2, random_state=0) pipeline = Pipeline([('vect', CountVectorizer()), ('svc', LinearSVC())]) parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], 'svc__loss': ('hinge', 'squared_hinge') } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=1) # Check that the best model found by grid search is 100% correct on the # held out evaluation set. pred = grid_search.fit(train_data, target_train).predict(test_data) assert_array_equal(pred, target_test) # on this toy dataset bigram representation which is used in the last of # the grid_search is considered the best estimator since they all converge # to 100% accuracy models assert_equal(grid_search.best_score_, 1.0) best_vectorizer = grid_search.best_estimator_.named_steps['vect'] assert_equal(best_vectorizer.ngram_range, (1, 1)) def test_vectorizer_pipeline_grid_selection(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) # split the dataset for model development and final evaluation train_data, test_data, target_train, target_test = train_test_split( data, target, test_size=.1, random_state=0) pipeline = Pipeline([('vect', TfidfVectorizer()), ('svc', LinearSVC())]) parameters = { 'vect__ngram_range': [(1, 1), (1, 2)], 'vect__norm': ('l1', 'l2'), 'svc__loss': ('hinge', 'squared_hinge'), } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=1) # Check that the best model found by grid search is 100% correct on the # held out evaluation set. pred = grid_search.fit(train_data, target_train).predict(test_data) assert_array_equal(pred, target_test) # on this toy dataset bigram representation which is used in the last of # the grid_search is considered the best estimator since they all converge # to 100% accuracy models assert_equal(grid_search.best_score_, 1.0) best_vectorizer = grid_search.best_estimator_.named_steps['vect'] assert_equal(best_vectorizer.ngram_range, (1, 1)) assert_equal(best_vectorizer.norm, 'l2') assert_false(best_vectorizer.fixed_vocabulary_) def test_vectorizer_pipeline_cross_validation(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) pipeline = Pipeline([('vect', TfidfVectorizer()), ('svc', LinearSVC())]) cv_scores = cross_val_score(pipeline, data, target, cv=3) assert_array_equal(cv_scores, [1., 1., 1.]) def test_vectorizer_unicode(): # tests that the count vectorizer works with cyrillic. document = ( "\xd0\x9c\xd0\xb0\xd1\x88\xd0\xb8\xd0\xbd\xd0\xbd\xd0\xbe\xd0" "\xb5 \xd0\xbe\xd0\xb1\xd1\x83\xd1\x87\xd0\xb5\xd0\xbd\xd0\xb8\xd0" "\xb5 \xe2\x80\x94 \xd0\xbe\xd0\xb1\xd1\x88\xd0\xb8\xd1\x80\xd0\xbd" "\xd1\x8b\xd0\xb9 \xd0\xbf\xd0\xbe\xd0\xb4\xd1\x80\xd0\xb0\xd0\xb7" "\xd0\xb4\xd0\xb5\xd0\xbb \xd0\xb8\xd1\x81\xd0\xba\xd1\x83\xd1\x81" "\xd1\x81\xd1\x82\xd0\xb2\xd0\xb5\xd0\xbd\xd0\xbd\xd0\xbe\xd0\xb3" "\xd0\xbe \xd0\xb8\xd0\xbd\xd1\x82\xd0\xb5\xd0\xbb\xd0\xbb\xd0" "\xb5\xd0\xba\xd1\x82\xd0\xb0, \xd0\xb8\xd0\xb7\xd1\x83\xd1\x87" "\xd0\xb0\xd1\x8e\xd1\x89\xd0\xb8\xd0\xb9 \xd0\xbc\xd0\xb5\xd1\x82" "\xd0\xbe\xd0\xb4\xd1\x8b \xd0\xbf\xd0\xbe\xd1\x81\xd1\x82\xd1\x80" "\xd0\xbe\xd0\xb5\xd0\xbd\xd0\xb8\xd1\x8f \xd0\xb0\xd0\xbb\xd0\xb3" "\xd0\xbe\xd1\x80\xd0\xb8\xd1\x82\xd0\xbc\xd0\xbe\xd0\xb2, \xd1\x81" "\xd0\xbf\xd0\xbe\xd1\x81\xd0\xbe\xd0\xb1\xd0\xbd\xd1\x8b\xd1\x85 " "\xd0\xbe\xd0\xb1\xd1\x83\xd1\x87\xd0\xb0\xd1\x82\xd1\x8c\xd1\x81\xd1" "\x8f.") vect = CountVectorizer() X_counted = vect.fit_transform([document]) assert_equal(X_counted.shape, (1, 15)) vect = HashingVectorizer(norm=None, non_negative=True) X_hashed = vect.transform([document]) assert_equal(X_hashed.shape, (1, 2 ** 20)) # No collisions on such a small dataset assert_equal(X_counted.nnz, X_hashed.nnz) # When norm is None and non_negative, the tokens are counted up to # collisions assert_array_equal(np.sort(X_counted.data), np.sort(X_hashed.data)) def test_tfidf_vectorizer_with_fixed_vocabulary(): # non regression smoke test for inheritance issues vocabulary = ['pizza', 'celeri'] vect = TfidfVectorizer(vocabulary=vocabulary) X_1 = vect.fit_transform(ALL_FOOD_DOCS) X_2 = vect.transform(ALL_FOOD_DOCS) assert_array_almost_equal(X_1.toarray(), X_2.toarray()) assert_true(vect.fixed_vocabulary_) def test_pickling_vectorizer(): instances = [ HashingVectorizer(), HashingVectorizer(norm='l1'), HashingVectorizer(binary=True), HashingVectorizer(ngram_range=(1, 2)), CountVectorizer(), CountVectorizer(preprocessor=strip_tags), CountVectorizer(analyzer=lazy_analyze), CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS), CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS), TfidfVectorizer(), TfidfVectorizer(analyzer=lazy_analyze), TfidfVectorizer().fit(JUNK_FOOD_DOCS), ] for orig in instances: s = pickle.dumps(orig) copy = pickle.loads(s) assert_equal(type(copy), orig.__class__) assert_equal(copy.get_params(), orig.get_params()) assert_array_equal( copy.fit_transform(JUNK_FOOD_DOCS).toarray(), orig.fit_transform(JUNK_FOOD_DOCS).toarray()) def test_stop_words_removal(): # Ensure that deleting the stop_words_ attribute doesn't affect transform fitted_vectorizers = ( TfidfVectorizer().fit(JUNK_FOOD_DOCS), CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS), CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS) ) for vect in fitted_vectorizers: vect_transform = vect.transform(JUNK_FOOD_DOCS).toarray() vect.stop_words_ = None stop_None_transform = vect.transform(JUNK_FOOD_DOCS).toarray() delattr(vect, 'stop_words_') stop_del_transform = vect.transform(JUNK_FOOD_DOCS).toarray() assert_array_equal(stop_None_transform, vect_transform) assert_array_equal(stop_del_transform, vect_transform) def test_pickling_transformer(): X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS) orig = TfidfTransformer().fit(X) s = pickle.dumps(orig) copy = pickle.loads(s) assert_equal(type(copy), orig.__class__) assert_array_equal( copy.fit_transform(X).toarray(), orig.fit_transform(X).toarray()) def test_non_unique_vocab(): vocab = ['a', 'b', 'c', 'a', 'a'] vect = CountVectorizer(vocabulary=vocab) assert_raises(ValueError, vect.fit, []) def test_hashingvectorizer_nan_in_docs(): # np.nan can appear when using pandas to load text fields from a csv file # with missing values. message = "np.nan is an invalid document, expected byte or unicode string." exception = ValueError def func(): hv = HashingVectorizer() hv.fit_transform(['hello world', np.nan, 'hello hello']) assert_raise_message(exception, message, func) def test_tfidfvectorizer_binary(): # Non-regression test: TfidfVectorizer used to ignore its "binary" param. v = TfidfVectorizer(binary=True, use_idf=False, norm=None) assert_true(v.binary) X = v.fit_transform(['hello world', 'hello hello']).toarray() assert_array_equal(X.ravel(), [1, 1, 1, 0]) X2 = v.transform(['hello world', 'hello hello']).toarray() assert_array_equal(X2.ravel(), [1, 1, 1, 0]) def test_tfidfvectorizer_export_idf(): vect = TfidfVectorizer(use_idf=True) vect.fit(JUNK_FOOD_DOCS) assert_array_almost_equal(vect.idf_, vect._tfidf.idf_) def test_vectorizer_vocab_clone(): vect_vocab = TfidfVectorizer(vocabulary=["the"]) vect_vocab_clone = clone(vect_vocab) vect_vocab.fit(ALL_FOOD_DOCS) vect_vocab_clone.fit(ALL_FOOD_DOCS) assert_equal(vect_vocab_clone.vocabulary_, vect_vocab.vocabulary_)
bsd-3-clause
videlec/sage-flatsurf
flatsurf/geometry/similarity_surface.py
1
105268
r""" Similarity surfaces. """ from __future__ import absolute_import, print_function, division from six.moves import range, map, filter, zip from six import iteritems import itertools from sage.misc.cachefunc import cached_method from sage.misc.sage_unittest import TestSuite from sage.structure.sage_object import SageObject from sage.rings.infinity import Infinity from sage.rings.all import ZZ, QQ, AA, RIF, RR, NumberField from sage.modules.free_module_element import vector from sage.matrix.constructor import matrix, identity_matrix from sage.modules.free_module import VectorSpace from .matrix_2x2 import (is_similarity, homothety_rotation_decomposition, similarity_from_vectors, rotation_matrix_angle, is_cosine_sine_of_rational) from .similarity import SimilarityGroup from .polygon import ConvexPolygons, wedge_product, triangulate, build_faces from .surface import Surface, Surface_dict, Surface_list, LabelComparator from .surface_objects import Singularity, SaddleConnection, SurfacePoint from .circle import Circle ZZ_1 = ZZ.one() ZZ_2 = ZZ_1 + ZZ_1 class SimilaritySurface(SageObject): r""" An oriented surface built from a set of polygons and edges identified with similarities (i.e. composition of homothety, rotations and translations). Each polygon is identified with a unique key (its label). The choice of the label of the polygons is done at startup. If the set is finite then by default the labels are the first non-negative integers 0,1,... The edges are labeled by a pair ``(polygon label, edge number)``. EXAMPLES: The easiest way to construct a similarity surface is to use the pre-built constructions from :class:`flatsurf.geometry.similarity_surface_generators.SimilaritySurfaceGenerators`:: sage: from flatsurf import polygons, similarity_surfaces sage: P = polygons(vertices=[(0,0), (2,0), (1,4), (0,5)]) sage: similarity_surfaces.self_glued_polygon(P) HalfTranslationSurface built from 1 polygon The second way is to build a surface (using e.g. :class:`flatsurf.geometry.surface.Surface_list`) and then use this surface as an argument for class:`SimilaritySurface`):: sage: from flatsurf.geometry.similarity_surface import SimilaritySurface sage: from flatsurf.geometry.surface import Surface_list sage: P = polygons(vertices=[(0,0), (1,0), (1,1), (0,1)]) sage: Stop = Surface_list(QQ) sage: Stop.add_polygon(P) 0 sage: Stop.add_polygon(2*P) 1 sage: Stop.add_polygon(3*P) 2 sage: Stop.set_edge_pairing(0, 1, 1, 3) sage: Stop.set_edge_pairing(0, 0, 2, 2) sage: Stop.set_edge_pairing(0, 2, 2, 0) sage: Stop.set_edge_pairing(0, 3, 1, 1) sage: Stop.set_edge_pairing(1, 2, 2, 1) sage: Stop.set_edge_pairing(1, 0, 2, 3) sage: S = SimilaritySurface(Stop) sage: S SimilaritySurface built from 3 polygons To perform a sanity check on the obtained surface, you can run its test suite:: sage: TestSuite(S).run() In the following example, we build two broken surfaces and check that the test suite fails as expected:: sage: P = polygons(vertices=[(0,0), (1,0), (1,1), (0,1)]) sage: Stop = Surface_list(QQ) sage: Stop.add_polygon(P) 0 sage: S = SimilaritySurface(Stop) sage: TestSuite(S).run() ... AssertionError: edge (0, 0) is not glued ------------------------------------------------------------ The following tests failed: _test_gluings Failure in _test_underlying_surface The following tests failed: _test_underlying_surface sage: Stop.set_edge_pairing(0, 0, 0, 3) sage: Stop.set_edge_pairing(0, 1, 0, 3) sage: Stop.set_edge_pairing(0, 2, 0, 3) sage: S = SimilaritySurface(Stop) sage: TestSuite(S).run() ... AssertionError: edge gluing is not a pairing: (0, 0) -> (0, 3) -> (0, 2) ------------------------------------------------------------ The following tests failed: _test_gluings Failure in _test_underlying_surface The following tests failed: _test_underlying_surface Finally, you can also implement a similarity surface by inheriting from :class:`SimilaritySurface` and implement the methods: - ``base_ring(self)``: the base ring in which coordinates lives - ``polygon(self, lab)``: the polygon associated to the label ``lab`` - ``base_label(self)``: which label to use as the base one - ``opposite_edge(self, lab, edge)``: a pair (``other_label``, ``other_edge``) representing the edge being glued - ``is_finite(self)``: whether the surface is built from finitely many polygons """ def __init__(self, surface): r""" TESTS:: sage: from flatsurf.geometry.similarity_surface import SimilaritySurface sage: SimilaritySurface(3) Traceback (most recent call last): ... TypeError: invalid argument surface=3 to build a half-translation surface """ if isinstance(surface, SimilaritySurface): self._s = surface.underlying_surface() elif isinstance(surface, Surface): self._s = surface else: raise TypeError("invalid argument surface={} to build a half-translation surface".format(surface)) def underlying_surface(self): r""" Return the surface underlying this SimilaritySurface. """ return self._s def _test_underlying_surface(self, **options): is_sub_testsuite = 'tester' in options tester = self._tester(**options) tester.info("") # TODO: this nested subsuite is very fragile since we have no # way of forwarding the doctests to be skipped... Since # for now, the unique usage of this is for pickling of # infinite surface we provide that manually if not self._s.is_finite(): skip = ['_test_pickling'] else: skip = [] TestSuite(self._s).run(verbose = tester._verbose, prefix = tester._prefix + " ", raise_on_failure=is_sub_testsuite, skip=skip) tester.info(tester._prefix + " ", newline=False) def base_ring(self): r""" The field on which the coordinates of ``self`` live. This method must be overriden in subclasses! """ return self._s.base_ring() def polygon(self, lab): r""" Return the polygon with label ``lab``. """ return self._s.polygon(lab) def base_label(self): r""" Always returns the same label. """ return self._s.base_label() def opposite_edge(self, l, e=None): r""" Given the label ``l`` of a polygon and an edge ``e`` in that polygon returns the pair (``ll``, ``ee``) to which this edge is glued. If e is not provided, then it expects the only parameter to be the pair (``l``,``e``) and will again return a the pair (``ll``,``ee``). """ if e is None: return self._s.opposite_edge(l[0],l[1]) return self._s.opposite_edge(l,e) def is_finite(self): r""" Return whether or not the surface is finite. """ return self._s.is_finite() def is_mutable(self): r""" Return if the surface is mutable. """ return self._s.is_mutable() def set_immutable(self): r""" Mark the surface as immutable. """ self._s.set_immutable() def is_triangulated(self, limit=None): return self._s.is_triangulated(limit=limit) # # generic methods # #def compute_surface_type_from_gluings(self,limit=None): # r""" # Compute the surface type by looking at the edge gluings. # If limit is defined, we try to guess the type by looking at limit many edges. # """ # if limit is None: # if not self.is_finite(): # raise ValueError("Need a limit when working with an infinite surface.") # it = self.edge_iterator() # label,edge = it.next() # # Use honest matrices! # m = SimilaritySurface_generic.edge_matrix(self,label,edge) # surface_type = surface_type_from_matrix(m) # for label,edge in it: # # Use honest matrices! # m = SimilaritySurface_generic.edge_matrix(self,label,edge) # surface_type = combine_surface_types(surface_type, surface_type_from_matrix(m)) # return surface_type # else: # count=0 # it = self.edge_iterator() # label,edge = it.next() # # Use honest matrices! # m = SimilaritySurface_generic.edge_matrix(self,label,edge) # surface_type = surface_type_from_matrix(m) # for label,edge in it: # # Use honest matrices! # m = SimilaritySurface_generic.edge_matrix(self,label,edge) # surface_type = combine_surface_types(surface_type, surface_type_from_matrix(m)) # count=count+1 # if count >= limit: # return surface_type # return surface_type def walker(self): return self._s.walker() def label_iterator(self, polygons=False): r""" Iterator over all polygon labels. If the keyword polygons is True then we return pairs (label, polygon) instead of just labels. """ if polygons: return self._s.label_polygon_iterator() else: return self._s.label_iterator() def edge_iterator(self, gluings=False): r""" Iterate over the edges of polygons, which are pairs (l,e) where l is a polygon label, 0 <= e < N and N is the number of edges of the polygon with label l. If the keyword gluings is set to true, then we iterate over ordered pairs of edges ((l,e),(ll,ee)) where edge (l,e) is glued to (ll,ee). EXAMPLES:: sage: from flatsurf import ConvexPolygons sage: P = ConvexPolygons(QQ) sage: tri0=P([(1,0),(0,1),(-1,-1)]) sage: tri1=P([(-1,0),(0,-1),(1,1)]) sage: gluings=[((0,0),(1,0)),((0,1),(1,1)),((0,2),(1,2))] sage: from flatsurf.geometry.surface import surface_list_from_polygons_and_gluings sage: from flatsurf.geometry.translation_surface import TranslationSurface sage: s=TranslationSurface(surface_list_from_polygons_and_gluings([tri0,tri1], gluings)) sage: for edge in s.edge_iterator(): ....: print(edge) (0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) """ if gluings: return self._s.edge_gluing_iterator() else: return self._s.edge_iterator() def num_polygons(self): r""" Return the number of polygons. """ return self._s.num_polygons() def num_edges(self): r""" Return the total number of edges of all polygons used. """ return self._s.num_edges() def num_singularities(self): r""" EXAMPLES:: sage: from flatsurf import * sage: translation_surfaces.regular_octagon().num_singularities() 1 sage: S = SymmetricGroup(4) sage: r = S('(1,2)(3,4)') sage: u = S('(2,3)') sage: translation_surfaces.origami(r,u).num_singularities() 2 sage: S = SymmetricGroup(8) sage: r = S('(1,2,3,4,5,6,7,8)') sage: u = S('(1,8,5,4)(2,3)(6,7)') sage: translation_surfaces.origami(r,u).num_singularities() 4 """ if not self.is_finite(): raise ValueError("the method only work for finite surfaces") # NOTE: # the very same code is implemented in the method angles (translation # surfaces). we should factor out the code edges = set((p,e) for p in self.label_iterator() for e in range(self.polygon(p).num_edges())) n = ZZ(0) while edges: p,e = edges.pop() n += 1 ee = (e-1) % self.polygon(p).num_edges() p,e = self.opposite_edge(p,ee) while (p,e) in edges: edges.remove((p,e)) ee = (e-1) % self.polygon(p).num_edges() p,e = self.opposite_edge(p,ee) return n def _repr_(self): if self.num_polygons() == Infinity: num = 'infinitely many' else: num = str(self.num_polygons()) if self.num_polygons() == 1: end = "" else: end = "s" return "{} built from {} polygon{}".format(self.__class__.__name__, num, end) def edge_matrix(self, p, e=None): r""" Return the edge to which this edge is identified and the matrix to be applied. """ if e is None: p,e = p u = self.polygon(p).edge(e) pp,ee = self.opposite_edge(p,e) v = self.polygon(pp).edge(ee) # be careful, because of the orientation, it is -v and not v return similarity_from_vectors(u,-v) def edge_transformation(self, p, e): r""" Return the similarity bringing the provided edge to the opposite edge. EXAMPLES:: sage: from flatsurf.geometry.similarity_surface_generators import SimilaritySurfaceGenerators sage: s = SimilaritySurfaceGenerators.example() sage: print(s.polygon(0)) Polygon: (0, 0), (2, -2), (2, 0) sage: print(s.polygon(1)) Polygon: (0, 0), (2, 0), (1, 3) sage: print(s.opposite_edge(0,0)) (1, 1) sage: g = s.edge_transformation(0,0) sage: g((0,0)) (1, 3) sage: g((2,-2)) (2, 0) """ G=SimilarityGroup(self.base_ring()) q=self.polygon(p) a=q.vertex(e) b=q.vertex(e+1) # This is the similarity carrying the origin to a and (1,0) to b: g=G(b[0]-a[0],b[1]-a[1],a[0],a[1]) pp,ee = self.opposite_edge(p,e) qq=self.polygon(pp) # Be careful here: opposite vertices are identified aa=qq.vertex(ee+1) bb=qq.vertex(ee) # This is the similarity carrying the origin to aa and (1,0) to bb: gg=G(bb[0]-aa[0],bb[1]-aa[1],aa[0],aa[1]) # This is the similarity carrying (a,b) to (aa,bb): return gg*(~g) def set_vertex_zero(self, label, v, in_place=False): r""" Applies a combinatorial rotation to the polygon with the provided label. This makes what is currently vertex v of this polygon vertex 0. In other words, what is currently vertex (or edge) e will now become vertex (e-v)%n where n is the number of sides of the polygon. EXAMPLES: Example with polygon glued to another polygon:: sage: from flatsurf import * sage: s = translation_surfaces.veech_double_n_gon(4) sage: s.polygon(0) Polygon: (0, 0), (1, 0), (1, 1), (0, 1) sage: [s.opposite_edge(0,i) for i in range(4)] [(1, 0), (1, 1), (1, 2), (1, 3)] sage: ss = s.set_vertex_zero(0,1) sage: ss.polygon(0) Polygon: (0, 0), (0, 1), (-1, 1), (-1, 0) sage: [ss.opposite_edge(0,i) for i in range(4)] [(1, 1), (1, 2), (1, 3), (1, 0)] sage: TestSuite(ss).run() Example with polygon glued to self:: sage: s = translation_surfaces.veech_2n_gon(2) sage: s.polygon(0) Polygon: (0, 0), (1, 0), (1, 1), (0, 1) sage: [s.opposite_edge(0,i) for i in range(4)] [(0, 2), (0, 3), (0, 0), (0, 1)] sage: ss = s.set_vertex_zero(0,3) sage: ss.polygon(0) Polygon: (0, 0), (0, -1), (1, -1), (1, 0) sage: [ss.opposite_edge(0,i) for i in range(4)] [(0, 2), (0, 3), (0, 0), (0, 1)] sage: TestSuite(ss).run() """ if in_place: us = self.underlying_surface() if not us.is_mutable(): raise ValueError("set_vertex_zero can only be done in_place for a mutable surface.") p = us.polygon(label) n=p.num_edges() assert 0<=v and v<n glue=[] P = ConvexPolygons(us.base_ring()) pp = P(edges=[p.edge((i+v)%n) for i in range(n)]) for i in range(n): e=(v+i)%n ll,ee = us.opposite_edge(label,e) if ll==label: ee = (ee+n-v)%n glue.append((ll,ee)) us.change_polygon(label,pp,gluing_list=glue) return self else: return self.copy(mutable=True).set_vertex_zero(label,v,in_place=True) def _label_comparator(self): r""" Return a LabelComparator, which provides a fixed total ordering on the polygon labels. """ try: return self._lc except AttributeError: self._lc = LabelComparator() return self._lc def relabel(self, relabeling_map, in_place=False): r""" Attempt to relabel the polygons according to a relabeling_map, which takes as input a current label and outputs a new label for the same polygon. The method returns a pair (surface,success) where surface is the relabeled surface, and success is a boolean value indicating the success of the operation. The operation will fail if the implementation of the underlying surface does not support labels used in the image of the relabeling map. In this case, other (arbitrary) labels will be used to replace the labels of the surface, and the resulting surface should still be okay. Currently, the relabeling_map must be a dictionary. If in_place is True then the relabeling is done to the current surface, otherwise a mutable copy is made before relabeling. ToDo: - Allow relabeling_map to be a function rather than just a dictionary. This will allow it to work for infinite surfaces. EXAMPLES:: sage: from flatsurf import * sage: s=translation_surfaces.veech_double_n_gon(5) sage: ss,valid=s.relabel({0:1,1:2}) sage: valid True sage: ss.base_label() 1 sage: ss.opposite_edge(1,0) (2, 0) sage: ss.num_polygons() 2 sage: TestSuite(ss).run() """ if in_place: us = self.underlying_surface() if not us.is_mutable(): raise ValueError("Your surface is not mutable, so can not be relabeled in place.") if not isinstance(relabeling_map,dict): raise NotImplementedError("Currently relabeling is only implemented via a dictionary.") domain=set() codomain=set() data={} for l1,l2 in iteritems(relabeling_map): p=us.polygon(l1) glue = [] for e in range(p.num_edges()): ll,ee = us.opposite_edge(l1,e) try: lll=relabeling_map[ll] except KeyError: lll=ll glue.append((lll,ee)) data[l2]=(p,glue) domain.add(l1) codomain.add(l2) if len(domain)!=len(codomain): raise ValueError("The relabeling_map must be injective. Received "+str(relabeling_map)) changed_labels = domain.intersection(codomain) added_labels=codomain.difference(domain) removed_labels=domain.difference(codomain) # Pass to add_polygons relabel_errors={} for l2 in added_labels: p,glue=data[l2] l3 = us.add_polygon(p, label=l2) if not l2==l3: # This means the label l2 could not be added for some reason. # Perhaps the implementation does not support this type of label. # Or perhaps there is already a polygon with this label. relabel_errors[l2]=l3 # Pass to change polygons for l2 in changed_labels: p,glue=data[l2] # This should always work since the domain of the relabeling map should be labels for polygons. us.change_polygon(l2,p) # Deal with the base_label base_label = us.base_label() if base_label in relabeling_map: base_label = relabeling_map[base_label] if base_label in relabel_errors: base_label = relabel_errors[base_label] us.change_base_label(base_label) # Pass to remove polygons: for l1 in removed_labels: us.remove_polygon(l1) # Pass to update the edge gluings if len(relabel_errors)==0: # No problems. Update the gluings. for l2 in codomain: p,glue=data[l2] us.change_polygon_gluings(l2, glue) else: # Use the gluings provided by relabel_errors when necessary for l2 in codomain: p,glue=data[l2] for e in range(p.num_edges()): ll,ee=glue[e] try: # First try the error dictionary us.change_edge_gluing(l2, e, relabel_errors[ll],ee) except KeyError: us.change_edge_gluing(l2, e, ll,ee) return self, len(relabel_errors)==0 else: return self.copy(mutable=True).relabel(relabeling_map, in_place=True) def copy(self, relabel=False, mutable=False, lazy=None, new_field=None, optimal_number_field=False): r""" Returns a copy of this surface. The method takes several flags to modify how the copy is taken. If relabel is True, then instead of returning an exact copy, it returns a copy indexed by the non-negative integers. This uses the Surface_list implementation. If relabel is False (default), then we return an exact copy. The returned surface uses the Surface_dict implementation. The mutability flag returns if the resulting surface should be mutable or not. By default, the resulting surface will not be mutable. If lazy is True, then the surface is copied by reference. This is the only type of copy possible for infinite surfaces. The parameter defaults to False for finite surfaces, and defaults to True for infinite surfaces. The new_field parameter can be used to place the vertices in a larger field than the basefield for the original surface. The optimal_number_field option can be used to find a best NumberField containing the (necessarily finite) surface. EXAMPLES:: sage: from flatsurf import * sage: ss=translation_surfaces.ward(3) sage: print(ss.is_mutable()) False sage: s=ss.copy(mutable=True) sage: print(s.is_mutable()) True sage: TestSuite(s).run() sage: print(s==ss) True sage: # Changing the base field sage: from flatsurf import * sage: s=translation_surfaces.veech_double_n_gon(5) sage: ss=s.copy(mutable=False,new_field=AA) sage: TestSuite(ss).run() sage: ss.base_ring() Algebraic Real Field sage: # Optimization of number field sage: from flatsurf import * sage: s = translation_surfaces.arnoux_yoccoz(3) sage: ss = s.copy(new_field=AA).copy(optimal_number_field=True) sage: TestSuite(ss).run() sage: ss.base_ring().discriminant() -44 """ s = None # This will be the surface we copy. (Likely we will set s=self below.) if new_field is not None and optimal_number_field: raise ValueError("You can not set a new_field and also set optimal_number_field=True.") if optimal_number_field == True: assert self.is_finite(), "Can only optimize_number_field for a finite surface." assert not lazy, "Lazy copying is unavailable when optimize_number_field=True." coordinates_AA = [] for l,p in self.label_iterator(polygons = True): for e in p.edges(): coordinates_AA.append(AA(e[0])) coordinates_AA.append(AA(e[1])) from sage.rings.qqbar import number_field_elements_from_algebraics field,coordinates_NF,hom = number_field_elements_from_algebraics(coordinates_AA, minimal = True) if field is QQ: new_field = QQ # We pretend new_field = QQ was passed as a parameter. # It will now get picked up by the "if new_field is not None:" line below. else: # Unfortunately field doesn't come with an real embedding (which is given by hom!) # So, we make a copy of the field, and add the embedding. field2 = NumberField(field.polynomial(), name = "a", embedding = hom(field.gen())) # The following converts from field to field2: hom2 = field.hom(im_gens = [field2.gen()]) ss = Surface_dict(base_ring = field2) index = 0 P = ConvexPolygons(field2) for l,p in self.label_iterator(polygons = True): new_edges = [] for i in range(p.num_edges()): new_edges.append( (hom2(coordinates_NF[index]), hom2(coordinates_NF[index+1]) ) ) index += 2 pp = P(edges = new_edges) ss.add_polygon(pp, label = l) ss.change_base_label(self.base_label()) for (l1,e1),(l2,e2) in self.edge_iterator(gluings = True): ss.change_edge_gluing(l1, e1, l2, e2) s = self.__class__(ss) if not relabel: if not mutable: s.set_immutable() return s # Otherwise we are supposed to relabel. We will make a relabeled copy of s below. if new_field is not None: from flatsurf.geometry.surface import BaseRingChangedSurface s = BaseRingChangedSurface(self,new_field) if s is None: s = self if s.is_finite(): if relabel: return self.__class__(Surface_list(surface=s, copy=not lazy, mutable=mutable)) else: return self.__class__(Surface_dict(surface=s, copy=not lazy, mutable=mutable)) else: if lazy==False: raise ValueError("Only lazy copying available for infinite surfaces.") if self.underlying_surface().is_mutable(): raise ValueError("An infinite surface can only be copied if it is immutable.") if relabel: return self.__class__(Surface_list(surface=s, copy=False, mutable=mutable)) else: return self.__class__(Surface_dict(surface=s, copy=False, mutable=mutable)) def triangle_flip(self, l1, e1, in_place=False, test=False, direction=None): r""" Flips the diagonal of the quadrilateral formed by two triangles glued together along the provided edge (l1,e1). This can be broken into two steps: join along the edge to form a convex quadilateral, then cut along the other diagonal. Raises a ValueError if this quadrilateral would be non-convex. In this case no changes to the surface are made. The direction parameter defaults to (0,1). This is used to decide how the triangles being glued in are labeled. Let p1 be the triangle associated to label l1, and p2 be the triangle associated to l2 but moved by a similarity to share the edge (l1,e1). Each triangle has a exactly one separatrix leaving a vertex which travels in the provided direction or its opposite. (For edges we only count as sepatrices traveling counter-clockwise around the triangle.) This holds for p1 and p2 and the separatrices must point in opposite directions. The above description gives two new triangles t1 and t2 which must be glued in (obtained by flipping the diagonal of the quadrilateral). Up to swapping t1 and t2 we can assume the separatrix in t1 in the provided direction (or its opposite) points in the same direction as that of p1. Further up to cyclic permutation of vertex labels we can assume that the separatrices in p1 and t1 start at the vertex with the same index (an element of {0,1,2}). The same can be done for p2 and t2. We apply the label l1 to t1 and the label l2 to t2. This precisely determines how t1 and t2 should be used to replace p1 and p2. INPUT: - ``l1`` - label of polygon - ``e1`` - (integer) edge of the polygon - ``in_place`` (boolean) - If True do the flip to the current surface which must be mutable. In this case the updated surface will be returned. Otherwise a mutable copy is made and then an edge is flipped, which is then returned. - ``test`` (boolean) - If True we don't actually flip, and we return True or False depending on whether or not the flip would be successful. - ``direction`` (2-dimensional vector) - Defaults to (0,1). The choice of this vector determines how the newly added triangles are labeled. EXAMPLES:: sage: from flatsurf import * sage: s = similarity_surfaces.right_angle_triangle(ZZ(1),ZZ(1)) sage: print(s.polygon(0)) Polygon: (0, 0), (1, 0), (0, 1) sage: s.triangle_flip(0, 0, test=True) False sage: s.triangle_flip(0, 1, test=True) True sage: s.triangle_flip(0, 2, test=True) False sage: s = similarity_surfaces.right_angle_triangle(ZZ(1),ZZ(1)) sage: from flatsurf.geometry.surface import Surface_list sage: s = s.__class__(Surface_list(surface=s, mutable=True)) sage: try: ....: s.triangle_flip(0,0,in_place=True) ....: except ValueError as e: ....: print(e) Gluing triangles along this edge yields a non-convex quadrilateral. sage: s.triangle_flip(0,1,in_place=True) ConeSurface built from 2 polygons sage: s.polygon(0) Polygon: (0, 0), (1, 1), (0, 1) sage: s.polygon(1) Polygon: (0, 0), (-1, -1), (0, -1) sage: for p in s.edge_iterator(gluings=True): ....: print(p) ((0, 0), (1, 0)) ((0, 1), (0, 2)) ((0, 2), (0, 1)) ((1, 0), (0, 0)) ((1, 1), (1, 2)) ((1, 2), (1, 1)) sage: try: ....: s.triangle_flip(0,2,in_place=True) ....: except ValueError as e: ....: print(e) ....: Gluing triangles along this edge yields a non-convex quadrilateral. sage: p = polygons((2,0),(-1,3),(-1,-3)) sage: s = similarity_surfaces.self_glued_polygon(p) sage: from flatsurf.geometry.surface import Surface_list sage: s = s.__class__(Surface_list(surface=s,mutable=True)) sage: s.triangle_flip(0,1,in_place=True) HalfTranslationSurface built from 1 polygon sage: for x in s.label_iterator(polygons=True): ....: print(x) (0, Polygon: (0, 0), (-3, -3), (-1, -3)) sage: for x in s.edge_iterator(gluings=True): ....: print(x) ((0, 0), (0, 0)) ((0, 1), (0, 1)) ((0, 2), (0, 2)) sage: TestSuite(s).run() """ if test: # Just test if the flip would be successful p1=self.polygon(l1) if not p1.num_edges()==3: return false l2,e2 = self.opposite_edge(l1,e1) p2 = self.polygon(l2) if not p2.num_edges()==3: return false sim = self.edge_transformation(l2,e2) hol = sim( p2.vertex( (e2+2)%3 ) - p1.vertex((e1+2)%3) ) from flatsurf.geometry.polygon import wedge_product return wedge_product(p1.edge((e1+2)%3), hol) > 0 and \ wedge_product(p1.edge((e1+1)%3), hol) > 0 if in_place: s=self assert s.is_mutable(), "Surface must be mutable for in place triangle_flip." else: s=self.copy(mutable=True) p1=s.polygon(l1) if not p1.num_edges()==3: raise ValueError("The polygon with the provided label is not a triangle.") l2,e2 = s.opposite_edge(l1,e1) sim = s.edge_transformation(l2,e2) m = sim.derivative() p2=s.polygon(l2) if not p2.num_edges()==3: raise ValueError("The polygon opposite the provided edge is not a triangle.") P=p1.parent() p2=P(vertices=[sim(v) for v in p2.vertices()]) if direction is None: direction=s.vector_space()((0,1)) # Get vertices corresponding to separatices in the provided direction. v1=p1.find_separatrix(direction=direction)[0] v2=p2.find_separatrix(direction=direction)[0] # Our quadrilateral has vertices labeled: # * 0=p1.vertex(e1+1)=p2.vertex(e2) # * 1=p1.vertex(e1+2) # * 2=p1.vertex(e1)=p2.vertex(e2+1) # * 3=p2.vertex(e2+2) # Record the corresponding vertices of this quadrilateral. q1 = (3+v1-e1-1)%3 q2 = (2+(3+v2-e2-1)%3)%4 new_diagonal=p2.vertex((e2+2)%3)-p1.vertex((e1+2)%3) # This list will store the new triangles which are being glued in. # (Unfortunately, they may not be cyclically labeled in the correct way.) new_triangle=[] try: new_triangle.append(P(edges=[p1.edge((e1+2)%3),p2.edge((e2+1)%3),-new_diagonal])) new_triangle.append(P(edges=[p2.edge((e2+2)%3),p1.edge((e1+1)%3),new_diagonal])) # The above triangles would be glued along edge 2 to form the diagonal of the quadrilateral being removed. except ValueError: raise ValueError("Gluing triangles along this edge yields a non-convex quadrilateral.") # Find the separatrices of the two new triangles, and in particular which way they point. new_sep=[] new_sep.append(new_triangle[0].find_separatrix(direction=direction)[0]) new_sep.append(new_triangle[1].find_separatrix(direction=direction)[0]) # The quadrilateral vertices corresponding to these separatrices are # new_sep[0]+1 and (new_sep[1]+3)%4 respectively. # i=0 if the new_triangle[0] should be labeled l1 and new_triangle[1] should be labeled l2. # i=1 indicates the opposite labeling. if new_sep[0]+1==q1: # For debugging: assert (new_sep[1]+3)%4==q2, \ "Bug: new_sep[1]="+str(new_sep[1])+" and q2="+str(q2) i=0 else: # For debugging: assert (new_sep[1]+3)%4==q1 assert new_sep[0]+1==q2 i=1 # These quantities represent the cyclic relabeling of triangles needed. cycle1 = (new_sep[i]-v1+3)%3 cycle2 = (new_sep[1-i]-v2+3)%3 # This will be the new triangle with label l1: tri1=P(edges=[new_triangle[i].edge(cycle1), \ new_triangle[i].edge((cycle1+1)%3), \ new_triangle[i].edge((cycle1+2)%3)]) # This will be the new triangle with label l2: tri2=P(edges=[new_triangle[1-i].edge(cycle2), \ new_triangle[1-i].edge((cycle2+1)%3), \ new_triangle[1-i].edge((cycle2+2)%3)]) # In the above, edge 2-cycle1 of tri1 would be glued to edge 2-cycle2 of tri2 diagonal_glue_e1=2-cycle1 diagonal_glue_e2=2-cycle2 # FOR CATCHING BUGS: assert p1.find_separatrix(direction=direction)==tri1.find_separatrix(direction=direction) assert p2.find_separatrix(direction=direction)==tri2.find_separatrix(direction=direction) # Two opposite edges will not change their labels (label,edge) under our regluing operation. # The other two opposite ones will change and in fact they change labels. # The following finds them (there are two cases). # At the end of the if statement, the following will be true: # * new_glue_e1 and new_glue_e2 will be the edges of the new triangle with label l1 and l2 which need regluing. # * old_e1 and old_e2 will be the corresponding edges of the old triangles. # (Note that labels are swapped between the pair. The appending 1 or 2 refers to the label used for the triangle.) if p1.edge(v1)==tri1.edge(v1): # We don't have to worry about changing gluings on edge v1 of the triangles with label l1 # We do have to worry about the following edge: new_glue_e1=3-diagonal_glue_e1-v1 # returns the edge which is neither diagonal_glue_e1 nor v1. # This corresponded to the following old edge: old_e1 = 3 - e1 - v1 # Again this finds the edge which is neither e1 nor v1 else: temp = (v1+2)%3 # FOR CATCHING BUGS: assert p1.edge(temp)==tri1.edge(temp) # We don't have to worry about changing gluings on edge (v1+2)%3 of the triangles with label l1 # We do have to worry about the following edge: new_glue_e1=3-diagonal_glue_e1-temp # returns the edge which is neither diagonal_glue_e1 nor temp. # This corresponded to the following old edge: old_e1 = 3 - e1 - temp # Again this finds the edge which is neither e1 nor temp if p2.edge(v2)==tri2.edge(v2): # We don't have to worry about changing gluings on edge v2 of the triangles with label l2 # We do have to worry about the following edge: new_glue_e2=3-diagonal_glue_e2-v2 # returns the edge which is neither diagonal_glue_e2 nor v2. # This corresponded to the following old edge: old_e2 = 3 - e2 - v2 # Again this finds the edge which is neither e2 nor v2 else: temp = (v2+2)%3 # FOR CATCHING BUGS: assert p2.edge(temp)==tri2.edge(temp) # We don't have to worry about changing gluings on edge (v2+2)%3 of the triangles with label l2 # We do have to worry about the following edge: new_glue_e2=3-diagonal_glue_e2-temp # returns the edge which is neither diagonal_glue_e2 nor temp. # This corresponded to the following old edge: old_e2 = 3 - e2 - temp # Again this finds the edge which is neither e2 nor temp # remember the old gluings. old_opposite1 = s.opposite_edge(l1, old_e1) old_opposite2 = s.opposite_edge(l2, old_e2) # We make changes to the underlying surface us=s.underlying_surface() # Replace the triangles. us.change_polygon(l1,tri1) us.change_polygon(l2,tri2) # Glue along the new diagonal of the quadrilateral us.change_edge_gluing(l1,diagonal_glue_e1, l2,diagonal_glue_e2) # Now we deal with that pair of opposite edges of the quadrilateral that need regluing. # There are some special cases: if old_opposite1==(l2,old_e2): # These opposite edges were glued to each other. # Do the same in the new surface: us.change_edge_gluing(l1,new_glue_e1, l2,new_glue_e2) else: if old_opposite1==(l1,old_e1): # That edge was "self-glued". us.change_edge_gluing(l2,new_glue_e2, l2,new_glue_e2) else: # The edge (l1,old_e1) was glued in a standard way. # That edge now corresponds to (l2,new_glue_e2): us.change_edge_gluing(l2,new_glue_e2, old_opposite1[0],old_opposite1[1]) if old_opposite2==(l2,old_e2): # That edge was "self-glued". us.change_edge_gluing(l1,new_glue_e1, l1,new_glue_e1) else: # The edge (l2,old_e2) was glued in a standard way. # That edge now corresponds to (l1,new_glue_e1): us.change_edge_gluing(l1,new_glue_e1, old_opposite2[0],old_opposite2[1]) return s def join_polygons(self, p1, e1, test=False, in_place=False): r""" Join polygons across the provided edge (p1,e1). By default, it returns the surface obtained by joining the two polygons together. It raises a ValueError if gluing the two polygons together results in a non-convex polygon. This is done to the current surface if in_place is True, and otherwise a mutable copy is made and then modified. If test is True then instead of changing the surface, it just checks to see if the change would be successful and returns True if successful or False if not. EXAMPLES:: sage: from flatsurf import * sage: ss=translation_surfaces.ward(3) sage: s=ss.copy(mutable=True) sage: s.join_polygons(0,0, in_place=True) TranslationSurface built from 2 polygons sage: print(s.polygon(0)) Polygon: (0, 0), (1, -a), (2, 0), (3, a), (2, 2*a), (0, 2*a), (-1, a) sage: s.join_polygons(0,4, in_place=True) TranslationSurface built from 1 polygon sage: print(s.polygon(0)) Polygon: (0, 0), (1, -a), (2, 0), (3, a), (2, 2*a), (1, 3*a), (0, 2*a), (-1, a) """ poly1=self.polygon(p1) p2,e2 = self.opposite_edge(p1,e1) poly2=self.polygon(p2) if p1==p2: if test: return False else: raise ValueError("Can't glue polygon to itself.") t=self.edge_transformation(p2, e2) dt=t.derivative() vs = [] edge_map={} # Store the pairs for the old edges. for i in range(e1): edge_map[len(vs)]=(p1,i) vs.append(poly1.edge(i)) ne=poly2.num_edges() for i in range(1,ne): ee=(e2+i)%ne edge_map[len(vs)]=(p2,ee) vs.append(dt * poly2.edge( ee )) for i in range(e1+1, poly1.num_edges()): edge_map[len(vs)]=(p1,i) vs.append(poly1.edge(i)) try: new_polygon = ConvexPolygons(self.base_ring())(vs) except (ValueError, TypeError): if test: return False else: raise ValueError("Joining polygons along this edge results in a non-convex polygon.") if test: # Gluing would be successful return True # Now no longer testing. Do the gluing. if in_place: ss=self else: ss=self.copy(mutable=True) s=ss.underlying_surface() inv_edge_map={} for key, value in iteritems(edge_map): inv_edge_map[value]=(p1,key) glue_list=[] for i in range(len(vs)): p3,e3 = edge_map[i] p4,e4 = self.opposite_edge(p3,e3) if p4 == p1 or p4 == p2: glue_list.append(inv_edge_map[(p4,e4)]) else: glue_list.append((p4,e4)) if s.base_label()==p2: s.change_base_label(p1) s.remove_polygon(p2) s.change_polygon(p1, new_polygon, glue_list) return ss def subdivide_polygon(self, p, v1, v2, test=False, new_label=None): r""" Cut the polygon with label p along the diagonal joining vertex v1 to vertex v2. This cuts p into two polygons, one will keep the same label. The other will get a new label, which can be provided via new_label. Otherwise a default new label will be provided. If test=False, then the surface will be changed (in place). If test=True, then it just checks to see if the change would be successful The convention is that the resulting subdivided polygon which has an oriented edge going from the original vertex v1 to vertex v2 will keep the label p. The other polygon will get a new label. The change will be done in place. """ poly=self.polygon(p) ne=poly.num_edges() if v1<0 or v2<0 or v1>=ne or v2>=ne: if test: return False else: raise ValueError('Provided vertices out of bounds.') if abs(v1-v2)<=1 or abs(v1-v2)>=ne-1: if test: return False else: raise ValueError('Provided diagonal is not actually a diagonal.') if v2<v1: v2=v2+ne newedges1=[poly.vertex(v2)-poly.vertex(v1)] for i in range(v2, v1+ne): newedges1.append(poly.edge(i)) newpoly1 = ConvexPolygons(self.base_ring())(newedges1) newedges2=[poly.vertex(v1)-poly.vertex(v2)] for i in range(v1,v2): newedges2.append(poly.edge(i)) newpoly2 = ConvexPolygons(self.base_ring())(newedges2) # Store the old gluings old_gluings = {(p,i): self.opposite_edge(p,i) for i in range(ne)} # Update the polygon with label p, add a new polygon. self.underlying_surface().change_polygon(p, newpoly1) if new_label is None: new_label = self.underlying_surface().add_polygon(newpoly2) else: new_label = self.underlying_surface().add_polygon(newpoly2, label=new_label) # This gluing is the diagonal we used. self.underlying_surface().change_edge_gluing(p, 0, new_label, 0) # Setup conversion from old to new labels. old_to_new_labels={} for i in range(v1, v2): old_to_new_labels[(p,i%ne)]=(new_label,i-v1+1) for i in range(v2, ne+v1): old_to_new_labels[(p,i%ne)]=(p,i-v2+1) for e in range(1, newpoly1.num_edges()): pair = old_gluings[(p,(v2+e-1)%ne)] if pair in old_to_new_labels: pair = old_to_new_labels[pair] self.underlying_surface().change_edge_gluing(p, e, pair[0], pair[1]) for e in range(1, newpoly2.num_edges()): pair = old_gluings[(p,(v1+e-1)%ne)] if pair in old_to_new_labels: pair = old_to_new_labels[pair] self.underlying_surface().change_edge_gluing(new_label, e, pair[0], pair[1]) def singularity(self, l, v, limit=None): r""" Represents the Singularity associated to the v-th vertex of the polygon with label l. If the surface is infinite, the limit needs to be set. In this case the construction of the singularity is successful if the sequence of vertices hit by passing through edges closes up in limit or less steps. EXAMPLES:: sage: from flatsurf import * sage: s = translation_surfaces.square_torus() sage: pc = s.minimal_cover(cover_type="planar") sage: pc.singularity(pc.base_label(),0) Traceback (most recent call last): ... ValueError: need a limit when working with an infinite surface sage: pc.singularity(pc.base_label(),0,limit=4) singularity with vertex equivalence class frozenset(...) """ return Singularity(self,l,v,limit) def point(self, label, point, ring=None, limit=None): r""" Return a point in this surface. INPUT: - ``label`` - label of the polygon - ``point`` - coordinates of the point inside the polygon - ``ring`` (optional) - a ring for the coordinates - ``limit`` (optional) - undocumented (only necessary if the point corresponds to a singularity in an infinite surface) EXAMPLES:: sage: from flatsurf import * sage: s = translation_surfaces.square_torus() sage: pc = s.minimal_cover(cover_type="planar") sage: pc.surface_point(pc.base_label(),(0,0)) Traceback (most recent call last): ... ValueError: need a limit when working with an infinite surface sage: pc.surface_point(pc.base_label(),(1,0),limit=4) Surface point with 4 coordinate representations sage: z = pc.surface_point(pc.base_label(),(sqrt(2)-1,sqrt(3)-1),ring=AA) sage: next(iter(z.coordinates(z.labels()[0]))).parent() Vector space of dimension 2 over Algebraic Real Field """ return SurfacePoint(self, label, point, ring=ring, limit=limit) # TODO: deprecate surface_point = point def ramified_cover(self, degree, data): r""" Build a ramified cover of this surface with given ``degree`` and ramification ``data``. INPUT: - ``degree`` (integer) -- the degree of the cover - ``data`` -- dictionary that associates a pair ``(polygon_label, edge_number)`` a permutation of ``{1, 2, ..., d}`` EXAMPLES: The L-shape origami:: sage: import flatsurf sage: T = flatsurf.translation_surfaces.square_torus() sage: T.ramified_cover(3, {(0,0): '(1,2)', (0,1): '(1,3)'}) TranslationSurface built from 3 polygons sage: O = T.ramified_cover(3, {(0,0): '(1,2)', (0,1): '(1,3)'}) sage: O.stratum() H_2(2) TESTS:: sage: import flatsurf sage: T = flatsurf.translation_surfaces.square_torus() sage: T.ramified_cover(3, {(0,0): '(1,2)', (0,2): '(1,3)'}) Traceback (most recent call last): ... ValueError: inconsistent covering data """ if not self.is_finite(): raise ValueError("this method is only available for finite surfaces") return type(self)(self._s.ramified_cover(degree, data)) def minimal_cover(self, cover_type = "translation"): r""" Return the minimal translation or half-translation cover of the surface. Cover type may be either "translation", "half-translation" or "planar". The minimal planar cover of a surface S is the smallest cover C so that the developing map from the universal cover U to the plane induces a well defined map from C to the plane. This is an infinite translation surface that is naturally a branched cover of the plane. EXAMPLES:: sage: from flatsurf.geometry.surface import Surface_list sage: s = Surface_list(QQ) sage: from flatsurf.geometry.polygon import polygons sage: square = polygons.square(field=QQ) sage: s.add_polygon(square) 0 sage: s.change_edge_gluing(0,0,0,1) sage: s.change_edge_gluing(0,2,0,3) sage: from flatsurf.geometry.cone_surface import ConeSurface sage: cs = ConeSurface(s) sage: ts = cs.minimal_cover(cover_type="translation") sage: ts TranslationSurface built from 4 polygons sage: hts = cs.minimal_cover(cover_type="half-translation") sage: hts HalfTranslationSurface built from 2 polygons sage: TestSuite(hts).run() sage: ps = cs.minimal_cover(cover_type="planar") sage: ps TranslationSurface built from infinitely many polygons sage: TestSuite(ps).run(skip="_test_pickling") sage: from flatsurf import * sage: S = similarity_surfaces.example() sage: T = S.minimal_cover(cover_type="translation") sage: T TranslationSurface built from infinitely many polygons sage: T.polygon(T.base_label()) Polygon: (0, 0), (2, -2), (2, 0) """ if cover_type == "translation": from flatsurf.geometry.translation_surface import TranslationSurface from flatsurf.geometry.minimal_cover import MinimalTranslationCover return TranslationSurface(MinimalTranslationCover(self)) if cover_type == "half-translation": from flatsurf.geometry.half_translation_surface import HalfTranslationSurface from flatsurf.geometry.minimal_cover import MinimalHalfTranslationCover return HalfTranslationSurface(MinimalHalfTranslationCover(self)) if cover_type == "planar": from flatsurf.geometry.translation_surface import TranslationSurface from flatsurf.geometry.minimal_cover import MinimalPlanarCover return TranslationSurface(MinimalPlanarCover(self)) raise ValueError("Provided cover_type is not supported.") def minimal_translation_cover(self): r""" Return the minimal translation cover. "Be careful that if the surface is not built from one polygon, this is not the smallest translation cover of the surface." - Vincent "I disagree with the prior statement. Can you provide an example?" -Pat """ from sage.misc.superseded import deprecation deprecation(13109, "minimal_translation_cover is deprecated. Use minimal_cover(cover_type = \"translation\") instead.") from flatsurf.geometry.translation_surface import MinimalTranslationCover, TranslationSurface return TranslationSurface(MinimalTranslationCover(self)) def vector_space(self): r""" Return the vector space in which self naturally embeds. """ from sage.modules.free_module import VectorSpace return VectorSpace(self.base_ring(), 2) def fundamental_group(self, base_label=None): r""" Return the fundamental group of this surface. """ if not self.is_finite(): raise ValueError("the method only work for finite surfaces") if base_label is None: base_label = self.base_label() from .fundamental_group import FundamentalGroup return FundamentalGroup(self, base_label) def tangent_bundle(self, ring=None): r""" Return the tangent bundle INPUT: - ``ring`` -- an optional field (defaults to the coordinate field of the surface) """ if ring is None: ring = self.base_ring() try: return self._tangent_bundle_cache[ring] except AttributeError: self._tangent_bundle_cache = {} except KeyError: pass from .tangent_bundle import SimilaritySurfaceTangentBundle self._tangent_bundle_cache[ring] = SimilaritySurfaceTangentBundle(self, ring) return self._tangent_bundle_cache[ring] def tangent_vector(self, lab, p, v, ring=None): r""" Return a tangent vector. INPUT: - ``lab`` -- label of a polygon - ``p`` -- coordinates of a point in the polygon - ``v`` -- coordinates of a vector in R^2 EXAMPLES:: sage: from flatsurf.geometry.chamanara import chamanara_surface sage: S = chamanara_surface(1/2) sage: S.tangent_vector(S.base_label(), (1/2,1/2), (1,1)) SimilaritySurfaceTangentVector in polygon (1, -1, 0) based at (1/2, -3/2) with vector (1, 1) sage: K.<sqrt2> = QuadraticField(2) sage: S.tangent_vector(S.base_label(), (1/2,1/2), (1,sqrt2), ring=K) SimilaritySurfaceTangentVector in polygon (1, -1, 0) based at (1/2, -3/2) with vector (1, sqrt2) """ p = vector(p) v = vector(v) if p.parent().dimension() != 2 or v.parent().dimension() != 2: raise ValueError("p (={!r}) and v (={!v}) should have two coordinates") if ring is None: ring = self.base_ring() try: return self.tangent_bundle(ring)(lab, p, v) except TypeError: raise TypeError("Use the ring=??? option to construct tangent vectors in other field different from the base_ring().") # Old version seemed to be to accepting of inputs (eg, from Symbolic Ring) #R = p.base_ring() #if R != v.base_ring(): # from sage.structure.element import get_coercion_model # cm = get_coercion_model() # R = cm.common_parent(R, v.base_ring()) # p = p.change_ring(R) # v = v.change_ring(R) #R2 = self.base_ring() #if R != R2: # if R2.has_coerce_map_from(R): # p = p.change_ring(R2) # v = v.change_ring(R2) # R = R2 # elif not R.has_coerce_map_from(R2): # raise ValueError("not able to find a common ring for arguments") #return self.tangent_bundle(R)(lab, p, v) else: return self.tangent_bundle(ring)(lab, p, v) def reposition_polygons(self, in_place=False, relabel=False): r""" We choose a maximal tree in the dual graph of the decomposition into polygons, and ensure that the gluings between two polygons joined by an edge in this tree is by translation. This guarantees that the group generated by the edge identifications is minimal among representions of the surface. In particular, if for instance you have a translation surface which is anot representable as a translation surface (because polygons are presented with rotations) then after this change it will be representable as a translation surface. """ if not self.is_finite(): raise NotImplementedError("Only implemented for finite surfaces.") if in_place: if not self.is_mutable(): raise ValueError("reposition_polygons in_place is only available "+\ "for mutable surfaces.") s=self else: s=self.copy(relabel=relabel, mutable=True) w=s.walker() from flatsurf.geometry.similarity import SimilarityGroup S=SimilarityGroup(self.base_ring()) identity=S.one() it = iter(w) label = next(it) changes = {label:identity} for label in it: edge = w.edge_back(label) label2,edge2 = s.opposite_edge(label, edge) changes[label] = changes[label2] * s.edge_transformation(label,edge) it = iter(w) # Skip the base label: label = next(it) for label in it: p = s.polygon(label) p = changes[label].derivative()*p s.underlying_surface().change_polygon(label,p) return s def triangulation_mapping(self): r""" Return a SurfaceMapping triangulating the suface or None if the surface is already triangulated. """ from flatsurf.geometry.mappings import triangulation_mapping return triangulation_mapping(self) def triangulate(self, in_place=False, label = None, relabel=False): r""" Return a triangulated version of this surface. (This may be mutable or not depending on the input.) If label=None (as default) all polygons are triangulated. Otherwise, label should be a polygon label. In this case, just this polygon is split into triangles. This is done in place if in_place is True (defaults to False). If we are not doing triangulation in_place, then we must make a copy. This can be a relabeled copy (indexed by the non-negative ints) or a label preserving copy. The copy is relabeled if relabel=True (default False). EXAMPLES:: sage: from flatsurf import * sage: s=translation_surfaces.mcmullen_L(1,1,1,1) sage: ss=s.triangulate() sage: gs=ss.graphical_surface() sage: gs.make_all_visible() sage: print(gs) Graphical version of Similarity Surface TranslationSurface built from 6 polygons A non-strictly convex example that caused trouble: sage: from flatsurf import * sage: s=similarity_surfaces.self_glued_polygon(polygons(edges=[(1,1),(-3,-1),(1,0),(1,0)])) sage: s=s.triangulate() sage: s.polygon(0).num_edges() 3 """ if label is None: # We triangulate the whole surface if self.is_finite(): # Store the current labels. labels = [label for label in self.label_iterator()] if in_place: s=self else: s=self.copy(mutable=True) # Subdivide each polygon in turn. for l in labels: s = s.triangulate(in_place=True, label=l) return s else: if in_place: raise ValueError("You can't triangulate an infinite surface in place.") from flatsurf.geometry.delaunay import LazyTriangulatedSurface return self.__class__(LazyTriangulatedSurface(self)) else: poly = self.polygon(label) n=poly.num_edges() if n>3: if in_place: s=self else: s=self.copy(mutable=True) else: # This polygon is already a triangle. return self from flatsurf.geometry.polygon import wedge_product for i in range(n-3): poly = s.polygon(label) n=poly.num_edges() for i in range(n): e1=poly.edge(i) e2=poly.edge((i+1)%n) if wedge_product(e1,e2) != 0: # This is in case the polygon is a triangle with subdivided edge. e3=poly.edge((i+2)%n) if wedge_product(e1+e2,e3) != 0: s.subdivide_polygon(label,i,(i+2)%n) break return s raise RuntimeError("Failed to return anything!") def _edge_needs_flip(self,p1,e1): r""" Returns -1 if the the provided edge incident to two triangles which should be flipped to get closer to the Delaunay decomposition. Returns 0 if the quadrilateral formed by the triangles is inscribed in a circle, and returns 1 otherwise. A ValueError is raised if the edge is not indident to two triangles. """ p2,e2=self.opposite_edge(p1,e1) poly1=self.polygon(p1) poly2=self.polygon(p2) if poly1.num_edges()!=3 or poly2.num_edges()!=3: raise ValueError("Edge must be adjacent to two triangles.") from flatsurf.geometry.matrix_2x2 import similarity_from_vectors sim1=similarity_from_vectors(poly1.edge(e1+2),-poly1.edge(e1+1)) sim2=similarity_from_vectors(poly2.edge(e2+2),-poly2.edge(e2+1)) sim=sim1*sim2 return sim[1][0]<0 def _edge_needs_join(self,p1,e1): r""" Returns -1 if the the provided edge incident to two triangles which should be flipped to get closer to the Delaunay decomposition. Returns 0 if the quadrilateral formed by the triangles is inscribed in a circle, and returns 1 otherwise. A ValueError is raised if the edge is not indident to two triangles. """ p2,e2=self.opposite_edge(p1,e1) poly1=self.polygon(p1) poly2=self.polygon(p2) from flatsurf.geometry.matrix_2x2 import similarity_from_vectors sim1=similarity_from_vectors(poly1.vertex(e1) - poly1.vertex(e1+2),\ -poly1.edge(e1+1)) sim2=similarity_from_vectors(poly2.vertex(e2) - poly2.vertex(e2+2),\ -poly2.edge(e2+1)) sim=sim1*sim2 from sage.functions.generalized import sgn return sim[1][0]==0 def delaunay_single_flip(self): r""" Does a single in place flip of a triangulated mutable surface. """ if not self.is_finite(): raise NotImplementedError("Not implemented for infinite surfaces.") lc = self._label_comparator() for (l1,e1),(l2,e2) in self.edge_iterator(gluings=True): if (lc.lt(l1,l2) or (l1==l2 and e1<=e2)) and self._edge_needs_flip(l1,e1): self.triangle_flip(l1, e1, in_place=True) return True return False def is_delaunay_triangulated(self, limit=None): r""" Return if the surface is triangulated and the triangulation is Delaunay. If limit is set, then it checks this only limit many edges. Limit must be set for infinite surfaces. """ if limit is None: if not self.is_finite(): raise NotImplementedError("A limit must be set for infinite surfaces.") limit = self.num_edges() count = 0 for (l1,e1),(l2,e2) in self.edge_iterator(gluings=True): if count >= limit: break count = count+1 if self.polygon(l1).num_edges()!=3: print("Polygon with label "+str(l1)+" is not a triangle.") return False if self.polygon(l2).num_edges()!=3: print("Polygon with label "+str(l2)+" is not a triangle.") return False if self._edge_needs_flip(l1,e1): print("Edge "+str((l1,e1))+" needs to be flipped.") print("This edge is glued to "+str((l2,e2))+".") return False return True def is_delaunay_decomposed(self, limit=None): r""" Return if the decomposition of the surface into polygons is Delaunay. If limit is set, then it checks this only limit many polygons. Limit must be set for infinite surfaces. """ if limit is None: if not self.is_finite(): raise NotImplementedError("A limit must be set for infinite surfaces.") limit = self.num_polygons() count = 0 for (l1,p1) in self.label_iterator(polygons=True): try: c1=p1.circumscribing_circle() except ValueError: # p1 is not circumscribed return False for e1 in range(p1.num_edges()): c2=self.edge_transformation(l1,e1)*c1 l2,e2=self.opposite_edge(l1,e1) if c2.point_position(self.polygon(l2).vertex(e2+2))!=-1: # The circumscribed circle developed into the adjacent polygon # contains a vertex in its interior or boundary. return False return True def delaunay_triangulation(self, triangulated=False, in_place=False, limit=None, direction=None, relabel=False): r""" Returns a Delaunay triangulation of a surface, or make some triangle flips to get closer to the Delaunay decomposition. INPUT: - ``triangulated`` (boolean) - If true, the algorithm assumes the surface is already triangulated. It does this without verification. - ``in_place`` (boolean) - If true, the triangulating and the triangle flips are done in place. Otherwise, a mutable copy of the surface is made. - ``limit`` (None or Integer) - If None, this will return a Delaunay triangulation. If limit is an integer 1 or larger, then at most limit many diagonal flips will be done. - ``direction`` (None or Vector) - with two entries in the base field Used to determine labels when a pair of triangles is flipped. Each triangle has a unique separatrix which points in the provided direction or its negation. As such a vector determines a sign for each triangle. A pair of adjacent triangles have opposite signs. Labels are chosen so that this sign is preserved (as a function of labels). - ``relabel`` (boolean) - If in_place is False, then a copy must be made. By default relabel is False and labels will be respected by this copy. If relabel is True then polygons will be reindexed in an arbitrary way by the non-negative integers. EXAMPLES:: sage: from flatsurf import * sage: from flatsurf.geometry.delaunay import * sage: m = matrix([[2,1],[1,1]]) sage: s = m*translation_surfaces.infinite_staircase() sage: ss = s.delaunay_triangulation(relabel=True) sage: ss.base_label() 0 sage: ss.polygon(0) Polygon: (0, 0), (1, 1), (0, 1) sage: TestSuite(ss).run(skip="_test_pickling") sage: ss.is_delaunay_triangulated(limit=10) True """ if not self.is_finite() and limit is None: if in_place: raise ValueError("in_place delaunay triangulation is not possible for infinite surfaces unless a limit is set.") if self.underlying_surface().is_mutable(): raise ValueError("delaunay_triangulation only works on infinite "+\ "surfaces if they are immutable or if a limit is set.") from flatsurf.geometry.delaunay import LazyDelaunayTriangulatedSurface return self.__class__(LazyDelaunayTriangulatedSurface( \ self,direction=direction, relabel=relabel)) if in_place and not self.is_mutable(): raise ValueError("in_place delaunay_triangulation only defined for mutable surfaces") if triangulated: if in_place: s=self else: s=self.copy(mutable=True, relabel=False) else: if in_place: s=self self.triangulate(in_place=True) else: s=self.copy(relabel=True,mutable=True) s.triangulate(in_place=True) loop=True if direction is None: base_ring = self.base_ring() direction = self.vector_space()( (base_ring.zero(), base_ring.one()) ) else: assert not direction.is_zero() if s.is_finite() and limit is None: from collections import deque unchecked_labels=deque(label for label in s.label_iterator()) checked_labels = set() while unchecked_labels: label = unchecked_labels.popleft() flipped=False for edge in range(3): if s._edge_needs_flip(label,edge): # Record the current opposite edge: label2,edge2=s.opposite_edge(label,edge) # Perform the flip. s.triangle_flip(label, edge, in_place=True, direction=direction) # Move the opposite polygon to the list of labels we need to check. if label2 != label: try: checked_labels.remove(label2) unchecked_labels.append(label2) except KeyError: # Occurs if label2 is not in checked_labels pass flipped=True break if flipped: unchecked_labels.append(label) else: checked_labels.add(label) return s else: # Old method for infinite surfaces, or limits. count=0 lc = self._label_comparator() while loop: loop=False for (l1,e1),(l2,e2) in s.edge_iterator(gluings=True): if (lc.lt(l1,l2) or (l1==l2 and e1<=e2)) and s._edge_needs_flip(l1,e1): s.triangle_flip(l1, e1, in_place=True, direction=direction) count += 1 if not limit is None and count>=limit: return s loop=True break return s def delaunay_single_join(self): if not self.is_finite(): raise NotImplementedError("Not implemented for infinite surfaces.") lc = self._label_comparator() for (l1,e1),(l2,e2) in self.edge_iterator(gluings=True): if (lc.lt(l1,l2) or (l1==l2 and e1<=e2)) and self._edge_needs_join(l1,e1): self.join_polygons(l1, e1, in_place=True) return True return False def delaunay_decomposition(self, triangulated=False, \ delaunay_triangulated=False, in_place=False, direction=None,\ relabel=False): r""" Return the Delaunay Decomposition of this surface. INPUT: - ``triangulated`` (boolean) - If true, the algorithm assumes the surface is already triangulated. It does this without verification. - ``delaunay_triangulated`` (boolean) - If true, the algorithm assumes the surface is already delaunay_triangulated. It does this without verification. - ``in_place`` (boolean) - If true, the triangulating and the triangle flips are done in place. Otherwise, a mutable copy of the surface is made. - ``relabel`` (None or Integer) - If in_place is False, then a copy must be made of the surface. If relabel is False (as default), the copy has the same labels as the original surface. Note that in this case, labels will be added if it is necessary to subdivide polygons into triangles. If relabel is True, the new surface will have polygons labeled by the non-negative integers in an arbitrary way. - ``direction`` - (None or Vector with two entries in the base field) - Used to determine labels when a pair of triangles is flipped. Each triangle has a unique separatrix which points in the provided direction or its negation. As such a vector determines a sign for each triangle. A pair of adjacent triangles have opposite signs. Labels are chosen so that this sign is preserved (as a function of labels). EXAMPLES:: sage: from flatsurf import * sage: s0 = translation_surfaces.octagon_and_squares() sage: a = s0.base_ring().gens()[0] sage: m = Matrix([[1,2+a],[0,1]]) sage: s = m*s0 sage: s = s.triangulate() sage: ss = s.delaunay_decomposition(triangulated=True) sage: ss.num_polygons() 3 sage: p = polygons((4,0),(-2,1),(-2,-1)) sage: s0 = similarity_surfaces.self_glued_polygon(p) sage: s = s0.delaunay_decomposition() sage: TestSuite(s).run() sage: m = matrix([[2,1],[1,1]]) sage: s = m*translation_surfaces.infinite_staircase() sage: ss = s.delaunay_decomposition() sage: ss.base_label() 0 sage: ss.polygon(0) Polygon: (0, 0), (1, 0), (1, 1), (0, 1) sage: TestSuite(ss).run(skip="_test_pickling") sage: ss.is_delaunay_decomposed(limit=10) True """ if not self.is_finite(): if in_place: raise ValueError("in_place delaunay_decomposition is not possible for infinite surfaces.") if self.underlying_surface().is_mutable(): raise ValueError("delaunay_decomposition only works on infinite "+\ "surfaces if they are immutable.") from flatsurf.geometry.delaunay import LazyDelaunaySurface return self.__class__(LazyDelaunaySurface( \ self,direction=direction, relabel=relabel)) if in_place: s=self else: s=self.copy(mutable=True, relabel=relabel) if not delaunay_triangulated: s.delaunay_triangulation(triangulated=triangulated, in_place=True, \ direction=direction) # Now s is Delaunay Triangulated loop=True lc = self._label_comparator() while loop: loop=False for (l1,e1),(l2,e2) in s.edge_iterator(gluings=True): if (lc.lt(l1,l2) or (l1==l2 and e1<=e2)) and s._edge_needs_join(l1,e1): s.join_polygons(l1, e1, in_place=True) loop=True break return s def saddle_connections(self, squared_length_bound, initial_label=None, initial_vertex=None, sc_list=None, check=False): r""" Returns a list of saddle connections on the surface whose length squared is less than or equal to squared_length_bound. The length of a saddle connection is measured using holonomy from polygon in which the trajectory starts. If initial_label and initial_vertex are not provided, we return all saddle connections satisfying the bound condition. If initial_label and initial_vertex are provided, it only provides saddle connections emanating from the corresponding vertex of a polygon. If only initial_label is provided, the added saddle connections will only emanate from the corresponding polygon. If sc_list is provided the found saddle connections are appended to this list and the resulting list is returned. If check==True it uses the checks in the SaddleConnection class to sanity check our results. EXAMPLES:: sage: from flatsurf import * sage: s = translation_surfaces.square_torus() sage: sc_list = s.saddle_connections(13, check=True) sage: len(sc_list) 32 """ assert squared_length_bound > 0 if sc_list is None: sc_list = [] if initial_label is None: assert self.is_finite() assert initial_vertex is None, "If initial_label is not provided, then initial_vertex must not be provided either." for label in self.label_iterator(): self.saddle_connections(squared_length_bound, initial_label=label, sc_list=sc_list) return sc_list if initial_vertex is None: for vertex in range( self.polygon(initial_label).num_edges() ): self.saddle_connections(squared_length_bound, initial_label=initial_label, initial_vertex=vertex, sc_list=sc_list) return sc_list # Now we have a specified initial_label and initial_vertex SG = SimilarityGroup(self.base_ring()) start_data = (initial_label, initial_vertex) circle = Circle(self.vector_space().zero(), squared_length_bound, base_ring = self.base_ring()) p = self.polygon(initial_label) v = p.vertex(initial_vertex) last_sim = SG(-v[0],-v[1]) # First check the edge eminating rightward from the start_vertex. e = p.edge(initial_vertex) if e[0]**2 + e[1]**2 <= squared_length_bound: sc_list.append( SaddleConnection(self, start_data, e) ) # Represents the bounds of the beam of trajectories we are sending out. wedge = ( last_sim( p.vertex((initial_vertex+1)%p.num_edges()) ), last_sim( p.vertex((initial_vertex+p.num_edges()-1)%p.num_edges()) )) # This will collect the data we need for a depth first search. chain = [(last_sim, initial_label, wedge, [(initial_vertex+p.num_edges()-i)%p.num_edges() for i in range(2,p.num_edges())])] while len(chain)>0: # Should verts really be edges? sim, label, wedge, verts = chain[-1] if len(verts) == 0: chain.pop() continue vert = verts.pop() #print("Inspecting "+str(vert)) p = self.polygon(label) # First check the vertex vert_position = sim(p.vertex(vert)) #print(wedge[1].n()) if wedge_product(wedge[0], vert_position) > 0 and \ wedge_product(vert_position, wedge[1]) > 0 and \ vert_position[0]**2 + vert_position[1]**2 <= squared_length_bound: sc_list.append( SaddleConnection(self, start_data, vert_position, end_data = (label,vert), end_direction = ~sim.derivative()*-vert_position, holonomy = vert_position, end_holonomy = ~sim.derivative()*-vert_position, check = check) ) # Now check if we should develop across the edge vert_position2 = sim(p.vertex( (vert+1)%p.num_edges() )) if wedge_product(vert_position,vert_position2)>0 and \ wedge_product(wedge[0],vert_position2)>0 and \ wedge_product(vert_position,wedge[1])>0 and \ circle.line_segment_position(vert_position, vert_position2)==1: if wedge_product(wedge[0], vert_position) > 0: # First in new_wedge should be vert_position if wedge_product(vert_position2, wedge[1]) > 0: new_wedge = (vert_position, vert_position2) else: new_wedge = (vert_position, wedge[1]) else: if wedge_product(vert_position2, wedge[1]) > 0: new_wedge = (wedge[0], vert_position2) else: new_wedge=wedge new_label, new_edge = self.opposite_edge(label, vert) new_sim = sim*~self.edge_transformation(label,vert) p = self.polygon(new_label) chain.append( (new_sim, new_label, new_wedge, [(new_edge+p.num_edges()-i)%p.num_edges() for i in range(1,p.num_edges())]) ) return sc_list def set_default_graphical_surface(self, graphical_surface): r""" Replace the default graphical surface with the provided GraphicalSurface. """ from flatsurf.graphical.surface import GraphicalSurface if not isinstance(graphical_surface, GraphicalSurface): raise ValueError("graphical_surface must be a GraphicalSurface") if self != graphical_surface.get_surface(): raise ValueError("The provided graphical_surface renders a different surface!") self._gs = graphical_surface def graphical_surface(self, *args, **kwds): r""" Return a GraphicalSurface representing this surface. By default this returns a cached version of the GraphicalSurface. If ``cached=False`` is provided as a keyword option then a new GraphicalSurface is returned. Other keyword options: INPUT: - ``cached`` -- a boolean (default ``True``). If true return a cached GraphicalSurface. Otherwise we make a new one. - ``polygon_labels`` -- a boolean (default ``True``) whether the label of polygons are displayed - ``edge_labels`` -- option to control the display of edge labels. It can be one of - ``False`` or ``None`` for no labels - ``'gluings'`` -- to put on each side of each non-adjacent edge, the name of the polygon to which it is glued - ``'number'`` -- to put on each side of each edge the number of the edge - ``'gluings and numbers'`` -- full information - ``'letter'`` -- add matching letters to glued edges in an arbitrary way - ``default_position_function`` -- a function mapping polygon labels to similarities describing the position of the corresponding polygon. EXAMPLES: Test the difference between the cached graphical_surface and the uncached version:: sage: from flatsurf import * sage: s = translation_surfaces.octagon_and_squares() sage: s.plot() # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 32 graphics primitives sage: s.graphical_surface(cached=False,adjacencies=[]).plot() # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 18 graphics primitives """ from flatsurf.graphical.surface import GraphicalSurface if "cached" in kwds: if not kwds["cached"]: # cached=False: return a new surface. kwds.pop("cached",None) return GraphicalSurface(self, *args, **kwds) kwds.pop("cached",None) if hasattr(self, '_gs'): self._gs.process_options(*args, **kwds) else: self._gs = GraphicalSurface(self, *args, **kwds) return self._gs def plot(self, *args, **kwds): r""" Returns a plot of the surface. There may be zero or one argument. If provided the single argument should be a GraphicalSurface whick will be used in the plot. INPUT: - ``polygon_labels`` -- a boolean (default ``True``) whether the label of polygons are displayed - ``edge_labels`` -- option to control the display of edge labels. It can be one of - ``False`` or ``None`` for no labels - ``'gluings'`` -- to put on each side of each non-adjacent edge, the name of the polygon to which it is glued - ``'number'`` -- to put on each side of each edge the number of the edge - ``'gluings and number'`` -- full information - ``adjacencies`` -- a list of pairs ``(p,e)`` to be used to set adjacencies of polygons. - ``default_position_function`` -- a function mapping polygon labels to similarities describing the position of the corresponding polygon. """ if len(args) > 1: raise ValueError("SimilaritySurface.plot() can take at most one non-keyword argument.") if len(args)==1: from flatsurf.graphical.surface import GraphicalSurface if not isinstance(args[0], GraphicalSurface): raise ValueError("If an argument is provided, it must be a GraphicalSurface.") gs = args[0] gs.process_options(**kwds) else: gs = self.graphical_surface(**kwds) return gs.plot() def plot_polygon(self, label, graphical_surface = None, plot_polygon = True, plot_edges = True, plot_edge_labels = True, edge_labels = None, polygon_options = {"axes":True}, edge_options = None, edge_label_options = None): r""" Returns a plot of the polygon with the provided label. Note that this method plots the polygon in its coordinates as opposed to graphical coordinates that the :func:``plot`` method uses. This makes it useful for visualizing the natural coordinates of the polygon. INPUT: - ``graphical_surface`` -- (default ``None``) If provided this function pulls graphical options from the graphical surface. If not provided, we use the default graphical surface. - ``plot_polygon`` -- (default ``True``) If True, we plot the solid polygon. - ``polygon_options`` -- (default ``{"axes":True}``) Options for the rendering of the polygon. These options will be passed to :func:`~flatsurf.graphical.polygon.GraphicalPolygon.plot_polygon`. This should be either None or a dictionary. - ``plot_edges`` -- (default ``True``) If True, we plot the edges of the polygon as segments. - ``edge_options`` -- (default ``None``) Options for the rendering of the polygon edges. These options will be passed to :func:`~flatsurf.graphical.polygon.GraphicalPolygon.plot_edge`. This should be either None or a dictionary. - ``plot_edge_labels`` -- (default ``True``) If True, we plot labels on the edges. - ``edge_label_options`` -- (default ``None``) Options for the rendering of the edge labels. These options will be passed to :func:`~flatsurf.graphical.polygon.GraphicalPolygon.plot_edge_label`. This should be either None or a dictionary. - ``edge_labels`` -- (default ``None``) If None and plot_edge_labels is True, we write the edge number on each edge. Otherwise edge_labels should be a list of strings of length equal to the number of edges of the polygon. The strings will be printed on each edge. EXAMPLES:: sage: from flatsurf import * sage: s = similarity_surfaces.example() sage: s.plot() # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 13 graphics primitives s.plot_polygon(1) # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 7 graphics primitives sage: labels = [] sage: p = s.polygon(1) sage: for e in range(p.num_edges()): \ labels.append(str(p.edge(e))) sage: s.plot_polygon(1, polygon_options=None, plot_edges=False, \ edge_labels=labels, edge_label_options={"color":"red"}) # not tested (problem with matplotlib font caches on Travis) Graphics object consisting of 4 graphics primitives """ if graphical_surface is None: graphical_surface = self.graphical_surface() p = self.polygon(label) from flatsurf.graphical.polygon import GraphicalPolygon gp = GraphicalPolygon(p) if plot_polygon: if polygon_options is None: o = graphical_surface.polygon_options else: o = graphical_surface.polygon_options.copy() o.update(polygon_options) plt = gp.plot_polygon(**o) if plot_edges: if edge_options is None: o = graphical_surface.non_adjacent_edge_options else: o = graphical_surface.non_adjacent_edge_options.copy() o.update(edge_options) for e in range(p.num_edges()): plt += gp.plot_edge(e, **o) if plot_edge_labels: if edge_label_options is None: o = graphical_surface.edge_label_options else: o = graphical_surface.edge_label_options.copy() o.update(edge_label_options) for e in range(p.num_edges()): if edge_labels is None: el = str(e) else: el = edge_labels[e] plt += gp.plot_edge_label(e, el, **o) return plt # I'm not sure we want to support this... # # def minimize_monodromy_mapping(self): # r""" # Return a mapping from this surface to a similarity surface # with a minimal monodromy group. # Note that this may be slow for infinite surfaces. # # EXAMPLES:: # sage: from flatsurf.geometry.polygon import ConvexPolygons # sage: K.<sqrt2> = NumberField(x**2 - 2, embedding=1.414) # sage: octagon = ConvexPolygons(K)([(1,0),(sqrt2/2, sqrt2/2),(0, 1),(-sqrt2/2, sqrt2/2),(-1,0),(-sqrt2/2, -sqrt2/2),(0, -1),(sqrt2/2, -sqrt2/2)]) # sage: square = ConvexPolygons(K)([(1,0),(0,1),(-1,0),(0,-1)]) # sage: gluings = [((0,i),(1+(i%2),i//2)) for i in range(8)] # sage: from flatsurf.geometry.surface import surface_from_polygons_and_gluings # sage: s=surface_from_polygons_and_gluings([octagon,square,square],gluings) # sage: print s # Rational cone surface built from 3 polygons # sage: m=s.minimize_monodromy_mapping() # sage: s2=m.codomain() # sage: print s2 # Translation surface built from 3 polygons # sage: v=s.tangent_vector(2,(0,0),(1,0)) # sage: print m.push_vector_forward(v) # SimilaritySurfaceTangentVector in polygon 2 based at (0, 0) with vector (-1/2*sqrt2, -1/2*sqrt2) # sage: w=s2.tangent_vector(2,(0,0),(0,-1)) # sage: print m.pull_vector_back(w) # SimilaritySurfaceTangentVector in polygon 2 based at (0, 0) with vector (1/2*sqrt2, 1/2*sqrt2) # """ # lw = self.walker() # class MatrixFunction: # def __init__(self, lw): # self._lw=lw # from sage.matrix.constructor import identity_matrix # self._d = {lw.surface().base_label(): # identity_matrix(lw.surface().base_ring(), n=2)} # def __call__(self, label): # try: # return self._d[label] # except KeyError: # e = self._lw.edge_back(label) # label2,e2 = self._lw.surface().opposite_edge(label,e) # m=self._lw.surface().edge_matrix(label,e) * self(label2) # self._d[label]=m # return m # mf = MatrixFunction(lw) # from flatsurf.geometry.mappings import ( # MatrixListDeformedSurfaceMapping, # IdentityMapping) # mapping = MatrixListDeformedSurfaceMapping(self, mf) # surface_type = mapping.codomain().compute_surface_type_from_gluings(limit=100) # new_codomain = convert_to_type(mapping.codomain(),surface_type) # identity = IdentityMapping(mapping.codomain(), new_codomain) # return identity * mapping # # def minimal_monodromy_surface(self): # r""" # Return an equivalent similarity surface with minimal monodromy. # Note that this may be slow for infinite surfaces. # # EXAMPLES:: # sage: from flatsurf.geometry.polygon import ConvexPolygons # sage: K.<sqrt2> = NumberField(x**2 - 2, embedding=1.414) # sage: octagon = ConvexPolygons(K)([(1,0),(sqrt2/2, sqrt2/2),(0, 1),(-sqrt2/2, sqrt2/2),(-1,0),(-sqrt2/2, -sqrt2/2),(0, -1),(sqrt2/2, -sqrt2/2)]) # sage: square = ConvexPolygons(K)([(1,0),(0,1),(-1,0),(0,-1)]) # sage: gluings = [((0,i),(1+(i%2),i//2)) for i in range(8)] # sage: from flatsurf.geometry.surface import surface_from_polygons_and_gluings # sage: s=surface_from_polygons_and_gluings([octagon,square,square],gluings) # sage: print s # Rational cone surface built from 3 polygons # sage: s2=s.minimal_monodromy_surface() # sage: print s2 # Translation surface built from 3 polygons # """ # return self.minimize_monodromy_mapping().codomain() def __eq__(self, other): r""" Implements a naive notion of equality where two finite surfaces are equal if: - their base labels are equal, - their polygons are equal and labeled and glued in the same way. For infinite surfaces we use reference equality. Raises a value error if the surfaces are defined over different rings. """ if not self.is_finite(): return self is other if self is other: return True if not isinstance(other, SimilaritySurface): raise TypeError if not other.is_finite(): raise ValueError("Can not compare infinite surfaces.") if self.base_ring() != other.base_ring(): raise ValueError("Refusing to compare surfaces with different base rings.") if not self.is_mutable() and not other.is_mutable(): hash1 = hash(self) hash2 = hash(other) if hash1 != hash2: return False if self.base_label() != other.base_label(): return False if self.num_polygons() != other.num_polygons(): return False for label,polygon in self.label_iterator(polygons=True): try: polygon2 = other.polygon(label) except ValueError: return False if polygon != polygon2: return False for edge in range(polygon.num_edges()): if self.opposite_edge(label,edge) != other.opposite_edge(label,edge): return False return True def __ne__(self, other): return not self == other def __hash__(self): r""" Hash compatible with equals. """ if self._s.is_mutable(): raise ValueError("Attempting to hash with mutable underlying surface.") if hasattr(self, '_hash'): # Return the cached hash. return self._hash # Compute the hash h = 17*hash(self.base_ring())+23*hash(self.base_label()) for pair in self.label_iterator(polygons=True): h = h + 7*hash(pair) for edgepair in self.edge_iterator(gluings=True): h = h + 3*hash(edgepair) self._hash=h return h def erase_marked_points(self): r""" Return an isometric or similar surface without regular vertex of angle 2pi (except in the torus case). EXAMPLES:: sage: import flatsurf sage: G = SymmetricGroup(4) sage: S = flatsurf.translation_surfaces.origami(G('(1,2,3,4)'), G('(1,4,2,3)')) sage: S.stratum() H_2(2, 0) sage: S.erase_marked_points().stratum() H_2(2) sage: for (a,b,c) in [(1,4,11), (1,4,15), (3,4,13)]: ....: T = flatsurf.polygons.triangle(a,b,c) ....: S = flatsurf.similarity_surfaces.billiard(T) ....: S = S.minimal_cover("translation") ....: print(S.erase_marked_points().stratum()) H_6(10) H_6(2^5) H_8(12, 2) """ if self.is_triangulated(): surface = self else: surface = self.triangulate() surface = surface.copy(relabel=True) angles = [adj for a,adj in surface.angles(return_adjacent_edges=True) if a == 1] C = ConvexPolygons(self.base_ring()) V = VectorSpace(self.base_ring(), 2) while angles: # remove the vertex corresponding to angles[-1] adj = angles.pop() assert surface.is_triangulated() n = len(adj) moved_triangles = sorted(set(p for p,_ in adj)) if len(moved_triangles) != n: # we have an edge from the regular point to itself # this is an edge inside a cylinder # TODO: treat this case via # 1. try a flip # 2. try harder raise NotImplementedError # glue together the triangles adjacent in adj to form a (non-necessarily # convex) polygon a = 1 b = 0 boundary = [] # pairs (p,e) of edges on the boundary boundary_inv = {} # inverse map (p,e) -> index in boundary vertices = [] # vertices of the modified polygon for num,(p,e) in enumerate(adj): P = surface.polygon(p) x,y = P.edge(e) vertices.append(V((x, y))) f = (e + 1) % 3 boundary.append((p, f)) boundary_inv[(p, f)] = num e = (e - 1) % 3 sim = surface.edge_transformation(p, e) if sim._a != 1 or sim._b != 0: raise NotImplementedError("only translation surfaces are supported for now") assert a == 1 and b == 0 # triangulate this polygon edges = triangulate(vertices) combinatorial_triangles = build_faces(len(vertices), edges) assert len(combinatorial_triangles) == len(moved_triangles) - 2 new_triangles = [] edge_to_lab = {} for num,(i,j,k) in enumerate(combinatorial_triangles): new_triangles.append(C(vertices=[vertices[i], vertices[j], vertices[k]])) assert (i,j) not in edge_to_lab assert (j,k) not in edge_to_lab assert (k,i) not in edge_to_lab edge_to_lab[(i,j)] = edge_to_lab[(j,k)] = edge_to_lab[(k,i)] = num # build a new surface S = Surface_list(surface.base_ring()) for p in surface.label_iterator(): if p not in moved_triangles: S.add_polygon(surface.polygon(p), label=p) for p,T in zip(moved_triangles, new_triangles): S.add_polygon(T, label=p) # glue edges away from the modified zone for p in surface.label_iterator(): if p in moved_triangles: continue for e in range(3): pp,ee = surface.opposite_edge(p, e) if pp not in moved_triangles: S.set_edge_pairing(p, e, pp, ee) # glue edges of the modified zone for p, tverts in zip(moved_triangles, combinatorial_triangles): for e in range(3): i = tverts[e] j = tverts[(e+1)%3] if j == (i+1)%n: # boundary edge pold,eold = boundary[i] ppold, eeold = surface.opposite_edge(pold, eold) if (ppold,eeold) in boundary_inv: # glued to another triangle of the modified zone ii = boundary_inv[ppold,eeold] jj = (ii+1)%n num = edge_to_lab[ii,jj] pp = moved_triangles[num] t = combinatorial_triangles[num] ee = t.index(ii) S.set_edge_pairing(p, e, pp, ee) else: # glued to an old triangle pp = ppold ee = eeold S.set_edge_pairing(p, e, pp, ee) else: # internal edge num = edge_to_lab[j,i] pp = moved_triangles[num] ee = combinatorial_triangles[num].index(j) S.set_edge_pairing(p, e, pp, ee) surface = type(self)(S) from sage.misc.sage_unittest import TestSuite TestSuite(surface).run() angles = [adj for a,adj in surface.angles(return_adjacent_edges=True) if a == 1] return surface
gpl-2.0
raincoatrun/ThinkStats2
code/hinc.py
67
1494
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2014 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import numpy as np import pandas import thinkplot import thinkstats2 def Clean(s): """Converts dollar amounts to integers.""" try: return int(s.lstrip('$').replace(',', '')) except ValueError: if s == 'Under': return 0 elif s == 'over': return np.inf return None def ReadData(filename='hinc06.csv'): """Reads filename and returns populations in thousands filename: string returns: pandas Series of populations in thousands """ data = pandas.read_csv(filename, header=None, skiprows=9) cols = data[[0, 1]] res = [] for _, row in cols.iterrows(): label, freq = row.values freq = int(freq.replace(',', '')) t = label.split() low, high = Clean(t[0]), Clean(t[-1]) res.append((high, freq)) df = pandas.DataFrame(res) # correct the first range df[0][0] -= 1 # compute the cumulative sum of the freqs df[2] = df[1].cumsum() # normalize the cumulative freqs total = df[2][41] df[3] = df[2] / total # add column names df.columns = ['income', 'freq', 'cumsum', 'ps'] return df def main(): df = ReadData() print(df) if __name__ == "__main__": main()
gpl-3.0
hochthom/kaggle-taxi-ii
src/mk_submission_Experts.py
2
1994
import os import time import numpy as np import cPickle as pickle import pandas as pd from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor from sklearn.cross_validation import ShuffleSplit from utils import haversineKaggle, rmse, CITY_CENTER t0 = time.time() df = pd.read_csv('../data/test_pp_RND.csv') df = df.drop(['TRIP_ID', 'CALL_TYPE', 'TAXI_ID'], axis = 1) X_tst = np.array(df, dtype=np.float) pred = {} for id_ in range(320): filename = '../data/train_pp_TST_%i.csv' % id_ if not os.path.isfile(filename): continue df = pd.read_csv(filename) if df.shape[0] < 1000: print('skipping key point %i (%i)' % (id_, df.shape[0])) continue # factorize categorical columns in training set #df['CALL_TYPE'], ct_index = pd.factorize(df['CALL_TYPE']) #df = df[df['CALL_TYPE'] == 0] # A=2, B=1, C=0 # fill all NaN values with -1 #df = df.fillna(-1) # remove long distance d1 = haversineKaggle(df[['xs', 'ys']], df[['xe', 'ye']]) th1 = np.percentile(d1, [99.9]) df = df.loc[d1 < th1] y = np.ravel(np.log(df['len']*15 + 1)) df.drop(['CALL_TYPE', 'TAXI_ID', 'xe', 'ye', 'len'], axis=1, inplace=True) X = np.array(df, dtype=np.float) print('training classifier of key point %i (sz=%i) ...' % (id_, X.shape[0])) # Initialize the famous Random Forest Regressor from scikit-learn clf = RandomForestRegressor(n_estimators=200, n_jobs=-1, random_state=21) clf.fit(X, y) pred_rf = clf.predict(X_tst[id_, :]) clf = GradientBoostingRegressor(n_estimators=200, max_depth=3, random_state=21) clf.fit(X, y) pred_gb = clf.predict(X_tst[id_, :]) #print 'predicting test data ...' pred[id_] = {'rfr':pred_rf, 'gbr':pred_gb, 'size':X.shape[0]} with open('predictions_TVT_experts.pkl', 'wb') as fp: pickle.dump(pred, fp, -1) print('Done in %.1f sec.' % (time.time() - t0))
mit
PROSIC/PROSIC
prosic/TernaryClassification.py
1
2691
#!/usr/bin/env python from __future__ import print_function, division import matplotlib.pyplot as plt import numpy as np __author__ = "Louis Dijkstra" """ Contains the functionality needed to plot the results of a ternary classification task, e.g., somatic/germline/not present or absent/heterozygous/homozygous. """ def normalizeTable(table): """Normalizes the rows in a 3x3 table, i.e., every row sums up to 100%.""" for row in [0,1,2]: row_total = 0.0 for column in [0,1,2]: # compute row total row_total += table[row][column] if row_total != 0: for column in [0,1,2]: # normalize table[row][column] = table[row][column] / row_total * 100.0 return table def returnFancyIntervalString(interval): """Returns the interval in the form of a string. Suitable for plotting.""" if interval[0] is None: if interval[1] is None: # unbounded return r".-." else: # <= interval[1] return r"$\leq$" + str(interval[1]) elif interval[1] is None: # >= interval[0] return r"$\geq$" + str(interval[0]) return str(interval[0]) + '-' + str(interval[1]) def plotTernaryClassification (class1, class2, class3, length_ranges, class_names = ['not present', 'heterozygous', 'homozygous'], width = .9): layer1, layer2, layer3, labels = [], [], [], [] for i in range(len(length_ranges)): layer1.append(class1[i][0]) layer2.append(class1[i][1]) layer3.append(class1[i][2]) labels.append(returnFancyIntervalString(length_ranges[i])) for i in [0]: layer1.append(0) layer2.append(0) layer3.append(0) labels.append('') for i in range(len(length_ranges)): layer1.append(class2[i][0]) layer2.append(class2[i][1]) layer3.append(class2[i][2]) labels.append(returnFancyIntervalString(length_ranges[i])) for i in [0]: layer1.append(0) layer2.append(0) layer3.append(0) labels.append('') for i in range(len(length_ranges)): layer1.append(class3[i][0]) layer2.append(class3[i][1]) layer3.append(class3[i][2]) labels.append(returnFancyIntervalString(length_ranges[i])) ind = np.arange(len(labels)) bottom = layer1 plot_layer1 = plt.bar(ind, layer1, width, color = 'b') plot_layer2 = plt.bar(ind, layer2, width, color = 'r', bottom = bottom) for i in range(len(bottom)): bottom[i] += layer2[i] plot_layer3 = plt.bar(ind, layer3, width, color = 'g', bottom = bottom) x_min,x_max,y_min,y_max = plt.axis() plt.axis((x_min, x_max, 0, 100)) plt.xticks(ind + width / 2.0, labels) plt.yticks(np.arange(0,101,20), ('0%', '20%', '40%', '60%', '80%', '100%')) plt.grid(True, axis='y') plt.legend( (plot_layer1[0], plot_layer2[0], plot_layer3[0]), class_names, loc='upper center', bbox_to_anchor=(0.5, -0.05), ncol=3) plt.show()
gpl-3.0
alexandrebarachant/mne-python
mne/decoding/time_gen.py
1
64983
# Authors: Jean-Remi King <[email protected]> # Alexandre Gramfort <[email protected]> # Denis Engemann <[email protected]> # Clement Moutard <[email protected]> # # License: BSD (3-clause) import numpy as np import copy from .base import _set_cv from ..io.pick import _pick_data_channels from ..viz.decoding import plot_gat_matrix, plot_gat_times from ..parallel import parallel_func, check_n_jobs from ..utils import warn, check_version class _DecodingTime(dict): """A dictionary to configure the training times that has the following keys: 'slices' : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. 'start' : float Time at which to start decoding (in seconds). Defaults to min(epochs.times). 'stop' : float Maximal time at which to stop decoding (in seconds). Defaults to max(times). 'step' : float Duration separating the start of subsequent classifiers (in seconds). Defaults to one time sample. 'length' : float Duration of each classifier (in seconds). Defaults to one time sample. If None, empty dict. """ def __repr__(self): s = "" if "start" in self: s += "start: %0.3f (s)" % (self["start"]) if "stop" in self: s += ", stop: %0.3f (s)" % (self["stop"]) if "step" in self: s += ", step: %0.3f (s)" % (self["step"]) if "length" in self: s += ", length: %0.3f (s)" % (self["length"]) if "slices" in self: # identify depth: training times only contains n_time but # testing_times can contain n_times or n_times * m_times depth = [len(ii) for ii in self["slices"]] if len(np.unique(depth)) == 1: # if all slices have same depth if depth[0] == 1: # if depth is one s += ", n_time_windows: %s" % (len(depth)) else: s += ", n_time_windows: %s x %s" % (len(depth), depth[0]) else: s += (", n_time_windows: %s x [%s, %s]" % (len(depth), min([len(ii) for ii in depth]), max(([len(ii) for ii in depth])))) return "<DecodingTime | %s>" % s class _GeneralizationAcrossTime(object): """Generic object to train and test a series of classifiers at and across different time samples. """ # noqa def __init__(self, picks=None, cv=5, clf=None, train_times=None, test_times=None, predict_method='predict', predict_mode='cross-validation', scorer=None, score_mode='mean-fold-wise', n_jobs=1): from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline # Store parameters in object self.cv = cv # Define training sliding window self.train_times = (_DecodingTime() if train_times is None else _DecodingTime(train_times)) # Define testing sliding window. If None, will be set in predict() if test_times is None: self.test_times = _DecodingTime() elif test_times == 'diagonal': self.test_times = 'diagonal' else: self.test_times = _DecodingTime(test_times) # Default classification pipeline if clf is None: scaler = StandardScaler() estimator = LogisticRegression() clf = Pipeline([('scaler', scaler), ('estimator', estimator)]) self.clf = clf self.predict_mode = predict_mode self.scorer = scorer self.score_mode = score_mode self.picks = picks self.predict_method = predict_method self.n_jobs = n_jobs def fit(self, epochs, y=None): """Train a classifier on each specified time slice. .. note:: This function sets the ``picks_``, ``ch_names``, ``cv_``, ``y_train``, ``train_times_`` and ``estimators_`` attributes. Parameters ---------- epochs : instance of Epochs The epochs. y : list or ndarray of int, shape (n_samples,) or None, optional To-be-fitted model values. If None, y = epochs.events[:, 2]. Returns ------- self : GeneralizationAcrossTime Returns fitted GeneralizationAcrossTime object. Notes ----- If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. If X is a dense array, then the other methods will not support sparse matrices as input. """ from sklearn.base import clone # Clean attributes for att in ['picks_', 'ch_names', 'y_train_', 'cv_', 'train_times_', 'estimators_', 'test_times_', 'y_pred_', 'y_true_', 'scores_', 'scorer_']: if hasattr(self, att): delattr(self, att) n_jobs = self.n_jobs # Extract data from MNE structure X, y, self.picks_ = _check_epochs_input(epochs, y, self.picks) self.ch_names = [epochs.ch_names[p] for p in self.picks_] # Prepare cross-validation self.cv_, self._cv_splits = _set_cv(self.cv, self.clf, X=X, y=y) self.y_train_ = y # Get train slices of times self.train_times_ = _sliding_window(epochs.times, self.train_times, epochs.info['sfreq']) # Parallel across training time # TODO: JRK: Chunking times points needs to be simplified parallel, p_func, n_jobs = parallel_func(_fit_slices, n_jobs) n_chunks = min(len(self.train_times_['slices']), n_jobs) time_chunks = np.array_split(self.train_times_['slices'], n_chunks) out = parallel(p_func(clone(self.clf), X[..., np.unique(np.concatenate(time_chunk))], y, time_chunk, self._cv_splits) for time_chunk in time_chunks) # Unpack estimators into time slices X folds list of lists. self.estimators_ = sum(out, list()) return self def predict(self, epochs): """Classifiers' predictions on each specified testing time slice. .. note:: This function sets the ``y_pred_`` and ``test_times_`` attributes. Parameters ---------- epochs : instance of Epochs The epochs. Can be similar to fitted epochs or not. See predict_mode parameter. Returns ------- y_pred : list of lists of arrays of floats, shape (n_train_t, n_test_t, n_epochs, n_prediction_dims) The single-trial predictions at each training time and each testing time. Note that the number of testing times per training time need not be regular; else ``np.shape(y_pred_) = (n_train_time, n_test_time, n_epochs)``. """ # noqa # Check that classifier has predict_method (e.g. predict_proba is not # always available): if not hasattr(self.clf, self.predict_method): raise NotImplementedError('%s does not have "%s"' % ( self.clf, self.predict_method)) # Check that at least one classifier has been trained if not hasattr(self, 'estimators_'): raise RuntimeError('Please fit models before trying to predict') # Check predict mode if self.predict_mode not in ['cross-validation', 'mean-prediction']: raise ValueError('predict_mode must be a str, "mean-prediction" ' 'or "cross-validation"') # Check that training cv and predicting cv match if self.predict_mode == 'cross-validation': n_est_cv = [len(estimator) for estimator in self.estimators_] heterogeneous_cv = len(set(n_est_cv)) != 1 mismatch_cv = n_est_cv[0] != len(self._cv_splits) mismatch_y = len(self.y_train_) != len(epochs) if heterogeneous_cv or mismatch_cv or mismatch_y: raise ValueError( 'When predict_mode = "cross-validation", the training ' 'and predicting cv schemes must be identical.') # Clean attributes for att in ['y_pred_', 'test_times_', 'scores_', 'scorer_', 'y_true_']: if hasattr(self, att): delattr(self, att) _warn_once.clear() # reset self-baked warning tracker X, y, _ = _check_epochs_input(epochs, None, self.picks_) if not np.all([len(test) for train, test in self._cv_splits]): warn('Some folds do not have any test epochs.') # Define testing sliding window if self.test_times == 'diagonal': test_times = _DecodingTime() test_times['slices'] = [[s] for s in self.train_times_['slices']] test_times['times'] = [[s] for s in self.train_times_['times']] elif isinstance(self.test_times, dict): test_times = copy.deepcopy(self.test_times) else: raise ValueError('test_times must be a dict or "diagonal"') if 'slices' not in test_times: if 'length' not in self.train_times_.keys(): ValueError('Need test_times["slices"] with adhoc train_times.') # Check that same number of time sample in testing than in training # (otherwise it won 't be the same number of features') test_times['length'] = test_times.get('length', self.train_times_['length']) # Make a sliding window for each training time. slices_list = list() for _ in range(len(self.train_times_['slices'])): test_times_ = _sliding_window(epochs.times, test_times, epochs.info['sfreq']) slices_list += [test_times_['slices']] test_times = test_times_ test_times['slices'] = slices_list test_times['times'] = [_set_window_time(test, epochs.times) for test in test_times['slices']] for train, tests in zip(self.train_times_['slices'], test_times['slices']): # The user may define irregular timing. We thus need to ensure # that the dimensionality of each estimator (i.e. training # time) corresponds to the dimensionality of each testing time) if not np.all([len(test) == len(train) for test in tests]): raise ValueError('train_times and test_times must ' 'have identical lengths') # Store all testing times parameters self.test_times_ = test_times n_orig_epochs, _, n_times = X.shape # Subselects the to-be-predicted epochs so as to manipulate a # contiguous array X by using slices rather than indices. test_epochs = [] if self.predict_mode == 'cross-validation': test_idxs = [ii for train, test in self._cv_splits for ii in test] start = 0 for _, test in self._cv_splits: n_test_epochs = len(test) stop = start + n_test_epochs test_epochs.append(slice(start, stop, 1)) start += n_test_epochs X = X[test_idxs] # Prepare parallel predictions across testing time points # FIXME Note that this means that TimeDecoding.predict isn't parallel parallel, p_func, n_jobs = parallel_func(_predict_slices, self.n_jobs) n_test_slice = max(len(sl) for sl in self.test_times_['slices']) # Loop across estimators (i.e. training times) n_chunks = min(n_test_slice, n_jobs) chunks = [np.array_split(slices, n_chunks) for slices in self.test_times_['slices']] chunks = map(list, zip(*chunks)) # To minimize memory during parallelization, we apply some chunking y_pred = parallel(p_func( estimators=self.estimators_, cv_splits=self._cv_splits, predict_mode=self.predict_mode, predict_method=self.predict_method, n_orig_epochs=n_orig_epochs, test_epochs=test_epochs, **dict(zip(['X', 'train_times'], _chunk_data(X, chunk)))) for chunk in chunks) # Concatenate chunks across test time dimension. n_tests = [len(sl) for sl in self.test_times_['slices']] if len(set(n_tests)) == 1: # does GAT deal with a regular array/matrix self.y_pred_ = np.concatenate(y_pred, axis=1) else: # Non regular testing times, y_pred is an array of arrays with # different lengths. # FIXME: should do this with numpy operators only self.y_pred_ = [[test for chunk in train for test in chunk] for train in map(list, zip(*y_pred))] return self.y_pred_ def score(self, epochs=None, y=None): """Score Epochs Estimate scores across trials by comparing the prediction estimated for each trial to its true value. Calls ``predict()`` if it has not been already. .. note:: The function updates the ``scorer_``, ``scores_``, and ``y_true_`` attributes. .. note:: If ``predict_mode`` is 'mean-prediction', ``score_mode`` is automatically set to 'mean-sample-wise'. Parameters ---------- epochs : instance of Epochs | None, optional The epochs. Can be similar to fitted epochs or not. If None, it needs to rely on the predictions ``y_pred_`` generated with ``predict()``. y : list | ndarray, shape (n_epochs,) | None, optional True values to be compared with the predictions ``y_pred_`` generated with ``predict()`` via ``scorer_``. If None and ``predict_mode``=='cross-validation' y = ``y_train_``. Returns ------- scores : list of lists of float The scores estimated by ``scorer_`` at each training time and each testing time (e.g. mean accuracy of ``predict(X)``). Note that the number of testing times per training time need not be regular; else, np.shape(scores) = (n_train_time, n_test_time). If ``score_mode`` is 'fold-wise', np.shape(scores) = (n_train_time, n_test_time, n_folds). """ import sklearn.metrics from sklearn.base import is_classifier from sklearn.metrics import accuracy_score, mean_squared_error if check_version('sklearn', '0.17'): from sklearn.base import is_regressor else: def is_regressor(clf): return False # Run predictions if not already done if epochs is not None: self.predict(epochs) else: if not hasattr(self, 'y_pred_'): raise RuntimeError('Please predict() epochs first or pass ' 'epochs to score()') # Check scorer if self.score_mode not in ('fold-wise', 'mean-fold-wise', 'mean-sample-wise'): raise ValueError("score_mode must be 'fold-wise', " "'mean-fold-wise' or 'mean-sample-wise'. " "Got %s instead'" % self.score_mode) score_mode = self.score_mode if (self.predict_mode == 'mean-prediction' and self.score_mode != 'mean-sample-wise'): warn("score_mode changed from %s set to 'mean-sample-wise' because" " predict_mode is 'mean-prediction'." % self.score_mode) score_mode = 'mean-sample-wise' self.scorer_ = self.scorer if self.scorer_ is None: # Try to guess which scoring metrics should be used if self.predict_method == "predict": if is_classifier(self.clf): self.scorer_ = accuracy_score elif is_regressor(self.clf): self.scorer_ = mean_squared_error elif isinstance(self.scorer_, str): if hasattr(sklearn.metrics, '%s_score' % self.scorer_): self.scorer_ = getattr(sklearn.metrics, '%s_score' % self.scorer_) else: raise KeyError("{0} scorer Doesn't appear to be valid a " "scikit-learn scorer.".format(self.scorer_)) if not self.scorer_: raise ValueError('Could not find a scoring metric for clf=%s ' ' and predict_method=%s. Manually define scorer' '.' % (self.clf, self.predict_method)) # If no regressor is passed, use default epochs events if y is None: if self.predict_mode == 'cross-validation': y = self.y_train_ else: if epochs is not None: y = epochs.events[:, 2] else: raise RuntimeError('y is undefined because ' 'predict_mode="mean-prediction" and ' 'epochs are missing. You need to ' 'explicitly specify y.') if not np.all(np.unique(y) == np.unique(self.y_train_)): raise ValueError('Classes (y) passed differ from classes used ' 'for training. Please explicitly pass your y ' 'for scoring.') elif isinstance(y, list): y = np.array(y) # Clean attributes for att in ['scores_', 'y_true_']: if hasattr(self, att): delattr(self, att) self.y_true_ = y # to be compared with y_pred for scoring # Preprocessing for parallelization across training times; to avoid # overheads, we divide them in large chunks. n_jobs = min(len(self.y_pred_[0][0]), check_n_jobs(self.n_jobs)) parallel, p_func, n_jobs = parallel_func(_score_slices, n_jobs) n_estimators = len(self.train_times_['slices']) n_chunks = min(n_estimators, n_jobs) chunks = np.array_split(range(len(self.train_times_['slices'])), n_chunks) scores = parallel(p_func( self.y_true_, [self.y_pred_[train] for train in chunk], self.scorer_, score_mode, self._cv_splits) for chunk in chunks) # TODO: np.array scores from initialization JRK self.scores_ = np.array([score for chunk in scores for score in chunk]) return self.scores_ _warn_once = dict() def _predict_slices(X, train_times, estimators, cv_splits, predict_mode, predict_method, n_orig_epochs, test_epochs): """Aux function of GeneralizationAcrossTime Run classifiers predictions loop across time samples. Parameters ---------- X : ndarray, shape (n_epochs, n_features, n_times) To-be-fitted data. estimators : list of array-like, shape (n_times, n_folds) List of array of scikit-learn classifiers fitted in cross-validation. cv_splits : list of tuples List of tuples of train and test array generated from cv. train_times : list List of list of slices selecting data from X from which is prediction is generated. predict_method : str Specifies prediction method for the estimator. predict_mode : {'cross-validation', 'mean-prediction'} Indicates how predictions are achieved with regards to the cross- validation procedure: 'cross-validation' : estimates a single prediction per sample based on the unique independent classifier fitted in the cross- validation. 'mean-prediction' : estimates k predictions per sample, based on each of the k-fold cross-validation classifiers, and average these predictions into a single estimate per sample. Default: 'cross-validation' n_orig_epochs : int Original number of predicted epochs before slice definition. Note that the number of epochs may have been cropped if the cross validation is not deterministic (e.g. with ShuffleSplit, we may only predict a subset of epochs). test_epochs : list of slices List of slices to select the tested epoched in the cv. """ # Check inputs n_epochs, _, n_times = X.shape n_train = len(estimators) n_test = [len(test_t_idxs) for test_t_idxs in train_times] # Loop across training times (i.e. estimators) y_pred = None for train_t_idx, (estimator_cv, test_t_idxs) in enumerate( zip(estimators, train_times)): # Checks whether predict is based on contiguous windows of lengths = 1 # time-sample, ranging across the entire times. In this case, we will # be able to vectorize the testing times samples. # Set expected start time if window length == 1 start = np.arange(n_times) contiguous_start = np.array_equal([sl[0] for sl in test_t_idxs], start) window_lengths = np.unique([len(sl) for sl in test_t_idxs]) vectorize_times = (window_lengths == 1) and contiguous_start if vectorize_times: # In vectorize mode, we avoid iterating over time test time indices test_t_idxs = [slice(start[0], start[-1] + 1, 1)] elif _warn_once.get('vectorization', True): # Only warn if multiple testing time if len(test_t_idxs) > 1: warn('Due to a time window with length > 1, unable to ' ' vectorize across testing times. This leads to slower ' 'predictions compared to the length == 1 case.') _warn_once['vectorization'] = False # Iterate over testing times. If vectorize_times: 1 iteration. for ii, test_t_idx in enumerate(test_t_idxs): # Vectoring chan_times features in case of multiple time samples # given to the estimators. X_pred = X if not vectorize_times: X_pred = X[:, :, test_t_idx].reshape(n_epochs, -1) if predict_mode == 'mean-prediction': # Bagging: predict with each fold's estimator and combine # predictions. y_pred_ = _predict(X_pred, estimator_cv, vectorize_times=vectorize_times, predict_method=predict_method) # Initialize y_pred now we know its dimensionality if y_pred is None: n_dim = y_pred_.shape[-1] y_pred = _init_ypred(n_train, n_test, n_orig_epochs, n_dim) if vectorize_times: # When vectorizing, we predict multiple time points at once # to gain speed. The utput predictions thus correspond to # different test time indices. y_pred[train_t_idx][test_t_idx] = y_pred_ else: # Output predictions in a single test time column y_pred[train_t_idx][ii] = y_pred_ elif predict_mode == 'cross-validation': # Predict using the estimator corresponding to each fold for (_, test), test_epoch, estimator in zip( cv_splits, test_epochs, estimator_cv): if test.size == 0: # see issue #2788 continue y_pred_ = _predict(X_pred[test_epoch], [estimator], vectorize_times=vectorize_times, predict_method=predict_method) # Initialize y_pred now we know its dimensionality if y_pred is None: n_dim = y_pred_.shape[-1] y_pred = _init_ypred(n_train, n_test, n_orig_epochs, n_dim) if vectorize_times: # When vectorizing, we predict multiple time points at # once to gain speed. The output predictions thus # correspond to different test_t_idx columns. y_pred[train_t_idx][test_t_idx, test, ...] = y_pred_ else: # Output predictions in a single test_t_idx column y_pred[train_t_idx][ii, test, ...] = y_pred_ return y_pred def _init_ypred(n_train, n_test, n_orig_epochs, n_dim): """Initialize the predictions for each train/test time points. Parameters ---------- n_train : int Number of training time point (i.e. estimators) n_test : list of int List of number of testing time points for each estimator. n_orig_epochs : int Number of epochs passed to gat.predict() n_dim : int Number of dimensionality of y_pred. See np.shape(clf.predict(X)) Returns ------- y_pred : np.array, shape(n_train, n_test, n_orig_epochs, n_dim) Empty array. Notes ----- The ``y_pred`` variable can only be initialized after the first prediction, because we can't know whether it is a a categorical output or a set of probabilistic estimates. If all train time points have the same number of testing time points, then y_pred is a matrix. Else it is an array of arrays. """ if len(set(n_test)) == 1: y_pred = np.empty((n_train, n_test[0], n_orig_epochs, n_dim)) else: y_pred = np.array([np.empty((this_n, n_orig_epochs, n_dim)) for this_n in n_test]) return y_pred def _score_slices(y_true, list_y_pred, scorer, score_mode, cv): """Aux function of GeneralizationAcrossTime that loops across chunks of testing slices. """ scores_list = list() for y_pred in list_y_pred: scores = list() for t, this_y_pred in enumerate(y_pred): if score_mode in ['mean-fold-wise', 'fold-wise']: # Estimate score within each fold scores_ = list() for train, test in cv: scores_.append(scorer(y_true[test], this_y_pred[test])) scores_ = np.array(scores_) # Summarize score as average across folds if score_mode == 'mean-fold-wise': scores_ = np.mean(scores_, axis=0) elif score_mode == 'mean-sample-wise': # Estimate score across all y_pred without cross-validation. scores_ = scorer(y_true, this_y_pred) scores.append(scores_) scores_list.append(scores) return scores_list def _check_epochs_input(epochs, y, picks=None): """Aux function of GeneralizationAcrossTime Format MNE data into scikit-learn X and y. Parameters ---------- epochs : instance of Epochs The epochs. y : ndarray shape (n_epochs) | list shape (n_epochs) | None To-be-fitted model. If y is None, y == epochs.events. picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. Returns ------- X : ndarray, shape (n_epochs, n_selected_chans, n_times) To-be-fitted data. y : ndarray, shape (n_epochs,) To-be-fitted model. picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. """ if y is None: y = epochs.events[:, 2] elif isinstance(y, list): y = np.array(y) # Convert MNE data into trials x features x time matrix X = epochs.get_data() # Pick channels if picks is None: # just use good data channels picks = _pick_data_channels(epochs.info, with_ref_meg=False) if isinstance(picks, (list, np.ndarray)): picks = np.array(picks, dtype=np.int) else: raise ValueError('picks must be a list or a numpy.ndarray of int') X = X[:, picks, :] # Check data sets assert X.shape[0] == y.shape[0] return X, y, picks def _fit_slices(clf, x_chunk, y, slices, cv_splits): """Aux function of GeneralizationAcrossTime Fit each classifier. Parameters ---------- clf : scikit-learn classifier The classifier object. x_chunk : ndarray, shape (n_epochs, n_features, n_times) To-be-fitted data. y : list | array, shape (n_epochs,) To-be-fitted model. slices : list | array, shape (n_training_slice,) List of training slices, indicating time sample relative to X cv_splits : list of tuples List of (train, test) tuples generated from cv.split() Returns ------- estimators : list of lists of estimators List of fitted scikit-learn classifiers corresponding to each training slice. """ from sklearn.base import clone # Initialize n_epochs = len(x_chunk) estimators = list() # Identify the time samples of X_chunck corresponding to X values = np.unique([val for sl in slices for val in sl]) # Loop across time slices for t_slice in slices: # Translate absolute time samples into time sample relative to x_chunk t_slice = np.array([np.where(ii == values)[0][0] for ii in t_slice]) # Select slice X = x_chunk[..., t_slice] # Reshape data matrix to flatten features if multiple time samples. X = X.reshape(n_epochs, np.prod(X.shape[1:])) # Loop across folds estimators_ = list() for fold, (train, test) in enumerate(cv_splits): # Fit classifier clf_ = clone(clf) clf_.fit(X[train, :], y[train]) estimators_.append(clf_) # Store classifier estimators.append(estimators_) return estimators def _sliding_window(times, window, sfreq): """Aux function of GeneralizationAcrossTime Define the slices on which to train each classifier. The user either define the time slices manually in window['slices'] or s/he passes optional params to set them from window['start'], window['stop'], window['step'] and window['length']. Parameters ---------- times : ndarray, shape (n_times,) Array of times from MNE epochs. window : dict keys: ('start', 'stop', 'step', 'length') Either train or test times. Returns ------- window : dict Dictionary to set training and testing times. See Also -------- GeneralizationAcrossTime """ import copy window = _DecodingTime(copy.deepcopy(window)) # Default values time_slices = window.get('slices', None) # If the user hasn't manually defined the time slices, we'll define them # with ``start``, ``stop``, ``step`` and ``length`` parameters. if time_slices is None: window['start'] = window.get('start', times[0]) window['stop'] = window.get('stop', times[-1]) window['step'] = window.get('step', 1. / sfreq) window['length'] = window.get('length', 1. / sfreq) if not (times[0] <= window['start'] <= times[-1]): raise ValueError( 'start (%.2f s) outside time range [%.2f, %.2f].' % ( window['start'], times[0], times[-1])) if not (times[0] <= window['stop'] <= times[-1]): raise ValueError( 'stop (%.2f s) outside time range [%.2f, %.2f].' % ( window['stop'], times[0], times[-1])) if window['step'] < 1. / sfreq: raise ValueError('step must be >= 1 / sampling_frequency') if window['length'] < 1. / sfreq: raise ValueError('length must be >= 1 / sampling_frequency') if window['length'] > np.ptp(times): raise ValueError('length must be <= time range') # Convert seconds to index def find_t_idx(t): # find closest time point return np.argmin(np.abs(np.asarray(times) - t)) start = find_t_idx(window['start']) stop = find_t_idx(window['stop']) step = int(round(window['step'] * sfreq)) length = int(round(window['length'] * sfreq)) # For each training slice, give time samples to be included time_slices = [range(start, start + length)] while (time_slices[-1][0] + step) <= (stop - length + 1): start = time_slices[-1][0] + step time_slices.append(range(start, start + length)) window['slices'] = time_slices window['times'] = _set_window_time(window['slices'], times) return window def _set_window_time(slices, times): """Aux function to define time as the last training time point""" t_idx_ = [t[-1] for t in slices] return times[t_idx_] def _predict(X, estimators, vectorize_times, predict_method): """Aux function of GeneralizationAcrossTime Predict each classifier. If multiple classifiers are passed, average prediction across all classifiers to result in a single prediction per classifier. Parameters ---------- estimators : ndarray, shape (n_folds,) | shape (1,) Array of scikit-learn classifiers to predict data. X : ndarray, shape (n_epochs, n_features, n_times) To-be-predicted data vectorize_times : bool If True, X can be vectorized to predict all times points at once predict_method : str Name of the method used to make predictions from the estimator. For example, both `predict_proba` and `predict` are supported for sklearn.linear_model.LogisticRegression. Note that the scorer must be adapted to the prediction outputs of the method. Defaults to 'predict'. Returns ------- y_pred : ndarray, shape (n_epochs, m_prediction_dimensions) Classifier's prediction for each trial. """ from scipy import stats from sklearn.base import is_classifier # Initialize results: orig_shape = X.shape n_epochs = orig_shape[0] n_times = orig_shape[-1] n_clf = len(estimators) # in simple case, we are predicting each time sample as if it # was a different epoch if vectorize_times: # treat times as trials for optimization X = np.hstack(X).T # XXX JRK: still 17% of cpu time n_epochs_tmp = len(X) # Compute prediction for each sub-estimator (i.e. per fold) # if independent, estimators = all folds for fold, clf in enumerate(estimators): _y_pred = getattr(clf, predict_method)(X) # See inconsistency in dimensionality: scikit-learn/scikit-learn#5058 if _y_pred.ndim == 1: _y_pred = _y_pred[:, None] # initialize predict_results array if fold == 0: predict_size = _y_pred.shape[1] y_pred = np.ones((n_epochs_tmp, predict_size, n_clf)) y_pred[:, :, fold] = _y_pred # Bagging: Collapse y_pred across folds if necessary (i.e. if independent) # XXX need API to identify how multiple predictions can be combined? if fold > 0: if is_classifier(clf) and (predict_method == 'predict'): y_pred, _ = stats.mode(y_pred, axis=2) else: y_pred = np.mean(y_pred, axis=2, keepdims=True) y_pred = y_pred[:, :, 0] # Format shape if vectorize_times: shape = [n_epochs, n_times, y_pred.shape[-1]] y_pred = y_pred.reshape(shape).transpose([1, 0, 2]) return y_pred class GeneralizationAcrossTime(_GeneralizationAcrossTime): """Generalize across time and conditions Creates an estimator object used to 1) fit a series of classifiers on multidimensional time-resolved data, and 2) test the ability of each classifier to generalize across other time samples, as in [1]_. Parameters ---------- picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. cv : int | object If an integer is passed, it is the number of folds. Specific cross-validation objects can be passed, see scikit-learn.model_selection module for the list of possible objects. If clf is a classifier, defaults to StratifiedKFold(n_folds=5), else defaults to KFold(n_folds=5). clf : object | None An estimator compliant with the scikit-learn API (fit & predict). If None the classifier will be a standard pipeline including StandardScaler and LogisticRegression with default parameters. train_times : dict | None A dictionary to configure the training times: * ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. * ``start`` : float Time at which to start decoding (in seconds). Defaults to min(epochs.times). * ``stop`` : float Maximal time at which to stop decoding (in seconds). Defaults to max(times). * ``step`` : float Duration separating the start of subsequent classifiers (in seconds). Defaults to one time sample. * ``length`` : float Duration of each classifier (in seconds). Defaults to one time sample. If None, empty dict. test_times : 'diagonal' | dict | None, optional Configures the testing times. If set to 'diagonal', predictions are made at the time at which each classifier is trained. If set to None, predictions are made at all time points. If set to dict, the dict should contain ``slices`` or be contructed in a similar way to train_times: ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. If None, empty dict. predict_method : str Name of the method used to make predictions from the estimator. For example, both `predict_proba` and `predict` are supported for sklearn.linear_model.LogisticRegression. Note that the scorer must be adapted to the prediction outputs of the method. Defaults to 'predict'. predict_mode : {'cross-validation', 'mean-prediction'} Indicates how predictions are achieved with regards to the cross- validation procedure: * ``cross-validation`` : estimates a single prediction per sample based on the unique independent classifier fitted in the cross-validation. * ``mean-prediction`` : estimates k predictions per sample, based on each of the k-fold cross-validation classifiers, and average these predictions into a single estimate per sample. Defaults to 'cross-validation'. scorer : object | None | str scikit-learn Scorer instance or str type indicating the name of the scorer such as ``accuracy``, ``roc_auc``. If None, set to ``accuracy``. score_mode : {'fold-wise', 'mean-fold-wise', 'mean-sample-wise'} Determines how the scorer is estimated: * ``fold-wise`` : returns the score obtained in each fold. * ``mean-fold-wise`` : returns the average of the fold-wise scores. * ``mean-sample-wise`` : returns score estimated across across all y_pred independently of the cross-validation. This method is faster than ``mean-fold-wise`` but less conventional, use at your own risk. Defaults to 'mean-fold-wise'. n_jobs : int Number of jobs to run in parallel. Defaults to 1. Attributes ---------- ``picks_`` : array-like of int | None The channels indices to include. ch_names : list, array-like, shape (n_channels,) Names of the channels used for training. ``y_train_`` : list | ndarray, shape (n_samples,) The categories used for training. ``train_times_`` : dict A dictionary that configures the training times: * ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. * ``times`` : ndarray, shape (n_clfs,) The training times (in seconds). ``test_times_`` : dict A dictionary that configures the testing times for each training time: ``slices`` : ndarray, shape (n_clfs, n_testing_times) Array of time slices (in indices) used for each classifier. ``times`` : ndarray, shape (n_clfs, n_testing_times) The testing times (in seconds) for each training time. ``cv_`` : CrossValidation object The actual CrossValidation input depending on y. ``estimators_`` : list of list of scikit-learn.base.BaseEstimator subclasses. The estimators for each time point and each fold. ``y_pred_`` : list of lists of arrays of floats, shape (n_train_times, n_test_times, n_epochs, n_prediction_dims) The single-trial predictions estimated by self.predict() at each training time and each testing time. Note that the number of testing times per training time need not be regular, else ``np.shape(y_pred_) = (n_train_time, n_test_time, n_epochs).`` ``y_true_`` : list | ndarray, shape (n_samples,) The categories used for scoring ``y_pred_``. ``scorer_`` : object scikit-learn Scorer instance. ``scores_`` : list of lists of float The scores estimated by ``self.scorer_`` at each training time and each testing time (e.g. mean accuracy of self.predict(X)). Note that the number of testing times per training time need not be regular; else, ``np.shape(scores) = (n_train_time, n_test_time)``. See Also -------- TimeDecoding References ---------- .. [1] Jean-Remi King, Alexandre Gramfort, Aaron Schurger, Lionel Naccache and Stanislas Dehaene, "Two distinct dynamic modes subtend the detection of unexpected sounds", PLoS ONE, 2014 DOI: 10.1371/journal.pone.0085791 .. versionadded:: 0.9.0 """ # noqa def __init__(self, picks=None, cv=5, clf=None, train_times=None, test_times=None, predict_method='predict', predict_mode='cross-validation', scorer=None, score_mode='mean-fold-wise', n_jobs=1): super(GeneralizationAcrossTime, self).__init__( picks=picks, cv=cv, clf=clf, train_times=train_times, test_times=test_times, predict_method=predict_method, predict_mode=predict_mode, scorer=scorer, score_mode=score_mode, n_jobs=n_jobs) def __repr__(self): s = '' if hasattr(self, "estimators_"): s += "fitted, start : %0.3f (s), stop : %0.3f (s)" % ( self.train_times_.get('start', np.nan), self.train_times_.get('stop', np.nan)) else: s += 'no fit' if hasattr(self, 'y_pred_'): s += (", predicted %d epochs" % len(self.y_pred_[0][0])) else: s += ", no prediction" if hasattr(self, "estimators_") and hasattr(self, 'scores_'): s += ',\n ' else: s += ', ' if hasattr(self, 'scores_'): s += "scored" if callable(self.scorer_): s += " (%s)" % (self.scorer_.__name__) else: s += "no score" return "<GAT | %s>" % s def plot(self, title=None, vmin=None, vmax=None, tlim=None, ax=None, cmap='RdBu_r', show=True, colorbar=True, xlabel=True, ylabel=True): """Plotting function of GeneralizationAcrossTime object Plot the score of each classifier at each tested time window. Parameters ---------- title : str | None Figure title. vmin : float | None Min color value for scores. If None, sets to min(``gat.scores_``). vmax : float | None Max color value for scores. If None, sets to max(``gat.scores_``). tlim : ndarray, (train_min, test_max) | None The time limits used for plotting. ax : object | None Plot pointer. If None, generate new figure. cmap : str | cmap object The color map to be used. Defaults to ``'RdBu_r'``. show : bool If True, the figure will be shown. Defaults to True. colorbar : bool If True, the colorbar of the figure is displayed. Defaults to True. xlabel : bool If True, the xlabel is displayed. Defaults to True. ylabel : bool If True, the ylabel is displayed. Defaults to True. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ return plot_gat_matrix(self, title=title, vmin=vmin, vmax=vmax, tlim=tlim, ax=ax, cmap=cmap, show=show, colorbar=colorbar, xlabel=xlabel, ylabel=ylabel) def plot_diagonal(self, title=None, xmin=None, xmax=None, ymin=None, ymax=None, ax=None, show=True, color=None, xlabel=True, ylabel=True, legend=True, chance=True, label='Classif. score'): """Plotting function of GeneralizationAcrossTime object Plot each classifier score trained and tested at identical time windows. Parameters ---------- title : str | None Figure title. xmin : float | None, optional Min time value. xmax : float | None, optional Max time value. ymin : float | None, optional Min score value. If None, sets to min(scores). ymax : float | None, optional Max score value. If None, sets to max(scores). ax : object | None Instance of mataplotlib.axes.Axis. If None, generate new figure. show : bool If True, the figure will be shown. Defaults to True. color : str Score line color. xlabel : bool If True, the xlabel is displayed. Defaults to True. ylabel : bool If True, the ylabel is displayed. Defaults to True. legend : bool If True, a legend is displayed. Defaults to True. chance : bool | float. Defaults to None Plot chance level. If True, chance level is estimated from the type of scorer. label : str Score label used in the legend. Defaults to 'Classif. score'. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ return plot_gat_times(self, train_time='diagonal', title=title, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ax=ax, show=show, color=color, xlabel=xlabel, ylabel=ylabel, legend=legend, chance=chance, label=label) def plot_times(self, train_time, title=None, xmin=None, xmax=None, ymin=None, ymax=None, ax=None, show=True, color=None, xlabel=True, ylabel=True, legend=True, chance=True, label='Classif. score'): """Plotting function of GeneralizationAcrossTime object Plot the scores of the classifier trained at specific training time(s). Parameters ---------- train_time : float | list or array of float Plots scores of the classifier trained at train_time. title : str | None Figure title. xmin : float | None, optional Min time value. xmax : float | None, optional Max time value. ymin : float | None, optional Min score value. If None, sets to min(scores). ymax : float | None, optional Max score value. If None, sets to max(scores). ax : object | None Instance of mataplotlib.axes.Axis. If None, generate new figure. show : bool If True, the figure will be shown. Defaults to True. color : str or list of str Score line color(s). xlabel : bool If True, the xlabel is displayed. Defaults to True. ylabel : bool If True, the ylabel is displayed. Defaults to True. legend : bool If True, a legend is displayed. Defaults to True. chance : bool | float. Plot chance level. If True, chance level is estimated from the type of scorer. label : str Score label used in the legend. Defaults to 'Classif. score'. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ if not np.array(train_time).dtype is np.dtype('float'): raise ValueError('train_time must be float | list or array of ' 'floats. Got %s.' % type(train_time)) return plot_gat_times(self, train_time=train_time, title=title, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ax=ax, show=show, color=color, xlabel=xlabel, ylabel=ylabel, legend=legend, chance=chance, label=label) class TimeDecoding(_GeneralizationAcrossTime): """Train and test a series of classifiers at each time point to obtain a score across time. Parameters ---------- picks : array-like of int | None The channels indices to include. If None the data channels in info, except bad channels, are used. cv : int | object If an integer is passed, it is the number of folds. Specific cross-validation objects can be passed, see scikit-learn.model_selection module for the list of possible objects. If clf is a classifier, defaults to StratifiedKFold(n_folds=5), else defaults to KFold(n_folds=5). clf : object | None An estimator compliant with the scikit-learn API (fit & predict). If None the classifier will be a standard pipeline including StandardScaler and a Logistic Regression with default parameters. times : dict | None A dictionary to configure the training times: ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. ``start`` : float Time at which to start decoding (in seconds). By default, min(epochs.times). ``stop`` : float Maximal time at which to stop decoding (in seconds). By default, max(times). ``step`` : float Duration separating the start of subsequent classifiers (in seconds). By default, equals one time sample. ``length`` : float Duration of each classifier (in seconds). By default, equals one time sample. If None, empty dict. predict_method : str Name of the method used to make predictions from the estimator. For example, both `predict_proba` and `predict` are supported for sklearn.linear_model.LogisticRegression. Note that the scorer must be adapted to the prediction outputs of the method. Defaults to 'predict'. predict_mode : {'cross-validation', 'mean-prediction'} Indicates how predictions are achieved with regards to the cross- validation procedure: * ``cross-validation`` : estimates a single prediction per sample based on the unique independent classifier fitted in the cross-validation. * ``mean-prediction`` : estimates k predictions per sample, based on each of the k-fold cross-validation classifiers, and average these predictions into a single estimate per sample. Defaults to 'cross-validation'. scorer : object | None | str scikit-learn Scorer instance or str type indicating the name of the scorer such as ``accuracy``, ``roc_auc``. If None, set to ``accuracy``. score_mode : {'fold-wise', 'mean-fold-wise', 'mean-sample-wise'} Determines how the scorer is estimated: * ``fold-wise`` : returns the score obtained in each fold. * ``mean-fold-wise`` : returns the average of the fold-wise scores. * ``mean-sample-wise`` : returns score estimated across across all y_pred independently of the cross-validation. This method is faster than ``mean-fold-wise`` but less conventional, use at your own risk. Defaults to 'mean-fold-wise'. n_jobs : int Number of jobs to run in parallel. Defaults to 1. Attributes ---------- ``picks_`` : array-like of int | None The channels indices to include. ch_names : list, array-like, shape (n_channels,) Names of the channels used for training. ``y_train_`` : ndarray, shape (n_samples,) The categories used for training. ``times_`` : dict A dictionary that configures the training times: * ``slices`` : ndarray, shape (n_clfs,) Array of time slices (in indices) used for each classifier. If not given, computed from 'start', 'stop', 'length', 'step'. * ``times`` : ndarray, shape (n_clfs,) The training times (in seconds). ``cv_`` : CrossValidation object The actual CrossValidation input depending on y. ``estimators_`` : list of list of scikit-learn.base.BaseEstimator subclasses. The estimators for each time point and each fold. ``y_pred_`` : ndarray, shape (n_times, n_epochs, n_prediction_dims) Class labels for samples in X. ``y_true_`` : list | ndarray, shape (n_samples,) The categories used for scoring ``y_pred_``. ``scorer_`` : object scikit-learn Scorer instance. ``scores_`` : list of float, shape (n_times,) The scores (mean accuracy of self.predict(X) wrt. y.). See Also -------- GeneralizationAcrossTime Notes ----- The function is equivalent to the diagonal of GeneralizationAcrossTime() .. versionadded:: 0.10 """ # noqa def __init__(self, picks=None, cv=5, clf=None, times=None, predict_method='predict', predict_mode='cross-validation', scorer=None, score_mode='mean-fold-wise', n_jobs=1): super(TimeDecoding, self).__init__(picks=picks, cv=cv, clf=clf, train_times=times, test_times='diagonal', predict_method=predict_method, predict_mode=predict_mode, scorer=scorer, score_mode=score_mode, n_jobs=n_jobs) self._clean_times() def __repr__(self): s = '' if hasattr(self, "estimators_"): s += "fitted, start : %0.3f (s), stop : %0.3f (s)" % ( self.times_.get('start', np.nan), self.times_.get('stop', np.nan)) else: s += 'no fit' if hasattr(self, 'y_pred_'): s += (", predicted %d epochs" % len(self.y_pred_[0])) else: s += ", no prediction" if hasattr(self, "estimators_") and hasattr(self, 'scores_'): s += ',\n ' else: s += ', ' if hasattr(self, 'scores_'): s += "scored" if callable(self.scorer_): s += " (%s)" % (self.scorer_.__name__) else: s += "no score" return "<TimeDecoding | %s>" % s def fit(self, epochs, y=None): """Train a classifier on each specified time slice. .. note:: This function sets the ``picks_``, ``ch_names``, ``cv_``, ``y_train``, ``train_times_`` and ``estimators_`` attributes. Parameters ---------- epochs : instance of Epochs The epochs. y : list or ndarray of int, shape (n_samples,) or None, optional To-be-fitted model values. If None, y = epochs.events[:, 2]. Returns ------- self : TimeDecoding Returns fitted TimeDecoding object. Notes ----- If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a scipy.sparse.csr_matrix, X and/or y may be copied. If X is a dense array, then the other methods will not support sparse matrices as input. """ self._prep_times() super(TimeDecoding, self).fit(epochs, y=y) self._clean_times() return self def predict(self, epochs): """Test each classifier on each specified testing time slice. .. note:: This function sets the ``y_pred_`` and ``test_times_`` attributes. Parameters ---------- epochs : instance of Epochs The epochs. Can be similar to fitted epochs or not. See predict_mode parameter. Returns ------- y_pred : list of lists of arrays of floats, shape (n_times, n_epochs, n_prediction_dims) The single-trial predictions at each time sample. """ # noqa self._prep_times() super(TimeDecoding, self).predict(epochs) self._clean_times() return self.y_pred_ def score(self, epochs=None, y=None): """Score Epochs Estimate scores across trials by comparing the prediction estimated for each trial to its true value. Calls ``predict()`` if it has not been already. .. note:: The function updates the ``scorer_``, ``scores_``, and ``y_true_`` attributes. .. note:: If ``predict_mode`` is 'mean-prediction', ``score_mode`` is automatically set to 'mean-sample-wise'. Parameters ---------- epochs : instance of Epochs | None, optional The epochs. Can be similar to fitted epochs or not. If None, it needs to rely on the predictions ``y_pred_`` generated with ``predict()``. y : list | ndarray, shape (n_epochs,) | None, optional True values to be compared with the predictions ``y_pred_`` generated with ``predict()`` via ``scorer_``. If None and ``predict_mode``=='cross-validation' y = ``y_train_``. Returns ------- scores : list of float, shape (n_times,) The scores estimated by ``scorer_`` at each time sample (e.g. mean accuracy of ``predict(X)``). """ if epochs is not None: self.predict(epochs) else: if not hasattr(self, 'y_pred_'): raise RuntimeError('Please predict() epochs first or pass ' 'epochs to score()') self._prep_times() super(TimeDecoding, self).score(epochs=None, y=y) self._clean_times() return self.scores_ def plot(self, title=None, xmin=None, xmax=None, ymin=None, ymax=None, ax=None, show=True, color=None, xlabel=True, ylabel=True, legend=True, chance=True, label='Classif. score'): """Plotting function Predict each classifier. If multiple classifiers are passed, average prediction across all classifiers to result in a single prediction per classifier. Parameters ---------- title : str | None Figure title. xmin : float | None, optional, Min time value. xmax : float | None, optional, Max time value. ymin : float Min score value. Defaults to 0. ymax : float Max score value. Defaults to 1. ax : object | None Instance of mataplotlib.axes.Axis. If None, generate new figure. show : bool If True, the figure will be shown. Defaults to True. color : str Score line color. Defaults to 'steelblue'. xlabel : bool If True, the xlabel is displayed. Defaults to True. ylabel : bool If True, the ylabel is displayed. Defaults to True. legend : bool If True, a legend is displayed. Defaults to True. chance : bool | float. Defaults to None Plot chance level. If True, chance level is estimated from the type of scorer. label : str Score label used in the legend. Defaults to 'Classif. score'. Returns ------- fig : instance of matplotlib.figure.Figure The figure. """ # XXX JRK: need cleanup in viz self._prep_times() fig = plot_gat_times(self, train_time='diagonal', title=title, xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, ax=ax, show=show, color=color, xlabel=xlabel, ylabel=ylabel, legend=legend, chance=chance, label=label) self._clean_times() return fig def _prep_times(self): """Auxiliary function to allow compatibility with GAT""" self.test_times = 'diagonal' if hasattr(self, 'times'): self.train_times = self.times if hasattr(self, 'times_'): self.train_times_ = self.times_ self.test_times_ = _DecodingTime() self.test_times_['slices'] = [[slic] for slic in self.train_times_['slices']] self.test_times_['times'] = [[tim] for tim in self.train_times_['times']] if hasattr(self, 'scores_'): self.scores_ = [[score] for score in self.scores_] if hasattr(self, 'y_pred_'): self.y_pred_ = [[y_pred] for y_pred in self.y_pred_] def _clean_times(self): """Auxiliary function to allow compatibility with GAT""" if hasattr(self, 'train_times'): self.times = self.train_times if hasattr(self, 'train_times_'): self.times_ = self.train_times_ for attr in ['test_times', 'train_times', 'test_times_', 'train_times_']: if hasattr(self, attr): delattr(self, attr) if hasattr(self, 'y_pred_'): self.y_pred_ = [y_pred[0] for y_pred in self.y_pred_] if hasattr(self, 'scores_'): self.scores_ = [score[0] for score in self.scores_] def _chunk_data(X, slices): """Smart chunking to avoid memory overload. The parallelization is performed across time samples. To avoid overheads, the X data is splitted into large chunks of different time sizes. To avoid duplicating the memory load to each job, we only pass the time samples that are required by each job. The indices of the training times must be adjusted accordingly. """ # from object array to list slices = [sl for sl in slices if len(sl)] selected_times = np.hstack([np.ravel(sl) for sl in slices]) start = np.min(selected_times) stop = np.max(selected_times) + 1 slices_chunk = [sl - start for sl in slices] X_chunk = X[:, :, start:stop] return X_chunk, slices_chunk
bsd-3-clause
rhyswhitley/phendulum
src/model_plotting.py
1
7543
#!/usr/bin/env python import datetime, time, re import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from matplotlib import gridspec # load own modules import spring_dynamics as _sd __author__ = 'Rhys Whitley, Douglas Kelley, Martin De Kauwe' __email__ = '[email protected]' __created__ = datetime.datetime(2015,1,14) __modified__ = time.strftime("%c") __version__ = '1.0' __status__ = 'prototype' # Plot functions class model_plotting(object): def __init__(self, fig_path): """ Initialise class for all necessary plotting requirements variables are set and stored here for easy access and control over all plotting """ self.xlabel = "SWC_smooth" self.ylabel = "NDVI_grass" self.fpath = fig_path self.outcol = "#000000" self.col = ['#DC143C','#4169E1','#3CB371'] self.lab = ['ensemble','in','out'] def plot_allSite_forcing(self, f_mod, data_list, par_list): """ Creates a PDF whose pages contain the results that describes the environmental forcing at each site, as well as the forcing based on out-of-site sampling and as an ensemble of all sites. """ with PdfPages(self.fpath+'environ_forcing.pdf') as pdf: # plot all site points as a reference to the ensemble and out-of-sampling fits # plot the optimised site-specific forcing for data_i, par_i in zip(data_list, par_list): [ self._plot_data(d) for d in data_list ] self._plot_forcing( data_i, par_i, f_mod, pdf ) def _plot_data(self, data): """ Wrapper on a normal plot for preset data illustration """ plt.plot( data[self.xlabel], data[self.ylabel], 'x', color=self.outcol, alpha=0.3 ) def _plot_models(self, xs, fxs, color, label ): """ Wrapper on a normal plot for preset model illustration """ plt.plot( xs, fxs, linestyle='-', lw=5, color=color, label=label, alpha=0.5 ) def _plot_forcing(self, data, k_var, f_mod, pobj): """ Plots the three different expressions of environmental forcing based on the three types of sampling used in the analysis """ # Create vectors for model fits xs = np.arange(0,0.5,1e-3) site_title = set(data["Site"]).pop() plt.plot( data[self.xlabel], data[self.ylabel], 'o', color='black', ms=8 ) [ self._plot_models( xs, f_mod(ks, xs), color=self.col[i], label=self.lab[i] ) for i, ks in enumerate(np.array(k_var)) ] plt.xlabel(r'$\theta_{s 10cm}$', fontsize=18) plt.ylabel(r'NDVI$_{grass}$') plt.axis([0,0.32,-0.05,0.6]) plt.legend(loc=2) plt.title(site_title) pobj.savefig() plt.close() def create_title(self, string): """ Splits the site label into two words based on capital letters""" return re.sub(r"(\w)([A-Z])", r"\1 \2", string) def plot_data_manipulation(self, data_list): """ Creates a PDF whose pages contain the results that describes the environmental forcing at each site, as well as the forcing based on out-of-site sampling and as an ensemble of all sites. """ with PdfPages(self.fpath+'soilwater.pdf') as pdf: [ self._plot_moving_average(d, pdf) for d in data_list ] with PdfPages(self.fpath+'ndvi_timeseries.pdf') as pdf: [ self._plot_inflexion_points(d, pdf) for d in data_list ] def _plot_moving_average(self, data, pobj): """ Adds a Gaussian filter to the soil water content time-seires to elucidate major turning points that align with the NDVI time-series. """ xraw = data["SWC10"] xmes = data["SWC_smooth"] site_title = set(data["Site"]).pop() fig, (ax1,ax2) = plt.subplots(2, 1, sharex=True) ax1.plot( xraw, '-', color='pink' ) ax1.plot( xmes, linestyle='-', color='red', lw=2) ax2.plot( xraw-xmes, '.', color='pink' ) ax1.set_ylabel(r'$\theta_{s}$', fontsize=18) ax2.set_ylabel(r'$\sigma$', fontsize=18) ax2.set_xlabel('Days since ' + data['DT'][0]) ax1.set_title(site_title) pobj.savefig() plt.close() def _plot_inflexion_points(self, data, pobj): yraw = data["NDVI250X"] ymes = data["NDVI_grass"] yd1 = data["dy1/dt1"] yd2 = data["dy2/dt2"] site_title = set(data["Site"]).pop() fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True) ax1.plot(yraw, '-', color='lightblue', label='Total') ax1.plot(ymes, '-', color='blue', lw=2) ax2.plot(yd1, color='red', lw=2, label="$dx/dt$" ) ax2.plot(yd2, color='blue', lw=2, label="$d^2x/dt^2$" ) ax1.set_ylabel('NDVI signal') ax2.set_ylabel(r'$x_{t+1}-x_{t}$', fontsize=16) ax2.set_xlabel('Days since ' + data['DT'][0]) ax2.axis([1,len(ymes),-6e-3,6e-3]) ax2.legend(loc=1) ax1.set_title(site_title) pobj.savefig() plt.close() #================================================================================ # Pendulum #================================================================================ def plot_allSite_pendulum(self, data_list, par_list, f_mod): """ Creates a PDF whose pages contain the results that describes the environmental forcing at each site, as well as the forcing based on out-of-site sampling and as an ensemble of all sites. """ with PdfPages(self.fpath+'phendulum.pdf') as pdf: # plot all site points as a reference to the ensemble and out-of-sampling fits # plot the optimised site-specific forcing for data, par in zip(data_list, par_list): self._plot_pendulum( data, par, f_mod, pdf ) def _plot_pendulum(self, data, kvar, f_mod, pobj): # now assign the optimised coefficients to the pendulum and calculate the motion y_grass = data["NDVI_grass"] x_mes = data["SWC10"] # based on the number of samplings get the prediction of motion springs = [ _sd.spring(k, x_mes, f_mod) for k in np.array(kvar) ] y_mod = [ p.calc_dynamics()['x'] for p in springs ] force_mod = [ f.calc_dynamics()['Fe'] for f in springs ] accel_mod = [ a.calc_dynamics()['a'] for a in springs ] veloc_mod = [ v.calc_dynamics()['v'] for v in springs ] site_title = set(data["Site"]).pop() fig = plt.figure(figsize=(10,7)) # setup plotting grid gs = gridspec.GridSpec(2, 1, height_ratios=[2,1]) ax1 = fig.add_subplot(gs[0]) ax2 = fig.add_subplot(gs[1], sharex=ax1) # remove xlabels on the second and third plots plt.setp(ax1.get_xticklabels(), visible=False) # plot data ax1.plot( y_grass, color='black', lw=2, label="MODIS" ) [ ax1.plot( y_mod[i], lw=2, alpha=0.8, color=self.col[i], label=self.lab[i] ) for i, ks in enumerate(y_mod) ] #ax1.plot( y_mod, color='red', lw=2, label="Pendulum" ) ax2.plot( x_mes, color=self.col[1], alpha=0.8, lw=1.5 ) # labels ax1.set_ylabel( r"NDVI", fontsize=14 ) ax2.set_ylabel( r"$\theta_{s10cm}$", fontsize=18 ) # legends ax1.legend(loc=1) ax1.set_title(site_title, size=20) gs.tight_layout(fig, rect=[0, 0, 1, 0.97]) pobj.savefig() plt.close()
apache-2.0
ben-hopps/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/projections/__init__.py
69
2179
from geo import AitoffAxes, HammerAxes, LambertAxes from polar import PolarAxes from matplotlib import axes class ProjectionRegistry(object): """ Manages the set of projections available to the system. """ def __init__(self): self._all_projection_types = {} def register(self, *projections): """ Register a new set of projection(s). """ for projection in projections: name = projection.name self._all_projection_types[name] = projection def get_projection_class(self, name): """ Get a projection class from its *name*. """ return self._all_projection_types[name] def get_projection_names(self): """ Get a list of the names of all projections currently registered. """ names = self._all_projection_types.keys() names.sort() return names projection_registry = ProjectionRegistry() projection_registry.register( axes.Axes, PolarAxes, AitoffAxes, HammerAxes, LambertAxes) def register_projection(cls): projection_registry.register(cls) def get_projection_class(projection=None): """ Get a projection class from its name. If *projection* is None, a standard rectilinear projection is returned. """ if projection is None: projection = 'rectilinear' try: return projection_registry.get_projection_class(projection) except KeyError: raise ValueError("Unknown projection '%s'" % projection) def projection_factory(projection, figure, rect, **kwargs): """ Get a new projection instance. *projection* is a projection name. *figure* is a figure to add the axes to. *rect* is a :class:`~matplotlib.transforms.Bbox` object specifying the location of the axes within the figure. Any other kwargs are passed along to the specific projection constructor being used. """ return get_projection_class(projection)(figure, rect, **kwargs) def get_projection_names(): """ Get a list of acceptable projection names. """ return projection_registry.get_projection_names()
agpl-3.0
anurag313/scikit-learn
sklearn/svm/tests/test_sparse.py
70
12992
from nose.tools import assert_raises, assert_true, assert_false import numpy as np from scipy import sparse from numpy.testing import (assert_array_almost_equal, assert_array_equal, assert_equal) from sklearn import datasets, svm, linear_model, base from sklearn.datasets import make_classification, load_digits, make_blobs from sklearn.svm.tests import test_svm from sklearn.utils import ConvergenceWarning from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils.testing import assert_warns, assert_raise_message # test sample 1 X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) X_sp = sparse.lil_matrix(X) Y = [1, 1, 1, 2, 2, 2] T = np.array([[-1, -1], [2, 2], [3, 2]]) true_result = [1, 2, 2] # test sample 2 X2 = np.array([[0, 0, 0], [1, 1, 1], [2, 0, 0, ], [0, 0, 2], [3, 3, 3]]) X2_sp = sparse.dok_matrix(X2) Y2 = [1, 2, 2, 2, 3] T2 = np.array([[-1, -1, -1], [1, 1, 1], [2, 2, 2]]) true_result2 = [1, 2, 3] iris = datasets.load_iris() # permute rng = np.random.RandomState(0) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] # sparsify iris.data = sparse.csr_matrix(iris.data) def check_svm_model_equal(dense_svm, sparse_svm, X_train, y_train, X_test): dense_svm.fit(X_train.toarray(), y_train) if sparse.isspmatrix(X_test): X_test_dense = X_test.toarray() else: X_test_dense = X_test sparse_svm.fit(X_train, y_train) assert_true(sparse.issparse(sparse_svm.support_vectors_)) assert_true(sparse.issparse(sparse_svm.dual_coef_)) assert_array_almost_equal(dense_svm.support_vectors_, sparse_svm.support_vectors_.toarray()) assert_array_almost_equal(dense_svm.dual_coef_, sparse_svm.dual_coef_.toarray()) if dense_svm.kernel == "linear": assert_true(sparse.issparse(sparse_svm.coef_)) assert_array_almost_equal(dense_svm.coef_, sparse_svm.coef_.toarray()) assert_array_almost_equal(dense_svm.support_, sparse_svm.support_) assert_array_almost_equal(dense_svm.predict(X_test_dense), sparse_svm.predict(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test)) assert_array_almost_equal(dense_svm.decision_function(X_test_dense), sparse_svm.decision_function(X_test_dense)) if isinstance(dense_svm, svm.OneClassSVM): msg = "cannot use sparse input in 'OneClassSVM' trained on dense data" else: assert_array_almost_equal(dense_svm.predict_proba(X_test_dense), sparse_svm.predict_proba(X_test), 4) msg = "cannot use sparse input in 'SVC' trained on dense data" if sparse.isspmatrix(X_test): assert_raise_message(ValueError, msg, dense_svm.predict, X_test) def test_svc(): """Check that sparse SVC gives the same result as SVC""" # many class dataset: X_blobs, y_blobs = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, Y, T], [X2_sp, Y2, T2], [X_blobs[:80], y_blobs[:80], X_blobs[80:]], [iris.data, iris.target, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.SVC(kernel=kernel, probability=True, random_state=0) sp_clf = svm.SVC(kernel=kernel, probability=True, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_unsorted_indices(): # test that the result with sorted and unsorted indices in csr is the same # we use a subset of digits as iris, blobs or make_classification didn't # show the problem digits = load_digits() X, y = digits.data[:50], digits.target[:50] X_test = sparse.csr_matrix(digits.data[50:100]) X_sparse = sparse.csr_matrix(X) coef_dense = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X, y).coef_ sparse_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse, y) coef_sorted = sparse_svc.coef_ # make sure dense and sparse SVM give the same result assert_array_almost_equal(coef_dense, coef_sorted.toarray()) X_sparse_unsorted = X_sparse[np.arange(X.shape[0])] X_test_unsorted = X_test[np.arange(X_test.shape[0])] # make sure we scramble the indices assert_false(X_sparse_unsorted.has_sorted_indices) assert_false(X_test_unsorted.has_sorted_indices) unsorted_svc = svm.SVC(kernel='linear', probability=True, random_state=0).fit(X_sparse_unsorted, y) coef_unsorted = unsorted_svc.coef_ # make sure unsorted indices give same result assert_array_almost_equal(coef_unsorted.toarray(), coef_sorted.toarray()) assert_array_almost_equal(sparse_svc.predict_proba(X_test_unsorted), sparse_svc.predict_proba(X_test)) def test_svc_with_custom_kernel(): kfunc = lambda x, y: safe_sparse_dot(x, y.T) clf_lin = svm.SVC(kernel='linear').fit(X_sp, Y) clf_mylin = svm.SVC(kernel=kfunc).fit(X_sp, Y) assert_array_equal(clf_lin.predict(X_sp), clf_mylin.predict(X_sp)) def test_svc_iris(): # Test the sparse SVC with the iris dataset for k in ('linear', 'poly', 'rbf'): sp_clf = svm.SVC(kernel=k).fit(iris.data, iris.target) clf = svm.SVC(kernel=k).fit(iris.data.toarray(), iris.target) assert_array_almost_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_almost_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) if k == 'linear': assert_array_almost_equal(clf.coef_, sp_clf.coef_.toarray()) def test_sparse_decision_function(): #Test decision_function #Sanity check, test that decision_function implemented in python #returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1).fit(iris.data, iris.target) dec = safe_sparse_dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int).ravel()]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) def test_error(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X_sp, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X_sp, Y2) clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict(T), true_result) def test_linearsvc(): # Similar to test_SVC clf = svm.LinearSVC(random_state=0).fit(X, Y) sp_clf = svm.LinearSVC(random_state=0).fit(X_sp, Y) assert_true(sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) assert_array_almost_equal(clf.predict(X), sp_clf.predict(X_sp)) clf.fit(X2, Y2) sp_clf.fit(X2_sp, Y2) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=4) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=4) def test_linearsvc_iris(): # Test the sparse LinearSVC with the iris dataset sp_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) clf = svm.LinearSVC(random_state=0).fit(iris.data.toarray(), iris.target) assert_equal(clf.fit_intercept, sp_clf.fit_intercept) assert_array_almost_equal(clf.coef_, sp_clf.coef_, decimal=1) assert_array_almost_equal(clf.intercept_, sp_clf.intercept_, decimal=1) assert_array_almost_equal( clf.predict(iris.data.toarray()), sp_clf.predict(iris.data)) # check decision_function pred = np.argmax(sp_clf.decision_function(iris.data), 1) assert_array_almost_equal(pred, clf.predict(iris.data.toarray())) # sparsify the coefficients on both models and check that they still # produce the same results clf.sparsify() assert_array_equal(pred, clf.predict(iris.data)) sp_clf.sparsify() assert_array_equal(pred, sp_clf.predict(iris.data)) def test_weight(): # Test class weights X_, y_ = make_classification(n_samples=200, n_features=100, weights=[0.833, 0.167], random_state=0) X_ = sparse.csr_matrix(X_) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: 5}) clf.fit(X_[:180], y_[:180]) y_pred = clf.predict(X_[180:]) assert_true(np.sum(y_pred == y_[180:]) >= 11) def test_sample_weights(): # Test weights on individual samples clf = svm.SVC() clf.fit(X_sp, Y) assert_array_equal(clf.predict([X[2]]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X_sp, Y, sample_weight=sample_weight) assert_array_equal(clf.predict([X[2]]), [2.]) def test_sparse_liblinear_intercept_handling(): # Test that sparse liblinear honours intercept_scaling param test_svm.test_dense_liblinear_intercept_handling(svm.LinearSVC) def test_sparse_oneclasssvm(): """Check that sparse OneClassSVM gives the same result as dense OneClassSVM""" # many class dataset: X_blobs, _ = make_blobs(n_samples=100, centers=10, random_state=0) X_blobs = sparse.csr_matrix(X_blobs) datasets = [[X_sp, None, T], [X2_sp, None, T2], [X_blobs[:80], None, X_blobs[80:]], [iris.data, None, iris.data]] kernels = ["linear", "poly", "rbf", "sigmoid"] for dataset in datasets: for kernel in kernels: clf = svm.OneClassSVM(kernel=kernel, random_state=0) sp_clf = svm.OneClassSVM(kernel=kernel, random_state=0) check_svm_model_equal(clf, sp_clf, *dataset) def test_sparse_realdata(): # Test on a subset from the 20newsgroups dataset. # This catchs some bugs if input is not correctly converted into # sparse format or weights are not correctly initialized. data = np.array([0.03771744, 0.1003567, 0.01174647, 0.027069]) indices = np.array([6, 5, 35, 31]) indptr = np.array( [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4]) X = sparse.csr_matrix((data, indices, indptr)) y = np.array( [1., 0., 2., 2., 1., 1., 1., 2., 2., 0., 1., 2., 2., 0., 2., 0., 3., 0., 3., 0., 1., 1., 3., 2., 3., 2., 0., 3., 1., 0., 2., 1., 2., 0., 1., 0., 2., 3., 1., 3., 0., 1., 0., 0., 2., 0., 1., 2., 2., 2., 3., 2., 0., 3., 2., 1., 2., 3., 2., 2., 0., 1., 0., 1., 2., 3., 0., 0., 2., 2., 1., 3., 1., 1., 0., 1., 2., 1., 1., 3.]) clf = svm.SVC(kernel='linear').fit(X.toarray(), y) sp_clf = svm.SVC(kernel='linear').fit(sparse.coo_matrix(X), y) assert_array_equal(clf.support_vectors_, sp_clf.support_vectors_.toarray()) assert_array_equal(clf.dual_coef_, sp_clf.dual_coef_.toarray()) def test_sparse_svc_clone_with_callable_kernel(): # Test that the "dense_fit" is called even though we use sparse input # meaning that everything works fine. a = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0) b = base.clone(a) b.fit(X_sp, Y) pred = b.predict(X_sp) b.predict_proba(X_sp) dense_svm = svm.SVC(C=1, kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0) pred_dense = dense_svm.fit(X, Y).predict(X) assert_array_equal(pred_dense, pred) # b.decision_function(X_sp) # XXX : should be supported def test_timeout(): sp = svm.SVC(C=1, kernel=lambda x, y: x * y.T, probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, sp.fit, X_sp, Y) def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2)
bsd-3-clause
valexandersaulys/airbnb_kaggle_contest
venv/lib/python3.4/site-packages/pandas/computation/ops.py
9
15234
"""Operator classes for eval. """ import operator as op from functools import partial from datetime import datetime import numpy as np import pandas as pd from pandas.compat import PY3, string_types, text_type import pandas.core.common as com from pandas.core.base import StringMixin from pandas.computation.common import _ensure_decoded, _result_type_many from pandas.computation.scope import _DEFAULT_GLOBALS _reductions = 'sum', 'prod' _unary_math_ops = ('sin', 'cos', 'exp', 'log', 'expm1', 'log1p', 'sqrt', 'sinh', 'cosh', 'tanh', 'arcsin', 'arccos', 'arctan', 'arccosh', 'arcsinh', 'arctanh', 'abs') _binary_math_ops = ('arctan2',) _mathops = _unary_math_ops + _binary_math_ops _LOCAL_TAG = '__pd_eval_local_' class UndefinedVariableError(NameError): """NameError subclass for local variables.""" def __init__(self, name, is_local): if is_local: msg = 'local variable {0!r} is not defined' else: msg = 'name {0!r} is not defined' super(UndefinedVariableError, self).__init__(msg.format(name)) class Term(StringMixin): def __new__(cls, name, env, side=None, encoding=None): klass = Constant if not isinstance(name, string_types) else cls supr_new = super(Term, klass).__new__ return supr_new(klass) def __init__(self, name, env, side=None, encoding=None): self._name = name self.env = env self.side = side tname = text_type(name) self.is_local = (tname.startswith(_LOCAL_TAG) or tname in _DEFAULT_GLOBALS) self._value = self._resolve_name() self.encoding = encoding @property def local_name(self): return self.name.replace(_LOCAL_TAG, '') def __unicode__(self): return com.pprint_thing(self.name) def __call__(self, *args, **kwargs): return self.value def evaluate(self, *args, **kwargs): return self def _resolve_name(self): res = self.env.resolve(self.local_name, is_local=self.is_local) self.update(res) if hasattr(res, 'ndim') and res.ndim > 2: raise NotImplementedError("N-dimensional objects, where N > 2," " are not supported with eval") return res def update(self, value): """ search order for local (i.e., @variable) variables: scope, key_variable [('locals', 'local_name'), ('globals', 'local_name'), ('locals', 'key'), ('globals', 'key')] """ key = self.name # if it's a variable name (otherwise a constant) if isinstance(key, string_types): self.env.swapkey(self.local_name, key, new_value=value) self.value = value @property def isscalar(self): return np.isscalar(self._value) @property def type(self): try: # potentially very slow for large, mixed dtype frames return self._value.values.dtype except AttributeError: try: # ndarray return self._value.dtype except AttributeError: # scalar return type(self._value) return_type = type @property def raw(self): return com.pprint_thing('{0}(name={1!r}, type={2})' ''.format(self.__class__.__name__, self.name, self.type)) @property def is_datetime(self): try: t = self.type.type except AttributeError: t = self.type return issubclass(t, (datetime, np.datetime64)) @property def value(self): return self._value @value.setter def value(self, new_value): self._value = new_value @property def name(self): return self._name @name.setter def name(self, new_name): self._name = new_name @property def ndim(self): return self._value.ndim class Constant(Term): def __init__(self, value, env, side=None, encoding=None): super(Constant, self).__init__(value, env, side=side, encoding=encoding) def _resolve_name(self): return self._name @property def name(self): return self.value _bool_op_map = {'not': '~', 'and': '&', 'or': '|'} class Op(StringMixin): """Hold an operator of arbitrary arity """ def __init__(self, op, operands, *args, **kwargs): self.op = _bool_op_map.get(op, op) self.operands = operands self.encoding = kwargs.get('encoding', None) def __iter__(self): return iter(self.operands) def __unicode__(self): """Print a generic n-ary operator and its operands using infix notation""" # recurse over the operands parened = ('({0})'.format(com.pprint_thing(opr)) for opr in self.operands) return com.pprint_thing(' {0} '.format(self.op).join(parened)) @property def return_type(self): # clobber types to bool if the op is a boolean operator if self.op in (_cmp_ops_syms + _bool_ops_syms): return np.bool_ return _result_type_many(*(term.type for term in com.flatten(self))) @property def has_invalid_return_type(self): types = self.operand_types obj_dtype_set = frozenset([np.dtype('object')]) return self.return_type == object and types - obj_dtype_set @property def operand_types(self): return frozenset(term.type for term in com.flatten(self)) @property def isscalar(self): return all(operand.isscalar for operand in self.operands) @property def is_datetime(self): try: t = self.return_type.type except AttributeError: t = self.return_type return issubclass(t, (datetime, np.datetime64)) def _in(x, y): """Compute the vectorized membership of ``x in y`` if possible, otherwise use Python. """ try: return x.isin(y) except AttributeError: if com.is_list_like(x): try: return y.isin(x) except AttributeError: pass return x in y def _not_in(x, y): """Compute the vectorized membership of ``x not in y`` if possible, otherwise use Python. """ try: return ~x.isin(y) except AttributeError: if com.is_list_like(x): try: return ~y.isin(x) except AttributeError: pass return x not in y _cmp_ops_syms = '>', '<', '>=', '<=', '==', '!=', 'in', 'not in' _cmp_ops_funcs = op.gt, op.lt, op.ge, op.le, op.eq, op.ne, _in, _not_in _cmp_ops_dict = dict(zip(_cmp_ops_syms, _cmp_ops_funcs)) _bool_ops_syms = '&', '|', 'and', 'or' _bool_ops_funcs = op.and_, op.or_, op.and_, op.or_ _bool_ops_dict = dict(zip(_bool_ops_syms, _bool_ops_funcs)) _arith_ops_syms = '+', '-', '*', '/', '**', '//', '%' _arith_ops_funcs = (op.add, op.sub, op.mul, op.truediv if PY3 else op.div, op.pow, op.floordiv, op.mod) _arith_ops_dict = dict(zip(_arith_ops_syms, _arith_ops_funcs)) _special_case_arith_ops_syms = '**', '//', '%' _special_case_arith_ops_funcs = op.pow, op.floordiv, op.mod _special_case_arith_ops_dict = dict(zip(_special_case_arith_ops_syms, _special_case_arith_ops_funcs)) _binary_ops_dict = {} for d in (_cmp_ops_dict, _bool_ops_dict, _arith_ops_dict): _binary_ops_dict.update(d) def _cast_inplace(terms, dtype): """Cast an expression inplace. Parameters ---------- terms : Op The expression that should cast. dtype : str or numpy.dtype The dtype to cast to. """ dt = np.dtype(dtype) for term in terms: try: new_value = term.value.astype(dt) except AttributeError: new_value = dt.type(term.value) term.update(new_value) def is_term(obj): return isinstance(obj, Term) class BinOp(Op): """Hold a binary operator and its operands Parameters ---------- op : str left : Term or Op right : Term or Op """ def __init__(self, op, lhs, rhs, **kwargs): super(BinOp, self).__init__(op, (lhs, rhs)) self.lhs = lhs self.rhs = rhs self._disallow_scalar_only_bool_ops() self.convert_values() try: self.func = _binary_ops_dict[op] except KeyError: # has to be made a list for python3 keys = list(_binary_ops_dict.keys()) raise ValueError('Invalid binary operator {0!r}, valid' ' operators are {1}'.format(op, keys)) def __call__(self, env): """Recursively evaluate an expression in Python space. Parameters ---------- env : Scope Returns ------- object The result of an evaluated expression. """ # handle truediv if self.op == '/' and env.scope['truediv']: self.func = op.truediv # recurse over the left/right nodes left = self.lhs(env) right = self.rhs(env) return self.func(left, right) def evaluate(self, env, engine, parser, term_type, eval_in_python): """Evaluate a binary operation *before* being passed to the engine. Parameters ---------- env : Scope engine : str parser : str term_type : type eval_in_python : list Returns ------- term_type The "pre-evaluated" expression as an instance of ``term_type`` """ if engine == 'python': res = self(env) else: # recurse over the left/right nodes left = self.lhs.evaluate(env, engine=engine, parser=parser, term_type=term_type, eval_in_python=eval_in_python) right = self.rhs.evaluate(env, engine=engine, parser=parser, term_type=term_type, eval_in_python=eval_in_python) # base cases if self.op in eval_in_python: res = self.func(left.value, right.value) else: res = pd.eval(self, local_dict=env, engine=engine, parser=parser) name = env.add_tmp(res) return term_type(name, env=env) def convert_values(self): """Convert datetimes to a comparable value in an expression. """ def stringify(value): if self.encoding is not None: encoder = partial(com.pprint_thing_encoded, encoding=self.encoding) else: encoder = com.pprint_thing return encoder(value) lhs, rhs = self.lhs, self.rhs if is_term(lhs) and lhs.is_datetime and is_term(rhs) and rhs.isscalar: v = rhs.value if isinstance(v, (int, float)): v = stringify(v) v = pd.Timestamp(_ensure_decoded(v)) if v.tz is not None: v = v.tz_convert('UTC') self.rhs.update(v) if is_term(rhs) and rhs.is_datetime and is_term(lhs) and lhs.isscalar: v = lhs.value if isinstance(v, (int, float)): v = stringify(v) v = pd.Timestamp(_ensure_decoded(v)) if v.tz is not None: v = v.tz_convert('UTC') self.lhs.update(v) def _disallow_scalar_only_bool_ops(self): if ((self.lhs.isscalar or self.rhs.isscalar) and self.op in _bool_ops_dict and (not (issubclass(self.rhs.return_type, (bool, np.bool_)) and issubclass(self.lhs.return_type, (bool, np.bool_))))): raise NotImplementedError("cannot evaluate scalar only bool ops") def isnumeric(dtype): return issubclass(np.dtype(dtype).type, np.number) class Div(BinOp): """Div operator to special case casting. Parameters ---------- lhs, rhs : Term or Op The Terms or Ops in the ``/`` expression. truediv : bool Whether or not to use true division. With Python 3 this happens regardless of the value of ``truediv``. """ def __init__(self, lhs, rhs, truediv, *args, **kwargs): super(Div, self).__init__('/', lhs, rhs, *args, **kwargs) if not isnumeric(lhs.return_type) or not isnumeric(rhs.return_type): raise TypeError("unsupported operand type(s) for {0}:" " '{1}' and '{2}'".format(self.op, lhs.return_type, rhs.return_type)) if truediv or PY3: _cast_inplace(com.flatten(self), np.float_) _unary_ops_syms = '+', '-', '~', 'not' _unary_ops_funcs = op.pos, op.neg, op.invert, op.invert _unary_ops_dict = dict(zip(_unary_ops_syms, _unary_ops_funcs)) class UnaryOp(Op): """Hold a unary operator and its operands Parameters ---------- op : str The token used to represent the operator. operand : Term or Op The Term or Op operand to the operator. Raises ------ ValueError * If no function associated with the passed operator token is found. """ def __init__(self, op, operand): super(UnaryOp, self).__init__(op, (operand,)) self.operand = operand try: self.func = _unary_ops_dict[op] except KeyError: raise ValueError('Invalid unary operator {0!r}, valid operators ' 'are {1}'.format(op, _unary_ops_syms)) def __call__(self, env): operand = self.operand(env) return self.func(operand) def __unicode__(self): return com.pprint_thing('{0}({1})'.format(self.op, self.operand)) @property def return_type(self): operand = self.operand if operand.return_type == np.dtype('bool'): return np.dtype('bool') if (isinstance(operand, Op) and (operand.op in _cmp_ops_dict or operand.op in _bool_ops_dict)): return np.dtype('bool') return np.dtype('int') class MathCall(Op): def __init__(self, func, args): super(MathCall, self).__init__(func.name, args) self.func = func def __call__(self, env): operands = [op(env) for op in self.operands] return self.func.func(*operands) def __unicode__(self): operands = map(str, self.operands) return com.pprint_thing('{0}({1})'.format(self.op, ','.join(operands))) class FuncNode(object): def __init__(self, name): if name not in _mathops: raise ValueError("\"{0}\" is not a supported function".format(name)) self.name = name self.func = getattr(np, name) def __call__(self, *args): return MathCall(self, args)
gpl-2.0
francesco-mannella/dmp-esn
parametric/parametric_dmp/bin/tr_datasets/e_cursive_curves/data/results/plot.py
18
1043
#!/usr/bin/env python import glob import numpy as np import matplotlib.pyplot as plt import os import sys pathname = os.path.dirname(sys.argv[0]) if pathname: os.chdir(pathname) n_dim = None trains = [] for fname in glob.glob("tl*"): t = np.loadtxt(fname) trains.append(t) tests = [] for fname in glob.glob("tt*"): t = np.loadtxt(fname) tests.append(t) trial_results= [] for fname in glob.glob("rtl*"): t = np.loadtxt(fname) trial_results.append(t) test_results= [] for fname in glob.glob("rtt*"): t = np.loadtxt(fname) test_results.append(t) fig = plt.figure() ax = fig.add_subplot(111, aspect="equal") for d in trains: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color="blue", lw=3, alpha=0.5) for d in tests: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color="red", lw=3, alpha=0.5) for d in trial_results: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color=[0,0,.5], lw=2) for d in test_results: ax.plot(d[:,1] +d[:,7]*6, d[:,2] +d[:,8]*6, color=[.5,0,0], lw=2) plt.show()
gpl-2.0
davidyezsetz/kuma
vendor/packages/ipython/IPython/usage.py
7
31160
# -*- coding: utf-8 -*- #***************************************************************************** # Copyright (C) 2001-2004 Fernando Perez. <[email protected]> # # Distributed under the terms of the BSD License. The full license is in # the file COPYING, distributed as part of this software. #***************************************************************************** __doc__ = """ IPython -- An enhanced Interactive Python ========================================= A Python shell with automatic history (input and output), dynamic object introspection, easier configuration, command completion, access to the system shell and more. IPython can also be embedded in running programs. See EMBEDDING below. USAGE ipython [options] files If invoked with no options, it executes all the files listed in sequence and drops you into the interpreter while still acknowledging any options you may have set in your ipythonrc file. This behavior is different from standard Python, which when called as python -i will only execute one file and will ignore your configuration setup. Please note that some of the configuration options are not available at the command line, simply because they are not practical here. Look into your ipythonrc configuration file for details on those. This file typically installed in the $HOME/.ipython directory. For Windows users, $HOME resolves to C:\\Documents and Settings\\YourUserName in most instances, and _ipython is used instead of .ipython, since some Win32 programs have problems with dotted names in directories. In the rest of this text, we will refer to this directory as IPYTHONDIR. SPECIAL THREADING OPTIONS The following special options are ONLY valid at the beginning of the command line, and not later. This is because they control the initial- ization of ipython itself, before the normal option-handling mechanism is active. -gthread, -qthread, -q4thread, -wthread, -pylab Only ONE of these can be given, and it can only be given as the first option passed to IPython (it will have no effect in any other position). They provide threading support for the GTK, QT and WXWidgets toolkits, and for the matplotlib library. With any of the first four options, IPython starts running a separate thread for the graphical toolkit's operation, so that you can open and control graphical elements from within an IPython command line, without blocking. All four provide essentially the same functionality, respectively for GTK, QT3, QT4 and WXWidgets (via their Python interfaces). Note that with -wthread, you can additionally use the -wxversion option to request a specific version of wx to be used. This requires that you have the 'wxversion' Python module installed, which is part of recent wxPython distributions. If -pylab is given, IPython loads special support for the mat- plotlib library (http://matplotlib.sourceforge.net), allowing interactive usage of any of its backends as defined in the user's .matplotlibrc file. It automatically activates GTK, QT or WX threading for IPyhton if the choice of matplotlib backend requires it. It also modifies the %run command to correctly execute (without blocking) any matplotlib-based script which calls show() at the end. -tk The -g/q/q4/wthread options, and -pylab (if matplotlib is configured to use GTK, QT or WX), will normally block Tk graphical interfaces. This means that when GTK, QT or WX threading is active, any attempt to open a Tk GUI will result in a dead window, and possibly cause the Python interpreter to crash. An extra option, -tk, is available to address this issue. It can ONLY be given as a SECOND option after any of the above (-gthread, -qthread, q4thread, -wthread or -pylab). If -tk is given, IPython will try to coordinate Tk threading with GTK, QT or WX. This is however potentially unreliable, and you will have to test on your platform and Python configuration to determine whether it works for you. Debian users have reported success, apparently due to the fact that Debian builds all of Tcl, Tk, Tkinter and Python with pthreads support. Under other Linux environments (such as Fedora Core 2/3), this option has caused random crashes and lockups of the Python interpreter. Under other operating systems (Mac OSX and Windows), you'll need to try it to find out, since currently no user reports are available. There is unfortunately no way for IPython to determine at run- time whether -tk will work reliably or not, so you will need to do some experiments before relying on it for regular work. A WARNING ABOUT SIGNALS AND THREADS When any of the thread systems (GTK, QT or WX) are active, either directly or via -pylab with a threaded backend, it is impossible to interrupt long-running Python code via Ctrl-C. IPython can not pass the KeyboardInterrupt exception (or the underlying SIGINT) across threads, so any long-running process started from IPython will run to completion, or will have to be killed via an external (OS-based) mechanism. To the best of my knowledge, this limitation is imposed by the Python interpreter itself, and it comes from the difficulty of writing portable signal/threaded code. If any user is an expert on this topic and can suggest a better solution, I would love to hear about it. In the IPython sources, look at the Shell.py module, and in particular at the runcode() method. REGULAR OPTIONS After the above threading options have been given, regular options can follow in any order. All options can be abbreviated to their shortest non-ambiguous form and are case-sensitive. One or two dashes can be used. Some options have an alternate short form, indicated after a |. Most options can also be set from your ipythonrc configuration file. See the provided examples for assistance. Options given on the comman- dline override the values set in the ipythonrc file. All options with a [no] prepended can be specified in negated form (using -nooption instead of -option) to turn the feature off. -h, --help Show summary of options. -pylab This can only be given as the first option passed to IPython (it will have no effect in any other position). It adds special sup- port for the matplotlib library (http://matplotlib.source- forge.net), allowing interactive usage of any of its backends as defined in the user's .matplotlibrc file. It automatically activates GTK or WX threading for IPyhton if the choice of mat- plotlib backend requires it. It also modifies the @run command to correctly execute (without blocking) any matplotlib-based script which calls show() at the end. -autocall <val> Make IPython automatically call any callable object even if you didn't type explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. The value can be '0' to disable the feature, '1' for 'smart' autocall, where it is not applied if there are no more arguments on the line, and '2' for 'full' autocall, where all callable objects are automatically called (even if no arguments are present). The default is '1'. -[no]autoindent Turn automatic indentation on/off. -[no]automagic Make magic commands automatic (without needing their first char- acter to be %). Type %magic at the IPython prompt for more information. -[no]autoedit_syntax When a syntax error occurs after editing a file, automatically open the file to the trouble causing line for convenient fixing. -[no]banner Print the intial information banner (default on). -c <command> Execute the given command string, and set sys.argv to ['c']. This is similar to the -c option in the normal Python inter- preter. -cache_size|cs <n> Size of the output cache (maximum number of entries to hold in memory). The default is 1000, you can change it permanently in your config file. Setting it to 0 completely disables the caching system, and the minimum value accepted is 20 (if you provide a value less than 20, it is reset to 0 and a warning is issued). This limit is defined because otherwise you'll spend more time re-flushing a too small cache than working. -classic|cl Gives IPython a similar feel to the classic Python prompt. -colors <scheme> Color scheme for prompts and exception reporting. Currently implemented: NoColor, Linux, and LightBG. -[no]color_info IPython can display information about objects via a set of func- tions, and optionally can use colors for this, syntax highlight- ing source code and various other elements. However, because this information is passed through a pager (like 'less') and many pagers get confused with color codes, this option is off by default. You can test it and turn it on permanently in your ipythonrc file if it works for you. As a reference, the 'less' pager supplied with Mandrake 8.2 works ok, but that in RedHat 7.2 doesn't. Test it and turn it on permanently if it works with your system. The magic function @color_info allows you to toggle this inter- actively for testing. -[no]confirm_exit Set to confirm when you try to exit IPython with an EOF (Con- trol-D in Unix, Control-Z/Enter in Windows). Note that using the magic functions @Exit or @Quit you can force a direct exit, bypassing any confirmation. -[no]debug Show information about the loading process. Very useful to pin down problems with your configuration files or to get details about session restores. -[no]deep_reload IPython can use the deep_reload module which reloads changes in modules recursively (it replaces the reload() function, so you don't need to change anything to use it). deep_reload() forces a full reload of modules whose code may have changed, which the default reload() function does not. When deep_reload is off, IPython will use the normal reload(), but deep_reload will still be available as dreload(). This fea- ture is off by default [which means that you have both normal reload() and dreload()]. -editor <name> Which editor to use with the @edit command. By default, IPython will honor your EDITOR environment variable (if not set, vi is the Unix default and notepad the Windows one). Since this editor is invoked on the fly by IPython and is meant for editing small code snippets, you may want to use a small, lightweight editor here (in case your default EDITOR is something like Emacs). -ipythondir <name> The name of your IPython configuration directory IPYTHONDIR. This can also be specified through the environment variable IPYTHONDIR. -log|l Generate a log file of all input. The file is named ipython_log.py in your current directory (which prevents logs from multiple IPython sessions from trampling each other). You can use this to later restore a session by loading your logfile as a file to be executed with option -logplay (see below). -logfile|lf Specify the name of your logfile. -logplay|lp Replay a previous log. For restoring a session as close as pos- sible to the state you left it in, use this option (don't just run the logfile). With -logplay, IPython will try to reconstruct the previous working environment in full, not just execute the commands in the logfile. When a session is restored, logging is automatically turned on again with the name of the logfile it was invoked with (it is read from the log header). So once you've turned logging on for a session, you can quit IPython and reload it as many times as you want and it will continue to log its history and restore from the beginning every time. Caveats: there are limitations in this option. The history vari- ables _i*,_* and _dh don't get restored properly. In the future we will try to implement full session saving by writing and retrieving a failed because of inherent limitations of Python's Pickle module, so this may have to wait. -[no]messages Print messages which IPython collects about its startup process (default on). -[no]pdb Automatically call the pdb debugger after every uncaught excep- tion. If you are used to debugging using pdb, this puts you automatically inside of it after any call (either in IPython or in code called by it) which triggers an exception which goes uncaught. -[no]pprint IPython can optionally use the pprint (pretty printer) module for displaying results. pprint tends to give a nicer display of nested data structures. If you like it, you can turn it on per- manently in your config file (default off). -profile|p <name> Assume that your config file is ipythonrc-<name> (looks in cur- rent dir first, then in IPYTHONDIR). This is a quick way to keep and load multiple config files for different tasks, especially if you use the include option of config files. You can keep a basic IPYTHONDIR/ipythonrc file and then have other 'profiles' which include this one and load extra things for particular tasks. For example: 1) $HOME/.ipython/ipythonrc : load basic things you always want. 2) $HOME/.ipython/ipythonrc-math : load (1) and basic math- related modules. 3) $HOME/.ipython/ipythonrc-numeric : load (1) and Numeric and plotting modules. Since it is possible to create an endless loop by having circu- lar file inclusions, IPython will stop if it reaches 15 recur- sive inclusions. -prompt_in1|pi1 <string> Specify the string used for input prompts. Note that if you are using numbered prompts, the number is represented with a '\#' in the string. Don't forget to quote strings with spaces embedded in them. Default: 'In [\#]: '. Most bash-like escapes can be used to customize IPython's prompts, as well as a few additional ones which are IPython-spe- cific. All valid prompt escapes are described in detail in the Customization section of the IPython HTML/PDF manual. -prompt_in2|pi2 <string> Similar to the previous option, but used for the continuation prompts. The special sequence '\D' is similar to '\#', but with all digits replaced dots (so you can have your continuation prompt aligned with your input prompt). Default: ' .\D.: ' (note three spaces at the start for alignment with 'In [\#]'). -prompt_out|po <string> String used for output prompts, also uses numbers like prompt_in1. Default: 'Out[\#]:'. -quick Start in bare bones mode (no config file loaded). -rcfile <name> Name of your IPython resource configuration file. normally IPython loads ipythonrc (from current directory) or IPYTHONDIR/ipythonrc. If the loading of your config file fails, IPython starts with a bare bones configuration (no modules loaded at all). -[no]readline Use the readline library, which is needed to support name com- pletion and command history, among other things. It is enabled by default, but may cause problems for users of X/Emacs in Python comint or shell buffers. Note that emacs 'eterm' buffers (opened with M-x term) support IPython's readline and syntax coloring fine, only 'emacs' (M-x shell and C-c !) buffers do not. -screen_length|sl <n> Number of lines of your screen. This is used to control print- ing of very long strings. Strings longer than this number of lines will be sent through a pager instead of directly printed. The default value for this is 0, which means IPython will auto- detect your screen size every time it needs to print certain potentially long strings (this doesn't change the behavior of the 'print' keyword, it's only triggered internally). If for some reason this isn't working well (it needs curses support), specify it yourself. Otherwise don't change the default. -separate_in|si <string> Separator before input prompts. Default '0. -separate_out|so <string> Separator before output prompts. Default: 0 (nothing). -separate_out2|so2 <string> Separator after output prompts. Default: 0 (nothing). -nosep Shorthand for '-separate_in 0 -separate_out 0 -separate_out2 0'. Simply removes all input/output separators. -upgrade Allows you to upgrade your IPYTHONDIR configuration when you install a new version of IPython. Since new versions may include new command lines options or example files, this copies updated ipythonrc-type files. However, it backs up (with a .old extension) all files which it overwrites so that you can merge back any custimizations you might have in your personal files. -Version Print version information and exit. -wxversion <string> Select a specific version of wxPython (used in conjunction with -wthread). Requires the wxversion module, part of recent wxPython distributions. -xmode <modename> Mode for exception reporting. The valid modes are Plain, Con- text, and Verbose. - Plain: similar to python's normal traceback printing. - Context: prints 5 lines of context source code around each line in the traceback. - Verbose: similar to Context, but additionally prints the vari- ables currently visible where the exception happened (shortening their strings if too long). This can potentially be very slow, if you happen to have a huge data structure whose string repre- sentation is complex to compute. Your computer may appear to freeze for a while with cpu usage at 100%. If this occurs, you can cancel the traceback with Ctrl-C (maybe hitting it more than once). EMBEDDING It is possible to start an IPython instance inside your own Python pro- grams. In the documentation example files there are some illustrations on how to do this. This feature allows you to evalutate dynamically the state of your code, operate with your variables, analyze them, etc. Note however that any changes you make to values while in the shell do NOT propagate back to the running code, so it is safe to modify your values because you won't break your code in bizarre ways by doing so. """ cmd_line_usage = __doc__ #--------------------------------------------------------------------------- interactive_usage = """ IPython -- An enhanced Interactive Python ========================================= IPython offers a combination of convenient shell features, special commands and a history mechanism for both input (command history) and output (results caching, similar to Mathematica). It is intended to be a fully compatible replacement for the standard Python interpreter, while offering vastly improved functionality and flexibility. At your system command line, type 'ipython -help' to see the command line options available. This document only describes interactive features. Warning: IPython relies on the existence of a global variable called __IP which controls the shell itself. If you redefine __IP to anything, bizarre behavior will quickly occur. MAIN FEATURES * Access to the standard Python help. As of Python 2.1, a help system is available with access to object docstrings and the Python manuals. Simply type 'help' (no quotes) to access it. * Magic commands: type %magic for information on the magic subsystem. * System command aliases, via the %alias command or the ipythonrc config file. * Dynamic object information: Typing ?word or word? prints detailed information about an object. If certain strings in the object are too long (docstrings, code, etc.) they get snipped in the center for brevity. Typing ??word or word?? gives access to the full information without snipping long strings. Long strings are sent to the screen through the less pager if longer than the screen, printed otherwise. The ?/?? system gives access to the full source code for any object (if available), shows function prototypes and other useful information. If you just want to see an object's docstring, type '%pdoc object' (without quotes, and without % if you have automagic on). Both %pdoc and ?/?? give you access to documentation even on things which are not explicitely defined. Try for example typing {}.get? or after import os, type os.path.abspath??. The magic functions %pdef, %source and %file operate similarly. * Completion in the local namespace, by typing TAB at the prompt. At any time, hitting tab will complete any available python commands or variable names, and show you a list of the possible completions if there's no unambiguous one. It will also complete filenames in the current directory. This feature requires the readline and rlcomplete modules, so it won't work if your Python lacks readline support (such as under Windows). * Search previous command history in two ways (also requires readline): - Start typing, and then use Ctrl-p (previous,up) and Ctrl-n (next,down) to search through only the history items that match what you've typed so far. If you use Ctrl-p/Ctrl-n at a blank prompt, they just behave like normal arrow keys. - Hit Ctrl-r: opens a search prompt. Begin typing and the system searches your history for lines that match what you've typed so far, completing as much as it can. * Persistent command history across sessions (readline required). * Logging of input with the ability to save and restore a working session. * System escape with !. Typing !ls will run 'ls' in the current directory. * The reload command does a 'deep' reload of a module: changes made to the module since you imported will actually be available without having to exit. * Verbose and colored exception traceback printouts. See the magic xmode and xcolor functions for details (just type %magic). * Input caching system: IPython offers numbered prompts (In/Out) with input and output caching. All input is saved and can be retrieved as variables (besides the usual arrow key recall). The following GLOBAL variables always exist (so don't overwrite them!): _i: stores previous input. _ii: next previous. _iii: next-next previous. _ih : a list of all input _ih[n] is the input from line n. Additionally, global variables named _i<n> are dynamically created (<n> being the prompt counter), such that _i<n> == _ih[<n>] For example, what you typed at prompt 14 is available as _i14 and _ih[14]. You can create macros which contain multiple input lines from this history, for later re-execution, with the %macro function. The history function %hist allows you to see any part of your input history by printing a range of the _i variables. Note that inputs which contain magic functions (%) appear in the history with a prepended comment. This is because they aren't really valid Python code, so you can't exec them. * Output caching system: For output that is returned from actions, a system similar to the input cache exists but using _ instead of _i. Only actions that produce a result (NOT assignments, for example) are cached. If you are familiar with Mathematica, IPython's _ variables behave exactly like Mathematica's % variables. The following GLOBAL variables always exist (so don't overwrite them!): _ (one underscore): previous output. __ (two underscores): next previous. ___ (three underscores): next-next previous. Global variables named _<n> are dynamically created (<n> being the prompt counter), such that the result of output <n> is always available as _<n>. Finally, a global dictionary named _oh exists with entries for all lines which generated output. * Directory history: Your history of visited directories is kept in the global list _dh, and the magic %cd command can be used to go to any entry in that list. * Auto-parentheses and auto-quotes (adapted from Nathan Gray's LazyPython) 1. Auto-parentheses Callable objects (i.e. functions, methods, etc) can be invoked like this (notice the commas between the arguments): >>> callable_ob arg1, arg2, arg3 and the input will be translated to this: --> callable_ob(arg1, arg2, arg3) You can force auto-parentheses by using '/' as the first character of a line. For example: >>> /globals # becomes 'globals()' Note that the '/' MUST be the first character on the line! This won't work: >>> print /globals # syntax error In most cases the automatic algorithm should work, so you should rarely need to explicitly invoke /. One notable exception is if you are trying to call a function with a list of tuples as arguments (the parenthesis will confuse IPython): In [1]: zip (1,2,3),(4,5,6) # won't work but this will work: In [2]: /zip (1,2,3),(4,5,6) ------> zip ((1,2,3),(4,5,6)) Out[2]= [(1, 4), (2, 5), (3, 6)] IPython tells you that it has altered your command line by displaying the new command line preceded by -->. e.g.: In [18]: callable list -------> callable (list) 2. Auto-Quoting You can force auto-quoting of a function's arguments by using ',' as the first character of a line. For example: >>> ,my_function /home/me # becomes my_function("/home/me") If you use ';' instead, the whole argument is quoted as a single string (while ',' splits on whitespace): >>> ,my_function a b c # becomes my_function("a","b","c") >>> ;my_function a b c # becomes my_function("a b c") Note that the ',' MUST be the first character on the line! This won't work: >>> x = ,my_function /home/me # syntax error """ quick_reference = r""" IPython -- An enhanced Interactive Python - Quick Reference Card ================================================================ obj?, obj?? : Get help, or more help for object (also works as ?obj, ??obj). ?foo.*abc* : List names in 'foo' containing 'abc' in them. %magic : Information about IPython's 'magic' % functions. Magic functions are prefixed by %, and typically take their arguments without parentheses, quotes or even commas for convenience. Example magic function calls: %alias d ls -F : 'd' is now an alias for 'ls -F' alias d ls -F : Works if 'alias' not a python name alist = %alias : Get list of aliases to 'alist' cd /usr/share : Obvious. cd -<tab> to choose from visited dirs. %cd?? : See help AND source for magic %cd System commands: !cp a.txt b/ : System command escape, calls os.system() cp a.txt b/ : after %rehashx, most system commands work without ! cp ${f}.txt $bar : Variable expansion in magics and system commands files = !ls /usr : Capture sytem command output files.s, files.l, files.n: "a b c", ['a','b','c'], 'a\nb\nc' History: _i, _ii, _iii : Previous, next previous, next next previous input _i4, _ih[2:5] : Input history line 4, lines 2-4 exec _i81 : Execute input history line #81 again %rep 81 : Edit input history line #81 _, __, ___ : previous, next previous, next next previous output _dh : Directory history _oh : Output history %hist : Command history. '%hist -g foo' search history for 'foo' Autocall: f 1,2 : f(1,2) /f 1,2 : f(1,2) (forced autoparen) ,f 1 2 : f("1","2") ;f 1 2 : f("1 2") Remember: TAB completion works in many contexts, not just file names or python names. The following magic functions are currently available: """
mpl-2.0
kevindehecker/paparazzi
sw/airborne/test/ahrs/ahrs_utils.py
86
4923
#! /usr/bin/env python # Copyright (C) 2011 Antoine Drouin # # This file is part of Paparazzi. # # Paparazzi is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2, or (at your option) # any later version. # # Paparazzi is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Paparazzi; see the file COPYING. If not, write to # the Free Software Foundation, 59 Temple Place - Suite 330, # Boston, MA 02111-1307, USA. # from __future__ import print_function import subprocess import numpy as np import matplotlib.pyplot as plt def run_simulation(ahrs_type, build_opt, traj_nb): print("\nBuilding ahrs") args = ["make", "clean", "run_ahrs_on_synth", "AHRS_TYPE=AHRS_TYPE_" + ahrs_type] + build_opt #print(args) p = subprocess.Popen(args=args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=False) outputlines = p.stdout.readlines() p.wait() for i in outputlines: print(" # " + i, end=' ') print() print("Running simulation") print(" using traj " + str(traj_nb)) p = subprocess.Popen(args=["./run_ahrs_on_synth", str(traj_nb)], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=False) outputlines = p.stdout.readlines() p.wait() # for i in outputlines: # print(" "+i, end=' ') # print("\n") ahrs_data_type = [('time', 'float32'), ('phi_true', 'float32'), ('theta_true', 'float32'), ('psi_true', 'float32'), ('p_true', 'float32'), ('q_true', 'float32'), ('r_true', 'float32'), ('bp_true', 'float32'), ('bq_true', 'float32'), ('br_true', 'float32'), ('phi_ahrs', 'float32'), ('theta_ahrs', 'float32'), ('psi_ahrs', 'float32'), ('p_ahrs', 'float32'), ('q_ahrs', 'float32'), ('r_ahrs', 'float32'), ('bp_ahrs', 'float32'), ('bq_ahrs', 'float32'), ('br_ahrs', 'float32')] mydescr = np.dtype(ahrs_data_type) data = [[] for dummy in xrange(len(mydescr))] # import code; code.interact(local=locals()) for line in outputlines: if line.startswith("#"): print(" " + line, end=' ') else: fields = line.strip().split(' ') #print(fields) for i, number in enumerate(fields): data[i].append(number) print() for i in xrange(len(mydescr)): data[i] = np.cast[mydescr[i]](data[i]) return np.rec.array(data, dtype=mydescr) def plot_simulation_results(plot_true_state, lsty, label, sim_res): print("Plotting Results") # f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True, sharey=True) plt.subplot(3, 3, 1) plt.plot(sim_res.time, sim_res.phi_ahrs, lsty, label=label) plt.ylabel('degres') plt.title('phi') plt.legend() plt.subplot(3, 3, 2) plt.plot(sim_res.time, sim_res.theta_ahrs, lsty) plt.title('theta') plt.subplot(3, 3, 3) plt.plot(sim_res.time, sim_res.psi_ahrs, lsty) plt.title('psi') plt.subplot(3, 3, 4) plt.plot(sim_res.time, sim_res.p_ahrs, lsty) plt.ylabel('degres/s') plt.title('p') plt.subplot(3, 3, 5) plt.plot(sim_res.time, sim_res.q_ahrs, lsty) plt.title('q') plt.subplot(3, 3, 6) plt.plot(sim_res.time, sim_res.r_ahrs, lsty) plt.title('r') plt.subplot(3, 3, 7) plt.plot(sim_res.time, sim_res.bp_ahrs, lsty) plt.ylabel('degres/s') plt.xlabel('time in s') plt.title('bp') plt.subplot(3, 3, 8) plt.plot(sim_res.time, sim_res.bq_ahrs, lsty) plt.xlabel('time in s') plt.title('bq') plt.subplot(3, 3, 9) plt.plot(sim_res.time, sim_res.br_ahrs, lsty) plt.xlabel('time in s') plt.title('br') if plot_true_state: plt.subplot(3, 3, 1) plt.plot(sim_res.time, sim_res.phi_true, 'r--') plt.subplot(3, 3, 2) plt.plot(sim_res.time, sim_res.theta_true, 'r--') plt.subplot(3, 3, 3) plt.plot(sim_res.time, sim_res.psi_true, 'r--') plt.subplot(3, 3, 4) plt.plot(sim_res.time, sim_res.p_true, 'r--') plt.subplot(3, 3, 5) plt.plot(sim_res.time, sim_res.q_true, 'r--') plt.subplot(3, 3, 6) plt.plot(sim_res.time, sim_res.r_true, 'r--') plt.subplot(3, 3, 7) plt.plot(sim_res.time, sim_res.bp_true, 'r--') plt.subplot(3, 3, 8) plt.plot(sim_res.time, sim_res.bq_true, 'r--') plt.subplot(3, 3, 9) plt.plot(sim_res.time, sim_res.br_true, 'r--') def show_plot(): plt.show()
gpl-2.0
wathen/PhD
MHD/FEniCS/MHD/Stabilised/SaddlePointForm/Test/GeneralisedEigen/NoBC/3d/MHDfluid.py
1
12701
import petsc4py import sys petsc4py.init(sys.argv) from petsc4py import PETSc Print = PETSc.Sys.Print from dolfin import * # from MatrixOperations import * import numpy as np #import matplotlib.pylab as plt import PETScIO as IO import common import scipy import scipy.io import time import BiLinear as forms import IterOperations as Iter import MatrixOperations as MO import CheckPetsc4py as CP import ExactSol import Solver as S import MHDmatrixPrecondSetup as PrecondSetup import NSprecondSetup import MHDallatonce as MHDpreconditioner import GeneralisedEigenvalues as GE import os m = 4 errL2u =np.zeros((m-1,1)) errH1u =np.zeros((m-1,1)) errL2p =np.zeros((m-1,1)) errL2b =np.zeros((m-1,1)) errCurlb =np.zeros((m-1,1)) errL2r =np.zeros((m-1,1)) errH1r =np.zeros((m-1,1)) l2uorder = np.zeros((m-1,1)) H1uorder =np.zeros((m-1,1)) l2porder = np.zeros((m-1,1)) l2border = np.zeros((m-1,1)) Curlborder =np.zeros((m-1,1)) l2rorder = np.zeros((m-1,1)) H1rorder = np.zeros((m-1,1)) NN = np.zeros((m-1,1)) DoF = np.zeros((m-1,1)) Velocitydim = np.zeros((m-1,1)) Magneticdim = np.zeros((m-1,1)) Pressuredim = np.zeros((m-1,1)) Lagrangedim = np.zeros((m-1,1)) Wdim = np.zeros((m-1,1)) iterations = np.zeros((m-1,1)) SolTime = np.zeros((m-1,1)) udiv = np.zeros((m-1,1)) MU = np.zeros((m-1,1)) level = np.zeros((m-1,1)) NSave = np.zeros((m-1,1)) Mave = np.zeros((m-1,1)) TotalTime = np.zeros((m-1,1)) Dimensions = np.zeros((m-1,4)) nn = 2 dim = 2 ShowResultPlots = 'yes' split = 'Linear' MU[0]= 1e0 for xx in xrange(1,m): print xx level[xx-1] = xx+0 nn = 2**(level[xx-1]) # Create mesh and define function space nn = int(nn) NN[xx-1] = nn/2 # parameters["form_compiler"]["quadrature_degree"] = 6 # parameters = CP.ParameterSetup() mesh = UnitCubeMesh(nn,nn,nn) order = 1 parameters['reorder_dofs_serial'] = False Velocity = VectorFunctionSpace(mesh, "CG", order)+VectorFunctionSpace(mesh, "B",4) Pressure = FunctionSpace(mesh, "CG", order) Magnetic = FunctionSpace(mesh, "N1curl", order) Lagrange = FunctionSpace(mesh, "CG", order) W = MixedFunctionSpace([Velocity,Magnetic, Pressure, Lagrange]) # W = Velocity*Pressure*Magnetic*Lagrange Velocitydim[xx-1] = Velocity.dim() Pressuredim[xx-1] = Pressure.dim() Magneticdim[xx-1] = Magnetic.dim() Lagrangedim[xx-1] = Lagrange.dim() Wdim[xx-1] = W.dim() print "\n\nW: ",Wdim[xx-1],"Velocity: ",Velocitydim[xx-1],"Pressure: ",Pressuredim[xx-1],"Magnetic: ",Magneticdim[xx-1],"Lagrange: ",Lagrangedim[xx-1],"\n\n" dim = [Velocity.dim(), Magnetic.dim(), Pressure.dim(), Lagrange.dim()] Dimensions[xx-1,:] = np.array([Velocity.dim(), Pressure.dim(), Magnetic.dim(),Lagrange.dim()]) def boundary(x, on_boundary): return on_boundary u0, p0,b0, r0, Laplacian, Advection, gradPres,CurlCurl, gradR, NS_Couple, M_Couple = ExactSol.MHD3D(4,1) bcu = DirichletBC(W.sub(0),u0, boundary) bcb = DirichletBC(W.sub(1),b0, boundary) bcr = DirichletBC(W.sub(3),r0, boundary) # bc = [u0,p0,b0,r0] bcs = [bcu,bcb,bcr] FSpaces = [Velocity,Pressure,Magnetic,Lagrange] (u, b, p, r) = TrialFunctions(W) (v, c, q, s) = TestFunctions(W) kappa = 1.0 Mu_m = 10.0 MU = 1.0/1 F_NS = -MU*Laplacian+Advection+gradPres-kappa*NS_Couple if kappa == 0: F_M = Mu_m*CurlCurl+gradR -kappa*M_Couple else: F_M = Mu_m*kappa*CurlCurl+gradR -kappa*M_Couple params = [kappa,Mu_m,MU] # MO.PrintStr("Preconditioning MHD setup",5,"+","\n\n","\n\n") HiptmairMatrices = PrecondSetup.MagneticSetup(Magnetic, Lagrange, b0, r0, 1e-4, params) MO.PrintStr("Setting up MHD initial guess",5,"+","\n\n","\n\n") u_k,p_k,b_k,r_k = common.InitialGuess(FSpaces,[u0,p0,b0,r0],[F_NS,F_M],params,HiptmairMatrices,1e-6,Neumann=Expression(("0","0")),options ="New") # plot(p_k, interactive = True) b_t = TrialFunction(Velocity) c_t = TestFunction(Velocity) #print assemble(inner(b,c)*dx).array().shape #print mat #ShiftedMass = assemble(inner(mat*b,c)*dx) #as_vector([inner(b,c)[0]*b_k[0],inner(b,c)[1]*(-b_k[1])]) ones = Function(Pressure) ones.vector()[:]=(0*ones.vector().array()+1) # pConst = - assemble(p_k*dx)/assemble(ones*dx) p_k.vector()[:] += - assemble(p_k*dx)/assemble(ones*dx) x = Iter.u_prev(u_k,b_k,p_k,r_k) KSPlinearfluids, MatrixLinearFluids = PrecondSetup.FluidLinearSetup(Pressure, MU) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) # plot(b_k) IterType = 'Full' ns,maxwell,CoupleTerm,Lmaxwell,Lns = forms.MHD2D(mesh, W,F_M,F_NS, u_k,b_k,params,IterType,"CG", SaddlePoint = "Yes") RHSform = forms.PicardRHS(mesh, W, u_k, p_k, b_k, r_k, params,"CG",SaddlePoint = "Yes") bcu = DirichletBC(W.sub(0),Expression(("0.0","0.0","0.0")), boundary) bcb = DirichletBC(W.sub(1),Expression(("0.0","0.0","0.0")), boundary) bcr = DirichletBC(W.sub(3),Expression(("0.0")), boundary) bcs = [bcu,bcb,bcr] eps = 1.0 # error measure ||u-u_k|| tol = 1.0E-4 # tolerance iter = 0 # iteration counter maxiter = 1 # max no of iterations allowed SolutionTime = 0 outer = 0 # parameters['linear_algebra_backend'] = 'uBLAS' # FSpaces = [Velocity,Magnetic,Pressure,Lagrange] if IterType == "CD": AA, bb = assemble_system(maxwell+ns, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) # u = b.duplicate() # P = CP.Assemble(PP) u_is = PETSc.IS().createGeneral(range(Velocity.dim())) NS_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim())) M_is = PETSc.IS().createGeneral(range(Velocity.dim()+Pressure.dim(),W.dim())) OuterTol = 1e-5 InnerTol = 1e-3 NSits =0 Mits =0 TotalStart =time.time() SolutionTime = 0 kspMASS = PrecondSetup.Masstest(Lagrange, p0, 1e-6) while eps > tol and iter < maxiter: iter += 1 MO.PrintStr("Iter "+str(iter),7,"=","\n\n","\n\n") tic() if IterType == "CD": bb = assemble((Lmaxwell + Lns) - RHSform) for bc in bcs: bc.apply(bb) FF = AA.sparray()[0:dim[0],0:dim[0]] A,b = CP.Assemble(AA,bb) # if iter == 1 if iter == 1: u = b.duplicate() F = A.getSubMatrix(u_is,u_is) kspF = NSprecondSetup.LSCKSPnonlinear(F) else: AA, bb = assemble_system(maxwell+ns+CoupleTerm, (Lmaxwell + Lns) - RHSform, bcs) A,b = CP.Assemble(AA,bb) F = A.getSubMatrix(u_is,u_is) n = FacetNormal(mesh) mat = as_matrix([[b_k[2]*b_k[2]+b[1]*b[1],-b_k[1]*b_k[0],-b_k[0]*b_k[2]], [-b_k[1]*b_k[0],b_k[0]*b_k[0]+b_k[2]*b_k[2],-b_k[2]*b_k[1]], [-b_k[0]*b_k[2],-b_k[1]*b_k[2],b_k[0]*b_k[0]+b_k[1]*b_k[1]]]) a = params[2]*inner(grad(b_t), grad(c_t))*dx(W.mesh()) + inner((grad(b_t)*u_k),c_t)*dx(W.mesh()) +(1/2)*div(u_k)*inner(c_t,b_t)*dx(W.mesh()) - (1/2)*inner(u_k,n)*inner(c_t,b_t)*ds(W.mesh())+kappa/Mu_m*inner(mat*b_t,c_t)*dx(W.mesh()) a = kappa/Mu_m*inner(mat*b_t,c_t)*dx(W.mesh()) ShiftedMass = assemble(a) #bcu.apply(ShiftedMass) #MO.StoreMatrix(AA.sparray()[0:dim[0],0:dim[0]]+ShiftedMass.sparray(),"A") FF = CP.Assemble(ShiftedMass) kspF = NSprecondSetup.LSCKSPnonlinear(FF) # if iter == 1: if iter == 1: u = b.duplicate() print ("{:40}").format("MHD assemble, time: "), " ==> ",("{:4f}").format(toc()), ("{:9}").format(" time: "), ("{:4}").format(time.strftime('%X %x %Z')[0:5]) kspFp, Fp = PrecondSetup.FluidNonLinearSetup(Pressure, MU, u_k) print "Inititial guess norm: ", u.norm() ksp = PETSc.KSP() ksp.create(comm=PETSc.COMM_WORLD) pc = ksp.getPC() ksp.setType('gmres') pc.setType('python') pc.setType(PETSc.PC.Type.PYTHON) # FSpace = [Velocity,Magnetic,Pressure,Lagrange] reshist = {} def monitor(ksp, its, fgnorm): reshist[its] = fgnorm print its," OUTER:", fgnorm # ksp.setMonitor(monitor) ksp.max_it = 1000 FFSS = [Velocity,Magnetic,Pressure,Lagrange] pc.setPythonContext(MHDpreconditioner.InnerOuterMAGNETICinverse(FFSS,kspF, KSPlinearfluids[0], KSPlinearfluids[1],Fp, HiptmairMatrices[3], HiptmairMatrices[4], HiptmairMatrices[2], HiptmairMatrices[0], HiptmairMatrices[1], HiptmairMatrices[6],1e-6,FF)) # OptDB = PETSc.Options() # OptDB['pc_factor_mat_solver_package'] = "mumps" # OptDB['pc_factor_mat_ordering_type'] = "rcm" # ksp.setFromOptions() ksp.max_it = 5 scale = b.norm() b = b/scale ksp.setOperators(A,A) stime = time.time() ksp.solve(b,u) Soltime = time.time()- stime NSits += ksp.its # Mits +=dodim u = u*scale SolutionTime = SolutionTime +Soltime AA = assemble(ns+maxwell+CoupleTerm) AA = CP.Assemble(AA) MO.PrintStr("Number of iterations ="+str(ksp.its),60,"+","\n\n","\n\n") u1, p1, b1, r1, eps= Iter.PicardToleranceDecouple(u,x,FSpaces,dim,"2",iter, SaddlePoint = "Yes") p1.vector()[:] += - assemble(p1*dx)/assemble(ones*dx) u_k.assign(u1) p_k.assign(p1) b_k.assign(b1) r_k.assign(r1) uOld= np.concatenate((u_k.vector().array(),b_k.vector().array(),p_k.vector().array(),r_k.vector().array()), axis=0) x = IO.arrayToVec(uOld) PCD = [MatrixLinearFluids[0], MatrixLinearFluids[1], Fp] if iter == 1: t = TestFunction(Lagrange) q = TrialFunction(Lagrange) M = CP.Assemble(assemble(inner((t),(q))*dx)) t = TestFunction(Magnetic) q = TrialFunction(Magnetic) #AA = CP.Assemble(assemble(inner(grad(t),grad(q))*dx)) print W LL = HiptmairMatrices[4].getOperators()[0] print LL A = assemble(maxwell+ns+CoupleTerm) A = CP.Assemble(A) A, P, Pinner, Papprox = GE.eigensORIG(AA,A, W, PCD, M) #A, P = GE.eigensApprox(A, W, PCD, HiptmairMatrices[4],HiptmairMatrices[6], FF) #A, P = GE.eigens(A, W, PCD, kspMASS) its = GE.ShiftedCDtest(FF) path = 'TESTmatrix_kappa='+str(kappa)+'_nu_m='+str(Mu_m)+'_nu='+str(MU) if not os.path.exists(path): os.makedirs(path) os.chdir(path) Mits += its MO.StoreMatrix(CP.PETSc2Scipy(M),"M_"+str(iter)+"_"+str(nn)) #MO.StoreMatrix(CP.PETSc2Scipy(AA),"LL_"+str(iter)+"_"+str(nn)) MO.StoreMatrix(A,"A_"+str(iter)+"_"+str(nn)) MO.StoreMatrix(CP.PETSc2Scipy(FF),"SM_"+str(iter)+"_"+str(nn)) MO.StoreMatrix(P,"P_"+str(iter)+"_"+str(nn)) MO.StoreMatrix(Pinner,"Pinner_"+str(iter)+"_"+str(nn)) MO.StoreMatrix(Papprox,"Papprox_"+str(iter)+"_"+str(nn)) os.chdir('..') XX= np.concatenate((u_k.vector().array(),p_k.vector().array(),b_k.vector().array(),r_k.vector().array()), axis=0) SolTime[xx-1] = SolutionTime/iter NSave[xx-1] = (float(NSits)/iter) Mave[xx-1] = (float(Mits)/iter) iterations[xx-1] = iter TotalTime[xx-1] = time.time() - TotalStart print SolTime import pandas as pd print "\n\n Iteration table" if IterType == "Full": IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av Outer its","Av Inner its",] else: IterTitles = ["l","DoF","AV solve Time","Total picard time","picard iterations","Av NS iters","Av M iters"] IterValues = np.concatenate((level,Wdim,SolTime,TotalTime,iterations,NSave,Mave),axis=1) IterTable= pd.DataFrame(IterValues, columns = IterTitles) if IterType == "Full": IterTable = MO.PandasFormat(IterTable,'Av Outer its',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av Inner its',"%2.1f") else: IterTable = MO.PandasFormat(IterTable,'Av NS iters',"%2.1f") IterTable = MO.PandasFormat(IterTable,'Av M iters',"%2.1f") print IterTable.to_latex() print " \n Outer Tol: ",OuterTol, "Inner Tol: ", InnerTol print Dimensions np.savetxt('dimensions.t',Dimensions) # # # if (ShowResultPlots == 'yes'): # plot(u_k) # plot(interpolate(ue,Velocity)) # plot(p_k) # plot(interpolate(pe,Pressure)) # plot(b_k) # plot(interpolate(be,Magnetic)) # plot(r_k) # plot(interpolate(re,Lagrange)) # interactive() interactive()
mit
louispotok/pandas
pandas/io/sas/sas7bdat.py
3
27470
""" Read SAS7BDAT files Based on code written by Jared Hobbs: https://bitbucket.org/jaredhobbs/sas7bdat See also: https://github.com/BioStatMatt/sas7bdat Partial documentation of the file format: https://cran.r-project.org/web/packages/sas7bdat/vignettes/sas7bdat.pdf Reference for binary data compression: http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/CUJ/1992/9210/ross/ross.htm """ import pandas as pd from pandas import compat from pandas.io.common import get_filepath_or_buffer, BaseIterator from pandas.errors import EmptyDataError import numpy as np import struct import pandas.io.sas.sas_constants as const from pandas.io.sas._sas import Parser class _subheader_pointer(object): pass class _column(object): pass # SAS7BDAT represents a SAS data file in SAS7BDAT format. class SAS7BDATReader(BaseIterator): """ Read SAS files in SAS7BDAT format. Parameters ---------- path_or_buf : path name or buffer Name of SAS file or file-like object pointing to SAS file contents. index : column identifier, defaults to None Column to use as index. convert_dates : boolean, defaults to True Attempt to convert dates to Pandas datetime values. Note that some rarely used SAS date formats may be unsupported. blank_missing : boolean, defaults to True Convert empty strings to missing values (SAS uses blanks to indicate missing character variables). chunksize : int, defaults to None Return SAS7BDATReader object for iterations, returns chunks with given number of lines. encoding : string, defaults to None String encoding. convert_text : bool, defaults to True If False, text variables are left as raw bytes. convert_header_text : bool, defaults to True If False, header text, including column names, are left as raw bytes. """ def __init__(self, path_or_buf, index=None, convert_dates=True, blank_missing=True, chunksize=None, encoding=None, convert_text=True, convert_header_text=True): self.index = index self.convert_dates = convert_dates self.blank_missing = blank_missing self.chunksize = chunksize self.encoding = encoding self.convert_text = convert_text self.convert_header_text = convert_header_text self.default_encoding = "latin-1" self.compression = "" self.column_names_strings = [] self.column_names = [] self.column_types = [] self.column_formats = [] self.columns = [] self._current_page_data_subheader_pointers = [] self._cached_page = None self._column_data_lengths = [] self._column_data_offsets = [] self._current_row_in_file_index = 0 self._current_row_on_page_index = 0 self._current_row_in_file_index = 0 self._path_or_buf, _, _, _ = get_filepath_or_buffer(path_or_buf) if isinstance(self._path_or_buf, compat.string_types): self._path_or_buf = open(self._path_or_buf, 'rb') self.handle = self._path_or_buf self._get_properties() self._parse_metadata() def close(self): try: self.handle.close() except AttributeError: pass def _get_properties(self): # Check magic number self._path_or_buf.seek(0) self._cached_page = self._path_or_buf.read(288) if self._cached_page[0:len(const.magic)] != const.magic: self.close() raise ValueError("magic number mismatch (not a SAS file?)") # Get alignment information align1, align2 = 0, 0 buf = self._read_bytes(const.align_1_offset, const.align_1_length) if buf == const.u64_byte_checker_value: align2 = const.align_2_value self.U64 = True self._int_length = 8 self._page_bit_offset = const.page_bit_offset_x64 self._subheader_pointer_length = const.subheader_pointer_length_x64 else: self.U64 = False self._page_bit_offset = const.page_bit_offset_x86 self._subheader_pointer_length = const.subheader_pointer_length_x86 self._int_length = 4 buf = self._read_bytes(const.align_2_offset, const.align_2_length) if buf == const.align_1_checker_value: align1 = const.align_2_value total_align = align1 + align2 # Get endianness information buf = self._read_bytes(const.endianness_offset, const.endianness_length) if buf == b'\x01': self.byte_order = "<" else: self.byte_order = ">" # Get encoding information buf = self._read_bytes(const.encoding_offset, const.encoding_length)[0] if buf in const.encoding_names: self.file_encoding = const.encoding_names[buf] else: self.file_encoding = "unknown (code=%s)" % str(buf) # Get platform information buf = self._read_bytes(const.platform_offset, const.platform_length) if buf == b'1': self.platform = "unix" elif buf == b'2': self.platform = "windows" else: self.platform = "unknown" buf = self._read_bytes(const.dataset_offset, const.dataset_length) self.name = buf.rstrip(b'\x00 ') if self.convert_header_text: self.name = self.name.decode( self.encoding or self.default_encoding) buf = self._read_bytes(const.file_type_offset, const.file_type_length) self.file_type = buf.rstrip(b'\x00 ') if self.convert_header_text: self.file_type = self.file_type.decode( self.encoding or self.default_encoding) # Timestamp is epoch 01/01/1960 epoch = pd.datetime(1960, 1, 1) x = self._read_float(const.date_created_offset + align1, const.date_created_length) self.date_created = epoch + pd.to_timedelta(x, unit='s') x = self._read_float(const.date_modified_offset + align1, const.date_modified_length) self.date_modified = epoch + pd.to_timedelta(x, unit='s') self.header_length = self._read_int(const.header_size_offset + align1, const.header_size_length) # Read the rest of the header into cached_page. buf = self._path_or_buf.read(self.header_length - 288) self._cached_page += buf if len(self._cached_page) != self.header_length: self.close() raise ValueError("The SAS7BDAT file appears to be truncated.") self._page_length = self._read_int(const.page_size_offset + align1, const.page_size_length) self._page_count = self._read_int(const.page_count_offset + align1, const.page_count_length) buf = self._read_bytes(const.sas_release_offset + total_align, const.sas_release_length) self.sas_release = buf.rstrip(b'\x00 ') if self.convert_header_text: self.sas_release = self.sas_release.decode( self.encoding or self.default_encoding) buf = self._read_bytes(const.sas_server_type_offset + total_align, const.sas_server_type_length) self.server_type = buf.rstrip(b'\x00 ') if self.convert_header_text: self.server_type = self.server_type.decode( self.encoding or self.default_encoding) buf = self._read_bytes(const.os_version_number_offset + total_align, const.os_version_number_length) self.os_version = buf.rstrip(b'\x00 ') if self.convert_header_text: self.os_version = self.os_version.decode( self.encoding or self.default_encoding) buf = self._read_bytes(const.os_name_offset + total_align, const.os_name_length) buf = buf.rstrip(b'\x00 ') if len(buf) > 0: self.os_name = buf.decode(self.encoding or self.default_encoding) else: buf = self._read_bytes(const.os_maker_offset + total_align, const.os_maker_length) self.os_name = buf.rstrip(b'\x00 ') if self.convert_header_text: self.os_name = self.os_name.decode( self.encoding or self.default_encoding) def __next__(self): da = self.read(nrows=self.chunksize or 1) if da is None: raise StopIteration return da # Read a single float of the given width (4 or 8). def _read_float(self, offset, width): if width not in (4, 8): self.close() raise ValueError("invalid float width") buf = self._read_bytes(offset, width) fd = "f" if width == 4 else "d" return struct.unpack(self.byte_order + fd, buf)[0] # Read a single signed integer of the given width (1, 2, 4 or 8). def _read_int(self, offset, width): if width not in (1, 2, 4, 8): self.close() raise ValueError("invalid int width") buf = self._read_bytes(offset, width) it = {1: "b", 2: "h", 4: "l", 8: "q"}[width] iv = struct.unpack(self.byte_order + it, buf)[0] return iv def _read_bytes(self, offset, length): if self._cached_page is None: self._path_or_buf.seek(offset) buf = self._path_or_buf.read(length) if len(buf) < length: self.close() msg = "Unable to read {:d} bytes from file position {:d}." raise ValueError(msg.format(length, offset)) return buf else: if offset + length > len(self._cached_page): self.close() raise ValueError("The cached page is too small.") return self._cached_page[offset:offset + length] def _parse_metadata(self): done = False while not done: self._cached_page = self._path_or_buf.read(self._page_length) if len(self._cached_page) <= 0: break if len(self._cached_page) != self._page_length: self.close() raise ValueError( "Failed to read a meta data page from the SAS file.") done = self._process_page_meta() def _process_page_meta(self): self._read_page_header() pt = [const.page_meta_type, const.page_amd_type] + const.page_mix_types if self._current_page_type in pt: self._process_page_metadata() return ((self._current_page_type in [256] + const.page_mix_types) or (self._current_page_data_subheader_pointers is not None)) def _read_page_header(self): bit_offset = self._page_bit_offset tx = const.page_type_offset + bit_offset self._current_page_type = self._read_int(tx, const.page_type_length) tx = const.block_count_offset + bit_offset self._current_page_block_count = self._read_int( tx, const.block_count_length) tx = const.subheader_count_offset + bit_offset self._current_page_subheaders_count = ( self._read_int(tx, const.subheader_count_length)) def _process_page_metadata(self): bit_offset = self._page_bit_offset for i in range(self._current_page_subheaders_count): pointer = self._process_subheader_pointers( const.subheader_pointers_offset + bit_offset, i) if pointer.length == 0: continue if pointer.compression == const.truncated_subheader_id: continue subheader_signature = self._read_subheader_signature( pointer.offset) subheader_index = ( self._get_subheader_index(subheader_signature, pointer.compression, pointer.ptype)) self._process_subheader(subheader_index, pointer) def _get_subheader_index(self, signature, compression, ptype): index = const.subheader_signature_to_index.get(signature) if index is None: f1 = ((compression == const.compressed_subheader_id) or (compression == 0)) f2 = (ptype == const.compressed_subheader_type) if (self.compression != "") and f1 and f2: index = const.SASIndex.data_subheader_index else: self.close() raise ValueError("Unknown subheader signature") return index def _process_subheader_pointers(self, offset, subheader_pointer_index): subheader_pointer_length = self._subheader_pointer_length total_offset = (offset + subheader_pointer_length * subheader_pointer_index) subheader_offset = self._read_int(total_offset, self._int_length) total_offset += self._int_length subheader_length = self._read_int(total_offset, self._int_length) total_offset += self._int_length subheader_compression = self._read_int(total_offset, 1) total_offset += 1 subheader_type = self._read_int(total_offset, 1) x = _subheader_pointer() x.offset = subheader_offset x.length = subheader_length x.compression = subheader_compression x.ptype = subheader_type return x def _read_subheader_signature(self, offset): subheader_signature = self._read_bytes(offset, self._int_length) return subheader_signature def _process_subheader(self, subheader_index, pointer): offset = pointer.offset length = pointer.length if subheader_index == const.SASIndex.row_size_index: processor = self._process_rowsize_subheader elif subheader_index == const.SASIndex.column_size_index: processor = self._process_columnsize_subheader elif subheader_index == const.SASIndex.column_text_index: processor = self._process_columntext_subheader elif subheader_index == const.SASIndex.column_name_index: processor = self._process_columnname_subheader elif subheader_index == const.SASIndex.column_attributes_index: processor = self._process_columnattributes_subheader elif subheader_index == const.SASIndex.format_and_label_index: processor = self._process_format_subheader elif subheader_index == const.SASIndex.column_list_index: processor = self._process_columnlist_subheader elif subheader_index == const.SASIndex.subheader_counts_index: processor = self._process_subheader_counts elif subheader_index == const.SASIndex.data_subheader_index: self._current_page_data_subheader_pointers.append(pointer) return else: raise ValueError("unknown subheader index") processor(offset, length) def _process_rowsize_subheader(self, offset, length): int_len = self._int_length lcs_offset = offset lcp_offset = offset if self.U64: lcs_offset += 682 lcp_offset += 706 else: lcs_offset += 354 lcp_offset += 378 self.row_length = self._read_int( offset + const.row_length_offset_multiplier * int_len, int_len) self.row_count = self._read_int( offset + const.row_count_offset_multiplier * int_len, int_len) self.col_count_p1 = self._read_int( offset + const.col_count_p1_multiplier * int_len, int_len) self.col_count_p2 = self._read_int( offset + const.col_count_p2_multiplier * int_len, int_len) mx = const.row_count_on_mix_page_offset_multiplier * int_len self._mix_page_row_count = self._read_int(offset + mx, int_len) self._lcs = self._read_int(lcs_offset, 2) self._lcp = self._read_int(lcp_offset, 2) def _process_columnsize_subheader(self, offset, length): int_len = self._int_length offset += int_len self.column_count = self._read_int(offset, int_len) if (self.col_count_p1 + self.col_count_p2 != self.column_count): print("Warning: column count mismatch (%d + %d != %d)\n", self.col_count_p1, self.col_count_p2, self.column_count) # Unknown purpose def _process_subheader_counts(self, offset, length): pass def _process_columntext_subheader(self, offset, length): offset += self._int_length text_block_size = self._read_int(offset, const.text_block_size_length) buf = self._read_bytes(offset, text_block_size) cname_raw = buf[0:text_block_size].rstrip(b"\x00 ") cname = cname_raw if self.convert_header_text: cname = cname.decode(self.encoding or self.default_encoding) self.column_names_strings.append(cname) if len(self.column_names_strings) == 1: compression_literal = "" for cl in const.compression_literals: if cl in cname_raw: compression_literal = cl self.compression = compression_literal offset -= self._int_length offset1 = offset + 16 if self.U64: offset1 += 4 buf = self._read_bytes(offset1, self._lcp) compression_literal = buf.rstrip(b"\x00") if compression_literal == "": self._lcs = 0 offset1 = offset + 32 if self.U64: offset1 += 4 buf = self._read_bytes(offset1, self._lcp) self.creator_proc = buf[0:self._lcp] elif compression_literal == const.rle_compression: offset1 = offset + 40 if self.U64: offset1 += 4 buf = self._read_bytes(offset1, self._lcp) self.creator_proc = buf[0:self._lcp] elif self._lcs > 0: self._lcp = 0 offset1 = offset + 16 if self.U64: offset1 += 4 buf = self._read_bytes(offset1, self._lcs) self.creator_proc = buf[0:self._lcp] if self.convert_header_text: if hasattr(self, "creator_proc"): self.creator_proc = self.creator_proc.decode( self.encoding or self.default_encoding) def _process_columnname_subheader(self, offset, length): int_len = self._int_length offset += int_len column_name_pointers_count = (length - 2 * int_len - 12) // 8 for i in range(column_name_pointers_count): text_subheader = offset + const.column_name_pointer_length * \ (i + 1) + const.column_name_text_subheader_offset col_name_offset = offset + const.column_name_pointer_length * \ (i + 1) + const.column_name_offset_offset col_name_length = offset + const.column_name_pointer_length * \ (i + 1) + const.column_name_length_offset idx = self._read_int( text_subheader, const.column_name_text_subheader_length) col_offset = self._read_int( col_name_offset, const.column_name_offset_length) col_len = self._read_int( col_name_length, const.column_name_length_length) name_str = self.column_names_strings[idx] self.column_names.append(name_str[col_offset:col_offset + col_len]) def _process_columnattributes_subheader(self, offset, length): int_len = self._int_length column_attributes_vectors_count = ( length - 2 * int_len - 12) // (int_len + 8) self.column_types = np.empty( column_attributes_vectors_count, dtype=np.dtype('S1')) self._column_data_lengths = np.empty( column_attributes_vectors_count, dtype=np.int64) self._column_data_offsets = np.empty( column_attributes_vectors_count, dtype=np.int64) for i in range(column_attributes_vectors_count): col_data_offset = (offset + int_len + const.column_data_offset_offset + i * (int_len + 8)) col_data_len = (offset + 2 * int_len + const.column_data_length_offset + i * (int_len + 8)) col_types = (offset + 2 * int_len + const.column_type_offset + i * (int_len + 8)) x = self._read_int(col_data_offset, int_len) self._column_data_offsets[i] = x x = self._read_int(col_data_len, const.column_data_length_length) self._column_data_lengths[i] = x x = self._read_int(col_types, const.column_type_length) if x == 1: self.column_types[i] = b'd' else: self.column_types[i] = b's' def _process_columnlist_subheader(self, offset, length): # unknown purpose pass def _process_format_subheader(self, offset, length): int_len = self._int_length text_subheader_format = ( offset + const.column_format_text_subheader_index_offset + 3 * int_len) col_format_offset = (offset + const.column_format_offset_offset + 3 * int_len) col_format_len = (offset + const.column_format_length_offset + 3 * int_len) text_subheader_label = ( offset + const.column_label_text_subheader_index_offset + 3 * int_len) col_label_offset = (offset + const.column_label_offset_offset + 3 * int_len) col_label_len = offset + const.column_label_length_offset + 3 * int_len x = self._read_int(text_subheader_format, const.column_format_text_subheader_index_length) format_idx = min(x, len(self.column_names_strings) - 1) format_start = self._read_int( col_format_offset, const.column_format_offset_length) format_len = self._read_int( col_format_len, const.column_format_length_length) label_idx = self._read_int( text_subheader_label, const.column_label_text_subheader_index_length) label_idx = min(label_idx, len(self.column_names_strings) - 1) label_start = self._read_int( col_label_offset, const.column_label_offset_length) label_len = self._read_int(col_label_len, const.column_label_length_length) label_names = self.column_names_strings[label_idx] column_label = label_names[label_start: label_start + label_len] format_names = self.column_names_strings[format_idx] column_format = format_names[format_start: format_start + format_len] current_column_number = len(self.columns) col = _column() col.col_id = current_column_number col.name = self.column_names[current_column_number] col.label = column_label col.format = column_format col.ctype = self.column_types[current_column_number] col.length = self._column_data_lengths[current_column_number] self.column_formats.append(column_format) self.columns.append(col) def read(self, nrows=None): if (nrows is None) and (self.chunksize is not None): nrows = self.chunksize elif nrows is None: nrows = self.row_count if len(self.column_types) == 0: self.close() raise EmptyDataError("No columns to parse from file") if self._current_row_in_file_index >= self.row_count: return None m = self.row_count - self._current_row_in_file_index if nrows > m: nrows = m nd = (self.column_types == b'd').sum() ns = (self.column_types == b's').sum() self._string_chunk = np.empty((ns, nrows), dtype=np.object) self._byte_chunk = np.empty((nd, 8 * nrows), dtype=np.uint8) self._current_row_in_chunk_index = 0 p = Parser(self) p.read(nrows) rslt = self._chunk_to_dataframe() if self.index is not None: rslt = rslt.set_index(self.index) return rslt def _read_next_page(self): self._current_page_data_subheader_pointers = [] self._cached_page = self._path_or_buf.read(self._page_length) if len(self._cached_page) <= 0: return True elif len(self._cached_page) != self._page_length: self.close() msg = ("failed to read complete page from file " "(read {:d} of {:d} bytes)") raise ValueError(msg.format(len(self._cached_page), self._page_length)) self._read_page_header() if self._current_page_type == const.page_meta_type: self._process_page_metadata() pt = [const.page_meta_type, const.page_data_type] pt += [const.page_mix_types] if self._current_page_type not in pt: return self._read_next_page() return False def _chunk_to_dataframe(self): n = self._current_row_in_chunk_index m = self._current_row_in_file_index ix = range(m - n, m) rslt = pd.DataFrame(index=ix) js, jb = 0, 0 for j in range(self.column_count): name = self.column_names[j] if self.column_types[j] == b'd': rslt[name] = self._byte_chunk[jb, :].view( dtype=self.byte_order + 'd') rslt[name] = np.asarray(rslt[name], dtype=np.float64) if self.convert_dates: unit = None if self.column_formats[j] in const.sas_date_formats: unit = 'd' elif self.column_formats[j] in const.sas_datetime_formats: unit = 's' if unit: rslt[name] = pd.to_datetime(rslt[name], unit=unit, origin="1960-01-01") jb += 1 elif self.column_types[j] == b's': rslt[name] = self._string_chunk[js, :] if self.convert_text and (self.encoding is not None): rslt[name] = rslt[name].str.decode( self.encoding or self.default_encoding) if self.blank_missing: ii = rslt[name].str.len() == 0 rslt.loc[ii, name] = np.nan js += 1 else: self.close() raise ValueError("unknown column type %s" % self.column_types[j]) return rslt
bsd-3-clause
alan-unravel/bokeh
bokeh/compat/bokeh_exporter.py
38
1508
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2014, Continuum Analytics, Inc. All rights reserved. # # Powered by the Bokeh Development Team. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- from __future__ import absolute_import from matplotlib.collections import LineCollection, PolyCollection from .mplexporter.exporter import Exporter #----------------------------------------------------------------------------- # Classes and functions #----------------------------------------------------------------------------- class BokehExporter(Exporter): def draw_collection(self, ax, collection, force_pathtrans=None, force_offsettrans=None): if isinstance(collection, LineCollection): self.renderer.make_line_collection(collection) elif isinstance(collection, PolyCollection): self.renderer.make_poly_collection(collection) else: super(BokehExporter, self).draw_collection(ax, collection, force_pathtrans, force_offsettrans) def draw_patch(self, ax, patch, force_trans=None): super(BokehExporter, self).draw_patch(ax, patch, force_trans)
bsd-3-clause
Cryptoverse/cryptoverse-probe
main.py
1
58080
from json import dumps as json_dump from os import getenv, environ from sys import stdout, platform from traceback import print_exc as print_exception from datetime import datetime from time import sleep from ete3 import Tree from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization from getch import getch from probe_exceptions import CommandException, ProbeTimeoutException import requests import database import util import validate import parameter_util as putil import matplotlib matplotlib.use('TkAgg') from mpl_toolkits.mplot3d import Axes3D # pylint: disable=unused-import import matplotlib.colors as pycolors import matplotlib.pyplot as pyplot AUTO_REBUILD = int(getenv('AUTO_REBUILD', '0')) == 1 # HOST_URL = getenv('HOST_URL', 'http://localhost:5000') HOST_URL = getenv('HOST_URL', 'http://api.cryptoverse.io') RULES_URL = HOST_URL + '/rules' CHAINS_URL = HOST_URL + '/chains' STAR_LOGS_URL = HOST_URL + '/star-logs' EVENTS_URL = HOST_URL + '/events' DEFAULT_COLOR = '\033[0m' SUCCESS_COLOR = '\033[92m' ERROR_COLOR = '\033[91m' BOLD_COLOR = '\033[1m' CURSOR_ERASE_SEQUENCE = '\033[K' CURSOR_FORWARD_SEQUENCE = '\033[%sC' def get_genesis(): return { 'nonce': 0, 'height': 0, 'hash': util.EMPTY_TARGET, 'difficulty': util.difficultyStart(), 'events': [], 'version': 0, 'time': 0, 'previous_hash': util.EMPTY_TARGET, 'events_hash': None, 'meta': None, 'meta_hash': None } def get_event_signature(fleet_hash=None, fleet_key=None, event_hash=None, inputs=None, outputs=None, signature=None, event_type=None): return { 'fleet_hash': fleet_hash, 'fleet_key': fleet_key, 'hash': event_hash, 'inputs': [] if inputs is None else inputs, 'outputs': [] if outputs is None else outputs, 'signature': signature, 'type': event_type } def get_event_input(index, key): return { 'index': index, 'key': key } def get_event_output(index, count, fleet_hash, key, star_system, type_name): return { 'index': index, 'count': count, 'fleet_hash': fleet_hash, 'key': key, 'star_system': star_system, 'type': type_name } def generate_account(name='default'): private_key = rsa.generate_private_key( public_exponent=65537, key_size=2048, backend=default_backend() ) private_serialized = private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption() ) public_serialized = private_key.public_key().public_bytes( encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.SubjectPublicKeyInfo ) public_lines = public_serialized.splitlines() public_shrunk = '' for line in range(1, len(public_lines) - 1): public_shrunk += public_lines[line].strip('\n') return { 'name': name, 'private_key': private_serialized, 'public_key': public_shrunk } def pretty_json(serialized): return json_dump(serialized, sort_keys=True, indent=4, separators=(',', ': ')) def get_request(url, payload=None): try: return requests.get(url, payload).json() except: print_exception() print 'error on get request '+url def post_request(url, payload=None): try: serialized = json_dump(payload) return requests.post(url, data=serialized, headers={'content-type': 'application/json', 'cache-control': 'no-cache', }).json() except: print_exception() print 'error on post request '+url def create_command(function, description, details=None): return { 'function': function, 'description': description, 'details': details } def command_help(commands, params=None): help_message = '%sThis help message' exit_message = '%sEnds this process' if params: if 0 < len(params): queried_command_name = params[0] selection = commands.get(queried_command_name, None) if selection: print '%s' % selection['description'] details = selection['details'] if details: for detail in selection['details']: print '\t - %s' % detail return elif queried_command_name == 'help': print help_message % '' return elif queried_command_name == 'exit': print exit_message % '' return raise CommandException('Command "%s" is not recognized, try typing "help" for a list of all commands' % queried_command_name) print help_message % 'help\t - ' for command in commands: print '%s\t - %s' % (command, commands[command]['description']) print exit_message % 'exit\t - ' def account(params=None): if putil.retrieve(params, '-a', True, False): account_all() elif putil.retrieve(params, '-s', True, False): account_set(putil.retrieve_value(params, '-s', None)) elif putil.retrieve(params, '-c', True, False): account_create(putil.retrieve_value(params, '-c', None)) else: result = database.get_account() if result: print 'Using account "%s"' % result['name'] print '\tFleet Hash: %s' % util.get_fleet_hash_name(result['public_key']) else: print 'No active account' def account_all(): message = 'No account information found' accounts = database.get_accounts() if accounts: message = 'Persistent data contains the following account entries' entry_message = '\n%s\t- %s\n\t\tFleet Hash: %s' for currentAccount in accounts: active_flag = '[CURR] ' if currentAccount['active'] else '' message += entry_message % (active_flag, currentAccount['name'], util.get_fleet_hash_name(currentAccount['public_key'])) print message def account_set(name): if not name: raise CommandException('Account cannot be set to None') if not database.any_account(name): raise CommandException('Unable to find account %s' % name) database.set_account_active(name) print 'Current account is now "%s"' % name def account_create(name): if not name: raise CommandException('Include a unique name for this account') elif database.any_account(name): raise CommandException('An account named "%s" already exists' % name) created_account = generate_account(name) database.add_account(created_account) database.set_account_active(name) print 'Created and activated account "%s"' % name def info(): print 'Connected to %s with fudge %s, interval %s, duration %s' % (HOST_URL, util.difficultyFudge(), util.difficultyInterval(), util.difficultyDuration()) def star_log(params=None): target_hash = None if putil.has_any(params): if putil.has_single(params): target_hash = putil.single_str(params) # TODO: Actually support target_hash. print pretty_json(get_request(STAR_LOGS_URL)) def probe(params=None): # TODO: Sync first... from_genesis = putil.retrieve(params, '-g', True, False) post = putil.retrieve(params, '-a', False, True) verbose = putil.retrieve(params, '-v', True, False) silent = putil.retrieve(params, '-s', True, False) allow_duplicate_events = putil.retrieve(params, '-d', True, False) from_query = putil.retrieve_value(params, '-f', None) loop = putil.retrieve(params, '-l', True, False) wait = float(putil.retrieve_value(params, '-w', 0.0)) blind = putil.retrieve(params, '-b', True, False) if wait < 0: raise CommandException('Cannot use a wait less than zero seconds') from_hash = None if from_query is not None: from_hash = putil.natural_match(from_query, database.get_star_log_hashes()) if from_hash is None: raise CommandException('Unable to find a system hash containing %s' % from_query) if not blind: sync('-s') generated = None started = datetime.now() while generated is None: try: generated = generate_next_star_log(from_hash, from_genesis, allow_duplicate_events, started) except ProbeTimeoutException: if not blind: sync('-s') if not silent: print 'Probed new starlog %s' % util.get_system_name(generated['hash']) if verbose: print pretty_json(generated) if not post: return try: result = post_request(STAR_LOGS_URL, generated) if result == 200: database.add_star_log(generated) if not silent: prefix, postfix = SUCCESS_COLOR if result == 200 else ERROR_COLOR, DEFAULT_COLOR print 'Posted starlog with response %s%s%s' % (prefix, result, postfix) except: print_exception() print 'Something went wrong when trying to post the generated starlog' if loop: if 0 < wait: sleep(wait) probe(params) def generate_next_star_log(from_star_log=None, from_genesis=False, allow_duplicate_events=False, start_time=None, timeout=180): next_star_log = get_genesis() if from_star_log: next_star_log = database.get_star_log(from_star_log) elif not from_genesis: local_highest = database.get_star_log_highest() if local_highest is not None: next_star_log = local_highest is_genesis = util.is_genesis_star_log(next_star_log['hash']) account_info = database.get_account() next_star_log['events'] = [] if not is_genesis: event_results = get_request(EVENTS_URL, {'limit': util.eventsMaxLimit()}) if event_results: unused_events = [] for unused_event in database.get_unused_events(from_star_log=next_star_log['hash']): unused_events.append(unused_event['key']) used_inputs = [] used_outputs = [] events = [] for event in event_results: validate.event(event, require_index=False, require_star_system=True, reward_allowed=False) conflict = False current_used_inputs = [] for current_input in event['inputs']: conflict = current_input['key'] in used_inputs + current_used_inputs or current_input['key'] not in unused_events if conflict: break current_used_inputs.append(current_input['key']) if conflict: continue current_used_outputs = [] for current_output in event['outputs']: output_key = current_output['key'] conflict = output_key in used_inputs + used_outputs + current_used_inputs + current_used_outputs if conflict: break current_used_outputs.append(output_key) if conflict: continue if not allow_duplicate_events: if database.any_events_used(current_used_inputs, next_star_log['hash']) or database.any_events_exist(current_used_outputs, next_star_log['hash']): continue used_inputs += current_used_inputs used_outputs += current_used_outputs event['index'] = len(events) events.append(event) next_star_log['events'] += events reward_output = { 'index': 0, 'type': 'reward', 'fleet_hash': util.sha256(account_info['public_key']), 'key': util.get_unique_key(), 'star_system': None, 'count': util.shipReward(), } reward_event = { 'index': len(next_star_log['events']), 'hash': None, 'type': 'reward', 'fleet_hash': util.sha256(account_info['public_key']), 'fleet_key': account_info['public_key'], 'inputs': [], 'outputs': [ reward_output ], 'signature': None } if not is_genesis: # TODO: This won't work correctly if there are multiple genesis blocks! # TODO: Change this to get from the local database first_star_log = get_request(CHAINS_URL, {'height': 0}) # Until we have a way to select where to send your reward ships, just send them to the genesis block. reward_output['star_system'] = first_star_log[0]['hash'] reward_event['hash'] = util.hash_event(reward_event) reward_event['signature'] = util.rsa_sign(account_info['private_key'], reward_event['hash']) meta = database.get_meta_content() next_star_log['meta'] = '' if meta is None else meta next_star_log['meta_hash'] = util.sha256(next_star_log['meta']) next_star_log['events'].append(reward_event) next_star_log['previous_hash'] = next_star_log['hash'] next_star_log['time'] = util.get_time() next_star_log['nonce'] = 0 next_star_log['events_hash'] = util.hash_events(next_star_log['events']) next_star_log['log_header'] = util.concat_star_log_header(next_star_log) next_star_log['height'] = 0 if is_genesis else next_star_log['height'] + 1 if not is_genesis and util.is_difficulty_changing(next_star_log['height']): # We have to recalculate the difficulty at this height. previous_recalculation = database.get_star_log_at_height(next_star_log['previous_hash'], next_star_log['height'] - util.difficultyInterval()) previous_star_log = database.get_star_log(next_star_log['previous_hash']) next_star_log['difficulty'] = util.calculate_difficulty(previous_recalculation['difficulty'], previous_star_log['time'] - previous_recalculation['time']) found = False tries = 0 check_interval = 10000000 next_check = check_interval curr_started = datetime.now() started = curr_started if start_time is None else start_time last_checkin = curr_started # This initial hash hangles the hashing of events and such. next_star_log = util.hash_star_log(next_star_log) current_difficulty = util.unpack_bits(next_star_log['difficulty'], True) current_difficulty_leading_zeros = len(current_difficulty) - len(current_difficulty.lstrip('0')) current_nonce = 0 log_prefix = util.concat_star_log_header(next_star_log, False) current_hash = None while not found: current_hash = util.sha256('%s%s' % (log_prefix, current_nonce)) try: validate.difficulty_unpacked(current_difficulty, current_difficulty_leading_zeros, current_hash, False) found = True break except: pass if tries == next_check: next_check = tries + check_interval now = datetime.now() if timeout < (now - curr_started).total_seconds(): raise ProbeTimeoutException('Probing timed out') hashes_per_second = tries / (now - last_checkin).total_seconds() elapsed_minutes = (now - started).total_seconds() / 60 print '\tProbing at %.0f hashes per second, %.1f minutes elapsed...' % (hashes_per_second, elapsed_minutes) current_nonce += 1 if util.MAXIMUM_NONCE <= current_nonce: current_nonce = 0 next_star_log['time'] = util.get_time() log_prefix = util.concat_star_log_header(next_star_log, False) tries += 1 if found: next_star_log['nonce'] = current_nonce next_star_log['log_header'] = util.concat_star_log_header(next_star_log) next_star_log['hash'] = current_hash else: raise CommandException('Unable to probe a new starlog') return next_star_log def sync(params=None): silent = putil.retrieve(params, '-s', True, False) if putil.retrieve(params, '-f', True, False): if not silent: print 'Removing all locally cached starlogs' database.initialize(True) latest = database.get_star_log_latest() latest_time = 0 if latest is None else latest['time'] all_results = [] last_count = util.starLogsMaxLimit() offset = 0 while util.starLogsMaxLimit() == last_count: results = get_request(STAR_LOGS_URL, {'since_time': latest_time, 'limit': util.starLogsMaxLimit(), 'offset': offset}) if results is None: last_count = 0 else: last_count = len(results) offset += last_count all_results += results for result in all_results: database.add_star_log(result) if not silent: print 'Syncronized %s starlogs' % len(all_results) def render_chain(params=None): # TODO: Fix bug that causes rendering to mess up after probing. limit = 6 height = None # TODO: Actually get height from parameters. if putil.has_any(params): if putil.has_single(params): limit = putil.single_int(params) else: raise CommandException('Unsupported parameters') highest = database.get_star_log_highest() if highest is None: raise CommandException('No starlogs to render, try "sync"') height = highest['height'] if height is None else height results = database.get_star_logs_at_height(height, limit) strata = [(height, list(results))] remaining = limit - len(results) while 0 < height and remaining != 0: height -= 1 ancestor_results = database.get_star_logs_at_height(height, remaining) current_results = [] for ancestor in ancestor_results: has_children = False for result in results: has_children = result['previous_hash'] == ancestor['hash'] if has_children: break results.append(ancestor) if not has_children: current_results.append(ancestor) if current_results: strata.append((height, current_results)) remaining = limit - len(current_results) tree = Tree() last_node = tree count = len(strata) for i in reversed(range(0, count)): stratum = strata[i] if i == 0: for orphan in stratum[1]: last_node.add_child(name=util.get_system_name(orphan['hash'])) else: last_node = last_node.add_child() for orphan in stratum[1]: last_node.add_sister(name=util.get_system_name(orphan['hash'])) print tree def render_systems(params=None): figure = pyplot.figure() axes = figure.add_subplot(111, projection='3d') for currentSystem in database.get_star_log_hashes(from_highest=True): current_position = util.get_cartesian(currentSystem) xs = [current_position[0], current_position[0]] ys = [current_position[1], current_position[1]] zs = [0, current_position[2]] axes.plot(xs, ys, zs) axes.scatter(current_position[0], current_position[1], current_position[2], label=util.get_system_name(currentSystem)) axes.legend() axes.set_title('Systems') axes.set_xlabel('X') axes.set_ylabel('Y') axes.set_zlabel('Z') pyplot.show() def list_deployments(params=None): verbose = putil.retrieve(params, '-v', True, False) list_all = not putil.has_any(params) or putil.retrieve(params, '-a', True, False) from_hash = None if putil.retrieve(params, '-f', True, False): from_hash_query = putil.retrieve_value(params, '-f', None) if from_hash_query is None: raise CommandException('A system hash fragment must be passed with the -f parameter') from_hash = putil.natural_match(from_hash_query, database.get_star_log_hashes()) if from_hash is None: raise CommandException('Unable to find a system hash containing %s' % from_hash_query) if list_all: list_all_deployments(from_hash, verbose) return hash_query = putil.single_str(params) selected_hash = putil.natural_match(hash_query, database.get_star_log_hashes()) if selected_hash is None: raise CommandException('Unable to find a system hash containing %s' % hash_query) deployments = database.get_unused_events(from_star_log=from_hash, system_hash=selected_hash) if verbose: print pretty_json(deployments) return fleets = {} for deployment in deployments: fleet = deployment['fleet_hash'] count = deployment['count'] if fleet in fleets: fleets[fleet] += count else: fleets[fleet] = count result = 'No deployments in system %s' % util.get_system_name(selected_hash) if fleets: result = 'Deployments in star system %s' % util.get_system_name(selected_hash) fleet_keys = fleets.keys() for i in range(0, len(fleets)): current_fleet = fleet_keys[i] result += '\n - %s : %s' % (util.get_fleet_name(current_fleet), fleets[current_fleet]) print result def list_all_deployments(from_star_log, verbose): deployments = database.get_unused_events(from_star_log=from_star_log) if verbose: print pretty_json(deployments) return systems = {} for deployment in deployments: system = deployment['star_system'] fleet = deployment['fleet_hash'] count = deployment['count'] if system in systems: current_system = systems[system] else: current_system = {} systems[system] = current_system if fleet in current_system: current_system[fleet] += count else: current_system[fleet] = count result = 'No deployments in any systems' account_hash = util.sha256(database.get_account()['public_key']) if systems: result = 'Deployments in all systems' system_keys = systems.keys() for i in range(0, len(system_keys)): current_system = system_keys[i] result += '\n - %s' % util.get_system_name(current_system) fleet_keys = systems[current_system].keys() for fleet_key in range(0, len(fleet_keys)): current_fleet = fleet_keys[fleet_key] fleet_count = systems[current_system][current_fleet] active_flag = '[CURR] ' if current_fleet == account_hash else '' result += '\n%s\t - %s : %s' % (active_flag, util.get_fleet_name(current_fleet), fleet_count) print result def attack(params=None): if not putil.has_at_least(params, 2): raise CommandException('An origin system and fleet must be specified') verbose = putil.retrieve(params, '-v', True, False) abort = putil.retrieve(params, '-a', True, False) origin_fragment = params[0] enemy_fragment = params[1] origin_hash = putil.natural_match(origin_fragment, database.get_star_log_hashes()) if origin_hash is None: raise CommandException('Unable to find an origin system containing %s' % origin_fragment) highest_hash = database.get_star_log_highest(origin_hash)['hash'] enemy_hash = putil.natural_match(enemy_fragment, database.get_fleets(highest_hash)) if enemy_hash is None: raise CommandException('Unable to find a fleet containing %s' % enemy_fragment) enemy_deployments = database.get_unused_events(highest_hash, origin_hash, enemy_hash) if enemy_deployments is None: raise CommandException('Fleet %s has no ships deployed in %s' % (util.get_fleet_name(enemy_hash), util.get_system_name(origin_hash))) account_info = database.get_account() friendly_hash = util.sha256(account_info['public_key']) friendly_deployments = database.get_unused_events(highest_hash, origin_hash, friendly_hash) friendly_count = 0 for friendly_deployment in friendly_deployments: friendly_count += friendly_deployment['count'] if friendly_count == 0: raise CommandException('None of your fleet is deployed to %s' % util.get_system_name(origin_hash)) # TODO: Break this out into its own get call. attack_event = { 'fleet_hash': friendly_hash, 'fleet_key': account_info['public_key'], 'hash': None, 'inputs': [], 'outputs': [], 'signature': None, 'type': 'attack' } input_index = 0 enemy_count = 0 for enemy_deployment in enemy_deployments: attack_event['inputs'].append(get_event_input(input_index, enemy_deployment['key'])) enemy_count += enemy_deployment['count'] input_index += 1 if friendly_count <= enemy_count: break friendly_count = 0 for friendly_deployment in friendly_deployments: attack_event['inputs'].append(get_event_input(input_index, friendly_deployment['key'])) friendly_count += friendly_deployment['count'] input_index += 1 if enemy_count <= friendly_count: break if enemy_count < friendly_count: attack_event['outputs'].append(get_event_output(0, friendly_count - enemy_count, friendly_hash, util.get_unique_key(), origin_hash, 'attack')) elif friendly_count < enemy_count: attack_event['outputs'].append(get_event_output(0, enemy_count - friendly_count, enemy_hash, util.get_unique_key(), origin_hash, 'attack')) attack_event['hash'] = util.hash_event(attack_event) attack_event['signature'] = util.rsa_sign(account_info['private_key'], attack_event['hash']) if verbose: print pretty_json(attack_event) if not abort: result = post_request(EVENTS_URL, attack_event) prefix, postfix = SUCCESS_COLOR if result == 200 else ERROR_COLOR, DEFAULT_COLOR print 'Posted attack event with response %s%s%s' % (prefix, result, postfix) def jump(params=None): verbose = putil.retrieve(params, '-v', True, False) render = putil.retrieve(params, '-r', True, False) abort = putil.retrieve(params, '-a', True, False) # lossy = putil.retrieve(params, '-l', True, False) # TODO: Add actual support for non-lossy jumps. lossy = True count = None if not putil.has_any(params): raise CommandException('Specify an origin and destination system') if len(params) < 2: raise CommandException('An origin and destination system must be specified') origin_fragment = params[0] destination_fragment = params[1] if 2 < len(params) and isinstance(params[2], int): count = int(params[2]) hashes = database.get_star_log_hashes() origin_hash = putil.natural_match(origin_fragment, hashes) if origin_hash is None: raise CommandException('Unable to find an origin system containing %s' % origin_fragment) destination_hash = putil.natural_match(destination_fragment, hashes) if destination_hash is None: raise CommandException('Unable to find a destination system containing %s' % destination_fragment) if not database.get_star_logs_share_chain([origin_hash, destination_hash]): raise CommandException('Systems %s and %s exist on different chains' % (util.get_system_name(origin_hash), util.get_system_name(destination_hash))) highest_hash = database.get_star_log_highest(database.get_star_log_highest_from_list([origin_hash, destination_hash]))['hash'] account_info = database.get_account() fleet_hash = util.sha256(account_info['public_key']) deployments = database.get_unused_events(from_star_log=highest_hash, system_hash=origin_hash, fleet_hash=fleet_hash) total_ships = 0 for deployment in deployments: total_ships += deployment['count'] if count is None: count = total_ships lossy = True elif total_ships < count: raise CommandException('Not enough ships to jump from the origin system') if count <= 0: raise CommandException('A number of ships greater than zero must be specified for a jump') # TODO: Insert support for non-lossy jumps here. jump_cost = util.get_jump_cost(destination_hash, origin_hash, count) if jump_cost == count: raise CommandException('Unable to complete a jump where all ships would be lost') jump_event = get_event_signature(fleet_hash, account_info['public_key'], event_type='jump') inputs = [] input_index = 0 total_input_count = 0 for deployment in deployments: total_input_count += deployment['count'] inputs.append(get_event_input(input_index, deployment['key'])) input_index += 1 if count <= total_input_count: break extra_ships = total_input_count - count outputs = [] index = 0 jump_key = util.sha256('%s%s%s%s' % (util.get_time(), fleet_hash, origin_hash, destination_hash)) if 0 < extra_ships: outputs.append(get_event_output(index, extra_ships, fleet_hash, util.get_unique_key(), origin_hash, 'jump')) index += 1 outputs.append(get_event_output(index, count - jump_cost, fleet_hash, jump_key, destination_hash, 'jump')) jump_event['inputs'] = inputs jump_event['outputs'] = outputs jump_event['hash'] = util.hash_event(jump_event) jump_event['signature'] = util.rsa_sign(account_info['private_key'], jump_event['hash']) if verbose: print pretty_json(jump_event) if render: render_jump(origin_hash, destination_hash) if not abort: result = post_request(EVENTS_URL, jump_event) prefix, postfix = SUCCESS_COLOR if result == 200 else ERROR_COLOR, DEFAULT_COLOR print 'Posted jump event with response %s%s%s' % (prefix, result, postfix) def render_jump(origin_hash, destination_hash): highest = database.get_star_log_highest_from_list([origin_hash, destination_hash]) figure = pyplot.figure() axes = figure.add_subplot(111, projection='3d') for current_system in database.get_star_log_hashes(highest): current_position = util.get_cartesian(current_system) xs = [current_position[0], current_position[0]] ys = [current_position[1], current_position[1]] zs = [0, current_position[2]] axes.plot(xs, ys, zs) axes.scatter(current_position[0], current_position[1], current_position[2], label=util.get_system_name(current_system)) origin_position = util.get_cartesian(origin_hash) destination_position = util.get_cartesian(destination_hash) xs = [origin_position[0], destination_position[0]] ys = [origin_position[1], destination_position[1]] zs = [origin_position[2], destination_position[2]] axes.plot(xs, ys, zs, linestyle=':') axes.legend() axes.set_title('Jump %s -> %s' % (util.get_system_name(origin_hash), util.get_system_name(destination_hash))) axes.set_xlabel('X') axes.set_ylabel('Y') axes.set_zlabel('Z') pyplot.show() def render_jump_range(params=None): if not putil.has_any(params): raise CommandException('Specify an origin system to render the jump range from') origin_fragment = putil.single_str(params) destination_fragment = putil.retrieve_value(params, '-d', None) hashes = database.get_star_log_hashes() origin_hash = putil.natural_match(origin_fragment, hashes) if origin_hash is None: raise CommandException('Unable to find an origin system containing %s' % origin_fragment) destination_hash = None highest = None if destination_fragment is not None: destination_hash = putil.natural_match(destination_fragment, hashes) if destination_hash is None: raise CommandException('Unable to find a destination system containing %s' % destination_fragment) if not database.get_star_logs_share_chain([origin_hash, destination_hash]): raise CommandException('Systems %s and %s exist on different chains' % (util.get_system_name(origin_hash), util.get_system_name(destination_hash))) highest = database.get_star_log_highest(database.get_star_log_highest_from_list([origin_hash, destination_hash]))['hash'] figure = pyplot.figure() axes = figure.add_subplot(111, projection='3d') hue_start = 0.327 hue_end = 0.0 hue_delta = hue_end - hue_start for current_system in database.get_star_log_hashes(highest): cost = util.get_jump_cost(origin_hash, current_system) cost_hue = hue_start + (cost * hue_delta) cost_value = 0.0 if cost == 1.0 else 1.0 color = pycolors.hsv_to_rgb([cost_hue, 0.7, cost_value]) current_position = util.get_cartesian(current_system) xs = [current_position[0], current_position[0]] ys = [current_position[1], current_position[1]] zs = [0, current_position[2]] axes.plot(xs, ys, zs, c=color) marker = '^' if current_system == origin_hash else 'o' axes.scatter(current_position[0], current_position[1], current_position[2], label=util.get_system_name(current_system), c=color, marker=marker) if destination_hash is not None: origin_position = util.get_cartesian(origin_hash) destination_position = util.get_cartesian(destination_hash) xs = [origin_position[0], destination_position[0]] ys = [origin_position[1], destination_position[1]] zs = [origin_position[2], destination_position[2]] axes.plot(xs, ys, zs, linestyle=':') axes.legend() axes.set_title('Jump Range %s' % util.get_system_name(origin_hash)) axes.set_xlabel('X') axes.set_ylabel('Y') axes.set_zlabel('Z') pyplot.show() def system_position(params=None): if not putil.has_single(params): raise CommandException('An origin system must be specified') origin_fragment = putil.single_str(params) origin_hash = putil.natural_match(origin_fragment, database.get_star_log_hashes()) if origin_hash is None: raise CommandException('Unable to find an origin system containing %s' % origin_fragment) print '%s system is at %s' % (util.get_system_name(origin_hash), util.get_cartesian(origin_hash)) def system_distance(params=None): if not putil.has_count(params, 2): raise CommandException('An origin and destination system must be specified') origin_fragment = params[0] destination_fragment = params[1] hashes = database.get_star_log_hashes() origin_hash = putil.natural_match(origin_fragment, hashes) if origin_hash is None: raise CommandException('Unable to find an origin system containing %s' % origin_fragment) destination_hash = putil.natural_match(destination_fragment, hashes) if destination_hash is None: raise CommandException('Unable to find a destination system containing %s' % destination_fragment) if not database.get_star_logs_share_chain([origin_hash, destination_hash]): raise CommandException('Systems %s and %s exist on different chains' % (util.get_system_name(origin_hash), util.get_system_name(destination_hash))) print 'Distance between %s and %s is %s' % (util.get_system_name(origin_hash), util.get_system_name(destination_hash), util.get_distance(origin_hash, destination_hash)) def system_average_distances(params=None): origin_hash = None if putil.has_single(params): origin_fragment = params[0] origin_hash = putil.natural_match(origin_fragment, database.get_star_log_hashes()) if origin_hash is None: raise CommandException('Unable to find an origin system containing %s' % origin_fragment) total = 0 count = 0 if origin_hash: for currentHash in database.get_star_log_hashes(origin_hash): if currentHash == origin_hash: continue total += util.get_distance(currentHash, origin_hash) count += 1 else: hashes = database.get_star_log_hashes(from_highest=True) for currentHash in hashes: hashes = hashes[1:] for targetHash in hashes: total += util.get_distance(currentHash, targetHash) count += 1 if count == 0: print 'No systems to get the average distances of' else: average = total / count if origin_hash is None: print 'Average distance between all systems is %s' % average else: print 'Average distance to system %s is %s' % (util.get_system_name(origin_hash), average) def system_maximum_distance(params=None): system_min_max_distance(params) def system_minimum_distance(params=None): system_min_max_distance(params, False) def system_min_max_distance(params=None, calculating_max=True): modifier = 'Farthest' if calculating_max else 'Nearest' origin_hash = None if putil.has_single(params): origin_fragment = params[0] origin_hash = putil.natural_match(origin_fragment, database.get_star_log_hashes()) if origin_hash is None: raise CommandException('Unable to find an origin system containing %s' % origin_fragment) if origin_hash: best_system = None best_distance = 0 if calculating_max else 999999999 for current_hash in database.get_star_log_hashes(origin_hash): if current_hash == origin_hash: continue dist = util.get_distance(origin_hash, current_hash) if (calculating_max and best_distance < dist) or (not calculating_max and dist < best_distance): best_system = current_hash best_distance = dist print '%s system from %s is %s, with a distance of %s' % (modifier, util.get_system_name(origin_hash), util.get_system_name(best_system), best_distance) else: hashes = database.get_star_log_hashes(from_highest=True) best_system_origin = None best_system_destination = None best_distance = 0 if calculating_max else 999999999 for current_hash in hashes: hashes = hashes[1:] for targetHash in hashes: dist = util.get_system_name(current_hash, targetHash) if (calculating_max and best_distance < dist) or (not calculating_max and dist < best_distance): best_system_origin = current_hash best_system_destination = targetHash best_distance = dist print '%s systems are %s and %s, with a distance of %s' % (modifier, util.get_system_name(best_system_origin), util.get_system_name(best_system_destination), best_distance) def transfer(params=None): verbose = putil.retrieve(params, '-v', True, False) abort = putil.retrieve(params, '-a', True, False) if not putil.has_any(params): raise CommandException('Another fleet hash must be specified') to_fleet = putil.single_str(params) try: validate.field_is_sha256(to_fleet) except: raise CommandException('A complete fleet hash must be specified') count = None if putil.has_at_least(params, 2): count = int(params[1]) if count <= 0: raise CommandException('A valid number of ships must be specified') account_info = database.get_account() from_fleet = util.sha256(account_info['public_key']) events = database.get_unused_events(fleet_hash=from_fleet) if events is None: raise CommandException('No ships are available to be transferred for fleet %s' % util.get_fleet_name(from_fleet)) total_count = 0 for event in events: total_count += event['count'] if count is None: count = total_count elif total_count < count: raise CommandException('Only %s are available to transfer' % total_count) transfer_event = get_event_signature(from_fleet, account_info['public_key'], event_type='transfer') remaining_count = count overflow_count = 0 input_index = 0 output_index = 0 while 0 < remaining_count: curr_input = events[input_index] count_delta = curr_input['count'] if remaining_count < count_delta: count_delta = count_delta - remaining_count transfer_event['inputs'].append(get_event_input(input_index, curr_input['key'])) existing_output = [x for x in transfer_event['outputs'] if x['fleet_hash'] == to_fleet and x['star_system'] == curr_input['star_system']] if existing_output: # Add to existing output existing_output = existing_output[0] existing_output['count'] += count_delta else: transfer_event['outputs'].append(get_event_output(output_index, count_delta, to_fleet, util.get_unique_key(), curr_input['star_system'], 'transfer')) output_index += 1 if count_delta != curr_input['count']: # Leftover ships that need to be assigned back to the owner. input_index += 1 transfer_event['outputs'].append(get_event_output(input_index, curr_input['count'] - count_delta, from_fleet, util.get_unique_key(), curr_input['star_system'], 'transfer')) remaining_count = 0 else: remaining_count -= curr_input['count'] input_index += 1 transfer_event['hash'] = util.hash_event(transfer_event) transfer_event['signature'] = util.rsa_sign(account_info['private_key'], transfer_event['hash']) if verbose: print pretty_json(transfer_event) if not abort: result = post_request(EVENTS_URL, transfer_event) prefix, postfix = SUCCESS_COLOR if result == 200 else ERROR_COLOR, DEFAULT_COLOR print 'Posted transfer event with response %s%s%s' % (prefix, result, postfix) def meta_content(params=None): if not putil.has_any(params): current_content = database.get_meta_content() if current_content is None: print 'No meta content set, use meta -s <content> to set one' else: print 'Meta content is "%s"' % current_content return if putil.retrieve(params, '-r', True, False): database.set_meta_content(None) print 'Meta content has been reset' return new_content = putil.retrieve_value(params, '-s', None) if putil.retrieve(params, '-s', True, False): if new_content is None: raise CommandException('Specify a new meta content, if you want to specify none use the -r flag instead') else: raise CommandException('An unrecognized parameter was passed') database.set_meta_content(new_content) print 'Meta content set to "%s"' % new_content def poll_input(): if platform.startswith('win'): return_sequence = [13] up_sequence = [224, 72] down_sequence = [224, 80] left_sequence = [224, 75] right_sequence = [224, 77] back_sequence = [8] control_c_sequence = [3] tab_sequence = [9] double_escape_sequence = [27, 27] else: return_sequence = [13] up_sequence = [27, 91, 65] down_sequence = [27, 91, 66] left_sequence = [27, 91, 68] right_sequence = [27, 91, 67] back_sequence = [127] control_c_sequence = [3] tab_sequence = [9] double_escape_sequence = [27, 27] special_sequences = [ tab_sequence, return_sequence, up_sequence, down_sequence, left_sequence, right_sequence, back_sequence, control_c_sequence, double_escape_sequence ] alpha_numeric_range = range(32, 127) chars = [] while True: is_special = chars in special_sequences if is_special: break char = ord(getch()) chars.append(char) if len(chars) == 1 and char in alpha_numeric_range: break elif 1 < len(chars): last_chars = chars[-2:] if last_chars == double_escape_sequence: chars = last_chars is_special = True break alpha_numeric = '' is_return = False is_backspace = False is_control_c = False is_up = False is_down = False is_left = False is_right = False is_tab = False is_double_escape = False if is_special: if chars == return_sequence: is_return = True elif chars == back_sequence: is_backspace = True elif chars == control_c_sequence: is_control_c = True elif chars == up_sequence: is_up = True elif chars == down_sequence: is_down = True elif chars == left_sequence: is_left = True elif chars == right_sequence: is_right = True elif chars == tab_sequence: is_tab = True elif chars == double_escape_sequence: is_double_escape = True else: print 'Unrecognized special sequence %s' % chars elif len(chars) == 1: alpha_numeric = chr(chars[0]) else: print 'Unrecognized alphanumeric sequence %s' % chars return alpha_numeric, is_return, is_backspace, is_control_c, is_up, is_down, is_left, is_right, is_tab, is_double_escape def main(): print 'Starting probe...' rules = get_request(RULES_URL) if not rules: raise ValueError('null rules') environ['DIFFICULTY_FUDGE'] = str(rules['difficulty_fudge']) environ['DIFFICULTY_INTERVAL'] = str(rules['difficulty_interval']) environ['DIFFICULTY_DURATION'] = str(rules['difficulty_duration']) environ['DIFFICULTY_START'] = str(rules['difficulty_start']) environ['SHIP_REWARD'] = str(rules['ship_reward']) environ['CARTESIAN_DIGITS'] = str(rules['cartesian_digits']) environ['JUMP_COST_MIN'] = str(rules['jump_cost_min']) environ['JUMP_COST_MAX'] = str(rules['jump_cost_max']) environ['JUMP_DIST_MAX'] = str(rules['jump_distance_max']) environ['STARLOGS_MAX_BYTES'] = str(rules['star_logs_max_limit']) environ['EVENTS_MAX_BYTES'] = str(rules['events_max_limit']) environ['COMMAND_HISTORY'] = getenv('COMMAND_HISTORY', '100') print 'Connected to %s\n\t - Fudge: %s\n\t - Interval: %s\n\t - Duration: %s\n\t - Starting Difficulty: %s\n\t - Ship Reward: %s' % (HOST_URL, util.difficultyFudge(), util.difficultyInterval(), util.difficultyDuration(), util.difficultyStart(), util.shipReward()) min_x, min_y, min_z = util.get_cartesian_minimum() max_x, max_y, max_z = util.get_cartesian_maximum() universe_size = '( %s, %s, %s ) - ( %s, %s, %s )' % (min_x, min_y, min_z, max_x, max_y, max_z) print '\t - Universe Size: %s\n\t - Jump Cost: %s%% to %s%%\n\t - Jump Distance Max: %s' % (universe_size, util.jumpCostMinimum() * 100, util.jumpCostMaximum() * 100, util.jumpDistanceMaximum()) if AUTO_REBUILD: print 'Automatically rebuilding database...' database.initialize(AUTO_REBUILD) sync() if not database.get_accounts(): print 'Unable to find existing accounts, creating default...' default_account = generate_account() database.add_account(default_account) database.set_account_active(default_account['name']) elif database.get_account() is None: print 'No active account, try "help account" for more information on selecting an active account' all_commands = { 'info': create_command( info, 'Displays information about the connected server' ), 'sync': create_command( sync, 'Syncs the local cache with updates from the server', [ '"-f" replaces the local cache with fresh results', '"-s" silently executes the command' ] ), 'slog': create_command( star_log, 'Retrieves the latest starlog' ), 'probe': create_command( probe, 'Probes the starlog in the chain', [ 'Passing no arguments probes for a new starlog ontop of the highest chain member', '"-g" probes for a new genesis starlog', '"-v" prints the probed starlog to the console', '"-s" silently executes the command', '"-a" aborts without posting starlog to the server', '"-d" allow duplicate events', '"-f" probes for a starlog ontop of the best matching system', '"-l" loop and probe again after posting to the server', '"-w" number of seconds to wait before looping to probe again', '"-b" blindly probe for new stars without syncing inbetween' ] ), 'meta': create_command( meta_content, 'Retrieves or sets the meta content included in probed starlogs', [ 'Passing no arguments retrieves the current meta content being included with probed starlogs', '"-s" sets a new meta content', '"-r" resets the meta content to nothing' ] ), 'account': create_command( account, 'Information about the current account', [ 'Passing no arguments gets the current account information', '"-a" lists all accounts stored in persistent data', '"-s" followed by an account name changes the current account to the specified one', '"-c" followed by an account name creates a new account' ] ), 'rchain': create_command( render_chain, 'Render starlog chain information to the command line', [ 'Passing no arguments renders the highest chains and their siblings', 'Passing an integer greater than zero renders that many chains' ] ), 'rsys': create_command( render_systems, 'Render systems in an external plotter' ), 'ldeploy': create_command( list_deployments, 'List deployments in the specified system', [ 'Passing a partial hash will list deployments in the best matching system', '"-a" lists all systems with deployments', '"-f" looks for deployments on the chain with the matching head' ] ), 'attack': create_command( attack, 'Attack fleets in the specified system', [ 'Passing a partial origin and enemy fleet hash will attack the best matching fleet', '"-v" prints the attack to the console', '"-a" aborts without posting attack to the server' ] ), 'jump': create_command( jump, 'Jump ships from one system to another', [ 'Passing partial origin and destination hashes will jump all ships from the origin system', 'Passing partial origin and destination hashes along with a valid number of ships will jump that many from the origin system', '"-v" prints the jump to the console', '"-r" renders the jump in an external plotter before executing it', '"-a" aborts without posting jump to the server' ] ), 'transfer': create_command( transfer, 'Transfer ships from one fleet to another', [ 'Passing a complete fleet hash will transfer all ships to that fleet', 'Passing a complete fleet hash and a valid number of ships will transfer that number of ships to that fleet', '"-v" prints the transfer to the console', '"-a" aborts without posting transfer to the server' ] ), 'jrange': create_command( render_jump_range, 'Renders the range of jumps in an external plotter', [ 'Passing partial origin hash will render with that system in focus', '"-d" followed by a destination hash will render a line between the best matching system and the origin' ] ), 'pos': create_command( system_position, 'Calculates the coordinates of the specified system', [ 'Passing a partial hash will calculate the coordinate of the best matching system' ] ), 'dist': create_command( system_distance, 'Calculates the distance between the specified systems', [ 'Passing a partial origin and destination hash will calculate the distance between the best matching systems' ] ), 'avgdist': create_command( system_average_distances, 'Calculates the average distance between all systems', [ 'Passing no arguments will calculate the average distance between every system', 'Passing a partial origin will calculate the average distance to the best matching system' ] ), 'maxdist': create_command( system_maximum_distance, 'Calculates the maximum distance between all systems', [ 'Passing no arguments will calculate the maximum distance between every system', 'Passing a partial origin will calculate the maximum distance to the best matching system' ] ), 'mindist': create_command( system_minimum_distance, 'Calculates the minimum distance between all systems', [ 'Passing no arguments will calculate the minimum distance between every system', 'Passing a partial origin will calculate the minimum distance to the best matching system' ] ) } command_prefix = '> ' command = None command_index = 0 command_history = -1 command_in_session = 0 while True: if command is None: command = '' stdout.write('\r%s%s%s' % (command_prefix, command, CURSOR_ERASE_SEQUENCE)) stdout.write('\r%s' % (CURSOR_FORWARD_SEQUENCE % (command_index + len(command_prefix)))) alpha_numeric, is_return, is_backspace, is_control_c, is_up, is_down, is_left, is_right, is_tab, is_double_escape = poll_input() old_command_index = command_index old_command = command if is_backspace: if 0 < command_index: if len(command) == command_index: # We're at the end of the string command = command[:-1] else: # We're in the middle of a string command = command[:command_index - 1] + command[command_index:] command_index -= 1 elif is_control_c: break elif is_up: command_history = min(command_history + 1, database.count_commands() - 1) command = database.get_command(command_history) command_index = 0 if command is None else len(command) elif is_down: command_history = max(command_history - 1, -1) if command_history < 0: command = '' else: command = database.get_command(command_history) command_index = 0 if command is None else len(command) elif is_left: if 0 < command_index: command_index -= 1 elif is_right: if command_index < len(command): command_index += 1 elif alpha_numeric: if len(command) == command_index: command += alpha_numeric else: command = command[:command_index] + alpha_numeric + command[command_index:] command_index += 1 if old_command != command: stdout.write('\r%s%s%s%s%s' % (command_prefix, BOLD_COLOR, command, DEFAULT_COLOR, CURSOR_ERASE_SEQUENCE)) if old_command_index != command_index: stdout.write('\r%s' % (CURSOR_FORWARD_SEQUENCE % (command_index + len(command_prefix)))) if is_return or is_double_escape: stdout.write('\n') if is_double_escape: command = None command_index = 0 command_history = -1 continue if not is_return: continue try: if not command: print 'Type help for more commands' continue args = command.split(' ') command_name = args[0] command_args = args[1:] selected_command = all_commands.get(command_name, None) if not selected_command: if command_name == 'help': command_help(all_commands, command_args) elif command_name == 'exit': break else: print 'No command "%s" found, try typing help for more commands' % command else: if not command_args: selected_command['function']() else: selected_command['function'](command_args) except CommandException as exception: print exception except: print_exception() print 'Error with your last command' database.add_command(command, util.get_time(), command_in_session) command = None command_index = 0 command_history = -1 command_in_session += 1 if __name__ == '__main__': main() stdout.write('\nExiting...\n')
mit
cdegroc/scikit-learn
benchmarks/bench_sgd_covertype.py
1
7493
""" ================================ Covertype dataset with dense SGD ================================ Benchmark stochastic gradient descent (SGD), Liblinear, and Naive Bayes, CART (decision tree), RandomForest and Extra-Trees on the forest covertype dataset of Blackard, Jock, and Dean [1]. The dataset comprises 581,012 samples. It is low dimensional with 54 features and a sparsity of approx. 23%. Here, we consider the task of predicting class 1 (spruce/fir). The classification performance of SGD is competitive with Liblinear while being two orders of magnitude faster to train:: [..] Classification performance: =========================== Classifier train-time test-time error-rate -------------------------------------------- Liblinear 11.8977s 0.0285s 0.2305 GaussianNB 3.5931s 0.6645s 0.3633 SGD 0.2924s 0.0114s 0.2300 CART 39.9829s 0.0345s 0.0476 RandomForest 794.6232s 1.0526s 0.0249 Extra-Trees 1401.7051s 1.1181s 0.0230 The same task has been used in a number of papers including: * `"SVM Optimization: Inverse Dependence on Training Set Size" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.139.2112>`_ S. Shalev-Shwartz, N. Srebro - In Proceedings of ICML '08. * `"Pegasos: Primal estimated sub-gradient solver for svm" <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.74.8513>`_ S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07. * `"Training Linear SVMs in Linear Time" <www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_ T. Joachims - In SIGKDD '06 [1] http://archive.ics.uci.edu/ml/datasets/Covertype To run this example use your favorite python shell:: % ipython benchmark/bench_sgd_covertype.py """ from __future__ import division print __doc__ # Author: Peter Prettenhoer <[email protected]> # License: BSD Style. # $Id$ from time import time import os import numpy as np from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier from sklearn import metrics ###################################################################### ## Download the data, if not already on disk if not os.path.exists('covtype.data.gz'): # Download the data import urllib print "Downloading data, Please Wait (11MB)..." opener = urllib.urlopen( 'http://archive.ics.uci.edu/ml/' 'machine-learning-databases/covtype/covtype.data.gz') open('covtype.data.gz', 'wb').write(opener.read()) ###################################################################### ## Load dataset print("Loading dataset...") import gzip f = gzip.open('covtype.data.gz') X = np.fromstring(f.read().replace(",", " "), dtype=np.float64, sep=" ", count=-1) X = X.reshape((581012, 55)) f.close() # class 1 vs. all others. y = np.ones(X.shape[0]) * -1 y[np.where(X[:, -1] == 1)] = 1 X = X[:, :-1] ###################################################################### ## Create train-test split (as [Joachims, 2006]) print("Creating train-test split...") idx = np.arange(X.shape[0]) np.random.seed(13) np.random.shuffle(idx) train_idx = idx[:522911] test_idx = idx[522911:] X_train = X[train_idx] y_train = y[train_idx] X_test = X[test_idx] y_test = y[test_idx] # free memory del X del y ###################################################################### ## Standardize first 10 features (the numerical ones) mean = X_train.mean(axis=0) std = X_train.std(axis=0) mean[10:] = 0.0 std[10:] = 1.0 X_train = (X_train - mean) / std X_test = (X_test - mean) / std ###################################################################### ## Print dataset statistics print("") print("Dataset statistics:") print("===================") print("%s %d" % ("number of features:".ljust(25), X_train.shape[1])) print("%s %d" % ("number of classes:".ljust(25), np.unique(y_train).shape[0])) print("%s %d (%d, %d)" % ("number of train samples:".ljust(25), X_train.shape[0], np.sum(y_train == 1), np.sum(y_train == -1))) print("%s %d (%d, %d)" % ("number of test samples:".ljust(25), X_test.shape[0], np.sum(y_test == 1), np.sum(y_test == -1))) print("") print("Training classifiers...") print("") ###################################################################### ## Benchmark classifiers def benchmark(clf): t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 t0 = time() pred = clf.predict(X_test) test_time = time() - t0 err = metrics.zero_one(y_test, pred) / float(pred.shape[0]) return err, train_time, test_time ###################################################################### ## Train Liblinear model liblinear_parameters = { 'loss': 'l2', 'penalty': 'l2', 'C': 1000, 'dual': False, 'tol': 1e-3, } liblinear_res = benchmark(LinearSVC(**liblinear_parameters)) liblinear_err, liblinear_train_time, liblinear_test_time = liblinear_res ###################################################################### ## Train GaussianNB model gnb_err, gnb_train_time, gnb_test_time = benchmark(GaussianNB()) ###################################################################### ## Train SGD model sgd_parameters = { 'alpha': 0.001, 'n_iter': 2, } sgd_err, sgd_train_time, sgd_test_time = benchmark(SGDClassifier( **sgd_parameters)) ###################################################################### ## Train CART model cart_err, cart_train_time, cart_test_time = benchmark( DecisionTreeClassifier(min_sample_split=5, max_depth=None)) ###################################################################### ## Train RandomForest model rf_err, rf_train_time, rf_test_time = benchmark( RandomForestClassifier(n_estimators=20, min_sample_split=5, max_depth=None)) ###################################################################### ## Train Extra-Trees model et_err, et_train_time, et_test_time = benchmark( ExtraTreesClassifier(n_estimators=20, min_sample_split=5, max_depth=None)) ###################################################################### ## Print classification performance print("") print("Classification performance:") print("===========================") print("") def print_row(clf_type, train_time, test_time, err): print("%s %s %s %s" % (clf_type.ljust(12), ("%.4fs" % train_time).center(10), ("%.4fs" % test_time).center(10), ("%.4f" % err).center(10))) print("%s %s %s %s" % ("Classifier ", "train-time", "test-time", "error-rate")) print("-" * 44) print_row("Liblinear", liblinear_train_time, liblinear_test_time, liblinear_err) print_row("GaussianNB", gnb_train_time, gnb_test_time, gnb_err) print_row("SGD", sgd_train_time, sgd_test_time, sgd_err) print_row("CART", cart_train_time, cart_test_time, cart_err) print_row("RandomForest", rf_train_time, rf_test_time, rf_err) print_row("Extra-Trees", et_train_time, et_test_time, et_err) print("") print("")
bsd-3-clause
0todd0000/spm1d
spm1d/rft1d/examples/val_upx_3_T2_cluster.py
1
2122
from math import sqrt,log import numpy as np from matplotlib import pyplot from spm1d import rft1d eps = np.finfo(float).eps def here_hotellingsT2(y): N = y.shape[0] m = np.matrix( y.mean(axis=0) ) T2 = [] for ii,mm in enumerate(m): W = np.matrix( np.cov(y[:,ii,:].T, ddof=1) ) #estimated covariance t2 = N * mm * np.linalg.inv(W) * mm.T T2.append( float(t2) ) return np.asarray(T2) #(0) Set parameters: np.random.seed(0) nResponses = 30 nComponents = 2 nNodes = 101 nIterations = 500 #this should be 1000 or larger FWHM = 10.0 W0 = np.eye(nComponents) interp = True wrap = True heights = [8, 10, 12, 14] ### derived parameters: df = nComponents, nResponses-1 #p,m ### initialize RFT calculators: calc = rft1d.geom.ClusterMetricCalculator() rftcalc = rft1d.prob.RFTCalculator(STAT='T2', df=df, nodes=nNodes, FWHM=FWHM) #(1) Generate Gaussian 1D fields, compute test stat: T2 = [] generator = rft1d.random.GeneratorMulti1D(nResponses, nNodes, nComponents, FWHM, W0) for i in range(nIterations): y = generator.generate_sample() t2 = here_hotellingsT2(y) T2.append( t2 ) T2 = np.asarray(T2) #(2) Maximum region size: K0 = np.linspace(eps, 12, 21) K = np.array([[calc.max_cluster_extent(yy, h, interp, wrap) for yy in T2] for h in heights]) P = np.array([(K>=k0).mean(axis=1) for k0 in K0]).T P0 = np.array([[rftcalc.p.cluster(k0, h) for k0 in K0/FWHM] for h in heights]) #(3) Plot results: pyplot.close('all') colors = ['b', 'g', 'r', 'orange'] labels = ['u = %.1f'%h for h in heights] ax = pyplot.axes() for color,p,p0,label in zip(colors,P,P0,labels): ax.plot(K0, p, 'o', color=color) ax.plot(K0, p0, '-', color=color, label=label) ax.plot([0,1],[10,10], 'k-', label='Theoretical') ax.plot([0,1],[10,10], 'ko-', label='Simulated') ax.set_xlabel('x', size=16) ax.set_ylabel('P(k_max) > x', size=16) ax.set_ylim(0, 0.30) ax.legend() ax.set_title('Upcrossing extent validations ($T^2$ fields)', size=20) pyplot.show()
gpl-3.0
gpersistence/tstop
scripts/scatter_anim_example.py
1
2888
#TSTOP # #This program is free software: you can redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software Foundation, either version 3 of the License, or #(at your option) any later version. # #This program is distributed in the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. # #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. import matplotlib.pyplot as plt import sys import csv import os import random plt.ion() class DynamicUpdate(): #Suppose we know the x range min_x = 4 max_x = 6.5 def on_launch(self): #Set up plot self.figure, self.ax = plt.subplots(2) self.pd_plotter, = self.ax[0].plot([],[], 'o') self.ts_plotter, = self.ax[1].plot([2], 'r-') #Autoscale on unknown axis and known lims on the other #self.ax.set_autoscaley_on(True) self.ax[0].set_xlim(self.min_x, self.max_x) self.ax[0].set_ylim(self.min_x, self.max_x) self.ax[1].set_autoscaley_on(True) self.ax[1].set_autoscalex_on(True) #Other stuff #self.ax.grid() #... def on_running(self, xdata, ydata, ts_data_x, ts_data_y): #Update data (with the new _and_ the old points) self.pd_plotter.set_xdata(xdata) self.pd_plotter.set_ydata(ydata) self.ts_plotter.set_xdata(ts_data_x[len(ts_data_x)-1]) self.ts_plotter.set_ydata(ts_data_y[len(ts_data_y)-1]) #Need both of these in order to rescale self.ax[1].relim() self.ax[1].autoscale_view() #We need to draw *and* flush self.figure.canvas.draw() self.figure.canvas.flush_events() #Example def __call__(self): import numpy as np import time self.on_launch() base_file = '../build/pd-' first_pd = base_file+'10'+'.txt' ts_filename = '../build/time_series.txt' time_series_file = open(ts_filename,'r') time_series_reader = csv.reader(time_series_file, delimiter=' ') all_ts_vals = np.array([[x[0],x[1]] for x in time_series_reader]) for t in range(10,40000): pd_filename = base_file+str(t)+'.txt' pd_file = open(pd_filename,'r') pd_reader = csv.reader(pd_file, delimiter=' ') pd = np.array([[float(x[0]),float(x[1])] for x in pd_reader if not (float(x[0]) == float(x[1]))]) ts_vals_x = all_ts_vals[10:t+1,0] ts_vals_y = all_ts_vals[10:t+1,1] self.on_running(pd[:,0], pd[:,1], ts_vals_x,ts_vals_y) #time.sleep(0.01) return xdata, ydata d = DynamicUpdate() d()
gpl-3.0
jpautom/scikit-learn
sklearn/manifold/tests/test_isomap.py
226
3941
from itertools import product import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y))
bsd-3-clause
Averroes/statsmodels
statsmodels/tools/testing.py
23
1443
"""assert functions from numpy and pandas testing """ import re from distutils.version import StrictVersion import numpy as np import numpy.testing as npt import pandas import pandas.util.testing as pdt # for pandas version check def strip_rc(version): return re.sub(r"rc\d+$", "", version) def is_pandas_min_version(min_version): '''check whether pandas is at least min_version ''' from pandas.version import short_version as pversion return StrictVersion(strip_rc(pversion)) >= min_version # local copies, all unchanged from numpy.testing import (assert_allclose, assert_almost_equal, assert_approx_equal, assert_array_almost_equal, assert_array_almost_equal_nulp, assert_array_equal, assert_array_less, assert_array_max_ulp, assert_raises, assert_string_equal, assert_warns) # adjusted functions def assert_equal(actual, desired, err_msg='', verbose=True, **kwds): if not is_pandas_min_version('0.14.1'): npt.assert_equal(actual, desired, err_msg='', verbose=True) else: if isinstance(desired, pandas.Index): pdt.assert_index_equal(actual, desired) elif isinstance(desired, pandas.Series): pdt.assert_series_equal(actual, desired, **kwds) elif isinstance(desired, pandas.DataFrame): pdt.assert_frame_equal(actual, desired, **kwds) else: npt.assert_equal(actual, desired, err_msg='', verbose=True)
bsd-3-clause
dangeles/tissue_enrichment_tool_hypergeometric_test
tea_paper_docs/src/hgf_benchmark_script.py
4
14884
# -*- coding: utf-8 -*- """ A script to benchmark TEA. @david angeles [email protected] """ import tissue_enrichment_analysis as tea # the library to be used import pandas as pd import os import numpy as np import seaborn as sns import matplotlib.pyplot as plt import re import matplotlib as mpl sns.set_context('paper') # pd.set_option('display.float_format', lambda x:'%f'%x) pd.set_option('precision', 3) # this script generates a few directories. dirOutput = '../output/' dirSummaries = '../output/SummaryInformation/' dirHGT25_any = '../output/HGT25_any_Results/' dirHGT33_any = '../output/HGT33_any_Results/' dirHGT50_any = '../output/HGT50_any_Results/' dirHGT100_any = '../output/HGT100_any_Results/' dirComp = '../output/comparisons/' DIRS = [dirOutput, dirSummaries, dirHGT25_any, dirHGT50_any, dirHGT100_any, dirComp] # open the relevant file path_sets = '../input/genesets_golden/' path_dicts = '../input/WS252AnatomyDictionary/' # Make all the necessary dirs if they don't already exist for d in DIRS: if not os.path.exists(d): os.makedirs(d) # Make the file that will hold the summaries and make the columns. with open(dirSummaries+'ExecutiveSummary.csv', 'w') as fSum: fSum.write('#Summary of results from all benchmarks\n') fSum.write('NoAnnotations,Threshold,Method,EnrichmentSetUsed,TissuesTested,GenesSubmitted,TissuesReturned,GenesUsed,AvgFold,AvgQ,GenesInDict\n') # ============================================================================== # ============================================================================== # # Perform the bulk of the analysis, run every single dictionary on every set # ============================================================================== # ============================================================================== i = 0 # look in the dictionaries for folder in os.walk(path_dicts): # open each one for f_dict in folder[2]: if f_dict == '.DS_Store': continue tissue_df = pd.read_csv(path_dicts+f_dict) # tobedropped when tissue dictionary is corrected annot, thresh = re.findall(r"[-+]?\d*\.\d+|\d+", f_dict) annot = int(annot) thresh = float(thresh) # typecasting method = f_dict[-7:-4] ntiss = len(tissue_df.columns) ngenes = tissue_df.shape[0] # open each enrichment set for fodder in os.walk(path_sets): for f_set in fodder[2]: df = pd.read_csv(path_sets + f_set) test = df.gene.values ntest = len(test) short_name = f_set[16:len(f_set)-16] df_analysis, unused = tea.enrichment_analysis(test, tissue_df, alpha=0.05, show=False) # save the analysis to the relevant folder savepath = '../output/HGT'+annot + '_' + method + '_Results/' df_analysis.to_csv(savepath + f_set+'.csv', index=False) tea.plot_enrichment_results(df_analysis, save='savepath'+f_set+'Graph', ftype='pdf') nana = len(df_analysis) # len of results nun = len(unused) # number of genes dropped avf = df_analysis['Enrichment Fold Change'].mean() avq = df_analysis['Q value'].mean() s = '{0},{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}'.format( annot, thresh, method, f_set, ntiss, ntest, nana, ntest-nun, avf, avq, ngenes) with open(dirSummaries+'ExecutiveSummary.csv', 'a+') as fSum: fSum.write(s) fSum.write('\n') # Print summary to csv df_summary = pd.read_csv(dirSummaries+'ExecutiveSummary.csv', comment='#') # some entries contain nulls. before I remove them, I can inspect them df_summary.isnull().any() indexFold = df_summary['AvgFold'].index[df_summary['AvgFold'].apply(np.isnan)] indexQ = df_summary['AvgQ'].index[df_summary['AvgQ'].apply(np.isnan)] df_summary.ix[indexFold[0]] df_summary.ix[indexQ[5]] # kill all nulls! df_summary.dropna(inplace=True) # calculate fraction of tissues that tested significant in each run df_summary['fracTissues'] = df_summary['TissuesReturned']/df_summary[ 'TissuesTested'] df_summary.sort_values(['NoAnnotations', 'Threshold', 'Method'], inplace=True) # ============================================================================== # ============================================================================== # # Plot summary graphs # ============================================================================== # ============================================================================== sel = lambda x, y, z: ((df_summary.NoAnnotations == x) & (df_summary.Threshold == y) & (df_summary.Method == z)) # KDE of the fraction of all tissues that tested significant # one color per cutoff cols = ['#1b9e77', '#d95f02', '#7570b3', '#e7298a', '#66a61e'] ls = ['-', '--', ':'] # used with varying thresh thresh = df_summary.Threshold.unique() NoAnnotations = df_summary.NoAnnotations.unique() def resplot(column, method='any'): """ A method to quickly plot all combinations of cutoffs, thresholds. All cutoffs are same color All Thresholds are same line style Parameters: column -- the column to select method -- the method used to specify similarity metrics """ for j, annots in enumerate(NoAnnotations): for i, threshold in enumerate(thresh): if threshold == 1: continue s = sel(annots, threshold, method) df_summary[s][column].plot('kde', color=cols[j], ls=ls[i], lw=4, label='Annotation Cut-off: {0}, \ Threshold: {1}'.format(annots, threshold)) resplot('fracTissues') plt.xlabel('Fraction of all tissues that tested significant') plt.xlim(0, 1) plt.title('KDE Curves for all dictionaries, benchmarked on all gold standards') plt.legend() plt.savefig(dirSummaries+'fractissuesKDE_method=any.pdf') plt.close() resplot('AvgQ', method='avg') plt.xlabel('Fraction of all tissues that tested significant') plt.xlim(0, 0.05) plt.title('KDE Curves for all dictionaries, benchmarked on all gold standards') plt.legend() plt.savefig(dirSummaries+'avgQKDE_method=avg.pdf') plt.close() resplot('AvgQ') plt.xlabel('AvgQ value') plt.xlim(0, .05) plt.title('KDE Curves for all dictionaries, benchmarked on all gold standards') plt.legend() plt.savefig(dirSummaries+'avgQKDE_method=any.pdf') plt.close() # KDE of the fraction of avgFold resplot('AvgFold') plt.xlabel('Avg Fold Change value') plt.xlim(0, 15) plt.title('KDE Curves for all dictionaries, benchmarked on all gold standards') plt.legend() plt.savefig(dirSummaries+'avgFoldChangeKDE.pdf') plt.close() def line_prepender(filename, line): """Given filename, open it and prepend 'line' at beginning of the file.""" with open(filename, 'r+') as f: content = f.read() f.seek(0, 0) f.write(line.rstrip('\r\n') + '\n' + content) # ============================================================================== # ============================================================================== # # Detailed analysis of 25 and 50 genes per node dictionaries # ============================================================================== # ============================================================================== def walker(tissue_df, directory, save=True): """Given the tissue dictionary and a directory to save to, open all the gene sets, analyze them and deposit the results in the specified directory. Parameters: ------------------- tissue_df - pandas dataframe containing specified tissue dictionary directory - where to save to save - boolean indicating whether to save results or not. """ with open(directory+'empty.txt', 'w') as f: f.write('Genesets with no enrichment:\n') # go through each file in the folder for fodder in os.walk(path_sets): for f_set in fodder[2]: # open df df = pd.read_csv(path_sets + f_set) # extract gene list and analyze short_name = f_set test = df.gene.values df_analysis, unused = tea.enrichment_analysis(test, tissue_df, show=False) # if it's not empty and you want to save: if df_analysis.empty is False & save: # save without index df_analysis.to_csv(directory+short_name+'.csv', index=False) # add a comment line = '#' + short_name+'\n' line_prepender(directory+short_name+'.csv', line) # plot tea.plot_enrichment_results(df_analysis, title=short_name, dirGraphs=directory, ftype='pdf') plt.close() # if it's empty and you want to save, place it in file called empty if df_analysis.empty & save: with open(directory+'empty.txt', 'a+') as f: f.write(short_name+'\n') def compare(resA, resB, l, r): """Given two results (.csv files output by tea), open and compare them, concatenate the dataframes Parameters: resA, resB -- filenames that store the dfs l, r -- suffixes to attach to the columns post merge Returns: result - a dataframe that is the outer merger of resA, resB """ # open both dfs. df1 = pd.read_csv(resA, comment='#') df2 = pd.read_csv(resB, comment='#') # drop observed column from df1 df1.drop('Observed', axis=1, inplace=True) df2.drop('Observed', axis=1, inplace=True) # make a dummy column, key for merging df1['key'] = df1['Tissue'] df2['key'] = df2['Tissue'] # find the index of each tissue in either df result = pd.merge(df1, df2, on='key', suffixes=[l, r], how='outer') # sort by q val and drop non useful columns # result.sort_values('Q value{0}'.format(l)) result.drop('Tissue{0}'.format(l), axis=1, inplace=True) result.drop('Tissue{0}'.format(r), axis=1, inplace=True) result['Tissue'] = result['key'] # drop key result.drop('key', axis=1, inplace=True) result.sort_values(['Q value%s' % (l), 'Q value%s' % (r)], inplace=True) # drop Expected values result.drop(['Expected%s' % (l), 'Expected%s' % (r)], axis=1, inplace=True) # rearrange columns cols = ['Tissue', 'Q value%s' % (l), 'Q value%s' % (r), 'Enrichment Fold Change%s' % (l), 'Enrichment Fold Change%s' % (r)] result = result[cols] # drop observed return result # return result tissue_df = pd.read_csv('../input/WS252AnatomyDictionary/cutoff25_threshold0.95_methodany.csv') walker(tissue_df, dirHGT25_any) tissue_df = pd.read_csv('../input/WS252AnatomyDictionary/cutoff50_threshold0.95_methodany.csv') walker(tissue_df, dirHGT50_any) tissue_df = pd.read_csv('../input/WS252AnatomyDictionary/cutoff100_threshold0.95_methodany.csv') walker(tissue_df, dirHGT100_any) tissue_df = pd.read_csv('../input/WS252AnatomyDictionary/cutoff33_threshold0.95_methodany.csv') walker(tissue_df, dirHGT33_any) grouped = df_summary.groupby(['NoAnnotations', 'Threshold', 'Method']) with open('../doc/figures/TissueNumbers.csv', 'w') as f: f.write('Annotation Cutoff,Similarity Threshold,Method') f.write(',No. Of Terms in Dictionary\n') for key, group in grouped: f.write('{0},{1},{2},{3}\n'.format(key[0], key[1], key[2], group.TissuesTested.unique()[0])) tissue_data = pd.read_csv('../output/SummaryInformation/TissueNumbers.csv') sel = lambda y, z: ((tissue_data.iloc[:, 1] == y) & (tissue_data.iloc[:, 2] == z)) # KDE of the fraction of all tissues that tested significant cols = ['#1b9e77', '#d95f02', '#7570b3'] # used with varying colors thresh = df_summary.Threshold.unique() NoAnnotations = df_summary.NoAnnotations.unique() # def resplot(column, cutoff=25, method='any'): # """ # A method to quickly plot all combinations of cutoffs, thresholds. # All cutoffs are same color # All Thresholds are same line style # """ # for i, threshold in enumerate(thresh): # ax = plt.gca() # ax.grid(False) # if threshold == 1: # continue # tissue_data[sel(threshold, method)].plot(x='No. Of Annotations', # y='No. Of Tissues in Dictionary', # kind='scatter', # color=cols[i], # ax=ax, s=50, alpha=.7) # ax.set_xlim(20, 110) # ax.set_xscale('log') # ax.set_xticks([25, 33, 50, 100]) # ax.get_xaxis().set_major_formatter(mpl.ticker.ScalarFormatter()) # # ax.set_ylim(25, 1000) # ax.set_yscale('log') # ax.set_yticks([50, 100, 250, 500]) # ax.get_yaxis().set_major_formatter(mpl.ticker.ScalarFormatter()) # # # resplot('No. Of Tissues in Dictionary') a = '../output/HGT33_any_Results/WBPaper00024970_GABAergic_neuron_specific_WBbt_0005190_247.csv' b = '../output/HGT33_any_Results/WBPaper00037950_GABAergic-motor-neurons_larva_enriched_WBbt_0005190_132.csv' df = compare(a, b, 'Spencer', 'Watson') df.to_csv('../output/comparisons/neuronal_comparison_33_WBPaper00024970_with_WBPaper0037950_complete.csv', index=False, na_rep='-', float_format='%.2g') a = '../output/HGT33_any_Results/WBPaper00037950_GABAergic-motor-neurons_larva_enriched_WBbt_0005190_132.csv' b = '../output/HGT50_any_Results/WBPaper00037950_GABAergic-motor-neurons_larva_enriched_WBbt_0005190_132.csv' df = compare(a, b, '33', '50') df.to_csv('../output/comparisons/neuronal_comparison_GABAergic_33-50_WBPaper0037950_complete.csv', index=False, na_rep='-', float_format='%.2g') a = '../output/HGT33_any_Results/WBPaper00024970_GABAergic_neuron_specific_WBbt_0005190_247.csv' b = '../output/HGT50_any_Results/WBPaper00024970_GABAergic_neuron_specific_WBbt_0005190_247.csv' df = compare(a, b, '-33', '-50') # print to figures df.head(10).to_csv('../doc/figures/dict-comparison-50-33.csv', index=False, na_rep='-', float_format='%.2g') df.to_csv('../output/comparisons/neuronal_comparison_Pan_Neuronal_33-50_WBPaper0031532_complete.csv', index=False, na_rep='-', float_format='%.2g')
mit
ndingwall/scikit-learn
sklearn/ensemble/__init__.py
12
1655
""" The :mod:`sklearn.ensemble` module includes ensemble-based methods for classification, regression and anomaly detection. """ import typing from ._base import BaseEnsemble from ._forest import RandomForestClassifier from ._forest import RandomForestRegressor from ._forest import RandomTreesEmbedding from ._forest import ExtraTreesClassifier from ._forest import ExtraTreesRegressor from ._bagging import BaggingClassifier from ._bagging import BaggingRegressor from ._iforest import IsolationForest from ._weight_boosting import AdaBoostClassifier from ._weight_boosting import AdaBoostRegressor from ._gb import GradientBoostingClassifier from ._gb import GradientBoostingRegressor from ._voting import VotingClassifier from ._voting import VotingRegressor from ._stacking import StackingClassifier from ._stacking import StackingRegressor if typing.TYPE_CHECKING: # Avoid errors in type checkers (e.g. mypy) for experimental estimators. # TODO: remove this check once the estimator is no longer experimental. from ._hist_gradient_boosting.gradient_boosting import ( # noqa HistGradientBoostingRegressor, HistGradientBoostingClassifier ) __all__ = ["BaseEnsemble", "RandomForestClassifier", "RandomForestRegressor", "RandomTreesEmbedding", "ExtraTreesClassifier", "ExtraTreesRegressor", "BaggingClassifier", "BaggingRegressor", "IsolationForest", "GradientBoostingClassifier", "GradientBoostingRegressor", "AdaBoostClassifier", "AdaBoostRegressor", "VotingClassifier", "VotingRegressor", "StackingClassifier", "StackingRegressor", ]
bsd-3-clause
agoose77/hivesystem
manual/movingpanda/panda-14d.py
1
11053
import dragonfly import dragonfly.pandahive import bee from bee import connect import dragonfly.scene.unbound, dragonfly.scene.bound import dragonfly.std import dragonfly.io import dragonfly.canvas import dragonfly.convert.pull import dragonfly.logic import dragonfly.bind import Spyder # ## random matrix generator from random import random def random_matrix_generator(): while 1: a = Spyder.AxisSystem() a.rotateZ(360 * random()) a.origin = Spyder.Coordinate(15 * random() - 7.5, 15 * random() - 7.5, 0) yield dragonfly.scene.matrix(a, "AxisSystem") def id_generator(): n = 0 while 1: n += 1 yield "spawnedpanda" + str(n) from dragonfly.canvas import box2d from bee.mstr import mstr class parameters: pass class myscene(dragonfly.pandahive.spyderframe): a = Spyder.AxisSystem() a *= 0.25 a.origin += (-8, 42, 0) env = Spyder.Model3D("models/environment", "egg", a) #First panda a = Spyder.AxisSystem() a *= 0.005 pandaclass = Spyder.ActorClass3D("models/panda-model", "egg", [("walk", "models/panda-walk4", "egg")], a, actorclassname="pandaclass") box = Spyder.Box2D(50, 470, 96, 96) icon = Spyder.Icon("pandaicon.png", "pandaicon", box, transparency=True) #Second panda a = Spyder.AxisSystem() a *= 0.002 pandaclass2 = Spyder.ActorClass3D("models/panda-model", "egg", [("walk", "models/panda-walk4", "egg")], a, actorclassname="pandaclass2") box = Spyder.Box2D(200, 500, 48, 48) icon2 = Spyder.Icon("pandaicon.png", "pandaicon2", box, transparency=True) #Third panda a = Spyder.AxisSystem() a *= 0.3 model = Spyder.Model3D("models/panda", "egg", a) pandaclass3 = Spyder.EntityClass3D("pandaclass3", [model]) box = Spyder.Box2D(280, 480, 144, 112) icon3 = Spyder.Icon("pandaicon2.png", "pandaicon3", box, transparency=True) camcenter = Spyder.Entity3D( "camcenter", ( Spyder.NewMaterial("white", color=(255, 255, 255)), Spyder.Block3D((1, 1, 1), material="white"), ) ) marker = Spyder.Entity3D( "marker", ( Spyder.NewMaterial("blue", color=(0, 0, 255)), Spyder.Circle(2, origin=(0, 0, 0.1), material="blue") ) ) del a, box, model from bee.spyderhive.hivemaphive import hivemapinithive class pandawalkhive(hivemapinithive): pandahivemap = Spyder.Hivemap.fromfile("pandawalk.web") class pandawalkhive2(hivemapinithive): pandahivemap = Spyder.Hivemap.fromfile("pandawalk2.web") from jumpworker2 import jumpworker2 class jumpworkerhive(bee.frame): height = bee.parameter("float") duration = bee.parameter("float") i = dragonfly.time.interval_time(time=bee.get_parameter("duration")) startconnector = dragonfly.std.pushconnector("trigger")() connect(startconnector, i.start) start = bee.antenna(startconnector.inp) jump = jumpworker2(height=bee.get_parameter("height")) connect(i, jump) t_jump = dragonfly.std.transistor("float")() connect(jump, t_jump) dojump = dragonfly.scene.bound.setZ() connect(t_jump, dojump) tick = dragonfly.io.ticksensor(False) connect(tick, t_jump) connect(startconnector, tick.start) connect(i.reach_end, tick.stop) class pandajumphive(bee.inithive): ksp = dragonfly.io.keyboardsensor_trigger("SPACE") jump = jumpworkerhive(height=4.0, duration=0.7) connect(ksp, jump) from bee.staticbind import staticbind_baseclass class pandabind(dragonfly.event.bind, dragonfly.io.bind, dragonfly.sys.bind, dragonfly.scene.bind, dragonfly.time.bind, dragonfly.bind.bind): bind_entity = "relative" bind_keyboard = "indirect" class camerabindhive(hivemapinithive): camera_hivemap = Spyder.Hivemap.fromfile("camera.web") class camerabind(staticbind_baseclass, dragonfly.event.bind, dragonfly.io.bind, dragonfly.sys.bind, dragonfly.scene.bind, dragonfly.time.bind): hive = camerabindhive class myhive(dragonfly.pandahive.pandahive): canvas = dragonfly.pandahive.pandacanvas() mousearea = dragonfly.canvas.mousearea() raiser = bee.raiser() connect("evexc", raiser) camerabind = camerabind().worker() camcenter = dragonfly.std.variable("id")("camcenter") connect(camcenter, camerabind.bindname) startsensor = dragonfly.sys.startsensor() cam = dragonfly.scene.get_camera() camparent = dragonfly.scene.unbound.parent() connect(cam, camparent.entityname) connect(camcenter, camparent.entityparentname) connect(startsensor, camparent) cphide = dragonfly.scene.unbound.hide() connect(camcenter, cphide) connect(startsensor, cphide) v_marker = dragonfly.std.variable("id")("marker") hide_marker = dragonfly.scene.unbound.hide() connect(v_marker, hide_marker) show_marker = dragonfly.scene.unbound.show() connect(v_marker, show_marker) parent_marker = dragonfly.scene.unbound.parent() connect(v_marker, parent_marker.entityname) connect(startsensor, hide_marker) pandaspawn = dragonfly.scene.spawn_actor_or_entity() v_panda = dragonfly.std.variable("id")("") connect(v_panda, pandaspawn) panda_id_gen = dragonfly.std.generator("id", id_generator)() panda_id = dragonfly.std.variable("id")("") t_panda_id_gen = dragonfly.std.transistor("id")() connect(panda_id_gen, t_panda_id_gen) connect(t_panda_id_gen, panda_id) random_matrix = dragonfly.std.generator(("object", "matrix"), random_matrix_generator)() w_spawn = dragonfly.std.weaver(("id", ("object", "matrix")))() connect(panda_id, w_spawn.inp1) connect(random_matrix, w_spawn.inp2) hivereg = dragonfly.bind.hiveregister() c_hivereg = bee.configure("hivereg") pandabinder = pandabind().worker() v_hivename = dragonfly.std.variable("id")("") w_bind = dragonfly.std.weaver(("id", "id"))() connect(panda_id, w_bind.inp1) connect(v_hivename, w_bind.inp2) t_bind = dragonfly.std.transistor("id")() connect(panda_id, t_bind) t_bind2 = dragonfly.std.transistor(("id", "id"))() connect(w_bind, t_bind2) connect(t_bind2, pandabinder.bind) sel = dragonfly.logic.selector() connect(t_bind, sel.register_and_select) selected = dragonfly.std.variable("id")("") connect(t_bind, selected) t_get_selected = dragonfly.logic.filter("trigger")() connect(sel.empty, t_get_selected) tt_get_selected = dragonfly.std.transistor("id")() do_select = dragonfly.std.pushconnector("trigger")() connect(t_get_selected.false, do_select) connect(do_select, tt_get_selected) connect(sel.selected, tt_get_selected) connect(tt_get_selected, selected) disp_sel = dragonfly.io.display("id")("Selected: ") connect(tt_get_selected, disp_sel) connect(selected, parent_marker.entityparentname) connect(do_select, show_marker) connect(do_select, parent_marker) key_tab = dragonfly.io.keyboardsensor_trigger("TAB") connect(key_tab, sel.select_next) connect(key_tab, t_get_selected) key_bsp = dragonfly.io.keyboardsensor_trigger("BACKSPACE") connect(key_bsp, sel.select_prev) connect(key_bsp, t_get_selected) kill = dragonfly.std.pushconnector("trigger")() t_kill = dragonfly.std.transistor("id")() connect(selected, t_kill) connect(t_kill, pandabinder.stop) remove = dragonfly.scene.unbound.remove_actor_or_entity() connect(t_kill, remove) disp_kill = dragonfly.io.display("id")("Killed: ") connect(t_kill, disp_kill) connect(kill, t_kill) connect(kill, sel.unregister) connect(kill, hide_marker) connect(kill, t_get_selected) testkill = dragonfly.logic.filter("trigger")() connect(sel.empty, testkill) connect(testkill.false, kill) key_k = dragonfly.io.keyboardsensor_trigger("K") connect(key_k, testkill) do_spawn = dragonfly.std.transistor(("id", ("object", "matrix")))() connect(w_spawn, do_spawn) connect(do_spawn, pandaspawn.spawn_matrix) trig_spawn = dragonfly.std.pushconnector("trigger")() connect(trig_spawn, t_panda_id_gen) connect(trig_spawn, do_spawn) connect(trig_spawn, t_bind) connect(trig_spawn, t_bind2) connect(trig_spawn, do_select) #First panda v_panda1 = dragonfly.std.variable("id")("pandaclass") set_panda1 = dragonfly.std.transistor("id")() connect(v_panda1, set_panda1) connect(set_panda1, v_panda) c_hivereg.register_hive("pandawalk", pandawalkhive) v_hivename1 = dragonfly.std.variable("id")("pandawalk") set_hivename1 = dragonfly.std.transistor("id")() connect(v_hivename1, set_hivename1) connect(set_hivename1, v_hivename) pandaicon_click = dragonfly.io.mouseareasensor("pandaicon") connect(pandaicon_click, set_panda1) connect(pandaicon_click, set_hivename1) connect(pandaicon_click, trig_spawn) #Second panda v_panda2 = dragonfly.std.variable("id")("pandaclass2") set_panda2 = dragonfly.std.transistor("id")() connect(v_panda2, set_panda2) connect(set_panda2, v_panda) c_hivereg.register_hive("pandawalk2", pandawalkhive2) v_hivename2 = dragonfly.std.variable("id")("pandawalk2") set_hivename2 = dragonfly.std.transistor("id")() connect(v_hivename2, set_hivename2) connect(set_hivename2, v_hivename) pandaicon2_click = dragonfly.io.mouseareasensor("pandaicon2") connect(pandaicon2_click, set_panda2) connect(pandaicon2_click, set_hivename2) connect(pandaicon2_click, trig_spawn) #Third panda v_panda3 = dragonfly.std.variable("id")("pandaclass3") set_panda3 = dragonfly.std.transistor("id")() connect(v_panda3, set_panda3) connect(set_panda3, v_panda) c_hivereg.register_hive("pandajump", pandajumphive) v_hivename3 = dragonfly.std.variable("id")("pandajump") set_hivename3 = dragonfly.std.transistor("id")() connect(v_hivename3, set_hivename3) connect(set_hivename3, v_hivename) pandaicon3_click = dragonfly.io.mouseareasensor("pandaicon3") connect(pandaicon3_click, set_panda3) connect(pandaicon3_click, set_hivename3) connect(pandaicon3_click, trig_spawn) myscene = myscene( scene="scene", canvas=canvas, mousearea=mousearea, ) wininit = bee.init("window") wininit.camera.setPos(0, 45, 25) wininit.camera.setHpr(180, -20, 0) keyboardevents = dragonfly.event.sensor_match_leader("keyboard") add_head = dragonfly.event.add_head() head = dragonfly.convert.pull.duck("id", "event")() connect(selected, head) connect(keyboardevents, add_head) connect(head, add_head) connect(add_head, pandabinder.event) main = myhive().getinstance() main.build("main") main.place() main.close() main.init() main.run()
bsd-2-clause
wanggang3333/scikit-learn
sklearn/neighbors/nearest_centroid.py
199
7249
# -*- coding: utf-8 -*- """ Nearest Centroid Classification """ # Author: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause import warnings import numpy as np from scipy import sparse as sp from ..base import BaseEstimator, ClassifierMixin from ..metrics.pairwise import pairwise_distances from ..preprocessing import LabelEncoder from ..utils.validation import check_array, check_X_y, check_is_fitted from ..utils.sparsefuncs import csc_median_axis_0 class NearestCentroid(BaseEstimator, ClassifierMixin): """Nearest centroid classifier. Each class is represented by its centroid, with test samples classified to the class with the nearest centroid. Read more in the :ref:`User Guide <nearest_centroid_classifier>`. Parameters ---------- metric: string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string or callable, it must be one of the options allowed by metrics.pairwise.pairwise_distances for its metric parameter. The centroids for the samples corresponding to each class is the point from which the sum of the distances (according to the metric) of all samples that belong to that particular class are minimized. If the "manhattan" metric is provided, this centroid is the median and for all other metrics, the centroid is now set to be the mean. shrink_threshold : float, optional (default = None) Threshold for shrinking centroids to remove features. Attributes ---------- centroids_ : array-like, shape = [n_classes, n_features] Centroid of each class Examples -------- >>> from sklearn.neighbors.nearest_centroid import NearestCentroid >>> import numpy as np >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> clf = NearestCentroid() >>> clf.fit(X, y) NearestCentroid(metric='euclidean', shrink_threshold=None) >>> print(clf.predict([[-0.8, -1]])) [1] See also -------- sklearn.neighbors.KNeighborsClassifier: nearest neighbors classifier Notes ----- When used for text classification with tf-idf vectors, this classifier is also known as the Rocchio classifier. References ---------- Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 99(10), 6567-6572. The National Academy of Sciences. """ def __init__(self, metric='euclidean', shrink_threshold=None): self.metric = metric self.shrink_threshold = shrink_threshold def fit(self, X, y): """ Fit the NearestCentroid model according to the given training data. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. Note that centroid shrinking cannot be used with sparse matrices. y : array, shape = [n_samples] Target values (integers) """ # If X is sparse and the metric is "manhattan", store it in a csc # format is easier to calculate the median. if self.metric == 'manhattan': X, y = check_X_y(X, y, ['csc']) else: X, y = check_X_y(X, y, ['csr', 'csc']) is_X_sparse = sp.issparse(X) if is_X_sparse and self.shrink_threshold: raise ValueError("threshold shrinking not supported" " for sparse input") n_samples, n_features = X.shape le = LabelEncoder() y_ind = le.fit_transform(y) self.classes_ = classes = le.classes_ n_classes = classes.size if n_classes < 2: raise ValueError('y has less than 2 classes') # Mask mapping each class to it's members. self.centroids_ = np.empty((n_classes, n_features), dtype=np.float64) # Number of clusters in each class. nk = np.zeros(n_classes) for cur_class in range(n_classes): center_mask = y_ind == cur_class nk[cur_class] = np.sum(center_mask) if is_X_sparse: center_mask = np.where(center_mask)[0] # XXX: Update other averaging methods according to the metrics. if self.metric == "manhattan": # NumPy does not calculate median of sparse matrices. if not is_X_sparse: self.centroids_[cur_class] = np.median(X[center_mask], axis=0) else: self.centroids_[cur_class] = csc_median_axis_0(X[center_mask]) else: if self.metric != 'euclidean': warnings.warn("Averaging for metrics other than " "euclidean and manhattan not supported. " "The average is set to be the mean." ) self.centroids_[cur_class] = X[center_mask].mean(axis=0) if self.shrink_threshold: dataset_centroid_ = np.mean(X, axis=0) # m parameter for determining deviation m = np.sqrt((1. / nk) + (1. / n_samples)) # Calculate deviation using the standard deviation of centroids. variance = (X - self.centroids_[y_ind]) ** 2 variance = variance.sum(axis=0) s = np.sqrt(variance / (n_samples - n_classes)) s += np.median(s) # To deter outliers from affecting the results. mm = m.reshape(len(m), 1) # Reshape to allow broadcasting. ms = mm * s deviation = ((self.centroids_ - dataset_centroid_) / ms) # Soft thresholding: if the deviation crosses 0 during shrinking, # it becomes zero. signs = np.sign(deviation) deviation = (np.abs(deviation) - self.shrink_threshold) deviation[deviation < 0] = 0 deviation *= signs # Now adjust the centroids using the deviation msd = ms * deviation self.centroids_ = dataset_centroid_[np.newaxis, :] + msd return self def predict(self, X): """Perform classification on an array of test vectors X. The predicted class C for each sample in X is returned. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- C : array, shape = [n_samples] Notes ----- If the metric constructor parameter is "precomputed", X is assumed to be the distance matrix between the data to be predicted and ``self.centroids_``. """ check_is_fitted(self, 'centroids_') X = check_array(X, accept_sparse='csr') return self.classes_[pairwise_distances( X, self.centroids_, metric=self.metric).argmin(axis=1)]
bsd-3-clause