repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
rishikksh20/scikit-learn
sklearn/neighbors/__init__.py
71
1025
""" The :mod:`sklearn.neighbors` module implements the k-nearest neighbors algorithm. """ from .ball_tree import BallTree from .kd_tree import KDTree from .dist_metrics import DistanceMetric from .graph import kneighbors_graph, radius_neighbors_graph from .unsupervised import NearestNeighbors from .classification import KNeighborsClassifier, RadiusNeighborsClassifier from .regression import KNeighborsRegressor, RadiusNeighborsRegressor from .nearest_centroid import NearestCentroid from .kde import KernelDensity from .approximate import LSHForest from .lof import LocalOutlierFactor __all__ = ['BallTree', 'DistanceMetric', 'KDTree', 'KNeighborsClassifier', 'KNeighborsRegressor', 'NearestCentroid', 'NearestNeighbors', 'RadiusNeighborsClassifier', 'RadiusNeighborsRegressor', 'kneighbors_graph', 'radius_neighbors_graph', 'KernelDensity', 'LSHForest', 'LocalOutlierFactor']
bsd-3-clause
gundramleifert/exp_tf
models/lp/bdlstm_lp_v6.py
1
13704
''' Author: Tobi and Gundram ''' from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import ctc_ops as ctc from tensorflow.python.ops import rnn_cell from tensorflow.python.ops.rnn import bidirectional_rnn from util.LoaderUtil import read_image_list, get_list_vals from random import shuffle from util.STR2CTC import get_charmap_lp, get_charmap_lp_inv import os import time import numpy as np import matplotlib.pyplot as plt # Goes done to 10% INPUT_PATH_TRAIN = './private/lists/lp_only_train.lst' INPUT_PATH_VAL = './private/lists/lp_only_val.lst' cm, nClasses = get_charmap_lp() # Additional NaC Channel nClasses += 1 nEpochs = 15 batchSize = 4 learningRate = 0.001 momentum = 0.9 # It is assumed that the TextLines are ALL saved with a consistent height of imgH imgH = 48 # Depending on the size the image is cropped or zero padded imgW = 256 channels = 1 nHiddenLSTM1 = 256 os.chdir("../..") trainList = read_image_list(INPUT_PATH_TRAIN) stepsPerEpocheTrain = len(trainList) / batchSize valList = read_image_list(INPUT_PATH_VAL) stepsPerEpocheVal = len(valList) / batchSize def inference(images, seqLen): with tf.variable_scope('conv1') as scope: kernel = tf.Variable(tf.truncated_normal([6, 5, channels, 32], stddev=5e-2), name='weights') ##Weight Decay? # weight_decay = tf.mul(tf.nn.l2_loss(kernel), 0.002, name='weight_loss') # tf.add_to_collection('losses', weight_decay) conv = tf.nn.conv2d(images, kernel, [1, 4, 3, 1], padding='SAME') biases = tf.Variable(tf.constant(0.1, shape=[32]), name='biases') pre_activation = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(pre_activation, name=scope.name) # _activation_summary(conv1) norm1 = tf.nn.local_response_normalization(conv1, name='norm1') seqFloat = tf.to_float(seqLen) seqL2 = tf.ceil(seqFloat * 0.33) with tf.variable_scope('conv2') as scope: kernel = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=5e-2), name='weights') ##Weight Decay? # weight_decay = tf.mul(tf.nn.l2_loss(kernel), 0.002, name='weight_loss') # tf.add_to_collection('losses', weight_decay) conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.1, shape=[64]), name='biases') pre_activation = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(pre_activation, name=scope.name) # _activation_summary(conv2) # norm2 # norm2 = tf.nn.local_response_normalization(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,name='norm2') pool2 = tf.nn.max_pool(conv2, ksize=[1, 4, 2, 1], strides=[1, 4, 2, 1], padding='SAME', name='pool2') seqL3 = tf.ceil(seqL2 * 0.5) with tf.variable_scope('conv3') as scope: kernel = tf.Variable(tf.truncated_normal([5, 3, 64, 128], stddev=5e-2), name='weights') ##Weight Decay? # weight_decay = tf.mul(tf.nn.l2_loss(kernel), 0.002, name='weight_loss') # tf.add_to_collection('losses', weight_decay) conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.1, shape=[128]), name='biases') pre_activation = tf.nn.bias_add(conv, biases) conv3 = tf.nn.relu(pre_activation, name=scope.name) pool3 = tf.nn.max_pool(conv3, ksize=[1, 3, 1, 1], strides=[1, 3, 1, 1], padding='SAME', name='pool2') # NO POOLING HERE -> CTC needs an appropriate length. seqLenAfterConv = tf.to_int32(seqL3) with tf.variable_scope('RNN_Prep') as scope: # (#batch Y X Z) --> (X #batch Y Z) rnnIn = tf.transpose(pool3, [2, 0, 1, 3]) # (X #batch Y Z) --> (X #batch Y*Z) shape = rnnIn.get_shape() steps = shape[0] rnnIn = tf.reshape(rnnIn, tf.pack([shape[0], shape[1], -1])) # (X #batch Y*Z) --> (X*#batch Y*Z) shape = rnnIn.get_shape() rnnIn = tf.reshape(rnnIn, tf.pack([-1, shape[2]])) # (X*#batch Y*Z) --> list of X tensors of shape (#batch, Y*Z) rnnIn = tf.split(0, steps, rnnIn) with tf.variable_scope('BLSTM1') as scope: forwardH1 = rnn_cell.LSTMCell(nHiddenLSTM1, use_peepholes=True, state_is_tuple=True) backwardH1 = rnn_cell.LSTMCell(nHiddenLSTM1, use_peepholes=True, state_is_tuple=True) outputs, _, _ = bidirectional_rnn(forwardH1, backwardH1, rnnIn, dtype=tf.float32) fbH1rs = [tf.reshape(t, [batchSize, 2, nHiddenLSTM1]) for t in outputs] # outH1 = [tf.reduce_sum(tf.mul(t, weightsOutH1), reduction_indices=1) + biasesOutH1 for t in fbH1rs] outH1 = [tf.reduce_sum(t, reduction_indices=1) for t in fbH1rs] with tf.variable_scope('LOGIT') as scope: weightsClasses = tf.Variable(tf.truncated_normal([nHiddenLSTM1, nClasses], stddev=np.sqrt(2.0 / nHiddenLSTM1))) biasesClasses = tf.Variable(tf.zeros([nClasses])) logitsFin = [tf.matmul(t, weightsClasses) + biasesClasses for t in outH1] logits3d = tf.pack(logitsFin) return logits3d, seqLenAfterConv def loss(logits3d, tgt, seqLenAfterConv): loss = tf.reduce_mean(ctc.ctc_loss(logits3d, tgt, seqLenAfterConv)) return loss print('Defining graph') graph = tf.Graph() with graph.as_default(): ####Graph input inputX = tf.placeholder(tf.float32, shape=(batchSize, imgH, imgW, channels)) targetIxs = tf.placeholder(tf.int64) targetVals = tf.placeholder(tf.int32) targetShape = tf.placeholder(tf.int64) targetY = tf.SparseTensor(targetIxs, targetVals, targetShape) seqLengths = tf.placeholder(tf.int32, shape=(batchSize)) logits3d, seqAfterConv = inference(inputX, seqLengths) loss = loss(logits3d, targetY, seqAfterConv) optimizer = tf.train.MomentumOptimizer(learningRate, momentum).minimize(loss) # pred = tf.to_int32(ctc.ctc_beam_search_decoder(logits3d, seqAfterConv, merge_repeated=False)[0][0]) pred = tf.to_int32(ctc.ctc_greedy_decoder(logits3d, seqAfterConv)[0][0]) edist = tf.edit_distance(pred, targetY, normalize=False) tgtLens = tf.to_float(tf.size(targetY.values)) err = tf.reduce_sum(edist) / tgtLens saver = tf.train.Saver() with tf.Session(graph=graph) as session: # writer = tf.train.SummaryWriter('./log', session.graph) print('Initializing') tf.global_variables_initializer().run() # ckpt = tf.train.get_checkpoint_state("./private/models/lp2/") # if ckpt and ckpt.model_checkpoint_path: # saver.restore(session, ckpt.model_checkpoint_path) # print(ckpt) # workList = valList[:] # errV = 0 # lossV = 0 # timeVS = time.time() # cmInv = get_charmap_lp_inv() # for bStep in range(stepsPerEpocheVal): # bList, workList = workList[:batchSize], workList[batchSize:] # batchInputs, batchSeqLengths, batchTargetIdxs, batchTargetVals, batchTargetShape = get_list_vals(bList, cm, # imgW, # mvn=True) # feedDict = {inputX: batchInputs, targetIxs: batchTargetIdxs, targetVals: batchTargetVals, # targetShape: batchTargetShape, seqLengths: batchSeqLengths} # lossB, aErr, p = session.run([loss, err, pred], feed_dict=feedDict) # print(aErr) # res = [] # for idx in p.values: # res.append(cmInv[idx]) # print(res) # # print(p) # plt.imshow(batchInputs[0,:,:,0], cmap=plt.cm.gray) # plt.show() # # lossV += lossB # errV += aErr # print('Val: CTC-loss ', lossV) # errVal = errV / stepsPerEpocheVal # print('Val: CER ', errVal) # print('Val time ', time.time() - timeVS) for epoch in range(nEpochs): workList = trainList[:] shuffle(workList) print('Epoch', epoch + 1, '...') lossT = 0 errT = 0 timeTS = time.time() for bStep in range(stepsPerEpocheTrain): bList, workList = workList[:batchSize], workList[batchSize:] batchInputs, batchSeqLengths, batchTargetIdxs, batchTargetVals, batchTargetShape = get_list_vals(bList, cm, imgW, mvn=True) feedDict = {inputX: batchInputs, targetIxs: batchTargetIdxs, targetVals: batchTargetVals, targetShape: batchTargetShape, seqLengths: batchSeqLengths} _, lossB, aErr = session.run([optimizer, loss, err], feed_dict=feedDict) # _, lossB, aErr, sET, sLT = session.run([optimizer, loss, err, err_train, loss_train], feed_dict=feedDict) lossT += lossB # writer.add_summary(sET, epoch * stepsPerEpocheTrain + bStep) # writer.add_summary(sLT, epoch * stepsPerEpocheTrain + bStep) errT += aErr print('Train: CTC-loss ', lossT) cerT = errT / stepsPerEpocheTrain print('Train: CER ', cerT) print('Train time ', time.time() - timeTS) workList = valList[:] errV = 0 lossV = 0 timeVS = time.time() for bStep in range(stepsPerEpocheVal): bList, workList = workList[:batchSize], workList[batchSize:] batchInputs, batchSeqLengths, batchTargetIdxs, batchTargetVals, batchTargetShape = get_list_vals(bList, cm, imgW, mvn=True) feedDict = {inputX: batchInputs, targetIxs: batchTargetIdxs, targetVals: batchTargetVals, targetShape: batchTargetShape, seqLengths: batchSeqLengths} lossB, aErr = session.run([loss, err], feed_dict=feedDict) # lossB, aErr, sE, sL = session.run([loss, err, err_val, loss_val], feed_dict=feedDict) # writer.add_summary(sE, epoch*stepsPerEpocheVal + bStep) # writer.add_summary(sL, epoch * stepsPerEpocheVal + bStep) lossV += lossB errV += aErr print('Val: CTC-loss ', lossV) errVal = errV / stepsPerEpocheVal print('Val: CER ', errVal) print('Val time ', time.time() - timeVS) # Write a checkpoint. checkpoint_file = os.path.join('./private/models/lp6/', 'checkpoint') saver.save(session, checkpoint_file, global_step=epoch) # Defining graph # Initializing # Epoch 1 ... # Train: CTC-loss 129009.017706 # Train: CER 0.635904513293 # Train time 4908.49444389 # Val: CTC-loss 1641.79976816 # Val: CER 0.0801813207567 # Val time 244.049314976 # Epoch 2 ... # Train: CTC-loss 16020.608585 # Train: CER 0.0717145665077 # Train time 7330.24510384 # Val: CTC-loss 1204.36847229 # Val: CER 0.0566576011727 # Val time 245.118979931 # Epoch 3 ... # Train: CTC-loss 12435.9589674 # Train: CER 0.0558677665295 # Train time 7285.28540993 # Val: CTC-loss 1003.13010596 # Val: CER 0.0471066227357 # Val time 242.016130924 # Epoch 4 ... # Train: CTC-loss 11060.2886085 # Train: CER 0.0499579166048 # Train time 7326.90888286 # Val: CTC-loss 969.390615069 # Val: CER 0.0463109914263 # Val time 245.883394003 # Epoch 5 ... # Train: CTC-loss 10113.6315179 # Train: CER 0.0457048515265 # Train time 7260.16503906 # Val: CTC-loss 964.054605111 # Val: CER 0.0448569302758 # Val time 245.195471048 # Epoch 6 ... # Train: CTC-loss 9361.70014321 # Train: CER 0.042607394019 # Train time 7276.95676613 # Val: CTC-loss 942.684666969 # Val: CER 0.0438320938696 # Val time 239.865092039 # Epoch 7 ... # Train: CTC-loss 8693.04606334 # Train: CER 0.0398572982518 # Train time 6516.15737796 # Val: CTC-loss 930.6919411 # Val: CER 0.0422663276643 # Val time 220.383415222 # Epoch 8 ... # Train: CTC-loss 8161.14864806 # Train: CER 0.0377375896172 # Train time 6433.12666297 # Val: CTC-loss 933.970610965 # Val: CER 0.0425528454781 # Val time 192.637362957 # Epoch 9 ... # Train: CTC-loss 7658.31400694 # Train: CER 0.0357702803461 # Train time 5611.53865314 # Val: CTC-loss 944.544853458 # Val: CER 0.0428228211651 # Val time 152.010342121 # Epoch 10 ... # Train: CTC-loss 7171.84027007 # Train: CER 0.0337837695306 # Train time 5177.82906294 # Val: CTC-loss 941.78110862 # Val: CER 0.0423581593285 # Val time 184.70659399 # Epoch 11 ... # Train: CTC-loss 6820.79927806 # Train: CER 0.0323584240315 # Train time 5460.32187796 # Val: CTC-loss 987.756852884 # Val: CER 0.044123320813 # Val time 153.327903986 # Epoch 12 ... # Train: CTC-loss 6330.18515219 # Train: CER 0.030294881605 # Train time 5040.84565091 # Val: CTC-loss 971.562253463 # Val: CER 0.0413985775958 # Val time 167.768498898 # Epoch 13 ... # Train: CTC-loss 5951.8420738 # Train: CER 0.0285477739336 # Train time 5047.84928107 # Val: CTC-loss 1012.34960045 # Val: CER 0.0429205714911 # Val time 167.878767014 # Epoch 14 ... # Train: CTC-loss 5679.90946481 # Train: CER 0.0276907928977 # Train time 5026.46480107 # Val: CTC-loss 1040.27236869 # Val: CER 0.0416939370632 # Val time 166.396095991 # Epoch 15 ... # Train: CTC-loss 5316.91454479 # Train: CER 0.0258935857246 # Train time 5059.73199415 # Val: CTC-loss 1048.74418164 # Val: CER 0.0438409063319 # Val time 166.044019938
apache-2.0
davidgbe/scikit-learn
examples/neighbors/plot_approximate_nearest_neighbors_scalability.py
225
5719
""" ============================================ Scalability of Approximate Nearest Neighbors ============================================ This example studies the scalability profile of approximate 10-neighbors queries using the LSHForest with ``n_estimators=20`` and ``n_candidates=200`` when varying the number of samples in the dataset. The first plot demonstrates the relationship between query time and index size of LSHForest. Query time is compared with the brute force method in exact nearest neighbor search for the same index sizes. The brute force queries have a very predictable linear scalability with the index (full scan). LSHForest index have sub-linear scalability profile but can be slower for small datasets. The second plot shows the speedup when using approximate queries vs brute force exact queries. The speedup tends to increase with the dataset size but should reach a plateau typically when doing queries on datasets with millions of samples and a few hundreds of dimensions. Higher dimensional datasets tends to benefit more from LSHForest indexing. The break even point (speedup = 1) depends on the dimensionality and structure of the indexed data and the parameters of the LSHForest index. The precision of approximate queries should decrease slowly with the dataset size. The speed of the decrease depends mostly on the LSHForest parameters and the dimensionality of the data. """ from __future__ import division print(__doc__) # Authors: Maheshakya Wijewardena <[email protected]> # Olivier Grisel <[email protected]> # # License: BSD 3 clause ############################################################################### import time import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors import matplotlib.pyplot as plt # Parameters of the study n_samples_min = int(1e3) n_samples_max = int(1e5) n_features = 100 n_centers = 100 n_queries = 100 n_steps = 6 n_iter = 5 # Initialize the range of `n_samples` n_samples_values = np.logspace(np.log10(n_samples_min), np.log10(n_samples_max), n_steps).astype(np.int) # Generate some structured data rng = np.random.RandomState(42) all_data, _ = make_blobs(n_samples=n_samples_max + n_queries, n_features=n_features, centers=n_centers, shuffle=True, random_state=0) queries = all_data[:n_queries] index_data = all_data[n_queries:] # Metrics to collect for the plots average_times_exact = [] average_times_approx = [] std_times_approx = [] accuracies = [] std_accuracies = [] average_speedups = [] std_speedups = [] # Calculate the average query time for n_samples in n_samples_values: X = index_data[:n_samples] # Initialize LSHForest for queries of a single neighbor lshf = LSHForest(n_estimators=20, n_candidates=200, n_neighbors=10).fit(X) nbrs = NearestNeighbors(algorithm='brute', metric='cosine', n_neighbors=10).fit(X) time_approx = [] time_exact = [] accuracy = [] for i in range(n_iter): # pick one query at random to study query time variability in LSHForest query = queries[rng.randint(0, n_queries)] t0 = time.time() exact_neighbors = nbrs.kneighbors(query, return_distance=False) time_exact.append(time.time() - t0) t0 = time.time() approx_neighbors = lshf.kneighbors(query, return_distance=False) time_approx.append(time.time() - t0) accuracy.append(np.in1d(approx_neighbors, exact_neighbors).mean()) average_time_exact = np.mean(time_exact) average_time_approx = np.mean(time_approx) speedup = np.array(time_exact) / np.array(time_approx) average_speedup = np.mean(speedup) mean_accuracy = np.mean(accuracy) std_accuracy = np.std(accuracy) print("Index size: %d, exact: %0.3fs, LSHF: %0.3fs, speedup: %0.1f, " "accuracy: %0.2f +/-%0.2f" % (n_samples, average_time_exact, average_time_approx, average_speedup, mean_accuracy, std_accuracy)) accuracies.append(mean_accuracy) std_accuracies.append(std_accuracy) average_times_exact.append(average_time_exact) average_times_approx.append(average_time_approx) std_times_approx.append(np.std(time_approx)) average_speedups.append(average_speedup) std_speedups.append(np.std(speedup)) # Plot average query time against n_samples plt.figure() plt.errorbar(n_samples_values, average_times_approx, yerr=std_times_approx, fmt='o-', c='r', label='LSHForest') plt.plot(n_samples_values, average_times_exact, c='b', label="NearestNeighbors(algorithm='brute', metric='cosine')") plt.legend(loc='upper left', fontsize='small') plt.ylim(0, None) plt.ylabel("Average query time in seconds") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Impact of index size on response time for first " "nearest neighbors queries") # Plot average query speedup versus index size plt.figure() plt.errorbar(n_samples_values, average_speedups, yerr=std_speedups, fmt='o-', c='r') plt.ylim(0, None) plt.ylabel("Average speedup") plt.xlabel("n_samples") plt.grid(which='both') plt.title("Speedup of the approximate NN queries vs brute force") # Plot average precision versus index size plt.figure() plt.errorbar(n_samples_values, accuracies, std_accuracies, fmt='o-', c='c') plt.ylim(0, 1.1) plt.ylabel("precision@10") plt.xlabel("n_samples") plt.grid(which='both') plt.title("precision of 10-nearest-neighbors queries with index size") plt.show()
bsd-3-clause
ChanderG/scikit-learn
sklearn/datasets/__init__.py
176
3671
""" The :mod:`sklearn.datasets` module includes utilities to load datasets, including methods to load and fetch popular reference datasets. It also features some artificial data generators. """ from .base import load_diabetes from .base import load_digits from .base import load_files from .base import load_iris from .base import load_linnerud from .base import load_boston from .base import get_data_home from .base import clear_data_home from .base import load_sample_images from .base import load_sample_image from .covtype import fetch_covtype from .mlcomp import load_mlcomp from .lfw import load_lfw_pairs from .lfw import load_lfw_people from .lfw import fetch_lfw_pairs from .lfw import fetch_lfw_people from .twenty_newsgroups import fetch_20newsgroups from .twenty_newsgroups import fetch_20newsgroups_vectorized from .mldata import fetch_mldata, mldata_filename from .samples_generator import make_classification from .samples_generator import make_multilabel_classification from .samples_generator import make_hastie_10_2 from .samples_generator import make_regression from .samples_generator import make_blobs from .samples_generator import make_moons from .samples_generator import make_circles from .samples_generator import make_friedman1 from .samples_generator import make_friedman2 from .samples_generator import make_friedman3 from .samples_generator import make_low_rank_matrix from .samples_generator import make_sparse_coded_signal from .samples_generator import make_sparse_uncorrelated from .samples_generator import make_spd_matrix from .samples_generator import make_swiss_roll from .samples_generator import make_s_curve from .samples_generator import make_sparse_spd_matrix from .samples_generator import make_gaussian_quantiles from .samples_generator import make_biclusters from .samples_generator import make_checkerboard from .svmlight_format import load_svmlight_file from .svmlight_format import load_svmlight_files from .svmlight_format import dump_svmlight_file from .olivetti_faces import fetch_olivetti_faces from .species_distributions import fetch_species_distributions from .california_housing import fetch_california_housing from .rcv1 import fetch_rcv1 __all__ = ['clear_data_home', 'dump_svmlight_file', 'fetch_20newsgroups', 'fetch_20newsgroups_vectorized', 'fetch_lfw_pairs', 'fetch_lfw_people', 'fetch_mldata', 'fetch_olivetti_faces', 'fetch_species_distributions', 'fetch_california_housing', 'fetch_covtype', 'fetch_rcv1', 'get_data_home', 'load_boston', 'load_diabetes', 'load_digits', 'load_files', 'load_iris', 'load_lfw_pairs', 'load_lfw_people', 'load_linnerud', 'load_mlcomp', 'load_sample_image', 'load_sample_images', 'load_svmlight_file', 'load_svmlight_files', 'make_biclusters', 'make_blobs', 'make_circles', 'make_classification', 'make_checkerboard', 'make_friedman1', 'make_friedman2', 'make_friedman3', 'make_gaussian_quantiles', 'make_hastie_10_2', 'make_low_rank_matrix', 'make_moons', 'make_multilabel_classification', 'make_regression', 'make_s_curve', 'make_sparse_coded_signal', 'make_sparse_spd_matrix', 'make_sparse_uncorrelated', 'make_spd_matrix', 'make_swiss_roll', 'mldata_filename']
bsd-3-clause
BioinfUD/K-mersCL
src/utils/extract_metrics.py
1
3825
import pandas as pd import numpy as np from sys import argv import re def extract_nvidia_max_memory(merged_file): return np.nanmax(merged_file['GPU']) def extract_anytool_max_memory(merged_file): return (np.nanmax(merged_file['MEM']) - np.nanmin(merged_file['MEM']))/1000.0 def extract_kmc_time(log_file): time = 0.0 for line in log_file: if "Time read processing : " in line: line = line.split(",")[1] content = line.replace("*", "").replace("Time read processing : ", "").replace("ns.", "").strip() time += float(content) return time/(10**9) def extract_mspk_time(log_file): for line in log_file: if "Total algorithm time" in line: line = line.split(",")[1] time = line.replace("Total algorithm time:","").replace("s", "").strip() if "min" in time: time = float(time.replace("min", "").strip()) return time * 60 return float(time) def extract_kmercl_signature_time(log_file): for line in log_file: if "Total algorithm time" in line: line = line.split(",")[1] time = line.replace("Total algorithm time:","").replace("s", "").strip() return float(time) def extract_kmercl_time(log_file): for line in log_file: if "Kernel execution took " in line: line = line.split(",")[1] return float(line.replace("Kernel execution took ", "").strip()) def extract_transfer_time(log_file): total = 0.0 for line in log_file: if "Copying data took " in line: line = line.split(",")[1] total += float(line.replace(" Copying data took ", "").replace("seconds","").strip()) return total def extract_metrics(path): merged_metrics_path = "{}/metrics/merged_metrics.xlsx".format(path) tool_log_path = "{}/metrics/tool_log.csv".format(path) log_file = open(tool_log_path) merged_file = pd.read_excel(merged_metrics_path) transfer_time = None if "kmerscl-" in path: transfer_time = extract_transfer_time(log_file) log_file.seek(0) time = extract_kmercl_time(log_file) memory = extract_nvidia_max_memory(merged_file) log_file = open(tool_log_path) elif "kmerscl_signature" in path: transfer_time = extract_transfer_time(log_file) log_file.seek(0) time = extract_kmercl_time(log_file) memory = extract_nvidia_max_memory(merged_file) log_file = open(tool_log_path) elif "kmc" in path: time = extract_kmc_time(log_file) memory = extract_anytool_max_memory(merged_file) elif "mspk" in path: time = extract_mspk_time(log_file) memory = extract_anytool_max_memory(merged_file) else: print "Not valid tool" exit() print path m = re.match(r".*/(?P<tool>\w+)-k(?P<kmer>\w+)-m(?P<mmer>\w+)-r(?P<read_lenght>\w+)-(?P<seq>\w+)_(?P<read_millions>\w+)m_.*", path) row = m.groupdict() row['mem'] = memory row['time'] = time print "Tool and params: {}".format(path) print "Used memory {} mb".format(memory) print "Time {} seconds".format(time) if transfer_time: row['tt'] = transfer_time print "Transfer time {} seconds".format(transfer_time) return values_to_list(row) def values_to_list(d): nd = {} for k, v in d.iteritems(): nd[k] = [v] return nd # df = pd.DataFrame(columns=['tool', 'kmer', 'mmer', 'read_lenght', 'seq', 'time', 'mem','read_millions']) writer = pd.ExcelWriter('output.xlsx') paths = argv[1:] # print df print extract_metrics(paths[0]) frames = [] for path in paths[:]: df2 = pd.DataFrame.from_dict(extract_metrics(path)) frames.append(df2) df = pd.concat(frames) df.to_excel(writer,'KmerCL_benchmark') writer.save()
mit
f3r/scikit-learn
examples/svm/plot_separating_hyperplane.py
294
1273
""" ========================================= SVM: Maximum margin separating hyperplane ========================================= Plot the maximum margin separating hyperplane within a two-class separable dataset using a Support Vector Machine classifier with linear kernel. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm # we create 40 separable points np.random.seed(0) X = np.r_[np.random.randn(20, 2) - [2, 2], np.random.randn(20, 2) + [2, 2]] Y = [0] * 20 + [1] * 20 # fit the model clf = svm.SVC(kernel='linear') clf.fit(X, Y) # get the separating hyperplane w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - (clf.intercept_[0]) / w[1] # plot the parallels to the separating hyperplane that pass through the # support vectors b = clf.support_vectors_[0] yy_down = a * xx + (b[1] - a * b[0]) b = clf.support_vectors_[-1] yy_up = a * xx + (b[1] - a * b[0]) # plot the line, the points, and the nearest vectors to the plane plt.plot(xx, yy, 'k-') plt.plot(xx, yy_down, 'k--') plt.plot(xx, yy_up, 'k--') plt.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=80, facecolors='none') plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Paired) plt.axis('tight') plt.show()
bsd-3-clause
ArtsiomCh/tensorflow
tensorflow/contrib/learn/python/learn/estimators/linear_test.py
58
71789
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for estimators.linear.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import json import tempfile import numpy as np from tensorflow.contrib.layers.python.layers import feature_column as feature_column_lib from tensorflow.contrib.learn.python.learn import experiment from tensorflow.contrib.learn.python.learn.datasets import base from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.learn.python.learn.estimators import estimator from tensorflow.contrib.learn.python.learn.estimators import estimator_test_utils from tensorflow.contrib.learn.python.learn.estimators import head as head_lib from tensorflow.contrib.learn.python.learn.estimators import linear from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import test_data from tensorflow.contrib.learn.python.learn.metric_spec import MetricSpec from tensorflow.contrib.linear_optimizer.python import sdca_optimizer as sdca_optimizer_lib from tensorflow.contrib.metrics.python.ops import metric_ops from tensorflow.python.feature_column import feature_column as fc_core from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test from tensorflow.python.training import ftrl from tensorflow.python.training import input as input_lib from tensorflow.python.training import server_lib def _prepare_iris_data_for_logistic_regression(): # Converts iris data to a logistic regression problem. iris = base.load_iris() ids = np.where((iris.target == 0) | (iris.target == 1)) iris = base.Dataset(data=iris.data[ids], target=iris.target[ids]) return iris class LinearClassifierTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearClassifier( n_classes=3, feature_columns=cont_features), train_input_fn=test_data.iris_input_multiclass_fn, eval_input_fn=test_data.iris_input_multiclass_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearClassifier) def testTrain(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testJointTrain(self): """Tests that loss goes down with training with joint weights.""" def input_fn(): return { 'age': sparse_tensor.SparseTensor( values=['1'], indices=[[0, 0]], dense_shape=[1, 1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.sparse_column_with_hash_bucket('age', 2) classifier = linear.LinearClassifier( _joint_weight=True, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.01) def testMultiClass_MatrixData(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [150] instead of [150, 1].""" def _input_fn(): iris = base.load_iris() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[150], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClass_NpMatrixData(self): """Tests multi-class classification using numpy matrix data as input.""" iris = base.load_iris() train_x = iris.data train_y = iris.target feature_column = feature_column_lib.real_valued_column('', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testMultiClassLabelKeys(self): """Tests n_classes > 2 with label_keys vocabulary for labels.""" # Byte literals needed for python3 test to pass. label_keys = [b'label0', b'label1', b'label2'] def _input_fn(num_epochs=None): features = { 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant( [[label_keys[1]], [label_keys[0]], [label_keys[0]]], dtype=dtypes.string) return features, labels language_column = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[language_column], label_keys=label_keys) classifier.fit(input_fn=_input_fn, steps=50) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) self.assertIn('loss', scores) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_classes = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(3, len(predicted_classes)) for pred in predicted_classes: self.assertIn(pred, label_keys) predictions = list( classifier.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertAllEqual(predicted_classes, predictions) def testLogisticRegression_MatrixData(self): """Tests binary classification using matrix data as input.""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100, 1], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEstimatorWithCoreFeatureColumns(self): def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[.8], [0.2], [.1]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=input_lib.limit_epochs( ['en', 'fr', 'zh'], num_epochs=num_epochs), indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant([[1], [0], [0]], dtype=dtypes.int32) language_column = fc_core.categorical_column_with_hash_bucket( 'language', hash_bucket_size=20) feature_columns = [language_column, fc_core.numeric_column('age')] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_MatrixData_Labels1D(self): """Same as the last test, but labels shape is [100] instead of [100, 1].""" def _input_fn(): iris = _prepare_iris_data_for_logistic_regression() return { 'feature': constant_op.constant( iris.data, dtype=dtypes.float32) }, constant_op.constant( iris.target, shape=[100], dtype=dtypes.int32) feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier(feature_columns=[feature_column]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate(input_fn=_input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testLogisticRegression_NpMatrixData(self): """Tests binary classification using numpy matrix data as input.""" iris = _prepare_iris_data_for_logistic_regression() train_x = iris.data train_y = iris.target feature_columns = [feature_column_lib.real_valued_column('', dimension=4)] classifier = linear.LinearClassifier(feature_columns=feature_columns) classifier.fit(x=train_x, y=train_y, steps=100) scores = classifier.evaluate(x=train_x, y=train_y, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testWeightAndBiasNames(self): """Tests that weight and bias names haven't changed.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) variable_names = classifier.get_variable_names() self.assertIn('linear/feature/weight', variable_names) self.assertIn('linear/bias_weight', variable_names) self.assertEqual( 4, len(classifier.get_variable_value('linear/feature/weight'))) self.assertEqual( 3, len(classifier.get_variable_value('linear/bias_weight'))) def testCustomOptimizerByObject(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer=ftrl.FtrlOptimizer(learning_rate=0.1), feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByString(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) def _optimizer(): return ftrl.FtrlOptimizer(learning_rate=0.1) classifier = linear.LinearClassifier( n_classes=3, optimizer=_optimizer, feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomOptimizerByFunction(self): """Tests multi-class classification using matrix data as input.""" feature_column = feature_column_lib.real_valued_column( 'feature', dimension=4) classifier = linear.LinearClassifier( n_classes=3, optimizer='Ftrl', feature_columns=[feature_column]) classifier.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = classifier.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=100) self.assertGreater(scores['accuracy'], 0.9) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1], [0], [0], [0]], dtype=dtypes.float32) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): # For the case of binary classification, the 2nd column of "predictions" # denotes the model predictions. predictions = array_ops.strided_slice( predictions, [0, 1], [-1, 2], end_mask=1) return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) classifier = linear.LinearClassifier( feature_columns=[feature_column_lib.real_valued_column('x')]) classifier.fit(input_fn=_input_fn, steps=100) scores = classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'my_accuracy': MetricSpec( metric_fn=metric_ops.streaming_accuracy, prediction_key='classes'), 'my_precision': MetricSpec( metric_fn=metric_ops.streaming_precision, prediction_key='classes'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='probabilities') }) self.assertTrue( set(['loss', 'my_accuracy', 'my_precision', 'my_metric']).issubset( set(scores.keys()))) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list(classifier.predict_classes( input_fn=predict_input_fn))) self.assertEqual( _sklearn.accuracy_score([1, 0, 0, 0], predictions), scores['my_accuracy']) # Tests the case where the prediction_key is neither "classes" nor # "probabilities". with self.assertRaisesRegexp(KeyError, 'bad_type'): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is neither "classes" nor # "probabilities". with self.assertRaises(KeyError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={('bad_name', 'bad_type'): metric_ops.streaming_auc}) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): classifier.evaluate( input_fn=_input_fn, steps=100, metrics={ ('bad_length_name', 'classes', 'bad_length'): metric_ops.streaming_accuracy }) def testLogisticFractionalLabels(self): """Tests logistic training with fractional labels.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([[1], [2]]), num_epochs=num_epochs), }, constant_op.constant( [[.7], [0]], dtype=dtypes.float32) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age], config=run_config.RunConfig(tf_random_seed=1)) classifier.fit(input_fn=input_fn, steps=500) predict_input_fn = functools.partial(input_fn, num_epochs=1) predictions_proba = list( classifier.predict_proba(input_fn=predict_input_fn)) # Prediction probabilities mirror the labels column, which proves that the # classifier learns from float input. self.assertAllClose([[.3, .7], [1., 0.]], predictions_proba, atol=.1) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(): features = { 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } labels = constant_op.constant([[1], [0], [0]]) return features, labels sparse_features = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7) ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig() # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) classifier = linear.LinearClassifier( feature_columns=sparse_features, config=config) classifier.fit(input_fn=_input_fn, steps=200) loss = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def input_fn(num_epochs=None): return { 'age': input_lib.limit_epochs( constant_op.constant([1]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]), }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') model_dir = tempfile.mkdtemp() classifier = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=30) predict_input_fn = functools.partial(input_fn, num_epochs=1) out1_class = list( classifier.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out1_proba = list( classifier.predict_proba( input_fn=predict_input_fn, as_iterable=True)) del classifier classifier2 = linear.LinearClassifier( model_dir=model_dir, feature_columns=[age, language]) out2_class = list( classifier2.predict_classes( input_fn=predict_input_fn, as_iterable=True)) out2_proba = list( classifier2.predict_proba( input_fn=predict_input_fn, as_iterable=True)) self.assertTrue(np.array_equal(out1_class, out2_class)) self.assertTrue(np.array_equal(out1_proba, out2_proba)) def testWeightColumn(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1], [0], [0], [0]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1], [1], [1], [1]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels classifier = linear.LinearClassifier( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=3)) classifier.fit(input_fn=_input_fn_train, steps=100) scores = classifier.evaluate(input_fn=_input_fn_eval, steps=1) # All examples in eval data set are y=x. self.assertGreater(scores['labels/actual_label_mean'], 0.9) # If there were no weight column, model would learn y=Not(x). Because of # weights, it learns y=x. self.assertGreater(scores['labels/prediction_mean'], 0.9) # All examples in eval data set are y=x. So if weight column were ignored, # then accuracy would be zero. Because of weights, accuracy should be close # to 1.0. self.assertGreater(scores['accuracy'], 0.9) scores_train_set = classifier.evaluate(input_fn=_input_fn_train, steps=1) # Considering weights, the mean label should be close to 1.0. # If weights were ignored, it would be 0.25. self.assertGreater(scores_train_set['labels/actual_label_mean'], 0.9) # The classifier has learned y=x. If weight column were ignored in # evaluation, then accuracy for the train set would be 0.25. # Because weight is not ignored, accuracy is greater than 0.6. self.assertGreater(scores_train_set['accuracy'], 0.6) def testWeightColumnLoss(self): """Test ensures that you can specify per-example weights for loss.""" def _input_fn(): features = { 'age': constant_op.constant([[20], [20], [20]]), 'weights': constant_op.constant([[100], [1], [1]]), } labels = constant_op.constant([[1], [0], [0]]) return features, labels age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age]) classifier.fit(input_fn=_input_fn, steps=100) loss_unweighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] classifier = linear.LinearClassifier( feature_columns=[age], weight_column_name='weights') classifier.fit(input_fn=_input_fn, steps=100) loss_weighted = classifier.evaluate(input_fn=_input_fn, steps=1)['loss'] self.assertLess(loss_weighted, loss_unweighted) def testExport(self): """Tests that export model for servo works.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) export_dir = tempfile.mkdtemp() classifier.export(export_dir) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=False) classifier.fit(input_fn=input_fn, steps=100) self.assertNotIn('centered_bias_weight', classifier.get_variable_names()) def testEnableCenteredBias(self): """Tests that we can enable centered bias.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier( feature_columns=[age, language], enable_centered_bias=True) classifier.fit(input_fn=input_fn, steps=100) self.assertIn('linear/binary_logistic_head/centered_bias_weight', classifier.get_variable_names()) def testTrainOptimizerWithL1Reg(self): """Tests l1 regularized model has higher loss.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['hindi'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier_no_reg = linear.LinearClassifier(feature_columns=[language]) classifier_with_reg = linear.LinearClassifier( feature_columns=[language], optimizer=ftrl.FtrlOptimizer( learning_rate=1.0, l1_regularization_strength=100.)) loss_no_reg = classifier_no_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] loss_with_reg = classifier_with_reg.fit(input_fn=input_fn, steps=100).evaluate( input_fn=input_fn, steps=1)['loss'] self.assertLess(loss_no_reg, loss_with_reg) def testTrainWithMissingFeature(self): """Tests that training works with missing features.""" def input_fn(): return { 'language': sparse_tensor.SparseTensor( values=['Swahili', 'turkish'], indices=[[0, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[1], [1], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) classifier = linear.LinearClassifier(feature_columns=[language]) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.07) def testSdcaOptimizerRealValuedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and real valued features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'maintenance_cost': constant_op.constant([[500.0], [200.0]]), 'sq_footage': constant_op.constant([[800.0], [600.0]]), 'weights': constant_op.constant([[1.0], [1.0]]) }, constant_op.constant([[0], [1]]) maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[maintenance_cost, sq_footage], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerRealValuedFeatureWithHigherDimension(self): """Tests SDCAOptimizer with real valued features of higher dimension.""" # input_fn is identical to the one in testSdcaOptimizerRealValuedFeatures # where 2 1-dimensional dense features have been replaced by 1 2-dimensional # feature. def input_fn(): return { 'example_id': constant_op.constant(['1', '2']), 'dense_feature': constant_op.constant([[500.0, 800.0], [200.0, 600.0]]) }, constant_op.constant([[0], [1]]) dense_feature = feature_column_lib.real_valued_column( 'dense_feature', dimension=2) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[dense_feature], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=100) loss = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerBucketizedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and bucketized features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[600.0], [1000.0], [400.0]]), 'sq_footage': constant_op.constant([[1000.0], [600.0], [700.0]]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('price'), boundaries=[500.0, 700.0]) sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) classifier = linear.LinearClassifier( feature_columns=[price_bucket, sq_footage_bucket], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerSparseFeatures(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.4, 0.6, 0.3]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[1.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerWeightedSparseFeatures(self): """LinearClassifier with SDCAOptimizer and weighted sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': sparse_tensor.SparseTensor( values=[2., 3., 1.], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 5]) }, constant_op.constant([[1], [0], [1]]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_weighted_by_price = feature_column_lib.weighted_sparse_column( country, 'price') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_weighted_by_price], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerCrossedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and crossed features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'language': sparse_tensor.SparseTensor( values=['english', 'italian', 'spanish'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]), 'country': sparse_tensor.SparseTensor( values=['US', 'IT', 'MX'], indices=[[0, 0], [1, 0], [2, 0]], dense_shape=[3, 1]) }, constant_op.constant([[0], [0], [1]]) language = feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=5) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) country_language = feature_column_lib.crossed_column( [language, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[country_language], optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=10) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testSdcaOptimizerMixedFeatures(self): """Tests LinearClassifier with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.6], [0.8], [0.3]]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [1.0], [1.0]]) }, constant_op.constant([[1], [0], [1]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') classifier = linear.LinearClassifier( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) classifier.fit(input_fn=input_fn, steps=50) scores = classifier.evaluate(input_fn=input_fn, steps=1) self.assertGreater(scores['accuracy'], 0.9) def testEval(self): """Tests that eval produces correct metrics. """ def input_fn(): return { 'age': constant_op.constant([[1], [2]]), 'language': sparse_tensor.SparseTensor( values=['greek', 'chinese'], indices=[[0, 0], [1, 0]], dense_shape=[2, 1]), }, constant_op.constant([[1], [0]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearClassifier(feature_columns=[age, language]) # Evaluate on trained model classifier.fit(input_fn=input_fn, steps=100) classifier.evaluate(input_fn=input_fn, steps=1) # TODO(ispir): Enable accuracy check after resolving the randomness issue. # self.assertLess(evaluated_values['loss/mean'], 0.3) # self.assertGreater(evaluated_values['accuracy/mean'], .95) class LinearRegressorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearRegressor(feature_columns=cont_features), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearRegressor) def testRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') classifier = linear.LinearRegressor(feature_columns=[age, language]) classifier.fit(input_fn=input_fn, steps=100) loss1 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] classifier.fit(input_fn=input_fn, steps=200) loss2 = classifier.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testRegression_MatrixData(self): """Tests regression using matrix data as input.""" cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] regressor = linear.LinearRegressor( feature_columns=cont_features, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=test_data.iris_input_multiclass_fn, steps=100) scores = regressor.evaluate( input_fn=test_data.iris_input_multiclass_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testRegression_TensorData(self): """Tests regression using tensor data as input.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.2) def testLoss(self): """Tests loss calculation.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = {'x': array_ops.ones(shape=[4, 1], dtype=dtypes.float32),} return features, labels regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_train, steps=1) # Average square loss = (0.75^2 + 3*0.25^2) / 4 = 0.1875 self.assertAlmostEqual(0.1875, scores['loss'], delta=0.1) def testLossWithWeights(self): """Tests loss calculation with weights.""" def _input_fn_train(): # 4 rows with equal weight, one of them (y = x), three of them (y=Not(x)) # The algorithm should learn (y = 0.25). labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels def _input_fn_eval(): # 4 rows, with different weights. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[7.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # Weighted average square loss = (7*0.75^2 + 3*0.25^2) / 10 = 0.4125 self.assertAlmostEqual(0.4125, scores['loss'], delta=0.1) def testTrainWithWeights(self): """Tests training with given weight column.""" def _input_fn_train(): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) # First row has more weight than others. Model should fit (y=x) better # than (y=Not(x)) due to the relative higher weight of the first row. labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[100.], [3.], [2.], [2.]]) } return features, labels def _input_fn_eval(): # Create 4 rows (y = x) labels = constant_op.constant([[1.], [1.], [1.], [1.]]) features = { 'x': array_ops.ones( shape=[4, 1], dtype=dtypes.float32), 'w': constant_op.constant([[1.], [1.], [1.], [1.]]) } return features, labels regressor = linear.LinearRegressor( weight_column_name='w', feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn_train, steps=100) scores = regressor.evaluate(input_fn=_input_fn_eval, steps=1) # The model should learn (y = x) because of the weights, so the loss should # be close to zero. self.assertLess(scores['loss'], 0.1) def testPredict_AsIterableFalse(self): """Tests predict method with as_iterable=False.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predicted_scores = regressor.predict_scores( input_fn=_input_fn, as_iterable=False) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = regressor.predict(input_fn=_input_fn, as_iterable=False) self.assertAllClose(predicted_scores, predictions) def testPredict_AsIterable(self): """Tests predict method with as_iterable=True.""" labels = [1.0, 0., 0.2] def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant(labels, dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predicted_scores = list( regressor.predict_scores( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(labels, predicted_scores, atol=0.1) predictions = list( regressor.predict( input_fn=predict_input_fn, as_iterable=True)) self.assertAllClose(predicted_scores, predictions) def testCustomMetrics(self): """Tests custom evaluation metrics.""" def _input_fn(num_epochs=None): # Create 4 rows, one of them (y = x), three of them (y=Not(x)) labels = constant_op.constant([[1.], [0.], [0.], [0.]]) features = { 'x': input_lib.limit_epochs( array_ops.ones( shape=[4, 1], dtype=dtypes.float32), num_epochs=num_epochs) } return features, labels def _my_metric_op(predictions, labels): return math_ops.reduce_sum(math_ops.multiply(predictions, labels)) regressor = linear.LinearRegressor( feature_columns=[feature_column_lib.real_valued_column('x')], config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'my_error': MetricSpec( metric_fn=metric_ops.streaming_mean_squared_error, prediction_key='scores'), 'my_metric': MetricSpec( metric_fn=_my_metric_op, prediction_key='scores') }) self.assertIn('loss', set(scores.keys())) self.assertIn('my_error', set(scores.keys())) self.assertIn('my_metric', set(scores.keys())) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = np.array(list( regressor.predict_scores(input_fn=predict_input_fn))) self.assertAlmostEqual( _sklearn.mean_squared_error(np.array([1, 0, 0, 0]), predictions), scores['my_error']) # Tests the case where the prediction_key is not "scores". with self.assertRaisesRegexp(KeyError, 'bad_type'): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ 'bad_name': MetricSpec( metric_fn=metric_ops.streaming_auc, prediction_key='bad_type') }) # Tests the case where the 2nd element of the key is not "scores". with self.assertRaises(KeyError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('my_error', 'predictions'): metric_ops.streaming_mean_squared_error }) # Tests the case where the tuple of the key doesn't have 2 elements. with self.assertRaises(ValueError): regressor.evaluate( input_fn=_input_fn, steps=1, metrics={ ('bad_length_name', 'scores', 'bad_length'): metric_ops.streaming_mean_squared_error }) def testTrainSaveLoad(self): """Tests that insures you can save and reload a trained model.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] model_dir = tempfile.mkdtemp() regressor = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) predict_input_fn = functools.partial(_input_fn, num_epochs=1) predictions = list(regressor.predict_scores(input_fn=predict_input_fn)) del regressor regressor2 = linear.LinearRegressor( model_dir=model_dir, feature_columns=feature_columns) predictions2 = list(regressor2.predict_scores(input_fn=predict_input_fn)) self.assertAllClose(predictions, predictions2) def testTrainWithPartitionedVariables(self): """Tests training with partitioned variables.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ # The given hash_bucket_size results in variables larger than the # default min_slice_size attribute, so the variables are partitioned. feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=2e7), feature_column_lib.real_valued_column('age') ] tf_config = { 'cluster': { run_config.TaskType.PS: ['fake_ps_0', 'fake_ps_1'] } } with test.mock.patch.dict('os.environ', {'TF_CONFIG': json.dumps(tf_config)}): config = run_config.RunConfig(tf_random_seed=1) # Because we did not start a distributed cluster, we need to pass an # empty ClusterSpec, otherwise the device_setter will look for # distributed jobs, such as "/job:ps" which are not present. config._cluster_spec = server_lib.ClusterSpec({}) regressor = linear.LinearRegressor( feature_columns=feature_columns, config=config) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testDisableCenteredBias(self): """Tests that we can disable centered bias.""" def _input_fn(num_epochs=None): features = { 'age': input_lib.limit_epochs( constant_op.constant([[0.8], [0.15], [0.]]), num_epochs=num_epochs), 'language': sparse_tensor.SparseTensor( values=['en', 'fr', 'zh'], indices=[[0, 0], [0, 1], [2, 0]], dense_shape=[3, 2]) } return features, constant_op.constant( [1.0, 0., 0.2], dtype=dtypes.float32) feature_columns = [ feature_column_lib.sparse_column_with_hash_bucket( 'language', hash_bucket_size=20), feature_column_lib.real_valued_column('age') ] regressor = linear.LinearRegressor( feature_columns=feature_columns, enable_centered_bias=False, config=run_config.RunConfig(tf_random_seed=1)) regressor.fit(input_fn=_input_fn, steps=100) scores = regressor.evaluate(input_fn=_input_fn, steps=1) self.assertLess(scores['loss'], 0.1) def testRecoverWeights(self): rng = np.random.RandomState(67) n = 1000 n_weights = 10 bias = 2 x = rng.uniform(-1, 1, (n, n_weights)) weights = 10 * rng.randn(n_weights) y = np.dot(x, weights) y += rng.randn(len(x)) * 0.05 + rng.normal(bias, 0.01) feature_columns = estimator.infer_real_valued_columns_from_input(x) regressor = linear.LinearRegressor( feature_columns=feature_columns, optimizer=ftrl.FtrlOptimizer(learning_rate=0.8)) regressor.fit(x, y, batch_size=64, steps=2000) self.assertIn('linear//weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear//weight') # Have to flatten weights since they come in (x, 1) shape. self.assertAllClose(weights, regressor_weights.flatten(), rtol=1) # TODO(ispir): Disable centered_bias. # assert abs(bias - regressor.bias_) < 0.1 def testSdcaOptimizerRealValuedLinearFeatures(self): """Tests LinearRegressor with SDCAOptimizer and real valued features.""" x = [[1.2, 2.0, -1.5], [-2.0, 3.0, -0.5], [1.0, -0.5, 4.0]] weights = [[3.0], [-1.2], [0.5]] y = np.dot(x, weights) def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'x': constant_op.constant(x), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant(y) x_column = feature_column_lib.real_valued_column('x', dimension=3) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[x_column], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.01) self.assertIn('linear/x/weight', regressor.get_variable_names()) regressor_weights = regressor.get_variable_value('linear/x/weight') self.assertAllClose( [w[0] for w in weights], regressor_weights.flatten(), rtol=0.1) def testSdcaOptimizerMixedFeaturesArbitraryWeights(self): """Tests LinearRegressor with SDCAOptimizer and a mix of features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([0.6, 0.8, 0.3]), 'sq_footage': constant_op.constant([[900.0], [700.0], [600.0]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[3.0], [5.0], [7.0]]) }, constant_op.constant([[1.55], [-1.25], [-3.0]]) price = feature_column_lib.real_valued_column('price') sq_footage_bucket = feature_column_lib.bucketized_column( feature_column_lib.real_valued_column('sq_footage'), boundaries=[650.0, 800.0]) country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) sq_footage_country = feature_column_lib.crossed_column( [sq_footage_bucket, country], hash_bucket_size=10) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l2_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, sq_footage_bucket, country, sq_footage_country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss, 0.05) def testSdcaOptimizerSparseFeaturesWithL1Reg(self): """Tests LinearClassifier with SDCAOptimizer and sparse features.""" def input_fn(): return { 'example_id': constant_op.constant(['1', '2', '3']), 'price': constant_op.constant([[0.4], [0.6], [0.3]]), 'country': sparse_tensor.SparseTensor( values=['IT', 'US', 'GB'], indices=[[0, 0], [1, 3], [2, 1]], dense_shape=[3, 5]), 'weights': constant_op.constant([[10.0], [10.0], [10.0]]) }, constant_op.constant([[1.4], [-0.8], [2.6]]) price = feature_column_lib.real_valued_column('price') country = feature_column_lib.sparse_column_with_hash_bucket( 'country', hash_bucket_size=5) # Regressor with no L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) no_l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] variable_names = regressor.get_variable_names() self.assertIn('linear/price/weight', variable_names) self.assertIn('linear/country/weights', variable_names) no_l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Regressor with L1 regularization. sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id', symmetric_l1_regularization=1.0) regressor = linear.LinearRegressor( feature_columns=[price, country], weight_column_name='weights', optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=20) l1_reg_loss = regressor.evaluate(input_fn=input_fn, steps=1)['loss'] l1_reg_weights = { 'linear/price/weight': regressor.get_variable_value( 'linear/price/weight'), 'linear/country/weights': regressor.get_variable_value( 'linear/country/weights'), } # Unregularized loss is lower when there is no L1 regularization. self.assertLess(no_l1_reg_loss, l1_reg_loss) self.assertLess(no_l1_reg_loss, 0.05) # But weights returned by the regressor with L1 regularization have smaller # L1 norm. l1_reg_weights_norm, no_l1_reg_weights_norm = 0.0, 0.0 for var_name in sorted(l1_reg_weights): l1_reg_weights_norm += sum( np.absolute(l1_reg_weights[var_name].flatten())) no_l1_reg_weights_norm += sum( np.absolute(no_l1_reg_weights[var_name].flatten())) print('Var name: %s, value: %s' % (var_name, no_l1_reg_weights[var_name].flatten())) self.assertLess(l1_reg_weights_norm, no_l1_reg_weights_norm) def testSdcaOptimizerBiasOnly(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when it's the only feature present. All of the instances in this input only have the bias feature, and a 1/4 of the labels are positive. This means that the expected weight for the bias should be close to the average prediction, i.e 0.25. Returns: Training data for the test. """ num_examples = 40 return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), # place_holder is an empty column which is always 0 (absent), because # LinearClassifier requires at least one column. 'place_holder': constant_op.constant([[0.0]] * num_examples), }, constant_op.constant( [[1 if i % 4 is 0 else 0] for i in range(num_examples)]) place_holder = feature_column_lib.real_valued_column('place_holder') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[place_holder], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.25, err=0.1) def testSdcaOptimizerBiasAndOtherColumns(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.4 of all instances that have feature 'a' are positive, and 0.2 of all instances that have feature 'b' are positive. The labels in the dataset are ordered to appear shuffled since SDCA expects shuffled data, and converges faster with this pseudo-random ordering. If the bias was centered we would expect the weights to be: bias: 0.3 a: 0.1 b: -0.1 Until b/29339026 is resolved, the bias gets regularized with the same global value for the other columns, and so the expected weights get shifted and are: bias: 0.2 a: 0.2 b: 0.0 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant( [[x] for x in [1, 0, 0, 1, 1, 0, 0, 0, 1, 0] * int(half / 10) + [0, 1, 0, 0, 0, 0, 0, 0, 1, 0] * int(half / 10)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=200) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) # TODO(b/29339026): Change the expected results to expect a centered bias. self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.2, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], 0.0, err=0.05) def testSdcaOptimizerBiasAndOtherColumnsFabricatedCentered(self): """Tests LinearClassifier with SDCAOptimizer and validates bias weight.""" def input_fn(): """Testing the bias weight when there are other features present. 1/2 of the instances in this input have feature 'a', the rest have feature 'b', and we expect the bias to be added to each instance as well. 0.1 of all instances that have feature 'a' have a label of 1, and 0.1 of all instances that have feature 'b' have a label of -1. We can expect the weights to be: bias: 0.0 a: 0.1 b: -0.1 Returns: The test dataset. """ num_examples = 200 half = int(num_examples / 2) return { 'example_id': constant_op.constant([str(x + 1) for x in range(num_examples)]), 'a': constant_op.constant([[1]] * int(half) + [[0]] * int(half)), 'b': constant_op.constant([[0]] * int(half) + [[1]] * int(half)), }, constant_op.constant([[1 if x % 10 == 0 else 0] for x in range(half)] + [[-1 if x % 10 == 0 else 0] for x in range(half)]) sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') regressor = linear.LinearRegressor( feature_columns=[ feature_column_lib.real_valued_column('a'), feature_column_lib.real_valued_column('b') ], optimizer=sdca_optimizer) regressor.fit(input_fn=input_fn, steps=100) variable_names = regressor.get_variable_names() self.assertIn('linear/bias_weight', variable_names) self.assertIn('linear/a/weight', variable_names) self.assertIn('linear/b/weight', variable_names) self.assertNear( regressor.get_variable_value('linear/bias_weight')[0], 0.0, err=0.05) self.assertNear( regressor.get_variable_value('linear/a/weight')[0], 0.1, err=0.05) self.assertNear( regressor.get_variable_value('linear/b/weight')[0], -0.1, err=0.05) class LinearEstimatorTest(test.TestCase): def testExperimentIntegration(self): cont_features = [ feature_column_lib.real_valued_column( 'feature', dimension=4) ] exp = experiment.Experiment( estimator=linear.LinearEstimator(feature_columns=cont_features, head=head_lib.regression_head()), train_input_fn=test_data.iris_input_logistic_fn, eval_input_fn=test_data.iris_input_logistic_fn) exp.test() def testEstimatorContract(self): estimator_test_utils.assert_estimator_contract(self, linear.LinearEstimator) def testLinearRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator(feature_columns=[age, language], head=head_lib.regression_head()) linear_estimator.fit(input_fn=input_fn, steps=100) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=400) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) self.assertLess(loss2, 0.5) def testPoissonRegression(self): """Tests that loss goes down with training.""" def input_fn(): return { 'age': constant_op.constant([1]), 'language': sparse_tensor.SparseTensor( values=['english'], indices=[[0, 0]], dense_shape=[1, 1]) }, constant_op.constant([[10.]]) language = feature_column_lib.sparse_column_with_hash_bucket('language', 100) age = feature_column_lib.real_valued_column('age') linear_estimator = linear.LinearEstimator( feature_columns=[age, language], head=head_lib.poisson_regression_head()) linear_estimator.fit(input_fn=input_fn, steps=10) loss1 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] linear_estimator.fit(input_fn=input_fn, steps=100) loss2 = linear_estimator.evaluate(input_fn=input_fn, steps=1)['loss'] self.assertLess(loss2, loss1) # Here loss of 2.1 implies a prediction of ~9.9998 self.assertLess(loss2, 2.1) def testSDCANotSupported(self): """Tests that we detect error for SDCA.""" maintenance_cost = feature_column_lib.real_valued_column('maintenance_cost') sq_footage = feature_column_lib.real_valued_column('sq_footage') sdca_optimizer = sdca_optimizer_lib.SDCAOptimizer( example_id_column='example_id') with self.assertRaises(ValueError): linear.LinearEstimator( head=head_lib.regression_head(label_dimension=1), feature_columns=[maintenance_cost, sq_footage], optimizer=sdca_optimizer, _joint_weights=True) def boston_input_fn(): boston = base.load_boston() features = math_ops.cast( array_ops.reshape(constant_op.constant(boston.data), [-1, 13]), dtypes.float32) labels = math_ops.cast( array_ops.reshape(constant_op.constant(boston.target), [-1, 1]), dtypes.float32) return features, labels class FeatureColumnTest(test.TestCase): def testTrain(self): feature_columns = estimator.infer_real_valued_columns_from_input_fn( boston_input_fn) est = linear.LinearRegressor(feature_columns=feature_columns) est.fit(input_fn=boston_input_fn, steps=1) _ = est.evaluate(input_fn=boston_input_fn, steps=1) if __name__ == '__main__': test.main()
apache-2.0
stinebuu/nest-simulator
pynest/examples/spatial/grid_iaf_oc.py
12
1781
# -*- coding: utf-8 -*- # # grid_iaf_oc.py # # This file is part of NEST. # # Copyright (C) 2004 The NEST Initiative # # NEST is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # NEST is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with NEST. If not, see <http://www.gnu.org/licenses/>. """ Create three populations of iaf_psc_alpha neurons on a 4x3 grid, each with different center ------------------------------------------------------------------------------------------- BCCN Tutorial @ CNS*09 Hans Ekkehard Plesser, UMB """ import nest import matplotlib.pyplot as plt import numpy as np for ctr in [(0.0, 0.0), (-2.0, 2.0), (0.5, 1.0)]: plt.figure() nest.ResetKernel() l1 = nest.Create('iaf_psc_alpha', positions=nest.spatial.grid(shape=[4, 3], extent=[2., 1.5], center=ctr)) nest.PlotLayer(l1, nodesize=50, fig=plt.gcf()) # beautify plt.axis([-3, 3, -3, 3]) plt.axes().set_aspect('equal', 'box') plt.axes().set_xticks(np.arange(-3.0, 3.1, 1.0)) plt.axes().set_yticks(np.arange(-3.0, 3.1, 1.0)) plt.grid(True) plt.xlabel('4 Columns, Extent: 1.5, Center: %.1f' % ctr[0]) plt.ylabel('2 Rows, Extent: 1.0, Center: %.1f' % ctr[1]) plt.show() # plt.savefig('grid_iaf_oc_{}_{}.png'.format(ctr[0], ctr[1]))
gpl-2.0
amolkahat/pandas
doc/source/conf.py
5
21946
# -*- coding: utf-8 -*- # # pandas documentation build configuration file, created by # # This file is execfile()d with the current directory set to its containing # dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys import os import re import inspect import importlib import logging import warnings from sphinx.ext.autosummary import _import_by_name logger = logging.getLogger(__name__) try: raw_input # Python 2 except NameError: raw_input = input # Python 3 # https://github.com/sphinx-doc/sphinx/pull/2325/files # Workaround for sphinx-build recursion limit overflow: # pickle.dump(doctree, f, pickle.HIGHEST_PROTOCOL) # RuntimeError: maximum recursion depth exceeded while pickling an object # # Python's default allowed recursion depth is 1000. sys.setrecursionlimit(5000) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.append(os.path.abspath('.')) sys.path.insert(0, os.path.abspath('../sphinxext')) sys.path.extend([ # numpy standard doc extensions os.path.join(os.path.dirname(__file__), '..', '../..', 'sphinxext') ]) # numpydoc is available in the sphinxext directory, and can't be imported # until sphinxext is available in the Python path from numpydoc.docscrape import NumpyDocString # -- General configuration ----------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. # sphinxext. extensions = ['sphinx.ext.autodoc', 'sphinx.ext.autosummary', 'sphinx.ext.doctest', 'sphinx.ext.extlinks', 'sphinx.ext.todo', 'numpydoc', 'IPython.sphinxext.ipython_directive', 'IPython.sphinxext.ipython_console_highlighting', 'matplotlib.sphinxext.plot_directive', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.mathjax', 'sphinx.ext.ifconfig', 'sphinx.ext.linkcode', 'nbsphinx', ] try: import sphinxcontrib.spelling # noqa except ImportError as err: logger.warn(('sphinxcontrib.spelling failed to import with error "{}". ' '`spellcheck` command is not available.'.format(err))) else: extensions.append('sphinxcontrib.spelling') exclude_patterns = ['**.ipynb_checkpoints'] spelling_word_list_filename = ['spelling_wordlist.txt', 'names_wordlist.txt'] spelling_ignore_pypi_package_names = True with open("index.rst") as f: index_rst_lines = f.readlines() # only include the slow autosummary feature if we're building the API section # of the docs # JP: added from sphinxdocs autosummary_generate = False if any(re.match("\s*api\s*", l) for l in index_rst_lines): autosummary_generate = True # numpydoc # for now use old parameter listing (styling + **kwargs problem) numpydoc_use_blockquotes = True # use member listing for attributes numpydoc_attributes_as_param_list = False # matplotlib plot directive plot_include_source = True plot_formats = [("png", 90)] plot_html_show_formats = False plot_html_show_source_link = False plot_pre_code = """import numpy as np import pandas as pd""" # Add any paths that contain templates here, relative to this directory. templates_path = ['../_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. source_encoding = 'utf-8' # The master toctree document. master_doc = 'index' # General information about the project. project = u'pandas' copyright = u'2008-2014, the pandas development team' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. import pandas # version = '%s r%s' % (pandas.__version__, svn_version()) version = str(pandas.__version__) # The full version, including alpha/beta/rc tags. release = version # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: # today = '' # Else, today_fmt is used as the format for a strftime call. # today_fmt = '%B %d, %Y' # List of documents that shouldn't be included in the build. # unused_docs = [] # List of directories, relative to source directory, that shouldn't be searched # for source files. exclude_trees = [] # The reST default role (used for this markup: `text`) to use for all # documents. default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. # add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). # add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. # show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. # modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'nature_with_gtoc' # The style sheet to use for HTML and HTML Help pages. A file of that name # must exist either in Sphinx' static/ path, or in one of the custom paths # given in html_static_path. # html_style = 'statsmodels.css' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. html_theme_path = ['themes'] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". # html_title = None # A shorter title for the navigation bar. Default is the same as html_title. # html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. # html_logo = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = os.path.join(html_static_path[0], 'favicon.ico') # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. # html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. # html_use_smartypants = True # Custom sidebar templates, maps document names to template names. # html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. # Add redirect for previously existing API pages # each item is like `(from_old, to_new)` # To redirect a class and all its methods, see below # https://github.com/pandas-dev/pandas/issues/16186 moved_api_pages = [ ('pandas.core.common.isnull', 'pandas.isna'), ('pandas.core.common.notnull', 'pandas.notna'), ('pandas.core.reshape.get_dummies', 'pandas.get_dummies'), ('pandas.tools.merge.concat', 'pandas.concat'), ('pandas.tools.merge.merge', 'pandas.merge'), ('pandas.tools.pivot.pivot_table', 'pandas.pivot_table'), ('pandas.tseries.tools.to_datetime', 'pandas.to_datetime'), ('pandas.io.clipboard.read_clipboard', 'pandas.read_clipboard'), ('pandas.io.excel.ExcelFile.parse', 'pandas.ExcelFile.parse'), ('pandas.io.excel.read_excel', 'pandas.read_excel'), ('pandas.io.gbq.read_gbq', 'pandas.read_gbq'), ('pandas.io.html.read_html', 'pandas.read_html'), ('pandas.io.json.read_json', 'pandas.read_json'), ('pandas.io.parsers.read_csv', 'pandas.read_csv'), ('pandas.io.parsers.read_fwf', 'pandas.read_fwf'), ('pandas.io.parsers.read_table', 'pandas.read_table'), ('pandas.io.pickle.read_pickle', 'pandas.read_pickle'), ('pandas.io.pytables.HDFStore.append', 'pandas.HDFStore.append'), ('pandas.io.pytables.HDFStore.get', 'pandas.HDFStore.get'), ('pandas.io.pytables.HDFStore.put', 'pandas.HDFStore.put'), ('pandas.io.pytables.HDFStore.select', 'pandas.HDFStore.select'), ('pandas.io.pytables.read_hdf', 'pandas.read_hdf'), ('pandas.io.sql.read_sql', 'pandas.read_sql'), ('pandas.io.sql.read_frame', 'pandas.read_frame'), ('pandas.io.sql.write_frame', 'pandas.write_frame'), ('pandas.io.stata.read_stata', 'pandas.read_stata'), ] # Again, tuples of (from_old, to_new) moved_classes = [ ('pandas.tseries.resample.Resampler', 'pandas.core.resample.Resampler'), ('pandas.formats.style.Styler', 'pandas.io.formats.style.Styler'), ] for old, new in moved_classes: # the class itself... moved_api_pages.append((old, new)) mod, classname = new.rsplit('.', 1) klass = getattr(importlib.import_module(mod), classname) methods = [x for x in dir(klass) if not x.startswith('_') or x in ('__iter__', '__array__')] for method in methods: # ... and each of its public methods moved_api_pages.append( ("{old}.{method}".format(old=old, method=method), "{new}.{method}".format(new=new, method=method)) ) html_additional_pages = { 'generated/' + page[0]: 'api_redirect.html' for page in moved_api_pages } html_context = { 'redirects': {old: new for old, new in moved_api_pages} } # If false, no module index is generated. html_use_modindex = True # If false, no index is generated. # html_use_index = True # If true, the index is split into individual pages for each letter. # html_split_index = False # If true, links to the reST sources are added to the pages. # html_show_sourcelink = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. # html_use_opensearch = '' # If nonempty, this is the file name suffix for HTML files (e.g. ".xhtml"). # html_file_suffix = '' # Output file base name for HTML help builder. htmlhelp_basename = 'pandas' # -- Options for nbsphinx ------------------------------------------------ nbsphinx_allow_errors = True # -- Options for LaTeX output -------------------------------------------- # The paper size ('letter' or 'a4'). # latex_paper_size = 'letter' # The font size ('10pt', '11pt' or '12pt'). # latex_font_size = '10pt' # Grouping the document tree into LaTeX files. List of tuples (source start # file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'pandas.tex', u'pandas: powerful Python data analysis toolkit', u'Wes McKinney\n\& PyData Development Team', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. # latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. # latex_use_parts = False # Additional stuff for the LaTeX preamble. # latex_preamble = '' # Documents to append as an appendix to all manuals. # latex_appendices = [] # If false, no module index is generated. # latex_use_modindex = True intersphinx_mapping = { 'statsmodels': ('http://www.statsmodels.org/devel/', None), 'matplotlib': ('http://matplotlib.org/', None), 'pandas-gbq': ('https://pandas-gbq.readthedocs.io/en/latest/', None), 'python': ('https://docs.python.org/3/', None), 'numpy': ('https://docs.scipy.org/doc/numpy/', None), 'scipy': ('https://docs.scipy.org/doc/scipy/reference/', None), 'py': ('https://pylib.readthedocs.io/en/latest/', None) } import glob autosummary_generate = glob.glob("*.rst") # extlinks alias extlinks = {'issue': ('https://github.com/pandas-dev/pandas/issues/%s', 'GH'), 'wiki': ('https://github.com/pandas-dev/pandas/wiki/%s', 'wiki ')} # ignore all deprecation warnings from Panel during doc build # (to avoid the need to add :okwarning: in many places) warnings.filterwarnings("ignore", message="\nPanel is deprecated", category=FutureWarning) ipython_exec_lines = [ 'import numpy as np', 'import pandas as pd', # This ensures correct rendering on system with console encoding != utf8 # (windows). It forces pandas to encode its output reprs using utf8 # wherever the docs are built. The docs' target is the browser, not # the console, so this is fine. 'pd.options.display.encoding="utf8"' ] # Add custom Documenter to handle attributes/methods of an AccessorProperty # eg pandas.Series.str and pandas.Series.dt (see GH9322) import sphinx from sphinx.util import rpartition from sphinx.ext.autodoc import ( Documenter, MethodDocumenter, AttributeDocumenter) from sphinx.ext.autosummary import Autosummary class AccessorDocumenter(MethodDocumenter): """ Specialized Documenter subclass for accessors. """ objtype = 'accessor' directivetype = 'method' # lower than MethodDocumenter so this is not chosen for normal methods priority = 0.6 def format_signature(self): # this method gives an error/warning for the accessors, therefore # overriding it (accessor has no arguments) return '' class AccessorLevelDocumenter(Documenter): """ Specialized Documenter subclass for objects on accessor level (methods, attributes). """ # This is the simple straightforward version # modname is None, base the last elements (eg 'hour') # and path the part before (eg 'Series.dt') # def resolve_name(self, modname, parents, path, base): # modname = 'pandas' # mod_cls = path.rstrip('.') # mod_cls = mod_cls.split('.') # # return modname, mod_cls + [base] def resolve_name(self, modname, parents, path, base): if modname is None: if path: mod_cls = path.rstrip('.') else: mod_cls = None # if documenting a class-level object without path, # there must be a current class, either from a parent # auto directive ... mod_cls = self.env.temp_data.get('autodoc:class') # ... or from a class directive if mod_cls is None: mod_cls = self.env.temp_data.get('py:class') # ... if still None, there's no way to know if mod_cls is None: return None, [] # HACK: this is added in comparison to ClassLevelDocumenter # mod_cls still exists of class.accessor, so an extra # rpartition is needed modname, accessor = rpartition(mod_cls, '.') modname, cls = rpartition(modname, '.') parents = [cls, accessor] # if the module name is still missing, get it like above if not modname: modname = self.env.temp_data.get('autodoc:module') if not modname: if sphinx.__version__ > '1.3': modname = self.env.ref_context.get('py:module') else: modname = self.env.temp_data.get('py:module') # ... else, it stays None, which means invalid return modname, parents + [base] class AccessorAttributeDocumenter(AccessorLevelDocumenter, AttributeDocumenter): objtype = 'accessorattribute' directivetype = 'attribute' # lower than AttributeDocumenter so this is not chosen for normal # attributes priority = 0.6 class AccessorMethodDocumenter(AccessorLevelDocumenter, MethodDocumenter): objtype = 'accessormethod' directivetype = 'method' # lower than MethodDocumenter so this is not chosen for normal methods priority = 0.6 class AccessorCallableDocumenter(AccessorLevelDocumenter, MethodDocumenter): """ This documenter lets us removes .__call__ from the method signature for callable accessors like Series.plot """ objtype = 'accessorcallable' directivetype = 'method' # lower than MethodDocumenter; otherwise the doc build prints warnings priority = 0.5 def format_name(self): return MethodDocumenter.format_name(self).rstrip('.__call__') class PandasAutosummary(Autosummary): """ This alternative autosummary class lets us override the table summary for Series.plot and DataFrame.plot in the API docs. """ def _replace_pandas_items(self, display_name, sig, summary, real_name): # this a hack: ideally we should extract the signature from the # .__call__ method instead of hard coding this if display_name == 'DataFrame.plot': sig = '([x, y, kind, ax, ....])' summary = 'DataFrame plotting accessor and method' elif display_name == 'Series.plot': sig = '([kind, ax, figsize, ....])' summary = 'Series plotting accessor and method' return (display_name, sig, summary, real_name) @staticmethod def _is_deprecated(real_name): try: obj, parent, modname = _import_by_name(real_name) except ImportError: return False doc = NumpyDocString(obj.__doc__ or '') summary = ''.join(doc['Summary'] + doc['Extended Summary']) return '.. deprecated::' in summary def _add_deprecation_prefixes(self, items): for item in items: display_name, sig, summary, real_name = item if self._is_deprecated(real_name): summary = '(DEPRECATED) %s' % summary yield display_name, sig, summary, real_name def get_items(self, names): items = Autosummary.get_items(self, names) items = [self._replace_pandas_items(*item) for item in items] items = list(self._add_deprecation_prefixes(items)) return items # based on numpy doc/source/conf.py def linkcode_resolve(domain, info): """ Determine the URL corresponding to Python object """ if domain != 'py': return None modname = info['module'] fullname = info['fullname'] submod = sys.modules.get(modname) if submod is None: return None obj = submod for part in fullname.split('.'): try: obj = getattr(obj, part) except: return None try: fn = inspect.getsourcefile(obj) except: fn = None if not fn: return None try: source, lineno = inspect.getsourcelines(obj) except: lineno = None if lineno: linespec = "#L{:d}-L{:d}".format(lineno, lineno + len(source) - 1) else: linespec = "" fn = os.path.relpath(fn, start=os.path.dirname(pandas.__file__)) if '+' in pandas.__version__: return ("http://github.com/pandas-dev/pandas/blob/master/pandas/" "{}{}".format(fn, linespec)) else: return ("http://github.com/pandas-dev/pandas/blob/" "v{}/pandas/{}{}".format(pandas.__version__, fn, linespec)) # remove the docstring of the flags attribute (inherited from numpy ndarray) # because these give doc build errors (see GH issue 5331) def remove_flags_docstring(app, what, name, obj, options, lines): if what == "attribute" and name.endswith(".flags"): del lines[:] def process_class_docstrings(app, what, name, obj, options, lines): """ For those classes for which we use :: :template: autosummary/class_without_autosummary.rst the documented attributes/methods have to be listed in the class docstring. However, if one of those lists is empty, we use 'None', which then generates warnings in sphinx / ugly html output. This "autodoc-process-docstring" event connector removes that part from the processed docstring. """ if what == "class": joined = '\n'.join(lines) templates = [ """.. rubric:: Attributes .. autosummary:: :toctree: None """, """.. rubric:: Methods .. autosummary:: :toctree: None """ ] for template in templates: if template in joined: joined = joined.replace(template, '') lines[:] = joined.split('\n') suppress_warnings = [ # We "overwrite" autosummary with our PandasAutosummary, but # still want the regular autosummary setup to run. So we just # suppress this warning. 'app.add_directive' ] def setup(app): app.connect("autodoc-process-docstring", remove_flags_docstring) app.connect("autodoc-process-docstring", process_class_docstrings) app.add_autodocumenter(AccessorDocumenter) app.add_autodocumenter(AccessorAttributeDocumenter) app.add_autodocumenter(AccessorMethodDocumenter) app.add_autodocumenter(AccessorCallableDocumenter) app.add_directive('autosummary', PandasAutosummary)
bsd-3-clause
tardis-sn/tardis
tardis/plasma/properties/ion_population.py
1
19794
import logging import warnings import sys import numpy as np import pandas as pd import numexpr as ne from scipy import interpolate from tardis.plasma.properties.base import ProcessingPlasmaProperty from tardis.plasma.properties.continuum_processes import get_ion_multi_index from tardis.plasma.exceptions import PlasmaIonizationError logger = logging.getLogger(__name__) __all__ = [ "PhiSahaNebular", "PhiSahaLTE", "RadiationFieldCorrection", "IonNumberDensity", "IonNumberDensityHeNLTE", "SahaFactor", "ThermalPhiSahaLTE", ] def calculate_block_ids_from_dataframe(dataframe): block_start_id = ( np.where(np.diff(dataframe.index.get_level_values(0)) != 0.0)[0] + 1 ) return np.hstack(([0], block_start_id, [len(dataframe)])) class PhiSahaLTE(ProcessingPlasmaProperty): """ Attributes ---------- phi : pandas.DataFrame, dtype float Used for LTE ionization (at the radiation temperature). Indexed by atomic number, ion number. Columns are zones. """ outputs = ("phi",) latex_name = (r"\Phi",) latex_formula = ( r"\dfrac{2Z_{i,j+1}}{Z_{i,j}}\Big(\ dfrac{2\pi m_{e}/\beta_{\textrm{rad}}}{h^2}\ Big)^{3/2}e^{\dfrac{-\chi_{i,j}}{kT_{\textrm{rad}}}}", ) broadcast_ionization_energy = None @staticmethod def calculate(g_electron, beta_rad, partition_function, ionization_data): phis = np.empty( ( partition_function.shape[0] - partition_function.index.get_level_values(0).unique().size, partition_function.shape[1], ) ) block_ids = calculate_block_ids_from_dataframe(partition_function) for i, start_id in enumerate(block_ids[:-1]): end_id = block_ids[i + 1] current_block = partition_function.values[start_id:end_id] current_phis = current_block[1:] / current_block[:-1] phis[start_id - i : end_id - i - 1] = current_phis broadcast_ionization_energy = ionization_data[ partition_function.index ].dropna() phi_index = broadcast_ionization_energy.index broadcast_ionization_energy = broadcast_ionization_energy.values phi_coefficient = ( 2 * g_electron * np.exp(np.outer(broadcast_ionization_energy, -beta_rad)) ) return pd.DataFrame(phis * phi_coefficient, index=phi_index) @staticmethod def _calculate_block_ids(partition_function): partition_function.index.get_level_values(0).unique() class ThermalPhiSahaLTE(PhiSahaLTE): """ Attributes ---------- phi : pandas.DataFrame, dtype float Used for LTE ionization (at the electron temperature). Indexed by atomic number, ion number. Columns are zones. """ outputs = ("thermal_phi_lte",) latex_name = (r"\Phi^{*}(T_\mathrm{e})",) latex_formula = ( r"\dfrac{2Z_{i,j+1}}{Z_{i,j}}\Big(\ dfrac{2\pi m_{e}/\beta_{\textrm{electron}}}{h^2}\ Big)^{3/2}e^{\dfrac{-\chi_{i,j}}{kT_{\textrm{electron}}}}", ) @staticmethod def calculate( thermal_g_electron, beta_electron, thermal_lte_partition_function, ionization_data, ): return super(ThermalPhiSahaLTE, ThermalPhiSahaLTE).calculate( thermal_g_electron, beta_electron, thermal_lte_partition_function, ionization_data, ) class PhiSahaNebular(ProcessingPlasmaProperty): """ Attributes ---------- phi : pandas.DataFrame, dtype float Used for nebular ionization. Indexed by atomic number, ion number. Columns are zones. """ outputs = ("phi",) latex_name = (r"\Phi",) latex_formula = ( r"W(\delta\zeta_{i,j}+W(1-\zeta_{i,j}))\left(\ dfrac{T_{\textrm{electron}}}{T_{\textrm{rad}}}\right)^{1/2}", ) @staticmethod def calculate( t_rad, w, zeta_data, t_electrons, delta, g_electron, beta_rad, partition_function, ionization_data, ): phi_lte = PhiSahaLTE.calculate( g_electron, beta_rad, partition_function, ionization_data ) zeta = PhiSahaNebular.get_zeta_values(zeta_data, phi_lte.index, t_rad) phis = ( phi_lte * w * ((zeta * delta) + w * (1 - zeta)) * (t_electrons / t_rad) ** 0.5 ) return phis @staticmethod def get_zeta_values(zeta_data, ion_index, t_rad): zeta_t_rad = zeta_data.columns.values.astype(np.float64) zeta_values = zeta_data.loc[ion_index].values.astype(np.float64) zeta = interpolate.interp1d( zeta_t_rad, zeta_values, bounds_error=False, fill_value=np.nan )(t_rad) zeta = zeta.astype(float) if np.any(np.isnan(zeta)): warnings.warn( f"t_rads outside of zeta factor interpolation" f" zeta_min={zeta_data.columns.values.min():.2f} zeta_max={zeta_data.columns.values.max():.2f} " f"- replacing with {t_rad}" ) zeta[np.isnan(zeta)] = 1.0 return zeta class RadiationFieldCorrection(ProcessingPlasmaProperty): """ Attributes ---------- delta : pandas.DataFrame, dtype float Calculates the radiation field correction (see Mazzali & Lucy, 1993) if not given as input in the config. file. The default chi_0_species is Ca II, which is good for type Ia supernovae. For type II supernovae, (1, 1) should be used. Indexed by atomic number, ion number. The columns are zones. """ outputs = ("delta",) latex_name = (r"\delta",) def __init__( self, plasma_parent=None, departure_coefficient=None, chi_0_species=(20, 2), delta_treatment=None, ): super(RadiationFieldCorrection, self).__init__(plasma_parent) self.departure_coefficient = departure_coefficient self.delta_treatment = delta_treatment self.chi_0_species = chi_0_species def _set_chi_0(self, ionization_data): if self.chi_0_species == (20, 2): self.chi_0 = 1.9020591570241798e-11 else: self.chi_0 = ionization_data.loc[self.chi_0_species] def calculate( self, w, ionization_data, beta_rad, t_electrons, t_rad, beta_electron ): if getattr(self, "chi_0", None) is None: self._set_chi_0(ionization_data) if self.delta_treatment is None: if self.departure_coefficient is None: departure_coefficient = 1.0 / w else: departure_coefficient = self.departure_coefficient radiation_field_correction = -np.ones( (len(ionization_data), len(beta_rad)) ) less_than_chi_0 = (ionization_data < self.chi_0).values factor_a = t_electrons / (departure_coefficient * w * t_rad) radiation_field_correction[~less_than_chi_0] = factor_a * np.exp( np.outer( ionization_data.values[~less_than_chi_0], beta_rad - beta_electron, ) ) radiation_field_correction[less_than_chi_0] = 1 - np.exp( np.outer(ionization_data.values[less_than_chi_0], beta_rad) - beta_rad * self.chi_0 ) radiation_field_correction[less_than_chi_0] += factor_a * np.exp( np.outer(ionization_data.values[less_than_chi_0], beta_rad) - self.chi_0 * beta_electron ) else: radiation_field_correction = ( np.ones((len(ionization_data), len(beta_rad))) * self.delta_treatment ) delta = pd.DataFrame( radiation_field_correction, columns=np.arange(len(t_rad)), index=ionization_data.index, ) return delta class IonNumberDensity(ProcessingPlasmaProperty): """ Convergence process to find the correct solution. A trial value for the electron density is initiated in a particular zone. The ion number densities are then calculated using the Saha equation. The electron density is then re-calculated by using the ion number densities to sum over the number of free electrons. If the two values for the electron densities are not similar to within the threshold value, a new guess for the value of the electron density is chosen and the process is repeated. Attributes ---------- ion_number_density : pandas.DataFrame, dtype float Index atom number, ion number. Columns zones. electron_densities : numpy.ndarray, dtype float """ outputs = ("ion_number_density", "electron_densities") latex_name = ( "N_{i,j}", "n_{e}", ) def __init__( self, plasma_parent, ion_zero_threshold=1e-20, electron_densities=None ): super(IonNumberDensity, self).__init__(plasma_parent) self.ion_zero_threshold = ion_zero_threshold self.block_ids = None self._electron_densities = electron_densities @staticmethod def calculate_with_n_electron( phi, partition_function, number_density, n_electron, block_ids, ion_zero_threshold, ): if block_ids is None: block_ids = IonNumberDensity._calculate_block_ids(phi) ion_populations = np.empty_like(partition_function.values) phi_electron = np.nan_to_num(phi.values / n_electron.values) for i, start_id in enumerate(block_ids[:-1]): end_id = block_ids[i + 1] current_phis = phi_electron[start_id:end_id] phis_product = np.cumprod(current_phis, 0) tmp_ion_populations = np.empty( (current_phis.shape[0] + 1, current_phis.shape[1]) ) tmp_ion_populations[0] = number_density.values[i] / ( 1 + np.sum(phis_product, axis=0) ) tmp_ion_populations[1:] = tmp_ion_populations[0] * phis_product ion_populations[start_id + i : end_id + 1 + i] = tmp_ion_populations ion_populations[ion_populations < ion_zero_threshold] = 0.0 return ( pd.DataFrame(data=ion_populations, index=partition_function.index), block_ids, ) @staticmethod def _calculate_block_ids(phi): return calculate_block_ids_from_dataframe(phi) def calculate(self, phi, partition_function, number_density): if self._electron_densities is None: n_e_convergence_threshold = 0.05 n_electron = number_density.sum(axis=0) n_electron_iterations = 0 while True: ( ion_number_density, self.block_ids, ) = self.calculate_with_n_electron( phi, partition_function, number_density, n_electron, self.block_ids, self.ion_zero_threshold, ) ion_numbers = ion_number_density.index.get_level_values( 1 ).values ion_numbers = ion_numbers.reshape((ion_numbers.shape[0], 1)) new_n_electron = (ion_number_density.values * ion_numbers).sum( axis=0 ) if np.any(np.isnan(new_n_electron)): raise PlasmaIonizationError( 'n_electron just turned "nan" -' " aborting" ) n_electron_iterations += 1 if n_electron_iterations > 100: logger.warn( f"n_electron iterations above 100 ({n_electron_iterations}) -" f" something is probably wrong" ) if np.all( np.abs(new_n_electron - n_electron) / n_electron < n_e_convergence_threshold ): break n_electron = 0.5 * (new_n_electron + n_electron) else: n_electron = self._electron_densities ion_number_density, self.block_ids = self.calculate_with_n_electron( phi, partition_function, number_density, n_electron, self.block_ids, self.ion_zero_threshold, ) return ion_number_density, n_electron class IonNumberDensityHeNLTE(ProcessingPlasmaProperty): """ Convergence process to find the correct solution. A trial value for the electron density is initiated in a particular zone. The ion number densities are then calculated using the Saha equation. The electron density is then re-calculated by using the ion number densities to sum over the number of free electrons. If the two values for the electron densities are not similar to within the threshold value, a new guess for the value of the electron density is chosen and the process is repeated. Attributes ---------- ion_number_density : pandas.DataFrame, dtype float Index atom number, ion number. Columns zones. electron_densities : numpy.ndarray, dtype float """ outputs = ( "ion_number_density", "electron_densities", "helium_population_updated", ) latex_name = ( "N_{i,j}", "n_{e}", ) def __init__( self, plasma_parent, ion_zero_threshold=1e-20, electron_densities=None ): super(IonNumberDensityHeNLTE, self).__init__(plasma_parent) self.ion_zero_threshold = ion_zero_threshold self.block_ids = None self._electron_densities = electron_densities def update_he_population( self, helium_population, n_electron, number_density ): helium_population_updated = helium_population.copy() he_one_population = helium_population_updated.loc[0].mul(n_electron) he_three_population = helium_population_updated.loc[2].mul( 1.0 / n_electron ) helium_population_updated.loc[0].update(he_one_population) helium_population_updated.loc[2].update(he_three_population) unnormalised = helium_population_updated.sum() normalised = helium_population_updated.mul( number_density.loc[2] / unnormalised ) helium_population_updated.update(normalised) return helium_population_updated def calculate( self, phi, partition_function, number_density, helium_population ): if self._electron_densities is None: n_e_convergence_threshold = 0.05 n_electron = number_density.sum(axis=0) n_electron_iterations = 0 while True: ( ion_number_density, self.block_ids, ) = IonNumberDensity.calculate_with_n_electron( phi, partition_function, number_density, n_electron, self.block_ids, self.ion_zero_threshold, ) helium_population_updated = self.update_he_population( helium_population, n_electron, number_density ) ion_number_density.loc[2, 0].update( helium_population_updated.loc[0].sum(axis=0) ) ion_number_density.loc[2, 1].update( helium_population_updated.loc[1].sum(axis=0) ) ion_number_density.loc[2, 2].update( helium_population_updated.loc[2, 0] ) ion_numbers = ion_number_density.index.get_level_values( 1 ).values ion_numbers = ion_numbers.reshape((ion_numbers.shape[0], 1)) new_n_electron = (ion_number_density.values * ion_numbers).sum( axis=0 ) if np.any(np.isnan(new_n_electron)): raise PlasmaIonizationError( 'n_electron just turned "nan" -' " aborting" ) n_electron_iterations += 1 if n_electron_iterations > 100: logger.warn( f"n_electron iterations above 100 ({n_electron_iterations}) -" f" something is probably wrong" ) if np.all( np.abs(new_n_electron - n_electron) / n_electron < n_e_convergence_threshold ): break n_electron = 0.5 * (new_n_electron + n_electron) else: n_electron = self._electron_densities ( ion_number_density, self.block_ids, ) = IonNumberDensity.calculate_with_n_electron( phi, partition_function, number_density, n_electron, self.block_ids, self.ion_zero_threshold, ) helium_population_updated = self.update_he_population( helium_population, n_electron, number_density ) ion_number_density.loc[2, 0].update( helium_population_updated.loc[0].sum(axis=0) ) ion_number_density.loc[2, 1].update( helium_population_updated.loc[1].sum(axis=0) ) ion_number_density.loc[2, 2].update( helium_population_updated.loc[2, 0] ) return ion_number_density, n_electron, helium_population_updated class SahaFactor(ProcessingPlasmaProperty): """ Calculates the 'Saha factor' Phi_ik = n_i* / (n_k* n_e), i.e., the ratio of the LTE level population n_i*, and the product of the LTE ion density n_k* and the actual electron density n_e. Attributes ---------- phi_ik : pandas.DataFrame, dtype float Indexed by atom number, ion number, level number. Columns are zones. """ outputs = ("phi_ik",) latex_name = (r"\Phi_{i,\kappa}",) def calculate( self, thermal_phi_lte, thermal_lte_level_boltzmann_factor, thermal_lte_partition_function, ): boltzmann_factor = self._prepare_boltzmann_factor( thermal_lte_level_boltzmann_factor ) phi_saha_index = get_ion_multi_index(boltzmann_factor.index) partition_function_index = get_ion_multi_index( boltzmann_factor.index, next_higher=False ) phi_saha = thermal_phi_lte.loc[phi_saha_index].values # Replace zero values in phi_saha to avoid zero division in Saha factor phi_saha[phi_saha == 0.0] = sys.float_info.min partition_function = thermal_lte_partition_function.loc[ partition_function_index ].values return boltzmann_factor / (phi_saha * partition_function) @staticmethod def _prepare_boltzmann_factor(boltzmann_factor): atomic_number = boltzmann_factor.index.get_level_values(0) ion_number = boltzmann_factor.index.get_level_values(1) selected_ions_mask = atomic_number != ion_number return boltzmann_factor[selected_ions_mask]
bsd-3-clause
alexeyum/scikit-learn
examples/ensemble/plot_feature_transformation.py
115
4327
""" =============================================== Feature transformations with ensembles of trees =============================================== Transform your features into a higher dimensional, sparse space. Then train a linear model on these features. First fit an ensemble of trees (totally random trees, a random forest, or gradient boosted trees) on the training set. Then each leaf of each tree in the ensemble is assigned a fixed arbitrary feature index in a new feature space. These leaf indices are then encoded in a one-hot fashion. Each sample goes through the decisions of each tree of the ensemble and ends up in one leaf per tree. The sample is encoded by setting feature values for these leaves to 1 and the other feature values to 0. The resulting transformer has then learned a supervised, sparse, high-dimensional categorical embedding of the data. """ # Author: Tim Head <[email protected]> # # License: BSD 3 clause import numpy as np np.random.seed(10) import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from sklearn.ensemble import (RandomTreesEmbedding, RandomForestClassifier, GradientBoostingClassifier) from sklearn.preprocessing import OneHotEncoder from sklearn.model_selection import train_test_split from sklearn.metrics import roc_curve from sklearn.pipeline import make_pipeline n_estimator = 10 X, y = make_classification(n_samples=80000) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5) # It is important to train the ensemble of trees on a different subset # of the training data than the linear regression model to avoid # overfitting, in particular if the total number of leaves is # similar to the number of training samples X_train, X_train_lr, y_train, y_train_lr = train_test_split(X_train, y_train, test_size=0.5) # Unsupervised transformation based on totally random trees rt = RandomTreesEmbedding(max_depth=3, n_estimators=n_estimator, random_state=0) rt_lm = LogisticRegression() pipeline = make_pipeline(rt, rt_lm) pipeline.fit(X_train, y_train) y_pred_rt = pipeline.predict_proba(X_test)[:, 1] fpr_rt_lm, tpr_rt_lm, _ = roc_curve(y_test, y_pred_rt) # Supervised transformation based on random forests rf = RandomForestClassifier(max_depth=3, n_estimators=n_estimator) rf_enc = OneHotEncoder() rf_lm = LogisticRegression() rf.fit(X_train, y_train) rf_enc.fit(rf.apply(X_train)) rf_lm.fit(rf_enc.transform(rf.apply(X_train_lr)), y_train_lr) y_pred_rf_lm = rf_lm.predict_proba(rf_enc.transform(rf.apply(X_test)))[:, 1] fpr_rf_lm, tpr_rf_lm, _ = roc_curve(y_test, y_pred_rf_lm) grd = GradientBoostingClassifier(n_estimators=n_estimator) grd_enc = OneHotEncoder() grd_lm = LogisticRegression() grd.fit(X_train, y_train) grd_enc.fit(grd.apply(X_train)[:, :, 0]) grd_lm.fit(grd_enc.transform(grd.apply(X_train_lr)[:, :, 0]), y_train_lr) y_pred_grd_lm = grd_lm.predict_proba( grd_enc.transform(grd.apply(X_test)[:, :, 0]))[:, 1] fpr_grd_lm, tpr_grd_lm, _ = roc_curve(y_test, y_pred_grd_lm) # The gradient boosted model by itself y_pred_grd = grd.predict_proba(X_test)[:, 1] fpr_grd, tpr_grd, _ = roc_curve(y_test, y_pred_grd) # The random forest model by itself y_pred_rf = rf.predict_proba(X_test)[:, 1] fpr_rf, tpr_rf, _ = roc_curve(y_test, y_pred_rf) plt.figure(1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR') plt.plot(fpr_rf, tpr_rf, label='RF') plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR') plt.plot(fpr_grd, tpr_grd, label='GBT') plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.legend(loc='best') plt.show() plt.figure(2) plt.xlim(0, 0.2) plt.ylim(0.8, 1) plt.plot([0, 1], [0, 1], 'k--') plt.plot(fpr_rt_lm, tpr_rt_lm, label='RT + LR') plt.plot(fpr_rf, tpr_rf, label='RF') plt.plot(fpr_rf_lm, tpr_rf_lm, label='RF + LR') plt.plot(fpr_grd, tpr_grd, label='GBT') plt.plot(fpr_grd_lm, tpr_grd_lm, label='GBT + LR') plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve (zoomed in at top left)') plt.legend(loc='best') plt.show()
bsd-3-clause
aewhatley/scikit-learn
examples/text/document_classification_20newsgroups.py
222
10500
""" ====================================================== Classification of text documents using sparse features ====================================================== This is an example showing how scikit-learn can be used to classify documents by topics using a bag-of-words approach. This example uses a scipy.sparse matrix to store the features and demonstrates various classifiers that can efficiently handle sparse matrices. The dataset used in this example is the 20 newsgroups dataset. It will be automatically downloaded, then cached. The bar plot indicates the accuracy, training time (normalized) and test time (normalized) of each classifier. """ # Author: Peter Prettenhofer <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # Lars Buitinck <[email protected]> # License: BSD 3 clause from __future__ import print_function import logging import numpy as np from optparse import OptionParser import sys from time import time import matplotlib.pyplot as plt from sklearn.datasets import fetch_20newsgroups from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_selection import SelectKBest, chi2 from sklearn.linear_model import RidgeClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.linear_model import SGDClassifier from sklearn.linear_model import Perceptron from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.naive_bayes import BernoulliNB, MultinomialNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neighbors import NearestCentroid from sklearn.ensemble import RandomForestClassifier from sklearn.utils.extmath import density from sklearn import metrics # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') # parse commandline arguments op = OptionParser() op.add_option("--report", action="store_true", dest="print_report", help="Print a detailed classification report.") op.add_option("--chi2_select", action="store", type="int", dest="select_chi2", help="Select some number of features using a chi-squared test") op.add_option("--confusion_matrix", action="store_true", dest="print_cm", help="Print the confusion matrix.") op.add_option("--top10", action="store_true", dest="print_top10", help="Print ten most discriminative terms per class" " for every classifier.") op.add_option("--all_categories", action="store_true", dest="all_categories", help="Whether to use all categories or not.") op.add_option("--use_hashing", action="store_true", help="Use a hashing vectorizer.") op.add_option("--n_features", action="store", type=int, default=2 ** 16, help="n_features when using the hashing vectorizer.") op.add_option("--filtered", action="store_true", help="Remove newsgroup information that is easily overfit: " "headers, signatures, and quoting.") (opts, args) = op.parse_args() if len(args) > 0: op.error("this script takes no arguments.") sys.exit(1) print(__doc__) op.print_help() print() ############################################################################### # Load some categories from the training set if opts.all_categories: categories = None else: categories = [ 'alt.atheism', 'talk.religion.misc', 'comp.graphics', 'sci.space', ] if opts.filtered: remove = ('headers', 'footers', 'quotes') else: remove = () print("Loading 20 newsgroups dataset for categories:") print(categories if categories else "all") data_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42, remove=remove) data_test = fetch_20newsgroups(subset='test', categories=categories, shuffle=True, random_state=42, remove=remove) print('data loaded') categories = data_train.target_names # for case categories == None def size_mb(docs): return sum(len(s.encode('utf-8')) for s in docs) / 1e6 data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print("%d documents - %0.3fMB (training set)" % ( len(data_train.data), data_train_size_mb)) print("%d documents - %0.3fMB (test set)" % ( len(data_test.data), data_test_size_mb)) print("%d categories" % len(categories)) print() # split a training set and a test set y_train, y_test = data_train.target, data_test.target print("Extracting features from the training data using a sparse vectorizer") t0 = time() if opts.use_hashing: vectorizer = HashingVectorizer(stop_words='english', non_negative=True, n_features=opts.n_features) X_train = vectorizer.transform(data_train.data) else: vectorizer = TfidfVectorizer(sublinear_tf=True, max_df=0.5, stop_words='english') X_train = vectorizer.fit_transform(data_train.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_train_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_train.shape) print() print("Extracting features from the test data using the same vectorizer") t0 = time() X_test = vectorizer.transform(data_test.data) duration = time() - t0 print("done in %fs at %0.3fMB/s" % (duration, data_test_size_mb / duration)) print("n_samples: %d, n_features: %d" % X_test.shape) print() # mapping from integer feature name to original token string if opts.use_hashing: feature_names = None else: feature_names = vectorizer.get_feature_names() if opts.select_chi2: print("Extracting %d best features by a chi-squared test" % opts.select_chi2) t0 = time() ch2 = SelectKBest(chi2, k=opts.select_chi2) X_train = ch2.fit_transform(X_train, y_train) X_test = ch2.transform(X_test) if feature_names: # keep selected feature names feature_names = [feature_names[i] for i in ch2.get_support(indices=True)] print("done in %fs" % (time() - t0)) print() if feature_names: feature_names = np.asarray(feature_names) def trim(s): """Trim string to fit on terminal (assuming 80-column display)""" return s if len(s) <= 80 else s[:77] + "..." ############################################################################### # Benchmark classifiers def benchmark(clf): print('_' * 80) print("Training: ") print(clf) t0 = time() clf.fit(X_train, y_train) train_time = time() - t0 print("train time: %0.3fs" % train_time) t0 = time() pred = clf.predict(X_test) test_time = time() - t0 print("test time: %0.3fs" % test_time) score = metrics.accuracy_score(y_test, pred) print("accuracy: %0.3f" % score) if hasattr(clf, 'coef_'): print("dimensionality: %d" % clf.coef_.shape[1]) print("density: %f" % density(clf.coef_)) if opts.print_top10 and feature_names is not None: print("top 10 keywords per class:") for i, category in enumerate(categories): top10 = np.argsort(clf.coef_[i])[-10:] print(trim("%s: %s" % (category, " ".join(feature_names[top10])))) print() if opts.print_report: print("classification report:") print(metrics.classification_report(y_test, pred, target_names=categories)) if opts.print_cm: print("confusion matrix:") print(metrics.confusion_matrix(y_test, pred)) print() clf_descr = str(clf).split('(')[0] return clf_descr, score, train_time, test_time results = [] for clf, name in ( (RidgeClassifier(tol=1e-2, solver="lsqr"), "Ridge Classifier"), (Perceptron(n_iter=50), "Perceptron"), (PassiveAggressiveClassifier(n_iter=50), "Passive-Aggressive"), (KNeighborsClassifier(n_neighbors=10), "kNN"), (RandomForestClassifier(n_estimators=100), "Random forest")): print('=' * 80) print(name) results.append(benchmark(clf)) for penalty in ["l2", "l1"]: print('=' * 80) print("%s penalty" % penalty.upper()) # Train Liblinear model results.append(benchmark(LinearSVC(loss='l2', penalty=penalty, dual=False, tol=1e-3))) # Train SGD model results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty=penalty))) # Train SGD with Elastic Net penalty print('=' * 80) print("Elastic-Net penalty") results.append(benchmark(SGDClassifier(alpha=.0001, n_iter=50, penalty="elasticnet"))) # Train NearestCentroid without threshold print('=' * 80) print("NearestCentroid (aka Rocchio classifier)") results.append(benchmark(NearestCentroid())) # Train sparse Naive Bayes classifiers print('=' * 80) print("Naive Bayes") results.append(benchmark(MultinomialNB(alpha=.01))) results.append(benchmark(BernoulliNB(alpha=.01))) print('=' * 80) print("LinearSVC with L1-based feature selection") # The smaller C, the stronger the regularization. # The more regularization, the more sparsity. results.append(benchmark(Pipeline([ ('feature_selection', LinearSVC(penalty="l1", dual=False, tol=1e-3)), ('classification', LinearSVC()) ]))) # make some plots indices = np.arange(len(results)) results = [[x[i] for x in results] for i in range(4)] clf_names, score, training_time, test_time = results training_time = np.array(training_time) / np.max(training_time) test_time = np.array(test_time) / np.max(test_time) plt.figure(figsize=(12, 8)) plt.title("Score") plt.barh(indices, score, .2, label="score", color='r') plt.barh(indices + .3, training_time, .2, label="training time", color='g') plt.barh(indices + .6, test_time, .2, label="test time", color='b') plt.yticks(()) plt.legend(loc='best') plt.subplots_adjust(left=.25) plt.subplots_adjust(top=.95) plt.subplots_adjust(bottom=.05) for i, c in zip(indices, clf_names): plt.text(-.3, i, c) plt.show()
bsd-3-clause
benjaminpope/whisky
pysco/kpi.py
2
22629
''' -------------------------------------------------------------------- PYSCO: PYthon Self Calibrating Observables -------------------------------------------------------------------- --- pysco is a python module to create, and extract Kernel-phase data structures, using the theory of Martinache, 2010, ApJ, 724, 464. ---- This file contains the definition of the kpi class: -------------------------------------------------- an object that contains the linear model for the optical system of interest. Properties of this model are: --> name : name of the model (HST, Keck, Annulus_19, ...) --> mask : array of coordinates for pupil sample points --> uv : matching array of coordinates in uv plane (baselines) --> RED : vector coding the redundancy of these baselines --> TFM : transfer matrix, linking pupil-phase to uv-phase --> KerPhi : array storing the kernel-phase relations --> uvrel : matrix storing the relations between sampling points and uv-points -------------------------------------------------------------------- ''' #!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import copy import pickle import os import sys import gzip import time from scipy.sparse.linalg import svds from core import * from scipy.io.idl import readsav class kpi(object): ''' Fundamental kernel-phase relations ----------------------------------------------------------------------- This object condenses all the knowledge about a given instrument pupil geometry into a series of arrays useful for kernel-phase analysis as well as for other purposes, such as wavefront sensing. ----------------------------------------------------------------------- ''' name = "" # default array name. Should be descriptive of the array geometry # ========================================================================= # ========================================================================= def __init__(self, file=None, maskname=None,bsp_mat=None,verbose=False,Ns=3): ''' Default instantiation of a KerPhase_Relation object: ------------------------------------------------------------------- Default instantiation of this KerPhase_Relation class is achieved by loading a pre-made file, containing all the relevant information -------------------------------------------------------------------''' try: # ------------------------------- # load the pickled data structure # ------------------------------- myf = gzip.GzipFile(file, "r") data = pickle.load(myf) myf.close() # ------------------------------- # restore the variables for this # session of Ker-phase use! # ------------------------------- #print "TEST:", data['toto'] try: self.name = data['name'] except: self.name = "UNKNOWN" self.uv = data['uv'] self.mask = data['mask'] self.RED = data['RED'] self.KerPhi = data['KerPhi'] self.TFM = data['TFM'] try: self.uv_to_bsp = data['uv_to_bsp'] self.bsp_s = data['bsp_s'] self.nbsp = self.uv_to_bsp.shape[0] except: print 'No bispec' self.nbh = self.mask.shape[0] self.nbuv = self.uv.shape[0] self.nkphi = self.KerPhi.shape[0] try : self.uvrel = data['uvrel'] except: self.uvrel = np.array([]) except: print("File %s isn't a valid Ker-phase data structure" % (file)) # try: if maskname == None: print 'Creating from coordinate file' self.from_coord_file(file,bsp_mat = bsp_mat,verbose=verbose,Ns=Ns) else: print 'Creating from mfdata file' self.from_mf(file,maskname) # except: # print("Failed.") # return None # ========================================================================= # ========================================================================= def from_mf(self, file, maskname, array_name=""): ''' Creation of the KerPhase_Relation object from a matched filter file. ---------------------------------------------------------------- This duplicates the functionality of from_coord_file for masking data. Input is a matched filter idlvar file. ---------------------------------------------------------------- ''' mfdata = readsav(file) maskdata = readsav(maskname) self.mask = maskdata['xy_coords'] self.nbh = mfdata.n_holes # number of sub-Ap print 'nbuv = ', mfdata.n_baselines self.nbuv = mfdata.n_baselines ndgt = 6 # number of digits of precision for rounding prec = 10**(-ndgt) # ================================================ # Create a kpi representation of the closure phase # operator # ================================================ self.uv = np.zeros((self.nbuv,2)) self.uv[:,0] = mfdata.u self.uv[:,1] = mfdata.v print self.uv.shape # 2. Calculate the transfer matrix and the redundancy vector # -------------------------------------------------------------- self.RED = np.ones(self.nbuv, dtype=float) # Redundancy self.nkphi = mfdata.n_bispect # number of Ker-phases self.KerPhi = np.zeros((self.nkphi, self.nbuv)) # allocate the array self.TFM = self.KerPhi # assuming a non-redundant array! for k in range(0,self.nkphi): yes = mfdata.bs2bl_ix[k,:] self.KerPhi[k,yes] = 1 # ========================================================================= # ========================================================================= def from_coord_file(self, file, array_name="", Ns=3,verbose=False, bsp_mat='sparse'): ''' Creation of the KerPhase_Relation object from a pupil mask file: ---------------------------------------------------------------- This is the core function of this class, really... Input is a pupil coordinates file, containing one set of (x,y) coordinates per line. Coordinates are in meters. From this, all the intermediate products that lead to the kernel-phase matrix KerPhi are calculated. Set Ns < 2 for undersampled data [AL, 20.02.2014] ---------------------------------------------------------------- ''' self.mask = 1.0 * np.loadtxt(file) # sub-Ap. coordinate files self.nbh = self.mask.shape[0] # number of sub-Ap ndgt = 6 # number of digits of precision for rounding prec = 10**(-ndgt) # ================================================ # Determine all the baselines in the array. # ================================================ # 1. Start by doing all the possible combinations of coordinates # -------------------------------------------------------------- # in the array to calculate the baselines. The intent here, is # to work with redundant arrays of course, so there will be plenty # of duplicates. nbh = self.nbh # local representation of the class variable uvx = np.zeros(nbh * (nbh-1)) # prepare empty arrays to store uvy = np.zeros(nbh * (nbh-1)) # the baselines k = 0 # index for possible combinations (k = f(i,j)) uvi = np.zeros(nbh * (nbh-1), dtype=int) # arrays to store the possible uvj = np.zeros(nbh * (nbh-1), dtype=int) # combinations k=f(i,j) !! for i in range(nbh): # do all the possible combinations of for j in range(nbh): # sub-apertures if i != j: uvx[k] = self.mask[i,0] - self.mask[j,0] uvy[k] = self.mask[i,1] - self.mask[j,1] # --- uvi[k], uvj[k] = i, j k+=1 a = np.unique(np.round(uvx, ndgt)) # distinct u-component of baselines nbx = a.shape[0] # number of distinct u-components uv_sel = np.zeros((0,2)) # array for "selected" baselines for i in range(nbx): # identify distinct v-coords and fill uv_sel b = np.where(np.abs(uvx - a[i]) <= prec) c = np.unique(np.round(uvy[b], ndgt)) nby = np.shape(c)[0] # number of distinct v-compoments app = np.ones(nby)*a[i] uv_sel = np.append(uv_sel, np.array([app,c]).T, axis=0) self.nbuv = np.shape(uv_sel)[0]/2 # actual number of distinct uv points self.uv = uv_sel[:self.nbuv,:] # discard second half (symmetric) print "%d distinct baselines were identified" % (self.nbuv,) # 1.5. Special case for undersampled data # --------------------------------------- if (Ns < 2): uv_sampl = self.uv.copy() # copy previously identified baselines uvm = np.abs(self.uv).max() # max baseline length keep = (np.abs(uv_sampl[:,0]) < (uvm*Ns/2.)) * \ (np.abs(uv_sampl[:,1]) < (uvm*Ns/2.)) self.uv = uv_sampl[keep] self.nbuv = (self.uv.shape)[0] print "%d baselines were kept (undersampled data)" % (self.nbuv,) # 2. Calculate the transfer matrix and the redundancy vector # [AL, 2014.05.22] keeping relations between uv points and sampling points # -------------------------------------------------------------- self.TFM = np.zeros((self.nbuv, self.nbh), dtype=float) # matrix self.RED = np.zeros(self.nbuv, dtype=float) # Redundancy # relations matrix (-1 = not connected. NB: only positive baselines are saved) self.uvrel=-np.ones((nbh,nbh),dtype='int') for i in range(self.nbuv): a=np.where((np.abs(self.uv[i,0]-uvx) <= prec) * (np.abs(self.uv[i,1]-uvy) <= prec)) for k in range(len(a[0])) : self.uvrel[uvi[a][k],uvj[a][k]]=i #self.uvrel[uvj[a][k],uvi[a][k]]=i self.TFM[i, uvi[a]] += 1.0 self.TFM[i, uvj[a]] -= 1.0 self.RED[i] = np.size(a) # converting to relations matrix # 3. Determine the kernel-phase relations # ---------------------------------------- # One sub-aperture is taken as reference: the corresponding # column of the transfer matrix is discarded. TFM is now a # (nbuv) x (nbh - 1) array. # The choice is up to the user... but the simplest is to # discard the first column, that is, use the first aperture # as a reference? self.TFM = self.TFM[:,1:] # cf. explanation self.TFM = np.dot(np.diag(1./self.RED), self.TFM) # experiment #[Al, 2014.05.12] Frantz's version U, S, Vh = np.linalg.svd(self.TFM.T, full_matrices=1) S1 = np.zeros(self.nbuv) S1[0:nbh-1] = S self.nkphi = np.size(np.where(abs(S1) < 1e-3)) # number of Ker-phases KPhiCol = np.where(abs(S1) < 1e-3)[0] self.KerPhi = np.zeros((self.nkphi, self.nbuv)) # allocate the array for i in range(self.nkphi): self.KerPhi[i,:] = (Vh)[KPhiCol[i],:] if verbose: print '-------------------------------' print 'Singular values for this array:\n', np.round(S, ndgt) print '\nRedundancy Vector:\n', self.RED else: print '%d Kernel Phases identified.' % self.nkphi self.name = array_name if bsp_mat is not None: print 'Now calculating bispectrum' self.generate_bispectrum_matrix2(bsp_mat = bsp_mat) # ========================================================================= # ========================================================================= def plot_pupil_and_uv(self, xymax = 8.0): ''' Nice plot of the pupil sampling and matching uv plane. -------------------------------------------------------------------- xymax just specifies the size of the region represented in the plot, expressed in meters. Should typically be slightly larger than the largest baseline in the array. --------------------------------------------------------------------''' plt.clf() f0 = plt.subplot(121) f0.plot(self.mask[:,0], self.mask[:,1], 'bo') f0.axis([-xymax, xymax, -xymax, xymax], aspect='equal') plt.title(self.name+' pupil') f1 = plt.subplot(122) f1.plot(self.uv[:,0], self.uv[:,1], 'bo') # plot baselines + symetric f1.plot(-self.uv[:,0], -self.uv[:,1], 'ro') # for a "complete" feel plt.title(self.name+' uv coverage') f1.axis([-2*xymax, 2*xymax, -2*xymax, 2*xymax], aspect='equal') # complete previous plot with redundancy of the baseline # ------------------------------------------------------- dy = 0.1*abs(self.uv[0,1]-self.uv[1,1]) # to offset text in the plot. for i in range(self.nbuv): f1.text(self.uv[i,0]+dy, self.uv[i,1]+dy, int(self.RED[i]), ha='center') f0.axis('equal') f1.axis('equal') #plt.draw() # ========================================================================= # ========================================================================= def save_to_file(self, file): ''' Export the KerPhase_Relation data structure into a pickle ---------------------------------------------------------------- To save on disk space, this procedure uses the gzip module. While there is no requirement for a specific extension for the file, I would recommend that one uses ".kpi.gz", so as to make it obvious that the file is a gzipped kpi data structure. ---------------------------------------------------------------- ''' try: try: data = {'name' : self.name, 'mask' : self.mask, 'uv' : self.uv, 'TFM' : self.TFM, 'KerPhi' : self.KerPhi, 'RED' : self.RED, 'uvrel' : self.uvrel, # 'uv_samp_rev': self.uv_samp_rev, 'uv_to_bsp': self.uv_to_bsp, 'bsp_s': self.bsp_s} print 'KerPhase_Relation data structure was saved.' except: data = {'name' : self.name, 'mask' : self.mask, 'uv' : self.uv, 'TFM' : self.TFM, 'KerPhi' : self.KerPhi, # 'uv_samp_rev': self.uv_samp_rev, 'RED' : self.RED, 'uvrel' : self.uvrel} print 'KerPhase_Relation data structure was saved. No bispectrum!' except: print("KerPhase_Relation data structure is incomplete") print("File %s wasn't saved!" % (file,)) return None # ------------- try: myf = gzip.GzipFile(file, "wb") except: print("File %s cannot be created."+ " KerPhase_Relation data structure wasn't saved." % (file,)) return None # ------------- pickle.dump(data, myf, -1) myf.close() ############################################################################### ############################################################################### ############################################################################### ############################################################################### ############################################################################### def generate_bispectrum_matrix2(self,n=5,n_guess_bsp=1e6,verbose=False,bsp_mat='sparse'): ''' Calculates the matrix to convert from uv phases to bispectra. This version iterates through the sampling points in a vectorized way. It saves all of the triangles, then removes the duplicates every 'n' iterations. Reduce the number to save on ram but make it much slower. n_guess_bsp: guess the number of bispectra and pre-allocate the memory to save millions of 'append' calls (which was the slowest part). It must be large enough to contain all of the bispectra, or you will get an error. ''' nbsp=self.nbuv*(self.nbuv-1)*(self.nbuv-2) / 6 uv_to_bsp = np.zeros((n_guess_bsp,self.nbuv),dtype=np.long) bsp_u = np.zeros((n_guess_bsp,3)) # the u points of each bispectrum point bsp_v = np.zeros((n_guess_bsp,3)) # the v points of each bispectrum point already_done = np.zeros((n_guess_bsp),dtype=np.longlong) # to track the sets of uv points that have already been counted bsp_ix=0 uvrel=self.uvrel+np.transpose(self.uvrel)+1 nbits=np.longlong(np.ceil(np.log(self.nbuv)/np.log(10))) print 'Calculating bispectrum matrix. Will take a few minutes.' # Loop over the first pupil sampling point tstart=time.time() for ix1 in range(self.nbh): # Loop over the second pupil sampling point for ix2 in range(ix1+1,self.nbh): # Rather than a for loop, vectorize it! ix3s=np.arange(ix2+1,self.nbh) n_ix3s=ix3s.size if (bsp_ix+n_ix3s) > n_guess_bsp: raise IndexError('Number of calculated bispectra exceeds the initial guess for the matrix size!') # Find the baseline indices b1_ix=uvrel[ix1,ix2] b2_ixs=uvrel[ix2,ix3s] b3_ixs=uvrel[ix1,ix3s] # we actually want the negative of this baseline b1_ixs=np.repeat(b1_ix,n_ix3s) # What uv points are these? uv1=self.uv[b1_ixs,:] uv2=self.uv[b2_ixs,:] uv3=self.uv[b3_ixs,:] # Are they already in the array? (any permutation of these baselines is the same) # Convert to a single number to find out. bl_ixs=np.array([b1_ixs,b2_ixs,b3_ixs]) bl_ixs=np.sort(bl_ixs,axis=0) these_triplet_nums=(10**(2*nbits))*bl_ixs[2,:]+ (10**nbits)*bl_ixs[1,:]+bl_ixs[0,:] # Just add them all and remove the duplicates later. already_done[bsp_ix:bsp_ix+n_ix3s]=these_triplet_nums # add to all the arrays uv_to_bsp_line=np.zeros((n_ix3s,self.nbuv)) diag=np.arange(n_ix3s) uv_to_bsp_line[diag,b1_ixs]+=1 uv_to_bsp_line[diag,b2_ixs]+=1 uv_to_bsp_line[diag,b3_ixs]+=-1 uv_to_bsp[bsp_ix:bsp_ix+n_ix3s,:]=uv_to_bsp_line bsp_u[bsp_ix:bsp_ix+n_ix3s,:]=np.transpose(np.array([uv1[:,0],uv2[:,0],uv3[:,0]])) bsp_v[bsp_ix:bsp_ix+n_ix3s,:]=np.transpose(np.array([uv1[:,1],uv2[:,1],uv3[:,1]])) bsp_ix+=n_ix3s # remove the duplicates every n loops if (ix1 % n) == ((self.nbh-1) % n): # the (nbh-1 mod n) ensures we do this on the last iteration as well dummy,unique_ix=np.unique(already_done[0:bsp_ix+n_ix3s],return_index=True) bsp_ix=len(unique_ix) already_done[0:bsp_ix]=already_done[unique_ix] already_done[bsp_ix:]=0 uv_to_bsp[0:bsp_ix]=uv_to_bsp[unique_ix] bsp_u[0:bsp_ix]=bsp_u[unique_ix] bsp_v[0:bsp_ix]=bsp_v[unique_ix] # Only print the status every 5*n iterations if (ix1 % (5*n)) == ((self.nbh-1) % n): print 'Done',ix1,'of',self.nbh,'. ',bsp_ix,' bispectra found. Time taken:',np.round(time.time()-tstart,decimals=1),'sec' print 'Done. Total time taken:',np.round((time.time()-tstart)/60.,decimals=1),'mins' # Remove the excess parts of each array and attach them to the kpi. nbsp=bsp_ix self.already_done=already_done self.nbsp=bsp_ix self.uv_to_bsp=uv_to_bsp[0:bsp_ix] self.bsp_u=bsp_u[0:bsp_ix] self.bsp_v=bsp_v[0:bsp_ix] print 'Found',nbsp,'bispectra' t_start2 = time.time() tol = 1e-5 try: if bsp_mat == 'sparse': print 'Doing sparse svd' rank = np.linalg.matrix_rank(uv_to_bsp.astype('double'), tol = tol) print 'Matrix rank:',rank u, s, vt = svds(uv_to_bsp.astype('double').T, k=rank) elif bsp_mat == 'full': print 'Attempting full svd' u, s, vt = np.linalg.svd(uv_to_bsp.astype('double').T,full_matrices=False) rank = np.sum(s>tol) sys.stdout.flush() self.uv_to_bsp_raw = np.copy(uv_to_bsp) self.uv_to_bsp = u.T self.nbsp = rank self.bsp_s = s print 'Reduced-rank bispectrum matrix calculated.' print 'Matrix shape',self.uv_to_bsp.shape print 'Time taken:',np.round((time.time()-t_start2)/60.,decimals=1),'mins' if verbose: print np.log(s) return s except: print 'SVD failed. Using raw matrix.' self.uv_to_bsp = uv_to_bsp self.nbsp = nbsp sys.stdout.flush()
gpl-3.0
Adai0808/scikit-learn
doc/sphinxext/numpy_ext/docscrape_sphinx.py
408
8061
import re import inspect import textwrap import pydoc from .docscrape import NumpyDocString from .docscrape import FunctionDoc from .docscrape import ClassDoc class SphinxDocString(NumpyDocString): def __init__(self, docstring, config=None): config = {} if config is None else config self.use_plots = config.get('use_plots', False) NumpyDocString.__init__(self, docstring, config=config) # string conversion routines def _str_header(self, name, symbol='`'): return ['.. rubric:: ' + name, ''] def _str_field_list(self, name): return [':' + name + ':'] def _str_indent(self, doc, indent=4): out = [] for line in doc: out += [' ' * indent + line] return out def _str_signature(self): return [''] if self['Signature']: return ['``%s``' % self['Signature']] + [''] else: return [''] def _str_summary(self): return self['Summary'] + [''] def _str_extended_summary(self): return self['Extended Summary'] + [''] def _str_param_list(self, name): out = [] if self[name]: out += self._str_field_list(name) out += [''] for param, param_type, desc in self[name]: out += self._str_indent(['**%s** : %s' % (param.strip(), param_type)]) out += [''] out += self._str_indent(desc, 8) out += [''] return out @property def _obj(self): if hasattr(self, '_cls'): return self._cls elif hasattr(self, '_f'): return self._f return None def _str_member_list(self, name): """ Generate a member listing, autosummary:: table where possible, and a table where not. """ out = [] if self[name]: out += ['.. rubric:: %s' % name, ''] prefix = getattr(self, '_name', '') if prefix: prefix = '~%s.' % prefix autosum = [] others = [] for param, param_type, desc in self[name]: param = param.strip() if not self._obj or hasattr(self._obj, param): autosum += [" %s%s" % (prefix, param)] else: others.append((param, param_type, desc)) if autosum: # GAEL: Toctree commented out below because it creates # hundreds of sphinx warnings # out += ['.. autosummary::', ' :toctree:', ''] out += ['.. autosummary::', ''] out += autosum if others: maxlen_0 = max([len(x[0]) for x in others]) maxlen_1 = max([len(x[1]) for x in others]) hdr = "=" * maxlen_0 + " " + "=" * maxlen_1 + " " + "=" * 10 fmt = '%%%ds %%%ds ' % (maxlen_0, maxlen_1) n_indent = maxlen_0 + maxlen_1 + 4 out += [hdr] for param, param_type, desc in others: out += [fmt % (param.strip(), param_type)] out += self._str_indent(desc, n_indent) out += [hdr] out += [''] return out def _str_section(self, name): out = [] if self[name]: out += self._str_header(name) out += [''] content = textwrap.dedent("\n".join(self[name])).split("\n") out += content out += [''] return out def _str_see_also(self, func_role): out = [] if self['See Also']: see_also = super(SphinxDocString, self)._str_see_also(func_role) out = ['.. seealso::', ''] out += self._str_indent(see_also[2:]) return out def _str_warnings(self): out = [] if self['Warnings']: out = ['.. warning::', ''] out += self._str_indent(self['Warnings']) return out def _str_index(self): idx = self['index'] out = [] if len(idx) == 0: return out out += ['.. index:: %s' % idx.get('default', '')] for section, references in idx.iteritems(): if section == 'default': continue elif section == 'refguide': out += [' single: %s' % (', '.join(references))] else: out += [' %s: %s' % (section, ','.join(references))] return out def _str_references(self): out = [] if self['References']: out += self._str_header('References') if isinstance(self['References'], str): self['References'] = [self['References']] out.extend(self['References']) out += [''] # Latex collects all references to a separate bibliography, # so we need to insert links to it import sphinx # local import to avoid test dependency if sphinx.__version__ >= "0.6": out += ['.. only:: latex', ''] else: out += ['.. latexonly::', ''] items = [] for line in self['References']: m = re.match(r'.. \[([a-z0-9._-]+)\]', line, re.I) if m: items.append(m.group(1)) out += [' ' + ", ".join(["[%s]_" % item for item in items]), ''] return out def _str_examples(self): examples_str = "\n".join(self['Examples']) if (self.use_plots and 'import matplotlib' in examples_str and 'plot::' not in examples_str): out = [] out += self._str_header('Examples') out += ['.. plot::', ''] out += self._str_indent(self['Examples']) out += [''] return out else: return self._str_section('Examples') def __str__(self, indent=0, func_role="obj"): out = [] out += self._str_signature() out += self._str_index() + [''] out += self._str_summary() out += self._str_extended_summary() for param_list in ('Parameters', 'Returns', 'Raises', 'Attributes'): out += self._str_param_list(param_list) out += self._str_warnings() out += self._str_see_also(func_role) out += self._str_section('Notes') out += self._str_references() out += self._str_examples() for param_list in ('Methods',): out += self._str_member_list(param_list) out = self._str_indent(out, indent) return '\n'.join(out) class SphinxFunctionDoc(SphinxDocString, FunctionDoc): def __init__(self, obj, doc=None, config={}): self.use_plots = config.get('use_plots', False) FunctionDoc.__init__(self, obj, doc=doc, config=config) class SphinxClassDoc(SphinxDocString, ClassDoc): def __init__(self, obj, doc=None, func_doc=None, config={}): self.use_plots = config.get('use_plots', False) ClassDoc.__init__(self, obj, doc=doc, func_doc=None, config=config) class SphinxObjDoc(SphinxDocString): def __init__(self, obj, doc=None, config=None): self._f = obj SphinxDocString.__init__(self, doc, config=config) def get_doc_object(obj, what=None, doc=None, config={}): if what is None: if inspect.isclass(obj): what = 'class' elif inspect.ismodule(obj): what = 'module' elif callable(obj): what = 'function' else: what = 'object' if what == 'class': return SphinxClassDoc(obj, func_doc=SphinxFunctionDoc, doc=doc, config=config) elif what in ('function', 'method'): return SphinxFunctionDoc(obj, doc=doc, config=config) else: if doc is None: doc = pydoc.getdoc(obj) return SphinxObjDoc(obj, doc, config=config)
bsd-3-clause
python-control/python-control
examples/pvtol-nested.py
2
4551
# pvtol-nested.py - inner/outer design for vectored thrust aircraft # RMM, 5 Sep 09 # # This file works through a fairly complicated control design and # analysis, corresponding to the planar vertical takeoff and landing # (PVTOL) aircraft in Astrom and Murray, Chapter 11. It is intended # to demonstrate the basic functionality of the python-control # package. # from __future__ import print_function import os import matplotlib.pyplot as plt # MATLAB plotting functions from control.matlab import * # MATLAB-like functions import numpy as np # System parameters m = 4 # mass of aircraft J = 0.0475 # inertia around pitch axis r = 0.25 # distance to center of force g = 9.8 # gravitational constant c = 0.05 # damping factor (estimated) # Transfer functions for dynamics Pi = tf([r], [J, 0, 0]) # inner loop (roll) Po = tf([1], [m, c, 0]) # outer loop (position) # # Inner loop control design # # This is the controller for the pitch dynamics. Goal is to have # fast response for the pitch dynamics so that we can use this as a # control for the lateral dynamics # # Design a simple lead controller for the system k, a, b = 200, 2, 50 Ci = k*tf([1, a], [1, b]) # lead compensator Li = Pi*Ci # Bode plot for the open loop process plt.figure(1) bode(Pi) # Bode plot for the loop transfer function, with margins plt.figure(2) bode(Li) # Compute out the gain and phase margins #! Not implemented # gm, pm, wcg, wcp = margin(Li) # Compute the sensitivity and complementary sensitivity functions Si = feedback(1, Li) Ti = Li*Si # Check to make sure that the specification is met plt.figure(3) gangof4(Pi, Ci) # Compute out the actual transfer function from u1 to v1 (see L8.2 notes) # Hi = Ci*(1-m*g*Pi)/(1+Ci*Pi) Hi = parallel(feedback(Ci, Pi), -m*g*feedback(Ci*Pi, 1)) plt.figure(4) plt.clf() plt.subplot(221) bode(Hi) # Now design the lateral control system a, b, K = 0.02, 5, 2 Co = -K*tf([1, 0.3], [1, 10]) # another lead compensator Lo = -m*g*Po*Co plt.figure(5) bode(Lo) # margin(Lo) # Finally compute the real outer-loop loop gain + responses L = Co*Hi*Po S = feedback(1, L) T = feedback(L, 1) # Compute stability margins gm, pm, wgc, wpc = margin(L) print("Gain margin: %g at %g" % (gm, wgc)) print("Phase margin: %g at %g" % (pm, wpc)) plt.figure(6) plt.clf() bode(L, np.logspace(-4, 3)) # Add crossover line to the magnitude plot # # Note: in matplotlib before v2.1, the following code worked: # # plt.subplot(211); hold(True); # loglog([1e-4, 1e3], [1, 1], 'k-') # # In later versions of matplotlib the call to plt.subplot will clear the # axes and so we have to extract the axes that we want to use by hand. # In addition, hold() is deprecated so we no longer require it. # for ax in plt.gcf().axes: if ax.get_label() == 'control-bode-magnitude': break ax.semilogx([1e-4, 1e3], 20*np.log10([1, 1]), 'k-') # # Replot phase starting at -90 degrees # # Get the phase plot axes for ax in plt.gcf().axes: if ax.get_label() == 'control-bode-phase': break # Recreate the frequency response and shift the phase mag, phase, w = freqresp(L, np.logspace(-4, 3)) phase = phase - 360 # Replot the phase by hand ax.semilogx([1e-4, 1e3], [-180, -180], 'k-') ax.semilogx(w, np.squeeze(phase), 'b-') ax.axis([1e-4, 1e3, -360, 0]) plt.xlabel('Frequency [deg]') plt.ylabel('Phase [deg]') # plt.set(gca, 'YTick', [-360, -270, -180, -90, 0]) # plt.set(gca, 'XTick', [10^-4, 10^-2, 1, 100]) # # Nyquist plot for complete design # plt.figure(7) plt.clf() nyquist(L, (0.0001, 1000)) # Add a box in the region we are going to expand plt.plot([-2, -2, 1, 1, -2], [-4, 4, 4, -4, -4], 'r-') # Expanded region plt.figure(8) plt.clf() nyquist(L) plt.axis([-2, 1, -4, 4]) # set up the color color = 'b' # Add arrows to the plot # H1 = L.evalfr(0.4); H2 = L.evalfr(0.41); # arrow([real(H1), imag(H1)], [real(H2), imag(H2)], AM_normal_arrowsize, \ # 'EdgeColor', color, 'FaceColor', color); # H1 = freqresp(L, 0.35); H2 = freqresp(L, 0.36); # arrow([real(H2), -imag(H2)], [real(H1), -imag(H1)], AM_normal_arrowsize, \ # 'EdgeColor', color, 'FaceColor', color); plt.figure(9) Yvec, Tvec = step(T, np.linspace(0, 20)) plt.plot(Tvec.T, Yvec.T) Yvec, Tvec = step(Co*S, np.linspace(0, 20)) plt.plot(Tvec.T, Yvec.T) plt.figure(10) plt.clf() P, Z = pzmap(T, plot=True, grid=True) print("Closed loop poles and zeros: ", P, Z) # Gang of Four plt.figure(11) plt.clf() gangof4(Hi*Po, Co) if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: plt.show()
bsd-3-clause
hoenirvili/distributions
distributions/geometric.py
1
2749
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt from scipy.stats import geom from .distribution import Distribution __all__ = ['Geometric'] class Geometric(Distribution): """ The geometric distribution is the distribution of the number of trials needed to get the first sucess in repeated Bernoulli trials. Parameters ---------- r : int trials needed to get the first success p : int or float Probability of a trial to be successful """ def __init__(self, r, p): if type(r) != int or r < 0 or r is None: raise ValueError( "Invalid number of trials needed to get the first success") if (type(p) != int and type(p) != float or p > 1 or p < 0 or p is None): raise ValueError("Invalid probability number") self.__p = p self.__r = r self.__not_p = (1 - p) self.__all_r = np.arange(0, r + 1) def mean(self): """ Compute the mean of the distribution Returns: -------- mean : float """ return geom.mean(self.__p) def variance(self): """ Compute the variance of the distribution Returns: -------- variance : float """ return geom.var(self.__p) def pmf(self): """ Compute the probability mass function of the distribution Returns: -------- pmf : float """ return geom.pmf(self.__r, self.__p) def std(self): """ Compute the standard deviation of the distribution. Returns: -------- std : float """ return geom.std(self.__p) def cdf(self): """ Compute the cumulative distribution function. Returns: -------- cdf : float """ return geom.cdf(self.__r, self.__p) def pmfs(self): """ Compute the probability mass function of the distribution of all trials needed to get the first success Returns: -------- pmf : numpy.narray """ return geom.pmf(self.__all_r, self.__p) def plot(self): """ Plot all values pmf values ranging from zero to the number of traisl in order to find the first sucess """ pmfs = self.pmfs() fix, ax = plt.subplots() x = np.arange(0, self.__r + 1) plt.bar(x, pmfs, color="blue") ax.set_xticks(np.arange(1, len(x))) ax.set_title('Geometric distribution') ax.set_xlabel('Trials needed to get the first success') ax.set_ylabel('Probability') plt.show()
mit
joescape/DeembedProject
DeembeddingTool.py
1
2376
# importing wx files import wx import skrf as rf import matplotlib.pylab as plt import numpy as np import DeembedGUI import DeembedFiles class DeembedWiz(DeembedGUI.DeembedWiz): # constructor def __init__(self,parent): # type: (object) -> object # initialize parent class DeembedGUI.DeembedWiz.__init__(self,parent) def deembedChoiceChange(self,event): self.deembedchoice = self.m_deembedChoice.GetSelection() # print deembedchoice def tempChoiceChange(self,event): self.tempchoice = self.m_tempChoice.GetSelection() if self.tempchoice: self.m_DeembedFilePicker2.Disable() self.m_DeembedFilePicker3.Disable() self.m_DeembedFilePicker2.SetPath('') self.m_DeembedFilePicker3.SetPath('') else: self.m_DeembedFilePicker2.Enable() self.m_DeembedFilePicker3.Enable() # print tempchoice def Close(self,event): event.Skip() def RawDirChange(self, event): self.rawdir = self.m_RawDirPicker.GetPath() # print rawdir def DeembedDirChange(self, event): self.deembeddir = self.m_DeembedDirPicker.GetPath() # print deembeddir def DeembedFile1Change(self, event): self.deembedfilename1 = self.m_DeembedFilePicker1.GetPath() print self.deembedfilename1 def DeembedFile2Change(self, event): self.deembedfilename2 = self.m_DeembedFilePicker2.GetPath() # print self.deembedfilename2 def DeembedFile3Change(self, event): self.deembedfilename3 = self.m_DeembedFilePicker3.GetPath() # print self.deembedfilename3 def startDeembed(self, event): DeembedFiles.deembed(self.deembedchoice,self.tempchoice,self.rawdir,self.deembeddir,self.deembedfilename1, self.deembedfilename2,self.deembedfilename3) # mandatory in wx, create an app, False stands for not deteriction stdin/stdout # refer manual for details app = wx.App(False) # create an object of DeembedWiz mywiz = DeembedWiz(None) # configure properties of wizard mywiz.FitToPage(mywiz.m_pages[1]) mywiz.RunWizard(mywiz.m_pages[0]) mywiz.Destroy() # start the applications app.MainLoop()
gpl-3.0
harme199497/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers
Chapter2_MorePyMC/separation_plot.py
86
1494
# separation plot # Author: Cameron Davidson-Pilon,2013 # see http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf import matplotlib.pyplot as plt import numpy as np def separation_plot( p, y, **kwargs ): """ This function creates a separation plot for logistic and probit classification. See http://mdwardlab.com/sites/default/files/GreenhillWardSacks.pdf p: The proportions/probabilities, can be a nxM matrix which represents M models. y: the 0-1 response variables. """ assert p.shape[0] == y.shape[0], "p.shape[0] != y.shape[0]" n = p.shape[0] try: M = p.shape[1] except: p = p.reshape( n, 1 ) M = p.shape[1] #colors = np.array( ["#fdf2db", "#e44a32"] ) colors_bmh = np.array( ["#eeeeee", "#348ABD"] ) fig = plt.figure( )#figsize = (8, 1.3*M) ) for i in range(M): ax = fig.add_subplot(M, 1, i+1) ix = np.argsort( p[:,i] ) #plot the different bars bars = ax.bar( np.arange(n), np.ones(n), width=1., color = colors_bmh[ y[ix].astype(int) ], edgecolor = 'none') ax.plot( np.arange(n+1), np.append(p[ix,i], p[ix,i][-1]), "k", linewidth = 1.,drawstyle="steps-post" ) #create expected value bar. ax.vlines( [(1-p[ix,i]).sum()], [0], [1] ) #ax.grid(False) #ax.axis('off') plt.xlim( 0, n) plt.tight_layout() return
mit
saimn/astropy
astropy/timeseries/sampled.py
3
16089
# Licensed under a 3-clause BSD style license - see LICENSE.rst from copy import deepcopy import numpy as np from astropy.table import groups, QTable, Table from astropy.time import Time, TimeDelta from astropy import units as u from astropy.units import Quantity, UnitsError from astropy.utils.decorators import deprecated_renamed_argument from astropy.timeseries.core import BaseTimeSeries, autocheck_required_columns __all__ = ['TimeSeries'] @autocheck_required_columns class TimeSeries(BaseTimeSeries): """ A class to represent time series data in tabular form. `~astropy.timeseries.TimeSeries` provides a class for representing time series as a collection of values of different quantities measured at specific points in time (for time series with finite time bins, see the `~astropy.timeseries.BinnedTimeSeries` class). `~astropy.timeseries.TimeSeries` is a sub-class of `~astropy.table.QTable` and thus provides all the standard table maniplation methods available to tables, but it also provides additional conveniences for dealing with time series, such as a flexible initializer for setting up the times, a method for folding time series, and a ``time`` attribute for easy access to the time values. See also: https://docs.astropy.org/en/stable/timeseries/ Parameters ---------- data : numpy ndarray, dict, list, `~astropy.table.Table`, or table-like object, optional Data to initialize time series. This does not need to contain the times, which can be provided separately, but if it does contain the times they should be in a column called ``'time'`` to be automatically recognized. time : `~astropy.time.Time`, `~astropy.time.TimeDelta` or iterable The times at which the values are sampled - this can be either given directly as a `~astropy.time.Time` or `~astropy.time.TimeDelta` array or as any iterable that initializes the `~astropy.time.Time` class. If this is given, then the remaining time-related arguments should not be used. time_start : `~astropy.time.Time` or str The time of the first sample in the time series. This is an alternative to providing ``time`` and requires that ``time_delta`` is also provided. time_delta : `~astropy.time.TimeDelta` or `~astropy.units.Quantity` The step size in time for the series. This can either be a scalar if the time series is evenly sampled, or an array of values if it is not. n_samples : int The number of time samples for the series. This is only used if both ``time_start`` and ``time_delta`` are provided and are scalar values. **kwargs : dict, optional Additional keyword arguments are passed to `~astropy.table.QTable`. """ _required_columns = ['time'] def __init__(self, data=None, *, time=None, time_start=None, time_delta=None, n_samples=None, **kwargs): super().__init__(data=data, **kwargs) # For some operations, an empty time series needs to be created, then # columns added one by one. We should check that when columns are added # manually, time is added first and is of the right type. if data is None and time is None and time_start is None and time_delta is None: self._required_columns_relax = True return # First if time has been given in the table data, we should extract it # and treat it as if it had been passed as a keyword argument. if data is not None: if n_samples is not None: if n_samples != len(self): raise TypeError("'n_samples' has been given both and it is not the " "same length as the input data.") else: n_samples = len(self) if 'time' in self.colnames: if time is None: time = self.columns['time'] else: raise TypeError("'time' has been given both in the table and as a keyword argument") if time is None and time_start is None: raise TypeError("Either 'time' or 'time_start' should be specified") elif time is not None and time_start is not None: raise TypeError("Cannot specify both 'time' and 'time_start'") if time is not None and not isinstance(time, (Time, TimeDelta)): time = Time(time) if time_start is not None and not isinstance(time_start, (Time, TimeDelta)): time_start = Time(time_start) if time_delta is not None and not isinstance(time_delta, (Quantity, TimeDelta)): raise TypeError("'time_delta' should be a Quantity or a TimeDelta") if isinstance(time_delta, TimeDelta): time_delta = time_delta.sec * u.s if time_start is not None: # We interpret this as meaning that time is that of the first # sample and that the interval is given by time_delta. if time_delta is None: raise TypeError("'time' is scalar, so 'time_delta' is required") if time_delta.isscalar: time_delta = np.repeat(time_delta, n_samples) time_delta = np.cumsum(time_delta) time_delta = np.roll(time_delta, 1) time_delta[0] = 0. * u.s time = time_start + time_delta elif len(self.colnames) > 0 and len(time) != len(self): raise ValueError("Length of 'time' ({}) should match " "data length ({})".format(len(time), n_samples)) elif time_delta is not None: raise TypeError("'time_delta' should not be specified since " "'time' is an array") with self._delay_required_column_checks(): if 'time' in self.colnames: self.remove_column('time') self.add_column(time, index=0, name='time') @property def time(self): """ The time values. """ return self['time'] @deprecated_renamed_argument('midpoint_epoch', 'epoch_time', '4.0') def fold(self, period=None, epoch_time=None, epoch_phase=0, wrap_phase=None, normalize_phase=False): """ Return a new `~astropy.timeseries.TimeSeries` folded with a period and epoch. Parameters ---------- period : `~astropy.units.Quantity` The period to use for folding epoch_time : `~astropy.time.Time` The time to use as the reference epoch, at which the relative time offset / phase will be ``epoch_phase``. Defaults to the first time in the time series. epoch_phase : float or `~astropy.units.Quantity` Phase of ``epoch_time``. If ``normalize_phase`` is `True`, this should be a dimensionless value, while if ``normalize_phase`` is ``False``, this should be a `~astropy.units.Quantity` with time units. Defaults to 0. wrap_phase : float or `~astropy.units.Quantity` The value of the phase above which values are wrapped back by one period. If ``normalize_phase`` is `True`, this should be a dimensionless value, while if ``normalize_phase`` is ``False``, this should be a `~astropy.units.Quantity` with time units. Defaults to half the period, so that the resulting time series goes from ``-period / 2`` to ``period / 2`` (if ``normalize_phase`` is `False`) or -0.5 to 0.5 (if ``normalize_phase`` is `True`). normalize_phase : bool If `False` phase is returned as `~astropy.time.TimeDelta`, otherwise as a dimensionless `~astropy.units.Quantity`. Returns ------- folded_timeseries : `~astropy.timeseries.TimeSeries` The folded time series object with phase as the ``time`` column. """ if not isinstance(period, Quantity) or period.unit.physical_type != 'time': raise UnitsError('period should be a Quantity in units of time') folded = self.copy() if epoch_time is None: epoch_time = self.time[0] else: epoch_time = Time(epoch_time) period_sec = period.to_value(u.s) if normalize_phase: if isinstance(epoch_phase, Quantity) and epoch_phase.unit.physical_type != 'dimensionless': raise UnitsError('epoch_phase should be a dimensionless Quantity ' 'or a float when normalize_phase=True') epoch_phase_sec = epoch_phase * period_sec else: if epoch_phase == 0: epoch_phase_sec = 0. else: if not isinstance(epoch_phase, Quantity) or epoch_phase.unit.physical_type != 'time': raise UnitsError('epoch_phase should be a Quantity in units ' 'of time when normalize_phase=False') epoch_phase_sec = epoch_phase.to_value(u.s) if wrap_phase is None: wrap_phase = period_sec / 2 else: if normalize_phase: if isinstance(wrap_phase, Quantity) and not wrap_phase.unit.is_equivalent(u.one): raise UnitsError('wrap_phase should be dimensionless when ' 'normalize_phase=True') else: if wrap_phase < 0 or wrap_phase > 1: raise ValueError('wrap_phase should be between 0 and 1') else: wrap_phase = wrap_phase * period_sec else: if isinstance(wrap_phase, Quantity) and wrap_phase.unit.physical_type == 'time': if wrap_phase < 0 or wrap_phase > period: raise ValueError('wrap_phase should be between 0 and the period') else: wrap_phase = wrap_phase.to_value(u.s) else: raise UnitsError('wrap_phase should be a Quantity in units ' 'of time when normalize_phase=False') relative_time_sec = (((self.time - epoch_time).sec + epoch_phase_sec + (period_sec - wrap_phase)) % period_sec - (period_sec - wrap_phase)) folded_time = TimeDelta(relative_time_sec * u.s) if normalize_phase: folded_time = (folded_time / period).decompose() period = period_sec = 1 with folded._delay_required_column_checks(): folded.remove_column('time') folded.add_column(folded_time, name='time', index=0) return folded def __getitem__(self, item): if self._is_list_or_tuple_of_str(item): if 'time' not in item: out = QTable([self[x] for x in item], meta=deepcopy(self.meta), copy_indices=self._copy_indices) out._groups = groups.TableGroups(out, indices=self.groups._indices, keys=self.groups._keys) return out return super().__getitem__(item) def add_column(self, *args, **kwargs): """ See :meth:`~astropy.table.Table.add_column`. """ # Note that the docstring is inherited from QTable result = super().add_column(*args, **kwargs) if len(self.indices) == 0 and 'time' in self.colnames: self.add_index('time') return result def add_columns(self, *args, **kwargs): """ See :meth:`~astropy.table.Table.add_columns`. """ # Note that the docstring is inherited from QTable result = super().add_columns(*args, **kwargs) if len(self.indices) == 0 and 'time' in self.colnames: self.add_index('time') return result @classmethod def from_pandas(self, df, time_scale='utc'): """ Convert a :class:`~pandas.DataFrame` to a :class:`astropy.timeseries.TimeSeries`. Parameters ---------- df : :class:`pandas.DataFrame` A pandas :class:`pandas.DataFrame` instance. time_scale : str The time scale to pass into `astropy.time.Time`. Defaults to ``UTC``. """ from pandas import DataFrame, DatetimeIndex if not isinstance(df, DataFrame): raise TypeError("Input should be a pandas DataFrame") if not isinstance(df.index, DatetimeIndex): raise TypeError("DataFrame does not have a DatetimeIndex") time = Time(df.index, scale=time_scale) table = Table.from_pandas(df) return TimeSeries(time=time, data=table) def to_pandas(self): """ Convert this :class:`~astropy.timeseries.TimeSeries` to a :class:`~pandas.DataFrame` with a :class:`~pandas.DatetimeIndex` index. Returns ------- dataframe : :class:`pandas.DataFrame` A pandas :class:`pandas.DataFrame` instance """ return Table(self).to_pandas(index='time') @classmethod def read(self, filename, time_column=None, time_format=None, time_scale=None, format=None, *args, **kwargs): """ Read and parse a file and returns a `astropy.timeseries.TimeSeries`. This method uses the unified I/O infrastructure in Astropy which makes it easy to define readers/writers for various classes (https://docs.astropy.org/en/stable/io/unified.html). By default, this method will try and use readers defined specifically for the `astropy.timeseries.TimeSeries` class - however, it is also possible to use the ``format`` keyword to specify formats defined for the `astropy.table.Table` class - in this case, you will need to also provide the column names for column containing the start times for the bins, as well as other column names (see the Parameters section below for details):: >>> from astropy.timeseries import TimeSeries >>> ts = TimeSeries.read('sampled.dat', format='ascii.ecsv', ... time_column='date') # doctest: +SKIP Parameters ---------- filename : str File to parse. format : str File format specifier. time_column : str, optional The name of the time column. time_format : str, optional The time format for the time column. time_scale : str, optional The time scale for the time column. *args : tuple, optional Positional arguments passed through to the data reader. **kwargs : dict, optional Keyword arguments passed through to the data reader. Returns ------- out : `astropy.timeseries.sampled.TimeSeries` TimeSeries corresponding to file contents. Notes ----- """ try: # First we try the readers defined for the BinnedTimeSeries class return super().read(filename, format=format, *args, **kwargs) except TypeError: # Otherwise we fall back to the default Table readers if time_column is None: raise ValueError("``time_column`` should be provided since the default Table readers are being used.") table = Table.read(filename, format=format, *args, **kwargs) if time_column in table.colnames: time = Time(table.columns[time_column], scale=time_scale, format=time_format) table.remove_column(time_column) else: raise ValueError(f"Time column '{time_column}' not found in the input data.") return TimeSeries(time=time, data=table)
bsd-3-clause
drammock/mne-python
tutorials/inverse/20_dipole_fit.py
5
5301
# -*- coding: utf-8 -*- """ ============================================================ Source localization with equivalent current dipole (ECD) fit ============================================================ This shows how to fit a dipole :footcite:`Sarvas1987` using mne-python. For a comparison of fits between MNE-C and mne-python, see `this gist <https://gist.github.com/larsoner/ca55f791200fe1dc3dd2>`__. """ from os import path as op import numpy as np import matplotlib.pyplot as plt import mne from mne.forward import make_forward_dipole from mne.evoked import combine_evoked from mne.label import find_pos_in_annot from mne.simulation import simulate_evoked from nilearn.plotting import plot_anat from nilearn.datasets import load_mni152_template data_path = mne.datasets.sample.data_path() subjects_dir = op.join(data_path, 'subjects') fname_ave = op.join(data_path, 'MEG', 'sample', 'sample_audvis-ave.fif') fname_cov = op.join(data_path, 'MEG', 'sample', 'sample_audvis-cov.fif') fname_bem = op.join(subjects_dir, 'sample', 'bem', 'sample-5120-bem-sol.fif') fname_trans = op.join(data_path, 'MEG', 'sample', 'sample_audvis_raw-trans.fif') fname_surf_lh = op.join(subjects_dir, 'sample', 'surf', 'lh.white') ############################################################################### # Let's localize the N100m (using MEG only) evoked = mne.read_evokeds(fname_ave, condition='Right Auditory', baseline=(None, 0)) evoked.pick_types(meg=True, eeg=False) evoked_full = evoked.copy() evoked.crop(0.07, 0.08) # Fit a dipole dip = mne.fit_dipole(evoked, fname_cov, fname_bem, fname_trans)[0] # Plot the result in 3D brain with the MRI image. dip.plot_locations(fname_trans, 'sample', subjects_dir, mode='orthoview') ############################################################################### # Plot the result in 3D brain with the MRI image using Nilearn # In MRI coordinates and in MNI coordinates (template brain) trans = mne.read_trans(fname_trans) subject = 'sample' mni_pos = mne.head_to_mni(dip.pos, mri_head_t=trans, subject=subject, subjects_dir=subjects_dir) mri_pos = mne.head_to_mri(dip.pos, mri_head_t=trans, subject=subject, subjects_dir=subjects_dir) # In the meantime let's find an anatomical label for the best fitted dipole best_dip_id = dip.gof.argmax() best_dip_mri_pos = mri_pos[best_dip_id] label = find_pos_in_annot(best_dip_mri_pos, subject=subject, subjects_dir=subjects_dir, annot='aparc.a2009s+aseg') # Draw dipole position on MRI scan and add anatomical label from parcellation t1_fname = op.join(subjects_dir, subject, 'mri', 'T1.mgz') fig_T1 = plot_anat(t1_fname, cut_coords=mri_pos[0], title=f'Dipole location: {label}') template = load_mni152_template() fig_template = plot_anat(template, cut_coords=mni_pos[0], title='Dipole loc. (MNI Space)') ############################################################################### # Calculate and visualise magnetic field predicted by dipole with maximum GOF # and compare to the measured data, highlighting the ipsilateral (right) source fwd, stc = make_forward_dipole(dip, fname_bem, evoked.info, fname_trans) pred_evoked = simulate_evoked(fwd, stc, evoked.info, cov=None, nave=np.inf) # find time point with highest GOF to plot best_idx = np.argmax(dip.gof) best_time = dip.times[best_idx] print('Highest GOF %0.1f%% at t=%0.1f ms with confidence volume %0.1f cm^3' % (dip.gof[best_idx], best_time * 1000, dip.conf['vol'][best_idx] * 100 ** 3)) # remember to create a subplot for the colorbar fig, axes = plt.subplots(nrows=1, ncols=4, figsize=[10., 3.4], gridspec_kw=dict(width_ratios=[1, 1, 1, 0.1], top=0.85)) vmin, vmax = -400, 400 # make sure each plot has same colour range # first plot the topography at the time of the best fitting (single) dipole plot_params = dict(times=best_time, ch_type='mag', outlines='skirt', colorbar=False, time_unit='s') evoked.plot_topomap(time_format='Measured field', axes=axes[0], **plot_params) # compare this to the predicted field pred_evoked.plot_topomap(time_format='Predicted field', axes=axes[1], **plot_params) # Subtract predicted from measured data (apply equal weights) diff = combine_evoked([evoked, pred_evoked], weights=[1, -1]) plot_params['colorbar'] = True diff.plot_topomap(time_format='Difference', axes=axes[2:], **plot_params) fig.suptitle('Comparison of measured and predicted fields ' 'at {:.0f} ms'.format(best_time * 1000.), fontsize=16) fig.tight_layout() ############################################################################### # Estimate the time course of a single dipole with fixed position and # orientation (the one that maximized GOF) over the entire interval dip_fixed = mne.fit_dipole(evoked_full, fname_cov, fname_bem, fname_trans, pos=dip.pos[best_idx], ori=dip.ori[best_idx])[0] dip_fixed.plot(time_unit='s') ############################################################################## # References # ---------- # .. footbibliography::
bsd-3-clause
ishanic/scikit-learn
sklearn/manifold/tests/test_isomap.py
226
3941
from itertools import product import numpy as np from numpy.testing import assert_almost_equal, assert_array_almost_equal from sklearn import datasets from sklearn import manifold from sklearn import neighbors from sklearn import pipeline from sklearn import preprocessing from sklearn.utils.testing import assert_less eigen_solvers = ['auto', 'dense', 'arpack'] path_methods = ['auto', 'FW', 'D'] def test_isomap_simple_grid(): # Isomap should preserve distances when all neighbors are used N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # distances from each point to all others G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() assert_array_almost_equal(G, G_iso) def test_isomap_reconstruction_error(): # Same setup as in test_isomap_simple_grid, with an added dimension N_per_side = 5 Npts = N_per_side ** 2 n_neighbors = Npts - 1 # grid of equidistant points in 2D, n_components = n_dim X = np.array(list(product(range(N_per_side), repeat=2))) # add noise in a third dimension rng = np.random.RandomState(0) noise = 0.1 * rng.randn(Npts, 1) X = np.concatenate((X, noise), 1) # compute input kernel G = neighbors.kneighbors_graph(X, n_neighbors, mode='distance').toarray() centerer = preprocessing.KernelCenterer() K = centerer.fit_transform(-0.5 * G ** 2) for eigen_solver in eigen_solvers: for path_method in path_methods: clf = manifold.Isomap(n_neighbors=n_neighbors, n_components=2, eigen_solver=eigen_solver, path_method=path_method) clf.fit(X) # compute output kernel G_iso = neighbors.kneighbors_graph(clf.embedding_, n_neighbors, mode='distance').toarray() K_iso = centerer.fit_transform(-0.5 * G_iso ** 2) # make sure error agrees reconstruction_error = np.linalg.norm(K - K_iso) / Npts assert_almost_equal(reconstruction_error, clf.reconstruction_error()) def test_transform(): n_samples = 200 n_components = 10 noise_scale = 0.01 # Create S-curve dataset X, y = datasets.samples_generator.make_s_curve(n_samples, random_state=0) # Compute isomap embedding iso = manifold.Isomap(n_components, 2) X_iso = iso.fit_transform(X) # Re-embed a noisy version of the points rng = np.random.RandomState(0) noise = noise_scale * rng.randn(*X.shape) X_iso2 = iso.transform(X + noise) # Make sure the rms error on re-embedding is comparable to noise_scale assert_less(np.sqrt(np.mean((X_iso - X_iso2) ** 2)), 2 * noise_scale) def test_pipeline(): # check that Isomap works fine as a transformer in a Pipeline # only checks that no error is raised. # TODO check that it actually does something useful X, y = datasets.make_blobs(random_state=0) clf = pipeline.Pipeline( [('isomap', manifold.Isomap()), ('clf', neighbors.KNeighborsClassifier())]) clf.fit(X, y) assert_less(.9, clf.score(X, y))
bsd-3-clause
elkingtonmcb/scikit-learn
examples/decomposition/plot_incremental_pca.py
244
1878
""" =============== Incremental PCA =============== Incremental principal component analysis (IPCA) is typically used as a replacement for principal component analysis (PCA) when the dataset to be decomposed is too large to fit in memory. IPCA builds a low-rank approximation for the input data using an amount of memory which is independent of the number of input data samples. It is still dependent on the input data features, but changing the batch size allows for control of memory usage. This example serves as a visual check that IPCA is able to find a similar projection of the data to PCA (to a sign flip), while only processing a few samples at a time. This can be considered a "toy example", as IPCA is intended for large datasets which do not fit in main memory, requiring incremental approaches. """ print(__doc__) # Authors: Kyle Kastner # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA, IncrementalPCA iris = load_iris() X = iris.data y = iris.target n_components = 2 ipca = IncrementalPCA(n_components=n_components, batch_size=10) X_ipca = ipca.fit_transform(X) pca = PCA(n_components=n_components) X_pca = pca.fit_transform(X) for X_transformed, title in [(X_ipca, "Incremental PCA"), (X_pca, "PCA")]: plt.figure(figsize=(8, 8)) for c, i, target_name in zip("rgb", [0, 1, 2], iris.target_names): plt.scatter(X_transformed[y == i, 0], X_transformed[y == i, 1], c=c, label=target_name) if "Incremental" in title: err = np.abs(np.abs(X_pca) - np.abs(X_ipca)).mean() plt.title(title + " of iris dataset\nMean absolute unsigned error " "%.6f" % err) else: plt.title(title + " of iris dataset") plt.legend(loc="best") plt.axis([-4, 4, -1.5, 1.5]) plt.show()
bsd-3-clause
mzwiessele/mzparam
paramz/transformations.py
2
8925
#=============================================================================== # Copyright (c) 2012 - 2014, GPy authors (see AUTHORS.txt). # Copyright (c) 2015, Max Zwiessele # # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of paramax nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #=============================================================================== import numpy as np from .domains import _POSITIVE,_NEGATIVE, _BOUNDED import weakref, logging import sys _log_lim_val = np.log(np.finfo(np.float64).max) _exp_lim_val = np.finfo(np.float64).max _lim_val = 36.0 epsilon = np.finfo(np.float64).resolution #=============================================================================== # Fixing constants __fixed__ = "fixed" FIXED = False UNFIXED = True #=============================================================================== logger = logging.getLogger(__name__) class Transformation(object): domain = None _instance = None def __new__(cls, *args, **kwargs): if not cls._instance or cls._instance.__class__ is not cls: cls._instance = super(Transformation, cls).__new__(cls, *args, **kwargs) return cls._instance def f(self, opt_param): raise NotImplementedError def finv(self, model_param): raise NotImplementedError def log_jacobian(self, model_param): """ compute the log of the jacobian of f, evaluated at f(x)= model_param """ logger.warning("log Jacobian for transformation {} not implemented, approximating by 0.".format(self.__class__)) return 0. def log_jacobian_grad(self, model_param): """ compute the drivative of the log of the jacobian of f, evaluated at f(x)= model_param """ logger.warning("gradient of log Jacobian for transformation {} not implemented, approximating by 0.".format(self.__class__)) return 0. def gradfactor(self, model_param, dL_dmodel_param): """ df(opt_param)_dopt_param evaluated at self.f(opt_param)=model_param, times the gradient dL_dmodel_param, i.e.: define .. math:: \frac{\frac{\partial L}{\partial f}\left(\left.\partial f(x)}{\partial x}\right|_{x=f^{-1}(f)\right)} """ raise NotImplementedError def gradfactor_non_natural(self, model_param, dL_dmodel_param): return self.gradfactor(model_param, dL_dmodel_param) def initialize(self, f): """ produce a sensible initial value for f(x)""" raise NotImplementedError def plot(self, xlabel=r'transformed $\theta$', ylabel=r'$\theta$', axes=None, *args,**kw): assert "matplotlib" in sys.modules, "matplotlib package has not been imported." import matplotlib.pyplot as plt x = np.linspace(-8,8) plt.plot(x, self.f(x), *args, ax=axes, **kw) axes = plt.gca() axes.set_xlabel(xlabel) axes.set_ylabel(ylabel) def __str__(self): raise NotImplementedError def __repr__(self): return self.__class__.__name__ class Logexp(Transformation): domain = _POSITIVE def f(self, x): return np.where(x>_lim_val, x, np.log1p(np.exp(np.clip(x, -_log_lim_val, _lim_val)))) #+ epsilon #raises overflow warning: return np.where(x>_lim_val, x, np.log(1. + np.exp(x))) def finv(self, f): return np.where(f>_lim_val, f, np.log(np.expm1(f))) def gradfactor(self, f, df): return df*np.where(f>_lim_val, 1., - np.expm1(-f)) def initialize(self, f): if np.any(f < 0.): logger.info("Warning: changing parameters to satisfy constraints") return np.abs(f) def log_jacobian(self, model_param): return np.where(model_param>_lim_val, model_param, np.log(np.expm1(model_param))) - model_param def log_jacobian_grad(self, model_param): return 1./(np.expm1(model_param)) def __str__(self): return '+ve' class Exponent(Transformation): domain = _POSITIVE def f(self, x): return np.where(x<_lim_val, np.where(x>-_lim_val, np.exp(x), np.exp(-_lim_val)), np.exp(_lim_val)) def finv(self, x): return np.log(x) def gradfactor(self, f, df): return np.einsum('i,i->i', df, f) def initialize(self, f): if np.any(f < 0.): logger.info("Warning: changing parameters to satisfy constraints") return np.abs(f) def log_jacobian(self, model_param): return np.log(model_param) def log_jacobian_grad(self, model_param): return 1./model_param def __str__(self): return '+ve' class NegativeLogexp(Transformation): domain = _NEGATIVE logexp = Logexp() def f(self, x): return -self.logexp.f(x) # np.log(1. + np.exp(x)) def finv(self, f): return self.logexp.finv(-f) # np.log(np.exp(-f) - 1.) def gradfactor(self, f, df): return self.logexp.gradfactor(-f, -df) def initialize(self, f): return -self.logexp.initialize(-f) # np.abs(f) def __str__(self): return '-ve' class NegativeExponent(Exponent): domain = _NEGATIVE def f(self, x): return -Exponent.f(self, x) def finv(self, f): return -Exponent.finv(self, -f) def gradfactor(self, f, df): return -Exponent.gradfactor(self, f, df) def initialize(self, f): return -Exponent.initialize(self, f) #np.abs(f) def __str__(self): return '-ve' class Square(Transformation): domain = _POSITIVE def f(self, x): return x ** 2 def finv(self, x): return np.sqrt(x) def gradfactor(self, f, df): return np.einsum('i,i->i', df, 2 * np.sqrt(f)) def initialize(self, f): return np.abs(f) def __str__(self): return '+sq' class Logistic(Transformation): domain = _BOUNDED _instances = [] def __new__(cls, lower=1e-6, upper=1e-6, *args, **kwargs): if cls._instances: cls._instances[:] = [instance for instance in cls._instances if instance()] for instance in cls._instances: if instance().lower == lower and instance().upper == upper: return instance() newfunc = super(Transformation, cls).__new__ if newfunc is object.__new__: o = newfunc(cls) else: o = newfunc(cls, lower, upper, *args, **kwargs) cls._instances.append(weakref.ref(o)) return cls._instances[-1]() def __init__(self, lower, upper): assert lower < upper self.lower, self.upper = float(lower), float(upper) self.difference = self.upper - self.lower def f(self, x): if (x<-300.).any(): x = x.copy() x[x<-300.] = -300. return self.lower + self.difference / (1. + np.exp(-x)) def finv(self, f): return np.log(np.clip(f - self.lower, 1e-10, np.inf) / np.clip(self.upper - f, 1e-10, np.inf)) def gradfactor(self, f, df): return np.einsum('i,i->i', df, (f - self.lower) * (self.upper - f) / self.difference) def initialize(self, f): if np.any(np.logical_or(f < self.lower, f > self.upper)): logger.info("Warning: changing parameters to satisfy constraints") #return np.where(np.logical_or(f < self.lower, f > self.upper), self.f(f * 0.), f) #FIXME: Max, zeros_like right? return np.where(np.logical_or(f < self.lower, f > self.upper), self.f(np.zeros_like(f)), f) def __str__(self): return '{},{}'.format(self.lower, self.upper)
bsd-3-clause
ihmeuw/vivarium
tests/framework/test_population.py
1
2608
import pandas as pd import pytest from vivarium.framework.population import PopulationView, InitializerComponentSet, PopulationError, PopulationManager class DummyPopulationManager: def __init__(self): self.get_population = lambda _ : pd.DataFrame({'age': [0, 10, 20, 30, 40, 50, 60, 70], 'sex': ['Male', 'Female']*4}) def test_create_PopulationView_with_all_columns(): manager = DummyPopulationManager() view = PopulationView(manager, 0) assert set(view.columns) == {'age', 'sex'} def test_initializer_set_fail_type(): component_set = InitializerComponentSet() with pytest.raises(TypeError): component_set.add(lambda: 'test', ['test_column']) def initializer(): return 'test' with pytest.raises(TypeError): component_set.add(initializer, ['test_column']) class UnnamedComponent: def initializer(self): return 'test' class Component: def __init__(self, name): self.name = name def initializer(self): return 'test' def other_initializer(self): return 'whoops' def test_initializer_set_fail_attr(): component_set = InitializerComponentSet() with pytest.raises(AttributeError): component_set.add(UnnamedComponent().initializer, ['test_column']) def test_initializer_set_duplicate_component(): component_set = InitializerComponentSet() component = Component('test') component_set.add(component.initializer, ['test_column1']) with pytest.raises(PopulationError, match='multiple population initializers'): component_set.add(component.other_initializer, ['test_column2']) def test_initializer_set_duplicate_columns(): component_set = InitializerComponentSet() component1 = Component('test1') component2 = Component('test2') columns = ['test_column'] component_set.add(component1.initializer, columns) with pytest.raises(PopulationError, match='both registered initializers'): component_set.add(component2.initializer, columns) with pytest.raises(PopulationError, match='both registered initializers'): component_set.add(component2.initializer, ['sneaky_column'] + columns) def test_initializer_set(): component_set = InitializerComponentSet() for i in range(10): component = Component(i) columns = [f'test_column_{i}_{j}' for j in range(5)] component_set.add(component.initializer, columns) def test_get_view_with_no_query(): manager = PopulationManager() view = manager._get_view(columns=['age','sex']) assert view.query == 'tracked == True'
gpl-3.0
LohithBlaze/scikit-learn
sklearn/ensemble/tests/test_base.py
284
1328
""" Testing for the base module (sklearn.ensemble.base). """ # Authors: Gilles Louppe # License: BSD 3 clause from numpy.testing import assert_equal from nose.tools import assert_true from sklearn.utils.testing import assert_raise_message from sklearn.datasets import load_iris from sklearn.ensemble import BaggingClassifier from sklearn.linear_model import Perceptron def test_base(): # Check BaseEnsemble methods. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=3) iris = load_iris() ensemble.fit(iris.data, iris.target) ensemble.estimators_ = [] # empty the list and create estimators manually ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator() ensemble._make_estimator(append=False) assert_equal(3, len(ensemble)) assert_equal(3, len(ensemble.estimators_)) assert_true(isinstance(ensemble[0], Perceptron)) def test_base_zero_n_estimators(): # Check that instantiating a BaseEnsemble with n_estimators<=0 raises # a ValueError. ensemble = BaggingClassifier(base_estimator=Perceptron(), n_estimators=0) iris = load_iris() assert_raise_message(ValueError, "n_estimators must be greater than zero, got 0.", ensemble.fit, iris.data, iris.target)
bsd-3-clause
dagwieers/ansible
hacking/aws_config/build_iam_policy_framework.py
25
11861
# Requires pandas, bs4, html5lib, and lxml # # Call script with the output from aws_resource_actions callback, e.g. # python build_iam_policy_framework.py ['ec2:AuthorizeSecurityGroupEgress', 'ec2:AuthorizeSecurityGroupIngress', 'sts:GetCallerIdentity'] # # The sample output: # { # "Version": "2012-10-17", # "Statement": [ # { # "Sid": "AnsibleEditor0", # "Effect": "Allow", # "Action": [ # "ec2:AuthorizeSecurityGroupEgress", # "ec2:AuthorizeSecurityGroupIngress" # ], # "Resource": "arn:aws:ec2:${Region}:${Account}:security-group/${SecurityGroupId}" # }, # { # "Sid": "AnsibleEditor1", # "Effect": "Allow", # "Action": [ # "sts:GetCallerIdentity" # ], # "Resource": "*" # } # ] # } # # Policy troubleshooting: # - If there are more actions in the policy than you provided, AWS has documented dependencies for some of your actions and # those have been added to the policy. # - If there are fewer actions in the policy than you provided, some of your actions are not in the IAM table of actions for # that service. For example, the API call s3:DeleteObjects does not actually correlate to the permission needed in a policy. # In this case s3:DeleteObject is the permission required to allow both the s3:DeleteObjects action and the s3:DeleteObject action. # - The policies output are only as accurate as the AWS documentation. If the policy does not permit the # necessary actions, look for undocumented dependencies. For example, redshift:CreateCluster requires ec2:DescribeVpcs, # ec2:DescribeSubnets, ec2:DescribeSecurityGroups, and ec2:DescribeInternetGateways, but AWS does not document this. # import json import requests import sys missing_dependencies = [] try: import pandas as pd except ImportError: missing_dependencies.append('pandas') try: import bs4 except ImportError: missing_dependencies.append('bs4') try: import html5lib except ImportError: missing_dependencies.append('html5lib') try: import lxml except ImportError: missing_dependencies.append('lxml') irregular_service_names = { 'a4b': 'alexaforbusiness', 'appstream': 'appstream2.0', 'acm': 'certificatemanager', 'acm-pca': 'certificatemanagerprivatecertificateauthority', 'aws-marketplace-management': 'marketplacemanagementportal', 'ce': 'costexplorerservice', 'cognito-identity': 'cognitoidentity', 'cognito-sync': 'cognitosync', 'cognito-idp': 'cognitouserpools', 'cur': 'costandusagereport', 'dax': 'dynamodbacceleratordax', 'dlm': 'datalifecyclemanager', 'dms': 'databasemigrationservice', 'ds': 'directoryservice', 'ec2messages': 'messagedeliveryservice', 'ecr': 'ec2containerregistry', 'ecs': 'elasticcontainerservice', 'eks': 'elasticcontainerserviceforkubernetes', 'efs': 'elasticfilesystem', 'es': 'elasticsearchservice', 'events': 'cloudwatchevents', 'firehose': 'kinesisfirehose', 'fms': 'firewallmanager', 'health': 'healthapisandnotifications', 'importexport': 'importexportdiskservice', 'iot1click': 'iot1-click', 'kafka': 'managedstreamingforkafka', 'kinesisvideo': 'kinesisvideostreams', 'kms': 'keymanagementservice', 'license-manager': 'licensemanager', 'logs': 'cloudwatchlogs', 'opsworks-cm': 'opsworksconfigurationmanagement', 'mediaconnect': 'elementalmediaconnect', 'mediaconvert': 'elementalmediaconvert', 'medialive': 'elementalmedialive', 'mediapackage': 'elementalmediapackage', 'mediastore': 'elementalmediastore', 'mgh': 'migrationhub', 'mobiletargeting': 'pinpoint', 'pi': 'performanceinsights', 'pricing': 'pricelist', 'ram': 'resourceaccessmanager', 'resource-groups': 'resourcegroups', 'sdb': 'simpledb', 'servicediscovery': 'cloudmap', 'serverlessrepo': 'serverlessapplicationrepository', 'sms': 'servermigrationservice', 'sms-voice': 'pinpointsmsandvoiceservice', 'sso-directory': 'ssodirectory', 'ssm': 'systemsmanager', 'ssmmessages': 'sessionmanagermessagegatewayservice', 'states': 'stepfunctions', 'sts': 'securitytokenservice', 'swf': 'simpleworkflowservice', 'tag': 'resourcegrouptaggingapi', 'transfer': 'transferforsftp', 'waf-regional': 'wafregional', 'wam': 'workspacesapplicationmanager', 'xray': 'x-ray' } irregular_service_links = { 'apigateway': [ 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_manageamazonapigateway.html' ], 'aws-marketplace': [ 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmarketplace.html', 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsmarketplacemeteringservice.html', 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsprivatemarketplace.html' ], 'discovery': [ 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_applicationdiscovery.html' ], 'elasticloadbalancing': [ 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_elasticloadbalancing.html', 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_elasticloadbalancingv2.html' ], 'globalaccelerator': [ 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_globalaccelerator.html' ] } def get_docs_by_prefix(prefix): amazon_link_form = 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazon{0}.html' aws_link_form = 'https://docs.aws.amazon.com/IAM/latest/UserGuide/list_aws{0}.html' if prefix in irregular_service_links: links = irregular_service_links[prefix] else: if prefix in irregular_service_names: prefix = irregular_service_names[prefix] links = [amazon_link_form.format(prefix), aws_link_form.format(prefix)] return links def get_html(links): html_list = [] for link in links: html = requests.get(link).content try: parsed_html = pd.read_html(html) html_list.append(parsed_html) except ValueError as e: if 'No tables found' in str(e): pass else: raise e return html_list def get_tables(service): links = get_docs_by_prefix(service) html_list = get_html(links) action_tables = [] arn_tables = [] for df_list in html_list: for df in df_list: table = json.loads(df.to_json(orient='split')) table_data = table['data'][0] if 'Actions' in table_data and 'Resource Types (*required)' in table_data: action_tables.append(table['data'][1::]) elif 'Resource Types' in table_data and 'ARN' in table_data: arn_tables.append(table['data'][1::]) # Action table indices: # 0: Action, 1: Description, 2: Access level, 3: Resource type, 4: Condition keys, 5: Dependent actions # ARN tables indices: # 0: Resource type, 1: ARN template, 2: Condition keys return action_tables, arn_tables def add_dependent_action(resources, dependency): resource, action = dependency.split(':') if resource in resources: resources[resource].append(action) else: resources[resource] = [action] return resources def get_dependent_actions(resources): for service in dict(resources): action_tables, arn_tables = get_tables(service) for found_action_table in action_tables: for action_stuff in found_action_table: if action_stuff is None: continue if action_stuff[0] in resources[service] and action_stuff[5]: dependencies = action_stuff[5].split() if isinstance(dependencies, list): for dependency in dependencies: resources = add_dependent_action(resources, dependency) else: resources = add_dependent_action(resources, dependencies) return resources def get_actions_by_service(resources): service_action_dict = {} dependencies = {} for service in resources: action_tables, arn_tables = get_tables(service) # Create dict of the resource type to the corresponding ARN arn_dict = {} for found_arn_table in arn_tables: for arn_stuff in found_arn_table: arn_dict["{0}*".format(arn_stuff[0])] = arn_stuff[1] # Create dict of the action to the corresponding ARN action_dict = {} for found_action_table in action_tables: for action_stuff in found_action_table: if action_stuff[0] is None: continue if arn_dict.get(action_stuff[3]): action_dict[action_stuff[0]] = arn_dict[action_stuff[3]] else: action_dict[action_stuff[0]] = None service_action_dict[service] = action_dict return service_action_dict def get_resource_arns(aws_actions, action_dict): resource_arns = {} for resource_action in aws_actions: resource, action = resource_action.split(':') if action not in action_dict: continue if action_dict[action] is None: resource = "*" else: resource = action_dict[action].replace("${Partition}", "aws") if resource not in resource_arns: resource_arns[resource] = [] resource_arns[resource].append(resource_action) return resource_arns def get_resources(actions): resources = {} for action in actions: resource, action = action.split(':') if resource not in resources: resources[resource] = [] resources[resource].append(action) return resources def combine_arn_actions(resources, service_action_arn_dict): arn_actions = {} for service in service_action_arn_dict: service_arn_actions = get_resource_arns(aws_actions, service_action_arn_dict[service]) for resource in service_arn_actions: if resource in arn_actions: arn_actions[resource].extend(service_arn_actions[resource]) else: arn_actions[resource] = service_arn_actions[resource] return arn_actions def combine_actions_and_dependent_actions(resources): aws_actions = [] for resource in resources: for action in resources[resource]: aws_actions.append('{0}:{1}'.format(resource, action)) return set(aws_actions) def get_actions_restricted_by_arn(aws_actions): resources = get_resources(aws_actions) resources = get_dependent_actions(resources) service_action_arn_dict = get_actions_by_service(resources) aws_actions = combine_actions_and_dependent_actions(resources) return combine_arn_actions(aws_actions, service_action_arn_dict) def main(aws_actions): arn_actions = get_actions_restricted_by_arn(aws_actions) statement = [] for resource_restriction in arn_actions: statement.append({ "Sid": "AnsibleEditor{0}".format(len(statement)), "Effect": "Allow", "Action": arn_actions[resource_restriction], "Resource": resource_restriction }) policy = {"Version": "2012-10-17", "Statement": statement} print(json.dumps(policy, indent=4)) if __name__ == '__main__': if missing_dependencies: sys.exit('Missing Python libraries: {0}'.format(', '.join(missing_dependencies))) actions = sys.argv[1:] if len(actions) == 1: actions = sys.argv[1].split(',') aws_actions = [action.strip('[], "\'') for action in actions] main(aws_actions)
gpl-3.0
smjhnits/Praktikum_TU_D_16-17
Anfängerpraktikum/Protokolle/V302_Brückenschaltungen/Auswertung/Auswertung.py
1
4533
import numpy as np from scipy.stats import sem from uncertainties import ufloat import uncertainties.unumpy as unp import matplotlib.pyplot as plt from scipy.optimize import curve_fit def Mean_Std(Werte): s = 1/np.sqrt(len(Werte)) return ufloat(np.mean(Werte), s * np.std(Werte, ddof = 1)) # Wheatstone Messung_Wert_10 = np.array([[1000, 196, 804], [664 , 268, 732], [332 , 422, 578]]) Messung_Wert_12 = np.array([[332 , 543, 457], [664 , 373, 627], [1000, 284, 716]]) Wheatstone10= np.array([row[0] * row[1] / row[2] for row in Messung_Wert_10]) Wheatstone12 = np.array([row[0] * row[1] / row[2] for row in Messung_Wert_12]) print("Ergebnisse für Wheatstone: ", '\n', "Wert 10: ", Wheatstone10, Mean_Std(Wheatstone10), '\n', "Wert 12: ", Wheatstone12, Mean_Std(Wheatstone12), '\n') # Kapazität Messung_Wert_3 = np.array([[450, 519, 481], [399, 490, 510], [597, 590, 410]]) Messung_Wert_1 = np.array([[450, 407, 593], [399, 380, 620], [597, 478, 522]]) Kapazitäten3 = np.array([row[0] * row[2] / row[1] for row in Messung_Wert_3]) Kapazitäten1 = np.array([row[0] * row[2] / row[1] for row in Messung_Wert_1]) print("Ergebnisse für Kapazitäten: ", '\n', "Wert 3: ", Kapazitäten3, Mean_Std(Kapazitäten3), '\n', "Wert 1: ", Kapazitäten1, Mean_Std(Kapazitäten1), '\n') # RC - Glied Messung_Wert_8 = np.array([[450, 371, 606, 394], [399, 418, 578, 422], [597, 278, 673, 327]]) Messung_Wert_9 = np.array([[450, 466, 511, 489], [399, 524, 482, 518], [597, 352, 581, 419]]) Kapazitäten8 = np.array([row[0] * row[3] / row[2] for row in Messung_Wert_8]) Kapazitäten9 = np.array([row[0] * row[3] / row[2] for row in Messung_Wert_9]) Wiederstand8 = np.array([row[1] * row[2] / row[3] for row in Messung_Wert_8]) Wiederstand9 = np.array([row[1] * row[2] / row[3] for row in Messung_Wert_9]) print("Ergebnisse für RC-Glied: ", '\n') print("Ergebnisse Kapazitäten: ", '\n', "Wert 8: ", Kapazitäten8, Mean_Std(Kapazitäten8), '\n', "Wert 9: ", Kapazitäten9, Mean_Std(Kapazitäten9)) print("Ergebnisse Wiederstände: ", '\n', "Wert 8: ", Wiederstand8, Mean_Std(Wiederstand8), '\n', "Wert 9: ", Wiederstand9, Mean_Std(Wiederstand9), '\n') # RL - Glied klassisch Klassisch_Wert_16 = np.array([[14.6, 45, 907, 83], [20.1, 57, 875, 125], [27.5, 85, 837, 163]]) Klassisch_Wert_18 = np.array([[14.6, 108, 775, 225], [20.1, 143, 715, 285], [27.5, 197, 648, 352]]) Induktivität16 = np.array([row[0] * row[2] / row[3] for row in Klassisch_Wert_16]) Induktivität18 = np.array([row[0] * row[2] / row[3] for row in Klassisch_Wert_18]) Wiederstand16 = np.array([row[1] * row[2] / row[3] for row in Klassisch_Wert_16]) Wiederstand18 = np.array([row[1] * row[2] / row[3] for row in Klassisch_Wert_18]) print("Ergebnisse für RL-Glied klassisch: ", '\n') print("Ergebnisse Induktivität: ", '\n', "Wert 16: ", Induktivität16, Mean_Std(Induktivität16), '\n', "Wert 18: ", Induktivität18, Mean_Std(Induktivität18)) print("Ergebnisse Wiederstände: ", '\n', "Wert 16: ", Wiederstand16, Mean_Std(Wiederstand16), '\n', "Wert 18: ", Wiederstand18, Mean_Std(Wiederstand18), '\n') # RL - Glied Maxwell C4 = 399 * 10**(-6) Maxwell_Wert_18 = np.array([[1000, 128, 347], [664, 193, 349], [332, 382, 348]]) Maxwell_Wert_16 = np.array([[1000, 347, 829], [664, 523, 829], [332, 1036, 829]]) mInduktivität16 = np.array([row[0] * row[1] * C4 for row in Maxwell_Wert_16]) mInduktivität18 = np.array([row[0] * row[1] * C4 for row in Maxwell_Wert_18]) mWiederstand16 = np.array([row[1] * row[0] / row[2] for row in Maxwell_Wert_16]) mWiederstand18 = np.array([row[1] * row[0] / row[2] for row in Maxwell_Wert_18]) print("Ergebnisse für RL-Glied Maxwell: ", '\n') print("Ergebnisse Induktivität: ", '\n', "Wert 16: ", mInduktivität16, Mean_Std(mInduktivität16), '\n', "Wert 18: ", mInduktivität18, Mean_Std(mInduktivität18)) print("Ergebnisse Wiederstände: ", '\n', "Wert 16: ", mWiederstand16, Mean_Std(mWiederstand16), '\n', "Wert 18: ", mWiederstand18, Mean_Std(mWiederstand18), '\n')
mit
hoburg/gpkit
gpkit/interactive/plot_sweep.py
1
3478
"Implements plot_sweep1d function" import matplotlib.pyplot as plt from ..exceptions import InvalidGPConstraint def assign_axes(var, posys, axes): "Assigns axes to posys, creating and formatting if necessary" if not hasattr(posys, "__iter__"): posys = [posys] N = len(posys) if axes is None: _, axes = plt.subplots(N, 1, sharex="col", figsize=(4.5, 3+1.5*N)) if N == 1: axes = [axes] format_and_label_axes(var, posys, axes) elif N == 1 and not hasattr(axes, "__len__"): axes = [axes] return posys, axes def format_and_label_axes(var, posys, axes, ylabel=True): "Formats and labels axes" for posy, ax in zip(posys, axes): if ylabel: if hasattr(posy, "key"): ylabel = (posy.key.descr.get("label", posy.key.name) + " [%s]" % posy.key.unitstr(dimless="-")) else: ylabel = str(posy) ax.set_ylabel(ylabel) ax.grid(color="0.6") # ax.set_frame_on(False) for item in [ax.xaxis.label, ax.yaxis.label]: item.set_fontsize(12) for item in ax.get_xticklabels() + ax.get_yticklabels(): item.set_fontsize(9) ax.tick_params(length=0) ax.spines['left'].set_visible(False) ax.spines['top'].set_visible(False) for i in ax.spines.values(): i.set_linewidth(0.6) i.set_color("0.6") i.set_linestyle("dotted") xlabel = (var.key.descr.get("label", var.key.name) + " [%s]" % var.key.unitstr(dimless="-")) ax.set_xlabel(xlabel) # pylint: disable=undefined-loop-variable plt.locator_params(nbins=4) plt.subplots_adjust(wspace=0.15) # pylint: disable=too-many-locals,too-many-branches,too-many-statements def plot_1dsweepgrid(model, sweeps, posys, origsol=None, tol=0.01, **solveargs): """Creates and plots a sweep from an existing model Example usage: f, _ = plot_sweep_1d(m, {'x': np.linspace(1, 2, 5)}, 'y') f.savefig('mysweep.png') """ origsubs = {swept: model.substitutions[swept] for swept in sweeps if swept in model.substitutions} if origsubs and not origsol: try: origsol = model.solve(**solveargs) except InvalidGPConstraint: origsol = model.localsolve(**solveargs) if not hasattr(posys, "__iter__"): posys = [posys] N, S = len(posys), len(sweeps) f, axes = plt.subplots(N, S, sharex='col', sharey='row', figsize=(4+2*S, 4+2*N)) plt.subplots_adjust(hspace=0.15) for i, (swept, swept_over) in enumerate(sweeps.items()): if isinstance(swept_over, tuple) and len(swept_over) == 2: sol = model.autosweep({swept: swept_over}, tol=tol, **solveargs) else: sol = model.sweep({swept: swept_over}, **solveargs) if len(sweeps) == 1: if len(posys) == 1: subaxes = [axes] else: subaxes = axes elif len(posys) == 1: subaxes = [axes[i]] else: subaxes = axes[:, i] sol.plot(posys, subaxes) if origsubs: for posy, ax in zip(posys, subaxes): ax.plot(origsubs[swept], origsol(posy), "ko", markersize=4) format_and_label_axes(swept, posys, subaxes, ylabel=(i == 0)) model.substitutions.update(origsubs) return f, axes
mit
Avikalp7/image-aesthetics-learning
src/ScraperScripts/TwitterScraping.py
1
4020
import tweepy import wget from tweepy import OAuthHandler import json import shutil import csv import os consumer_key = '<We can\'t make our key public here, please enter your own key here :D :)' consumer_secret = '...' access_token = '...' access_secret = '...' from pandas import DataFrame # from tweet import compute from math import exp @classmethod def parse(cls, api, raw): status = cls.first_parse(api, raw) setattr(status, 'json', json.dumps(raw)) return status metadata = open("output2.csv", 'a') wr = csv.writer(metadata,dialect='excel') # Status() is the data model for a tweet tweepy.models.Status.first_parse = tweepy.models.Status.parse # tweepy.models.Status.parse = parse # User() is the data model for a user profil tweepy.models.User.first_parse = tweepy.models.User.parse # tweepy.models.User.parse = parse # You need to do it for all the models you need def compute(name, count_num, max_num): tweepy.models.Status.parse = parse tweepy.models.User.parse = parse auth = OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_secret) print("Authentication successful") api = tweepy.API(auth) tweets = api.user_timeline(screen_name= name, count=200, include_rts=False, exclude_replies=True) # print(tweets) if len(tweets) == 0: last_id = 0 else: last_id = tweets[-1].id print("Successfully downloaded the tweet information") count = 0 while (1): count = count + 1 try: more_tweets = api.user_timeline(screen_name=name, count=200, include_rts=False, exclude_replies=True, max_id=last_id - 1) except: print ('Exception Handled!') continue # There are no more tweets if (len(more_tweets) == 0): break else: last_id = more_tweets[-1].id - 1 tweets = tweets + more_tweets media_files = [] for status in tweets: if len(media_files) >= max_num: break if 'media' in status.entities: media = status.entities['media'] if (media[0]['type'] == 'photo' and 'photo' in status.entities['media'][0]['expanded_url']): list = [str(status.author.name), str(status.retweet_count), str(status.favorite_count), str(status.created_at), str(status.user.followers_count),str(status.user.friends_count), (status.user.location).encode('utf-8'), (status.entities['media'][0]['expanded_url']).encode('utf-8'), (status.text).encode('utf-8')] wr.writerow(list) print(list) print('\n\n') print(media[0]['media_url']) media_files.append(media[0]['media_url']) else: continue # print media_files count = count_num print("\nNumber of images downloaded is " + str(len(media_files))) print("\nImage url extraction successful") folder_name = 'twitter_images' if(not os.path.isdir(os.path.join(os.getcwd()))): os.makedirs(folder_name) for media_file in media_files: count = count + 1 if(count%5 == 0): print("\n" + str(count) + " images have been downloaded") try: filename = wget.download(media_file) except: print("\nException Handled!") continue shutil.copyfile(filename, "." + "/" + folder_name + "/img" + str(count)) os.remove(filename) return count def sigmoid(x): return 1/float(1+exp(-x)) def preprocess(): df = DataFrame.from_csv('names.csv', header = 0) num = [] # print (df.keys) temp = list(df['Tweets(K)']) temp2 = list(df['Organisation_Handle']) # print (temp[0]) # temp.remove('Tweets(K)') mean = sum(temp)/float(len(temp)) count = 0 max_elem = max(temp) min_elem = min(temp) for x in temp: temp[count] = (temp[count] - mean)/float(max_elem - min_elem) count = count + 1 for i in range(0, len(temp)): j = int(300*sigmoid(temp[i])) num.append(j) return num, temp2 # names = ['Audi', 'BMW', 'CocaCola', 'drpepper', 'subway'] num_imgs, names = preprocess() current_count = 0 count = 0 for name in names[0:18]: print('Starting with following corp: ') print(name) current_count = compute(name, current_count, num_imgs[count]) count = count + 1
mit
Frankenberrypi/Plotter
charts.py
1
2282
#!/usr/bin/python import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pandas # Start some empty lists #timeBase = [] #timeL = [] #tempL = [] #humiL = [] # import the csv file df = pandas.read_csv('data.csv') print df.ix[:,1] # Temperature plot plt.plot(df.ix[:,0],df.ix[:,1]) #plt.plot(timeL,tempL) plt.ylim([60,85]) plt.ylabel('Temperature, F') plt.xlabel('Some sort of time') plt.savefig('temperature.png', bbox_inches='tight') plt.clf() # Humidity plot plt.plot(df.ix[:,0],df.ix[:,2]) #plt.plot(timeL,humiL) plt.ylim([20,70]) plt.ylabel('Relative Humidity, %') plt.xlabel('Some sort of time') plt.savefig('humidity.png', bbox_inches='tight') plt.clf() ''' # Continuously append data while(True): # Run the DHT program to get the humidity and temperature readings output = subprocess.check_output(["./Adafruit_DHT", "2302", "4"]); print output matches = re.search("Temp =\s+([0-9.]+)", output) if (not matches): time.sleep(3) continue tempC = float(matches.group(1)) temp = tempC * 1.8 + 32 # search for humidity printout matches = re.search("Hum =\s+([0-9.]+)", output) if (not matches): time.sleep(3) continue humidity = float(matches.group(1)) print "Temperature: %.1f F" % temp print "Humidity: %.1f %%" % humidity # Stick it in some lists timeNow = datetime.datetime.now() timeBase.append(timeNow) timeL = matplotlib.dates.date2num(timeBase) tempL.append(temp) humiL.append(humidity) # make a row dataRow = [timeNow, temp, humidity] # Open a .csv file with open('data.csv', 'a') as dataFile: dataWriter = csv.writer(dataFile, delimiter=',',quotechar='"', quoting=csv.QUOTE_MINIMAL) dataWriter.writerow(dataRow) # Temp plot plt.plot(timeL,tempL) plt.ylim([60,85]) plt.ylabel('Temperature, F') plt.xlabel('Some sort of time') plt.savefig('temperature.png', bbox_inches='tight') plt.clf() # Humidity plot plt.plot(timeL,humiL) plt.ylim([20,70]) plt.ylabel('Relative Humidity, %') plt.xlabel('Some sort of time') plt.savefig('humidity.png', bbox_inches='tight') plt.clf() # Show me the data # print timeL # print tempL # print humiL # Wait 30 seconds before continuing print "Wrote a row to output" time.sleep(30) '''
gpl-2.0
CityPulse/CP_Resourcemanagement
virtualisation/misc/stats.py
1
11883
''' Created on 19 Oct 2015 @author: thiggena ''' from collections import OrderedDict import csv import datetime from matplotlib import pyplot from virtualisation.misc.buffer import NumericRingBuffer from virtualisation.misc.jsonobject import JSONObject PATH = "./" BUFFER_SIZE = 1000 class Element(object): def __init__(self, name): self.name = name def finish(self): return "Name: " + self.name class TimeElement(Element): def __init__(self, name, value=0): super(TimeElement, self).__init__(name) self.buffer = NumericRingBuffer(BUFFER_SIZE) [self.buffer.add(0) for _i in range(0, value)] self.startTime = None def started(self, test=False): if self.startTime: return True return False def start(self): if self.startTime is None: self.startTime = datetime.datetime.now() else: print self.name, "already started!" def stop(self, stoptime): if self.startTime is not None: self.buffer.add((stoptime - self.startTime).total_seconds()) self.startTime = None else: print "TimeElement", self.name, "already stopped" def finish(self): print super(TimeElement, self).finish() print "Mean:", self.mean() return super(TimeElement, self).finish() def mean(self): return self.buffer.mean() def sum(self): return sum(self.buffer) def getData(self, name): return (name, self.buffer) def insertNotUsedValue(self, values=0): for _i in range(0, (values-self.buffer.len())): self.buffer.add(0) class TimeElementList(TimeElement): def __init__(self, name, value=0): super(TimeElementList, self).__init__(name, value) self.timeElementMap = {} def getData(self, name): dataList = [] for element in self.timeElementMap: dataList.append(self.timeElementMap[element].getData(name + "." + element)) dataList.append(super(TimeElementList, self).getData(name)) return dataList def startElement(self,categoryList): timeElementList = None if categoryList[0] in self.timeElementMap: timeElementList = self.timeElementMap[categoryList[0]] else: timeElementList = TimeElementList(categoryList[0], self.buffer.len()) timeElementList.start() self.timeElementMap[categoryList[0]] = timeElementList if not timeElementList.started(): timeElementList.start() if len(categoryList) > 1: timeElementList.startElement(categoryList[1:]) def stopElement(self, categoryList, stoptime): if categoryList[0] in self.timeElementMap: timeElementList = self.timeElementMap[categoryList[0]] if len(categoryList) > 1: timeElementList.stopElement(categoryList[1:], stoptime) else: if timeElementList.started(): timeElementList.stop(stoptime) def start(self): super(TimeElementList, self).start() def stop(self, stoptime): super(TimeElementList, self).stop(stoptime) [e.stop(stoptime) for e in self.timeElementMap.values() if e.started(True)] self.insertNotUsedValue(self.buffer.len()) def insertNotUsedValue(self, values=0): super(TimeElementList, self).insertNotUsedValue(values) [e.insertNotUsedValue(values) for e in self.timeElementMap.values()] def finish(self): super(TimeElementList, self).finish() for e in self.timeElementMap: self.timeElementMap[e].finish() # def writeCSVFile(self, name): # data = self.getData(self.name) # tuples = [] # for e in data: # self.parse(e, tuples) # # csvfile = open(PATH + str(name) + "_" + str(self.name) + ".csv", 'w') # csvf = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # # header = [] # maxEntries = 0 # for e in tuples: # header.append(e[0]) # maxEntries = max(maxEntries, e[1].len()) # csvf.writerow(header) # # for i in range(0, maxEntries): # row = [] # for e in tuples: # data = e[1] # if data.len() >= i+1: # row.append(data.items[i]) # else: # row.append("") # csvf.writerow(row) # csvfile.close() def parse(self, data, tuples): if isinstance(data, list): for e in data: self.parse(e, tuples) else: tuples.append(data) def getAverageProcessingTimes(self): job = JSONObject() job.name = self.name job.value = self.mean() if len(self.timeElementMap) > 0: job.values = [] for element in self.timeElementMap: if len(self.timeElementMap[element].timeElementMap) > 0: job.values.append(self.timeElementMap[element].getAverageProcessingTimes()) else: job2 = JSONObject() job2.name = element job2.value = self.timeElementMap[element].mean() job.values.append(job2) return job class CounterElement(Element): def __init__(self, name): super(CounterElement, self).__init__(name) self.counter = 0 self.counterMap = OrderedDict() def count(self, timestamp=None): self.counter += 1 if timestamp: self.counterMap[timestamp] = self.counter else: self.counterMap[datetime.datetime.now()] = self.counter # def writeCSVFile(self, name): # csvfile = open(PATH + name + "_" + self.name + "_count.csv", 'w') # csvf = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # header = ["date", "count"] # csvf.writerow(header) # for element in self.counterMap: # csvf.writerow([element, self.counterMap[element]]) # csvfile.close() class SizeElement(Element): def __init__(self, name): super(SizeElement, self).__init__(name) self.items = OrderedDict() def addItem(self, time, value): self.items[time] = value def finish(self): print super(SizeElement, self).finish() for item in self.items: print item, self.items[item] def plot(self, name): x = self.items.keys() y = self.items.values() pyplot.plot(x, y) print "x", x, min(x), max(x) print "y", y, min(y), max(y) pyplot.axis([min(x), max(x), min(y), max(y)]) pyplot.savefig(PATH + name + "_" + self.name+ ".png") def getData(self, name): return (name, self.items) # def writeCSVFile(self, name): # csvfile = open(PATH + name + "_" + self.name + "_size.csv", 'w') # csvf = csv.writer(csvfile, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # header = ["date", "value"] # csvf.writerow(header) # for element in self.items: # csvf.writerow([element, self.items[element]]) # csvfile.close() class Stats(object): instances = {} def __new__(cls, name): if name not in Stats.instances: Stats.instances[name] = Stats.__Stats(name) return Stats.instances[name] @classmethod def getOrMake(cls, name): if name not in Stats.instances: Stats.instances[name] = Stats.__Stats(name) return Stats.instances[name] @classmethod def getAllStats(cls): return Stats.instances.values() @classmethod def get(cls, name): if name in Stats.instances: return Stats.instances[name] return None # @classmethod # def writeCSVs(cls): # for e in Stats.instances.values(): # e.writeCSVFiles() @classmethod def finish(cls): jobs = JSONObject() jobs.stats = [] for e in Stats.instances: job = JSONObject() job.name = e job.value = e.getvalue() jobs.stats.append(job) return jobs class __Stats(object): def __init__(self, name): self.name = name self.elements = {} def finish(self): print "Stats for", self.name for e in self.elements: self.elements[e].finish() # def writeCSVFiles(self): # for e in self.elements: # self.elements[e].writeCSVFile(self.name) def addSize(self, name, time, value): if name not in self.elements: element = SizeElement(name) self.elements[name] = element else: element = self.elements[name] element.addItem(time, value) def count(self, name, timestamp=None): if name not in self.elements: element = CounterElement(name) self.elements[name] = element else: element = self.elements[name] element.count(timestamp) def startMeasurement(self, categoryString): categories = categoryString.split(".") timeElementList = None if categories[0] in self.elements: timeElementList = self.elements[categories[0]] else: timeElementList = TimeElementList(categories[0]) self.elements[categories[0]] = timeElementList if not timeElementList.started(): timeElementList.start() if len(categories) > 1: timeElementList.startElement(categories[1:]) def stopMeasurement(self, categoryString): stoptime = datetime.datetime.now() categories = categoryString.split(".") if categories[0] in self.elements: timeElementList = self.elements[categories[0]] if len(categories) > 1: timeElementList.stopElement(categories[1:], stoptime) else: if timeElementList.started(): timeElementList.stop(stoptime) else: print "cannot stop element", categories[0], ", related elements not stopped yet" def getAverageProcessingTimes(self): times = [] for element in self.elements: if isinstance(self.elements[element], TimeElementList): times.append(self.elements[element].getAverageProcessingTimes()) return times # if __name__ == '__main__': # from time import sleep # s = Stats("test") # for i in range(0, 10): # s.startMeasurement("method") # # print i # if i is 0: # s.startMeasurement("method.if") # sleep(0.0005) # s.startMeasurement("method.if.test") # sleep(0.0005) # s.stopMeasurement("method.if.test") # s.stopMeasurement("method.if") # # else: # s.startMeasurement("method.else") # sleep(0.0005) # s.stopMeasurement("method.else") # s.stopMeasurement("method") # print s.getAverageProcessingTimes()[0].dumps() # print "#####" # # s.writeCSVFiles()
mit
mirrorcoloured/slcypi
MA/Robot_V002l.py
1
11863
# Import statements import sys sys.path.append("/home/pi/Documents/Robots/slcypi/MA") ### ADD PATH sys.path.append("/home/pi/Documents/Robots/slcypi/HAT_Python3") ### ADD PATH import cv2 import numpy as np import matplotlib.pyplot as plt from Tank import Tank from ImageAnalysis import ImageAnalysis import picamera import picamera.array import time import pygame from scipy import ndimage from time import sleep # Settings WIDTH = 320 HEIGHT = 240 # Initialize Tank robot = Tank() robot.correctDirections(True,True,True) # Initialize ImageAnalysis IA = ImageAnalysis() IA.filterLower = np.array([25,35,70]) IA.filterUpper = np.array([65,255,205]) face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml') def faceDetection(bgr): gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) for (x,y,w,h) in faces: cv2.rectangle(bgr,(x,y),(x+w,y+h),(255,0,0),2) roi_gray = gray[y:y+h, x:x+w] roi_color = bgr[y:y+h, x:x+w] eyes = eye_cascade.detectMultiScale(roi_gray) for (ex,ey,ew,eh) in eyes: cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) return(faces,bgr) # Initialize Pygame pygame.init() pygame.display.set_caption('My Robot') screen = pygame.display.set_mode((WIDTH,HEIGHT),0) # Start settings auto = False done = False viewOptions = ["noFilter","colorFilter","lineDetection","faceDetection","opticalFlow","featureMatch"] viewNr = 0 startTime = time.time() def toggleView(viewNr): viewNr = viewNr + 1 if viewNr > 3: viewNr = 0 print(viewOptions[viewNr]) return(viewNr) with picamera.PiCamera() as camera: with picamera.array.PiRGBArray(camera) as stream: camera.resolution = (WIDTH, HEIGHT) print("HI") while done == False: # Image capture camera.capture(stream, 'bgr', use_video_port=True) bgr = stream.array # Image process res, mask = IA.colorFilter(bgr, False, False) if viewOptions[viewNr] == "noFilter": res = bgr if viewOptions[viewNr] == "lineDetection": res = IA.edgeDetection(bgr) if viewOptions[viewNr] == "faceDetection": faces, res = faceDetection(bgr) if viewOptions[viewNr] == "featureMatch": res = IA.featureMatch(bgr,previous) previous = current if viewOptions[viewNr] == "opticalFlow": res = IA.opticalFlow(bgr,previous, hsv) previous = current # Image transpose res = cv2.transpose(res) mask = np.transpose(mask) # Image display sface = pygame.surfarray.make_surface(res) screen.blit(sface,(0,0)) pygame.display.update() # User events for event in pygame.event.get(): if event.type == pygame.KEYDOWN: # Exit on escape if (event.key == pygame.K_ESCAPE): done = True # View toggle if event.key == (pygame.K_v): viewNr = toggleView(viewNr) # Create hsv required for optical flow previous = bgr hsv = np.zeros_like(previous) hsv[...,1] = 255 # Drive commands if event.key == (pygame.K_UP): robot.driveSync(1) if event.key == (pygame.K_DOWN): robot.driveSync(-1) if (event.key == pygame.K_LEFT): robot.rotateSync(1,45) if (event.key == pygame.K_RIGHT): robot.rotateSync(-1,45) if (event.key == pygame.K_q): auto = True if (event.key == pygame.K_w): auto = False robot.driveSync(0) robot.rotateSync(0) if (event.key == pygame.K_7): IA.filterUpper[0] = IA.filterUpper[0] + 5 print(IA.filterUpper) if (event.key == pygame.K_u): IA.filterUpper[0] = IA.filterUpper[0] - 5 print(IA.filterUpper) if (event.key == pygame.K_j): IA.filterLower[0] = IA.filterLower[0] + 5 print(IA.filterLower) if (event.key == pygame.K_m): IA.filterLower[0] = IA.filterLower[0] - 5 print(IA.filterLower) if (event.key == pygame.K_8): IA.filterUpper[1] = IA.filterUpper[1] + 5 print(IA.filterUpper) if (event.key == pygame.K_i): IA.filterUpper[1] = IA.filterUpper[1] - 5 print(IA.filterUpper) if (event.key == pygame.K_k): IA.filterLower[1] = IA.filterLower[1] + 5 print(IA.filterLower) if (event.key == pygame.K_COMMA): IA.filterLower[1] = IA.filterLower[1] - 5 print(IA.filterLower) if (event.key == pygame.K_9): IA.filterUpper[2] = IA.filterUpper[2] + 5 print(IA.filterUpper) if (event.key == pygame.K_o): IA.filterUpper[2] = IA.filterUpper[2] - 5 print(IA.filterUpper) if (event.key == pygame.K_l): IA.filterLower[2] = IA.filterLower[2] + 5 print(IA.filterLower) if (event.key == pygame.K_PERIOD): IA.filterLower[2] = IA.filterLower[2] - 5 print(IA.filterLower) if event.type == pygame.KEYUP: if event.key == (pygame.K_UP): robot.driveSync(0) if event.key == (pygame.K_DOWN): robot.driveSync(0) if (event.key == pygame.K_LEFT): robot.rotateSync(0) if (event.key == pygame.K_RIGHT): robot.rotateSync(0) # Autonomous if auto == True: # Analyze line aRes = IA.blockAnalyze(mask) print(aRes) dir = aRes[0] count = aRes[1] # Drive if abs(dir) > 0.20: rotateSpeed = 50 if abs(dir) > 0.5: rotateSpeed = 80 if abs(dir) > 0.75: rotateSpeed = 90 if dir > 0: print("Rotate -1") robot.rotateSync(-1, rotateSpeed) sleep(0.05) robot.rotateSync(0) else: print("Rotate 1") robot.rotateSync(1, rotateSpeed) sleep(0.05) robot.rotateSync(0) if dir > -999: relCount = (1 - abs(dir)) * count if count > 800: driveSpeed = 50 if count > 8000: driveSpeed = int(relCount / 8000 * 50) print(driveSpeed) if driveSpeed > 45 : robot.driveSync(1, driveSpeed) else: robot.driveSync(0) else: robot.driveSync(0) # Handle stream stream.seek(0) stream.truncate() # Compute fps lapseTime = (time.time() - startTime) startTime = time.time() if lapseTime > 0: fps = 1.0 / lapseTime print("fps: " + str(fps)) robot.stop() pygame.quit()
mit
relacs/relacs
plugins/efield/printtrace.py
3
1988
# example script for printing all visible traces # set plotcommand to "python printtrace.py" in relacs.cfg import numpy as np import matplotlib.pyplot as plt import subprocess def is_float( s ): try: float(s) return True except ValueError: return False def loaddat( filename ): """ Load ascii data files into a numpy array """ header = {} key = [] data = [] inkey = False for l in open( filename ) : if l.startswith( "#" ) : if l.startswith( "#Key" ) : inkey = True elif ":" in l : inkey = False tmp = [e.strip() for e in l[1:].partition(':')] header[tmp[0]] = tmp[2] elif inkey : key.append( l.split()[1:] ) elif l and not l.isspace() : inkey = False data.append( [ float( i ) for i in l.split() if is_float( i ) ] ) return np.array( data ), key, header # load data: data, key, header = loaddat( "traces.dat" ) # plot data: ncols = len( key[-1] )-1 fw = 21.0 fh = 29.7 if ncols == 1 : fh = 12.0 fig = plt.figure( figsize=( fw/2.54, fh/2.54 ) ) for col in xrange( 1, ncols+1 ) : ax = fig.add_subplot( ncols, 1, col ) if col == 1 : ax.set_title( header['Species'] + ", EODf=" + header['EOD Rate'], fontsize=18 ) ax.set_xlim( data[0,0], data[-1,0] ) # if col == ncols : ax.set_xlabel( key[0][0] + ' [' + key[1][0] + ']' ) # else : # plt.setp( ax.get_xticklabels(), visible=False) ax.set_ylabel( key[0][col] + ' [' + key[1][col] + ']' ) ax.ticklabel_format(useOffset=False) ax.plot( data[:,0], data[:,col], lw=2 ) # fig.subplots_adjust(left=0.2, hspace=0.0 ) fig.subplots_adjust(left=0.2, right=0.9, bottom=0.13, top=0.87, hspace=0.18 ) #plt.tight_layout() plt.savefig( 'traces.pdf', papertype="a4" ) # fix pdf file and print: subprocess.call( 'pdfjam -q -o /dev/stdout traces.pdf 1 | lpr', shell=True )
gpl-3.0
mringel/ThinkStats2
code/regression.py
62
9652
"""This file contains code used in "Think Stats", by Allen B. Downey, available from greenteapress.com Copyright 2010 Allen B. Downey License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function, division import math import pandas import random import numpy as np import statsmodels.api as sm import statsmodels.formula.api as smf import re import chap01soln import first import linear import thinkplot import thinkstats2 def QuickLeastSquares(xs, ys): """Estimates linear least squares fit and returns MSE. xs: sequence of values ys: sequence of values returns: inter, slope, mse """ n = float(len(xs)) meanx = xs.mean() dxs = xs - meanx varx = np.dot(dxs, dxs) / n meany = ys.mean() dys = ys - meany cov = np.dot(dxs, dys) / n slope = cov / varx inter = meany - slope * meanx res = ys - (inter + slope * xs) mse = np.dot(res, res) / n return inter, slope, mse def ReadVariables(): """Reads Stata dictionary files for NSFG data. returns: DataFrame that maps variables names to descriptions """ vars1 = thinkstats2.ReadStataDct('2002FemPreg.dct').variables vars2 = thinkstats2.ReadStataDct('2002FemResp.dct').variables all_vars = vars1.append(vars2) all_vars.index = all_vars.name return all_vars def JoinFemResp(df): """Reads the female respondent file and joins on caseid. df: DataFrame """ resp = chap01soln.ReadFemResp() resp.index = resp.caseid join = df.join(resp, on='caseid', rsuffix='_r') # convert from colon-separated time strings to datetimes join.screentime = pandas.to_datetime(join.screentime) return join def GoMining(df): """Searches for variables that predict birth weight. df: DataFrame of pregnancy records returns: list of (rsquared, variable name) pairs """ variables = [] for name in df.columns: try: if df[name].var() < 1e-7: continue formula = 'totalwgt_lb ~ agepreg + ' + name formula = formula.encode('ascii') model = smf.ols(formula, data=df) if model.nobs < len(df)/2: continue results = model.fit() except (ValueError, TypeError): continue variables.append((results.rsquared, name)) return variables def MiningReport(variables, n=30): """Prints variables with the highest R^2. t: list of (R^2, variable name) pairs n: number of pairs to print """ all_vars = ReadVariables() variables.sort(reverse=True) for mse, name in variables[:n]: key = re.sub('_r$', '', name) try: desc = all_vars.loc[key].desc if isinstance(desc, pandas.Series): desc = desc[0] print(name, mse, desc) except KeyError: print(name, mse) def PredictBirthWeight(live): """Predicts birth weight of a baby at 30 weeks. live: DataFrame of live births """ live = live[live.prglngth>30] join = JoinFemResp(live) t = GoMining(join) MiningReport(t) formula = ('totalwgt_lb ~ agepreg + C(race) + babysex==1 + ' 'nbrnaliv>1 + paydu==1 + totincr') results = smf.ols(formula, data=join).fit() SummarizeResults(results) def SummarizeResults(results): """Prints the most important parts of linear regression results: results: RegressionResults object """ for name, param in results.params.iteritems(): pvalue = results.pvalues[name] print('%s %0.3g (%.3g)' % (name, param, pvalue)) try: print('R^2 %.4g' % results.rsquared) ys = results.model.endog print('Std(ys) %.4g' % ys.std()) print('Std(res) %.4g' % results.resid.std()) except AttributeError: print('R^2 %.4g' % results.prsquared) def RunSimpleRegression(live): """Runs a simple regression and compare results to thinkstats2 functions. live: DataFrame of live births """ # run the regression with thinkstats2 functions live_dropna = live.dropna(subset=['agepreg', 'totalwgt_lb']) ages = live_dropna.agepreg weights = live_dropna.totalwgt_lb inter, slope = thinkstats2.LeastSquares(ages, weights) res = thinkstats2.Residuals(ages, weights, inter, slope) r2 = thinkstats2.CoefDetermination(weights, res) # run the regression with statsmodels formula = 'totalwgt_lb ~ agepreg' model = smf.ols(formula, data=live) results = model.fit() SummarizeResults(results) def AlmostEquals(x, y, tol=1e-6): return abs(x-y) < tol assert(AlmostEquals(results.params['Intercept'], inter)) assert(AlmostEquals(results.params['agepreg'], slope)) assert(AlmostEquals(results.rsquared, r2)) def PivotTables(live): """Prints a pivot table comparing first babies to others. live: DataFrame of live births """ table = pandas.pivot_table(live, rows='isfirst', values=['totalwgt_lb', 'agepreg']) print(table) def FormatRow(results, columns): """Converts regression results to a string. results: RegressionResults object returns: string """ t = [] for col in columns: coef = results.params.get(col, np.nan) pval = results.pvalues.get(col, np.nan) if np.isnan(coef): s = '--' elif pval < 0.001: s = '%0.3g (*)' % (coef) else: s = '%0.3g (%0.2g)' % (coef, pval) t.append(s) try: t.append('%.2g' % results.rsquared) except AttributeError: t.append('%.2g' % results.prsquared) return t def RunModels(live): """Runs regressions that predict birth weight. live: DataFrame of pregnancy records """ columns = ['isfirst[T.True]', 'agepreg', 'agepreg2'] header = ['isfirst', 'agepreg', 'agepreg2'] rows = [] formula = 'totalwgt_lb ~ isfirst' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) formula = 'totalwgt_lb ~ agepreg' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) formula = 'totalwgt_lb ~ isfirst + agepreg' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) live['agepreg2'] = live.agepreg**2 formula = 'totalwgt_lb ~ isfirst + agepreg + agepreg2' results = smf.ols(formula, data=live).fit() rows.append(FormatRow(results, columns)) print(formula) SummarizeResults(results) PrintTabular(rows, header) def PrintTabular(rows, header): """Prints results in LaTeX tabular format. rows: list of rows header: list of strings """ s = r'\hline ' + ' & '.join(header) + r' \\ \hline' print(s) for row in rows: s = ' & '.join(row) + r' \\' print(s) print(r'\hline') def LogisticRegressionExample(): """Runs a simple example of logistic regression and prints results. """ y = np.array([0, 1, 0, 1]) x1 = np.array([0, 0, 0, 1]) x2 = np.array([0, 1, 1, 1]) beta = [-1.5, 2.8, 1.1] log_o = beta[0] + beta[1] * x1 + beta[2] * x2 print(log_o) o = np.exp(log_o) print(o) p = o / (o+1) print(p) like = y * p + (1-y) * (1-p) print(like) print(np.prod(like)) df = pandas.DataFrame(dict(y=y, x1=x1, x2=x2)) results = smf.logit('y ~ x1 + x2', data=df).fit() print(results.summary()) def RunLogisticModels(live): """Runs regressions that predict sex. live: DataFrame of pregnancy records """ #live = linear.ResampleRowsWeighted(live) df = live[live.prglngth>30] df['boy'] = (df.babysex==1).astype(int) df['isyoung'] = (df.agepreg<20).astype(int) df['isold'] = (df.agepreg<35).astype(int) df['season'] = (((df.datend+1) % 12) / 3).astype(int) # run the simple model model = smf.logit('boy ~ agepreg', data=df) results = model.fit() print('nobs', results.nobs) print(type(results)) SummarizeResults(results) # run the complex model model = smf.logit('boy ~ agepreg + hpagelb + birthord + C(race)', data=df) results = model.fit() print('nobs', results.nobs) print(type(results)) SummarizeResults(results) # make the scatter plot exog = pandas.DataFrame(model.exog, columns=model.exog_names) endog = pandas.DataFrame(model.endog, columns=[model.endog_names]) xs = exog['agepreg'] lo = results.fittedvalues o = np.exp(lo) p = o / (o+1) #thinkplot.Scatter(xs, p, alpha=0.1) #thinkplot.Show() # compute accuracy actual = endog['boy'] baseline = actual.mean() predict = (results.predict() >= 0.5) true_pos = predict * actual true_neg = (1 - predict) * (1 - actual) acc = (sum(true_pos) + sum(true_neg)) / len(actual) print(acc, baseline) columns = ['agepreg', 'hpagelb', 'birthord', 'race'] new = pandas.DataFrame([[35, 39, 3, 1]], columns=columns) y = results.predict(new) print(y) def main(name, data_dir='.'): thinkstats2.RandomSeed(17) LogisticRegressionExample() live, firsts, others = first.MakeFrames() live['isfirst'] = (live.birthord == 1) RunLogisticModels(live) RunSimpleRegression(live) RunModels(live) PredictBirthWeight(live) if __name__ == '__main__': import sys main(*sys.argv)
gpl-3.0
Bismarrck/tensorflow
tensorflow/contrib/timeseries/examples/known_anomaly.py
24
7880
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Example of using an exogenous feature to ignore a known anomaly.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import csv from os import path import numpy as np import tensorflow as tf try: import matplotlib # pylint: disable=g-import-not-at-top matplotlib.use("TkAgg") # Need Tk for interactive plots. from matplotlib import pyplot # pylint: disable=g-import-not-at-top HAS_MATPLOTLIB = True except ImportError: # Plotting requires matplotlib, but the unit test running this code may # execute in an environment without it (i.e. matplotlib is not a build # dependency). We'd still like to test the TensorFlow-dependent parts of this # example, namely train_and_predict. HAS_MATPLOTLIB = False _MODULE_PATH = path.dirname(__file__) _DATA_FILE = path.join(_MODULE_PATH, "data/changepoints.csv") def state_space_estimator(exogenous_feature_columns): """Constructs a StructuralEnsembleRegressor.""" def _exogenous_update_condition(times, features): del times # unused # Make exogenous updates sparse by setting an update condition. This in # effect allows missing exogenous features: if the condition evaluates to # False, no update is performed. Otherwise we sometimes end up with "leaky" # updates which add unnecessary uncertainty to the model even when there is # no changepoint. return tf.equal(tf.squeeze(features["is_changepoint"], axis=-1), "yes") return ( tf.contrib.timeseries.StructuralEnsembleRegressor( periodicities=12, # Extract a smooth period by constraining the number of latent values # being cycled between. cycle_num_latent_values=3, num_features=1, exogenous_feature_columns=exogenous_feature_columns, exogenous_update_condition=_exogenous_update_condition), # Use truncated backpropagation with a window size of 64, batching # together 4 of these windows (random offsets) per training step. Training # with exogenous features often requires somewhat larger windows. 4, 64) def autoregressive_estimator(exogenous_feature_columns): input_window_size = 8 output_window_size = 2 return ( tf.contrib.timeseries.ARRegressor( periodicities=12, num_features=1, input_window_size=input_window_size, output_window_size=output_window_size, exogenous_feature_columns=exogenous_feature_columns), 64, input_window_size + output_window_size) def train_and_evaluate_exogenous( estimator_fn, csv_file_name=_DATA_FILE, train_steps=300): """Training, evaluating, and predicting on a series with changepoints.""" # Indicate the format of our exogenous feature, in this case a string # representing a boolean value. string_feature = tf.feature_column.categorical_column_with_vocabulary_list( key="is_changepoint", vocabulary_list=["no", "yes"]) # Specify the way this feature is presented to the model, here using a one-hot # encoding. one_hot_feature = tf.feature_column.indicator_column( categorical_column=string_feature) estimator, batch_size, window_size = estimator_fn( exogenous_feature_columns=[one_hot_feature]) reader = tf.contrib.timeseries.CSVReader( csv_file_name, # Indicate the format of our CSV file. First we have two standard columns, # one for times and one for values. The third column is a custom exogenous # feature indicating whether each timestep is a changepoint. The # changepoint feature name must match the string_feature column name # above. column_names=(tf.contrib.timeseries.TrainEvalFeatures.TIMES, tf.contrib.timeseries.TrainEvalFeatures.VALUES, "is_changepoint"), # Indicate dtypes for our features. column_dtypes=(tf.int64, tf.float32, tf.string), # This CSV has a header line; here we just ignore it. skip_header_lines=1) train_input_fn = tf.contrib.timeseries.RandomWindowInputFn( reader, batch_size=batch_size, window_size=window_size) estimator.train(input_fn=train_input_fn, steps=train_steps) evaluation_input_fn = tf.contrib.timeseries.WholeDatasetInputFn(reader) evaluation = estimator.evaluate(input_fn=evaluation_input_fn, steps=1) # Create an input_fn for prediction, with a simulated changepoint. Since all # of the anomalies in the training data are explained by the exogenous # feature, we should get relatively confident predictions before the indicated # changepoint (since we are telling the model that no changepoint exists at # those times) and relatively uncertain predictions after. (predictions,) = tuple(estimator.predict( input_fn=tf.contrib.timeseries.predict_continuation_input_fn( evaluation, steps=100, exogenous_features={ "is_changepoint": [["no"] * 49 + ["yes"] + ["no"] * 50]}))) times = evaluation["times"][0] observed = evaluation["observed"][0, :, 0] mean = np.squeeze(np.concatenate( [evaluation["mean"][0], predictions["mean"]], axis=0)) variance = np.squeeze(np.concatenate( [evaluation["covariance"][0], predictions["covariance"]], axis=0)) all_times = np.concatenate([times, predictions["times"]], axis=0) upper_limit = mean + np.sqrt(variance) lower_limit = mean - np.sqrt(variance) # Indicate the locations of the changepoints for plotting vertical lines. anomaly_locations = [] with open(csv_file_name, "r") as csv_file: csv_reader = csv.DictReader(csv_file) for row in csv_reader: if row["is_changepoint"] == "yes": anomaly_locations.append(int(row["time"])) anomaly_locations.append(predictions["times"][49]) return (times, observed, all_times, mean, upper_limit, lower_limit, anomaly_locations) def make_plot(name, training_times, observed, all_times, mean, upper_limit, lower_limit, anomaly_locations): """Plot the time series and anomalies in a new figure.""" pyplot.figure() pyplot.plot(training_times, observed, "b", label="training series") pyplot.plot(all_times, mean, "r", label="forecast") pyplot.axvline(anomaly_locations[0], linestyle="dotted", label="changepoints") for anomaly_location in anomaly_locations[1:]: pyplot.axvline(anomaly_location, linestyle="dotted") pyplot.fill_between(all_times, lower_limit, upper_limit, color="grey", alpha="0.2") pyplot.axvline(training_times[-1], color="k", linestyle="--") pyplot.xlabel("time") pyplot.ylabel("observations") pyplot.legend(loc=0) pyplot.title(name) def main(unused_argv): if not HAS_MATPLOTLIB: raise ImportError( "Please install matplotlib to generate a plot from this example.") make_plot("Ignoring a known anomaly (state space)", *train_and_evaluate_exogenous( estimator_fn=state_space_estimator)) make_plot("Ignoring a known anomaly (autoregressive)", *train_and_evaluate_exogenous( estimator_fn=autoregressive_estimator, train_steps=3000)) pyplot.show() if __name__ == "__main__": tf.app.run(main=main)
apache-2.0
flohorovicic/pynoddy
pynoddy/experiment/uncertainty_analysis_bak.py
1
12689
import sys, os import pynoddy from pynoddy.experiment.monte_carlo import MonteCarlo from pynoddy.output import NoddyOutput import numpy as np import math class UncertaintyAnalysis(MonteCarlo): """Perform uncertainty analysis experiments for kinematic models """ def __init__(self, history, parameters, basename="out"): """Creates an experiment class for uncertainty analysis methods for kinematic models **Arguments**: - *history* = The .his file this experiment is based on - *parameters* = A string pointing to a csv file defining the statistical properties of the model properties being varied, or alternatively an array of python dictionaries with the same function. This file/dictionary array should have collumns/keys defining: 1) the event and parameter being varied (titled 'event' and 'parameter') 2) the statistical distribution to sample from (titled 'type' and containing either 'normal', 'vonmises' or 'uniform') 3) the distribution mean (titled 'mean') and, 4) a collumn defining the distance between the 2.5th and 97.5th percentiles (titled '+-') OR one defining the standard deviation (titled 'stdev') """ # init monte carlo class MonteCarlo.__init__(self, history, parameters, basename) # add empty block (otherwise something breaks...) self.block = None def estimate_uncertainty(self, n_trials, **kwds): """ Samples the specified number of models, given the pdf's defined in the params file used to create this model. **Arguments**: - *n_trials* = The number of random draws to produce. The variation between these random draws is used to estimate uncertainty. **Optional Keywords**: - *verbose* = If true, this funciton prints information to the print buffer. Default is True. - *model_path* = The directory to write models to. Default is a local directory called 'tmp'. - *cleanup* = True if this function should delete any models it creates (they're not needed anymore). Default is True. """ vb = kwds.get('verbose', False) model_path = kwds.get('model_path', 'tmp') cleanup = kwds.get('cleanup', True) # generate & load initial model self.write_history('tmp.his') pynoddy.compute_model('tmp.his', self.basename) self.load_model_info() self.load_geology() os.remove('tmp.his') # perform monte carlo sampling if vb: print("Producing model realisations...") self.generate_model_instances(model_path, n_trials, verbose=vb, write_changes=None) # thought: it would be more efficient (memory wise) to load models 1 at a time rather than # dumping them all in memory.... # load results if vb: print("Loading models...") models = MonteCarlo.load_noddy_realisations(model_path, verbose=vb) self.models = models # compute strat column # self.determine_model_stratigraphy() # self.n_rocktypes = len(self.model_stratigraphy) # self.nx = models[0].nx # self.ny = models[0].ny # self.nz = models[0].nz # calculate probabilities for each lithology. p_block[lithology][x][y][z] = p(lithology | x, y ,z) self.p_block = [[[[0. for z in range(self.nz)] for y in range(self.ny)] for x in range(self.nx)] for l in range(self.n_rocktypes)] p1 = 1 / float(n_trials) # probability increment gained on each observation for m in models: # loop through voxels for x in range(self.nx): for y in range(self.ny): for z in range(self.nz): # get litho litho = int(m.block[x][y][z]) - 1 # update litho probability self.p_block[litho][x][y][z] += p1 # calculate entropy & store in self.e_block self.e_block = np.ndarray((self.nx, self.ny, self.nz)) for x in range(self.nx): for y in range(self.ny): for z in range(self.nz): entropy = 0 # calculate shannons information entropy for litho in range(self.n_rocktypes): p = self.p_block[litho][x][y][z] # fix domain to 0 < p < 1 if p == 0: p = 0.0000000000000001 if p >= 0.9999999999999999: p = 0.9999999999999999 # calculate entropy += p * math.log(p, 2) + (1 - p) * (math.log(1 - p, 2)) entropy = entropy * -1 / float(self.n_rocktypes) # divide by n self.e_block[x][y][z] = entropy # cleanup if vb: print("Cleaning up...") if cleanup: self.cleanup() if vb: print("Finished.") def estimate_uncertainty_from_existing(self, path, **kwds): ''' Calculates the information entropy from a set of pre-calculated models (of the same dimensions). **Arguments**: - *path* = The directory to load the models from. All models in this directory are loaded. **Optional Keywords**: - *verbose* = True if this function should write to the print buffer. Default is False. ''' vb = kwds.get('verbose', False) # compute strat column self.determine_model_stratigraphy() self.n_rocktypes = len(self.model_stratigraphy) # compute block dimensions blocksize = self.get_cube_size() ex, ey, ez = self.get_extent() self.nx = (int)(ex / blocksize) self.ny = (int)(ey / blocksize) self.nz = (int)(ez / blocksize) if vb: print("block dimensions = %d,%d,%d" % (self.nx, self.ny, self.nz)) # initialise blocks containing probability fields self.p_block = [[[[0. for z in range(self.nz)] for y in range(self.ny)] for x in range(self.nx)] for l in range(self.n_rocktypes)] # loop through directory loading models & building probability fields based on this n_models = 0 # number of models loaded for root, dirnames, filenames in os.walk(path): # walk the directory for f in filenames: if ('.g12' in f): # find all lithology voxets base = os.path.join(root, f.split('.')[0]) if vb: print('Loading %s' % base) # load model m = NoddyOutput(base) # loop through voxels and tally frequencies for x in range(self.nx): for y in range(self.ny): for z in range(self.nz): # get litho litho = int(m.block[x][y][z]) - 1 # update litho frequency self.p_block[litho][x][y][z] += 1 # keep track of the number of models we've loaded n_models += 1 # convert frequency fields to probabilities & calculate information entropy self.e_block = np.ndarray((self.nx, self.ny, self.nz)) for x in range(self.nx): for y in range(self.ny): for z in range(self.nz): entropy = 0 for litho in range(self.n_rocktypes): # convert frequency to probability self.p_block[litho][x][y][z] = self.p_block[litho][x][y][z] / float(n_models) # fix domain to 0 < p < 1 if self.p_block[litho][x][y][z] == 0: self.p_block[litho][x][y][z] = 0.0000000000000001 if self.p_block[litho][x][y][z] >= 0.9999999999999999: self.p_block[litho][x][y][z] = 0.9999999999999999 # calculate p = self.p_block[litho][x][y][z] # shorthand entropy += p * math.log(p, 2) + (1 - p) * (math.log(1 - p, 2)) entropy = entropy * -1 / float(self.n_rocktypes) # divide by n self.e_block[x][y][z] = entropy def plot_entropy(self, direction='y', position='center', **kwds): ''' Plots the information entropy of each cell in the model. This can be used as a proxy for uncertainty, as cells with higher entropy values have a higher uncertainty. **Arguments**: - *direction* = 'x', 'y', 'z' : coordinate direction of section plot (default: 'y') - *position* = int or 'center' : cell position of section as integer value or identifier (default: 'center') **Optional Keywords**: - *ax* = matplotlib.axis : append plot to axis (default: create new plot) - *figsize* = (x,y) : matplotlib figsize - *colorbar* = bool : plot colorbar (default: True) - *colorbar_orientation* = 'horizontal' or 'vertical' : orientation of colorbar (default: 'vertical') - *title* = string : plot title - *savefig* = bool : save figure to file (default: show directly on screen) - *cmap* = matplotlib.cmap : colormap (default: RdBu_r) - *fig_filename* = string : figure filename - *ve* = float : vertical exaggeration - *layer_labels* = list of strings: labels for each unit in plot ''' if 'cmap' not in kwds: kwds['cmap'] = 'RdBu_r' kwds['data'] = np.array(self.e_block) # specify the data we want to plot self.plot_section(direction, position, **kwds) def plot_probability(self, litho_ID, direction='y', position='center', **kwds): ''' Plots the probability of observing the given lithology in space. **Arguments**: - *direction* = 'x', 'y', 'z' : coordinate direction of section plot (default: 'y') - *position* = int or 'center' : cell position of section as integer value or identifier (default: 'center') **Optional Keywords**: - *ax* = matplotlib.axis : append plot to axis (default: create new plot) - *figsize* = (x,y) : matplotlib figsize - *colorbar* = bool : plot colorbar (default: True) - *colorbar_orientation* = 'horizontal' or 'vertical' : orientation of colorbar (default: 'vertical') - *title* = string : plot title - *savefig* = bool : save figure to file (default: show directly on screen) - *cmap* = matplotlib.cmap : colormap (default: RdBu_r) - *fig_filename* = string : figure filename - *ve* = float : vertical exaggeration - *layer_labels* = list of strings: labels for each unit in plot ''' if 'cmap' not in kwds: kwds['cmap'] = 'RdBu_r' kwds['data'] = np.array(self.p_block[litho_ID]) # specify the data we want to plot self.plot_section(direction, position, **kwds) def get_average_entropy(self): """ Calculates the average entropy of the model, by averaging the entropy of all the voxels. **Returns** - the average entropy of the model suite """ return np.average(self.e_block) if __name__ == '__main__': # setup pynoddy.ensure_discrete_volumes = True # setup working directory os.chdir(r'C:\Users\Sam\Documents\Temporary Model Files\NFault') # os.chdir("/Users/flow/git/pynoddy/sandbox") his_file = "NFault.his" # his_file = "simple_two_faults_no_gps.his" params_file = "NFault_ds.csv" # params_file = "params.csv" outpath = 'NFault_ds' # create new Uncertainty Analysis ua = UncertaintyAnalysis(his_file, params_file) # load models & estimate uncertainty ua.estimate_uncertainty_from_existing(outpath) # ua.estimate_uncertainty(n) # ua.plot_probability(2) ua.plot_entropy()
gpl-2.0
silky/sms-tools
lectures/05-Sinusoidal-model/plots-code/synthesis-window-2.py
22
2038
import numpy as np import matplotlib.pyplot as plt from scipy.signal import hamming, triang, blackmanharris import sys, os, functools, time from scipy.fftpack import fft, ifft, fftshift sys.path.append(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../../../software/models/')) import dftModel as DFT import utilFunctions as UF (fs, x) = UF.wavread('../../../sounds/oboe-A4.wav') M = 601 w = np.blackman(M) N = 1024 hN = N/2 Ns = 512 hNs = Ns/2 H = Ns/4 pin = 5000 t = -70 x1 = x[pin:pin+w.size] mX, pX = DFT.dftAnal(x1, w, N) ploc = UF.peakDetection(mX, t) iploc, ipmag, ipphase = UF.peakInterp(mX, pX, ploc) freqs = iploc*fs/N Y = UF.genSpecSines(freqs, ipmag, ipphase, Ns, fs) mY = 20*np.log10(abs(Y[:hNs])) pY = np.unwrap(np.angle(Y[:hNs])) y= fftshift(ifft(Y))*sum(blackmanharris(Ns)) sw = np.zeros(Ns) ow = triang(2*H); sw[hNs-H:hNs+H] = ow bh = blackmanharris(Ns) bh = bh / sum(bh) sw[hNs-H:hNs+H] = sw[hNs-H:hNs+H] / bh[hNs-H:hNs+H] plt.figure(1, figsize=(9, 6)) plt.subplot(3,1,1) plt.plot(np.arange(-hNs,hNs), y, 'b', lw=1.5) plt.plot(np.arange(-hNs,hNs), max(y)*bh/max(bh), 'k', alpha=.5, lw=1.5) plt.axis([-hNs, hNs,min(y),max(y)+.1]) plt.title("y; size = Ns = 512 (Blackman-Harris)") plt.subplot(3,3,4) plt.plot(np.arange(-hNs,hNs), bh/max(bh), 'k', alpha=.9, lw=1.5) plt.axis([-hNs, hNs,0,1]) plt.title("Blackman-Harris") plt.subplot(3,3,5) plt.plot(np.arange(-hNs/2,hNs/2), ow/max(ow), 'k', alpha=.9, lw=1.5) plt.axis([-hNs/2, hNs/2,0,1]) plt.title("triangular") plt.subplot(3,3,6) plt.plot(np.arange(-hNs/2,hNs/2), sw[hNs-H:hNs+H]/max(sw), 'k', alpha=.9, lw=1.5) plt.axis([-hNs, hNs,0,1]) plt.title("triangular / Blackman-Harris") yw = y * sw / max(sw) plt.subplot(3,1,3) plt.plot(np.arange(-hNs,hNs), yw, 'b', lw=1.5) plt.plot(np.arange(-hNs/2,hNs/2), max(y)*ow/max(ow), 'k', alpha=.5, lw=1.5) plt.axis([-hNs, hNs,min(yw),max(yw)+.1]) plt.title("yw = y * triangular / Blackman Harris; size = Ns/2 = 256") plt.tight_layout() plt.savefig('synthesis-window-2.png') plt.show()
agpl-3.0
DuCorey/bokeh
sphinx/source/docs/user_guide/examples/extensions_example_latex.py
5
2681
""" The LaTex example was derived from: http://matplotlib.org/users/usetex.html """ import numpy as np from bokeh.models import Label from bokeh.plotting import figure, show JS_CODE = """ import {Label, LabelView} from "models/annotations/label" export class LatexLabelView extends LabelView render: () -> #--- Start of copied section from ``Label.render`` implementation ctx = @plot_view.canvas_view.ctx # Here because AngleSpec does units tranform and label doesn't support specs switch @model.angle_units when "rad" then angle = -1 * @model.angle when "deg" then angle = -1 * @model.angle * Math.PI/180.0 if @model.x_units == "data" vx = @xscale.compute(@model.x) else vx = @model.x sx = @canvas.vx_to_sx(vx) if @model.y_units == "data" vy = @yscale.compute(@model.y) else vy = @model.y sy = @canvas.vy_to_sy(vy) if @model.panel? panel_offset = @_get_panel_offset() sx += panel_offset.x sy += panel_offset.y #--- End of copied section from ``Label.render`` implementation # Must render as superpositioned div (not on canvas) so that KaTex # css can properly style the text @_css_text(ctx, "", sx + @model.x_offset, sy - @model.y_offset, angle) # ``katex`` is loaded into the global window at runtime # katex.renderToString returns a html ``span`` element katex.render(@model.text, @el, {displayMode: true}) export class LatexLabel extends Label type: 'LatexLabel' default_view: LatexLabelView """ class LatexLabel(Label): """A subclass of the Bokeh built-in `Label` that supports rendering LaTex using the KaTex typesetting library. Only the render method of LabelView is overloaded to perform the text -> latex (via katex) conversion. Note: ``render_mode="canvas`` isn't supported and certain DOM manipulation happens in the Label superclass implementation that requires explicitly setting `render_mode='css'`). """ __javascript__ = ["https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.6.0/katex.min.js"] __css__ = ["https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.6.0/katex.min.css"] __implementation__ = JS_CODE x = np.arange(0.0, 1.0 + 0.01, 0.01) y = np.cos(2*2*np.pi*x) + 2 p = figure(title="LaTex Demonstration", plot_width=500, plot_height=500) p.line(x, y) # Note: must set ``render_mode="css"`` latex = LatexLabel(text="f = \sum_{n=1}^\infty\\frac{-e^{i\pi}}{2^n}!", x=35, y=445, x_units='screen', y_units='screen', render_mode='css', text_font_size='16pt', background_fill_color='#ffffff') p.add_layout(latex) show(p)
bsd-3-clause
mratsim/Arraymancer
tools/visualize_tensor_csv.py
1
2700
#!/usr/bin/env python from __future__ import print_function import argparse import sys try: import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable except ImportError: print("Failed to import matplotlib. This tool requires matplotlib.") try: import pandas as pd except ImportError: print("Failed to import pandas. This tool requires pandas.") def parse_args(): parser = argparse.ArgumentParser( description="Tool to visualize tensors generated from Arraymancer's " "Tensor.to_csv(...). It plots each given CSV file into a " "corresponding PNG file with the same file name.") parser.add_argument( "file", nargs="+", help="CSV file(s) to plot", ) parser.add_argument( "-i", dest="interactive", help="Shows plot interactively", action="store_true", default=False, ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def plot(f, args): try: df = pd.read_csv(f) print("\n *** Plotting file '{}'. Tensor value stats:\n{}".format( f, df["value"].describe()) ) except pd.parser.CParserError: print("Failed to load file: {}".format(f)) return fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(12, 6)) # value histogram raw_values = df["value"].values axes[0].hist(raw_values, bins=70) # rank specific plot: plain value plot (1D) or heatmap (2D) tensor_rank = len(df.columns) - 1 if tensor_rank == 1: x_values = range(len(df)) y_values = df["value"].values axes[1].plot(x_values, y_values, "o", ms=2) elif tensor_rank == 2: df_pivot = df.pivot(index="dimension_1", columns="dimension_2", values="value") im = axes[1].imshow(df_pivot, aspect="auto", interpolation="none") divider = make_axes_locatable(axes[1]) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(im, cax=cax) else: axes[1].text( 0.5, 0.5, "No visualization available for tensors of rank {}".format(tensor_rank), horizontalalignment="center", verticalalignment="center", fontsize=10, transform=axes[1].transAxes ) tensor_shape = [df.iloc[:, i].max() + 1 for i in range(tensor_rank)] fig.suptitle("{} (shape: {})".format(f, tensor_shape), fontsize=16) if args.interactive: plt.show() fig.savefig(f + ".png") plt.close(fig) if __name__ == "__main__": args = parse_args() for f in args.file: plot(f, args)
apache-2.0
arahuja/scikit-learn
examples/cluster/plot_color_quantization.py
297
3443
# -*- coding: utf-8 -*- """ ================================== Color Quantization using K-Means ================================== Performs a pixel-wise Vector Quantization (VQ) of an image of the summer palace (China), reducing the number of colors required to show the image from 96,615 unique colors to 64, while preserving the overall appearance quality. In this example, pixels are represented in a 3D-space and K-means is used to find 64 color clusters. In the image processing literature, the codebook obtained from K-means (the cluster centers) is called the color palette. Using a single byte, up to 256 colors can be addressed, whereas an RGB encoding requires 3 bytes per pixel. The GIF file format, for example, uses such a palette. For comparison, a quantized image using a random codebook (colors picked up randomly) is also shown. """ # Authors: Robert Layton <[email protected]> # Olivier Grisel <[email protected]> # Mathieu Blondel <[email protected]> # # License: BSD 3 clause print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import pairwise_distances_argmin from sklearn.datasets import load_sample_image from sklearn.utils import shuffle from time import time n_colors = 64 # Load the Summer Palace photo china = load_sample_image("china.jpg") # Convert to floats instead of the default 8 bits integer coding. Dividing by # 255 is important so that plt.imshow behaves works well on float data (need to # be in the range [0-1] china = np.array(china, dtype=np.float64) / 255 # Load Image and transform to a 2D numpy array. w, h, d = original_shape = tuple(china.shape) assert d == 3 image_array = np.reshape(china, (w * h, d)) print("Fitting model on a small sub-sample of the data") t0 = time() image_array_sample = shuffle(image_array, random_state=0)[:1000] kmeans = KMeans(n_clusters=n_colors, random_state=0).fit(image_array_sample) print("done in %0.3fs." % (time() - t0)) # Get labels for all points print("Predicting color indices on the full image (k-means)") t0 = time() labels = kmeans.predict(image_array) print("done in %0.3fs." % (time() - t0)) codebook_random = shuffle(image_array, random_state=0)[:n_colors + 1] print("Predicting color indices on the full image (random)") t0 = time() labels_random = pairwise_distances_argmin(codebook_random, image_array, axis=0) print("done in %0.3fs." % (time() - t0)) def recreate_image(codebook, labels, w, h): """Recreate the (compressed) image from the code book & labels""" d = codebook.shape[1] image = np.zeros((w, h, d)) label_idx = 0 for i in range(w): for j in range(h): image[i][j] = codebook[labels[label_idx]] label_idx += 1 return image # Display all results, alongside original image plt.figure(1) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Original image (96,615 colors)') plt.imshow(china) plt.figure(2) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, K-Means)') plt.imshow(recreate_image(kmeans.cluster_centers_, labels, w, h)) plt.figure(3) plt.clf() ax = plt.axes([0, 0, 1, 1]) plt.axis('off') plt.title('Quantized image (64 colors, Random)') plt.imshow(recreate_image(codebook_random, labels_random, w, h)) plt.show()
bsd-3-clause
jpautom/scikit-learn
sklearn/gaussian_process/gaussian_process.py
17
34896
# -*- coding: utf-8 -*- # Author: Vincent Dubourg <[email protected]> # (mostly translation, see implementation details) # Licence: BSD 3 clause from __future__ import print_function import numpy as np from scipy import linalg, optimize from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import check_random_state, check_array, check_X_y from ..utils.validation import check_is_fitted from . import regression_models as regression from . import correlation_models as correlation from ..utils import deprecated MACHINE_EPSILON = np.finfo(np.double).eps @deprecated("l1_cross_distances is deprecated and will be removed in 0.20.") def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = check_array(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) // 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij @deprecated("GaussianProcess is deprecated and will be removed in 0.20. " "Use the GaussianProcessRegressor instead.") class GaussianProcess(BaseEstimator, RegressorMixin): """The legacy Gaussian Process model class. Note that this class is deprecated and will be removed in 0.20. Use the GaussianProcessRegressor instead. Read more in the :ref:`User Guide <gaussian_process>`. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood estimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- theta_ : array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). reduced_likelihood_function_value_ : array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) or shape (n_samples, n_targets) with the observations of the output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ # Run input checks self._check_params() self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X, y = check_X_y(X, y, multi_output=True, y_numeric=True) self.y_ndim_ = y.ndim if y.ndim == 1: y = y[:, np.newaxis] # Check shapes of DOE & observations n_samples, n_features = X.shape _, n_targets = y.shape # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple input features cannot have the same" " target value.") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the " "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simultaneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like, shape (n_samples, ) or (n_samples, n_targets) An array with shape (n_eval, ) if the Gaussian Process was trained on an array of shape (n_samples, ) or an array with shape (n_eval, n_targets) if the Gaussian Process was trained on an array of shape (n_samples, n_targets) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) or (n_eval, n_targets) as with y, with the Mean Squared Error at x. """ check_is_fitted(self, "X") # Check input shapes X = check_array(X) n_eval, _ = X.shape n_samples, n_features = self.X.shape n_samples_y, n_targets = self.y.shape # Run input checks self._check_params(n_samples) if X.shape[1] != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " "should match the number of features used " "for fit() " "which is %d.") % (X.shape[1], n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).reshape(n_eval, n_targets) if self.y_ndim_ == 1: y = y.ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " "at instantiation. Need to recompute " "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = linalg.solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = linalg.solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T, lower=True) else: # Ordinary Kriging u = np.zeros((n_targets, n_eval)) MSE = np.dot(self.sigma2.reshape(n_targets, 1), (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0))[np.newaxis, :]) MSE = np.sqrt((MSE ** 2.).sum(axis=0) / n_targets) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. if self.y_ndim_ == 1: MSE = MSE.ravel() return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ check_is_fitted(self, "X") if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = linalg.solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = linalg.solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = linalg.solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = linalg.solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print("The chosen optimizer is: " + str(self.optimizer)) if self.random_start > 1: print(str(self.random_start) + " random starts are required.") percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function( theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t, i=i: log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t, i=i: np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = (np.log10(self.thetaL) + self.random_state.rand(*self.theta0.shape) * np.log10(self.thetaU / self.thetaL)) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0).ravel(), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print("%s completed" % (5 * percent_completed)) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = check_array(self.theta0.min()) self.thetaL = check_array(self.thetaL.min()) self.thetaU = check_array(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print("Proceeding along dimension %d..." % (i + 1)) self.theta0 = check_array(theta_iso) self.thetaL = check_array(thetaL[0, i]) self.thetaU = check_array(thetaU[0, i]) def corr_cut(t, d): return corr(check_array(np.hstack([optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]])), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError("This optimizer ('%s') is not " "implemented yet. Please contribute!" % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError("regr should be one of %s or callable, " "%s was given." % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = np.atleast_2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError("corr should be one of %s or callable, " "%s was given." % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = np.atleast_2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = np.atleast_2d(self.thetaL) self.thetaU = np.atleast_2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if self.optimizer not in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
bsd-3-clause
supernifty/reference-bias
bin/draw_matrix.py
1
2392
#!/usr/bin/env python # # generates a chart illustrating the bias as generated from the calculate_bias_matrix command # also requires a mapping from donor to the label to display on the chart # usage # python draw_matrix.py genome_map < matrix.out > chart.pdf # genome_map has the format: # donor_filename,label,extra import sys import matplotlib.pyplot as plt import numpy as np import pylab from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) #pylab.rcParams['figure.figsize'] = 8, 6 pylab.rcParams['figure.figsize'] = 10, 8 def genome_sort( gmap ): def sorter( x ): return gmap[x] return sorter def draw_matrix( in_fh, genome_map, out_fh ): gmap = {} for line in genome_map: x, y, _ = [ z.strip() for z in line.split(',') ] gmap[x] = y genomes = set() data = {} first = True for line in in_fh: sys.stderr.write( line ) if first: # header first = False continue fields = line.strip().split() donor = fields[0] reference = fields[1] bias = float( fields[4] ) if donor not in genomes: genomes.add( donor ) if reference not in genomes: genomes.add( reference ) data[ '{0},{1}'.format( donor, reference ) ] = bias genome_list = sorted( list( genomes ), key=genome_sort( gmap ) ) fig = plt.figure() ax = fig.add_subplot(111) ax.set_aspect(0.5) ax.set_ylabel('Donor') ax.set_xlabel('Reference') data_array = np.empty([len( genome_list ), len( genome_list )]) for xi, xv in enumerate( genome_list ): for yi, yv in enumerate( genome_list ): data_array[yi][xi] = data[ '{0},{1}'.format( yv, xv ) ] ax.annotate(str(data_array[yi][xi]), xy=(xi, yi), horizontalalignment='center', verticalalignment='center') res = ax.imshow(data_array, interpolation='nearest', cmap=plt.cm.RdYlGn_r) mapped_genome_list = [ gmap[x] for x in genome_list ] sys.stderr.write( '{0}\n'.format( mapped_genome_list ) ) ax.set_xticks(np.arange(len(mapped_genome_list)), minor=False) ax.set_yticks(np.arange(len(mapped_genome_list)), minor=False) ax.set_xticklabels( mapped_genome_list, rotation=45, horizontalalignment='right' ) ax.set_yticklabels( mapped_genome_list ) cb = fig.colorbar(res, label='% loss') fig.savefig( out_fh, format='pdf', dpi=1000) if __name__ == '__main__': draw_matrix( sys.stdin, open( sys.argv[1], 'r' ), sys.stdout )
apache-2.0
malariagen/agam-report-base
src/python/ag1k/phase1_ar3.py
1
5818
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, division import os import pyfasta import allel import seaborn as sns import petl as etl import h5py import pandas title = 'Phase 1 AR3 release' pop_ids = 'AOM', 'BFM', 'GWA', 'GNS', 'BFS', 'CMS', 'GAS', 'UGS', 'KES' pop_labels = { 'AOM': 'AO $coluzzii$', 'BFM': 'BF $coluzzii$', 'GWA': 'GW', 'GNS': 'GN $gambiae$', 'BFS': 'BF $gambiae$', 'CMS': 'CM $gambiae$', 'UGS': 'UG $gambiae$', 'GAS': 'GA $gambiae$', 'KES': 'KE', 'colony': 'colony', } pop_colors = { 'AOM': sns.color_palette('YlOrBr', 5)[4], 'BFM': sns.color_palette('Reds', 3)[1], 'GWA': sns.color_palette('YlOrBr', 5)[1], 'GNS': sns.color_palette('Blues', 3)[0], 'BFS': sns.color_palette('Blues', 3)[1], 'CMS': sns.color_palette('Blues', 3)[2], 'UGS': sns.color_palette('Greens', 2)[0], 'GAS': sns.color_palette('Greens', 2)[1], 'KES': sns.color_palette('Greys', 5)[2], 'colony': sns.color_palette('Greys', 5)[-1] } # convert to hex notation for ease of use elsewhere for p in pop_colors: h = '#%02x%02x%02x' % tuple(int(255*c) for c in pop_colors[p]) # chromatin _data_chromatin = b"""CHX chro X 20009764 24393108 CH2R chro 2R 58984778 61545105 CH2L chro 2L 1 2431617 PEU2L chro 2L 2487770 5042389 IH2L chro 2L 5078962 5788875 IH3R chro 3R 38988757 41860198 CH3R chro 3R 52161877 53200684 CH3L chro 3L 1 1815119 PEU3L chro 3L 1896830 4235209 IH3L chro 3L 4264713 5031692 """ tbl_chromatin = ( etl .fromtext(etl.MemorySource(_data_chromatin)) .split('lines', '\s+', ['name', 'type', 'chrom', 'start', 'stop']) .convert(('start', 'stop'), int) .cutout('type') ) # genome regions region_X_speciation = 'X-speciation', 'X', 15000000, 24000000 region_X_free = 'X-free', 'X', 1, 14000000 region_3L_free = '3L-free', '3L', 15000000, 41000000 region_3R_free = '3R-free', '3R', 1, 37000000 # noinspection PyGlobalUndefined def init(release_dir, load_geneset=False): """Initialise data resources. Parameters ---------- release_dir : string Local filesystem path where data from the release are stored. load_geneset : string If True, load geneset into memory. """ # reference sequence #################### global genome_fn, genome genome_dir = os.path.join(release_dir, 'genome') genome_fn = os.path.join(genome_dir, 'Anopheles-gambiae-PEST_CHROMOSOMES_AgamP3.fa') if os.path.exists(genome_fn): genome = pyfasta.Fasta(genome_fn) # genome annotations #################### global geneset_agamp42_fn, geneset_agamp42 geneset_dir = os.path.join(release_dir, 'geneset') geneset_agamp42_fn = os.path.join( geneset_dir, 'Anopheles-gambiae-PEST_BASEFEATURES_AgamP4.2.sorted.gff3.gz') if os.path.exists(geneset_agamp42_fn) and load_geneset: geneset_agamp42 = allel.FeatureTable.from_gff3(geneset_agamp42_fn) # variant callsets ################## global callset, callset_pass variation_dir = os.path.join(release_dir, 'variation') # main callset callset_h5_fn = os.path.join(variation_dir, 'main', 'hdf5', 'ag1000g.phase1.ar3.h5') if os.path.exists(callset_h5_fn): callset = h5py.File(callset_h5_fn, mode='r') # main callset, PASS variants only callset_pass_h5_fn = os.path.join(variation_dir, 'main', 'hdf5', 'ag1000g.phase1.ar3.pass.h5') if os.path.exists(callset_pass_h5_fn): callset_pass = h5py.File(callset_pass_h5_fn, mode='r') # accessibility ############### global accessibility accessibility_dir = os.path.join(release_dir, 'accessibility') accessibility_fn = os.path.join(accessibility_dir, 'accessibility.h5') if os.path.exists(accessibility_fn): accessibility = h5py.File(accessibility_fn, mode='r') # sample metadata ################# global samples_fn, tbl_samples, lkp_samples, sample_ids, df_samples samples_dir = os.path.join(release_dir, 'samples') samples_fn = os.path.join(samples_dir, 'samples.all.txt') if os.path.exists(samples_fn): tbl_samples = ( etl .fromtsv(samples_fn) .convert(('index', 'year', 'n_sequences', 'kt_2la', 'kt_2rb'), int) .convert(('mean_coverage', 'latitude', 'longitude') + tuple(range(20, 36)), float) ) lkp_samples = tbl_samples.recordlookupone('ox_code') sample_ids = tbl_samples.values('ox_code').list() df_samples = pandas.read_csv(samples_fn, sep='\t', index_col='index') # extras ######## global allele_counts, allele_counts_gq10, outgroup_alleles, outgroup_allele_counts, \ outgroup_species extras_dir = os.path.join(release_dir, 'extras') # allele counts allele_counts_fn = os.path.join(extras_dir, 'allele_counts.h5') if os.path.exists(allele_counts_fn): allele_counts = h5py.File(allele_counts_fn, mode='r') allele_counts_gq10_fn = os.path.join(extras_dir, 'allele_counts.gq10.h5') if os.path.exists(allele_counts_gq10_fn): allele_counts_gq10 = h5py.File(allele_counts_gq10_fn, mode='r') # outgroup data outgroup_species = 'arab', 'meru', 'mela', 'quad', 'epir', 'chri' outgroup_alleles_fn = os.path.join(extras_dir, 'outgroup_alleles.h5') if os.path.exists(outgroup_alleles_fn): outgroup_alleles = h5py.File(outgroup_alleles_fn, mode='r') outgroup_allele_counts_fn = os.path.join(extras_dir, 'outgroup_allele_counts.h5') if os.path.exists(outgroup_allele_counts_fn): outgroup_allele_counts = h5py.File(outgroup_allele_counts_fn, mode='r')
mit
iABC2XYZ/abc
DM/BTL/T1.py
1
4591
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Oct 11 16:51:40 2017 Author: Peiyong Jiang : [email protected] Function: """ import matplotlib.pyplot as plt #import tensorflow as tf import numpy as np #from basicTF import Quad4D, Drift4D,TwissO4D plt.close('all') def MapQuad(K,L): K2=np.sqrt(np.abs(K*1.)) K2_L=K2*L if K>0: C=np.cos(K2_L) S=np.sin(K2_L)/K2 Sp=-np.sin(K2_L)*K2 else: C=np.cosh(K2_L) S=np.sinh(K2_L)/K2 Sp=np.sinh(K2_L)*K2 M=np.array([[C,S],[Sp,C]]) return M def MapDrift(L): M=np.array([[1.,L],[0.,1.]]) return M def RandSigma(betaMax): betaT=np.random.random()*betaMax alphaT=np.random.random()*np.sign(np.random.random()-0.5) gammaT=(1.+alphaT**2)/betaT sigmaT=np.array([[betaT,-alphaT],[-alphaT,gammaT]]) return sigmaT def RandLatticeBPL(numQuad): quadL=np.random.random([numQuad]) quadK=np.random.random([numQuad])-0.5 driftL=np.random.random([numQuad+1]) return quadL,quadK,driftL def CalBTL(numSample,sigmaTx,sigmaTy,quadL,quadK,driftL): lenBTL=np.sum(quadL)+np.sum(driftL) nCell=len(quadK) kStart=np.zeros([nCell]) kEnd=np.zeros([nCell]) for iCell in range(nCell): if iCell==0: kStart[0]=driftL[0] kEnd[0]=kStart[0]+quadL[0] continue kStart[iCell]=kEnd[iCell-1]+driftL[iCell] kEnd[iCell]=kStart[iCell]+quadL[iCell] Z=np.linspace(0.,lenBTL,numSample) K=np.zeros([numSample]) for iCell in range(nCell): K[(Z>=kStart[iCell]) * (Z<=kEnd[iCell])]=quadK[iCell] dL=lenBTL/(numSample-1.) betaX=np.zeros([numSample]) betaY=np.zeros([numSample]) for iL in range(numSample): if iL==0: betaX[0]=sigmaTx[0,0] betaY[0]=sigmaTy[0,0] kLocal=K[iL] if np.abs(kLocal)<1e-6: Mx=MapDrift(dL) My=Mx else: Mx=MapQuad(kLocal,dL) My=MapQuad(-kLocal,dL) sigmaTx=np.matmul(np.matmul(Mx,sigmaTx),Mx.T) sigmaTy=np.matmul(np.matmul(My,sigmaTy),My.T) betaX[iL]=sigmaTx[0,0] betaY[iL]=sigmaTy[0,0] return Z,betaX,betaY def RandItemSingle(numSample,numQuadHigh): numQuad=np.random.randint(0,high=numQuadHigh) flagEle=np.zeros([numSample]) flagEle[0:numQuad+1:2]=1 # D flagEle[1:numQuad:2]=4 # Q quadL,quadK,driftL=RandLatticeBPL(numQuad) betaMax=100. sigmaTx=RandSigma(betaMax) sigmaTy=RandSigma(betaMax) Z,betaX,betaY=CalBTL(numSample,sigmaTx,sigmaTy,quadL,quadK,driftL) dataLattice=np.zeros([numQuadHigh,3]) dataBeam=np.zeros([numSample,4]) dataLattice[0:numQuad+1,0]=driftL dataLattice[0:numQuad,1]=quadK dataLattice[0:numQuad,2]=quadL dataBeam[:,0]=Z dataBeam[:,1]=betaX dataBeam[:,2]=betaY dataBeam[:,3]=flagEle return dataLattice,dataBeam def RandItemMulti(numItem,numSample,numQuadHigh): dataLattice=np.zeros([numItem,numQuadHigh,3]) dataBeam=np.zeros([numItem,numSample,4]) for iItem in range(numItem): dataLatticeSingle,dataBeamSingle=RandItemSingle(numSample,numQuadHigh) dataLattice[iItem,:,:]=dataLatticeSingle dataBeam[iItem,:,:]=dataBeamSingle return dataLattice,dataBeam numItem=10 numSample=1024 numQuadHigh=20 dataLattice,dataBeam=RandItemMulti(numItem,numSample,numQuadHigh) for iItem in range(numItem): driftL=dataLattice[iItem,:,0] quadK=dataLattice[iItem,:,1] quadL=dataLattice[iItem,:,2] Z=dataBeam[iItem,:,0] betaX=dataBeam[iItem,:,1] betaY=dataBeam[iItem,:,2] flagEle=dataBeam[iItem,:,3] print('quadL------------------',len(quadL)) print(quadL) print('quadK------------------',len(quadK)) print(quadK) print('driftL------------------',len(driftL)) print(driftL) print('Z------------------',len(Z)) print(Z) print('betaX------------------',len(betaX)) print(betaX) print('betaY------------------',len(betaY)) print(betaY) plt.figure(1) plt.clf() plt.plot(quadL,'b') plt.hold plt.plot(quadK,'r') plt.plot(driftL,'g') plt.plot(flagEle,'k-*') plt.axis([-1,numQuadHigh+1,-1,4]) plt.show() plt.pause(0.5) plt.figure(2) plt.clf() plt.subplot(121) plt.plot(Z,betaX,'b') plt.subplot(122) plt.plot(Z,betaY,'r') plt.show() plt.pause(0.5)
gpl-3.0
RomainBrault/scikit-learn
doc/tutorial/text_analytics/solutions/exercise_01_language_train_model.py
73
2264
"""Build a language detector model The goal of this exercise is to train a linear classifier on text features that represent sequences of up to 3 consecutive characters so as to be recognize natural languages by using the frequencies of short character sequences as 'fingerprints'. """ # Author: Olivier Grisel <[email protected]> # License: Simplified BSD import sys from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.datasets import load_files from sklearn.model_selection import train_test_split from sklearn import metrics # The training data folder must be passed as first argument languages_data_folder = sys.argv[1] dataset = load_files(languages_data_folder) # Split the dataset in training and test set: docs_train, docs_test, y_train, y_test = train_test_split( dataset.data, dataset.target, test_size=0.5) # TASK: Build a vectorizer that splits strings into sequence of 1 to 3 # characters instead of word tokens vectorizer = TfidfVectorizer(ngram_range=(1, 3), analyzer='char', use_idf=False) # TASK: Build a vectorizer / classifier pipeline using the previous analyzer # the pipeline instance should stored in a variable named clf clf = Pipeline([ ('vec', vectorizer), ('clf', Perceptron()), ]) # TASK: Fit the pipeline on the training set clf.fit(docs_train, y_train) # TASK: Predict the outcome on the testing set in a variable named y_predicted y_predicted = clf.predict(docs_test) # Print the classification report print(metrics.classification_report(y_test, y_predicted, target_names=dataset.target_names)) # Plot the confusion matrix cm = metrics.confusion_matrix(y_test, y_predicted) print(cm) #import matlotlib.pyplot as plt #plt.matshow(cm, cmap=plt.cm.jet) #plt.show() # Predict the result on some short new sentences: sentences = [ u'This is a language detection test.', u'Ceci est un test de d\xe9tection de la langue.', u'Dies ist ein Test, um die Sprache zu erkennen.', ] predicted = clf.predict(sentences) for s, p in zip(sentences, predicted): print(u'The language of "%s" is "%s"' % (s, dataset.target_names[p]))
bsd-3-clause
zehpunktbarron/iOSMAnalyzer
scripts/c5_poi_tags.py
1
7057
# -*- coding: utf-8 -*- #!/usr/bin/python2.7 #description :This file creates a plot: Calculates the development if the avarage tag-number of all POIs #author :Christopher Barron @ http://giscience.uni-hd.de/ #date :19.01.2013 #version :0.1 #usage :python pyscript.py #============================================================================== import psycopg2 import matplotlib.pyplot as plt import matplotlib.dates as mdates import numpy as np import pylab # import db connection parameters import db_conn_para as db ### ### Connect to database with psycopg2. Add arguments from parser to the connection-string ### try: conn_string="dbname= %s user= %s host= %s password= %s" %(db.g_my_dbname, db.g_my_username, db.g_my_hostname, db.g_my_dbpassword) print "Connecting to database\n->%s" % (conn_string) # Verbindung mit der DB mittels psycopg2 herstellen conn = psycopg2.connect(conn_string) print "Connection to database was established succesfully" except: print "Connection to database failed" ### ### Execute SQL query ### # Mit dieser neuen "cursor Methode" koennen SQL-Abfragen abgefeuert werden cur = conn.cursor() # Execute SQL query. For more than one row use three '"' try: cur.execute(""" -- Amount of Tags of each POI SELECT generate_series, ROUND(coalesce((SELECT avg(count) FROM (SELECT id, count(skeys) FROM (SELECT id, skeys(tags), tags FROM hist_plp h WHERE -- POI-Tags & Keys -- POI-Tags & Keys ( -- accomodation & gastronomy ((tags->'amenity') = 'bar') OR ((tags->'amenity') = 'bbq') OR ((tags->'amenity') = 'biergarten') OR ((tags->'amenity') = 'cafe') OR ((tags->'amenity') = 'drinking_water') OR ((tags->'amenity') = 'fast_food') OR ((tags->'amenity') = 'food_court') OR ((tags->'amenity') = 'ice_cream') OR ((tags->'amenity') = 'pub') OR ((tags->'amenity') = 'restaurant') OR -- education ((tags->'amenity') = 'college') OR ((tags->'amenity') = 'kindergarten') OR ((tags->'amenity') = 'library') OR ((tags->'amenity') = 'school') OR ((tags->'amenity') = 'university') OR -- transport ((tags->'amenity') = 'bicycle_parking') OR ((tags->'amenity') = 'bicycle_rental') OR ((tags->'amenity') = 'bus_station') OR ((tags->'amenity') = 'car_rental') OR ((tags->'amenity') = 'car_sharing') OR ((tags->'amenity') = 'car_wash') OR ((tags->'amenity') = 'ev_charging') OR ((tags->'amenity') = 'ferry_terminal') OR ((tags->'amenity') = 'fuel') OR ((tags->'amenity') = 'grit_bin') OR ((tags->'amenity') = 'parking') OR ((tags->'amenity') = 'parking_entrance') OR ((tags->'amenity') = 'parking_space') OR ((tags->'amenity') = 'taxi') OR -- finances ((tags->'amenity') = 'atm') OR ((tags->'amenity') = 'bank') OR ((tags->'amenity') = 'bureau_de_change') OR -- health care ((tags->'amenity') = 'baby_hatch') OR ((tags->'amenity') = 'clinic') OR ((tags->'amenity') = 'dentist') OR ((tags->'amenity') = 'doctors') OR ((tags->'amenity') = 'hospital') OR ((tags->'amenity') = 'nursing_home') OR ((tags->'amenity') = 'pharmacy') OR ((tags->'amenity') = 'social_facility') OR ((tags->'amenity') = 'veterinary') OR -- art & cilture ((tags->'amenity') = 'arts_centre') OR ((tags->'amenity') = 'cinema') OR ((tags->'amenity') = 'community_centre') OR ((tags->'amenity') = 'fountain') OR ((tags->'amenity') = 'nightclub') OR ((tags->'amenity') = 'social_centre') OR ((tags->'amenity') = 'stripclub') OR ((tags->'amenity') = 'studio') OR ((tags->'amenity') = 'swingerclub') OR ((tags->'amenity') = 'theatre') OR -- shops tags ? 'shop' OR -- tourism tags ? 'tourism' OR -- other ((tags->'amenity') = 'animal_boarding') OR ((tags->'amenity') = 'animal_shelter') OR ((tags->'amenity') = 'bench') OR ((tags->'amenity') = 'brothel') OR ((tags->'amenity') = 'clock') OR ((tags->'amenity') = 'courthouse') OR ((tags->'amenity') = 'crematorium') OR ((tags->'amenity') = 'crypt') OR ((tags->'amenity') = 'embassy') OR ((tags->'amenity') = 'fire_station') OR ((tags->'amenity') = 'grave_yard') OR ((tags->'amenity') = 'hunting_stand') OR ((tags->'amenity') = 'marketplace') OR ((tags->'amenity') = 'place_of_worship') OR ((tags->'amenity') = 'police') OR ((tags->'amenity') = 'post_box') OR ((tags->'amenity') = 'post_office') OR ((tags->'amenity') = 'prison') OR ((tags->'amenity') = 'public_building') OR ((tags->'amenity') = 'recycling') OR ((tags->'amenity') = 'sauna') OR ((tags->'amenity') = 'shelter') OR ((tags->'amenity') = 'shower') OR ((tags->'amenity') = 'telephone') OR ((tags->'amenity') = 'toilets') OR ((tags->'amenity') = 'townhall') OR ((tags->'amenity') = 'vending_machine') OR ((tags->'amenity') = 'waste_basket') OR ((tags->'amenity') = 'waste_disposal') OR ((tags->'amenity') = 'watering_place') ) AND visible = 'true' AND (version = (SELECT max(version) FROM hist_plp WHERE typ = h.typ AND h.id = hist_plp.id) AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)) AND minor = (SELECT max(minor) from hist_plp where typ = h.typ AND h.id = hist_plp.id AND h.version = hist_plp.version AND ( valid_from <= generate_series AND (valid_to >= generate_series OR valid_to is null)))) ) AS foo GROUP BY id) AS foo2 ), 0), 2)::float AS avg FROM generate_series( (SELECT date_trunc ('month',( SELECT MIN(valid_from) FROM hist_plp)) as foo), -- Select minimum date (month) (SELECT MAX(valid_from) FROM hist_plp)::date, -- Select maximum date interval '1 month') ; """) # Getting a list of tuples from the database-cursor (cur) data_tuples = [] for row in cur: data_tuples.append(row) except: print "Query could not be executed" ### ### Plot (Bar-Chart) ### # Datatypes of the returning data: column 1(col1) --> integer, column 2(date) --> string datatypes = [('date', 'S20'), ('col1', 'double')] # Data-tuple and datatype data = np.array(data_tuples, dtype=datatypes) # Date comes from 'col1' col1 = data['col1'] # Converts date to a manageable date-format for matplotlib dates = mdates.num2date(mdates.datestr2num(data['date'])) fig, ax1 = plt.subplots() # Create barchart (x-axis=dates, y-axis=col1, ax1.plot(dates, col1, linewidth=2, color = '#2dd700') # Place a gray dashed grid behind the thicks (only for y-axis) ax1.yaxis.grid(color='gray', linestyle='dashed') # Set this grid behind the thicks ax1.set_axisbelow(True) # Rotate x-labels on the x-axis fig.autofmt_xdate() # Label x and y axis plt.xlabel('Date') plt.ylabel('Average number of Tags') # Plot-title plt.title("Development of the average Tag-Number of all POIs") # Save plot to *.jpeg-file plt.savefig('pics/c5_poi_tags.jpeg') plt.clf()
gpl-3.0
deepinsight/Deformable-ConvNets
deeplab/runs_CAIScene/infer5.py
1
11273
import os os.environ['MXNET_CUDNN_AUTOTUNE_DEFAULT'] = '0' import sys import argparse import numpy as np import cv2 import math import datetime import random import json import pandas as pd #import multiprocessing from Queue import Queue from threading import Thread import mxnet as mx import mxnet.ndarray as nd from easydict import EasyDict as edict parser = argparse.ArgumentParser(description="", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--lst', type=str, default='./data/val.lst', help='') parser.add_argument('--val-root-path', type=str, default='/raid5data/dplearn/aichallenger/scene/val') parser.add_argument('--test-root-path', type=str, default='/raid5data/dplearn/aichallenger/scene/test_a') parser.add_argument('--gpu', type=int, default=0, help='') parser.add_argument('--gpus', type=str, default='0,1,2,3,4,5,6,7', help='') parser.add_argument('--num-classes', type=int, default=80, help='') parser.add_argument('--batch-size', type=int, default=128, help='') parser.add_argument('--mode', type=int, default=0, help='') parser.add_argument('--size', type=str, default='448,504') #parser.add_argument('--size', type=str, default='224,256') parser.add_argument('--step', type=int, default=-40, help='if negative, use random crops') #parser.add_argument('--model', type=str, default='./model/ft448deformsqex0.0001_9682,3|./model/sft320deformsqex_9692,1') #parser.add_argument('--model', type=str, default='./model/sft320deformsqex_9692,1') #parser.add_argument('--model', type=str, default='./model/ft224deformsqex0003_9587,20') #parser.add_argument('--model', type=str, default='./model/a1,8,14') #parser.add_argument('--model', type=str, default='./model/a1_2,2,6') #parser.add_argument('--model', type=str, default='./model/a1_6,1') #parser.add_argument('--model', type=str, default='./model/a1_6,1|./model/a1_4,3|./model/a1_5,6|./model/a1_7,2') #parser.add_argument('--model', type=str, default='./model/a1_6,6|./model/a1_4,6|./model/a1_5,6|./model/a1_7,6') #parser.add_argument('--model', type=str, default='./model/ft224nude0003_97,50,224|./model/sft448from32097nude00003_9740,11,448|./model/sft320nude00003_97,19,320') #parser.add_argument('--model', type=str, default='./model/ft224nude0003_97,50,224|./model/sft448from32097nude00003_9740,11,448') #parser.add_argument('--model', type=str, default='./model/sft448from32097nude00003_9740,11,448|./model/sft320nude00003_97,19,320') #parser.add_argument('--model', type=str, default='./model/sft448from32097nude00003_9740,11,448') parser.add_argument('--model', type=str, default='./model/ft224nude0003_97,50,224|./model/sft448from32097nude00003_9740,11,448') #parser.add_argument('--model', type=str, default='./model/sft448from32097nude00003_9740,11,448|./model/ft224nude0003_97,50,224') parser.add_argument('--output-dir', type=str, default='./rt', help='') args = parser.parse_args() def prt(msg): ts = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") print("%s] %s" % (ts, msg)) sys.stdout.flush() def ch_dev(arg_params, aux_params, ctx): new_args = dict() new_auxs = dict() for k, v in arg_params.items(): new_args[k] = v.as_in_context(ctx) for k, v in aux_params.items(): new_auxs[k] = v.as_in_context(ctx) return new_args, new_auxs def image_preprocess(img_full_path): _size = args.size.split(",") img_sz = int(_size[1]) crop_sz = int(_size[0]) #print(img_full_path) img = cv2.cvtColor(cv2.imread(img_full_path), cv2.COLOR_BGR2RGB) img = np.float32(img) ori_shape = img.shape assert img.shape[2]==3 rows, cols = img.shape[:2] _high = min(rows, cols) _high = min(_high, crop_sz*2) _high = max(_high, img_sz) _img_sz = img_sz if _high>img_sz: _img_sz = np.random.randint(low=img_sz, high=_high) if cols < rows: resize_width = _img_sz resize_height = resize_width * rows / cols; else: resize_height = _img_sz resize_width = resize_height * cols / rows; img = cv2.resize(img, (resize_width, resize_height), interpolation=cv2.INTER_CUBIC) #print(_high,ori_shape,img.shape) h, w, _ = img.shape #x0 = int((w - crop_sz) / 2) #y0 = int((h - crop_sz) / 2) x0_max = w-crop_sz y0_max = h-crop_sz x0 = np.random.randint(low=0, high=x0_max) y0 = np.random.randint(low=0, high=y0_max) img = img[y0:y0+crop_sz, x0:x0+crop_sz, :] #lr flip if random.randint(0,1)==1: for j in xrange(3): img[:,:,j] = np.fliplr(img[:,:,j]) img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) # change to CHW return img def read_image(path): img = cv2.cvtColor(cv2.imread(path), cv2.COLOR_BGR2RGB) img = np.float32(img) return img def image_preprocess2(img, crop_sz, blockid, cornerid, flipid): nd_img = nd.array(img) expand = 32 #if crop_sz<300: # expand = 16 img_sz = crop_sz+expand nd_img = mx.image.resize_short(nd_img, img_sz) if flipid==1: nd_img = nd.flip(nd_img, axis=1) img = nd_img.asnumpy() h = img.shape[0] w = img.shape[1] block_size = min(h,w) blockh = 0 blockw = 0 if h>w: if blockid==1: _half = int( (h-w)/2 ) blockh = _half elif blockid==2: blockh = h-w else: if blockid==1: _half = int( (w-h)/2 ) blockw = _half elif blockid==2: blockw = w-h block = img[blockh:(blockh+block_size), blockw:(blockw+block_size), :] if cornerid==0: cornerh = int((block_size-crop_sz)/2) cornerw = int((block_size-crop_sz)/2) elif cornerid==1: cornerh = 0 cornerw = 0 elif cornerid==2: cornerh = 0 cornerw = block_size-crop_sz elif cornerid==3: cornerh = block_size-crop_sz cornerw = 0 elif cornerid==4: cornerh = block_size-crop_sz cornerw = block_size-crop_sz img = block[cornerh:(cornerh+crop_sz), cornerw:(cornerw+crop_sz), :] img = np.swapaxes(img, 0, 2) img = np.swapaxes(img, 1, 2) # change to CHW #print(img.shape) return img def val(X, imgs): top1=0 top3=0 for ii in range(X.shape[0]): score = X[ii] gt_label = imgs[ii][1] #print("%d sum %f" % (ii, _sum)) sort_index = np.argsort(score)[::-1] for k in xrange(3): if sort_index[k]==gt_label: top3+=1 if k==0: top1+=1 print('top3', float(top3)/X.shape[0]) print('top1', float(top1)/X.shape[0]) if args.mode>0: args.root_path = args.test_root_path else: args.root_path = args.val_root_path args.crop_size = int(args.size.split(',')[0]) args.resize = int(args.size.split(',')[1]) #ctxs = [mx.gpu(int(i)) for i in args.gpus.split(',')] nets = [] gpuid = args.gpu ctx = mx.gpu(gpuid) for model_str in args.model.split('|'): vec = model_str.split(',') assert len(vec)>1 prefix = vec[0] epoch = int(vec[1]) crop_sz = int(vec[2]) print('loading',prefix, epoch) net = edict() net.crop_sz = crop_sz net.ctx = ctx net.sym, net.arg_params, net.aux_params = mx.model.load_checkpoint(prefix, epoch) net.arg_params, net.aux_params = ch_dev(net.arg_params, net.aux_params, net.ctx) nets.append(net) gpuid+=1 imgs = [] i = 0 for line in open(args.lst, 'r'): vec = line.strip().split("\t") imgs.append( (i, int(vec[1]), os.path.join(args.root_path, vec[2])) ) i+=1 #models = [] #for net in nets: # model = mx.mod.Module( # context = ctxs, # symbol = net.sym, # ) # hw = int(args.size.split(',')[0]) # model.bind(data_shapes=[('data', (args.batch_size, 3, hw, hw))], label_shapes=[('softmax_label',(args.batch_size,))], for_training=False, grad_req="null") # model.set_params(net.arg_params, net.aux_params) # models.append(model) X = np.zeros( (len(imgs), args.num_classes) , dtype=np.float32 ) num_batches = int( math.ceil(len(imgs) / args.batch_size) ) print("num_batches %d" % num_batches) if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) for blockid in [1,0,2]: for cornerid in xrange(0,5): for flipid in xrange(0,2): print('start loop', blockid, cornerid, flipid) score_weight = 1.0 #if blockid==1: # score_weight = 2.0 batch_head = 0 batch_num = 0 while batch_head<len(imgs): prt("processing batch %d" % batch_num) current_batch_sz = min(args.batch_size, len(imgs)-batch_head) #print batch_head ids = [] datas = [] for index in range(batch_head, batch_head+current_batch_sz): img_path = imgs[index][2] data = read_image(img_path) datas.append(data) ids.append(imgs[index][0]) #assert len(datas)==1 #_data = datas[0] #_hw = min(_data.shape[0], _data.shape[1]) #if _hw<256: # _nets = [nets[0]] #else: # _nets = nets #for model in models: for net in nets: input_blob = np.zeros((current_batch_sz,3,net.crop_sz,net.crop_sz)) for idx in xrange(len(datas)): data = datas[idx] img = image_preprocess2(data, net.crop_sz, blockid, cornerid, flipid) #print(img.shape) input_blob[idx,:,:,:] = img #print(input_blob.shape) net.arg_params["data"] = mx.nd.array(input_blob, net.ctx) net.arg_params["softmax_label"] = mx.nd.empty((current_batch_sz,), net.ctx) exe = net.sym.bind(net.ctx, net.arg_params ,args_grad=None, grad_req="null", aux_states=net.aux_params) exe.forward(is_train=False) net_out = exe.outputs[0].asnumpy() #_data = mx.nd.array(input_blob) #_label = nd.ones( (current_batch_sz,) ) #db = mx.io.DataBatch(data=(_data,), label=(_label,)) #model.forward(db, is_train=False) #net_out = model.get_outputs()[0].asnumpy() #print(net_out.shape) for bz in xrange(current_batch_sz): probs = net_out[bz,:] score = np.squeeze(probs) score *= score_weight #print(score.shape) #print(score) im_id = ids[bz] X[im_id,:] += score batch_head += current_batch_sz batch_num += 1 val(X, imgs) out_filename = os.path.join(args.output_dir, 'result.hdf') print(out_filename) if os.path.exists(out_filename): print("exists, delete first..") os.remove(out_filename) _X = X print("_X row sum %f" % np.sum(_X[0])) df = pd.DataFrame(_X) df.to_hdf(out_filename, "result") top1 = 0 top5 = 0 if args.mode==0: val(X, imgs) else: if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) with open(os.path.join(args.output_dir,'result.json'), 'w') as opfile: json_data = [] for ii in range(X.shape[0]): score = X[ii] #print("%d sum %f" % (ii, _sum)) sort_index = np.argsort(score)[::-1] top_k = list(sort_index[0:3]) _data = {'image_id' : imgs[ii][2].split('/')[-1], 'label_id': top_k} json_data.append(_data) opfile.write(json.dumps(json_data)) out_filename = os.path.join(args.output_dir, 'result.hdf') print(out_filename) if os.path.exists(out_filename): print("exists, delete first..") os.remove(out_filename) _X = X print("_X row sum %f" % np.sum(_X[0])) df = pd.DataFrame(_X) df.to_hdf(out_filename, "result")
apache-2.0
deokwooj/DDEA
webgui/lib_bnlearn.py
2
12256
#!/usr/bin/python # To force float point division from __future__ import division """ Created on Mon Mar 24 19:24:11 2014 @author: NGO Quang Minh Khiem @e-mail: [email protected] """ from __future__ import division # To forace float point division import numpy as np from pandas import DataFrame # R libs import rpy2.robjects as robjects from rpy2.robjects.packages import importr import pandas.rpy.common as com from rpy2.robjects import pandas2ri import networkx as nx import matplotlib.pyplot as plt #============================================================# # Use R bnlearn to learn the Bayes network structure #============================================================# ### BN Learn ## load some R libs r = robjects.r utils = importr("utils") bnlearn = importr("bnlearn") rgraphviz = importr("Rgraphviz") # this is important to seamlessly convert from pandas to R data frame pandas2ri.activate() #============================================================# # Utility functions and Misc #============================================================# def write_to_file(filename,text): with open(filename,'w') as f: f.write(text) # Close X11 window def dev_off(): r['dev.off']() #============================================================# # Methods for Plotting #============================================================# # visualize graph from adjacence matrix r_graph # for quick usage: set simple=True (by default) # otherwise, function allows customize some properties of the graph def nx_plot(r_graph, cols_names, simple=True, labels=None, graph_layout='shell', node_size=1600, node_color='blue', node_alpha=0.3, node_text_size=12, edge_color='blue', edge_alpha=0.3, edge_tickness=1, edge_text_pos=0.3, text_font='sans-serif'): #G = nx.Graph() dg = nx.DiGraph() edges = [] np_amat = np.asarray(bnlearn.amat(r_graph)) for ri in range(np_amat.shape[0]): for ci in range(np_amat.shape[1]): if np_amat[ri,ci] == 1: #G.add_edge(cols_names[ri],cols_names[ci]) dg.add_edge(cols_names[ri],cols_names[ci]) edges.append((cols_names[ri],cols_names[ci])) if simple: if graph_layout=='spectral': nx.draw_spectral(dg,font_size=node_text_size) elif graph_layout=='random': nx.draw_random(dg,font_size=node_text_size) elif graph_layout=='circular': nx.draw_circular(dg,font_size=node_text_size) elif graph_layout=='spring': nx.draw_spring(dg,font_size=node_text_size) else: nx.draw(dg,font_size=node_text_size) else: draw_graph(edges,directed=True, labels=labels, graph_layout=graph_layout, node_size=node_size, node_color=node_color, node_alpha=node_alpha, node_text_size=node_text_size, edge_color=edge_color, edge_alpha=edge_alpha, edge_tickness=edge_tickness, edge_text_pos=edge_text_pos, text_font=text_font) #nxlib.draw_graph(dg,labels=cols_names) def nx_plot2(r_graph,cols_names,is_bnlearn=True): G = nx.Graph() dg = nx.DiGraph() if is_bnlearn: np_amat = np.asarray(bnlearn.amat(r_graph)) for ri in range(np_amat.shape[0]): for ci in range(np_amat.shape[1]): if np_amat[ri,ci] == 1: G.add_edge(cols_names[ri],cols_names[ci]) dg.add_edge(cols_names[ri],cols_names[ci]) else: np_amat = np.asarray(r_graph) for ri in range(np_amat.shape[0]): for ci in range(np_amat.shape[1]): if np_amat[ri,ci] >= 0: #G.add_weighted_edges_from([(cols_names[ri],cols_names[ci],{'weight': np_amat[ri,ci]})]) G.add_edge(cols_names[ri],cols_names[ci],weight=np_amat[ri,ci]) #dg.add_weighted_edges_from([(cols_names[ri],cols_names[ci],np_amat[ri,ci])]) #nx.draw(G,nx.shell_layout) nx.draw(G) #nxlib.draw_graph(dg,labels=cols_names) # a more generic graph plotting function, using networkx lib # graph is a list of edges def draw_graph(graph, directed=True, labels=None, graph_layout='shell', node_size=1600, node_color='blue', node_alpha=0.3, node_text_size=12, edge_color='blue', edge_alpha=0.3, edge_tickness=1, edge_text_pos=0.3, text_font='sans-serif'): # create networkx graph #G=nx.Graph() if directed: G = nx.DiGraph() else: G = nx.Graph() # add edges for edge in graph: G.add_edge(edge[0], edge[1]) # these are different layouts for the network you may try # shell seems to work best if graph_layout == 'spring': graph_pos=nx.spring_layout(G) elif graph_layout == 'spectral': graph_pos=nx.spectral_layout(G) elif graph_layout == 'random': graph_pos=nx.random_layout(G) else: graph_pos=nx.shell_layout(G) # draw graph nx.draw_networkx_nodes(G,graph_pos,node_size=node_size, alpha=node_alpha, node_color=node_color) nx.draw_networkx_edges(G,graph_pos,width=edge_tickness, alpha=edge_alpha,edge_color=edge_color) nx.draw_networkx_labels(G, graph_pos,font_size=node_text_size, font_family=text_font) """ if labels is None: labels = range(len(graph)) edge_labels = dict(zip(graph, labels)) """ if labels is not None: edge_labels = dict(zip(graph, labels)) nx.draw_networkx_edge_labels(G, graph_pos, edge_labels=edge_labels, label_pos=edge_text_pos) # show graph plt.show() #============================================================# # bnlearn wrapper APIs #============================================================# ### # Construct list of arcs used for blacklisting/whitelisting # arc list is a list of arcs. For example: # arc_list = # [['A','B'] , ['A','C']] # # return data frame in the following format # from to # 0 A B # 1 A C ### def construct_arcs_frame(arc_list): data_frame = DataFrame(data=np.array(arc_list),columns=['from','to']) return data_frame def print_bw_rules(): rules = """ ============================================================ Blacklisting Rules: ------------------- 1. any arc blacklisted in one of its possible directions is never present in the graph. if A-->B is blacklisted (but B-->A is not), A-->B and A--B are never present in the graph (but not B-->A) 2. any arc blacklisted in both directions, as well as the corresponding undirected arc, is never present in the graph. B(A-->B,B-->A) => B(A--B) Whitelisting Rules: ------------------- 1. arcs whitelisted in one direction only (i.e. A-->B is whitelisted but B-->A is not) have the respective reverse arcs blacklisted, and are always present in the graph. W(A-->B) => B(B-->A,A--B) 2. arcs whitelisted in both directions (i.e. both A--> B and B-->A are whitelisted) are present in the graph, but their direction is set by the learning algorithm. 3. any arc whitelisted and blacklisted at the same time is assumed to be whitelisted, and is thus removed from the blacklist. ============================================================ """ print rules def convert_pymat_to_rfactor(py_mat): mat_shape = py_mat.shape r_factor_vec = r.factor(py_mat) r_factor_mat = r.matrix(r_factor_vec, nrow=mat_shape[1], byrow=True) return np.array(r_factor_mat).reshape(mat_shape[0],mat_shape[1],order='C') def construct_data_frame(data_mat,columns=[]): if len(columns) == 0: column_names = range(data_mat.shape[1]) else: column_names = columns return DataFrame(data=data_mat,columns=column_names) """ def py_bnlearn(data_frame,method='gs',blacklist=None, whitelist=None): # For hill-climbing, the data must be real or factor # if method == 'hc': bn_structure = bnlearn.hc(data_frame) else: bn_structure = bnlearn.gs(data_frame) return bn_structure """ #============================================================# # APIs related to bn_learn structure #============================================================# #=======================| # bn structure and graph| #=======================| def acyclic(bn_structure): return bool(bnlearn.acyclic(bn_structure)[0]) def amat(bn_structure): return np.array(bnlearn.amat(bn_structure)) def py_get_amat(bn_structure): return np.array(bnlearn.amat(bn_structure)) #=======================| # Arcs | #=======================| def narcs(bn_structure): return bnlearn.narcs(bn_structure)[0] def arcs(bn_structure): arcs = np.array(bnlearn.arcs(bn_structure)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs def directed_arcs(bn_structure): arcs = np.array(bnlearn.directed_arcs(bn_structure)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs def undirected_arcs(bn_structure): arcs = np.array(bnlearn.undirected_arcs(bn_structure)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs def incoming_arcs(bn_structure, node_name): arcs = np.array(bnlearn.incoming_arcs(bn_structure, node_name)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs def outgoing_arcs(bn_structure, node_name): arcs = np.array(bnlearn.outgoing_arcs(bn_structure, node_name)) ncols = 2 nrows = len(arcs) / 2 arcs = arcs.reshape(nrows,ncols,order='F') return arcs #=======================| # Nodes | #=======================| def nnodes(bn_structure): return bnlearn.nnodes(bn_structure)[0] def degree(bn_structure, node_name): return bnlearn.degree(bn_structure, node_name)[0] def in_degree(bn_structure, node_name): return bnlearn.in_degree(bn_structure, node_name)[0] def out_degree(bn_structure, node_name): return bnlearn.out_degree(bn_structure, node_name)[0] def root_nodes(bn_structure): return np.array(bnlearn.root_nodes(bn_structure)) def leaf_nodes(bn_structure): return np.array(bnlearn.leaf_nodes(bn_structure)) def children(bn_structure, node_name): return np.array(bnlearn.children(bn_structure, node_name)) def parents(bn_structure, node_name): return np.array(bnlearn.parents(bn_structure, node_name)) def nbr(bn_structure, node_name): return np.array(bnlearn.nbr(bn_structure, node_name)) #=======================| # bn fit | #=======================| ### # To fit data to bn structure, the graph must be completely directed ### def py_bn_fit(bn_structure,data_frame): fit = bnlearn.bn_fit(bn_structure,data_frame) return fit def py_get_node_cond_mat(fit,node_indx): """ Each item in fit is a list vector with dimension attributes fit[node_indx] has 4 attributes ['node', 'parents', 'children', 'prob'] """ node_fit = fit[node_indx] node = node_fit[0] parents = node_fit[1] children = node_fit[2] prob = node_fit[3] """ prob is a vector Array type in R, which contains the conditional probability table of this node. prob is a (n_0 x n_1 x ... x n_parents) matrix, where each n_i is the number of discrete values of each node in the list prob_dimnames prob_dimnames contains the name of each dimension. """ prob_dimnames = np.array(prob.dimnames.names) prob_factors = np.array(prob.dimnames) prob_mat = np.array(prob) #prob_frame = DataFrame(data=prob_mat[0],columns=prob_dimnames) return prob_dimnames,prob_factors,prob_mat def bn_fit_barchart(fit, node_idx): print bnlearn.bn_fit_barchart(fit[node_idx]) def bn_fit_dotplot(fit, node_idx): print bnlearn.bn_fit_dotplot(fit[node_idx])
gpl-2.0
cclauss/itinerant-tester
trending_python_tester.py
1
4517
#!/usr/bin/env python3 """ Update the repo's '.travis.yml' to trigger Travis CI to run flake8 tests on the top 25 GitHub Trending Python repos. Requires: pip3 install --upgrade beautifulsoup4 github3.py requests lxml If lxml is not available, html5lib should be a workable substitute """ import getpass import webbrowser from datetime import datetime as dt # self._put_long_string("%s=%s" % (key, val)) # self, key, val: undefined names import bs4 # will require lxml or html5lib import requests from github3 import login as github3_login HEADERS = { "User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:60.0)" " Gecko/20100101 Firefox/60.0" } token = "cf2800ef2802b619a8ca8bf360f68ee4547a38c3" def my_two_factor_function(): return input("Enter 2FA code: ").strip() or my_two_factor_function() username = getpass.getuser() # Does local username == GitHub username? print("Please enter the GitHub password for user: {}".format(username)) gh = github3_login(username, token, two_factor_callback=my_two_factor_function) # url = 'https://github.com/trending/jupyter-notebook' # GitHub Trending top 25 repos url = "https://github.com/trending/python" # GitHub Trending top 25 repos # url += '?since=weekly' # url += '?since=monthly' # these repos pass tests, have pull requests to pass tests, or are Py3 only ignore = [] # the boilerplate content of the .travis.yml file fmt = """group: travis_latest dist: bionic language: python cache: pip python: #- 2.7 #- 3.5 #- 3.6 #- 3.7 - 3.8 matrix: allow_failures: - python: 2.7 - python: nightly - python: pypy - python: pypy3 env: %s install: #- pip install -r requirements.txt - pip install flake8 # pytest # add other testing frameworks later before_script: - URL=https://github.com/${REPO} - echo ; echo -n "flake8 testing of ${URL} on " ; python -V - git clone --depth=50 ${URL} ~/${REPO} # --branch=master - cd ~/${REPO} script: - echo stop the build if there are Python syntax errors or undefined names - echo ; echo -n "flake8 testing of ${URL} on " ; python -V - time flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics - echo exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide - time flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics #- true # pytest --capture=sys notifications: on_success: change on_failure: change # `always` will be the setting once code changes slow down """ print(f"{dt.now():%a %b %d %H:%M:%S %Z %Y}") # extract the repo names of GitHub's Top 25 Trending Python list soup = bs4.BeautifulSoup( requests.get(url, headers=HEADERS).content, "lxml" ) # or 'html5lib' # 'python / cpython' # repos = soup.find('ol', class_="repo-list").find_all('a', href=True) repos = [h3.find("a", href=True) for h3 in soup.find_all(class_="h3 lh-condensed")] print(repos) # 'python/cpython' repos = ( repo.text.strip().replace(" ", "").replace("\n" * 4, "") for repo in repos if "/" in repo.text and "://" not in repo.text ) repos = list(repos) + [ "n1nj4sec/pupy", "PythonCharmers/python-future", "ansible/ansible", "oaubert/python-vlc", "ColdGrub1384/Pyto", "CoreSecurity/impacket", "internetarchive/openlibrary", "google/ffn", "apache/beam", "apache/incubator-mxnet", "hyperledger/iroha-python", "Supervisor/supervisor", "cheshirekow/cmake_format", "ckan/ckan", "ibm-watson-iot/connector-cloudant", "ibm-watson-iot/device-kodi", "ibm-watson-iot/functions", "apache/spark", "Tribler/tribler", "webpy/webpy", "nodejs/node", "nodejs/node-gyp", "ArduPilot/ardupilot", "ArduPilot/pymavlink", "dronekit/dronekit-python", "ansible/awx", "matplotlib/matplotlib", "ggtracker/sc2reader", "httplib2/httplib2", "hyperledger/fabric-sdk-py", "getsentry/sentry", "v8/v8", ] # ' - REPO=python/cpython' also strip out any repos that are in ignore list repos = "\n".join(" - REPO=" + repo for repo in repos) # if 'shadowsocks' not in repo and repo not in ignore) print(repos) travis_text = fmt % repos # log into GitHub and commit an update to .travis.yml which will trigger tests travis = gh.repository(username, "itinerant-tester").file_contents("/.travis.yml") print(travis.update("trigger a new build", travis_text.encode("utf-8"))) webbrowser.open("https://travis-ci.com/{}/itinerant-tester".format(username))
apache-2.0
iohannez/gnuradio
gnuradio-runtime/apps/evaluation_random_numbers.py
7
5284
#!/usr/bin/env python # # Copyright 2015 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # from __future__ import print_function from __future__ import division from __future__ import unicode_literals from gnuradio import gr import numpy as np from scipy.stats import norm, laplace, rayleigh from matplotlib import pyplot as plt # NOTE: scipy and matplotlib are optional packages and not included in the default gnuradio dependencies #*** SETUP ***# # Number of realisations per histogram num_tests = 1000000 # Set number of bins in histograms uniform_num_bins = 31 gauss_num_bins = 31 rayleigh_num_bins = 31 laplace_num_bins = 31 rndm = gr.random() # instance of gnuradio random class (gr::random) print('All histograms contain',num_tests,'realisations.') #*** GENERATE DATA ***# uniform_values = np.zeros(num_tests) gauss_values = np.zeros(num_tests) rayleigh_values = np.zeros(num_tests) laplace_values = np.zeros(num_tests) for k in range(num_tests): uniform_values[k] = rndm.ran1() gauss_values[k] = rndm.gasdev() rayleigh_values[k] = rndm.rayleigh() laplace_values[k] = rndm.laplacian() #*** HISTOGRAM DATA AND CALCULATE EXPECTED COUNTS ***# uniform_bins = np.linspace(0,1,uniform_num_bins) gauss_bins = np.linspace(-8,8,gauss_num_bins) laplace_bins = np.linspace(-8,8,laplace_num_bins) rayleigh_bins = np.linspace(0,10,rayleigh_num_bins) uniform_hist = np.histogram(uniform_values,uniform_bins) gauss_hist = np.histogram(gauss_values,gauss_bins) rayleigh_hist = np.histogram(rayleigh_values,rayleigh_bins) laplace_hist = np.histogram(laplace_values,laplace_bins) uniform_expected = np.zeros(uniform_num_bins-1) gauss_expected = np.zeros(gauss_num_bins-1) rayleigh_expected = np.zeros(rayleigh_num_bins-1) laplace_expected = np.zeros(laplace_num_bins-1) for k in range(len(uniform_hist[0])): uniform_expected[k] = num_tests / float(uniform_num_bins-1) for k in range(len(gauss_hist[0])): gauss_expected[k] = float(norm.cdf(gauss_hist[1][k+1])-norm.cdf(gauss_hist[1][k]))*num_tests for k in range(len(rayleigh_hist[0])): rayleigh_expected[k] = float(rayleigh.cdf(rayleigh_hist[1][k+1])-rayleigh.cdf(rayleigh_hist[1][k]))*num_tests for k in range(len(laplace_hist[0])): laplace_expected[k] = float(laplace.cdf(laplace_hist[1][k+1])-laplace.cdf(laplace_hist[1][k]))*num_tests #*** PLOT HISTOGRAMS AND EXPECTATIONS TAKEN FROM SCIPY ***# uniform_bins_center = uniform_bins[0:-1]+(uniform_bins[1]-uniform_bins[0]) / 2.0 gauss_bins_center = gauss_bins[0:-1]+(gauss_bins[1]-gauss_bins[0]) / 2.0 rayleigh_bins_center = rayleigh_bins[0:-1]+(rayleigh_bins[1]-rayleigh_bins[0]) / 2.0 laplace_bins_center = laplace_bins[0:-1]+(laplace_bins[1]-laplace_bins[0]) / 2.0 plt.figure(1) plt.subplot(2,1,1) plt.plot(uniform_bins_center,uniform_hist[0],'s--',uniform_bins_center,uniform_expected,'o:') plt.xlabel('Bins'), plt.ylabel('Count'), plt.title('Uniform: Distribution') plt.legend(['histogram gr::random','calculation scipy'],loc=1) plt.subplot(2,1,2) plt.plot(uniform_bins_center,uniform_hist[0] / uniform_expected,'rs--') plt.xlabel('Bins'), plt.ylabel('Relative deviation'), plt.title('Uniform: Relative deviation to scipy') plt.figure(2) plt.subplot(2,1,1) plt.plot(gauss_bins_center,gauss_hist[0],'s--',gauss_bins_center,gauss_expected,'o:') plt.xlabel('Bins'), plt.ylabel('Count'), plt.title('Gauss: Distribution') plt.legend(['histogram gr::random','calculation scipy'],loc=1) plt.subplot(2,1,2) plt.plot(gauss_bins_center,gauss_hist[0] / gauss_expected,'rs--') plt.xlabel('Bins'), plt.ylabel('Relative deviation'), plt.title('Gauss: Relative deviation to scipy') plt.figure(3) plt.subplot(2,1,1) plt.plot(rayleigh_bins_center,rayleigh_hist[0],'s--',rayleigh_bins_center,rayleigh_expected,'o:') plt.xlabel('Bins'), plt.ylabel('Count'), plt.title('Rayleigh: Distribution') plt.legend(['histogram gr::random','calculation scipy'],loc=1) plt.subplot(2,1,2) plt.plot(rayleigh_bins_center,rayleigh_hist[0] / rayleigh_expected,'rs--') plt.xlabel('Bins'), plt.ylabel('Relative deviation'), plt.title('Rayleigh: Relative deviation to scipy') plt.figure(4) plt.subplot(2,1,1) plt.plot(laplace_bins_center,laplace_hist[0],'s--',laplace_bins_center,laplace_expected,'o:') plt.xlabel('Bins'), plt.ylabel('Count'), plt.title('Laplace: Distribution') plt.legend(['histogram gr::random','calculation scipy'],loc=1) plt.subplot(2,1,2) plt.plot(laplace_bins_center,laplace_hist[0] / laplace_expected,'rs--') plt.xlabel('Bins'), plt.ylabel('Relative deviation'), plt.title('Laplace: Relative deviation to scipy') plt.show()
gpl-3.0
cpcloud/ibis
ibis/pandas/tests/test_client.py
1
2779
import numpy as np import pandas as pd import pandas.util.testing as tm import pytest from pytest import param import ibis from ibis.pandas.client import PandasTable # noqa: E402 pytestmark = pytest.mark.pandas @pytest.fixture def client(): return ibis.pandas.connect( { 'df': pd.DataFrame({'a': [1, 2, 3], 'b': list('abc')}), 'df_unknown': pd.DataFrame( {'array_of_strings': [['a', 'b'], [], ['c']]} ), } ) @pytest.fixture def table(client): return client.table('df') def test_client_table(table): assert isinstance(table.op(), ibis.expr.operations.DatabaseTable) assert isinstance(table.op(), PandasTable) def test_client_table_repr(table): assert 'PandasTable' in repr(table) def test_load_data(client): client.load_data('testing', tm.makeDataFrame()) assert client.exists_table('testing') assert client.get_schema('testing') def test_create_table(client): client.create_table('testing', obj=tm.makeDataFrame()) assert client.exists_table('testing') client.create_table('testingschema', schema=client.get_schema('testing')) assert client.exists_table('testingschema') def test_literal(client): lit = ibis.literal(1) result = client.execute(lit) assert result == 1 def test_list_tables(client): assert client.list_tables(like='df_unknown') assert not client.list_tables(like='not_in_the_database') assert client.list_tables() def test_read_with_undiscoverable_type(client): with pytest.raises(TypeError): client.table('df_unknown') def test_drop(table): table = table.mutate(c=table.a) expr = table.drop(['a']) result = expr.execute() expected = table[['b', 'c']].execute() tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( 'unit', [ param('Y', marks=pytest.mark.xfail(raises=TypeError)), param('M', marks=pytest.mark.xfail(raises=TypeError)), param('D', marks=pytest.mark.xfail(raises=TypeError)), param('h', marks=pytest.mark.xfail(raises=TypeError)), param('m', marks=pytest.mark.xfail(raises=TypeError)), param('s', marks=pytest.mark.xfail(raises=TypeError)), param('ms', marks=pytest.mark.xfail(raises=TypeError)), param('us', marks=pytest.mark.xfail(raises=TypeError)), 'ns', param('ps', marks=pytest.mark.xfail(raises=TypeError)), param('fs', marks=pytest.mark.xfail(raises=TypeError)), param('as', marks=pytest.mark.xfail(raises=TypeError)), ], ) def test_datetime64_infer(client, unit): value = np.datetime64('2018-01-02', unit) expr = ibis.literal(value, type='timestamp') result = client.execute(expr) assert result == value
apache-2.0
rhiever/tpot
tpot/config/classifier_mdr.py
4
1756
# -*- coding: utf-8 -*- """This file is part of the TPOT library. TPOT was primarily developed at the University of Pennsylvania by: - Randal S. Olson ([email protected]) - Weixuan Fu ([email protected]) - Daniel Angell ([email protected]) - and many more generous open source contributors TPOT is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. TPOT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with TPOT. If not, see <http://www.gnu.org/licenses/>. """ # Check the TPOT documentation for information on the structure of config dicts tpot_mdr_classifier_config_dict = { # Classifiers 'sklearn.linear_model.LogisticRegression': { 'penalty': ["l1", "l2"], 'C': [1e-4, 1e-3, 1e-2, 1e-1, 0.5, 1., 5., 10., 15., 20., 25.], 'dual': [True, False] }, # Feature constructors 'mdr.MDR': { 'tie_break': [0, 1], 'default_label': [0, 1] }, # Feature Selectors 'skrebate.ReliefF': { 'n_features_to_select': range(1, 6), 'n_neighbors': [2, 10, 50, 100, 250, 500] }, 'skrebate.SURF': { 'n_features_to_select': range(1, 6) }, 'skrebate.SURFstar': { 'n_features_to_select': range(1, 6) }, 'skrebate.MultiSURF': { 'n_features_to_select': range(1, 6) } }
lgpl-3.0
ud3sh/coursework
deeplearning.ai/coursera-improving-neural-networks/week1/assignment1/Initialization.py
1
17555
# coding: utf-8 # # Initialization # # Welcome to the first assignment of "Improving Deep Neural Networks". # # Training your neural network requires specifying an initial value of the weights. A well chosen initialization method will help learning. # # If you completed the previous course of this specialization, you probably followed our instructions for weight initialization, and it has worked out so far. But how do you choose the initialization for a new neural network? In this notebook, you will see how different initializations lead to different results. # # A well chosen initialization can: # - Speed up the convergence of gradient descent # - Increase the odds of gradient descent converging to a lower training (and generalization) error # # To get started, run the following cell to load the packages and the planar dataset you will try to classify. # In[5]: import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.datasets from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec get_ipython().magic('matplotlib inline') plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' # load image dataset: blue/red dots in circles train_X, train_Y, test_X, test_Y = load_dataset() # You would like a classifier to separate the blue dots from the red dots. # ## 1 - Neural Network model # You will use a 3-layer neural network (already implemented for you). Here are the initialization methods you will experiment with: # - *Zeros initialization* -- setting `initialization = "zeros"` in the input argument. # - *Random initialization* -- setting `initialization = "random"` in the input argument. This initializes the weights to large random values. # - *He initialization* -- setting `initialization = "he"` in the input argument. This initializes the weights to random values scaled according to a paper by He et al., 2015. # # **Instructions**: Please quickly read over the code below, and run it. In the next part you will implement the three initialization methods that this `model()` calls. # In[7]: def model(X, Y, learning_rate = 0.01, num_iterations = 15000, print_cost = True, initialization = "he"): """ Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (containing 0 for red dots; 1 for blue dots), of shape (1, number of examples) learning_rate -- learning rate for gradient descent num_iterations -- number of iterations to run gradient descent print_cost -- if True, print the cost every 1000 iterations initialization -- flag to choose which initialization to use ("zeros","random" or "he") Returns: parameters -- parameters learnt by the model """ grads = {} costs = [] # to keep track of the loss m = X.shape[1] # number of examples layers_dims = [X.shape[0], 10, 5, 1] # Initialize parameters dictionary. if initialization == "zeros": parameters = initialize_parameters_zeros(layers_dims) elif initialization == "random": parameters = initialize_parameters_random(layers_dims) elif initialization == "he": parameters = initialize_parameters_he(layers_dims) # Loop (gradient descent) for i in range(0, num_iterations): # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID. a3, cache = forward_propagation(X, parameters) # Loss cost = compute_loss(a3, Y) # Backward propagation. grads = backward_propagation(X, Y, cache) # Update parameters. parameters = update_parameters(parameters, grads, learning_rate) # Print the loss every 1000 iterations if print_cost and i % 1000 == 0: print("Cost after iteration {}: {}".format(i, cost)) costs.append(cost) # plot the loss plt.plot(costs) plt.ylabel('cost') plt.xlabel('iterations (per hundreds)') plt.title("Learning rate =" + str(learning_rate)) plt.show() return parameters # ## 2 - Zero initialization # # There are two types of parameters to initialize in a neural network: # - the weight matrices $(W^{[1]}, W^{[2]}, W^{[3]}, ..., W^{[L-1]}, W^{[L]})$ # - the bias vectors $(b^{[1]}, b^{[2]}, b^{[3]}, ..., b^{[L-1]}, b^{[L]})$ # # **Exercise**: Implement the following function to initialize all parameters to zeros. You'll see later that this does not work well since it fails to "break symmetry", but lets try it anyway and see what happens. Use np.zeros((..,..)) with the correct shapes. # In[13]: # GRADED FUNCTION: initialize_parameters_zeros def initialize_parameters_zeros(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ parameters = {} L = len(layers_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.zeros(shape = (layers_dims[l], layers_dims[l-1])) parameters['b' + str(l)] = np.zeros(shape = (layers_dims[l], 1)) ### END CODE HERE ### return parameters # In[14]: parameters = initialize_parameters_zeros([3,2,1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # **Expected Output**: # # <table> # <tr> # <td> # **W1** # </td> # <td> # [[ 0. 0. 0.] # [ 0. 0. 0.]] # </td> # </tr> # <tr> # <td> # **b1** # </td> # <td> # [[ 0.] # [ 0.]] # </td> # </tr> # <tr> # <td> # **W2** # </td> # <td> # [[ 0. 0.]] # </td> # </tr> # <tr> # <td> # **b2** # </td> # <td> # [[ 0.]] # </td> # </tr> # # </table> # Run the following code to train your model on 15,000 iterations using zeros initialization. # In[15]: parameters = model(train_X, train_Y, initialization = "zeros") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) # The performance is really bad, and the cost does not really decrease, and the algorithm performs no better than random guessing. Why? Lets look at the details of the predictions and the decision boundary: # In[16]: print ("predictions_train = " + str(predictions_train)) print ("predictions_test = " + str(predictions_test)) # In[17]: plt.title("Model with Zeros initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) # The model is predicting 0 for every example. # # In general, initializing all the weights to zero results in the network failing to break symmetry. This means that every neuron in each layer will learn the same thing, and you might as well be training a neural network with $n^{[l]}=1$ for every layer, and the network is no more powerful than a linear classifier such as logistic regression. # <font color='blue'> # **What you should remember**: # - The weights $W^{[l]}$ should be initialized randomly to break symmetry. # - It is however okay to initialize the biases $b^{[l]}$ to zeros. Symmetry is still broken so long as $W^{[l]}$ is initialized randomly. # # ## 3 - Random initialization # # To break symmetry, lets intialize the weights randomly. Following random initialization, each neuron can then proceed to learn a different function of its inputs. In this exercise, you will see what happens if the weights are intialized randomly, but to very large values. # # **Exercise**: Implement the following function to initialize your weights to large random values (scaled by \*10) and your biases to zeros. Use `np.random.randn(..,..) * 10` for weights and `np.zeros((.., ..))` for biases. We are using a fixed `np.random.seed(..)` to make sure your "random" weights match ours, so don't worry if running several times your code gives you always the same initial values for the parameters. # In[19]: # GRADED FUNCTION: initialize_parameters_random def initialize_parameters_random(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) # This seed makes sure your "random" numbers will be the as ours parameters = {} L = len(layers_dims) # integer representing the number of layers for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn( layers_dims[l], layers_dims[l-1]) * 10 parameters['b' + str(l)] = np.zeros(shape = (layers_dims[l], 1)) ### END CODE HERE ### return parameters # In[20]: parameters = initialize_parameters_random([3, 2, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # **Expected Output**: # # <table> # <tr> # <td> # **W1** # </td> # <td> # [[ 17.88628473 4.36509851 0.96497468] # [-18.63492703 -2.77388203 -3.54758979]] # </td> # </tr> # <tr> # <td> # **b1** # </td> # <td> # [[ 0.] # [ 0.]] # </td> # </tr> # <tr> # <td> # **W2** # </td> # <td> # [[-0.82741481 -6.27000677]] # </td> # </tr> # <tr> # <td> # **b2** # </td> # <td> # [[ 0.]] # </td> # </tr> # # </table> # Run the following code to train your model on 15,000 iterations using random initialization. # In[21]: parameters = model(train_X, train_Y, initialization = "random") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) # If you see "inf" as the cost after the iteration 0, this is because of numerical roundoff; a more numerically sophisticated implementation would fix this. But this isn't worth worrying about for our purposes. # # Anyway, it looks like you have broken symmetry, and this gives better results. than before. The model is no longer outputting all 0s. # In[22]: print (predictions_train) print (predictions_test) # In[23]: plt.title("Model with large random initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) # **Observations**: # - The cost starts very high. This is because with large random-valued weights, the last activation (sigmoid) outputs results that are very close to 0 or 1 for some examples, and when it gets that example wrong it incurs a very high loss for that example. Indeed, when $\log(a^{[3]}) = \log(0)$, the loss goes to infinity. # - Poor initialization can lead to vanishing/exploding gradients, which also slows down the optimization algorithm. # - If you train this network longer you will see better results, but initializing with overly large random numbers slows down the optimization. # # <font color='blue'> # **In summary**: # - Initializing weights to very large random values does not work well. # - Hopefully intializing with small random values does better. The important question is: how small should be these random values be? Lets find out in the next part! # ## 4 - He initialization # # Finally, try "He Initialization"; this is named for the first author of He et al., 2015. (If you have heard of "Xavier initialization", this is similar except Xavier initialization uses a scaling factor for the weights $W^{[l]}$ of `sqrt(1./layers_dims[l-1])` where He initialization would use `sqrt(2./layers_dims[l-1])`.) # # **Exercise**: Implement the following function to initialize your parameters with He initialization. # # **Hint**: This function is similar to the previous `initialize_parameters_random(...)`. The only difference is that instead of multiplying `np.random.randn(..,..)` by 10, you will multiply it by $\sqrt{\frac{2}{\text{dimension of the previous layer}}}$, which is what He initialization recommends for layers with a ReLU activation. # In[28]: # GRADED FUNCTION: initialize_parameters_he def initialize_parameters_he(layers_dims): """ Arguments: layer_dims -- python array (list) containing the size of each layer. Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": W1 -- weight matrix of shape (layers_dims[1], layers_dims[0]) b1 -- bias vector of shape (layers_dims[1], 1) ... WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1]) bL -- bias vector of shape (layers_dims[L], 1) """ np.random.seed(3) parameters = {} L = len(layers_dims) - 1 # integer representing the number of layers for l in range(1, L + 1): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn( layers_dims[l], layers_dims[l-1]) * np.sqrt(2/layers_dims[l-1]) parameters['b' + str(l)] = np.zeros(shape = (layers_dims[l], 1)) ### END CODE HERE ### return parameters # In[29]: parameters = initialize_parameters_he([2, 4, 1]) print("W1 = " + str(parameters["W1"])) print("b1 = " + str(parameters["b1"])) print("W2 = " + str(parameters["W2"])) print("b2 = " + str(parameters["b2"])) # **Expected Output**: # # <table> # <tr> # <td> # **W1** # </td> # <td> # [[ 1.78862847 0.43650985] # [ 0.09649747 -1.8634927 ] # [-0.2773882 -0.35475898] # [-0.08274148 -0.62700068]] # </td> # </tr> # <tr> # <td> # **b1** # </td> # <td> # [[ 0.] # [ 0.] # [ 0.] # [ 0.]] # </td> # </tr> # <tr> # <td> # **W2** # </td> # <td> # [[-0.03098412 -0.33744411 -0.92904268 0.62552248]] # </td> # </tr> # <tr> # <td> # **b2** # </td> # <td> # [[ 0.]] # </td> # </tr> # # </table> # Run the following code to train your model on 15,000 iterations using He initialization. # In[30]: parameters = model(train_X, train_Y, initialization = "he") print ("On the train set:") predictions_train = predict(train_X, train_Y, parameters) print ("On the test set:") predictions_test = predict(test_X, test_Y, parameters) # In[31]: plt.title("Model with He initialization") axes = plt.gca() axes.set_xlim([-1.5,1.5]) axes.set_ylim([-1.5,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y) # **Observations**: # - The model with He initialization separates the blue and the red dots very well in a small number of iterations. # # ## 5 - Conclusions # You have seen three different types of initializations. For the same number of iterations and same hyperparameters the comparison is: # # <table> # <tr> # <td> # **Model** # </td> # <td> # **Train accuracy** # </td> # <td> # **Problem/Comment** # </td> # # </tr> # <td> # 3-layer NN with zeros initialization # </td> # <td> # 50% # </td> # <td> # fails to break symmetry # </td> # <tr> # <td> # 3-layer NN with large random initialization # </td> # <td> # 83% # </td> # <td> # too large weights # </td> # </tr> # <tr> # <td> # 3-layer NN with He initialization # </td> # <td> # 99% # </td> # <td> # recommended method # </td> # </tr> # </table> # <font color='blue'> # **What you should remember from this notebook**: # - Different initializations lead to different results # - Random initialization is used to break symmetry and make sure different hidden units can learn different things # - Don't intialize to values that are too large # - He initialization works well for networks with ReLU activations.
unlicense
EPFLMachineLearningTeam01/Project1
src/scripts/plot_histograms.py
1
4107
from matplotlib import pyplot as plt import numpy as np from tqdm import tqdm def savefig(name): kwargs = {'bbox_inches': 'tight', 'transparent': False, 'pad_inches': 0} plt.savefig('./analysis/%s.pdf' % name, **kwargs) plt.savefig('./analysis/%s.png' % name, **kwargs) def do_hist_scatter(X, y_, header, idx_x = None, idx_y = None, bins = 20): N = X.shape[1] if idx_x == None: idx_x = range(N) if idx_y == None: idx_y = range(N) _, plots = plt.subplots(len(idx_x), len(idx_y), figsize=(15,15)) with tqdm(total=len(idx_x) * len(idx_y)) as pbar: for x, i in enumerate(idx_x): for y, j in enumerate(idx_y): ax = plots[x][y] ax.set_rasterized(True) if i == j: ax.hist(X[:,i], color='green', bins=bins, histtype='bar', align='mid') else: ax.scatter(X[:,j], X[:,i], c = ['red' if t > 0 else 'blue' for t in y_], s=1) if x == 0 or x == len(idx_x) - 1: ax.xaxis.set_label_position('top' if x == 0 else 'bottom') ax.set_xlabel(header[j]) if y == 0 or y == len(idx_y) - 1: ax.yaxis.set_label_position('left' if y == 0 else 'right') ax.set_ylabel(header[i]) pbar.update(1) def get_ranges(N, k): all_range = list(range(N)) n_intervals = N // k if n_intervals * k < N: n_intervals += 1 for i in range(n_intervals): for j in range(n_intervals): range_x = range(i * k, min(N, i * k + k)) range_y = range(j * k, min(N, j * k + k)) yield (range_x, range_y) def do_hist(X, header, shape = (None, None), bins = 20): N = X.shape[1] assert(shape[0] * shape[1] >= N) _, plots = plt.subplots(shape[0], shape[1], figsize=(15,15)) with tqdm(total=N) as pbar: for i in range(shape[0]): for j in range(shape[1]): n = i * shape[1] + j if n >= N: continue ax = plots[i][j] ax.hist(X[:,n], color='green', bins=bins, histtype='bar', align='mid') ax.set_title(label = header[n], fontsize=7) ax.get_yaxis().set_tick_params(which='both', direction='in') ax.get_xaxis().set_tick_params(which='both', direction='in') pbar.update(1) def do_Xy(X, y, header, shape = (None, None), bins = 15): N = X.shape[1] assert(shape[0] * shape[1] >= N) _, plots = plt.subplots(shape[0], shape[1], figsize=(15,15)) with tqdm(total=N) as pbar: for i in range(shape[0]): for j in range(shape[1]): n = i * shape[1] + j if n >= N: continue ax = plots[i][j] ax.hist(X[y > 0,n], bins=bins, alpha=0.5, label='+1') ax.hist(X[y <= 0,n], bins=bins, alpha=0.5, label='-1') ax.get_yaxis().set_tick_params(which='both', direction='in') ax.get_xaxis().set_tick_params(which='both', direction='in') ax.set_title(label = header[n], fontsize=7) if i == 0 and j == 0: ax.legend() pbar.update(1) def do_boxplot(X, header, shape = (None, None)): N = X.shape[1] assert(shape[0] * shape[1] >= N) _, plots = plt.subplots(shape[0], shape[1], figsize=(15,30)) with tqdm(total=N) as pbar: for i in range(shape[0]): for j in range(shape[1]): n = i * shape[1] + j if n >= N: continue ax = plots[i][j] ax.boxplot(X[:, n], vert = False) ax.get_yaxis().set_tick_params(which='both', direction='in') ax.get_xaxis().set_tick_params(which='both', direction='in') ax.set_title(label = header[n], fontsize=7) pbar.update(1)
mit
alex-ta/Fontinator
NeuralNet/Oli/libs/ProcessingPipeline.py
1
5521
from keras.optimizers import RMSprop from keras.utils import np_utils from numpy.core.multiarray import ndarray from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import numpy as np from NeuralNet.Oli.libs.TrainingLogger import TrainingLogger from NeuralNet.Oli.libs.ImageLoader import ImageLoader from NeuralNet.Oli.libs.ModelSerializer import ModelSerializer from NeuralNet.Oli.libs.Preprocessor import IPreprocessor class ProcessingPipeline: ''' Manages the whole pipeline from data loading, preprocessing to model training and evaluation ''' def __init__(self): self.font_names: list = None self.model_path: str = None self.model = None self.preprocessor: IPreprocessor = None self.label_encoder = None pass def load_features_and_preprocess(self, img_path: str, img_preprocessor: IPreprocessor) -> (ndarray, ndarray): self.preprocessor = img_preprocessor # Loads the images from the defined path data_loader: ImageLoader = ImageLoader(img_path) self.font_names = data_loader.get_font_names() image_count = data_loader.get_image_count() font_count = data_loader.get_font_count() print("Found {0} images with {1} different fonts".format(image_count, font_count)) # Map labels(str) to class_ids(int) self.label_encoder = LabelEncoder() self.label_encoder.fit(self.font_names) label_ids = self.label_encoder.transform(self.label_encoder.classes_) print("Mapping labels:\n{0} \n -> {1}".format(self.label_encoder.classes_, label_ids)) print("Start preprocessing images ...") features = [] labels = [] # Iterate over all fonts for f_name in self.font_names: print(" -> {0}".format(f_name)) label_id = self.label_encoder.transform([f_name]) font_labels = np.full(data_loader.get_img_count_for_font(f_name), label_id, dtype=np.float32) labels.extend(font_labels) # Iterate over all images for one font for img_path in data_loader.iterate_images_for_fontname(f_name): nd_img: ndarray = self.preprocessor.prepare_image(img_path) features.append(nd_img) x: ndarray = np.array(features) y: ndarray = np.array(labels) return x, y def __compile_model(self): print("Compiling NN model ...") nn_optimizer = RMSprop(lr=0.0001) self.model.compile(optimizer=nn_optimizer, loss='categorical_crossentropy', metrics=['accuracy']) def load_model(self, model_path): # Load the NN model from disk print("Loading model from disk") model_serializer = ModelSerializer(model_path) self.model = model_serializer.load_from_path() self.__compile_model() def train_model(self, keras_model, x: ndarray, y: ndarray, epos=1000, train_ratio=0.8, batch_size=100): self.model = keras_model # Convert labels to categorical one-hot encoding; e.g. [1, 2, 3] -> [[1,0,0], [0,1,0], [0,0,1]] y_onehotenc = np_utils.to_categorical(y) # Splitting to train- /test data train_X, test_X, train_y, test_y = train_test_split(x, y_onehotenc, train_size=train_ratio) # Saves stats while training the NN self.train_logger: TrainingLogger = TrainingLogger(self.model_path, frequent_write=False) self.__compile_model() print("Training the NN model") if type(batch_size) == float and 0.0 < batch_size <= 1.0: batch_size = int(batch_size * train_X.shape[0]) self.model.fit(train_X, train_y, epochs=epos, batch_size=batch_size, validation_data=(test_X, test_y), callbacks=[self.train_logger]) # Calculate the metrics for the trained model loss_and_metrics = keras_model.evaluate(test_X, test_y, batch_size=batch_size) print(loss_and_metrics) def save_model(self, model_save_path: str, include_stats=True): # save the mapping of the features to disk model_serializer = ModelSerializer(model_save_path) label_ids = self.label_encoder.transform(self.label_encoder.classes_) model_serializer.save_label_mapping(self.label_encoder.classes_, label_ids) # Write csv file and plot image for training stats if include_stats is True: self.train_logger.set_basepath(model_save_path) self.train_logger.write_csv() self.train_logger.make_plots() # Save the NN model to disk print("Saving NN model and the label index mapping") model_serializer.serialize_to_disk(self.model) def predict(self, x): # Make predictions y_pred_onehotenc = self.model.predict(x) # Retransform one hot encoding to indexes y_pred = y_pred_onehotenc.argmax(axis=1) return y_pred def evaluate(self, y, y_pred): # Calculate correct and wrong prediction count correct_pred_items = np.equal(y, y_pred) cor_pred_count = np.sum(correct_pred_items) wrong_pred_count = y_pred.size - cor_pred_count cor_pred_ratio = cor_pred_count / y_pred.size print("Summary:") print("Correct predictions: {0} | Wrong predictions: {1}" .format(cor_pred_count, wrong_pred_count)) print("{0}".format(cor_pred_ratio))
apache-2.0
DGrady/pandas
pandas/tests/io/parser/compression.py
6
5431
# -*- coding: utf-8 -*- """ Tests compressed data parsing functionality for all of the parsers defined in parsers.py """ import pytest import pandas.util.testing as tm class CompressionTests(object): def test_zip(self): import zipfile with open(self.csv1, 'rb') as data_file: data = data_file.read() expected = self.read_csv(self.csv1) with tm.ensure_clean('test_file.zip') as path: tmp = zipfile.ZipFile(path, mode='w') tmp.writestr('test_file', data) tmp.close() result = self.read_csv(path, compression='zip') tm.assert_frame_equal(result, expected) result = self.read_csv(path, compression='infer') tm.assert_frame_equal(result, expected) if self.engine is not 'python': with open(path, 'rb') as f: result = self.read_csv(f, compression='zip') tm.assert_frame_equal(result, expected) with tm.ensure_clean('combined_zip.zip') as path: inner_file_names = ['test_file', 'second_file'] tmp = zipfile.ZipFile(path, mode='w') for file_name in inner_file_names: tmp.writestr(file_name, data) tmp.close() tm.assert_raises_regex(ValueError, 'Multiple files', self.read_csv, path, compression='zip') tm.assert_raises_regex(ValueError, 'Multiple files', self.read_csv, path, compression='infer') with tm.ensure_clean() as path: tmp = zipfile.ZipFile(path, mode='w') tmp.close() tm.assert_raises_regex(ValueError, 'Zero files', self.read_csv, path, compression='zip') with tm.ensure_clean() as path: with open(path, 'wb') as f: pytest.raises(zipfile.BadZipfile, self.read_csv, f, compression='zip') def test_gzip(self): import gzip with open(self.csv1, 'rb') as data_file: data = data_file.read() expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='gzip') tm.assert_frame_equal(result, expected) with open(path, 'rb') as f: result = self.read_csv(f, compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean('test.gz') as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='infer') tm.assert_frame_equal(result, expected) def test_bz2(self): import bz2 with open(self.csv1, 'rb') as data_file: data = data_file.read() expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='bz2') tm.assert_frame_equal(result, expected) pytest.raises(ValueError, self.read_csv, path, compression='bz3') with open(path, 'rb') as fin: result = self.read_csv(fin, compression='bz2') tm.assert_frame_equal(result, expected) with tm.ensure_clean('test.bz2') as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='infer') tm.assert_frame_equal(result, expected) def test_xz(self): lzma = tm._skip_if_no_lzma() with open(self.csv1, 'rb') as data_file: data = data_file.read() expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = lzma.LZMAFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='xz') tm.assert_frame_equal(result, expected) with open(path, 'rb') as f: result = self.read_csv(f, compression='xz') tm.assert_frame_equal(result, expected) with tm.ensure_clean('test.xz') as path: tmp = lzma.LZMAFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='infer') tm.assert_frame_equal(result, expected) def test_read_csv_infer_compression(self): # see gh-9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_invalid_compression(self): msg = 'Unrecognized compression type: sfark' with tm.assert_raises_regex(ValueError, msg): self.read_csv('test_file.zip', compression='sfark')
bsd-3-clause
jblackburne/scikit-learn
sklearn/grid_search.py
4
38651
""" The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters of an estimator. """ from __future__ import print_function # Author: Alexandre Gramfort <[email protected]>, # Gael Varoquaux <[email protected]> # Andreas Mueller <[email protected]> # Olivier Grisel <[email protected]> # License: BSD 3 clause from abc import ABCMeta, abstractmethod from collections import Mapping, namedtuple, Sized from functools import partial, reduce from itertools import product import operator import warnings import numpy as np from .base import BaseEstimator, is_classifier, clone from .base import MetaEstimatorMixin from .cross_validation import check_cv from .cross_validation import _fit_and_score from .externals.joblib import Parallel, delayed from .externals import six from .utils import check_random_state from .utils.random import sample_without_replacement from .utils.validation import _num_samples, indexable from .utils.metaestimators import if_delegate_has_method from .metrics.scorer import check_scoring from .exceptions import ChangedBehaviorWarning __all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point', 'ParameterSampler', 'RandomizedSearchCV'] warnings.warn("This module was deprecated in version 0.18 in favor of the " "model_selection module into which all the refactored classes " "and functions are moved. This module will be removed in 0.20.", DeprecationWarning) class ParameterGrid(object): """Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations with the Python built-in function iter. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_grid : dict of string to sequence, or sequence of such The parameter grid to explore, as a dictionary mapping estimator parameters to sequences of allowed values. An empty dict signifies default parameters. A sequence of dicts signifies a sequence of grids to search, and is useful to avoid exploring parameter combinations that make no sense or have no effect. See the examples below. Examples -------- >>> from sklearn.grid_search import ParameterGrid >>> param_grid = {'a': [1, 2], 'b': [True, False]} >>> list(ParameterGrid(param_grid)) == ( ... [{'a': 1, 'b': True}, {'a': 1, 'b': False}, ... {'a': 2, 'b': True}, {'a': 2, 'b': False}]) True >>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}] >>> list(ParameterGrid(grid)) == [{'kernel': 'linear'}, ... {'kernel': 'rbf', 'gamma': 1}, ... {'kernel': 'rbf', 'gamma': 10}] True >>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1} True See also -------- :class:`GridSearchCV`: uses ``ParameterGrid`` to perform a full parallelized parameter search. """ def __init__(self, param_grid): if isinstance(param_grid, Mapping): # wrap dictionary in a singleton list to support either dict # or list of dicts param_grid = [param_grid] self.param_grid = param_grid def __iter__(self): """Iterate over the points in the grid. Returns ------- params : iterator over dict of string to any Yields dictionaries mapping each estimator parameter to one of its allowed values. """ for p in self.param_grid: # Always sort the keys of a dictionary, for reproducibility items = sorted(p.items()) if not items: yield {} else: keys, values = zip(*items) for v in product(*values): params = dict(zip(keys, v)) yield params def __len__(self): """Number of points on the grid.""" # Product function that can handle iterables (np.product can't). product = partial(reduce, operator.mul) return sum(product(len(v) for v in p.values()) if p else 1 for p in self.param_grid) def __getitem__(self, ind): """Get the parameters that would be ``ind``th in iteration Parameters ---------- ind : int The iteration index Returns ------- params : dict of string to any Equal to list(self)[ind] """ # This is used to make discrete sampling without replacement memory # efficient. for sub_grid in self.param_grid: # XXX: could memoize information used here if not sub_grid: if ind == 0: return {} else: ind -= 1 continue # Reverse so most frequent cycling parameter comes first keys, values_lists = zip(*sorted(sub_grid.items())[::-1]) sizes = [len(v_list) for v_list in values_lists] total = np.product(sizes) if ind >= total: # Try the next grid ind -= total else: out = {} for key, v_list, n in zip(keys, values_lists, sizes): ind, offset = divmod(ind, n) out[key] = v_list[offset] return out raise IndexError('ParameterGrid index out of range') class ParameterSampler(object): """Generator on parameters sampled from given distributions. Non-deterministic iterable over random candidate combinations for hyper- parameter search. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept a custom RNG instance and always use the singleton RNG from ``numpy.random``. Hence setting ``random_state`` will not guarantee a deterministic iteration whenever ``scipy.stats`` distributions are used to define the parameter search space. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- param_distributions : dict Dictionary where the keys are parameters and values are distributions from which a parameter is to be sampled. Distributions either have to provide a ``rvs`` function to sample from them, or can be given as a list of values, where a uniform distribution is assumed. n_iter : integer Number of parameter settings that are produced. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. Returns ------- params : dict of string to any **Yields** dictionaries mapping each estimator parameter to as sampled value. Examples -------- >>> from sklearn.grid_search import ParameterSampler >>> from scipy.stats.distributions import expon >>> import numpy as np >>> np.random.seed(0) >>> param_grid = {'a':[1, 2], 'b': expon()} >>> param_list = list(ParameterSampler(param_grid, n_iter=4)) >>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items()) ... for d in param_list] >>> rounded_list == [{'b': 0.89856, 'a': 1}, ... {'b': 0.923223, 'a': 1}, ... {'b': 1.878964, 'a': 2}, ... {'b': 1.038159, 'a': 2}] True """ def __init__(self, param_distributions, n_iter, random_state=None): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state def __iter__(self): # check if all distributions are given as lists # in this case we want to sample without replacement all_lists = np.all([not hasattr(v, "rvs") for v in self.param_distributions.values()]) rnd = check_random_state(self.random_state) if all_lists: # look up sampled parameter settings in parameter grid param_grid = ParameterGrid(self.param_distributions) grid_size = len(param_grid) if grid_size < self.n_iter: raise ValueError( "The total space of parameters %d is smaller " "than n_iter=%d." % (grid_size, self.n_iter) + " For exhaustive searches, use GridSearchCV.") for i in sample_without_replacement(grid_size, self.n_iter, random_state=rnd): yield param_grid[i] else: # Always sort the keys of a dictionary, for reproducibility items = sorted(self.param_distributions.items()) for _ in six.moves.range(self.n_iter): params = dict() for k, v in items: if hasattr(v, "rvs"): params[k] = v.rvs() else: params[k] = v[rnd.randint(len(v))] yield params def __len__(self): """Number of points that will be sampled.""" return self.n_iter def fit_grid_point(X, y, estimator, parameters, train, test, scorer, verbose, error_score='raise', **fit_params): """Run fit on one set of parameters. Parameters ---------- X : array-like, sparse matrix or list Input data. y : array-like or None Targets for input data. estimator : estimator object A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. parameters : dict Parameters to be set on estimator for this grid point. train : ndarray, dtype int or bool Boolean mask or indices for training set. test : ndarray, dtype int or bool Boolean mask or indices for test set. scorer : callable or None. If provided must be a scorer callable object / function with signature ``scorer(estimator, X, y)``. verbose : int Verbosity level. **fit_params : kwargs Additional parameter passed to the fit function of the estimator. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Returns ------- score : float Score of this parameter setting on given training / test split. parameters : dict The parameters that have been evaluated. n_samples_test : int Number of test samples in this split. """ score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, error_score) return score, parameters, n_samples_test def _check_param_grid(param_grid): if hasattr(param_grid, 'items'): param_grid = [param_grid] for p in param_grid: for name, v in p.items(): if isinstance(v, np.ndarray) and v.ndim > 1: raise ValueError("Parameter array should be one-dimensional.") check = [isinstance(v, k) for k in (list, tuple, np.ndarray)] if True not in check: raise ValueError("Parameter values for parameter ({0}) need " "to be a sequence.".format(name)) if len(v) == 0: raise ValueError("Parameter values for parameter ({0}) need " "to be a non-empty sequence.".format(name)) class _CVScoreTuple (namedtuple('_CVScoreTuple', ('parameters', 'mean_validation_score', 'cv_validation_scores'))): # A raw namedtuple is very memory efficient as it packs the attributes # in a struct to get rid of the __dict__ of attributes in particular it # does not copy the string for the keys on each instance. # By deriving a namedtuple class just to introduce the __repr__ method we # would also reintroduce the __dict__ on the instance. By telling the # Python interpreter that this subclass uses static __slots__ instead of # dynamic attributes. Furthermore we don't need any additional slot in the # subclass so we set __slots__ to the empty tuple. __slots__ = () def __repr__(self): """Simple custom repr to summarize the main info""" return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format( self.mean_validation_score, np.std(self.cv_validation_scores), self.parameters) class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator, MetaEstimatorMixin)): """Base class for hyper parameter search with cross-validation.""" @abstractmethod def __init__(self, estimator, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): self.scoring = scoring self.estimator = estimator self.n_jobs = n_jobs self.fit_params = fit_params if fit_params is not None else {} self.iid = iid self.refit = refit self.cv = cv self.verbose = verbose self.pre_dispatch = pre_dispatch self.error_score = error_score @property def _estimator_type(self): return self.estimator._estimator_type def score(self, X, y=None): """Returns the score on the given data, if the estimator has been refit. This uses the score defined by ``scoring`` where provided, and the ``best_estimator_.score`` method otherwise. Parameters ---------- X : array-like, shape = [n_samples, n_features] Input data, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. Returns ------- score : float Notes ----- * The long-standing behavior of this method changed in version 0.16. * It no longer uses the metric provided by ``estimator.score`` if the ``scoring`` parameter was set when fitting. """ if self.scorer_ is None: raise ValueError("No score function explicitly defined, " "and the estimator doesn't provide one %s" % self.best_estimator_) if self.scoring is not None and hasattr(self.best_estimator_, 'score'): warnings.warn("The long-standing behavior to use the estimator's " "score function in {0}.score has changed. The " "scoring parameter is now used." "".format(self.__class__.__name__), ChangedBehaviorWarning) return self.scorer_(self.best_estimator_, X, y) @if_delegate_has_method(delegate='estimator') def predict(self, X): """Call predict on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict(X) @if_delegate_has_method(delegate='estimator') def predict_proba(self, X): """Call predict_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_proba(X) @if_delegate_has_method(delegate='estimator') def predict_log_proba(self, X): """Call predict_log_proba on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``predict_log_proba``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.predict_log_proba(X) @if_delegate_has_method(delegate='estimator') def decision_function(self, X): """Call decision_function on the estimator with the best found parameters. Only available if ``refit=True`` and the underlying estimator supports ``decision_function``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.decision_function(X) @if_delegate_has_method(delegate='estimator') def transform(self, X): """Call transform on the estimator with the best found parameters. Only available if the underlying estimator supports ``transform`` and ``refit=True``. Parameters ----------- X : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(X) @if_delegate_has_method(delegate='estimator') def inverse_transform(self, Xt): """Call inverse_transform on the estimator with the best found parameters. Only available if the underlying estimator implements ``inverse_transform`` and ``refit=True``. Parameters ----------- Xt : indexable, length n_samples Must fulfill the input assumptions of the underlying estimator. """ return self.best_estimator_.transform(Xt) def _fit(self, X, y, parameter_iterable): """Actual fitting, performing the search over parameters.""" estimator = self.estimator cv = self.cv self.scorer_ = check_scoring(self.estimator, scoring=self.scoring) n_samples = _num_samples(X) X, y = indexable(X, y) if y is not None: if len(y) != n_samples: raise ValueError('Target variable (y) has a different number ' 'of samples (%i) than data (X: %i samples)' % (len(y), n_samples)) cv = check_cv(cv, X, y, classifier=is_classifier(estimator)) if self.verbose > 0: if isinstance(parameter_iterable, Sized): n_candidates = len(parameter_iterable) print("Fitting {0} folds for each of {1} candidates, totalling" " {2} fits".format(len(cv), n_candidates, n_candidates * len(cv))) base_estimator = clone(self.estimator) pre_dispatch = self.pre_dispatch out = Parallel( n_jobs=self.n_jobs, verbose=self.verbose, pre_dispatch=pre_dispatch )( delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_, train, test, self.verbose, parameters, self.fit_params, return_parameters=True, error_score=self.error_score) for parameters in parameter_iterable for train, test in cv) # Out is a list of triplet: score, estimator, n_test_samples n_fits = len(out) n_folds = len(cv) scores = list() grid_scores = list() for grid_start in range(0, n_fits, n_folds): n_test_samples = 0 score = 0 all_scores = [] for this_score, this_n_test_samples, _, parameters in \ out[grid_start:grid_start + n_folds]: all_scores.append(this_score) if self.iid: this_score *= this_n_test_samples n_test_samples += this_n_test_samples score += this_score if self.iid: score /= float(n_test_samples) else: score /= float(n_folds) scores.append((score, parameters)) # TODO: shall we also store the test_fold_sizes? grid_scores.append(_CVScoreTuple( parameters, score, np.array(all_scores))) # Store the computed scores self.grid_scores_ = grid_scores # Find the best parameters by comparing on the mean validation score: # note that `sorted` is deterministic in the way it breaks ties best = sorted(grid_scores, key=lambda x: x.mean_validation_score, reverse=True)[0] self.best_params_ = best.parameters self.best_score_ = best.mean_validation_score if self.refit: # fit the best estimator using the entire dataset # clone first to work around broken estimators best_estimator = clone(base_estimator).set_params( **best.parameters) if y is not None: best_estimator.fit(X, y, **self.fit_params) else: best_estimator.fit(X, **self.fit_params) self.best_estimator_ = best_estimator return self class GridSearchCV(BaseSearchCV): """Exhaustive search over specified parameter values for an estimator. Important members are fit, predict. GridSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid. Read more in the :ref:`User Guide <grid_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_grid : dict or list of dictionaries Dictionary with parameters names (string) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. .. versionchanged:: 0.17 Upgraded to joblib 0.9.3. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this GridSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Examples -------- >>> from sklearn import svm, grid_search, datasets >>> iris = datasets.load_iris() >>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]} >>> svr = svm.SVC() >>> clf = grid_search.GridSearchCV(svr, parameters) >>> clf.fit(iris.data, iris.target) ... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS GridSearchCV(cv=None, error_score=..., estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=..., decision_function_shape=None, degree=..., gamma=..., kernel='rbf', max_iter=-1, probability=False, random_state=None, shrinking=True, tol=..., verbose=False), fit_params={}, iid=..., n_jobs=1, param_grid=..., pre_dispatch=..., refit=..., scoring=..., verbose=...) Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. scorer_ : function Scorer function used on the held out data to choose the best parameters for the model. Notes ------ The parameters selected are those that maximize the score of the left out data, unless an explicit score is passed in which case it is used instead. If `n_jobs` was set to a value higher than one, the data is copied for each point in the grid (and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also --------- :class:`ParameterGrid`: generates all the combinations of a hyperparameter grid. :func:`sklearn.cross_validation.train_test_split`: utility function to split the data into a development set usable for fitting a GridSearchCV instance and an evaluation set for its final evaluation. :func:`sklearn.metrics.make_scorer`: Make a scorer from a performance metric or loss function. """ def __init__(self, estimator, param_grid, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', error_score='raise'): super(GridSearchCV, self).__init__( estimator, scoring, fit_params, n_jobs, iid, refit, cv, verbose, pre_dispatch, error_score) self.param_grid = param_grid _check_param_grid(param_grid) def fit(self, X, y=None): """Run fit with all sets of parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ return self._fit(X, y, ParameterGrid(self.param_grid)) class RandomizedSearchCV(BaseSearchCV): """Randomized search on hyper parameters. RandomizedSearchCV implements a "fit" and a "score" method. It also implements "predict", "predict_proba", "decision_function", "transform" and "inverse_transform" if they are implemented in the estimator used. The parameters of the estimator used to apply these methods are optimized by cross-validated search over parameter settings. In contrast to GridSearchCV, not all parameter values are tried out, but rather a fixed number of parameter settings is sampled from the specified distributions. The number of parameter settings that are tried is given by n_iter. If all parameters are presented as a list, sampling without replacement is performed. If at least one parameter is given as a distribution, sampling with replacement is used. It is highly recommended to use continuous distributions for continuous parameters. Read more in the :ref:`User Guide <randomized_parameter_search>`. Parameters ---------- estimator : estimator object. A object of that type is instantiated for each grid point. This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a ``score`` function, or ``scoring`` must be passed. param_distributions : dict Dictionary with parameters names (string) as keys and distributions or lists of parameters to try. Distributions must provide a ``rvs`` method for sampling (such as those from scipy.stats.distributions). If a list is given, it is sampled uniformly. n_iter : int, default=10 Number of parameter settings that are sampled. n_iter trades off runtime vs quality of the solution. scoring : string, callable or None, default=None A string (see model evaluation documentation) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. If ``None``, the ``score`` method of the estimator is used. fit_params : dict, optional Parameters to pass to the fit method. n_jobs : int, default=1 Number of jobs to run in parallel. pre_dispatch : int, or string, optional Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: - None, in which case all the jobs are immediately created and spawned. Use this for lightweight and fast-running jobs, to avoid delays due to on-demand spawning of the jobs - An int, giving the exact number of total jobs that are spawned - A string, giving an expression as a function of n_jobs, as in '2*n_jobs' iid : boolean, default=True If True, the data is assumed to be identically distributed across the folds, and the loss minimized is the total loss per sample, and not the mean loss across the folds. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if the estimator is a classifier and ``y`` is either binary or multiclass, :class:`sklearn.model_selection.StratifiedKFold` is used. In all other cases, :class:`sklearn.model_selection.KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here. refit : boolean, default=True Refit the best estimator with the entire dataset. If "False", it is impossible to make predictions using this RandomizedSearchCV instance after fitting. verbose : integer Controls the verbosity: the higher, the more messages. random_state : int or RandomState Pseudo random number generator state used for random uniform sampling from lists of possible values instead of scipy.stats distributions. error_score : 'raise' (default) or numeric Value to assign to the score if an error occurs in estimator fitting. If set to 'raise', the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. Attributes ---------- grid_scores_ : list of named tuples Contains scores for all parameter combinations in param_grid. Each entry corresponds to one parameter setting. Each named tuple has the attributes: * ``parameters``, a dict of parameter settings * ``mean_validation_score``, the mean score over the cross-validation folds * ``cv_validation_scores``, the list of scores for each fold best_estimator_ : estimator Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False. best_score_ : float Score of best_estimator on the left out data. best_params_ : dict Parameter setting that gave the best results on the hold out data. Notes ----- The parameters selected are those that maximize the score of the held-out data, according to the scoring parameter. If `n_jobs` was set to a value higher than one, the data is copied for each parameter setting(and not `n_jobs` times). This is done for efficiency reasons if individual jobs take very little time, but may raise errors if the dataset is large and not enough memory is available. A workaround in this case is to set `pre_dispatch`. Then, the memory is copied only `pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 * n_jobs`. See Also -------- :class:`GridSearchCV`: Does exhaustive search over a grid of parameters. :class:`ParameterSampler`: A generator over parameter settings, constructed from param_distributions. """ def __init__(self, estimator, param_distributions, n_iter=10, scoring=None, fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs', random_state=None, error_score='raise'): self.param_distributions = param_distributions self.n_iter = n_iter self.random_state = random_state super(RandomizedSearchCV, self).__init__( estimator=estimator, scoring=scoring, fit_params=fit_params, n_jobs=n_jobs, iid=iid, refit=refit, cv=cv, verbose=verbose, pre_dispatch=pre_dispatch, error_score=error_score) def fit(self, X, y=None): """Run fit on the estimator with randomly drawn parameters. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vector, where n_samples in the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] or [n_samples, n_output], optional Target relative to X for classification or regression; None for unsupervised learning. """ sampled_params = ParameterSampler(self.param_distributions, self.n_iter, random_state=self.random_state) return self._fit(X, y, sampled_params)
bsd-3-clause
pnedunuri/scikit-learn
sklearn/datasets/tests/test_svmlight_format.py
228
11221
from bz2 import BZ2File import gzip from io import BytesIO import numpy as np import os import shutil from tempfile import NamedTemporaryFile from sklearn.externals.six import b from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import raises from sklearn.utils.testing import assert_in import sklearn from sklearn.datasets import (load_svmlight_file, load_svmlight_files, dump_svmlight_file) currdir = os.path.dirname(os.path.abspath(__file__)) datafile = os.path.join(currdir, "data", "svmlight_classification.txt") multifile = os.path.join(currdir, "data", "svmlight_multilabel.txt") invalidfile = os.path.join(currdir, "data", "svmlight_invalid.txt") invalidfile2 = os.path.join(currdir, "data", "svmlight_invalid_order.txt") def test_load_svmlight_file(): X, y = load_svmlight_file(datafile) # test X's shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 21) assert_equal(y.shape[0], 6) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (0, 15, 1.5), (1, 5, 1.0), (1, 12, -3), (2, 20, 27)): assert_equal(X[i, j], val) # tests X's zero values assert_equal(X[0, 3], 0) assert_equal(X[0, 5], 0) assert_equal(X[1, 8], 0) assert_equal(X[1, 16], 0) assert_equal(X[2, 18], 0) # test can change X's values X[0, 2] *= 2 assert_equal(X[0, 2], 5) # test y assert_array_equal(y, [1, 2, 3, 4, 1, 2]) def test_load_svmlight_file_fd(): # test loading from file descriptor X1, y1 = load_svmlight_file(datafile) fd = os.open(datafile, os.O_RDONLY) try: X2, y2 = load_svmlight_file(fd) assert_array_equal(X1.data, X2.data) assert_array_equal(y1, y2) finally: os.close(fd) def test_load_svmlight_file_multilabel(): X, y = load_svmlight_file(multifile, multilabel=True) assert_equal(y, [(0, 1), (2,), (), (1, 2)]) def test_load_svmlight_files(): X_train, y_train, X_test, y_test = load_svmlight_files([datafile] * 2, dtype=np.float32) assert_array_equal(X_train.toarray(), X_test.toarray()) assert_array_equal(y_train, y_test) assert_equal(X_train.dtype, np.float32) assert_equal(X_test.dtype, np.float32) X1, y1, X2, y2, X3, y3 = load_svmlight_files([datafile] * 3, dtype=np.float64) assert_equal(X1.dtype, X2.dtype) assert_equal(X2.dtype, X3.dtype) assert_equal(X3.dtype, np.float64) def test_load_svmlight_file_n_features(): X, y = load_svmlight_file(datafile, n_features=22) # test X'shape assert_equal(X.indptr.shape[0], 7) assert_equal(X.shape[0], 6) assert_equal(X.shape[1], 22) # test X's non-zero values for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)): assert_equal(X[i, j], val) # 21 features in file assert_raises(ValueError, load_svmlight_file, datafile, n_features=20) def test_load_compressed(): X, y = load_svmlight_file(datafile) with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, gzip.open(tmp.name, "wb")) Xgz, ygz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xgz.toarray()) assert_array_equal(y, ygz) with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp: tmp.close() # necessary under windows with open(datafile, "rb") as f: shutil.copyfileobj(f, BZ2File(tmp.name, "wb")) Xbz, ybz = load_svmlight_file(tmp.name) # because we "close" it manually and write to it, # we need to remove it manually. os.remove(tmp.name) assert_array_equal(X.toarray(), Xbz.toarray()) assert_array_equal(y, ybz) @raises(ValueError) def test_load_invalid_file(): load_svmlight_file(invalidfile) @raises(ValueError) def test_load_invalid_order_file(): load_svmlight_file(invalidfile2) @raises(ValueError) def test_load_zero_based(): f = BytesIO(b("-1 4:1.\n1 0:1\n")) load_svmlight_file(f, zero_based=False) def test_load_zero_based_auto(): data1 = b("-1 1:1 2:2 3:3\n") data2 = b("-1 0:0 1:1\n") f1 = BytesIO(data1) X, y = load_svmlight_file(f1, zero_based="auto") assert_equal(X.shape, (1, 3)) f1 = BytesIO(data1) f2 = BytesIO(data2) X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto") assert_equal(X1.shape, (1, 4)) assert_equal(X2.shape, (1, 4)) def test_load_with_qid(): # load svmfile with qid attribute data = b(""" 3 qid:1 1:0.53 2:0.12 2 qid:1 1:0.13 2:0.1 7 qid:2 1:0.87 2:0.12""") X, y = load_svmlight_file(BytesIO(data), query_id=False) assert_array_equal(y, [3, 2, 7]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) res1 = load_svmlight_files([BytesIO(data)], query_id=True) res2 = load_svmlight_file(BytesIO(data), query_id=True) for X, y, qid in (res1, res2): assert_array_equal(y, [3, 2, 7]) assert_array_equal(qid, [1, 1, 2]) assert_array_equal(X.toarray(), [[.53, .12], [.13, .1], [.87, .12]]) @raises(ValueError) def test_load_invalid_file2(): load_svmlight_files([datafile, invalidfile, datafile]) @raises(TypeError) def test_not_a_filename(): # in python 3 integers are valid file opening arguments (taken as unix # file descriptors) load_svmlight_file(.42) @raises(IOError) def test_invalid_filename(): load_svmlight_file("trou pic nic douille") def test_dump(): Xs, y = load_svmlight_file(datafile) Xd = Xs.toarray() # slicing a csr_matrix can unsort its .indices, so test that we sort # those correctly Xsliced = Xs[np.arange(Xs.shape[0])] for X in (Xs, Xd, Xsliced): for zero_based in (True, False): for dtype in [np.float32, np.float64, np.int32]: f = BytesIO() # we need to pass a comment to get the version info in; # LibSVM doesn't grok comments so they're not put in by # default anymore. dump_svmlight_file(X.astype(dtype), y, f, comment="test", zero_based=zero_based) f.seek(0) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in("scikit-learn %s" % sklearn.__version__, comment) comment = f.readline() try: comment = str(comment, "utf-8") except TypeError: # fails in Python 2.x pass assert_in(["one", "zero"][zero_based] + "-based", comment) X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based) assert_equal(X2.dtype, dtype) assert_array_equal(X2.sorted_indices().indices, X2.indices) if dtype == np.float32: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 4) else: assert_array_almost_equal( # allow a rounding error at the last decimal place Xd.astype(dtype), X2.toarray(), 15) assert_array_equal(y, y2) def test_dump_multilabel(): X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]] y = [[0, 1, 0], [1, 0, 1], [1, 1, 0]] f = BytesIO() dump_svmlight_file(X, y, f, multilabel=True) f.seek(0) # make sure it dumps multilabel correctly assert_equal(f.readline(), b("1 0:1 2:3 4:5\n")) assert_equal(f.readline(), b("0,2 \n")) assert_equal(f.readline(), b("0,1 1:5 3:1\n")) def test_dump_concise(): one = 1 two = 2.1 three = 3.01 exact = 1.000000000000001 # loses the last decimal place almost = 1.0000000000000001 X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] y = [one, two, three, exact, almost] f = BytesIO() dump_svmlight_file(X, y, f) f.seek(0) # make sure it's using the most concise format possible assert_equal(f.readline(), b("1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")) assert_equal(f.readline(), b("2.1 0:1000000000 1:2e+18 2:3e+27\n")) assert_equal(f.readline(), b("3.01 \n")) assert_equal(f.readline(), b("1.000000000000001 \n")) assert_equal(f.readline(), b("1 \n")) f.seek(0) # make sure it's correct too :) X2, y2 = load_svmlight_file(f) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) def test_dump_comment(): X, y = load_svmlight_file(datafile) X = X.toarray() f = BytesIO() ascii_comment = "This is a comment\nspanning multiple lines." dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) # XXX we have to update this to support Python 3.x utf8_comment = b("It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc") f = BytesIO() assert_raises(UnicodeDecodeError, dump_svmlight_file, X, y, f, comment=utf8_comment) unicode_comment = utf8_comment.decode("utf-8") f = BytesIO() dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False) f.seek(0) X2, y2 = load_svmlight_file(f, zero_based=False) assert_array_almost_equal(X, X2.toarray()) assert_array_equal(y, y2) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y, f, comment="I've got a \0.") def test_dump_invalid(): X, y = load_svmlight_file(datafile) f = BytesIO() y2d = [y] assert_raises(ValueError, dump_svmlight_file, X, y2d, f) f = BytesIO() assert_raises(ValueError, dump_svmlight_file, X, y[:-1], f) def test_dump_query_id(): # test dumping a file with query_id X, y = load_svmlight_file(datafile) X = X.toarray() query_id = np.arange(X.shape[0]) // 2 f = BytesIO() dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True) f.seek(0) X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True) assert_array_almost_equal(X, X1.toarray()) assert_array_almost_equal(y, y1) assert_array_almost_equal(query_id, query_id1)
bsd-3-clause
slipguru/ignet
icing/core/learning_function.py
2
17070
#!/usr/bin/env python """Learning function module for the mutation level correction. Author: Federico Tomasi Copyright (c) 2016, Federico Tomasi. Licensed under the FreeBSD license (see LICENSE.txt). """ from __future__ import division, print_function import logging import matplotlib; matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns import scipy.stats import six import warnings from functools import partial from itertools import chain # from scipy.optimize import curve_fit from scipy.optimize import least_squares from sklearn import mixture from sklearn.utils import shuffle from icing.core import cloning from icing.core import parallel_distance from icing.models.model import model_matrix from icing.utils import io, extra def least_squares_mdl(x, u): """Model for least squares. Used by scipy.optimize.least_squares.""" return x[0] * (u ** 2 + x[1] * u) / (u ** 2 + x[2] * u + x[3]) def least_squares_jacobian(x, u, y): """Jacobian for least squares. Used by scipy.optimize.least_squares.""" J = np.empty((u.size, x.size)) den = u ** 2 + x[2] * u + x[3] num = u ** 2 + x[1] * u J[:, 0] = num / den J[:, 1] = x[0] * u / den J[:, 2] = -x[0] * num * u / den ** 2 J[:, 3] = -x[0] * num / den ** 2 return J # import md5 # # def remove_duplicate_junctions(igs_list): # """Remove igs which have same junction.""" # igs, juncs = [], [] # md5_list = [] # for ig in igs_list: # junc = extra.junction_re(ig.junction) # md = md5.new(junc).digest() # if md not in md5_list: # igs.append(ig) # juncs.append(junc) # md5_list.append(md) # return igs, juncs def remove_duplicate_junctions(igs): igs = list(igs) return igs, map(lambda x: extra.junction_re(x.junction), igs) def make_hist(juncs1, juncs2, filename, lim_mut1, lim_mut2, type_ig='Mem', mut=None, donor1='B4', donor2=None, bins=100, min_seqs=0, ig1=None, ig2=None, is_intra=True, sim_func_args=None, correction=False): """Make histogram and main computation of nearest similarities.""" if os.path.exists(filename + '.npz'): logging.critical(filename + '.npz esists.') return filename if len(juncs1) < min_seqs or len(juncs2) < min_seqs: return '' sim_func_args_2 = sim_func_args.copy() cloning.set_defaults_sim_func( sim_func_args_2, ig1 if is_intra else ig1 + ig2) sim_func_args_2['correct'] = correction sim_func_args_2['rm_duplicates'] = True if not correction: sim_func_args_2['tol'] = 1000 else: sim_func_args_2['correction_function'] = correction sim_func = partial(cloning.sim_function, **sim_func_args_2) logging.info("Computing %s", filename) if is_intra: # dnearest = parallel_distance.dnearest_inter_padding( # ig1, ig1, sim_func, filt=lambda x: 0 < x, func=max) dnearest = parallel_distance.dnearest_intra_padding( ig1, sim_func, filt=lambda x: x > 0, func=max) # ig1, ig1, sim_func, filt=lambda x: 0 < x < 1, func=max) else: dnearest = parallel_distance.dnearest_inter_padding( ig1, ig2, sim_func, filt=lambda x: 0 < x < 1, func=max) if not os.path.exists(filename.split('/')[0]): os.makedirs(filename.split('/')[0]) np.savez(filename, X=dnearest, mut=mut) # Plot distance distribution plt.figure(figsize=(20, 10)) plt.hist(dnearest, bins=bins, normed=True) plt.title("Distances between " + ("{}-{}".format(donor1, donor2) if donor2 else "") + " {} {:.3f}-{:.3f}% and {:.3f}-{:.3f}%" .format(type_ig, lim_mut1[0], lim_mut1[1], *lim_mut2)) plt.ylabel('Count') # plt.xlim([0, 1]) plt.xticks(np.linspace(0, 1, 21)) # plt.xlabel('Ham distance (normalised)') plt.savefig(filename + ".png") plt.close() return filename def shuffle_ig(igs, juncs, max_seqs): if len(juncs) > max_seqs: igs, juncs = shuffle(igs, juncs) igs = igs[:max_seqs] juncs = juncs[:max_seqs] return igs, juncs def intra_donor_distance(db='', lim_mut1=(0, 0), lim_mut2=(0, 0), type_ig='Mem', quantity=.15, donor='B4', bins=100, max_seqs=1000, n_tot=0, min_seqs=100, sim_func_args=None, correction=False): """Nearest distances intra donor. Subsets of Igs can be selected choosing two ranges of mutations. """ filename = \ "{0}/dist2nearest_{0}_{1}-{2}_vs_{3}-{4}_{5}bins_norm_{6}maxseqs" \ .format(donor, lim_mut1[0], lim_mut1[1], lim_mut2[0], lim_mut2[1], bins, max_seqs) + \ ('_correction' if correction else '') # mut = min(lim_mut1[0], lim_mut2[0]) if os.path.exists(filename + '.npz'): logging.info("File %s exists.", filename + '.npz') # Plot distance distribution plt.figure(figsize=(20, 10)) dnearest = np.load(filename + '.npz')['X'] plt.hist(dnearest, bins=bins, normed=True) plt.title("Similarities for " + ("{}".format(donor)) + " {} {:.3f}-{:.3f}% and {:.3f}-{:.3f}%" .format(type_ig, lim_mut1[0], lim_mut1[1], *lim_mut2)) plt.ylabel('Count') # plt.xlim([0, 1]) # plt.xticks(np.linspace(0, 1, 21)) # plt.xlabel('Ham distance (normalised)') plt.savefig(filename + ".pdf") plt.close() return filename, float(np.load(filename + '.npz')['mut']) readdb = partial(io.read_db, db, max_records=quantity * n_tot) if max(lim_mut1[1], lim_mut2[1]) == 0: igs = readdb(filt=(lambda x: x.mut == 0)) igs1, juncs1 = remove_duplicate_junctions(igs) if len(igs1) < 2: return '', 0 igs1, juncs1 = shuffle_ig(igs1, juncs1, max_seqs) igs2 = igs1 juncs2 = juncs1 mut = 0 elif (lim_mut1[0] == lim_mut2[0] and lim_mut1[1] == lim_mut2[1]): igs = readdb(filt=(lambda x: lim_mut1[0] < x.mut <= lim_mut1[1])) igs1, juncs1 = remove_duplicate_junctions(igs) if len(igs1) < 2: return '', 0 igs1, juncs1 = shuffle_ig(igs1, juncs1, max_seqs) igs2 = igs1 juncs2 = juncs1 mut = np.mean(list(chain((x.mut for x in igs1), (x.mut for x in igs2)))) else: igs = readdb(filt=(lambda x: lim_mut1[0] < x.mut <= lim_mut1[1])) igs1, juncs1 = remove_duplicate_junctions(igs) if len(igs1) < 2: return '', 0 igs = readdb(filt=(lambda x: lim_mut2[0] < x.mut <= lim_mut2[1])) igs2, juncs2 = remove_duplicate_junctions(igs) if len(igs2) < 2: return '', 0 if not len(juncs1) or not len(juncs2): return '', 0 igs1, juncs1 = shuffle_ig(igs1, juncs1, max_seqs) igs2, juncs2 = shuffle_ig(igs2, juncs2, max_seqs) mut = np.mean(list(chain((x.mut for x in igs1), (x.mut for x in igs2)))) # logging.info("Computing similarity ") return make_hist( juncs1, juncs2, filename, lim_mut1, lim_mut2, type_ig, mut, donor, None, bins, min_seqs, ig1=igs1, ig2=igs2, sim_func_args=sim_func_args, correction=correction), mut def inter_donor_distance(f1='', f2='', lim_mut1=(0, 0), lim_mut2=(0, 0), type_ig='Mem', donor1='B4', donor2='B5', bins=100, max_seqs=1000, quantity=.15, sim_func_args=None): """Nearest distances inter donors. Igs involved can be selected by choosing two possibly different ranges of mutations. """ filename = \ "{0}/dnearest_{0}_{1}_{2}-{3}_vs_{4}-{5}_{6}bins_norm_{7}maxseqs" \ .format(donor1, donor2, lim_mut1[0], lim_mut1[1], lim_mut2[0], lim_mut2[1], bins, max_seqs) # mut = min(lim_mut1[0], lim_mut2[0]) if os.path.exists(filename + '.npz'): logging.info("File %s exists.", filename + '.npz') return filename, float(np.load(filename + '.npz')['mut']) if max(lim_mut1[1], lim_mut2[1]) == 0: igs = io.read_db(f1, filt=(lambda x: x.mut == 0)) _, juncs1 = remove_duplicate_junctions(igs) igs = io.read_db(f2, filt=(lambda x: x.mut == 0)) _, juncs2 = remove_duplicate_junctions(igs) mut = 0 elif max(lim_mut1[1], lim_mut2[1]) < 0: # not specified: get at random igs = io.read_db(f1) _, juncs1 = remove_duplicate_junctions(igs) igs = io.read_db(f2) _, juncs2 = remove_duplicate_junctions(igs) else: igs = io.read_db( f1, filt=(lambda x: lim_mut1[0] < x.mut <= lim_mut1[1])) _, juncs1 = remove_duplicate_junctions(igs) igs = io.read_db( f2, filt=(lambda x: lim_mut2[0] < x.mut <= lim_mut2[1])) _, juncs2 = remove_duplicate_junctions(igs) juncs1 = juncs1[:int(quantity * len(juncs1))] juncs2 = juncs2[:int(quantity * len(juncs2))] return make_hist( juncs1, juncs2, filename, lim_mut1, lim_mut2, type_ig, donor1, donor2, bins, max_seqs, sim_func_args=sim_func_args), mut def distr_muts(db, quantity=0.15, bins=50, max_seqs=4000, min_seqs=100, sim_func_args=None, correction=False): """Create histograms and relative mutation levels using intra groups.""" logging.info("Analysing %s ...", db) try: max_mut, n_tot = io.get_max_mut(db) # if max_mut < 1: lin = np.linspace(0, max_mut, min(n_tot / 15., 12)) # lin = np.linspace(0, max_mut, 10.) sets = [(0, 0)] + zip(lin[:-1], lin[1:]) # sets = [(0, 0)] + [(i - 1, i) for i in range(1, int(max_mut) + 1)] if len(sets) == 1: # no correction needs to be applied return None out_muts = [ intra_donor_distance( db, i, j, quantity=quantity, donor=db.split('/')[-1], bins=bins, max_seqs=max_seqs, min_seqs=min_seqs, correction=correction, n_tot=n_tot, sim_func_args=sim_func_args) for i, j in zip(sets, sets)] except StandardError as msg: logging.critical(msg) out_muts = [] d = dict() for f, m in out_muts: d.setdefault(m, []).append(f) return d def _gaussian_fit(array): if array.shape[0] < 2: logging.error("Cannot fit a Gaussian with two distances.") return 0 array_2 = -(np.array(sorted(array)).reshape(-1, 1)) array = np.array(list(array_2) + list(array)).reshape(-1, 1) try: # new sklearn GMM gmm = mixture.GaussianMixture(n_components=3, covariance_type='diag') gmm.fit(array) # gmmmean = np.max(gmm.means_) # gmmsigma = gmm.covariances_[np.argmax(gmm.means_)] except AttributeError: # use old sklearn method gmm = mixture.GMM(n_components=3) gmm.fit(array) # gmmmean = np.max(gmm.means_) # gmmsigma = gmm.covars_[np.argmax(gmm.means_)] # Extract optimal threshold plt.hist(array, bins=50, normed=True) # debug, print lin = np.linspace(0, 1, 10000)[:, np.newaxis] # plt.plot(lin, np.exp(gmm.score_samples(lin)[0]), 'r') pred = gmm.predict(lin) try: idx = np.min(np.where(pred == np.argmax(gmm.means_))[0]) except ValueError: # print("Error", np.unique(pred)) idx = 0 plt.axvline(x=lin[idx], linestyle='--', color='r') # plt.gcf().savefig("threshold_naive{}.png".format(k)) plt.close() threshold = lin[idx][0] # threshold # np.save("threshold_naive", threshold) return threshold def mean_confidence_interval(data, confidence=0.95): """Return mean and confidence interval.""" data = np.array(data, dtype=float) mean, se = np.mean(data), scipy.stats.sem(data) h = se * scipy.stats.t._ppf((1 + confidence) / 2., data.shape[0] - 1) return mean, mean - h, mean + h, h def learning_function(my_dict, order=3, aplot='alphaplot.pdf'): """Learn the correction function given data in a dictionary. Parameters ---------- mydict : dict Organised as {mut: [mean_similarities]}. Calculated by `distr_muts`. order : int, optional, default: 3 Order of the learning function (polynomial). aplot : str, optional, default: 'alpha_plot.pdf' Filename where to save the correction function plot. Returns ------- func : function Function which accept the mutation level as parameter, returns the correction to apply on the similarity measure calculated. threshold : float Deprecated. Returns the threshold for methods like Hierarchical clustering to work in defining clones. """ if my_dict is None: logging.critical("Cannot learn function with empty dict") return lambda _: 1, 0 d_dict = dict() samples, thresholds = [], [] for k, v in six.iteritems(my_dict): for o in (_ for _ in v if _): dnearest = np.array(np.load("{}.npz".format(o))['X']) \ .reshape(-1, 1) var = np.var(dnearest) if var == 0: continue med = np.median(dnearest) mean, _, _, h = mean_confidence_interval(dnearest) samples.append(dnearest.shape[0]) d_dict.setdefault(o.split('/')[0], dict()).setdefault(k, [med, h]) # for the threshold, fit a gaussian (unused for AP) thresholds.append(_gaussian_fit(dnearest)) for k, v in six.iteritems(d_dict): # there is only one xdata = np.array(sorted([x for x in v])) ydata = np.array([np.mean(v[x][0]) for x in xdata]) yerr = np.array([np.mean(v[x][1]) for x in xdata]) # Take only significant values, higher than 0 mask = ydata > 0 xdata = xdata[mask] if xdata.shape[0] < 2: logging.critical("Too few points to learn function") # no correction can be applied return lambda _: 1, 0 ydata = ydata[mask] ydata = ydata[0] / ydata # normalise yerr = yerr[mask] # res = least_squares( # lambda x, u, y: least_squares_mdl(x, u) - y, # x0=np.array([2.5, 3.9, 4.15, 3.9]), # jac=least_squares_jacobian, bounds=(0, 100), args=(xdata, ydata), # ftol=1e-12, loss='soft_l1') order = min(order, xdata.shape[0] - 1) warnings.filterwarnings("ignore") with warnings.catch_warnings(): warnings.filterwarnings('error') try: poly = np.poly1d(np.polyfit( xdata, ydata, order, w=1. / (yerr + 1e-15))) except np.RankWarning: logging.critical( "Cannot fit polynomial with degree %d, npoints %d", order, xdata.shape[0]) return lambda _: 1, 0 with sns.axes_style('whitegrid'): sns.set_context('paper') xp = np.linspace(np.min(xdata), np.max(xdata), 1000)[:, None] plt.figure() plt.errorbar(xdata, ydata, yerr, label='Nearest similarity', marker='s') plt.plot(xp, poly(xp), '-', label='Learning function (poly of order {})'.format(order)) # plt.plot(xp, least_squares_mdl(res.x, xp), '-', label='least squares') plt.xlabel(r'Mutation level') plt.ylabel(r'Average similarity (not normalised)') plt.legend(loc='lower left') plt.savefig(aplot, transparent=True, bbox_inches='tight') plt.close() # poly = partial(model, res.x) return poly, 1 - (filter( lambda x: x > 0, np.array(thresholds)[np.array(samples).argsort()[::-1]]) or [0])[0] def generate_correction_function(db, quantity, sim_func_args=None, order=3, root=''): """Generate correction function on the database analysed.""" db_no_ext = ".".join(db.split(".")[:-1]) filename = db_no_ext + "_correction_function.npy" # case 1: file exists aplot = os.path.join(root, db_no_ext.split('/')[-1] + '_alphaplot.pdf') if os.path.exists(filename) and os.path.exists("threshold_naive.npy"): logging.critical("Best parameters exists. Loading them ...") popt = np.load(filename) threshold_naive = np.load("threshold_naive.npy") # case 2: file not exists else: my_dict = distr_muts( db, quantity=quantity, min_seqs=10, max_seqs=1000, sim_func_args=sim_func_args) popt, threshold_naive = learning_function(my_dict, order, aplot) # save for later, in case of analysis on the same db # np.save(filename, popt) # TODO # partial(extra.negative_exponential, a=popt[0], c=popt[1], d=popt[2]), # my_dict = distr_muts( # db, quantity=quantity, min_seqs=2, max_seqs=1000, # sim_func_args=sim_func_args, correction=popt) return (popt, threshold_naive, aplot)
bsd-2-clause
zak-k/iris
lib/iris/tests/unit/quickplot/test_points.py
11
2168
# (C) British Crown Copyright 2014 - 2016, Met Office # # This file is part of Iris. # # Iris is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Iris is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with Iris. If not, see <http://www.gnu.org/licenses/>. """Unit tests for the `iris.quickplot.points` function.""" from __future__ import (absolute_import, division, print_function) from six.moves import (filter, input, map, range, zip) # noqa # Import iris.tests first so that some things can be initialised before # importing anything else. import iris.tests as tests import numpy as np from iris.tests.stock import simple_2d from iris.tests.unit.plot import TestGraphicStringCoord, MixinCoords if tests.MPL_AVAILABLE: import iris.quickplot as qplt @tests.skip_plot class TestStringCoordPlot(TestGraphicStringCoord): def test_yaxis_labels(self): qplt.points(self.cube, coords=('bar', 'str_coord')) self.assertBoundsTickLabels('yaxis') def test_xaxis_labels(self): qplt.points(self.cube, coords=('str_coord', 'bar')) self.assertBoundsTickLabels('xaxis') @tests.skip_plot class TestCoords(tests.IrisTest, MixinCoords): def setUp(self): # We have a 2d cube with dimensionality (bar: 3; foo: 4) self.cube = simple_2d(with_bounds=False) self.foo = self.cube.coord('foo').points self.foo_index = np.arange(self.foo.size) self.bar = self.cube.coord('bar').points self.bar_index = np.arange(self.bar.size) self.data = None self.dataT = None self.mpl_patch = self.patch('matplotlib.pyplot.scatter') self.draw_func = qplt.points if __name__ == "__main__": tests.main()
gpl-3.0
luo66/scikit-learn
sklearn/tests/test_isotonic.py
230
11087
import numpy as np import pickle from sklearn.isotonic import (check_increasing, isotonic_regression, IsotonicRegression) from sklearn.utils.testing import (assert_raises, assert_array_equal, assert_true, assert_false, assert_equal, assert_array_almost_equal, assert_warns_message, assert_no_warnings) from sklearn.utils import shuffle def test_permutation_invariance(): # check that fit is permuation invariant. # regression test of missing sorting of sample-weights ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] x_s, y_s, sample_weight_s = shuffle(x, y, sample_weight, random_state=0) y_transformed = ir.fit_transform(x, y, sample_weight=sample_weight) y_transformed_s = ir.fit(x_s, y_s, sample_weight=sample_weight_s).transform(x) assert_array_equal(y_transformed, y_transformed_s) def test_check_increasing_up(): x = [0, 1, 2, 3, 4, 5] y = [0, 1.5, 2.77, 8.99, 8.99, 50] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_up_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5] # Check that we got increasing=True and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_true(is_increasing) def test_check_increasing_down(): x = [0, 1, 2, 3, 4, 5] y = [0, -1.5, -2.77, -8.99, -8.99, -50] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_increasing_down_extreme(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, -2, -3, -4, -5] # Check that we got increasing=False and no warnings is_increasing = assert_no_warnings(check_increasing, x, y) assert_false(is_increasing) def test_check_ci_warn(): x = [0, 1, 2, 3, 4, 5] y = [0, -1, 2, -3, 4, -5] # Check that we got increasing=False and CI interval warning is_increasing = assert_warns_message(UserWarning, "interval", check_increasing, x, y) assert_false(is_increasing) def test_isotonic_regression(): y = np.array([3, 7, 5, 9, 8, 7, 10]) y_ = np.array([3, 6, 6, 8, 8, 8, 10]) assert_array_equal(y_, isotonic_regression(y)) x = np.arange(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(ir.transform(x), ir.predict(x)) # check that it is immune to permutation perm = np.random.permutation(len(y)) ir = IsotonicRegression(y_min=0., y_max=1.) assert_array_equal(ir.fit_transform(x[perm], y[perm]), ir.fit_transform(x, y)[perm]) assert_array_equal(ir.transform(x[perm]), ir.transform(x)[perm]) # check we don't crash when all x are equal: ir = IsotonicRegression() assert_array_equal(ir.fit_transform(np.ones(len(x)), y), np.mean(y)) def test_isotonic_regression_ties_min(): # Setup examples with ties on minimum x = [0, 1, 1, 2, 3, 4, 5] y = [0, 1, 2, 3, 4, 5, 6] y_true = [0, 1.5, 1.5, 3, 4, 5, 6] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_max(): # Setup examples with ties on maximum x = [1, 2, 3, 4, 5, 5] y = [1, 2, 3, 4, 5, 6] y_true = [1, 2, 3, 4, 5.5, 5.5] # Check that we get identical results for fit/transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_equal(ir.fit(x, y).transform(x), ir.fit_transform(x, y)) assert_array_equal(y_true, ir.fit_transform(x, y)) def test_isotonic_regression_ties_secondary_(): """ Test isotonic regression fit, transform and fit_transform against the "secondary" ties method and "pituitary" data from R "isotone" package, as detailed in: J. d. Leeuw, K. Hornik, P. Mair, Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods Set values based on pituitary example and the following R command detailed in the paper above: > library("isotone") > data("pituitary") > res1 <- gpava(pituitary$age, pituitary$size, ties="secondary") > res1$x `isotone` version: 1.0-2, 2014-09-07 R version: R version 3.1.1 (2014-07-10) """ x = [8, 8, 8, 10, 10, 10, 12, 12, 12, 14, 14] y = [21, 23.5, 23, 24, 21, 25, 21.5, 22, 19, 23.5, 25] y_true = [22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 22.22222, 24.25, 24.25] # Check fit, transform and fit_transform ir = IsotonicRegression() ir.fit(x, y) assert_array_almost_equal(ir.transform(x), y_true, 4) assert_array_almost_equal(ir.fit_transform(x, y), y_true, 4) def test_isotonic_regression_reversed(): y = np.array([10, 9, 10, 7, 6, 6.1, 5]) y_ = IsotonicRegression(increasing=False).fit_transform( np.arange(len(y)), y) assert_array_equal(np.ones(y_[:-1].shape), ((y_[:-1] - y_[1:]) >= 0)) def test_isotonic_regression_auto_decreasing(): # Set y and x for decreasing y = np.array([10, 9, 10, 7, 6, 6.1, 5]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship decreases is_increasing = y_[0] < y_[-1] assert_false(is_increasing) def test_isotonic_regression_auto_increasing(): # Set y and x for decreasing y = np.array([5, 6.1, 6, 7, 10, 9, 10]) x = np.arange(len(y)) # Create model and fit_transform ir = IsotonicRegression(increasing='auto') y_ = assert_no_warnings(ir.fit_transform, x, y) # Check that relationship increases is_increasing = y_[0] < y_[-1] assert_true(is_increasing) def test_assert_raises_exceptions(): ir = IsotonicRegression() rng = np.random.RandomState(42) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7, 3], [0.1, 0.6]) assert_raises(ValueError, ir.fit, [0, 1, 2], [5, 7]) assert_raises(ValueError, ir.fit, rng.randn(3, 10), [0, 1, 2]) assert_raises(ValueError, ir.transform, rng.randn(3, 10)) def test_isotonic_sample_weight_parameter_default_value(): # check if default value of sample_weight parameter is one ir = IsotonicRegression() # random test data rng = np.random.RandomState(42) n = 100 x = np.arange(n) y = rng.randint(-50, 50, size=(n,)) + 50. * np.log(1 + np.arange(n)) # check if value is correctly used weights = np.ones(n) y_set_value = ir.fit_transform(x, y, sample_weight=weights) y_default_value = ir.fit_transform(x, y) assert_array_equal(y_set_value, y_default_value) def test_isotonic_min_max_boundaries(): # check if min value is used correctly ir = IsotonicRegression(y_min=2, y_max=4) n = 6 x = np.arange(n) y = np.arange(n) y_test = [2, 2, 2, 3, 4, 4] y_result = np.round(ir.fit_transform(x, y)) assert_array_equal(y_result, y_test) def test_isotonic_sample_weight(): ir = IsotonicRegression() x = [1, 2, 3, 4, 5, 6, 7] y = [1, 41, 51, 1, 2, 5, 24] sample_weight = [1, 2, 3, 4, 5, 6, 7] expected_y = [1, 13.95, 13.95, 13.95, 13.95, 13.95, 24] received_y = ir.fit_transform(x, y, sample_weight=sample_weight) assert_array_equal(expected_y, received_y) def test_isotonic_regression_oob_raise(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") ir.fit(x, y) # Check that an exception is thrown assert_raises(ValueError, ir.predict, [min(x) - 10, max(x) + 10]) def test_isotonic_regression_oob_clip(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) # Predict from training and test x and check that min/max match. y1 = ir.predict([min(x) - 10, max(x) + 10]) y2 = ir.predict(x) assert_equal(max(y1), max(y2)) assert_equal(min(y1), min(y2)) def test_isotonic_regression_oob_nan(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="nan") ir.fit(x, y) # Predict from training and test x and check that we have two NaNs. y1 = ir.predict([min(x) - 10, max(x) + 10]) assert_equal(sum(np.isnan(y1)), 2) def test_isotonic_regression_oob_bad(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="xyz") # Make sure that we throw an error for bad out_of_bounds value assert_raises(ValueError, ir.fit, x, y) def test_isotonic_regression_oob_bad_after(): # Set y and x y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="raise") # Make sure that we throw an error for bad out_of_bounds value in transform ir.fit(x, y) ir.out_of_bounds = "xyz" assert_raises(ValueError, ir.transform, x) def test_isotonic_regression_pickle(): y = np.array([3, 7, 5, 9, 8, 7, 10]) x = np.arange(len(y)) # Create model and fit ir = IsotonicRegression(increasing='auto', out_of_bounds="clip") ir.fit(x, y) ir_ser = pickle.dumps(ir, pickle.HIGHEST_PROTOCOL) ir2 = pickle.loads(ir_ser) np.testing.assert_array_equal(ir.predict(x), ir2.predict(x)) def test_isotonic_duplicate_min_entry(): x = [0, 0, 1] y = [0, 0, 1] ir = IsotonicRegression(increasing=True, out_of_bounds="clip") ir.fit(x, y) all_predictions_finite = np.all(np.isfinite(ir.predict(x))) assert_true(all_predictions_finite) def test_isotonic_zero_weight_loop(): # Test from @ogrisel's issue: # https://github.com/scikit-learn/scikit-learn/issues/4297 # Get deterministic RNG with seed rng = np.random.RandomState(42) # Create regression and samples regression = IsotonicRegression() n_samples = 50 x = np.linspace(-3, 3, n_samples) y = x + rng.uniform(size=n_samples) # Get some random weights and zero out w = rng.uniform(size=n_samples) w[5:8] = 0 regression.fit(x, y, sample_weight=w) # This will hang in failure case. regression.fit(x, y, sample_weight=w)
bsd-3-clause
mblondel/scikit-learn
examples/covariance/plot_covariance_estimation.py
250
5070
""" ======================================================================= Shrinkage covariance estimation: LedoitWolf vs OAS and max-likelihood ======================================================================= When working with covariance estimation, the usual approach is to use a maximum likelihood estimator, such as the :class:`sklearn.covariance.EmpiricalCovariance`. It is unbiased, i.e. it converges to the true (population) covariance when given many observations. However, it can also be beneficial to regularize it, in order to reduce its variance; this, in turn, introduces some bias. This example illustrates the simple regularization used in :ref:`shrunk_covariance` estimators. In particular, it focuses on how to set the amount of regularization, i.e. how to choose the bias-variance trade-off. Here we compare 3 approaches: * Setting the parameter by cross-validating the likelihood on three folds according to a grid of potential shrinkage parameters. * A close formula proposed by Ledoit and Wolf to compute the asymptotically optimal regularization parameter (minimizing a MSE criterion), yielding the :class:`sklearn.covariance.LedoitWolf` covariance estimate. * An improvement of the Ledoit-Wolf shrinkage, the :class:`sklearn.covariance.OAS`, proposed by Chen et al. Its convergence is significantly better under the assumption that the data are Gaussian, in particular for small samples. To quantify estimation error, we plot the likelihood of unseen data for different values of the shrinkage parameter. We also show the choices by cross-validation, or with the LedoitWolf and OAS estimates. Note that the maximum likelihood estimate corresponds to no shrinkage, and thus performs poorly. The Ledoit-Wolf estimate performs really well, as it is close to the optimal and is computational not costly. In this example, the OAS estimate is a bit further away. Interestingly, both approaches outperform cross-validation, which is significantly most computationally costly. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy import linalg from sklearn.covariance import LedoitWolf, OAS, ShrunkCovariance, \ log_likelihood, empirical_covariance from sklearn.grid_search import GridSearchCV ############################################################################### # Generate sample data n_features, n_samples = 40, 20 np.random.seed(42) base_X_train = np.random.normal(size=(n_samples, n_features)) base_X_test = np.random.normal(size=(n_samples, n_features)) # Color samples coloring_matrix = np.random.normal(size=(n_features, n_features)) X_train = np.dot(base_X_train, coloring_matrix) X_test = np.dot(base_X_test, coloring_matrix) ############################################################################### # Compute the likelihood on test data # spanning a range of possible shrinkage coefficient values shrinkages = np.logspace(-2, 0, 30) negative_logliks = [-ShrunkCovariance(shrinkage=s).fit(X_train).score(X_test) for s in shrinkages] # under the ground-truth model, which we would not have access to in real # settings real_cov = np.dot(coloring_matrix.T, coloring_matrix) emp_cov = empirical_covariance(X_train) loglik_real = -log_likelihood(emp_cov, linalg.inv(real_cov)) ############################################################################### # Compare different approaches to setting the parameter # GridSearch for an optimal shrinkage coefficient tuned_parameters = [{'shrinkage': shrinkages}] cv = GridSearchCV(ShrunkCovariance(), tuned_parameters) cv.fit(X_train) # Ledoit-Wolf optimal shrinkage coefficient estimate lw = LedoitWolf() loglik_lw = lw.fit(X_train).score(X_test) # OAS coefficient estimate oa = OAS() loglik_oa = oa.fit(X_train).score(X_test) ############################################################################### # Plot results fig = plt.figure() plt.title("Regularized covariance: likelihood and shrinkage coefficient") plt.xlabel('Regularizaton parameter: shrinkage coefficient') plt.ylabel('Error: negative log-likelihood on test data') # range shrinkage curve plt.loglog(shrinkages, negative_logliks, label="Negative log-likelihood") plt.plot(plt.xlim(), 2 * [loglik_real], '--r', label="Real covariance likelihood") # adjust view lik_max = np.amax(negative_logliks) lik_min = np.amin(negative_logliks) ymin = lik_min - 6. * np.log((plt.ylim()[1] - plt.ylim()[0])) ymax = lik_max + 10. * np.log(lik_max - lik_min) xmin = shrinkages[0] xmax = shrinkages[-1] # LW likelihood plt.vlines(lw.shrinkage_, ymin, -loglik_lw, color='magenta', linewidth=3, label='Ledoit-Wolf estimate') # OAS likelihood plt.vlines(oa.shrinkage_, ymin, -loglik_oa, color='purple', linewidth=3, label='OAS estimate') # best CV estimator likelihood plt.vlines(cv.best_estimator_.shrinkage, ymin, -cv.best_estimator_.score(X_test), color='cyan', linewidth=3, label='Cross-validation best estimate') plt.ylim(ymin, ymax) plt.xlim(xmin, xmax) plt.legend() plt.show()
bsd-3-clause
hande-qmc/hande
tools/pyhande/tests/test_canonical.py
1
7116
"""Tests for canonical.py.""" import warnings import unittest import pandas as pd import numpy as np import pyhande.canonical as canonical import tests.create_mock_df as create_mock_df class TestAnalyseHFObservables(unittest.TestCase): """Test canonical.analyse_hf_observables.""" def setUp(self): # Create mock series containing means of various DMQMC # observables as well as their convariances. rng = np.random.default_rng(375) means = [-90.0, -99.0, -198.0, 2.8, 10.0] self.cols = [ r'Tr(T\rho_HF)', r'Tr(V\rho_HF)', r'Tr(H\rho_HF)', r'Tr(\rho_HF)', 'alt1' ] self.means_series = pd.Series(means, index=self.cols) cov_orig = create_mock_df.create_cov_frame(rng, self.cols, means, 1) # reblock iterations are not a concept here: self.cov_orig = cov_orig.loc[0] # Shared exp results self.result_exp = pd.Series( [-32.142857, 4.004706, -35.357143, 4.122886, -70.714286, 10.74825], index=[ 'T_HF', 'T_HF_error', 'V_HF', 'V_HF_error', 'U_HF', 'U_HF_error' ] ) def test_basic_input(self): """Basic input.""" nsamples = 100 result = canonical.analyse_hf_observables( self.means_series.loc[self.cols[:-1]], self.cov_orig.drop( columns=['alt1'], index=['alt1'] ), nsamples ) pd.testing.assert_series_equal( result, self.result_exp, check_exact=False ) def test_ignore_col(self): """Input with a column ('alt1') which should be ignored.""" nsamples = 100 result = canonical.analyse_hf_observables( self.means_series, self.cov_orig, nsamples ) pd.testing.assert_series_equal( result, self.result_exp, check_exact=False ) def test_unchanged_mutable(self): """Check that mutable objects, such as pd DataFrames, don't change when they shouldn't. """ means_series_copy = self.means_series.copy() cov_orig_copy = self.cov_orig.copy() nsamples = 100 _ = canonical.analyse_hf_observables( self.means_series, self.cov_orig, nsamples ) pd.testing.assert_series_equal( means_series_copy, self.means_series, check_exact=True ) pd.testing.assert_frame_equal( cov_orig_copy, self.cov_orig, check_exact=True ) class TestEstimates(unittest.TestCase): """Test canonical.estimates.""" def setUp(self): # Create mock DMQMC data as well as metadata. rng = np.random.default_rng(375) means = [-36.1, -39.3, -90.0, -99.0, 2.8, 0.13] cols = [ '<T>_0', '<V>_0', r'Tr(T\rho_HF)', r'Tr(V\rho_HF)', r'Tr(\rho_HF)', 'N_ACC/N_ATT' ] sine_periods = [3.2, 4.2, 7.1, 2.22, 5.73, 1.67] noise_facs = [0.1, 0.9, 1.2, 0.2, 0.76, 0.04] self.data = create_mock_df.create_qmc_frame( rng, cols, means, sine_periods, noise_facs ) # Note that metadata is most likely a dictionary not # pd.DataFrame (which is not what the function docstring says) # See test_suite/mc_canonical_estimates/np1/H2O_ccpvdz_RHF for # similar values (magnitude) self.metadata1 = { 'nattempts': 8000, 'beta': 0.44, 'free_energy_corr': -77.4, 'fermi_temperature': False, 'alt1': 1 } # See test_suite/mc_canonical_estimates/np1/ueg_n7_ec20_rs1 for # similar values (magnitude) self.metadata2 = { 'nattempts': 5000, 'beta': 0.9, 'free_energy_corr': -26.1, 'fermi_temperature': True, 'alt1': 1, 'system': { 'ueg': {'E_fermi': 3.2} } } def test_not_ueg(self): """Not UEG.""" result = canonical.estimates(self.metadata1, self.data) ind_exp = [ 'U_0', 'T_0', 'V_0', 'N_ACC/N_ATT', 'F_0', 'S_0', 'T_HF', 'V_HF', 'U_HF' ] ind_exp_full = [] for i in ind_exp: ind_exp_full.extend([i, i+'_error']) ind_exp_full = ['Beta'] + ind_exp_full result_exp = pd.Series([ 4.40000000e-01, -7.45375108e+01, 7.95735784e-01, -3.57175099e+01, 4.73795670e-01, -3.88200009e+01, 5.72059025e-01, 1.41132320e-01, 5.98715584e-03, -7.29498696e+01, 9.64142895e-02, 1.63822382e+01, 2.01610646e-01, -3.18572634e+01, 1.43161978e+00, -3.51519450e+01, 1.61877967e+00, -6.70092084e+01, 2.98339505e+00 ], index=ind_exp_full) pd.testing.assert_series_equal(result, result_exp, check_exact=False) def test_ueg(self): """UEG.""" result = canonical.estimates(self.metadata2, self.data) ind_exp = ['U_0', 'T_0', 'V_0', 'N_ACC/N_ATT', 'F_0', 'S_0', 'T_HF', 'V_HF', 'U_HF'] ind_exp_full = [] for i in ind_exp: ind_exp_full.extend([i, i+'_error']) ind_exp_full = ['Beta'] + ind_exp_full result_exp = pd.Series([ 9.00000000e-01, -7.45375108e+01, 7.95735784e-01, -3.57175099e+01, 4.73795670e-01, -3.88200009e+01, 5.72059025e-01, 1.41132320e-01, 5.98715584e-03, -19.138018, 0.1508347996, -4.662982060842, 0.12887270046, -3.18572634e+01, 1.43161978e+00, -3.51519450e+01, 1.61877967e+00, -6.70092084e+01, 2.98339505e+00 ], index=ind_exp_full) pd.testing.assert_series_equal(result, result_exp, check_exact=False) def test_not_ueg_no_naccnatt_col(self): """No 'N_ACC/N_ATT' in columns (not UEG) [todo] Should the metadata be adjusted as well? """ self.data.drop(columns=(['N_ACC/N_ATT']), inplace=True) result = canonical.estimates(self.metadata1, self.data) ind_exp = ['U_0', 'T_0', 'V_0', 'T_HF', 'V_HF', 'U_HF'] ind_exp_full = [] for i in ind_exp: ind_exp_full.extend([i, i+'_error']) ind_exp_full = ['Beta'] + ind_exp_full result_exp = pd.Series([ 4.40000000e-01, -74.574386427, 0.78720024, -35.86308032, 0.46069296, -38.7113061, 0.58596805, -32.23777087, 1.44645184, -35.44043608, 1.63181849, -67.67820695, 3.01213831 ], index=ind_exp_full) pd.testing.assert_series_equal(result, result_exp, check_exact=False) def test_unchanged_mutable(self): """Check that mutable objects, such as pd DataFrames, don't change when they shouldn't. """ # data_copy = self.data.copy() metadata1_copy = self.metadata1.copy() _ = canonical.estimates(self.metadata1, self.data) # pd.testing.assert_frame_equal(self.data, data_copy, check_exact=True) # [todo] Is there a better way to do this warning? warnings.warn("TestEstimates.test_unchanged_mutable: " "Mutable data is changed in function! Fix?") self.assertDictEqual(self.metadata1, metadata1_copy)
lgpl-2.1
SciTools/cartopy
lib/cartopy/tests/mpl/test_contour.py
2
2820
# Copyright Cartopy Contributors # # This file is part of Cartopy and is released under the LGPL license. # See COPYING and COPYING.LESSER in the root of the repository for full # licensing details. import matplotlib.pyplot as plt from matplotlib.testing.decorators import cleanup import numpy as np from numpy.testing import assert_array_almost_equal from scipy.interpolate import NearestNDInterpolator from scipy.signal import convolve2d import cartopy.crs as ccrs @cleanup def test_contour_plot_bounds(): x = np.linspace(-2763217.0, 2681906.0, 200) y = np.linspace(-263790.62, 3230840.5, 130) data = np.hypot(*np.meshgrid(x, y)) / 2e5 proj_lcc = ccrs.LambertConformal(central_longitude=-95, central_latitude=25, standard_parallels=[25]) ax = plt.axes(projection=proj_lcc) ax.contourf(x, y, data, levels=np.arange(0, 40, 1)) assert_array_almost_equal(ax.get_extent(), np.array([x[0], x[-1], y[0], y[-1]])) # Levels that don't include data should not fail. plt.figure() ax = plt.axes(projection=proj_lcc) ax.contourf(x, y, data, levels=np.max(data) + np.arange(1, 3)) @cleanup def test_contour_linear_ring(): """Test contourf with a section that only has 3 points.""" ax = plt.axes([0.01, 0.05, 0.898, 0.85], projection=ccrs.Mercator(), aspect='equal') ax.set_extent([-99.6, -89.0, 39.8, 45.5]) xbnds = ax.get_xlim() ybnds = ax.get_ylim() ll = ccrs.Geodetic().transform_point(xbnds[0], ybnds[0], ax.projection) ul = ccrs.Geodetic().transform_point(xbnds[0], ybnds[1], ax.projection) ur = ccrs.Geodetic().transform_point(xbnds[1], ybnds[1], ax.projection) lr = ccrs.Geodetic().transform_point(xbnds[1], ybnds[0], ax.projection) xi = np.linspace(min(ll[0], ul[0]), max(lr[0], ur[0]), 100) yi = np.linspace(min(ll[1], ul[1]), max(ul[1], ur[1]), 100) xi, yi = np.meshgrid(xi, yi) nn = NearestNDInterpolator((np.arange(-94, -85), np.arange(36, 45)), np.arange(9)) vals = nn(xi, yi) lons = xi lats = yi window = np.ones((6, 6)) vals = convolve2d(vals, window / window.sum(), mode='same', boundary='symm') ax.contourf(lons, lats, vals, np.arange(9), transform=ccrs.PlateCarree()) plt.draw() def test_contour_update_bounds(): """Test that contour updates the extent""" xs, ys = np.meshgrid(np.linspace(0, 360), np.linspace(-80, 80)) zs = ys**2 ax = plt.axes(projection=ccrs.Orthographic()) ax.contour(xs, ys, zs, transform=ccrs.PlateCarree()) # Force a draw, which is a smoke test to make sure contouring # doesn't raise with an Orthographic projection # GH issue 1673 plt.draw()
lgpl-3.0
dantexier/Frameword-PC
extraccion.py
1
1073
import pandas as pd import csv headers = ["Author","Title","C1","Abstract","C2","Cant02","Keywords","Cant03","Publication Title","Year"] names = headers df = pd.read_csv("CorpusCompleto_UNdeC.csv", header=0, names = headers) # Resumen por archivo x=0 for i in df['Abstract']: x+=1 archivos = "Archivo_"+str(x) file = open(archivos,"w") file.write(i) file.close() ''' # LISTADO DE Keywords for i in df['Keywords']: x+=1 print (i) ''' ''' #LISTA DE TITULOS for i in df['Title']: print (i,'.') ''' ''' Listado de los 42 artículos x = 0 for i in df['Title']: x +=1 print (x) print (df.iloc[(x-1)]['Author']) print ("- TÍTULO:\n",i) print (" Cantidad:", len(i.split(" "))) print ("- RESUMEN:\n",df.iloc[(x-1)]['Abstract']) print (" Cantidad:", len(str(df.iloc[(x-1)]['Abstract']).split(" "))) print ("- PALABRAS CLAVE:\n",df.iloc[(x-1)]['Keywords']) print ("- REVISTA:\n",df.iloc[(x-1)]['Publication Title']) print ("- AÑO:\n",df.iloc[(x-1)]['Year']) print ("\n\n\n") '''
gpl-3.0
jakobworldpeace/scikit-learn
examples/model_selection/plot_learning_curve.py
76
4509
""" ======================== Plotting Learning Curves ======================== On the left side the learning curve of a naive Bayes classifier is shown for the digits dataset. Note that the training score and the cross-validation score are both not very good at the end. However, the shape of the curve can be found in more complex datasets very often: the training score is very high at the beginning and decreases and the cross-validation score is very low at the beginning and increases. On the right side we see the learning curve of an SVM with RBF kernel. We can see clearly that the training score is still around the maximum and the validation score could be increased with more training samples. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from sklearn.datasets import load_digits from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and training learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - An object to be used as a cross-validation generator. - An iterable yielding train/test splits. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : integer, optional Number of jobs to run in parallel (default 1). """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt digits = load_digits() X, y = digits.data, digits.target title = "Learning Curves (Naive Bayes)" # Cross validation with 100 iterations to get smoother mean test and train # score curves, each time with 20% data randomly selected as a validation set. cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0) estimator = GaussianNB() plot_learning_curve(estimator, title, X, y, ylim=(0.7, 1.01), cv=cv, n_jobs=4) title = "Learning Curves (SVM, RBF kernel, $\gamma=0.001$)" # SVC is more expensive so we do a lower number of CV iterations: cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0) estimator = SVC(gamma=0.001) plot_learning_curve(estimator, title, X, y, (0.7, 1.01), cv=cv, n_jobs=4) plt.show()
bsd-3-clause
DamienIrving/ocean-analysis
modules/kde.py
1
11449
""" Code for kernel density estimation. - Source: http://nbviewer.jupyter.org/gist/tillahoffmann/f844bce2ec264c1c8cb5 """ import numpy as np from scipy.spatial.distance import cdist class gaussian_kde(object): """Representation of a kernel-density estimate using Gaussian kernels. Kernel density estimation is a way to estimate the probability density function (PDF) of a random variable in a non-parametric way. `gaussian_kde` works for both uni-variate and multi-variate data. It includes automatic bandwidth determination. The estimation works best for a unimodal distribution; bimodal or multi-modal distributions tend to be oversmoothed. Parameters ---------- dataset : array_like Datapoints to estimate from. In case of univariate data this is a 1-D array, otherwise a 2-D array with shape (# of dims, # of data). bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), 'scott' is used. See Notes for more details. weights : array_like, shape (n, ), optional, default: None An array of weights, of the same shape as `x`. Each value in `x` only contributes its associated weight towards the bin count (instead of 1). Attributes ---------- dataset : ndarray The dataset with which `gaussian_kde` was initialized. d : int Number of dimensions. n : int Number of datapoints. neff : float Effective sample size using Kish's approximation. factor : float The bandwidth factor, obtained from `kde.covariance_factor`, with which the covariance matrix is multiplied. covariance : ndarray The covariance matrix of `dataset`, scaled by the calculated bandwidth (`kde.factor`). inv_cov : ndarray The inverse of `covariance`. Methods ------- kde.evaluate(points) : ndarray Evaluate the estimated pdf on a provided set of points. kde(points) : ndarray Same as kde.evaluate(points) kde.pdf(points) : ndarray Alias for ``kde.evaluate(points)``. kde.set_bandwidth(bw_method='scott') : None Computes the bandwidth, i.e. the coefficient that multiplies the data covariance matrix to obtain the kernel covariance matrix. .. versionadded:: 0.11.0 kde.covariance_factor : float Computes the coefficient (`kde.factor`) that multiplies the data covariance matrix to obtain the kernel covariance matrix. The default is `scotts_factor`. A subclass can overwrite this method to provide a different method, or set it through a call to `kde.set_bandwidth`. Notes ----- Bandwidth selection strongly influences the estimate obtained from the KDE (much more so than the actual shape of the kernel). Bandwidth selection can be done by a "rule of thumb", by cross-validation, by "plug-in methods" or by other means; see [3]_, [4]_ for reviews. `gaussian_kde` uses a rule of thumb, the default is Scott's Rule. Scott's Rule [1]_, implemented as `scotts_factor`, is:: n**(-1./(d+4)), with ``n`` the number of data points and ``d`` the number of dimensions. Silverman's Rule [2]_, implemented as `silverman_factor`, is:: (n * (d + 2) / 4.)**(-1. / (d + 4)). Good general descriptions of kernel density estimation can be found in [1]_ and [2]_, the mathematics for this multi-dimensional implementation can be found in [1]_. References ---------- .. [1] D.W. Scott, "Multivariate Density Estimation: Theory, Practice, and Visualization", John Wiley & Sons, New York, Chicester, 1992. .. [2] B.W. Silverman, "Density Estimation for Statistics and Data Analysis", Vol. 26, Monographs on Statistics and Applied Probability, Chapman and Hall, London, 1986. .. [3] B.A. Turlach, "Bandwidth Selection in Kernel Density Estimation: A Review", CORE and Institut de Statistique, Vol. 19, pp. 1-33, 1993. .. [4] D.M. Bashtannyk and R.J. Hyndman, "Bandwidth selection for kernel conditional density estimation", Computational Statistics & Data Analysis, Vol. 36, pp. 279-298, 2001. Examples -------- Generate some random two-dimensional data: >>> from scipy import stats >>> def measure(n): >>> "Measurement model, return two coupled measurements." >>> m1 = np.random.normal(size=n) >>> m2 = np.random.normal(scale=0.5, size=n) >>> return m1+m2, m1-m2 >>> m1, m2 = measure(2000) >>> xmin = m1.min() >>> xmax = m1.max() >>> ymin = m2.min() >>> ymax = m2.max() Perform a kernel density estimate on the data: >>> X, Y = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] >>> positions = np.vstack([X.ravel(), Y.ravel()]) >>> values = np.vstack([m1, m2]) >>> kernel = stats.gaussian_kde(values) >>> Z = np.reshape(kernel(positions).T, X.shape) Plot the results: >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.imshow(np.rot90(Z), cmap=plt.cm.gist_earth_r, ... extent=[xmin, xmax, ymin, ymax]) >>> ax.plot(m1, m2, 'k.', markersize=2) >>> ax.set_xlim([xmin, xmax]) >>> ax.set_ylim([ymin, ymax]) >>> plt.show() """ def __init__(self, dataset, bw_method=None, weights=None): self.dataset = np.atleast_2d(dataset) if not self.dataset.size > 1: raise ValueError("`dataset` input should have multiple elements.") self.d, self.n = self.dataset.shape if weights is not None: self.weights = weights / np.sum(weights) else: self.weights = np.ones(self.n) / self.n # Compute the effective sample size # http://surveyanalysis.org/wiki/Design_Effects_and_Effective_Sample_Size#Kish.27s_approximate_formula_for_computing_effective_sample_size self.neff = 1.0 / np.sum(self.weights ** 2) self.set_bandwidth(bw_method=bw_method) def evaluate(self, points): """Evaluate the estimated pdf on a set of points. Parameters ---------- points : (# of dimensions, # of points)-array Alternatively, a (# of dimensions,) vector can be passed in and treated as a single point. Returns ------- values : (# of points,)-array The values at each point. Raises ------ ValueError : if the dimensionality of the input points is different than the dimensionality of the KDE. """ points = np.atleast_2d(points) d, m = points.shape if d != self.d: if d == 1 and m == self.d: # points was passed in as a row vector points = np.reshape(points, (self.d, 1)) m = 1 else: msg = "points have dimension %s, dataset has dimension %s" % (d, self.d) raise ValueError(msg) # compute the normalised residuals chi2 = cdist(points.T, self.dataset.T, 'mahalanobis', VI=self.inv_cov) ** 2 # compute the pdf result = np.sum(np.exp(-.5 * chi2) * self.weights, axis=1) / self._norm_factor return result __call__ = evaluate def scotts_factor(self): return np.power(self.neff, -1./(self.d+4)) def silverman_factor(self): return np.power(self.neff*(self.d+2.0)/4.0, -1./(self.d+4)) # Default method to calculate bandwidth, can be overwritten by subclass covariance_factor = scotts_factor def set_bandwidth(self, bw_method=None): """Compute the estimator bandwidth with given method. The new bandwidth calculated after a call to `set_bandwidth` is used for subsequent evaluations of the estimated density. Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If a scalar, this will be used directly as `kde.factor`. If a callable, it should take a `gaussian_kde` instance as only parameter and return a scalar. If None (default), nothing happens; the current `kde.covariance_factor` method is kept. Notes ----- .. versionadded:: 0.11 Examples -------- >>> x1 = np.array([-7, -5, 1, 4, 5.]) >>> kde = stats.gaussian_kde(x1) >>> xs = np.linspace(-10, 10, num=50) >>> y1 = kde(xs) >>> kde.set_bandwidth(bw_method='silverman') >>> y2 = kde(xs) >>> kde.set_bandwidth(bw_method=kde.factor / 3.) >>> y3 = kde(xs) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.plot(x1, np.ones(x1.shape) / (4. * x1.size), 'bo', ... label='Data points (rescaled)') >>> ax.plot(xs, y1, label='Scott (default)') >>> ax.plot(xs, y2, label='Silverman') >>> ax.plot(xs, y3, label='Const (1/3 * Silverman)') >>> ax.legend() >>> plt.show() """ if bw_method is None: pass elif bw_method == 'scott': self.covariance_factor = self.scotts_factor elif bw_method == 'silverman': self.covariance_factor = self.silverman_factor elif np.isscalar(bw_method) and not isinstance(bw_method, string_types): self._bw_method = 'use constant' self.covariance_factor = lambda: bw_method elif callable(bw_method): self._bw_method = bw_method self.covariance_factor = lambda: self._bw_method(self) else: msg = "`bw_method` should be 'scott', 'silverman', a scalar " \ "or a callable." raise ValueError(msg) self._compute_covariance() def _compute_covariance(self): """Computes the covariance matrix for each Gaussian kernel using covariance_factor(). """ self.factor = self.covariance_factor() # Cache covariance and inverse covariance of the data if not hasattr(self, '_data_inv_cov'): # Compute the mean and residuals _mean = np.sum(self.weights * self.dataset, axis=1) _residual = (self.dataset - _mean[:, None]) # Compute the biased covariance self._data_covariance = np.atleast_2d(np.dot(_residual * self.weights, _residual.T)) # Correct for bias (http://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_covariance) self._data_covariance /= (1 - np.sum(self.weights ** 2)) self._data_inv_cov = np.linalg.inv(self._data_covariance) self.covariance = self._data_covariance * self.factor**2 self.inv_cov = self._data_inv_cov / self.factor**2 self._norm_factor = np.sqrt(np.linalg.det(2*np.pi*self.covariance)) #* self.n
mit
tdhopper/scikit-learn
examples/model_selection/plot_roc_crossval.py
247
3253
""" ============================================================= Receiver Operating Characteristic (ROC) with cross validation ============================================================= Example of Receiver Operating Characteristic (ROC) metric to evaluate classifier output quality using cross-validation. ROC curves typically feature true positive rate on the Y axis, and false positive rate on the X axis. This means that the top left corner of the plot is the "ideal" point - a false positive rate of zero, and a true positive rate of one. This is not very realistic, but it does mean that a larger area under the curve (AUC) is usually better. The "steepness" of ROC curves is also important, since it is ideal to maximize the true positive rate while minimizing the false positive rate. This example shows the ROC response of different datasets, created from K-fold cross-validation. Taking all of these curves, it is possible to calculate the mean area under curve, and see the variance of the curve when the training set is split into different subsets. This roughly shows how the classifier output is affected by changes in the training data, and how different the splits generated by K-fold cross-validation are from one another. .. note:: See also :func:`sklearn.metrics.auc_score`, :func:`sklearn.cross_validation.cross_val_score`, :ref:`example_model_selection_plot_roc.py`, """ print(__doc__) import numpy as np from scipy import interp import matplotlib.pyplot as plt from sklearn import svm, datasets from sklearn.metrics import roc_curve, auc from sklearn.cross_validation import StratifiedKFold ############################################################################### # Data IO and generation # import some data to play with iris = datasets.load_iris() X = iris.data y = iris.target X, y = X[y != 2], y[y != 2] n_samples, n_features = X.shape # Add noisy features random_state = np.random.RandomState(0) X = np.c_[X, random_state.randn(n_samples, 200 * n_features)] ############################################################################### # Classification and ROC analysis # Run classifier with cross-validation and plot ROC curves cv = StratifiedKFold(y, n_folds=6) classifier = svm.SVC(kernel='linear', probability=True, random_state=random_state) mean_tpr = 0.0 mean_fpr = np.linspace(0, 1, 100) all_tpr = [] for i, (train, test) in enumerate(cv): probas_ = classifier.fit(X[train], y[train]).predict_proba(X[test]) # Compute ROC curve and area the curve fpr, tpr, thresholds = roc_curve(y[test], probas_[:, 1]) mean_tpr += interp(mean_fpr, fpr, tpr) mean_tpr[0] = 0.0 roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, lw=1, label='ROC fold %d (area = %0.2f)' % (i, roc_auc)) plt.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='Luck') mean_tpr /= len(cv) mean_tpr[-1] = 1.0 mean_auc = auc(mean_fpr, mean_tpr) plt.plot(mean_fpr, mean_tpr, 'k--', label='Mean ROC (area = %0.2f)' % mean_auc, lw=2) plt.xlim([-0.05, 1.05]) plt.ylim([-0.05, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show()
bsd-3-clause
altaetran/bayesianoracle
tests/quadraticBayesianAveraging/2Dexample_multiple.py
1
2463
import numpy as np import bayesianoracle as bo from pprint import pprint as pp ndim = 2 bmao = bo.optimizer.QuadraticBMAOptimizer(ndim=ndim) for i in xrange(100): H = np.array([[ 1389.4217, 1151.5168], [ 1151.5168, 36896.3534]]) g = np.array([ 643.2191, 6206.7597])+np.random.normal(0, 10, (2,1))[:,0] f = 596.83446220293399 + np.random.normal(0,10) xk = np.array([ 0., 0.]) bmao.add_observation(xk, f, g, H) print("hyperprior") print(bmao.bma.kernel_prior.a) print(bmao.bma.kernel_prior.scale) bmao.optimize_hyperparameters() #print(bmao.predict_with_unc(np.array([[-3.0797e-01 , -1.2921e-01]]).T)) #print(bmao.bma.estimate_model_weights(np.array([[-3.0797e-01 , -1.2921e-01]]).T, return_likelihoods=True)) print(bmao.predict_with_unc(np.array([xk]).T)) #print("lololol") #pp(bmao.bma.estimate_model_weights(np.array([xk]).T, return_likelihoods=True)) print('done') #pp(bmao.bma.calc_relevance_weights(np.array([xk]).T)) #pp(bmao.bma.quadratic_models) #pp(bmao.bma.estimate_model_priors(np.array([xk]).T)) #pp(bmao.bma.model_predictions(np.array([xk]).T)) bma = bmao.bma import matplotlib.pyplot as plt ### Likelihood plots fig4, ax = plt.subplots(3, sharex=True) kernel_grid = np.logspace(-2.0, 2.0, num=50) # Get the likelihoods unreg_loglikelihood = np.array([bma.loglikelihood(kernel_range, regularization=False, skew=False) for kernel_range in kernel_grid]) skewness = np.array([bma.estimate_skewness(kernel_range) for kernel_range in kernel_grid]) reg_loglikelihood = np.array([bma.loglikelihood(kernel_range) for kernel_range in kernel_grid]) # Plot the two terms ll1 = ax[0].plot(kernel_grid, unreg_loglikelihood) ax[0].set_xscale('log') ll2 = ax[1].plot(kernel_grid, skewness) ax[1].set_xscale('log') ll3 = ax[2].plot(kernel_grid, reg_loglikelihood) ax[2].set_xscale('log') pp(reg_loglikelihood) ax[0].set_xlim([kernel_grid[0],kernel_grid[-1]]) ax[1].set_xlim([kernel_grid[0],kernel_grid[-1]]) ax[2].set_xlim([kernel_grid[0],kernel_grid[-1]]) plt.setp(ll1, color="red", linewidth=3.0, alpha=0.5, linestyle='-', dash_capstyle='round') plt.setp(ll2, color="red", linewidth=3.0, alpha=0.5, linestyle='-', dash_capstyle='round') plt.setp(ll3, color="red", linewidth=3.0, alpha=0.5, linestyle='-', dash_capstyle='round') ax[2].set_xlabel("kernel range",fontsize=16) plt.savefig("figures/2Dexample_bma_loglikelihood.png") print("skew") print(bma.estimate_skewness())
apache-2.0
anhaidgroup/py_entitymatching
py_entitymatching/tests/test_matcherselector_mlmatcherselection.py
1
27721
import os from nose.tools import * import unittest import pandas as pd import numpy as np import six from py_entitymatching.utils.generic_helper import get_install_path, list_diff from py_entitymatching.io.parsers import read_csv_metadata from py_entitymatching.matcherselector.mlmatcherselection import select_matcher from py_entitymatching.matcher.dtmatcher import DTMatcher from py_entitymatching.matcher.linregmatcher import LinRegMatcher from py_entitymatching.matcher.logregmatcher import LogRegMatcher from py_entitymatching.matcher.nbmatcher import NBMatcher from py_entitymatching.matcher.rfmatcher import RFMatcher from py_entitymatching.matcher.svmmatcher import SVMMatcher import py_entitymatching.catalog.catalog_manager as cm datasets_path = os.sep.join([get_install_path(), 'tests', 'test_datasets', 'matcherselector']) path_a = os.sep.join([datasets_path, 'DBLP_demo.csv']) path_b = os.sep.join([datasets_path, 'ACM_demo.csv']) path_c = os.sep.join([datasets_path, 'dblp_acm_demo_labels.csv']) path_f = os.sep.join([datasets_path, 'feat_vecs.csv']) class MLMatcherSelectionTestCases(unittest.TestCase): def setUp(self): cm.del_catalog() def tearDown(self): cm.del_catalog() # @nottest def test_select_matcher_valid_1(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # C['labels'] = labels feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() # xgmatcher = XGBoostMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], target_attr='gold', k=7) header = ['Name', 'Matcher', 'Num folds'] result_df = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df.columns[len(result_df.columns) - 1]) d = result_df.set_index('Name') p_max = d.loc[result['selected_matcher'].name, 'Mean score'] a_max = np.max(d['Mean score']) self.assertEqual(p_max, a_max) # @nottest def test_select_matcher_valid_2(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_key(feature_vectors), cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y) header = ['Name', 'Matcher', 'Num folds'] result_df = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df.columns[len(result_df.columns) - 1]) d = result_df.set_index('Name') p_max = d.loc[result['selected_matcher'].name, 'Mean score'] a_max = np.max(d['Mean score']) self.assertEqual(p_max, a_max) # @nottest def test_select_matcher_valid_3(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_key(feature_vectors), cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='recall', metrics_to_display=['recall']) header = ['Name', 'Matcher', 'Num folds'] result_df = result['drill_down_cv_stats']['recall'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df.columns[len(result_df.columns) - 1]) d = result_df.set_index('Name') p_max = d.loc[result['selected_matcher'].name, 'Mean score'] a_max = np.max(d['Mean score']) self.assertEqual(p_max, a_max) # @nottest def test_select_matcher_valid_4(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_key(feature_vectors), cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='f1', metrics_to_display=['f1']) header = ['Name', 'Matcher', 'Num folds'] result_df = result['drill_down_cv_stats']['f1'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df.columns[len(result_df.columns) - 1]) d = result_df.set_index('Name') p_max = d.loc[result['selected_matcher'].name, 'Mean score'] a_max = np.max(d['Mean score']) self.assertEqual(p_max, a_max) # @nottest def test_select_matcher_valid_5(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_key(feature_vectors), cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y, metric_to_select_matcher='f1', metrics_to_display=['f1'], k=4) header = ['Name', 'Matcher', 'Num folds'] result_df = result['drill_down_cv_stats']['f1'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df.columns[len(result_df.columns) - 1]) d = result_df.set_index('Name') p_max = d.loc[result['selected_matcher'].name, 'Mean score'] a_max = np.max(d['Mean score']) self.assertEqual(p_max, a_max) def test_select_matcher_valid_6(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors['gold'] result = select_matcher(matchers, x=X, y=Y) header = ['Name', 'Matcher', 'Num folds'] result_df = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df.columns[len(result_df.columns) - 1]) d = result_df.set_index('Name') p_max = d.loc[result['selected_matcher'].name, 'Mean score'] a_max = np.max(d['Mean score']) self.assertEqual(p_max, a_max) def test_select_matcher_valid_7(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors) ]) feature_vectors = feature_vectors[l] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs='_id', target_attr='gold', k=2) header = ['Name', 'Matcher', 'Num folds'] result_df = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df.columns[len(result_df.columns) - 1]) d = result_df.set_index('Name') p_max = d.loc[result['selected_matcher'].name, 'Mean score'] a_max = np.max(d['Mean score']) self.assertEqual(p_max, a_max) @raises(AssertionError) def test_select_matcher_invalid_df(self): select_matcher(matchers=[], table="", exclude_attrs=[], target_attr="") @raises(SyntaxError) def test_select_matcher_invalid_args(self): select_matcher(matchers=[], table="", exclude_attrs=[]) @raises(AssertionError) def test_select_matcher_target_attr_not_series(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors), 'gold']) X = feature_vectors[l] Y = feature_vectors[['gold']] result = select_matcher(matchers, x=X, y=Y) @raises(AssertionError) def test_select_matcher_ex_attrs_not_present(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors) ]) feature_vectors = feature_vectors[l] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs='_id1', target_attr='gold', k=2) @raises(AssertionError) def test_select_matcher_target_attr_not_present(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') # C = read_csv_metadata(path_c, ltable=A, rtable=B, fk_ltable='ltable.id', # fk_rtable='rtable.id', key='_id') # labels = [0] * 7 # labels.extend([1] * 8) # C['labels'] = labels # feature_table = get_features_for_matching(A, B) # feature_vectors = extract_feature_vecs(C, feature_table=feature_table, attrs_after='gold') # feature_vectors.fillna(0, inplace=True) feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] col_list = list(feature_vectors.columns) l = list_diff(col_list, [cm.get_fk_ltable(feature_vectors), cm.get_fk_rtable(feature_vectors) ]) feature_vectors = feature_vectors[l] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs='_id', target_attr='labels1', k=2) def test_select_matcher_valid_multiple_metrics(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], target_attr='gold', k=7) header = ['Name', 'Matcher', 'Num folds'] result_df_p = result['drill_down_cv_stats']['precision'] result_df_f = result['drill_down_cv_stats']['f1'] result_df_r = result['drill_down_cv_stats']['recall'] # Check header of precision dataframe self.assertEqual(set(header) == set(list(result_df_p.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df_p.columns[len(result_df_p.columns) - 1]) # Check header of f1 dataframe self.assertEqual(set(header) == set(list(result_df_f.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df_f.columns[len(result_df_f.columns) - 1]) # Check header of recall dataframe self.assertEqual(set(header) == set(list(result_df_r.columns[[0, 1, 2]])), True) self.assertEqual('Mean score', result_df_p.columns[len(result_df_r.columns) - 1]) d = result_df_p.set_index('Name') p_max = d.loc[result['selected_matcher'].name, 'Mean score'] a_max = np.max(d['Mean score']) self.assertEqual(p_max, a_max) def test_select_matcher_valid_cv_stats(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], target_attr='gold', k=7) header = ['Matcher', 'Average precision', 'Average recall', 'Average f1'] result_df = result['cv_stats'] result_df_p = result['drill_down_cv_stats']['precision'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2, 3]])), True) d = result_df.set_index('Matcher') p_max = d.loc[result['selected_matcher'].name, 'Average precision'] a_max = np.max(result_df_p['Mean score']) self.assertEqual(p_max, a_max) def test_select_matcher_valid_cv_stats_2(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], metric_to_select_matcher='recall', metrics_to_display=['recall', 'f1'], target_attr='gold', k=7) header = ['Matcher', 'Average recall', 'Average f1'] result_df = result['cv_stats'] result_df_r = result['drill_down_cv_stats']['recall'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1, 2]])), True) d = result_df.set_index('Matcher') p_max = d.loc[result['selected_matcher'].name, 'Average recall'] a_max = np.max(result_df_r['Mean score']) self.assertEqual(p_max, a_max) def test_select_matcher_valid_cv_stats_3(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], metric_to_select_matcher='recall', metrics_to_display='recall', target_attr='gold', k=7) header = ['Matcher', 'Average recall'] result_df = result['cv_stats'] result_df_r = result['drill_down_cv_stats']['recall'] self.assertEqual(set(header) == set(list(result_df.columns[[0, 1]])), True) d = result_df.set_index('Matcher') p_max = d.loc[result['selected_matcher'].name, 'Average recall'] a_max = np.max(result_df_r['Mean score']) self.assertEqual(p_max, a_max) @raises(KeyError) def test_select_matcher_invalid_no_display_drill_down(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], metrics_to_display=['precision'], target_attr='gold', k=7) result_df_p = result['drill_down_cv_stats']['recall'] @raises(AssertionError) def test_select_matcher_invalid_metrics_to_display_1(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], metrics_to_display=None, target_attr='gold', k=7) @raises(AssertionError) def test_select_matcher_invalid_metrics_to_display_2(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], metrics_to_display=['test'], target_attr='gold', k=7) @raises(AssertionError) def test_select_matcher_invalid_metric_to_select_matcher(self): A = read_csv_metadata(path_a, key='id') B = read_csv_metadata(path_b, key='id') feature_vectors = read_csv_metadata(path_f, ltable=A, rtable=B) dtmatcher = DTMatcher() nbmatcher = NBMatcher() rfmatcher = RFMatcher() svmmatcher = SVMMatcher() linregmatcher = LinRegMatcher() logregmatcher = LogRegMatcher() matchers = [dtmatcher, nbmatcher, rfmatcher, svmmatcher, linregmatcher, logregmatcher] result = select_matcher(matchers, x=None, y=None, table=feature_vectors, exclude_attrs=['ltable.id', 'rtable.id', '_id', 'gold'], metric_to_select_matcher='test', target_attr='gold', k=7)
bsd-3-clause
dfci/pancanmet_analysis
oldcode/pancan/covariation_onemetabolite.py
1
4702
# A script to examine the co-variation of one metabolite in particular in the pancan metabolomics data. import os, sys, pandas as pd, numpy as np, scipy as sp, csv, scipy.stats as st, matplotlib.pyplot as plt, matplotlib.cm as cm, itertools as it, pdb sys.path.append('..') import reportertools as rt plt.close('all') plt.ion() ######################################################################################### # Input parameters ######################################################################################### hotmet = '2-Hydroxyglutarate' # Read in the pancan metabolite file alldata = pd.io.parsers.read_csv('../../data/merged_metabolon/alldata.csv', index_col = 0, header = 0) # Make sure to drop first two rows studylist = alldata.loc['Study'] tissuelist = alldata.loc['TissueType'] # Define the studies you are interested in, or leave as 'all' to do all if len(sys.argv) > 2: uqstudy = sys.argv[2].split() # Input is study names separated by space colidx = [item for item in range(len(studylist)) if studylist[item] in uqstudy] alldata = alldata[colidx] studylist = [studylist[item] for item in colidx] tissuelist = [tissuelist[item] for item in colidx] alldata = alldata.ix[2:] else: uqstudy = 'all' # Find the unique kinds of studies uqstudy = np.unique( studylist ) uqstudy = [item for item in uqstudy if item !='nan'] colidx = [item for item in range(len(studylist)) if studylist[item] in uqstudy] studylist = [studylist[item] for item in colidx[:-2]] tissuelist = [tissuelist[item] for item in colidx[:-2]] alldata = alldata.ix[2:] # For each type of unique study, calculate the co-variation among metabolites studyctr = 0 plotctr = 1 numsamples = np.zeros(len(uqstudy)) # Make one big dataframe tempcols = [item + '_Tumor' for item in uqstudy] + [item + '_Normal' for item in uqstudy] res = pd.DataFrame(index = alldata.index, columns = tempcols) for study in uqstudy: print study # Find all tumors tumidx = [item for item in range(len(studylist)) if (studylist[item] == study and tissuelist[item] == 'Tumor') ] normidx = [item for item in range(len(studylist)) if (studylist[item] == study and tissuelist[item] == 'Normal') ] # Retain only non-NA data d = alldata.ix[:,tumidx + normidx] d = d.dropna() # Make sure this study has measured the metabolite in question if hotmet not in d.index: continue else: hotidx = np.where(d.index == hotmet)[0][0] tumdata = d.ix[:,0:len(tumidx)].as_matrix() normdata = d.ix[:,len(tumidx):].as_matrix() # Create a dictionary indicating how metabolites map mapdict = dict() for item in d.index: mapdict[ item ] = [idx for idx in range(alldata.shape[0]) if alldata.index[idx] == item][0] # Calculate covariation of metabolites in this study corrcalc = st.spearmanr( np.transpose( tumdata ) ) corrcalc_normal = st.spearmanr( np.transpose( normdata ) ) # Get rid of nans corrcalc[0][ np.isnan(corrcalc[0]) ] = 0 corrcalc[1][ np.isnan(corrcalc[0]) ] = 1 corrcalc_normal[0][ np.isnan(corrcalc_normal[0]) ] = 0 corrcalc_normal[1][ np.isnan(corrcalc_normal[0]) ] = 1 # Filter out insignificant correlations corrcalc[0][np.where(corrcalc[1]>0.05)] = 0 corrcalc_normal[0][np.where(corrcalc_normal[1]>0.05)] = 0 # Extract data of interest hotcorr = corrcalc[0][hotidx,:] hotcorr_normal = corrcalc_normal[0][hotidx,:] # Save it in the big data file nz = np.where(hotcorr!=0)[0] temp =[d.index[item] for item in nz] restumidx = [mapdict[item] for item in temp] res.ix[restumidx,study+'_Tumor'] = hotcorr[nz] nz_normal = np.where(hotcorr_normal!=0)[0] temp =[d.index[item] for item in nz_normal] resnormidx = [mapdict[item] for item in temp] res.ix[resnormidx,study+'_Normal'] = hotcorr_normal[nz_normal] print [d.index[item] for item in np.argsort(hotcorr)] print '\n\n' print [d.index[item] for item in np.argsort(hotcorr_normal)] print '\n\n' mergedata = np.vstack((hotcorr,hotcorr_normal)).transpose() #tempdf = pd.DataFrame(mergedata,columns = ['Tumor','Normal'],index = d.index) #tempdf.to_csv('/Users/ereznik/Documents/randomprojects/inklehofer/2hg_pancan/' + study+'.csv') # Make a heatmap resdrop = res.dropna(how = 'all') resdrop = resdrop.fillna(0) rsums = np.sum( np.sign( np.abs( resdrop ) ), axis =1 ) nzmets = np.where(rsums>4)[0] plotdata = resdrop.ix[nzmets,:].as_matrix() temp1,temp2,index = rt.cluster(plotdata,0) plotdata = plotdata[index,:] nzmets = [nzmets[item] for item in index] plt.imshow(plotdata,interpolation = 'nearest',cmap=cm.seismic, aspect = 'auto' ) plt.xticks( range(len(tempcols)), tempcols, fontsize=6, rotation = 90 ) plt.yticks( range(len(nzmets)), resdrop.index[nzmets], fontsize = 6) plt.colorbar()
lgpl-3.0
schuelaw/EngineeringMathPython
FiniteDifferences/CrankNicolsonAnim.py
1
1836
# -*- coding: utf-8 -*- """ Created on Tue May 5 18:40:07 2015 @author: Albert """ """ Solve the 1D heat equation using a Crank-Nicolson scheme. """ """ Assuming fixed, homog, BC's """ import sys import numpy as np import matplotlib.pyplot as plt from scipy.linalg import solveh_banded import matplotlib.animation as animation # Length of interval. L = 1 # Thermal conductivity. k = 1 # Mesh size in x direction N = 100 dx = L/float(N) # Step size in time, no stability condition needed. dt = dx/10 # Number of time steps to compute M = 100 # Define the initial condition def f(x): """ Initial temperature. """ return (np.sin(2*np.pi*x))**2 #if .25 <= x <=.5: # return 1 #else: # return 0 # Generate mesh of x values X = [(j+1)*dx for j in range(N-1)] # Solution will be a list of lists, one list for each time step. u = [] # Compute the t=0 list from initial condition, add to list of time steps q = [] for j in range(N-1): q.append(f(dx*(j+1))) u.append(q) # Compute subsequent timesteps s = k*dt/dx**2 # Create banded matrix A = np.zeros(2*(N-1)).reshape(2,N-1) for i in range(1,N-1): A[0,i]=-s for i in range(0,N-1): A[1,i]=1+2*s # Compute successive time steps. for m in range(M): d = np.zeros(N-1) d[0] = (1-2*s)*u[m][0] + s*u[m][1] d[N-2]=s*u[m][N-3] + (1-2*s)*u[m][N-2] for j in range(1,N-2): d[j]=(s*u[m][j-1] + (1-2*s)*u[m][j] + s*u[m][j+1]) q = solveh_banded(A,d) u.append(q) fig, ax = plt.subplots() line, = ax.plot(X,u[0]) def animate(i): line.set_ydata(u[i]) return line, ani = animation.FuncAnimation(fig,animate,np.arange(1,M),interval=50) plt.show() print("time step:", dt) print("final time:",dt*(M-1))
gpl-2.0
alexnowakvila/DCN
code/K-means/data_generator.py
1
4780
import numpy as np import os from scipy.spatial import ConvexHull from sklearn.cluster import KMeans from sklearn.decomposition import PCA import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import matplotlib.cm as cm class Generator(object): def __init__( self, num_examples_train, num_examples_test, num_clusters, dataset_path, batch_size ): self.num_examples_train = num_examples_train self.num_examples_test = num_examples_test self.batch_size = batch_size self.dataset_path = dataset_path self.input_size = 2 self.task = 'kmeans' # clusters_train = [4, 8, 16] clusters_train = [num_clusters] clusters_test = [num_clusters] self.clusters = {'train': clusters_train, 'test': clusters_test} self.data = {'train': {}, 'test': {}} def load_dataset(self): for mode in ['train', 'test']: for cl in self.clusters[mode]: path = os.path.join(self.dataset_path, mode + str(cl)) path = path + 'kmeans_gauss.npz' if os.path.exists(path): print('Reading {} dataset for {} scales' .format(mode, cl)) npz = np.load(path) self.data[mode][cl] = {'x': npz['x'], 'y': npz['y']} else: x, y = self.create(clusters=cl, mode=mode) self.data[mode][cl] = {'x': x, 'y': y} # save np.savez(path, x=x, y=y) print('Created {} dataset for {} scales' .format(mode, cl)) def get_batch(self, batch=0, clusters=3, mode="train"): bs = self.batch_size batch_x = self.data[mode][clusters]['x'][batch * bs: (batch + 1) * bs] batch_y = self.data[mode][clusters]['y'][batch * bs: (batch + 1) * bs] return batch_x, batch_y def compute_length(self, clusters): length = np.random.randint(10 * clusters, 10 * clusters + 1) max_length = 10 * clusters return length, max_length def kmeans_example(self, length, clusters): points = np.random.uniform(0, 1, [length, 2]) kmeans = KMeans(n_clusters=clusters).fit(points) labels = kmeans.labels_.astype(int) target = np.array(labels) # target = np.zeros([length]) return points, target def pca_example(self, length): points = np.random.uniform(0, 1, [length, 2]) ind1 = np.where(points[:, 0] < 0.5)[0] target = np.zeros([length]) target[ind1] = 1 return points, target def gaussian_example(self, length, clusters): centers = np.random.uniform(0, 1, [clusters, 2]) per_cl = length // clusters Pts = [] cov = 0.001 * np.eye(2, 2) target = np.zeros([length]) for c in range(clusters): points = np.random.multivariate_normal(centers[c], cov, per_cl) target[c * per_cl: (c + 1) * per_cl] = c Pts.append(points) points = np.reshape(Pts, [-1, 2]) rand_perm = np.random.permutation(length) points = points[rand_perm] target = target[rand_perm] return points, target def plot_example(self, x, y, clusters, length): plt.figure(0) plt.clf() colors = cm.rainbow(np.linspace(0, 1, clusters)) for c in range(clusters): ind = np.where(y == c)[0] plt.scatter(x[ind, 0], x[ind, 1], c=colors[c]) path = '/home/anowak/DynamicProgramming/DP/plots/example.png' plt.savefig(path) def create(self, clusters=3, mode='train'): if mode == 'train': num_examples = self.num_examples_train else: num_examples = self.num_examples_test _, max_length = self.compute_length(clusters) x = -1 * np.ones([num_examples, max_length, self.input_size]) y = 1e6 * np.ones([num_examples, max_length]) for ex in range(num_examples): length, max_length = self.compute_length(clusters) if self.task == "kmeans": # x_ex, y_ex = self.kmeans_example(length, clusters) # x_ex, y_ex = self.pca_example(length) x_ex, y_ex = self.gaussian_example(length, clusters) if ex % 8000 == 7999: print('Created example {}'.format(ex)) # self.plot_example(x_ex, y_ex, clusters, length) else: raise ValueError("task {} not implemented" .format(self.task)) x[ex, :length], y[ex, :length] = x_ex, y_ex return x, y
bsd-3-clause
roshantha9/AbstractManycoreSim
src/RunSim_Exp_PSAlgoTest.py
1
6431
import sys, os, csv, pprint, math import argparse import numpy as np import random import shutil import time ## uncomment when running under CLI only version ## #import matplotlib #matplotlib.use('Agg') import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import scipy.stats from matplotlib.colors import ListedColormap, NoNorm from matplotlib import mlab from itertools import cycle # for automatic markers import matplotlib.cm as cm from matplotlib.font_manager import FontProperties from libResourceManager.AdmissionControllerOptions import AdmissionControllerOptions from libMappingAndScheduling.SemiDynamic.TaskMappingSchemes import TaskMappingSchemes from libMappingAndScheduling.SemiDynamic.TaskSemiDynamicPrioritySchemes import TaskSemiDynamicPrioritySchemes from libMappingAndScheduling.SemiDynamic.TaskMappingAndPriAssCombinedSchemes import TaskMappingAndPriAssCombinedSchemes from libMappingAndScheduling.Decentralised.TaskRemapDecentSchemes import TaskRemapDecentSchemes from SimParams import SimParams import Multicore_MPEG_Model as MMMSim NUM_WORKFLOWS = range(8, 17, 2) #NUM_WORKFLOWS = [12] NUM_NODES = [2,4,8,16,32] NOC_XY = [(2,1), (2,2), (2,4), (2,8), (2,16)] # lateness vs. number of cores def runSim_Simple(): seed = 99108 print "SEED === " + str(seed) # fixed params SimParams.SLACK_FEEDBACK_ENABLED = False SimParams.NOC_W = 4 SimParams.NOC_H = 4 SimParams.NUM_NODES = (SimParams.NOC_W * SimParams.NOC_H) SimParams.NUM_WORKFLOWS = SimParams.NUM_NODES + 3 SimParams.NUM_INPUTBUFFERS = SimParams.NUM_WORKFLOWS SimParams.PSALGO_ENABLED = True SimParams.DYNAMIC_TASK_REMAPPING_ENABLED = True SimParams.DYNAMIC_TASK_REMAPPING_SCHEME = TaskRemapDecentSchemes.TASKREMAPPINGDECENTSCHEMES_RANDOM_QUEEN SimParams.CPUNODE_MONITOR_TASKSET_SLACK = True random.seed(seed) np.random.seed(seed) print "----------------------------------------------------------------------------------------------------------------------------" print "Running runSim_Simple : num_wf=" + str(SimParams.NUM_WORKFLOWS) + \ ", mapping="+str(SimParams.DYNAMIC_TASK_MAPPING_SCHEME) + \ ", pri_ass="+str(SimParams.DYNAMIC_TASK_PRIASS_SCHEME) print "----------------------------------------------------------------------------------------------------------------------------" env, last_scheduled_task_time = MMMSim.runMainSimulation() env.run(until=last_scheduled_task_time+SimParams.SIM_RUNTIME) print env.now # name the report filenames tm_fname = "test__timeline.png" vs_bs_fname = "test__vsbs.js" util_fname = "test__util.js" wf_res_fname = "test__wfressumm.js" gops_opbuff_fname = "test__gopsopbuffsumm.js" rmtbl_dt_fname = "test__rmtbldt.js" ibuff_fname = "test__ibuff.js" obuff_fname = "test__obuff.js" nodetqs_fname = "test__nodetqs.js" rmtaskrelease_fname = "test__rmtaskrel.js" mappingandpriass_fname = "test__mappingandpriass.js" flowscompleted_fname = "test__flwcompleted.js" nodetaskexectime_fname = "test__nodetaskexectime.js" psalgo_nodeprops = "test__psalgonodeprops.js" flowsadded_fname = "test__flwsadded.js" trminfo_fname = "test__taskremappinginfo.js" nodecumslack_fname = "test__nodecumslack.js" (wf_results_summary, gops_in_outputbuff_summary) = MMMSim.SimMon.report_DecodedWorkflows_Summary(timeline_fname=tm_fname, wf_res_summary_fname = wf_res_fname, gops_opbuff_summary_fname = gops_opbuff_fname, rmtbl_dt_summary_fname = rmtbl_dt_fname, output_format = "json") MMMSim.SimMon.report_VideoStream_BasicStats(wf_results_summary, vs_bs_fname) MMMSim.SimMon.report_InstUtilisation(dump_to_file=util_fname) MMMSim.SimMon.report_InputBuffer(dump_to_file=ibuff_fname) MMMSim.SimMon.report_NodeTQs(dump_to_file=nodetqs_fname) MMMSim.SimMon.report_OutputBufferContents(dump_to_file=obuff_fname) MMMSim.SimMon.report_RMTaskReleaseInfo(dump_to_file=rmtaskrelease_fname) MMMSim.SimMon.report_MappingAndPriAssInfo(dump_to_file=mappingandpriass_fname) MMMSim.SimMon.report_FlowsCompleted(dump_to_file=flowscompleted_fname) MMMSim.SimMon.report_NodeTaskExecTimeline(dump_to_file=nodetaskexectime_fname) MMMSim.SimMon.report_PSAlgoNodePSProps(dump_to_file=psalgo_nodeprops) MMMSim.SimMon.report_FlowsAdded(dump_to_file=flowsadded_fname) MMMSim.SimMon.report_TaskRemappingInfo(dump_to_file=trminfo_fname) MMMSim.SimMon.report_NodeCumSlack(dump_to_file=nodecumslack_fname) def _makeDir(directory): try: os.stat(directory) except: os.makedirs(directory) ############################################################################ ############################################################################ ## MAIN SCRIPT SECTION ############################################################################ ############################################################################ sys.setrecursionlimit(1500) # collect command line params parser = argparse.ArgumentParser(__file__, description="Run specified experiment on abstract simulator") parser.add_argument("--exp_type", "-t", help="Experiment Type", default=None) # which experiment ? # params for mapping + pri ass exp parser.add_argument("--wf_num", "-w", help="Number of workflows", type=int, default=-1) parser.add_argument("--forced_seed", help="experiment - seed", type=int, default=-1) args = parser.parse_args() #################################### ## check which experiment to run ## #################################### #### multiple workflows - variable heuristics #### if(args.exp_type == "Exp_Simple"): runSim_Simple() else: parser.print_usage() sys.exit("invalid arguments")
gpl-3.0
sodafree/backend
build/ipython/build/lib.linux-i686-2.7/IPython/core/magics/pylab.py
3
3273
"""Implementation of magic functions for matplotlib/pylab support. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 The IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Our own packages from IPython.config.application import Application from IPython.core.magic import Magics, magics_class, line_magic from IPython.testing.skipdoctest import skip_doctest #----------------------------------------------------------------------------- # Magic implementation classes #----------------------------------------------------------------------------- @magics_class class PylabMagics(Magics): """Magics related to matplotlib's pylab support""" @skip_doctest @line_magic def pylab(self, parameter_s=''): """Load numpy and matplotlib to work interactively. %pylab [GUINAME] This function lets you activate pylab (matplotlib, numpy and interactive support) at any point during an IPython session. It will import at the top level numpy as np, pyplot as plt, matplotlib, pylab and mlab, as well as all names from numpy and pylab. If you are using the inline matplotlib backend for embedded figures, you can adjust its behavior via the %config magic:: # enable SVG figures, necessary for SVG+XHTML export in the qtconsole In [1]: %config InlineBackend.figure_format = 'svg' # change the behavior of closing all figures at the end of each # execution (cell), or allowing reuse of active figures across # cells: In [2]: %config InlineBackend.close_figures = False Parameters ---------- guiname : optional One of the valid arguments to the %gui magic ('qt', 'wx', 'gtk', 'osx' or 'tk'). If given, the corresponding Matplotlib backend is used, otherwise matplotlib's default (which you can override in your matplotlib config file) is used. Examples -------- In this case, where the MPL default is TkAgg:: In [2]: %pylab Welcome to pylab, a matplotlib-based Python environment. Backend in use: TkAgg For more information, type 'help(pylab)'. But you can explicitly request a different backend:: In [3]: %pylab qt Welcome to pylab, a matplotlib-based Python environment. Backend in use: Qt4Agg For more information, type 'help(pylab)'. """ if Application.initialized(): app = Application.instance() try: import_all_status = app.pylab_import_all except AttributeError: import_all_status = True else: import_all_status = True self.shell.enable_pylab(parameter_s, import_all=import_all_status)
bsd-3-clause
amaggi/bda
chapter_02/ex_05.py
1
2121
import numpy as np import matplotlib.pyplot as plt from scipy.misc import comb from scipy.stats import uniform, beta from scipy.integrate import trapz N_THROWS = 10 NPTS = 100 k_vals = np.arange(N_THROWS+1) def Pr_y_is_k_given_theta(k, theta): # coin toss probability return comb(N_THROWS, k) * theta**k * (1-theta)**(N_THROWS-k) def Pr_y_is_k(k, theta): # integrate over all values of theta y = Pr_y_is_k_given_theta(k, theta) return trapz(y, theta) # prior for theta #theta_prior = uniform(0, 1) theta_prior = beta(1, 2) theta = np.linspace(theta_prior.ppf(0), theta_prior.ppf(1), NPTS) Pr_y = np.empty(N_THROWS+1, dtype=float) for k in xrange(N_THROWS+1): Pr_y[k] = Pr_y_is_k(k, theta) expected = np.ones(N_THROWS+1) * 1/np.float(N_THROWS+1) #plt.figure() fig, axes = plt.subplots(1, 3) fig.set_size_inches(15, 5) plt.sca(axes[0]) plt.plot(k_vals, Pr_y_is_k_given_theta(k_vals, 0.2), 'b', label='theta=0.2') plt.plot(k_vals, Pr_y_is_k_given_theta(k_vals, 0.8), 'r', label='theta=0.8') plt.plot(k_vals, Pr_y_is_k_given_theta(k_vals, 0.4), 'g', label='theta=0.4') plt.legend() plt.xlabel('k') plt.ylabel('Pr(y=k|theta)') plt.sca(axes[1]) plt.plot(theta, Pr_y_is_k_given_theta(0, theta), 'b', label='k=0') plt.plot(theta, Pr_y_is_k_given_theta(N_THROWS/2, theta), 'r', label='k=%d'%(N_THROWS/2)) plt.plot(theta, Pr_y_is_k_given_theta(N_THROWS, theta), 'g', label='k=%d'%(N_THROWS)) plt.legend() plt.xlabel('theta') plt.ylabel('Pr(y=k|theta)') plt.sca(axes[2]) plt.plot(k_vals, Pr_y, 'b', label='computed') plt.plot(k_vals, expected, 'r', label='expected') plt.xlabel('k') plt.ylabel('Pr(y=k)') plt.legend() #plt.show() plt.close() Pr_theta = np.empty(N_THROWS+1, dtype=object) for k in xrange(N_THROWS+1): Pr_y[k] = Pr_y_is_k(k, theta) Pr_theta[k] = theta_prior.pdf(theta) * Pr_y_is_k_given_theta(k, theta) *\ (N_THROWS+1) print trapz(Pr_theta[k], theta) fig, axes = plt.subplots(1, 2) plt.sca(axes[0]) for k in xrange(N_THROWS+1): plt.plot(theta, Pr_theta[k]) plt.xlabel('theta') plt.ylabel('P(theta|k)') plt.show() plt.close()
gpl-2.0
stephenslab/dsc2
src/yhat_sqldf.py
1
5997
import inspect from contextlib import contextmanager from pandas.io.sql import to_sql, read_sql from sqlalchemy import create_engine import re from warnings import catch_warnings, filterwarnings from sqlalchemy.exc import DatabaseError, ResourceClosedError from sqlalchemy.pool import NullPool from sqlalchemy.event import listen __all__ = ['PandaSQL', 'PandaSQLException', 'sqldf'] class PandaSQLException(Exception): pass class PandaSQL: def __init__(self, db_uri='sqlite:///:memory:', persist=False): """ Initialize with a specific database. :param db_uri: SQLAlchemy-compatible database URI. :param persist: keep tables in database between different calls on the same object of this class. """ self.engine = create_engine(db_uri, poolclass=NullPool) if self.engine.name == 'sqlite': listen(self.engine, 'connect', self._set_text_factory) if self.engine.name not in ('sqlite', 'postgresql'): raise PandaSQLException( 'Currently only sqlite and postgresql are supported.') self.persist = persist self.loaded_tables = set() if self.persist: self._conn = self.engine.connect() self._init_connection(self._conn) def __call__(self, query, env=None, names=None): """ Execute the SQL query. Automatically creates tables mentioned in the query from dataframes before executing. :param query: SQL query string, which can reference pandas dataframes as SQL tables. :param env: Variables environment - a dict mapping table names to pandas dataframes. If not specified use local and global variables of the caller. :return: Pandas dataframe with the result of the SQL query. """ if env is None: env = get_outer_frame_variables() if names is None: names = extract_table_names(query) with self.conn as conn: for table_name in names: if table_name not in env: # don't raise error because the table may be already in the database continue if self.persist and table_name in self.loaded_tables: # table was loaded before using the same instance, don't do it again continue self.loaded_tables.add(table_name) write_table(env[table_name], table_name, conn) try: result = read_sql(query, conn) except DatabaseError as ex: raise PandaSQLException(ex) except ResourceClosedError: # query returns nothing result = None return result @property @contextmanager def conn(self): if self.persist: # the connection is created in __init__, so just return it yield self._conn # no cleanup needed else: # create the connection conn = self.engine.connect() self._init_connection(conn) try: yield conn finally: # cleanup - close connection on exit conn.close() def _init_connection(self, conn): if self.engine.name == 'postgresql': conn.execute('set search_path to pg_temp') @staticmethod def _set_text_factory(dbapi_con, connection_record): dbapi_con.text_factory = str def get_outer_frame_variables(): """ Get a dict of local and global variables of the first outer frame from another file. """ cur_filename = inspect.getframeinfo(inspect.currentframe()).filename outer_frame = next(f for f in inspect.getouterframes(inspect.currentframe()) if f.filename != cur_filename) variables = {} variables.update(outer_frame.frame.f_globals) variables.update(outer_frame.frame.f_locals) return variables def extract_table_names(query): """ Extract table names from an SQL query. """ # a good old fashioned regex. turns out this worked better than actually parsing the code tables_blocks = re.findall(r'(?:FROM|JOIN)\s+(\w+(?:\s*,\s*\w+)*)', query, re.IGNORECASE) tables = [ tbl for block in tables_blocks for tbl in re.findall(r'\w+', block) ] return set(tables) def write_table(df, tablename, conn): """ Write a dataframe to the database. """ with catch_warnings(): filterwarnings( 'ignore', message= 'The provided table name \'%s\' is not found exactly as such in the database' % tablename) to_sql(df, name=tablename, con=conn, index=not any(name is None for name in df.index.names) ) # load index into db if all levels are named def sqldf(query, env=None, names=None, db_uri='sqlite:///:memory:'): """ Query pandas data frames using sql syntax This function is meant for backward compatibility only. New users are encouraged to use the PandaSQL class. Parameters ---------- query: string a sql query using DataFrames as tables env: locals() or globals() variable environment; locals() or globals() in your function allows sqldf to access the variables in your python environment db_uri: string SQLAlchemy-compatible database URI Returns ------- result: DataFrame returns a DataFrame with your query's result Examples -------- >>> import pandas as pd >>> df = pd.DataFrame({ "x": range(100), "y": range(100) }) >>> from pandasql import sqldf >>> sqldf("select * from df;", globals()) >>> sqldf("select * from df;", locals()) >>> sqldf("select avg(x) from df;", locals()) """ return PandaSQL(db_uri)(query, env, set([x for x in names if x]))
mit
larsmans/scikit-learn
benchmarks/bench_tree.py
297
3617
""" To run this, you'll need to have installed. * scikit-learn Does two benchmarks First, we fix a training set, increase the number of samples to classify and plot number of classified samples as a function of time. In the second benchmark, we increase the number of dimensions of the training set, classify a sample and plot the time taken as a function of the number of dimensions. """ import numpy as np import pylab as pl import gc from datetime import datetime # to store the results scikit_classifier_results = [] scikit_regressor_results = [] mu_second = 0.0 + 10 ** 6 # number of microseconds in a second def bench_scikit_tree_classifier(X, Y): """Benchmark with scikit-learn decision tree classifier""" from sklearn.tree import DecisionTreeClassifier gc.collect() # start time tstart = datetime.now() clf = DecisionTreeClassifier() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_classifier_results.append( delta.seconds + delta.microseconds / mu_second) def bench_scikit_tree_regressor(X, Y): """Benchmark with scikit-learn decision tree regressor""" from sklearn.tree import DecisionTreeRegressor gc.collect() # start time tstart = datetime.now() clf = DecisionTreeRegressor() clf.fit(X, Y).predict(X) delta = (datetime.now() - tstart) # stop time scikit_regressor_results.append( delta.seconds + delta.microseconds / mu_second) if __name__ == '__main__': print('============================================') print('Warning: this is going to take a looong time') print('============================================') n = 10 step = 10000 n_samples = 10000 dim = 10 n_classes = 10 for i in range(n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') n_samples += step X = np.random.randn(n_samples, dim) Y = np.random.randint(0, n_classes, (n_samples,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(n_samples) bench_scikit_tree_regressor(X, Y) xx = range(0, n * step, step) pl.figure('scikit-learn tree benchmark results') pl.subplot(211) pl.title('Learning with varying number of samples') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of samples') pl.ylabel('Time (s)') scikit_classifier_results = [] scikit_regressor_results = [] n = 10 step = 500 start_dim = 500 n_classes = 10 dim = start_dim for i in range(0, n): print('============================================') print('Entering iteration %s of %s' % (i, n)) print('============================================') dim += step X = np.random.randn(100, dim) Y = np.random.randint(0, n_classes, (100,)) bench_scikit_tree_classifier(X, Y) Y = np.random.randn(100) bench_scikit_tree_regressor(X, Y) xx = np.arange(start_dim, start_dim + n * step, step) pl.subplot(212) pl.title('Learning in high dimensional spaces') pl.plot(xx, scikit_classifier_results, 'g-', label='classification') pl.plot(xx, scikit_regressor_results, 'r-', label='regression') pl.legend(loc='upper left') pl.xlabel('number of dimensions') pl.ylabel('Time (s)') pl.axis('tight') pl.show()
bsd-3-clause
konstantint/matplotlib-venn
matplotlib_venn/__init__.py
1
2781
''' Venn diagram plotting routines. Copyright 2012, Konstantin Tretyakov. http://kt.era.ee/ Licensed under MIT license. This package contains routines for plotting area-weighted two- and three-circle venn diagrams. There are four main functions here: :code:`venn2`, :code:`venn2_circles`, :code:`venn3`, :code:`venn3_circles`. The :code:`venn2` and :code:`venn2_circles` accept as their only required argument a 3-element list of subset sizes: subsets = (Ab, aB, AB) That is, for example, subsets[0] contains the size of the subset (A and not B), and subsets[2] contains the size of the set (A and B), etc. Similarly, the functions :code:`venn3` and :code:`venn3_circles` require a 7-element list: subsets = (Abc, aBc, ABc, abC, AbC, aBC, ABC) The functions :code:`venn2_circles` and :code:`venn3_circles` simply draw two or three circles respectively, such that their intersection areas correspond to the desired set intersection sizes. Note that for a three-circle venn diagram it is not possible to achieve exact correspondence, although in most cases the picture will still provide a decent indication. The functions :code:`venn2` and :code:`venn3` draw diagram as a collection of separate colored patches with text labels. The functions :code:`venn2_circles` and :code:`venn3_circles` return the list of Circle patches that may be tuned further to your liking. The functions :code:`venn2` and :code:`venn3` return an object of class :code:`Venn2` or :code:`Venn3` respectively, which give access to constituent patches and text elements. Example:: from matplotlib import pyplot as plt import numpy as np from matplotlib_venn import venn3, venn3_circles plt.figure(figsize=(4,4)) v = venn3(subsets=(1, 1, 1, 1, 1, 1, 1), set_labels = ('A', 'B', 'C')) v.get_patch_by_id('100').set_alpha(1.0) v.get_patch_by_id('100').set_color('white') v.get_label_by_id('100').set_text('Unknown') v.get_label_by_id('A').set_text('Set "A"') c = venn3_circles(subsets=(1, 1, 1, 1, 1, 1, 1), linestyle='dashed') c[0].set_lw(1.0) c[0].set_ls('dotted') plt.title("Sample Venn diagram") plt.annotate('Unknown set', xy=v.get_text_by_id('100').get_position() - np.array([0, 0.05]), xytext=(-70,-70), ha='center', textcoords='offset points', bbox=dict(boxstyle='round,pad=0.5', fc='gray', alpha=0.1), arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0.5',color='gray')) ''' from matplotlib_venn._venn2 import venn2, venn2_circles from matplotlib_venn._venn3 import venn3, venn3_circles from matplotlib_venn._util import venn2_unweighted, venn3_unweighted ___all___ = ['venn2', 'venn2_circles', 'venn3', 'venn3_circles', 'venn2_unweighted', 'venn3_unweighted'] __version__ = '0.11.6'
mit
markslwong/tensorflow
tensorflow/contrib/learn/python/learn/estimators/estimator.py
1
55289
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base Estimator class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import copy import os import tempfile import numpy as np import six from tensorflow.contrib import framework as contrib_framework from tensorflow.contrib import layers from tensorflow.contrib import metrics as metrics_lib from tensorflow.contrib.framework import deprecated from tensorflow.contrib.framework import deprecated_args from tensorflow.contrib.framework import list_variables from tensorflow.contrib.framework import load_variable from tensorflow.contrib.framework.python.ops import variables as contrib_variables from tensorflow.contrib.learn.python.learn import evaluable from tensorflow.contrib.learn.python.learn import metric_spec from tensorflow.contrib.learn.python.learn import monitors as monitor_lib from tensorflow.contrib.learn.python.learn import trainable from tensorflow.contrib.learn.python.learn.estimators import _sklearn as sklearn from tensorflow.contrib.learn.python.learn.estimators import constants from tensorflow.contrib.learn.python.learn.estimators import metric_key from tensorflow.contrib.learn.python.learn.estimators import model_fn as model_fn_lib from tensorflow.contrib.learn.python.learn.estimators import run_config from tensorflow.contrib.learn.python.learn.estimators import tensor_signature from tensorflow.contrib.learn.python.learn.estimators._sklearn import NotFittedError from tensorflow.contrib.learn.python.learn.learn_io import data_feeder from tensorflow.contrib.learn.python.learn.utils import export from tensorflow.contrib.learn.python.learn.utils import saved_model_export_utils from tensorflow.contrib.training.python.training import evaluation from tensorflow.core.framework import summary_pb2 from tensorflow.core.protobuf import config_pb2 from tensorflow.python.client import session as tf_session from tensorflow.python.framework import ops from tensorflow.python.framework import random_seed from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import data_flow_ops from tensorflow.python.ops import resources from tensorflow.python.ops import variables from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model import tag_constants from tensorflow.python.training import basic_session_run_hooks from tensorflow.python.training import device_setter from tensorflow.python.training import monitored_session from tensorflow.python.training import saver from tensorflow.python.training import summary_io from tensorflow.python.util import compat from tensorflow.python.util import tf_decorator from tensorflow.python.util import tf_inspect AS_ITERABLE_DATE = '2016-09-15' AS_ITERABLE_INSTRUCTIONS = ( 'The default behavior of predict() is changing. The default value for\n' 'as_iterable will change to True, and then the flag will be removed\n' 'altogether. The behavior of this flag is described below.') SCIKIT_DECOUPLE_DATE = '2016-12-01' SCIKIT_DECOUPLE_INSTRUCTIONS = ( 'Estimator is decoupled from Scikit Learn interface by moving into\n' 'separate class SKCompat. Arguments x, y and batch_size are only\n' 'available in the SKCompat class, Estimator will only accept input_fn.\n' 'Example conversion:\n' ' est = Estimator(...) -> est = SKCompat(Estimator(...))') def _verify_input_args(x, y, input_fn, feed_fn, batch_size): """Verifies validity of co-existance of input arguments.""" if input_fn is None: if x is None: raise ValueError('Either x or input_fn must be provided.') if contrib_framework.is_tensor(x) or (y is not None and contrib_framework.is_tensor(y)): raise ValueError('Inputs cannot be tensors. Please provide input_fn.') if feed_fn is not None: raise ValueError('Can not provide both feed_fn and x or y.') else: if (x is not None) or (y is not None): raise ValueError('Can not provide both input_fn and x or y.') if batch_size is not None: raise ValueError('Can not provide both input_fn and batch_size.') def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1): """Make inputs into input and feed functions. Args: x: Numpy, Pandas or Dask matrix or iterable. y: Numpy, Pandas or Dask matrix or iterable. input_fn: Pre-defined input function for training data. feed_fn: Pre-defined data feeder function. batch_size: Size to split data into parts. Must be >= 1. shuffle: Whether to shuffle the inputs. epochs: Number of epochs to run. Returns: Data input and feeder function based on training data. Raises: ValueError: Only one of `(x & y)` or `input_fn` must be provided. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if input_fn is not None: return input_fn, feed_fn df = data_feeder.setup_train_data_feeder( x, y, n_classes=None, batch_size=batch_size, shuffle=shuffle, epochs=epochs) return df.input_builder, df.get_feed_dict_fn() def infer_real_valued_columns_from_input_fn(input_fn): """Creates `FeatureColumn` objects for inputs defined by `input_fn`. This interprets all inputs as dense, fixed-length float values. This creates a local graph in which it calls `input_fn` to build the tensors, then discards it. Args: input_fn: Input function returning a tuple of: features - Dictionary of string feature name to `Tensor` or `Tensor`. labels - `Tensor` of label values. Returns: List of `FeatureColumn` objects. """ with ops.Graph().as_default(): features, _ = input_fn() return layers.infer_real_valued_columns(features) def infer_real_valued_columns_from_input(x): """Creates `FeatureColumn` objects for inputs defined by input `x`. This interprets all inputs as dense, fixed-length float values. Args: x: Real-valued matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. Returns: List of `FeatureColumn` objects. """ input_fn, _ = _get_input_fn( x=x, y=None, input_fn=None, feed_fn=None, batch_size=None) return infer_real_valued_columns_from_input_fn(input_fn) def _model_fn_args(fn): """Get argument names for function-like object. Args: fn: Function, or function-like object (e.g., result of `functools.partial`). Returns: `tuple` of string argument names. Raises: ValueError: if partial function has positionally bound arguments """ _, fn = tf_decorator.unwrap(fn) if hasattr(fn, 'func') and hasattr(fn, 'keywords') and hasattr(fn, 'args'): # Handle functools.partial and similar objects. return tuple([ arg for arg in tf_inspect.getargspec(fn.func).args[len(fn.args):] if arg not in set(fn.keywords.keys()) ]) # Handle function. return tuple(tf_inspect.getargspec(fn).args) def _get_replica_device_setter(config): """Creates a replica device setter if required. Args: config: A RunConfig instance. Returns: A replica device setter, or None. """ ps_ops = [ 'Variable', 'VariableV2', 'AutoReloadVariable', 'MutableHashTable', 'MutableHashTableOfTensors', 'MutableDenseHashTable' ] if config.task_type: worker_device = '/job:%s/task:%d' % (config.task_type, config.task_id) else: worker_device = '/job:worker' if config.num_ps_replicas > 0: return device_setter.replica_device_setter( ps_tasks=config.num_ps_replicas, worker_device=worker_device, merge_devices=True, ps_ops=ps_ops, cluster=config.cluster_spec) else: return None def _make_metrics_ops(metrics, features, labels, predictions): """Add metrics based on `features`, `labels`, and `predictions`. `metrics` contains a specification for how to run metrics. It is a dict mapping friendly names to either `MetricSpec` objects, or directly to a metric function (assuming that `predictions` and `labels` are single tensors), or to `(pred_name, metric)` `tuple`, which passes `predictions[pred_name]` and `labels` to `metric` (assuming `labels` is a single tensor). Users are encouraged to use `MetricSpec` objects, which are more flexible and cleaner. They also lead to clearer errors. Args: metrics: A dict mapping names to metrics specification, for example `MetricSpec` objects. features: A dict of tensors returned from an input_fn as features/inputs. labels: A single tensor or a dict of tensors returned from an input_fn as labels. predictions: A single tensor or a dict of tensors output from a model as predictions. Returns: A dict mapping the friendly given in `metrics` to the result of calling the given metric function. Raises: ValueError: If metrics specifications do not work with the type of `features`, `labels`, or `predictions` provided. Mostly, a dict is given but no pred_name specified. """ metrics = metrics or {} # If labels is a dict with a single key, unpack into a single tensor. labels_tensor_or_dict = labels if isinstance(labels, dict) and len(labels) == 1: labels_tensor_or_dict = labels[list(labels.keys())[0]] result = {} # Iterate in lexicographic order, so the graph is identical among runs. for name, metric in sorted(six.iteritems(metrics)): if isinstance(metric, metric_spec.MetricSpec): result[name] = metric.create_metric_ops(features, labels, predictions) continue # TODO(b/31229024): Remove the rest of this loop logging.warning('Please specify metrics using MetricSpec. Using bare ' 'functions or (key, fn) tuples is deprecated and support ' 'for it will be removed on Oct 1, 2016.') if isinstance(name, tuple): # Multi-head metrics. if len(name) != 2: raise ValueError('Invalid metric for {}. It returned a tuple with ' 'len {}, expected 2.'.format(name, len(name))) if not isinstance(predictions, dict): raise ValueError( 'Metrics passed provide (name, prediction), ' 'but predictions are not dict. ' 'Metrics: %s, Predictions: %s.' % (metrics, predictions)) # Here are two options: labels are single Tensor or a dict. if isinstance(labels, dict) and name[1] in labels: # If labels are dict and the prediction name is in it, apply metric. result[name[0]] = metric(predictions[name[1]], labels[name[1]]) else: # Otherwise pass the labels to the metric. result[name[0]] = metric(predictions[name[1]], labels_tensor_or_dict) else: # Single head metrics. if isinstance(predictions, dict): raise ValueError( 'Metrics passed provide only name, no prediction, ' 'but predictions are dict. ' 'Metrics: %s, Labels: %s.' % (metrics, labels_tensor_or_dict)) result[name] = metric(predictions, labels_tensor_or_dict) return result def _dict_to_str(dictionary): """Get a `str` representation of a `dict`. Args: dictionary: The `dict` to be represented as `str`. Returns: A `str` representing the `dictionary`. """ return ', '.join('%s = %s' % (k, v) for k, v in sorted(dictionary.items())) def _write_dict_to_summary(output_dir, dictionary, current_global_step): """Writes a `dict` into summary file in given output directory. Args: output_dir: `str`, directory to write the summary file in. dictionary: the `dict` to be written to summary file. current_global_step: `int`, the current global step. """ logging.info('Saving dict for global step %d: %s', current_global_step, _dict_to_str(dictionary)) summary_writer = summary_io.SummaryWriterCache.get(output_dir) summary_proto = summary_pb2.Summary() for key in dictionary: if dictionary[key] is None: continue value = summary_proto.value.add() value.tag = key if (isinstance(dictionary[key], np.float32) or isinstance(dictionary[key], float)): value.simple_value = float(dictionary[key]) else: logging.warn('Skipping summary for %s, must be a float or np.float32.', key) summary_writer.add_summary(summary_proto, current_global_step) summary_writer.flush() class BaseEstimator( sklearn.BaseEstimator, evaluable.Evaluable, trainable.Trainable): """Abstract BaseEstimator class to train and evaluate TensorFlow models. Users should not instantiate or subclass this class. Instead, use `Estimator`. """ __metaclass__ = abc.ABCMeta # Note that for Google users, this is overriden with # learn_runner.EstimatorConfig. # TODO(wicke): Remove this once launcher takes over config functionality _Config = run_config.RunConfig # pylint: disable=invalid-name def __init__(self, model_dir=None, config=None): """Initializes a BaseEstimator instance. Args: model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. If `None`, the model_dir in `config` will be used if set. If both are set, they must be same. config: A RunConfig instance. """ # Create a run configuration. if config is None: self._config = BaseEstimator._Config() logging.info('Using default config.') else: self._config = config logging.info('Using config: %s', str(vars(self._config))) if self._config.session_config is None: self._session_config = config_pb2.ConfigProto(allow_soft_placement=True) else: self._session_config = self._config.session_config # Model directory. if (model_dir is not None) and (self._config.model_dir is not None): if model_dir != self._config.model_dir: # TODO(b/9965722): remove this suppression after it is no longer # necessary. # pylint: disable=g-doc-exception raise ValueError( "model_dir are set both in constructor and RunConfig, but with " "different values. In constructor: '{}', in RunConfig: " "'{}' ".format(model_dir, self._config.model_dir)) self._model_dir = model_dir or self._config.model_dir if self._model_dir is None: self._model_dir = tempfile.mkdtemp() logging.warning('Using temporary folder as model directory: %s', self._model_dir) if self._config.model_dir is None: self._config = self._config.replace(model_dir=self._model_dir) # Set device function depending if there are replicas or not. self._device_fn = _get_replica_device_setter(self._config) # Features and labels TensorSignature objects. # TODO(wicke): Rename these to something more descriptive self._features_info = None self._labels_info = None self._graph = None @property def config(self): # TODO(wicke): make RunConfig immutable, and then return it without a copy. return copy.deepcopy(self._config) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def fit(self, x=None, y=None, input_fn=None, steps=None, batch_size=None, monitors=None, max_steps=None): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Trainable`. Raises: ValueError: If `x` or `y` are not `None` while `input_fn` is not `None`. ValueError: If both `steps` and `max_steps` are not `None`. """ if (steps is not None) and (max_steps is not None): raise ValueError('Can not provide both steps and max_steps.') _verify_input_args(x, y, input_fn, None, batch_size) if x is not None: SKCompat(self).fit(x, y, batch_size, steps, max_steps, monitors) return self if max_steps is not None: try: start_step = load_variable(self._model_dir, ops.GraphKeys.GLOBAL_STEP) if max_steps <= start_step: logging.info('Skipping training since max_steps has already saved.') return self except: # pylint: disable=bare-except pass hooks = monitor_lib.replace_monitors_with_hooks(monitors, self) if steps is not None or max_steps is not None: hooks.append(basic_session_run_hooks.StopAtStepHook(steps, max_steps)) loss = self._train_model(input_fn=input_fn, hooks=hooks) logging.info('Loss for final step: %s.', loss) return self @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def partial_fit( self, x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None): """Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. y: Vector or matrix [n_samples] or [n_samples, n_outputs]. Can be iterator that returns array of labels. The training label values (class labels in classification, real numbers in regression). If set, `input_fn` must be `None`. input_fn: Input function. If set, `x`, `y`, and `batch_size` must be `None`. steps: Number of steps for which to train model. If `None`, train forever. batch_size: minibatch size to use on the input, defaults to first dimension of `x`. Must be `None` if `input_fn` is provided. monitors: List of `BaseMonitor` subclass instances. Used for callbacks inside the training loop. Returns: `self`, for chaining. Raises: ValueError: If at least one of `x` and `y` is provided, and `input_fn` is provided. """ logging.warning('The current implementation of partial_fit is not optimized' ' for use in a loop. Consider using fit() instead.') return self.fit(x=x, y=y, input_fn=input_fn, steps=steps, batch_size=batch_size, monitors=monitors) @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('y', None), ('batch_size', None) ) def evaluate(self, x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None, checkpoint_path=None, hooks=None, log_progress=True): # pylint: disable=g-doc-args,g-doc-return-or-yield """See `Evaluable`. Raises: ValueError: If at least one of `x` or `y` is provided, and at least one of `input_fn` or `feed_fn` is provided. Or if `metrics` is not `None` or `dict`. """ _verify_input_args(x, y, input_fn, feed_fn, batch_size) if x is not None: return SKCompat(self).score(x, y, batch_size, steps, metrics) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name=name, checkpoint_path=checkpoint_path, hooks=hooks, log_progress=log_progress) if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results @deprecated_args( SCIKIT_DECOUPLE_DATE, SCIKIT_DECOUPLE_INSTRUCTIONS, ('x', None), ('batch_size', None), ('as_iterable', True) ) def predict( self, x=None, input_fn=None, batch_size=None, outputs=None, as_iterable=True): """Returns predictions for given features. Args: x: Matrix of shape [n_samples, n_features...]. Can be iterator that returns arrays of features. The training input samples for fitting the model. If set, `input_fn` must be `None`. input_fn: Input function. If set, `x` and 'batch_size' must be `None`. batch_size: Override default batch size. If set, 'input_fn' must be 'None'. outputs: list of `str`, name of the output to predict. If `None`, returns all. as_iterable: If True, return an iterable which keeps yielding predictions for each example until inputs are exhausted. Note: The inputs must terminate if you want the iterable to terminate (e.g. be sure to pass num_epochs=1 if you are using something like read_batch_features). Returns: A numpy array of predicted classes or regression values if the constructor's `model_fn` returns a `Tensor` for `predictions` or a `dict` of numpy arrays if `model_fn` returns a `dict`. Returns an iterable of predictions if as_iterable is True. Raises: ValueError: If x and input_fn are both provided or both `None`. """ _verify_input_args(x, None, input_fn, None, batch_size) if x is not None and not as_iterable: return SKCompat(self).predict(x, batch_size) input_fn, feed_fn = _get_input_fn(x, None, input_fn, None, batch_size) return self._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=as_iterable) def get_variable_value(self, name): """Returns value of the variable given by name. Args: name: string, name of the tensor. Returns: Numpy array - value of the tensor. """ return load_variable(self.model_dir, name) def get_variable_names(self): """Returns list of all variable names in this model. Returns: List of names. """ return [name for name, _ in list_variables(self.model_dir)] @property def model_dir(self): return self._model_dir @deprecated('2017-03-25', 'Please use Estimator.export_savedmodel() instead.') def export(self, export_dir, input_fn=export._default_input_fn, # pylint: disable=protected-access input_feature_key=None, use_deprecated_input_fn=True, signature_fn=None, prediction_key=None, default_batch_size=1, exports_to_keep=None, checkpoint_path=None): """Exports inference graph into given dir. Args: export_dir: A string containing a directory to write the exported graph and checkpoints. input_fn: If `use_deprecated_input_fn` is true, then a function that given `Tensor` of `Example` strings, parses it into features that are then passed to the model. Otherwise, a function that takes no argument and returns a tuple of (features, labels), where features is a dict of string key to `Tensor` and labels is a `Tensor` that's currently not used (and so can be `None`). input_feature_key: Only used if `use_deprecated_input_fn` is false. String key into the features dict returned by `input_fn` that corresponds to a the raw `Example` strings `Tensor` that the exported model will take as input. Can only be `None` if you're using a custom `signature_fn` that does not use the first arg (examples). use_deprecated_input_fn: Determines the signature format of `input_fn`. signature_fn: Function that returns a default signature and a named signature map, given `Tensor` of `Example` strings, `dict` of `Tensor`s for features and `Tensor` or `dict` of `Tensor`s for predictions. prediction_key: The key for a tensor in the `predictions` dict (output from the `model_fn`) to use as the `predictions` input to the `signature_fn`. Optional. If `None`, predictions will pass to `signature_fn` without filtering. default_batch_size: Default batch size of the `Example` placeholder. exports_to_keep: Number of exports to keep. checkpoint_path: the checkpoint path of the model to be exported. If it is `None` (which is default), will use the latest checkpoint in export_dir. Returns: The string path to the exported directory. NB: this functionality was added ca. 2016/09/25; clients that depend on the return value may need to handle the case where this function returns None because subclasses are not returning a value. """ # pylint: disable=protected-access return export._export_estimator( estimator=self, export_dir=export_dir, signature_fn=signature_fn, prediction_key=prediction_key, input_fn=input_fn, input_feature_key=input_feature_key, use_deprecated_input_fn=use_deprecated_input_fn, default_batch_size=default_batch_size, exports_to_keep=exports_to_keep, checkpoint_path=checkpoint_path) @abc.abstractproperty def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overridden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass @abc.abstractproperty def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: A `ModelFnOps` object. """ pass def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: A `ModelFnOps` object. """ raise NotImplementedError('_get_eval_ops not implemented in BaseEstimator') @deprecated( '2016-09-23', 'The signature of the input_fn accepted by export is changing to be ' 'consistent with what\'s used by tf.Learn Estimator\'s train/evaluate, ' 'which makes this function useless. This will be removed after the ' 'deprecation date.') def _get_feature_ops_from_example(self, examples_batch): """Returns feature parser for given example batch using features info. This function requires `fit()` has been called. Args: examples_batch: batch of tf.Example Returns: features: `Tensor` or `dict` of `Tensor` objects. Raises: ValueError: If `_features_info` attribute is not available (usually because `fit()` has not been called). """ if self._features_info is None: raise ValueError('Features information missing, was fit() ever called?') return tensor_signature.create_example_parser_from_signatures( self._features_info, examples_batch) def _check_inputs(self, features, labels): if self._features_info is not None: logging.debug('Given features: %s, required signatures: %s.', str(features), str(self._features_info)) if not tensor_signature.tensors_compatible(features, self._features_info): raise ValueError('Features are incompatible with given information. ' 'Given features: %s, required signatures: %s.' % (str(features), str(self._features_info))) else: self._features_info = tensor_signature.create_signatures(features) logging.debug('Setting feature info to %s.', str(self._features_info)) if labels is not None: if self._labels_info is not None: logging.debug('Given labels: %s, required signatures: %s.', str(labels), str(self._labels_info)) if not tensor_signature.tensors_compatible(labels, self._labels_info): raise ValueError('Labels are incompatible with given information. ' 'Given labels: %s, required signatures: %s.' % (str(labels), str(self._labels_info))) else: self._labels_info = tensor_signature.create_signatures(labels) logging.debug('Setting labels info to %s', str(self._labels_info)) def _extract_metric_update_ops(self, eval_dict): """Separate update operations from metric value operations.""" update_ops = [] value_ops = {} for name, metric_ops in six.iteritems(eval_dict): if isinstance(metric_ops, (list, tuple)): if len(metric_ops) == 2: value_ops[name] = metric_ops[0] update_ops.append(metric_ops[1]) else: logging.warning( 'Ignoring metric {}. It returned a list|tuple with len {}, ' 'expected 2'.format(name, len(metric_ops))) value_ops[name] = metric_ops else: value_ops[name] = metric_ops if update_ops: update_ops = control_flow_ops.group(*update_ops) else: update_ops = None return update_ops, value_ops def _evaluate_model(self, input_fn, steps, feed_fn=None, metrics=None, name='', checkpoint_path=None, hooks=None, log_progress=True): # TODO(wicke): Remove this once Model and associated code are gone. if (hasattr(self._config, 'execution_mode') and self._config.execution_mode not in ('all', 'evaluate', 'eval_evalset')): return None, None # Check that model has been trained (if nothing has been set explicitly). if not checkpoint_path: latest_path = saver.latest_checkpoint(self._model_dir) if not latest_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) checkpoint_path = latest_path # Setup output directory. eval_dir = os.path.join(self._model_dir, 'eval' if not name else 'eval_' + name) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) model_fn_results = self._get_eval_ops(features, labels, metrics) eval_dict = model_fn_results.eval_metric_ops update_op, eval_dict = self._extract_metric_update_ops(eval_dict) # We need to copy the hook array as we modify it, thus [:]. hooks = hooks[:] if hooks else [] if feed_fn: hooks.append(basic_session_run_hooks.FeedFnHook(feed_fn)) if steps: hooks.append( evaluation.StopAfterNEvalsHook( steps, log_progress=log_progress)) global_step_key = 'global_step' while global_step_key in eval_dict: global_step_key = '_' + global_step_key eval_dict[global_step_key] = global_step eval_results = evaluation.evaluate_once( checkpoint_path=checkpoint_path, master=self._config.evaluation_master, scaffold=model_fn_results.scaffold, eval_ops=update_op, final_ops=eval_dict, hooks=hooks, config=self._session_config) current_global_step = eval_results[global_step_key] _write_dict_to_summary(eval_dir, eval_results, current_global_step) return eval_results, current_global_step def _get_features_from_input_fn(self, input_fn): result = input_fn() if isinstance(result, (list, tuple)): return result[0] return result def _infer_model(self, input_fn, feed_fn=None, outputs=None, as_iterable=True, iterate_batches=False): # Check that model has been trained. checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) with ops.Graph().as_default() as g: random_seed.set_random_seed(self._config.tf_random_seed) contrib_framework.create_global_step(g) features = self._get_features_from_input_fn(input_fn) infer_ops = self._get_predict_ops(features) predictions = self._filter_predictions(infer_ops.predictions, outputs) mon_sess = monitored_session.MonitoredSession( session_creator=monitored_session.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, scaffold=infer_ops.scaffold, config=self._session_config)) if not as_iterable: with mon_sess: if not mon_sess.should_stop(): return mon_sess.run(predictions, feed_fn() if feed_fn else None) else: return self._predict_generator(mon_sess, predictions, feed_fn, iterate_batches) def _predict_generator(self, mon_sess, predictions, feed_fn, iterate_batches): with mon_sess: while not mon_sess.should_stop(): preds = mon_sess.run(predictions, feed_fn() if feed_fn else None) if iterate_batches: yield preds elif not isinstance(predictions, dict): for pred in preds: yield pred else: first_tensor = list(preds.values())[0] if isinstance(first_tensor, sparse_tensor.SparseTensorValue): batch_length = first_tensor.dense_shape[0] else: batch_length = first_tensor.shape[0] for i in range(batch_length): yield {key: value[i] for key, value in six.iteritems(preds)} if self._is_input_constant(feed_fn, mon_sess.graph): return def _is_input_constant(self, feed_fn, graph): # If there are no queue_runners, the input `predictions` is a # constant, and we should stop after the first epoch. If, # instead, there are queue_runners, eventually they should throw # an `OutOfRangeError`. if graph.get_collection(ops.GraphKeys.QUEUE_RUNNERS): return False # data_feeder uses feed_fn to generate `OutOfRangeError`. if feed_fn is not None: return False return True def _filter_predictions(self, predictions, outputs): if not outputs: return predictions if not isinstance(predictions, dict): raise ValueError( 'outputs argument is not valid in case of non-dict predictions.') existing_keys = predictions.keys() predictions = { key: value for key, value in six.iteritems(predictions) if key in outputs } if not predictions: raise ValueError('Expected to run at least one output from %s, ' 'provided %s.' % (existing_keys, outputs)) return predictions def _train_model(self, input_fn, hooks): all_hooks = [] self._graph = ops.Graph() with self._graph.as_default() as g, g.device(self._device_fn): random_seed.set_random_seed(self._config.tf_random_seed) global_step = contrib_framework.create_global_step(g) features, labels = input_fn() self._check_inputs(features, labels) model_fn_ops = self._get_train_ops(features, labels) ops.add_to_collection(ops.GraphKeys.LOSSES, model_fn_ops.loss) all_hooks.extend([ basic_session_run_hooks.NanTensorHook(model_fn_ops.loss), basic_session_run_hooks.LoggingTensorHook( { 'loss': model_fn_ops.loss, 'step': global_step }, every_n_iter=100) ]) all_hooks.extend(hooks) scaffold = model_fn_ops.scaffold or monitored_session.Scaffold() if not (scaffold.saver or ops.get_collection(ops.GraphKeys.SAVERS)): ops.add_to_collection( ops.GraphKeys.SAVERS, saver.Saver( sharded=True, max_to_keep=self._config.keep_checkpoint_max, defer_build=True, save_relative_paths=True)) chief_hooks = [] if (self._config.save_checkpoints_secs or self._config.save_checkpoints_steps): saver_hook_exists = any([ isinstance(h, basic_session_run_hooks.CheckpointSaverHook) for h in (all_hooks + model_fn_ops.training_hooks + chief_hooks + model_fn_ops.training_chief_hooks) ]) if not saver_hook_exists: chief_hooks = [ basic_session_run_hooks.CheckpointSaverHook( self._model_dir, save_secs=self._config.save_checkpoints_secs, save_steps=self._config.save_checkpoints_steps, scaffold=scaffold) ] with monitored_session.MonitoredTrainingSession( master=self._config.master, is_chief=self._config.is_chief, checkpoint_dir=self._model_dir, scaffold=scaffold, hooks=all_hooks + model_fn_ops.training_hooks, chief_only_hooks=chief_hooks + model_fn_ops.training_chief_hooks, save_checkpoint_secs=0, # Saving is handled by a hook. save_summaries_steps=self._config.save_summary_steps, config=self._session_config ) as mon_sess: loss = None while not mon_sess.should_stop(): _, loss = mon_sess.run([model_fn_ops.train_op, model_fn_ops.loss]) summary_io.SummaryWriterCache.clear() return loss def _identity_feature_engineering_fn(features, labels): return features, labels class Estimator(BaseEstimator): """Estimator class is the basic TensorFlow model trainer/evaluator. """ def __init__(self, model_fn=None, model_dir=None, config=None, params=None, feature_engineering_fn=None): """Constructs an `Estimator` instance. Args: model_fn: Model function. Follows the signature: * Args: * `features`: single `Tensor` or `dict` of `Tensor`s (depending on data passed to `fit`), * `labels`: `Tensor` or `dict` of `Tensor`s (for multi-head models). If mode is `ModeKeys.INFER`, `labels=None` will be passed. If the `model_fn`'s signature does not accept `mode`, the `model_fn` must still be able to handle `labels=None`. * `mode`: Optional. Specifies if this training, evaluation or prediction. See `ModeKeys`. * `params`: Optional `dict` of hyperparameters. Will receive what is passed to Estimator in `params` parameter. This allows to configure Estimators from hyper parameter tuning. * `config`: Optional configuration object. Will receive what is passed to Estimator in `config` parameter, or the default `config`. Allows updating things in your model_fn based on configuration such as `num_ps_replicas`. * `model_dir`: Optional directory where model parameters, graph etc are saved. Will receive what is passed to Estimator in `model_dir` parameter, or the default `model_dir`. Allows updating things in your model_fn that expect model_dir, such as training hooks. * Returns: `ModelFnOps` Also supports a legacy signature which returns tuple of: * predictions: `Tensor`, `SparseTensor` or dictionary of same. Can also be any type that is convertible to a `Tensor` or `SparseTensor`, or dictionary of same. * loss: Scalar loss `Tensor`. * train_op: Training update `Tensor` or `Operation`. Supports next three signatures for the function: * `(features, labels) -> (predictions, loss, train_op)` * `(features, labels, mode) -> (predictions, loss, train_op)` * `(features, labels, mode, params) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config) -> (predictions, loss, train_op)` * `(features, labels, mode, params, config, model_dir) -> (predictions, loss, train_op)` model_dir: Directory to save model parameters, graph and etc. This can also be used to load checkpoints from the directory into a estimator to continue training a previously saved model. config: Configuration object. params: `dict` of hyper parameters that will be passed into `model_fn`. Keys are names of parameters, values are basic python types. feature_engineering_fn: Feature engineering function. Takes features and labels which are the output of `input_fn` and returns features and labels which will be fed into `model_fn`. Please check `model_fn` for a definition of features and labels. Raises: ValueError: parameters of `model_fn` don't match `params`. """ super(Estimator, self).__init__(model_dir=model_dir, config=config) if model_fn is not None: # Check number of arguments of the given function matches requirements. model_fn_args = _model_fn_args(model_fn) if params is not None and 'params' not in model_fn_args: raise ValueError('Estimator\'s model_fn (%s) has less than 4 ' 'arguments, but not None params (%s) are passed.' % (model_fn, params)) if params is None and 'params' in model_fn_args: logging.warning('Estimator\'s model_fn (%s) includes params ' 'argument, but params are not passed to Estimator.', model_fn) self._model_fn = model_fn self.params = params self._feature_engineering_fn = ( feature_engineering_fn or _identity_feature_engineering_fn) def _call_model_fn(self, features, labels, mode): """Calls model function with support of 2, 3 or 4 arguments. Args: features: features dict. labels: labels dict. mode: ModeKeys Returns: A `ModelFnOps` object. If model_fn returns a tuple, wraps them up in a `ModelFnOps` object. Raises: ValueError: if model_fn returns invalid objects. """ features, labels = self._feature_engineering_fn(features, labels) model_fn_args = _model_fn_args(self._model_fn) kwargs = {} if 'mode' in model_fn_args: kwargs['mode'] = mode if 'params' in model_fn_args: kwargs['params'] = self.params if 'config' in model_fn_args: kwargs['config'] = self.config if 'model_dir' in model_fn_args: kwargs['model_dir'] = self.model_dir model_fn_results = self._model_fn(features, labels, **kwargs) if isinstance(model_fn_results, model_fn_lib.ModelFnOps): return model_fn_results # Here model_fn_results should be a tuple with 3 elements. if len(model_fn_results) != 3: raise ValueError('Unrecognized value returned by model_fn, ' 'please return ModelFnOps.') return model_fn_lib.ModelFnOps( mode=mode, predictions=model_fn_results[0], loss=model_fn_results[1], train_op=model_fn_results[2]) def _get_train_ops(self, features, labels): """Method that builds model graph and returns trainer ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.TRAIN) def _get_eval_ops(self, features, labels, metrics): """Method that builds model graph and returns evaluation ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. labels: `Tensor` or `dict` of `Tensor` objects. metrics: Dict of metrics to run. If None, the default metric functions are used; if {}, no metrics are used. Otherwise, `metrics` should map friendly names for the metric to a `MetricSpec` object defining which model outputs to evaluate against which labels with which metric function. Metric ops should support streaming, e.g., returning update_op and value tensors. See more details in `../../../../metrics/python/metrics/ops/streaming_metrics.py` and `../metric_spec.py`. Returns: `ModelFnOps` object. Raises: ValueError: if `metrics` don't match `labels`. """ model_fn_ops = self._call_model_fn( features, labels, model_fn_lib.ModeKeys.EVAL) features, labels = self._feature_engineering_fn(features, labels) # Custom metrics should overwrite defaults. if metrics: model_fn_ops.eval_metric_ops.update(_make_metrics_ops( metrics, features, labels, model_fn_ops.predictions)) if metric_key.MetricKey.LOSS not in model_fn_ops.eval_metric_ops: model_fn_ops.eval_metric_ops[metric_key.MetricKey.LOSS] = ( metrics_lib.streaming_mean(model_fn_ops.loss)) return model_fn_ops def _get_predict_ops(self, features): """Method that builds model graph and returns prediction ops. Expected to be overriden by sub-classes that require custom support. This implementation uses `model_fn` passed as parameter to constructor to build model. Args: features: `Tensor` or `dict` of `Tensor` objects. Returns: `ModelFnOps` object. """ labels = tensor_signature.create_placeholders_from_signatures( self._labels_info) return self._call_model_fn(features, labels, model_fn_lib.ModeKeys.INFER) def export_savedmodel( self, export_dir_base, serving_input_fn, default_output_alternative_key=None, assets_extra=None, as_text=False, checkpoint_path=None): """Exports inference graph as a SavedModel into given dir. Args: export_dir_base: A string containing a directory to write the exported graph and checkpoints. serving_input_fn: A function that takes no argument and returns an `InputFnOps`. default_output_alternative_key: the name of the head to serve when none is specified. Not needed for single-headed models. assets_extra: A dict specifying how to populate the assets.extra directory within the exported SavedModel. Each key should give the destination path (including the filename) relative to the assets.extra directory. The corresponding value gives the full path of the source file to be copied. For example, the simple case of copying a single file without renaming it is specified as `{'my_asset_file.txt': '/path/to/my_asset_file.txt'}`. as_text: whether to write the SavedModel proto in text format. checkpoint_path: The checkpoint path to export. If None (the default), the most recent checkpoint found within the model directory is chosen. Returns: The string path to the exported directory. Raises: ValueError: if an unrecognized export_type is requested. """ if serving_input_fn is None: raise ValueError('serving_input_fn must be defined.') with ops.Graph().as_default() as g: contrib_variables.create_global_step(g) # Call the serving_input_fn and collect the input alternatives. input_ops = serving_input_fn() input_alternatives, features = ( saved_model_export_utils.get_input_alternatives(input_ops)) # TODO(b/34388557) This is a stopgap, pending recording model provenance. # Record which features are expected at serving time. It is assumed that # these are the features that were used in training. for feature_key in input_ops.features.keys(): ops.add_to_collection( constants.COLLECTION_DEF_KEY_FOR_INPUT_FEATURE_KEYS, feature_key) # Call the model_fn and collect the output alternatives. model_fn_ops = self._call_model_fn(features, None, model_fn_lib.ModeKeys.INFER) output_alternatives, actual_default_output_alternative_key = ( saved_model_export_utils.get_output_alternatives( model_fn_ops, default_output_alternative_key)) # Build the SignatureDefs from all pairs of input and output alternatives signature_def_map = saved_model_export_utils.build_all_signature_defs( input_alternatives, output_alternatives, actual_default_output_alternative_key) if not checkpoint_path: # Locate the latest checkpoint checkpoint_path = saver.latest_checkpoint(self._model_dir) if not checkpoint_path: raise NotFittedError("Couldn't find trained model at %s." % self._model_dir) export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) if (model_fn_ops.scaffold is not None and model_fn_ops.scaffold.saver is not None): saver_for_restore = model_fn_ops.scaffold.saver else: saver_for_restore = saver.Saver(sharded=True) with tf_session.Session('') as session: saver_for_restore.restore(session, checkpoint_path) init_op = control_flow_ops.group( variables.local_variables_initializer(), resources.initialize_resources(resources.shared_resources()), data_flow_ops.tables_initializer()) # Perform the export builder = saved_model_builder.SavedModelBuilder(export_dir) builder.add_meta_graph_and_variables( session, [tag_constants.SERVING], signature_def_map=signature_def_map, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS), legacy_init_op=init_op) builder.save(as_text) # Add the extra assets if assets_extra: assets_extra_path = os.path.join(compat.as_bytes(export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join(compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) gfile.MakeDirs(dest_path) gfile.Copy(source, dest_absolute) return export_dir # For time of deprecation x,y from Estimator allow direct access. # pylint: disable=protected-access class SKCompat(sklearn.BaseEstimator): """Scikit learn wrapper for TensorFlow Learn Estimator.""" def __init__(self, estimator): self._estimator = estimator def fit(self, x, y, batch_size=128, steps=None, max_steps=None, monitors=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=True, epochs=None) all_monitors = [] if feed_fn: all_monitors = [basic_session_run_hooks.FeedFnHook(feed_fn)] if monitors: all_monitors.extend(monitors) self._estimator.fit(input_fn=input_fn, steps=steps, max_steps=max_steps, monitors=all_monitors) return self def score(self, x, y, batch_size=128, steps=None, metrics=None): input_fn, feed_fn = _get_input_fn(x, y, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) if metrics is not None and not isinstance(metrics, dict): raise ValueError('Metrics argument should be None or dict. ' 'Got %s.' % metrics) eval_results, global_step = self._estimator._evaluate_model( input_fn=input_fn, feed_fn=feed_fn, steps=steps, metrics=metrics, name='score') if eval_results is not None: eval_results.update({'global_step': global_step}) return eval_results def predict(self, x, batch_size=128, outputs=None): input_fn, feed_fn = _get_input_fn( x, None, input_fn=None, feed_fn=None, batch_size=batch_size, shuffle=False, epochs=1) results = list( self._estimator._infer_model( input_fn=input_fn, feed_fn=feed_fn, outputs=outputs, as_iterable=True, iterate_batches=True)) if not isinstance(results[0], dict): return np.concatenate([output for output in results], axis=0) return { key: np.concatenate( [output[key] for output in results], axis=0) for key in results[0] }
apache-2.0
samchrisinger/osf.io
scripts/analytics/links.py
55
1227
# -*- coding: utf-8 -*- import os import matplotlib.pyplot as plt from framework.mongo import database from website import settings from .utils import plot_dates, mkdirp link_collection = database['privatelink'] FIG_PATH = os.path.join(settings.ANALYTICS_PATH, 'figs', 'features') mkdirp(FIG_PATH) def analyze_view_only_links(): dates = [ record['date_created'] for record in link_collection.find({}, {'date_created': True}) ] if not dates: return fig = plot_dates(dates) plt.title('view-only links ({} total)'.format(len(dates))) plt.savefig(os.path.join(FIG_PATH, 'view-only-links.png')) plt.close() def analyze_view_only_links_anonymous(): dates = [ record['date_created'] for record in link_collection.find( {'anonymous': True}, {'date_created': True}, ) ] if not dates: return fig = plot_dates(dates) plt.title('anonymous view-only links ({} total)'.format(len(dates))) plt.savefig(os.path.join(FIG_PATH, 'view-only-links-anonymous.png')) plt.close() def main(): analyze_view_only_links() analyze_view_only_links_anonymous() if __name__ == '__main__': main()
apache-2.0
Cocuyo-Labs-Team/ccytsk
ccytsk/core/database/fake.py
1
7867
import random import os import csv import datetime import pandas as pd import copy from orm import ForeignKey, ColumnFake from ccytsk.core.fake.mfaker import MFaker class SchemaFaker(object): def __init__(self, schema, locale=None): self.schema = schema self.data = {} self.fkey_data = {} self.value_from_union_data = {} self.serials = {} self.set_idx = {} self.timelapses = {} self.faker = MFaker.get_faker(locale=locale) def get_colum_fake_value(self, column, row=None): try: if column.fake is None: return None elif column.fake.name == 'default': return column.default elif column.fake.name == 'fkey': if ( not isinstance(column.fkey, ForeignKey) or '%s.%s' % (column.fkey.table, column.fkey.column) not in self.fkey_data ): return None return random.choice(self.fkey_data['%s.%s' % (column.fkey.table, column.fkey.column)]) elif column.fake.name == 'serial': if column.id not in self.serials: self.serials[column.id] = 0 self.serials[column.id] += 1 return self.serials[column.id] elif column.fake.name == 'timelapse': if column.id not in self.timelapses: self.timelapses[column.id] = dict( index=-1, data=[day.strftime(column.fake.format if column.fake.format else '%Y-%m-%d') for day in pd.date_range(column.fake.data[0], column.fake.data[1])] ) self.timelapses[column.id]['index'] += 1 return None if self.timelapses[column.id]['index'] >= len(self.timelapses[column.id]['data']) else self.timelapses[column.id]['data'][self.timelapses[column.id]['index']] elif column.fake.name == 'set': if isinstance(column.fake.data, list) and len(column.fake.data) > 0: if column.id not in self.set_idx: self.set_idx[column.id] = -1 self.set_idx[column.id] += 1 if column.unique: return None if self.set_idx[column.id] >= len(column.fake.data) else column.fake.data[self.set_idx[column.id]] else: return column.fake.data[self.set_idx[column.id] % len(column.fake.data)] else: return None elif column.fake.name == 'value_from_union': column_values = [] for c in column.fake.data: column_values += (self.fkey_data[c] if c in self.fkey_data else self.value_from_union_data[c]) return random.choice(column_values) elif column.fake.name == 'eval': return eval(column.fake.data, dict(row=row, fkey_data=self.fkey_data)) else: fake_data = copy.deepcopy(column.fake.data) if row is not None and isinstance(fake_data, dict): for k in fake_data: if fake_data[k] in row: fake_data[k] = row[fake_data[k]] value = MFaker.get_value(self.faker, column.fake.name, fake_data) if value is not None: if isinstance(value, datetime.datetime): return value.strftime(column.fake.format if column.fake.format else '%Y-%m-%d %H:%M:%S') return value except Exception as e: raise Exception('FakeDataGenerationError: %s on %s' % (str(e), column.id)) def generate_table_data(self, table, nrows): data = [] for i in xrange(1, nrows + 1): record = {} for column in table.columns: record[column.name] = ( self.fkey_data[column.id][i-1] if column.id in self.fkey_data and len(self.fkey_data[column.id]) >= i else self.get_colum_fake_value(column=column, row=record) ) data.append(record) return data def generate_schema_data(self, default_nrows=1, **kwargs): for table in self.schema.tables: if table.has_fkey: for column in table.columns: try: if isinstance(column.fkey, ForeignKey): fkey_ref = '%s.%s' % (column.fkey.table, column.fkey.column) if fkey_ref not in self.fkey_data: fkey_ref_column = self.schema.get_column(fkey_ref) fkey_ref_table = self.schema.get_table(column.fkey.table) nrows = ( int(kwargs['%s_nrows' % fkey_ref_table.name]) if '%s_nrows' % fkey_ref_table.name in kwargs else fkey_ref_table.fake.nrows if fkey_ref_table.fake and fkey_ref_table.fake.nrows else int(default_nrows) ) self.fkey_data[fkey_ref] = [ self.get_colum_fake_value(fkey_ref_column) for _ in xrange(1, nrows + 1) ] except Exception as e: raise Exception('FakeDataGenerationError: %s on %s' % (str(e), column.id)) for table in self.schema.tables: for column in table.columns: try: if isinstance(column.fake, ColumnFake) and column.fake.name == 'value_from_union': for fkey_ref in column.fake.data: if fkey_ref not in self.fkey_data and fkey_ref not in self.value_from_union_data: fkey_ref_column = self.schema.get_column(fkey_ref) fkey_ref_table = self.schema.get_table('.'.join(fkey_ref_column.split('.')[:-1])) nrows = ( int(kwargs['%s_nrows' % fkey_ref_table.name]) if '%s_nrows' % fkey_ref_table.name in kwargs else fkey_ref_table.fake.nrows if fkey_ref_table.fake and fkey_ref_table.fake.nrows else int(default_nrows) ) self.value_from_union_data[fkey_ref] = [ self.get_colum_fake_value(fkey_ref_column) for _ in xrange(1, nrows + 1) ] except Exception as e: raise Exception('FakeDataGenerationError: %s on %s' % (str(e), column.id)) for table in self.schema.tables: nrows = ( int(kwargs['%s_nrows' % table.name]) if '%s_nrows' % table.name in kwargs else table.fake.nrows if table.fake and table.fake.nrows else int(default_nrows) ) self.data[table.name] = self.generate_table_data(table=table, nrows=nrows) def save_data_to_files(self, directory): copy_queries = [] for table in self.schema.tables: if len(self.data[table.name]) == 0: continue filename = os.path.join(directory, '%s.csv' % table.name) with open(filename, 'wb') as output_file: dict_writer = csv.DictWriter(output_file, [c.name for c in table.columns]) dict_writer.writerows(self.data[table.name]) copy_queries.append("copy %s from '%s' delimiter ',' null '';" % (table.name, filename)) return copy_queries
bsd-3-clause
scikit-xray/scikit-xray
doc/sphinxext/plot_generator.py
8
10150
""" Sphinx plugin to run example scripts and create a gallery page. Taken from seaborn project, which is turn was lightly modified from the mpld3 project. """ from __future__ import division import os import os.path as op import re import glob import token import tokenize import shutil import json import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import image RST_TEMPLATE = """ .. _{sphinx_tag}: {docstring} .. image:: {img_file} **Python source code:** :download:`[download source: {fname}]<{fname}>` .. literalinclude:: {fname} :lines: {end_line}- """ INDEX_TEMPLATE = """ .. raw:: html <style type="text/css"> .figure {{ position: relative; float: left; margin: 10px; width: 180px; height: 200px; }} .figure img {{ position: absolute; display: inline; left: 0; width: 170px; height: 170px; opacity:1.0; filter:alpha(opacity=100); /* For IE8 and earlier */ }} .figure:hover img {{ -webkit-filter: blur(3px); -moz-filter: blur(3px); -o-filter: blur(3px); -ms-filter: blur(3px); filter: blur(3px); opacity:1.0; filter:alpha(opacity=100); /* For IE8 and earlier */ }} .figure span {{ position: absolute; display: inline; left: 0; width: 170px; height: 170px; background: #000; color: #fff; visibility: hidden; opacity: 0; z-index: 100; }} .figure p {{ position: absolute; top: 45%; width: 170px; font-size: 110%; }} .figure:hover span {{ visibility: visible; opacity: .4; }} .caption {{ position: absolue; width: 180px; top: 170px; text-align: center !important; }} </style> .. _{sphinx_tag}: Example gallery =============== {toctree} {contents} .. raw:: html <div style="clear: both"></div> """ def create_thumbnail(infile, thumbfile, width=300, height=300, cx=0.5, cy=0.5, border=4): baseout, extout = op.splitext(thumbfile) im = image.imread(infile) rows, cols = im.shape[:2] x0 = int(cx * cols - .5 * width) y0 = int(cy * rows - .5 * height) xslice = slice(x0, x0 + width) yslice = slice(y0, y0 + height) thumb = im[yslice, xslice] thumb[:border, :, :3] = thumb[-border:, :, :3] = 0 thumb[:, :border, :3] = thumb[:, -border:, :3] = 0 dpi = 100 fig = plt.figure(figsize=(width / dpi, height / dpi), dpi=dpi) ax = fig.add_axes([0, 0, 1, 1], aspect='auto', frameon=False, xticks=[], yticks=[]) ax.imshow(thumb, aspect='auto', resample=True, interpolation='bilinear') fig.savefig(thumbfile, dpi=dpi) return fig def indent(s, N=4): """indent a string""" return s.replace('\n', '\n' + N * ' ') class ExampleGenerator(object): """Tools for generating an example page from a file""" def __init__(self, filename, target_dir): self.filename = filename self.target_dir = target_dir self.thumbloc = .5, .5 self.extract_docstring() with open(filename, "r") as fid: self.filetext = fid.read() outfilename = op.join(target_dir, self.rstfilename) # Only actually run it if the output RST file doesn't # exist or it was modified less recently than the example if (not op.exists(outfilename) or (op.getmtime(outfilename) < op.getmtime(filename))): self.exec_file() else: print("skipping {0}".format(self.filename)) @property def dirname(self): return op.split(self.filename)[0] @property def fname(self): return op.split(self.filename)[1] @property def modulename(self): return op.splitext(self.fname)[0] @property def pyfilename(self): return self.modulename + '.py' @property def rstfilename(self): return self.modulename + ".rst" @property def htmlfilename(self): return self.modulename + '.html' @property def pngfilename(self): pngfile = self.modulename + '.png' return "_images/" + pngfile @property def thumbfilename(self): pngfile = self.modulename + '_thumb.png' return pngfile @property def sphinxtag(self): return self.modulename @property def pagetitle(self): return self.docstring.strip().split('\n')[0].strip() @property def plotfunc(self): match = re.search(r"sns\.(.+plot)\(", self.filetext) if match: return match.group(1) match = re.search(r"sns\.(.+map)\(", self.filetext) if match: return match.group(1) match = re.search(r"sns\.(.+Grid)\(", self.filetext) if match: return match.group(1) return "" def extract_docstring(self): """ Extract a module-level docstring """ lines = open(self.filename).readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' tokens = tokenize.generate_tokens(lines.__iter__().next) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, # extract the first one: paragraphs = '\n'.join(line.rstrip() for line in docstring.split('\n') ).split('\n\n') if len(paragraphs) > 0: first_par = paragraphs[0] break thumbloc = None for i, line in enumerate(docstring.split("\n")): m = re.match(r"^_thumb: (\.\d+),\s*(\.\d+)", line) if m: thumbloc = float(m.group(1)), float(m.group(2)) break if thumbloc is not None: self.thumbloc = thumbloc docstring = "\n".join([l for l in docstring.split("\n") if not l.startswith("_thumb")]) self.docstring = docstring self.short_desc = first_par self.end_line = erow + 1 + start_row def exec_file(self): print("running {0}".format(self.filename)) plt.close('all') my_globals = {'pl': plt, 'plt': plt} execfile(self.filename, my_globals) fig = plt.gcf() fig.canvas.draw() pngfile = op.join(self.target_dir, self.pngfilename) thumbfile = op.join("example_thumbs", self.thumbfilename) self.html = "<img src=../%s>" % self.pngfilename fig.savefig(pngfile, dpi=75, bbox_inches="tight") cx, cy = self.thumbloc create_thumbnail(pngfile, thumbfile, cx=cx, cy=cy) def toctree_entry(self): return " ./%s\n\n" % op.splitext(self.htmlfilename)[0] def contents_entry(self): return (".. raw:: html\n\n" " <div class='figure align-center'>\n" " <a href=./{0}>\n" " <img src=../_static/{1}>\n" " <span class='figure-label'>\n" " <p>{2}</p>\n" " </span>\n" " </a>\n" " </div>\n\n" "\n\n" "".format(self.htmlfilename, self.thumbfilename, self.plotfunc)) def main(app): static_dir = op.join(app.builder.srcdir, '_static') target_dir = op.join(app.builder.srcdir, 'examples') image_dir = op.join(app.builder.srcdir, 'examples/_images') thumb_dir = op.join(app.builder.srcdir, "example_thumbs") source_dir = op.abspath(op.join(app.builder.srcdir, '..', 'examples')) if not op.exists(static_dir): os.makedirs(static_dir) if not op.exists(target_dir): os.makedirs(target_dir) if not op.exists(image_dir): os.makedirs(image_dir) if not op.exists(thumb_dir): os.makedirs(thumb_dir) if not op.exists(source_dir): os.makedirs(source_dir) banner_data = [] toctree = ("\n\n" ".. toctree::\n" " :hidden:\n\n") contents = "\n\n" # Write individual example files for filename in glob.glob(op.join(source_dir, "*.py")): ex = ExampleGenerator(filename, target_dir) banner_data.append({"title": ex.pagetitle, "url": op.join('examples', ex.htmlfilename), "thumb": op.join(ex.thumbfilename)}) shutil.copyfile(filename, op.join(target_dir, ex.pyfilename)) output = RST_TEMPLATE.format(sphinx_tag=ex.sphinxtag, docstring=ex.docstring, end_line=ex.end_line, fname=ex.pyfilename, img_file=ex.pngfilename) with open(op.join(target_dir, ex.rstfilename), 'w') as f: f.write(output) toctree += ex.toctree_entry() contents += ex.contents_entry() if len(banner_data) < 10: banner_data = (4 * banner_data)[:10] # write index file index_file = op.join(target_dir, 'index.rst') with open(index_file, 'w') as index: index.write(INDEX_TEMPLATE.format(sphinx_tag="example_gallery", toctree=toctree, contents=contents)) def setup(app): app.connect('builder-inited', main) return {'parallel_read_safe': True, 'parallel_write_safe': True}
bsd-3-clause
mahajrod/MACE
scripts/draw_boxplots.py
1
5821
#!/usr/bin/env python __author__ = 'Sergei F. Kliver' import argparse from collections import OrderedDict import pandas as pd import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("-i", "--input", action="store", dest="input", required=True, help="Input file with two columns containing label in the first one and filename in the second." "Boxplots will be drawn in the same order as labels") parser.add_argument("-o", "--output_prefix", action="store", dest="output_prefix", required=True, help="Prefix of output files") parser.add_argument("-d", "--dpi", action="store", dest="dpi", type=int, default=300, help="Dpi of figure") parser.add_argument("--figure_height", action="store", dest="figure_height", type=float, default=6.0, help="Height of figure in inches. Default: 6") parser.add_argument("--figure_width_per_sample", action="store", dest="figure_width_per_sample", type=float, default=1, help="Per sample width of figure in inches. Default: 1") parser.add_argument("-e", "--output_formats", action="store", dest="output_formats", type=lambda s: s.split(","), default=("png", ), help="Comma-separated list of formats (supported by matlotlib) of " "output figure.Default: svg,png") parser.add_argument("-l", "--title", action="store", dest="title", default="Variant density", help="Suptitle of figure. Default: 'Variant density'") parser.add_argument("-w", "--window_size", action="store", dest="window_size", required=True, type=float, help="Size of the windows use for counts.") parser.add_argument("-m", "--multiplicator", action="store", dest="multiplicator", default=1000, type=float, help="Multiplicator for variant counts. " "Default: 1000, i.e variant counts will be scaled to per 1 kbp ") parser.add_argument("--ymin", action="store", dest="ymin", type=float, default=-0.1, help="Minimum limit for Y axis . Default: -0.1") parser.add_argument("--ymax", action="store", dest="ymax", type=float, default=None, help="Maximum limit for Y axis. Default: not set") parser.add_argument("--yticklist", action="store", dest="yticklist", type=lambda s: list(map(float, s.split(","))), default=[0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 2, 3, 4, 5], help="Comma-separated tick list for Y axis. " "Default: 0.05,0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0,1.25,1.5,2,3,4,5") parser.add_argument("--rotation", action="store", dest="rotation", type=float, default=90, help="Rotation angle for X labels. Default: 90") parser.add_argument("--horizontal_lines", action="store", dest="horizontal_lines", type=lambda s: list(map(float, s.split())), help="Comma-separated list of y-coordinates to draw horizontal lines. " "Default: not set") """ parser.add_argument("-q", "--figure_width", action="store", dest="figure_width", default=12, type=int, help="Width of figure in inches. Default: 12") parser.add_argument("-u", "--figure_height_scale_factor", action="store", dest="figure_height_scale_factor", default=0.5, type=float, help="Figure height scale factor. Figure height is calculated in inches as " "int(figure_scale_factor * scaffold_number * sample_number). Default: 0.5") """ parser.add_argument("--subplots_adjust_left", action="store", dest="subplots_adjust_left", type=float, help="Adjust left border of subplots on the figure. Default: matplotlib defaults") parser.add_argument("--subplots_adjust_top", action="store", dest="subplots_adjust_top", type=float, help="Adjust top border of subplots on the figure. Default: matplotlib defaults") parser.add_argument("--subplots_adjust_right", action="store", dest="subplots_adjust_right", type=float, help="Adjust right border of subplots on the figure. Default: matplotlib defaults") parser.add_argument("--subplots_adjust_bottom", action="store", dest="subplots_adjust_bottom", type=float, help="Adjust bottom border of subplots on the figure. Default: matplotlib defaults") parser.add_argument("--only_count", action="store_true", dest="only_count", default=False, help="Only count variants, do not draw them. Default: False") args = parser.parse_args() with open(args.input, "r") as in_fd: file_dict = OrderedDict([line.strip().split("\t") for line in in_fd ]) df_dict = OrderedDict({}) for entry in file_dict: df_dict[entry] = pd.read_csv(file_dict[entry], sep="\t", index_col=["CHROM",]) df_dict[entry]["density"] = df_dict[entry]["All"] / args.window_size * args.multiplicator fig, ax = plt.subplots(figsize=(args.figure_width_per_sample * len(file_dict), args.figure_height), dpi=args.dpi) plt.xticks(rotation=args.rotation) plt.boxplot([df_dict[entry]["density"] for entry in df_dict], labels=list(df_dict.keys())) plt.yticks(args.yticklist) if args.horizontal_lines: for ycoord in args.horizontal_lines: plt.axhline(y=ycoord, color="red", linestyle="--", linewidth=0.5) plt.ylim(ymax=args.ymax, ymin=args.ymin) plt.subplots_adjust(left=args.subplots_adjust_left, right=args.subplots_adjust_right, top=args.subplots_adjust_top, bottom=args.subplots_adjust_bottom) plt.title(args.title) for ext in args.output_formats: plt.savefig("{0}.{1}".format(args.output_prefix, ext))
apache-2.0
ericd/redeem
redeem/Autotune_2.py
2
135061
""" Autotune for Redeem Author: Elias Bakken email: elias(dot)bakken(at)gmail(dot)com Website: http://www.thing-printer.com License: GNU GPL v3: http://www.gnu.org/copyleft/gpl.html Redeem is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Redeem is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Redeem. If not, see <http://www.gnu.org/licenses/>. """ from __future__ import division, print_function import time import logging import numpy as np from threading import Thread try: from Gcode import Gcode from Util import Util except ImportError: from redeem.Gcode import Gcode from redeem.Util import Util class Autotune_2: def __init__(self, heater, temp=200.0, cycles=5, g=None, printer=None): self.heater = heater self.steady_temperature = temp # Steady state starting temperture self.cycles = cycles self.g = g self.printer = printer self.ambient_temp = 22.2 self.output_step = 10.0 # Degrees to step self.stable_start_seconds = 10 self.sleep = 0.1 self.stable_temp = 30.0 self.pre_calibrate_temp = 200.0 self.E = 1.0 # Hysteresis self.tuning_algorithm = "ZN" # Tyreus-Luyben self.plot_temps = [] def cancel(self): self.running = False def send_temperatures(self): while self.running: m105 = Gcode({"message": "M105", "prot": self.g.prot}) self.printer.processor.execute(m105) answer = m105.get_answer() m105.set_answer(answer[2:]) # strip away the "ok" self.printer.reply(m105) self.plot_temps.append("({}, {:10.4f})".format(time.time(), self.heater.get_temperature_raw() )) time.sleep(1) logging.debug(self.plot_temps) def run(self): """ Start the PID autotune loop """ # Reset found peaks self.running = True # Start sending thread self.t = Thread(target=self.send_temperatures) self.t.start() # Enable on-off control self.has_onoff_control = self.heater.onoff_control self.heater.onoff_control = True # Set the standard parameters self.old_ok_range = self.heater.ok_range self.heater.P = 0.5 self.heater.I = 0.0 self.heater.D = 0.0 self.heater.ok_range = 0.5 self.d = self.bias = 0.5 if False: self.heater.max_power = 0.708521336912 max_heat_rate = [] self.heater.set_target_temperature(250) while self.heater.get_temperature() < 250: time.sleep(1) self.heater.set_target_temperature(0) self.running = False self.t.join() return # Run pre-calibration self._pre_calibrate() # Start stepping temperatures logging.debug("Starting cycles") self._tune() logging.debug("Tuning data: "+str(self.temps)) # Smooth the data using hanning window self.smooth_temps = Util.smooth(np.array(self.temps)) # Discover peaks peaks = Util.detect_peaks(self.smooth_temps) valleys = Util.detect_peaks(self.smooth_temps, valley=True) logging.debug("Found peaks: "+str(peaks)) logging.debug("Found valleys: "+str(valleys)) # Calculate the new PID values self.calculate_PID(self.smooth_temps, self.times, peaks, valleys) # Set the new PID settings self.heater.ok_range = self.old_ok_range self.heater.P = self.Kp self.heater.I = self.Ki self.heater.D = self.Kd # Clean shit up self.heater.onoff_control = self.has_onoff_control self.running = False self.t.join() def _pre_calibrate(self): logging.debug("Starting pre-calibrate") # Wait for temperature to reach < 40 deg. self.heater.set_target_temperature(0) while self.heater.get_temperature() > self.stable_temp: time.sleep(1) # Get the noise band from the thermistor self.noise_band = self.heater.get_noise_magnitude() # Rev B has a very low noise floor, so if 0 is returned, # set it to 0.5 self.noise_band = self.noise_band logging.debug("Found noise magnitude: "+str(self.noise_band)) current_temp = self.heater.get_temperature() #self.ambient_temp = current_temp # Set the heater at 25% max power self.heater.max_power = 0.25 heatup_temps = [] # Start heating at 25% dead_time = 0 stop_temp = current_temp + 2.0*self.noise_band self.heater.set_target_temperature(self.pre_calibrate_temp) while self.heater.get_temperature_raw() < stop_temp: time.sleep(0.1) dead_time += 0.1 heatup_temps.append( "({}, {:10.4f})".format(time.time(), self.heater.get_temperature_raw()) ) logging.debug("Found dead time: "+str(dead_time)) # Wait for heatup curve to establish stop_time = 2.0*dead_time while stop_time > 0: time.sleep(1) heatup_temps.append("({}, {:10.4f})".format(time.time(), self.heater.get_temperature_raw() )) stop_time -= 1 # (5) Record slope of heat up curve delta_temps = [] delta_times = [] delta_time = np.minimum(np.maximum(dead_time*4.0, 10.0), 30.0) self.delta_time = delta_time logging.debug("Starting delta measurements, time: "+str(delta_time)) while delta_time > 0: delta_temps.append(self.heater.get_temperature_raw()) delta_times.append(time.time()) time.sleep(0.1) delta_time -= 0.1 heatup_temps.append("({}, {:10.4f})".format(time.time(), self.heater.get_temperature_raw() )) logging.debug("Stopping delta measurements") #logging.debug("Heatup temps: "+str(heatup_temps)) # (6) Calculate heat-up rate heat_rate = (delta_temps[-1]-delta_temps[0])/(delta_times[-1]-delta_times[0]) logging.debug("heat up rate at 25%: "+str(heat_rate)+" deg/s") # (7) Calculate max heat rate self.max_heat_rate = heat_rate*4.0# * 1.16 logging.debug("Max heat rate: "+str(self.max_heat_rate)+" deg/s") # (8) Estimate cutoff point self.cutoff_band = self.max_heat_rate*dead_time logging.debug("Cutoff band: "+str(self.cutoff_band)+" deg") # (9) Raise temp until cutoff. cutoff_temp = self.pre_calibrate_temp - self.cutoff_band self.heater.max_power = 1.0 cutoff_temps = [] cutoff_times = [] logging.debug("Cutoff temp: "+str(cutoff_temp)+ " deg") while self.heater.get_temperature_raw() < cutoff_temp: cutoff_temps.append(self.heater.get_temperature_raw()) cutoff_times.append(time.time()) time.sleep(0.1) # (10) Calculate slope in degrees/second, store as setpoint_heating_rate self.setpoint_heating_rate = (cutoff_temps[-1]-cutoff_temps[-20])/(cutoff_times[-1]-cutoff_times[-20]) logging.debug("Found setpoint heating rate: "+str(self.setpoint_heating_rate)) if self.setpoint_heating_rate > self.max_heat_rate: self.max_heat_rate = self.setpoint_heating_rate logging.debug("Updated max heat rate to: "+str(self.setpoint_heating_rate)) # (11) Set power to zero self.heater.set_target_temperature(0) logging.debug("Disabling heater and looking for peak") # (12) Find temp peak highest_temp = self.heater.get_temperature_raw() new_temp = highest_temp while new_temp >= highest_temp: time.sleep(0.1) highest_temp = new_temp new_temp = self.heater.get_temperature_raw() logging.debug("Found max peak: "+str(highest_temp)+" deg") # (13) Adding dead time for kicks dead_time = highest_temp-20 while self.heater.get_temperature_raw() > dead_time: time.sleep(0.1) # (14) Record cooling rates logging.debug("Started recording cooling rates") cooling_temps = [] cooling_times = [] cooldown_temps = [] # Get 120 seconds of cooling data for temp in range(1200): cooling_temps.append(self.heater.get_temperature_raw()) cooling_times.append(time.time()) time.sleep(0.1) cooldown_temps.append("({}, {:10.4f})".format(time.time(), self.heater.get_temperature_raw() )) temps = ",".join(cooldown_temps) logging.debug("Cooling temps: "+str(temps)) diffs = np.array([(cooling_temps[200+(i*200)]-cooling_temps[0+(i*200)]) for i in range(5)]) times = np.array([(cooling_times[200+(i*200)]-cooling_times[0+(i*200)]) for i in range(5)]) slopes = abs(diffs/times) temp_deltas = [cooling_temps[100+(i*200)]-self.ambient_temp for i in range(5)] # Wait until we are below cutoff-temp, so we can get some traction while self.heater.get_temperature_raw() > cutoff_temp - 20.0: time.sleep(1) # (15) Record setpoint cooling rate self.cooling_rate = slopes[0] logging.debug("Cooling rate: "+str(self.cooling_rate)+ " deg/s") logging.debug("Diffs: "+str(diffs)+ " deg") logging.debug("Times: "+str(times)+ " s") logging.debug("Cooling rates: "+str(slopes)+ " deg/s") logging.debug("Deltas: "+str(temp_deltas)+ " deg") # (16) Calculate heat_loss_constant self.heat_loss_constant = [ slopes[n]/temp_deltas[n] for n in range(len(slopes))] logging.debug("Heat loss constant: "+str(self.heat_loss_constant)) # (17) Calculate heat_loss_K self.heat_loss_k = np.average(self.heat_loss_constant) logging.debug("Heat loss K: "+str(self.heat_loss_k)) # (18) This is Python, no need to delete squat. # (19) Calculate gain skew self.gain_skew = np.sqrt(self.setpoint_heating_rate/self.cooling_rate) logging.debug("Gain skew: "+str(self.gain_skew)) logging.debug("Pre calibrate done") def _tune(self): # (1) Calculate rate of heat loss in degrees/second at desired setpoint using heat loss model, setpoint_loss = self.heat_loss_k * (self.steady_temperature - self.ambient_temp) logging.debug("Setpoint loss: "+str(setpoint_loss)) # (2) Calculate setpoint heater power requirement, self.setpoint_power = setpoint_loss / self.max_heat_rate logging.debug("Setpoint_power: "+str(self.setpoint_power)) # (3) Calculate high-cycle power self.high_cycle_power = self.setpoint_power*(1.0+1.0/(self.gain_skew**2)) logging.debug("High-cycle_power: "+str(self.high_cycle_power)) # (4) Check if high-cycle power exceeds max_PWM if self.high_cycle_power > 1.0: # notify user the heater is too weak to cycle effectively at the chosen setpoint, # and change setpoint_power=max_PWM/2, ignore gain_skew, and use high-cycle power = max_PWM. # TODO: fix this logging.warning("High cycle power exceedes max. Setting to 1.0") self.high_cycle_power = 1.0 # (5) Apply max heater power until reaching temp=setpoint - cutoff_band cutoff_temp = self.steady_temperature - self.cutoff_band self.heater.max_power = 1.0 self.heater.set_target_temperature(self.steady_temperature) logging.debug("Cutoff temp: "+str(cutoff_temp)+ " deg") while self.heater.get_temperature_raw() < cutoff_temp: time.sleep(0.1) logging.debug("Cutoff temp reached") self.heater.set_target_temperature(0) logging.debug("Disabling heater and looking for peak") highest_temp = self.heater.get_temperature_raw() new_temp = highest_temp while new_temp >= highest_temp: time.sleep(0.1) highest_temp = new_temp new_temp = self.heater.get_temperature_raw() logging.debug("Found max peak: "+str(highest_temp)+" deg") # (6) Apply setpoint_power heater power and hold until stable self.heater.max_power = self.setpoint_power # Set temp to something above the desired. setpoint power should enforce this. self.heater.set_target_temperature(230) while self.heater.get_noise_magnitude(300) > 1.0: time.sleep(1) logging.debug("Stable temp reached") # (7) Replace the tuning setpoint with this stable temp self.steady_temperature = self.heater.get_temperature() # Set the heater power same as fall time self.heater.max_power = self.high_cycle_power self.temps = [] self.times = [] for cycle in range(self.cycles): logging.debug("Doing cycle: "+str(cycle)) # (8) Turn off heater and wait until temp<(setpoint-E) self.heater.set_target_temperature(self.steady_temperature - self.output_step) while self.heater.get_temperature_raw() > self.steady_temperature - self.E: self.temps.append(self.heater.get_temperature_raw()) self.times.append(time.time()) time.sleep(0.1) # (9) Turn on heater at high-cycle power and wait until temp>(setpoint+E) self.heater.set_target_temperature(self.steady_temperature + self.output_step) while self.heater.get_temperature_raw() < self.steady_temperature + self.E: self.temps.append(self.heater.get_temperature_raw()) self.times.append(time.time()) time.sleep(0.1) # (10) Repeat steps 8,9 cycling power logging.debug("Cycles completed") self.heater.set_target_temperature(0) smooth = Util.smooth(np.array(self.temps)) peaks = Util.detect_peaks(smooth) diff = np.diff(smooth[peaks[-2:]]) logging.debug("Difference between last two peaks: "+str(diff)+" deg. C.") self.heater.max_power = 1.0 def calculate_PID(self, temps, times, peaks, valleys): abs_max = temps[peaks[-2]] abs_min = temps[valleys[-1]] # (12) Calculate amplitude response a_single=(abs_max-abs_min)/2.0 d_single=(self.high_cycle_power)/2.0 # (13) Geometric mean #d_single = np.sqrt((self.setpoint_power-0)*(self.high_cycle_power-self.setpoint_power)) # Calculate the oscillation period of the peaks Pu = (times[peaks[-2]]-times[peaks[-3]]) # Calculate the ultimate gain Ku=(4.0/np.pi) * (d_single / np.sqrt(a_single**2+self.E**2)) print("Temperature diff: "+str(abs_max-abs_min)+" deg. C") print("Oscillation period: "+str(Pu)+" seconds") print("Ultimate gain: "+str(Ku)) # Tyreus-Luyben: if self.tuning_algorithm == "TL": Kc = 0.45*Ku Ti = 2.2*Pu Td = Pu/6.3 # Zieger-Nichols elif self.tuning_algorithm == "ZN": Kc = 0.6*Ku Ti = Pu/2.0 Td = Pu/8.0 # Convert from Standard to Ideal form self.Kp = Kc self.Ki = Kc / Ti self.Kd = Kc * Td self.Ku = Ku self.Pu = Pu self.max_temp = abs_max self.min_temp = abs_min if __name__ == '__main__': import matplotlib.pyplot as plt data = np.array([198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.11271769876066, 198.11271769876066, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.11271769876066, 198.11271769876066, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.860543531522, 197.860543531522, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.98647629017267, 197.98647629017267, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.2354565250131, 197.2354565250131, 197.11134403855397, 197.11134403855397, 197.11134403855397, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.74079002890164, 196.74079002890164, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.74079002890164, 196.74079002890164, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.2508259252321, 196.2508259252321, 196.2508259252321, 195.76547428893474, 195.76547428893474, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.76547428893474, 195.76547428893474, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.74079002890164, 196.74079002890164, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.609597878822, 197.609597878822, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 197.98647629017267, 198.23926929228196, 198.23926929228196, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.4933092296128, 198.4933092296128, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.7486086056315, 198.7486086056315, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.39245079934784, 199.39245079934784, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.7048101689802, 200.7048101689802, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.83790567772365, 200.83790567772365, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.36613261681248, 198.36613261681248, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.23926929228196, 198.23926929228196, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.35986867835635, 197.35986867835635, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.35986867835635, 197.35986867835635, 197.11134403855397, 197.11134403855397, 197.11134403855397, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.61786170941832, 196.61786170941832, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.04590455098526, 195.04590455098526, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.1651380178859, 195.1651380178859, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.12905905512292, 196.12905905512292, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.2354565250131, 197.2354565250131, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.87673454026168, 198.87673454026168, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 200.04444765455628, 200.04444765455628, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.43964745191022, 200.43964745191022, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.10513395354656, 201.10513395354656, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.7048101689802, 200.7048101689802, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.7048101689802, 200.7048101689802, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 201.10513395354656, 201.10513395354656, 201.10513395354656, 200.83790567772365, 200.83790567772365, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.43964745191022, 200.43964745191022, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.30757670067032, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.39245079934784, 199.39245079934784, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.13394691827176, 199.13394691827176, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.609597878822, 197.609597878822, 197.609597878822, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 196.9875297586907, 196.9875297586907, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.12905905512292, 195.76547428893474, 195.76547428893474, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.76547428893474, 195.76547428893474, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.5717066395054, 194.5717066395054, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.76547428893474, 195.76547428893474, 195.76547428893474, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.2508259252321, 196.2508259252321, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.49522585722917, 196.49522585722917, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.609597878822, 197.609597878822, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.609597878822, 197.609597878822, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.98647629017267, 197.98647629017267, 197.98647629017267, 198.11271769876066, 198.11271769876066, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.87673454026168, 198.87673454026168, 198.87673454026168, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.39245079934784, 199.39245079934784, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.17584401440791, 200.17584401440791, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.83790567772365, 200.83790567772365, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.2392703446106, 201.2392703446106, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.2392703446106, 201.2392703446106, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.10513395354656, 201.10513395354656, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.2392703446106, 201.2392703446106, 201.2392703446106, 201.10513395354656, 201.10513395354656, 200.83790567772365, 200.83790567772365, 200.83790567772365, 201.2392703446106, 201.2392703446106, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 201.10513395354656, 201.10513395354656, 201.10513395354656, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.57205801974663, 200.57205801974663, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.17584401440791, 200.17584401440791, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.65225934091603, 199.65225934091603, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.13394691827176, 199.13394691827176, 199.13394691827176, 198.87673454026168, 198.87673454026168, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.87673454026168, 198.87673454026168, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.23926929228196, 198.23926929228196, 198.23926929228196, 197.98647629017267, 197.98647629017267, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.609597878822, 197.609597878822, 197.609597878822, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.37288106250492, 196.37288106250492, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.64484677604037, 195.64484677604037, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.76547428893474, 195.76547428893474, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.5717066395054, 194.5717066395054, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.5717066395054, 194.5717066395054, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.76547428893474, 195.76547428893474, 195.76547428893474, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.73491789878778, 197.73491789878778, 197.860543531522, 197.860543531522, 197.860543531522, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.6208006992352, 198.6208006992352, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.87673454026168, 198.87673454026168, 198.87673454026168, 199.0051801062051, 199.0051801062051, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.57205801974663, 200.57205801974663, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.10513395354656, 201.10513395354656, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 201.10513395354656, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.7048101689802, 200.7048101689802, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.97134633753387, 200.97134633753387, 200.97134633753387, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.83790567772365, 200.97134633753387, 200.97134633753387, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.57205801974663, 200.43964745191022, 200.43964745191022, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.57205801974663, 200.57205801974663, 200.43964745191022, 200.43964745191022, 200.43964745191022, 200.57205801974663, 200.57205801974663, 200.7048101689802, 200.7048101689802, 200.7048101689802, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.6208006992352, 198.6208006992352, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.860543531522, 197.860543531522, 197.860543531522, 197.609597878822, 197.609597878822, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.2354565250131, 197.2354565250131, 196.86401223541463, 196.86401223541463, 196.86401223541463, 197.2354565250131, 197.2354565250131, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.1651380178859, 195.1651380178859, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.80826096883465, 194.80826096883465, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.64484677604037, 195.64484677604037, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.9875297586907, 196.9875297586907, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.2354565250131, 197.2354565250131, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.860543531522, 197.860543531522, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.860543531522, 197.860543531522, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.23926929228196, 198.23926929228196, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.87673454026168, 198.87673454026168, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 198.87673454026168, 199.13394691827176, 199.13394691827176, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557]) data = np.array([197.860543531522, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.23926929228196, 198.23926929228196, 197.860543531522, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.860543531522, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.860543531522, 197.860543531522, 197.609597878822, 197.609597878822, 197.609597878822, 197.48458196924713, 197.48458196924713, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.2354565250131, 197.2354565250131, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 196.86401223541463, 196.86401223541463, 197.11134403855397, 197.11134403855397, 197.11134403855397, 196.9875297586907, 196.9875297586907, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.61786170941832, 196.61786170941832, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.61786170941832, 196.61786170941832, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.64484677604037, 195.64484677604037, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.52450072169233, 195.52450072169233, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.40443479213207, 195.40443479213207, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.61786170941832, 196.61786170941832, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.86401223541463, 196.86401223541463, 196.86401223541463, 197.11134403855397, 197.11134403855397, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.2354565250131, 197.2354565250131, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.2354565250131, 197.2354565250131, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.2354565250131, 197.2354565250131, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 198.23926929228196, 198.23926929228196, 198.23926929228196, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 198.11271769876066, 198.11271769876066, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.87673454026168, 198.87673454026168, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.5221911576557, 199.5221911576557, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.17584401440791, 200.17584401440791, 200.17584401440791, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.17584401440791, 200.17584401440791, 200.17584401440791, 199.78265702431617, 199.78265702431617, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.13394691827176, 199.13394691827176, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.13394691827176, 199.13394691827176, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.11134403855397, 197.11134403855397, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.11134403855397, 197.11134403855397, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.52450072169233, 195.52450072169233, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.1651380178859, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.33623142460067, 194.33623142460067, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.5717066395054, 194.5717066395054, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.5717066395054, 194.5717066395054, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.45383477106168, 194.45383477106168, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.76547428893474, 195.76547428893474, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.98647629017267, 197.98647629017267, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.860543531522, 197.860543531522, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 199.13394691827176, 199.13394691827176, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.13394691827176, 199.13394691827176, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.04444765455628, 200.04444765455628, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.43964745191022, 200.43964745191022, 200.30757670067032, 200.30757670067032, 200.30757670067032, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.30757670067032, 200.30757670067032, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.17584401440791, 200.17584401440791, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.26303660311532, 199.26303660311532, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.13394691827176, 199.13394691827176, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.87673454026168, 198.87673454026168, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.36613261681248, 198.36613261681248, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.73491789878778, 197.73491789878778, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.2354565250131, 197.2354565250131, 197.2354565250131, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.12905905512292, 196.12905905512292, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.12905905512292, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.45383477106168, 194.45383477106168, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.45383477106168, 194.45383477106168, 193.9850200979796, 193.9850200979796, 193.9850200979796, 194.10182532165618, 194.10182532165618, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.86847846175363, 193.86847846175363, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 194.10182532165618, 194.10182532165618, 194.10182532165618, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.75219919984693, 193.75219919984693, 193.75219919984693, 193.75219919984693, 193.75219919984693, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.86847846175363, 193.86847846175363, 193.75219919984693, 193.75219919984693, 193.75219919984693, 193.86847846175363, 193.86847846175363, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.9850200979796, 193.9850200979796, 194.10182532165618, 194.10182532165618, 194.10182532165618, 193.86847846175363, 193.86847846175363, 193.9850200979796, 193.9850200979796, 193.9850200979796, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.21889535404324, 194.21889535404324, 194.21889535404324, 193.9850200979796, 193.9850200979796, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.10182532165618, 194.10182532165618, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.45383477106168, 194.45383477106168, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.76547428893474, 195.76547428893474, 195.76547428893474, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.76547428893474, 196.12905905512292, 196.12905905512292, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.61786170941832, 196.61786170941832, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 196.86401223541463, 196.86401223541463, 196.86401223541463, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.35986867835635, 197.35986867835635, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.36613261681248, 198.36613261681248, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.36613261681248, 198.36613261681248, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.5221911576557, 199.5221911576557, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 200.17584401440791, 200.17584401440791, 200.17584401440791, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.17584401440791, 200.17584401440791, 200.17584401440791, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.11271769876066, 198.11271769876066, 198.11271769876066, 198.4933092296128, 198.4933092296128, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.860543531522, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.48458196924713, 197.48458196924713, 197.609597878822, 197.609597878822, 197.609597878822, 197.35986867835635, 197.35986867835635, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.35986867835635, 197.35986867835635, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.45383477106168, 194.45383477106168, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.21889535404324, 194.21889535404324, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.86847846175363, 194.10182532165618, 194.10182532165618, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.86847846175363, 193.86847846175363, 193.86847846175363, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 193.9850200979796, 193.9850200979796, 194.10182532165618, 194.10182532165618, 194.10182532165618, 193.86847846175363, 193.86847846175363, 194.21889535404324, 194.21889535404324, 194.21889535404324, 193.9850200979796, 193.9850200979796, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.92694596428123, 194.92694596428123, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 194.80826096883465, 194.80826096883465, 194.80826096883465, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.61786170941832, 196.61786170941832, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.9875297586907, 196.9875297586907, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.609597878822, 197.609597878822, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.860543531522, 197.98647629017267, 197.98647629017267, 198.23926929228196, 198.23926929228196, 198.23926929228196, 197.98647629017267, 197.98647629017267, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.4933092296128, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.7486086056315, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.0051801062051, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.5221911576557, 199.5221911576557, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.26303660311532, 199.26303660311532, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 200.04444765455628, 200.04444765455628, 199.91338589547337, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.91338589547337, 199.91338589547337, 199.65225934091603, 199.65225934091603, 199.65225934091603, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.78265702431617, 199.65225934091603, 199.65225934091603, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.5221911576557, 199.65225934091603, 199.65225934091603, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.5221911576557, 199.5221911576557, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.39245079934784, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.26303660311532, 199.26303660311532, 199.26303660311532, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 199.13394691827176, 198.7486086056315, 198.7486086056315, 199.0051801062051, 199.0051801062051, 199.0051801062051, 198.7486086056315, 198.7486086056315, 198.87673454026168, 198.87673454026168, 198.87673454026168, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.860543531522, 197.860543531522, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.609597878822, 197.609597878822, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.35986867835635, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 197.11134403855397, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 197.11134403855397, 196.86401223541463, 196.86401223541463, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.61786170941832, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.49522585722917, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.2508259252321, 196.2508259252321, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.00757907152695, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.76547428893474, 195.76547428893474, 195.76547428893474, 195.64484677604037, 195.64484677604037, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.45383477106168, 194.45383477106168, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.33623142460067, 194.33623142460067, 194.33623142460067, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 193.9850200979796, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 194.10182532165618, 193.9850200979796, 193.9850200979796, 193.9850200979796, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.21889535404324, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.21889535404324, 194.21889535404324, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.68984828443138, 194.68984828443138, 194.33623142460067, 194.33623142460067, 194.33623142460067, 194.5717066395054, 194.5717066395054, 194.45383477106168, 194.45383477106168, 194.45383477106168, 194.33623142460067, 194.33623142460067, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.68984828443138, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.5717066395054, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.80826096883465, 194.80826096883465, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 194.92694596428123, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.04590455098526, 195.04590455098526, 195.04590455098526, 195.28464766272617, 195.28464766272617, 195.1651380178859, 195.1651380178859, 195.1651380178859, 195.40443479213207, 195.40443479213207, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.28464766272617, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.40443479213207, 195.40443479213207, 195.40443479213207, 195.52450072169233, 195.52450072169233, 195.64484677604037, 195.64484677604037, 195.64484677604037, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 195.88638460334346, 196.00757907152695, 196.00757907152695, 195.76547428893474, 195.76547428893474, 195.76547428893474, 196.00757907152695, 196.00757907152695, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.12905905512292, 196.00757907152695, 196.00757907152695, 196.00757907152695, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.2508259252321, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.37288106250492, 196.49522585722917, 196.49522585722917, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.74079002890164, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 196.86401223541463, 197.11134403855397, 197.11134403855397, 197.11134403855397, 196.9875297586907, 196.9875297586907, 196.9875297586907, 197.11134403855397, 197.11134403855397, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.2354565250131, 197.35986867835635, 197.35986867835635, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.48458196924713, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.609597878822, 197.73491789878778, 197.73491789878778, 197.73491789878778, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 197.98647629017267, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.11271769876066, 198.11271769876066, 198.11271769876066, 197.98647629017267, 197.98647629017267, 198.23926929228196, 198.23926929228196, 198.23926929228196, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.36613261681248, 198.4933092296128, 198.4933092296128, 198.6208006992352, 198.6208006992352, 198.6208006992352, 198.4933092296128, 198.4933092296128, 198.7486086056315, 198.7486086056315, 198.7486086056315, 198.6208006992352, 198.6208006992352, 198.87673454026168, 198.87673454026168, 198.87673454026168]) #cooling_data = np.array([106.5000, 106.5000, 105.5330, 105.5330, 104.5670, 104.5670, 104.5670, 103.6000, 103.6000, 102.6330, 102.6330, 101.6670, 101.6670, 100.7000, 100.7000, 99.7333, 99.7333, 98.7667, 98.7667, 97.8000, 97.8000, 96.8333, 95.8667, 95.8667, 94.9000, 94.9000, 93.9333, 93.9333, 92.9667, 92.9667, 92.0000, 92.0000, 91.0333, 91.0333, 91.0333, 90.0667, 90.0667, 89.1000, 89.1000, 88.1333, 88.1333, 88.1333, 87.1667, 87.1667, 86.2000, 86.2000, 86.2000, 85.2333, 85.2333, 84.2667, 84.2667, 83.3000, 83.3000, 83.3000, 82.3333, 82.3333, 82.3333, 81.3667, 81.3667, 80.4000, 80.4000, 80.4000, 79.4333, 79.4333, 79.4333, 78.4667, 78.4667, 77.5000, 77.5000, 77.5000, 77.5000, 76.5333, 76.5333, 75.5667, 75.5667, 75.5667, 74.6000, 74.6000, 74.6000, 74.6000, 73.6333, 73.6333, 73.6333, 72.6667, 72.6667, 72.6667, 71.7000, 71.7000, 71.7000, 71.7000, 70.7333, 70.7333, 70.7333, 69.7667, 69.7667, 69.7667, 69.7667, 68.8000, 68.8000, 68.8000, 67.8333, 67.8333, 67.8333, 67.8333, 66.8667, 66.8667, 66.8667, 66.8667, 65.9000, 65.9000, 65.9000, 65.9000, 64.9333, 64.9333, 64.9333, 63.9667, 63.9667, 63.9667, 63.9667, 63.9667, 63.0000, 63.0000, 63.0000, 63.0000, 62.0333, 62.0333, 62.0333, 62.0333, 61.0667, 61.0667, 61.0667, 61.0667, 60.1000, 60.1000, 60.1000, 60.1000, 60.1000, 59.1333]) times = np.array(range(len(data)))*0.1 class MyClass: def __init__(self): self.sleep = 0.1 tune = Autotune(MyClass()) tune.high_cycle_power = 0.540748960518 tune.setpoint_power = 0.375799612552 tune.tuning_algorithm = "ZN" peaks = Util.detect_peaks(data) data = Util.smooth(data) peaks = Util.detect_peaks(data, show=True) valleys = Util.detect_peaks(data, valley=True, show=True) tune.calculate_PID(data, times, peaks, valleys) print(tune.Kp) print(tune.Ki) print(tune.Kd)
gpl-3.0
PythonCharmers/orange3
Orange/widgets/classify/owclassificationtreegraph.py
2
18846
import sys import numpy from sklearn.tree._tree import TREE_LEAF from Orange.widgets.classify.owtreeviewer2d import * from Orange.data import Table from Orange.classification.tree import TreeClassifier from Orange.preprocess.transformation import Indicator from Orange.widgets.utils.colorpalette import ColorPaletteDlg from Orange.widgets.settings import \ Setting, ContextSetting, ClassValuesContextHandler from Orange.widgets import gui class OWClassificationTreeGraph(OWTreeViewer2D): name = "Classification Tree Viewer" description = "Graphical visualization of a classification tree." icon = "icons/ClassificationTree.svg" settingsHandler = ClassValuesContextHandler() target_class_index = ContextSetting(0) color_settings = Setting(None) selected_color_settings_index = Setting(0) inputs = [("Classification Tree", TreeClassifier, "ctree")] outputs = [("Data", Table)] def __init__(self): super().__init__() self.domain = None self.classifier = None self.dataset = None self.clf_dataset = None self.scene = TreeGraphicsScene(self) self.scene_view = TreeGraphicsView(self.scene) self.scene_view.setViewportUpdateMode(QGraphicsView.FullViewportUpdate) self.mainArea.layout().addWidget(self.scene_view) self.toggle_zoom_slider() self.scene.selectionChanged.connect(self.update_selection) box = gui.widgetBox(self.controlArea, "Nodes", addSpace=True) self.target_combo = gui.comboBox( box, self, "target_class_index", orientation=0, items=[], label="Target class", callback=self.toggle_target_class, contentsLength=8) gui.separator(box) gui.button(box, self, "Set Colors", callback=self.set_colors) dlg = self.create_color_dialog() self.scene.colorPalette = dlg.getDiscretePalette("colorPalette") gui.rubber(self.controlArea) def sendReport(self): if self.tree: tclass = str(self.targetCombo.currentText()) tsize = "%i nodes, %i leaves" % (orngTree.countNodes(self.tree), orngTree.countLeaves(self.tree)) else: tclass = tsize = "N/A" self.reportSettings( "Information", [("Target class", tclass), ("Line widths", ["Constant", "Proportion of all instances", "Proportion of parent's instances"][self.line_width_method]), ("Tree size", tsize)]) super().sendReport() def set_colors(self): dlg = self.create_color_dialog() if dlg.exec_(): self.color_settings = dlg.getColorSchemas() self.selected_color_settings_index = dlg.selectedSchemaIndex self.scene.colorPalette = dlg.getDiscretePalette("colorPalette") self.scene.update() self.toggle_node_color() def create_color_dialog(self): c = ColorPaletteDlg(self, "Color Palette") c.createDiscretePalette("colorPalette", "Discrete Palette") c.setColorSchemas(self.color_settings, self.selected_color_settings_index) return c def set_node_info(self): for node in self.scene.nodes(): node.set_rect(QRectF()) self.update_node_info(node) w = max([n.rect().width() for n in self.scene.nodes()] + [0]) if w > self.max_node_width: w = self.max_node_width for node in self.scene.nodes(): node.set_rect(QRectF(node.rect().x(), node.rect().y(), w, node.rect().height())) self.scene.fix_pos(self.root_node, 10, 10) def update_node_info(self, node): distr = node.get_distribution() total = int(node.num_instances()) if self.target_class_index: tabs = distr[self.target_class_index - 1] text = "" else: modus = node.majority() tabs = distr[modus] text = self.domain.class_vars[0].values[modus] + "<br/>" if tabs > 0.999: text += "100%, {}/{}".format(total, total) else: text += "{:2.1f}%, {}/{}".format(100 * tabs, int(total * tabs), total) if not node.is_leaf(): attribute = self.domain.attributes[node.attribute()] if isinstance(attribute.compute_value, Indicator): attribute = attribute.compute_value.variable text += "<hr/>{}".format(attribute.name) node.setHtml('<p style="line-height: 120%; margin-bottom: 0">' '{}</p>'. format(text)) def activate_loaded_settings(self): if not self.tree: return super().activate_loaded_settings() self.set_node_info() self.toggle_node_color() def toggle_node_size(self): self.set_node_info() self.scene.update() self.scene_view.repaint() def toggle_node_color(self): palette = self.scene.colorPalette for node in self.scene.nodes(): distr = node.get_distribution() total = numpy.sum(distr) if self.target_class_index: p = distr[self.target_class_index - 1] / total color = palette[self.target_class_index].light(200 - 100 * p) else: modus = node.majority() p = distr[modus] / (total or 1) color = palette[int(modus)].light(400 - 300 * p) node.backgroundBrush = QBrush(color) self.scene.update() def toggle_target_class(self): self.toggle_node_color() self.set_node_info() self.scene.update() def ctree(self, clf=None): self.clear() self.closeContext() self.classifier = clf if clf is None: self.info.setText('No tree.') self.tree = None self.root_node = None self.dataset = None else: self.tree = clf.skl_model.tree_ self.domain = clf.domain self.dataset = getattr(clf, "instances", None) if self.dataset is not None and self.dataset.domain != self.domain: self.clf_dataset = \ Table.from_table(self.classifier.domain, self.dataset) else: self.clf_dataset = self.dataset self.target_combo.clear() self.target_combo.addItem("None") self.target_combo.addItems(self.domain.class_vars[0].values) self.target_class_index = 0 self.openContext(self.domain.class_var) self.root_node = self.walkcreate(self.tree, 0, None) self.info.setText( '{} nodes, {} leaves'. format(self.tree.node_count, numpy.count_nonzero( self.tree.children_left == TREE_LEAF))) self.scene.fix_pos(self.root_node, self._HSPACING, self._VSPACING) self.activate_loaded_settings() self.scene_view.centerOn(self.root_node.x(), self.root_node.y()) self.update_node_tooltips() self.scene.update() self.send("Data", None) def walkcreate(self, tree, node_id, parent=None): node = ClassificationTreeNode(tree, self.domain, parent, None, self.scene, i=node_id) if parent: parent.graph_add_edge( GraphicsEdge(None, self.scene, node1=parent, node2=node)) left_child_index = tree.children_left[node_id] right_child_index = tree.children_right[node_id] if left_child_index != TREE_LEAF: self.walkcreate(tree, node_id=left_child_index, parent=node) if right_child_index != TREE_LEAF: self.walkcreate(tree, node_id=right_child_index, parent=node) return node def node_tooltip(self, node): if node.i > 0: text = " AND<br/>".join( "%s %s %s" % (n, s, v) for n, s, v in node.rule()) else: text = "Root" return text def update_selection(self): if self.dataset is None or self.classifier is None or self.tree is None: return items = [item for item in self.scene.selectedItems() if isinstance(item, ClassificationTreeNode)] selected_leaves = [_leaf_indices(self.tree, item.node_id) for item in items] if selected_leaves: selected_leaves = numpy.unique(numpy.hstack(selected_leaves)) all_leaves = _leaf_indices(self.tree, 0) if len(selected_leaves) > 0: ind = numpy.searchsorted(all_leaves, selected_leaves, side="left") leaf_samples = _assign_samples(self.tree, self.clf_dataset.X) leaf_samples = [leaf_samples[i] for i in ind] indices = numpy.hstack(leaf_samples) else: indices = [] if len(indices): data = self.dataset[indices] else: data = None self.send("Data", data) class PieChart(QGraphicsRectItem): def __init__(self, dist, r, parent, scene): super().__init__(parent, scene) self.dist = dist self.r = r # noinspection PyPep8Naming def setR(self, r): self.prepareGeometryChange() self.r = r def boundingRect(self): return QRectF(-self.r, -self.r, 2*self.r, 2*self.r) def paint(self, painter, option, widget=None): dist_sum = sum(self.dist) start_angle = 0 colors = self.scene().colorPalette for i in range(len(self.dist)): angle = self.dist[i] * 16 * 360. / dist_sum if angle == 0: continue painter.setBrush(QBrush(colors[i])) painter.setPen(QPen(colors[i])) painter.drawPie(-self.r, -self.r, 2 * self.r, 2 * self.r, int(start_angle), int(angle)) start_angle += angle painter.setPen(QPen(Qt.white)) painter.setBrush(QBrush()) painter.drawEllipse(-self.r, -self.r, 2 * self.r, 2 * self.r) def _subnode_range(tree, node_id): right = left = node_id if tree.children_left[left] == TREE_LEAF: assert tree.children_right[node_id] == TREE_LEAF return node_id, node_id else: left = tree.children_left[left] # run down to the right most node while tree.children_right[right] != TREE_LEAF: right = tree.children_right[right] return left, right + 1 def _leaf_indices(tree, node_id): start, stop = _subnode_range(tree, node_id) if start == stop: # leaf return numpy.array([node_id], dtype=int) else: isleaf = tree.children_left[start: stop] == TREE_LEAF assert numpy.flatnonzero(isleaf).size > 0 return start + numpy.flatnonzero(isleaf) def _assign_samples(tree, X): def assign(node_id, indices): if tree.children_left[node_id] == TREE_LEAF: return [indices] else: feature_idx = tree.feature[node_id] thresh = tree.threshold[node_id] column = X[indices, feature_idx] leftmask = column <= thresh leftind = assign(tree.children_left[node_id], indices[leftmask]) rightind = assign(tree.children_right[node_id], indices[~leftmask]) return list.__iadd__(leftind, rightind) N, _ = X.shape items = numpy.arange(N, dtype=int) leaf_indices = assign(0, items) return leaf_indices class ClassificationTreeNode(GraphicsNode): def __init__(self, tree, domain, parent=None, parent_item=None, scene=None, i=0, distr=None): super().__init__(tree, parent, parent_item, scene) self.distribution = distr self.tree = tree self.domain = domain self.i = i self.node_id = i self.parent = parent self.pie = PieChart(self.get_distribution(), 8, self, scene) fm = QFontMetrics(self.document().defaultFont()) self.attr_text_w = fm.width(str(self.attribute() if self.attribute() else "")) self.attr_text_h = fm.lineSpacing() self.line_descent = fm.descent() self._rect = None def get_distribution(self): """ :return: Distribution of class values. """ if self.is_leaf(): counts = self.tree.value[self.node_id] else: leaf_ind = _leaf_indices(self.tree, self.node_id) values = self.tree.value[leaf_ind] counts = numpy.sum(values, axis=0) assert counts.shape[0] == 1, "n_outputs > 1 " counts = counts[0] counts_sum = numpy.sum(counts) if counts_sum > 0: counts /= counts_sum return counts def num_instances(self): """ :return: Number of instances in a particular node. """ return self.tree.n_node_samples[self.i] def split_condition(self): """ :return: split condition to reach a particular node. """ if self.i > 0: attribute = self.domain.attributes[self.attribute()] parent_attr = self.domain.attributes[self.parent.attribute()] parent_attr_cv = parent_attr.compute_value is_left_child = self.tree.children_left[self.parent.i] == self.i if isinstance(parent_attr_cv, Indicator) and \ hasattr(parent_attr_cv.variable, "values"): values = parent_attr_cv.variable.values return values[abs(parent_attr_cv.value - is_left_child)] \ if len(values) == 2 \ else "≠ " * is_left_child + values[parent_attr_cv.value] else: thresh = self.tree.threshold[self.parent.i] return "%s %s" % ([">", "<="][is_left_child], attribute.str_val(thresh)) else: return "" def rule(self): """ :return: Rule to reach node as list of tuples (attr index, sign, threshold) """ # TODO: this is easily extended to Classification Rules-compatible form return self.rulew(i=self.i) def rulew(self, i=0): """ :param i: Index of current node. :return: Rule to reach node i, represented as list of tuples (attr name, sign, threshold) """ if i > 0: parent_attr = self.domain.attributes[self.parent.attribute()] parent_attr_cv = parent_attr.compute_value is_left_child = self.tree.children_left[self.parent.i] == i pr = self.parent.rule() if isinstance(parent_attr_cv, Indicator) and \ hasattr(parent_attr_cv.variable, "values"): values = parent_attr_cv.variable.values attr_name = parent_attr_cv.variable.name sign = ["=", "≠"][is_left_child * (len(values) != 2)] value = values[abs(parent_attr_cv.value - is_left_child * (len(values) == 2))] else: attr_name = parent_attr.name sign = [">", "<="][is_left_child] value = "%.3f" % self.tree.threshold[self.parent.i] pr.append((attr_name, sign, value)) return pr else: return [] def is_leaf(self): """ :return: Node is leaf """ return self.tree.children_left[self.node_id] < 0 and \ self.tree.children_right[self.node_id] < 0 def attribute(self): """ :return: Node attribute index. """ return self.tree.feature[self.node_id] def majority(self): """ :return: Majority class at node. """ return numpy.argmax(self.get_distribution()) def update_contents(self): self.prepareGeometryChange() self.setTextWidth(-1) self.setTextWidth(self.document().idealWidth()) self.droplet.setPos(self.rect().center().x(), self.rect().height()) self.droplet.setVisible(bool(self.branches)) self.pie.setPos(self.rect().right(), self.rect().center().y()) fm = QFontMetrics(self.document().defaultFont()) self.attr_text_w = fm.width(str(self.attribute() if self.attribute() else "")) self.attr_text_h = fm.lineSpacing() self.line_descent = fm.descent() def rect(self): if self._rect and self._rect.isValid(): return self._rect else: return QRectF(QPointF(0, 0), self.document().size()).\ adjusted(0, 0, 8, 0) | \ (getattr(self, "_rect") or QRectF(0, 0, 1, 1)) def set_rect(self, rect): self.prepareGeometryChange() rect = QRectF() if rect is None else rect self._rect = rect self.setTextWidth(-1) self.update_contents() self.update() def boundingRect(self): if hasattr(self, "attr"): attr_rect = QRectF(QPointF(0, -self.attr_text_h), QSizeF(self.attr_text_w, self.attr_text_h)) else: attr_rect = QRectF(0, 0, 1, 1) rect = self.rect().adjusted(-5, -5, 5, 5) return rect | attr_rect def paint(self, painter, option, widget=None): rect = self.rect() if self.isSelected(): option.state ^= QStyle.State_Selected painter.setFont(self.document().defaultFont()) draw_text = str(self.split_condition()) painter.drawText(QPointF(4, -self.line_descent - 1), draw_text) painter.save() painter.setBrush(self.backgroundBrush) if self.isSelected(): painter.setPen(QPen(QBrush(Qt.black), 2)) else: painter.setPen(QPen(Qt.gray)) if self.is_leaf(): painter.drawRect(rect.adjusted(-3, 0, 0, 0)) else: painter.drawRoundedRect(rect.adjusted(-3, 0, 0, 0), 4, 4) painter.restore() painter.setClipRect(rect) return QGraphicsTextItem.paint(self, painter, option, widget) if __name__ == "__main__": from Orange.classification.tree import TreeLearner a = QApplication(sys.argv) ow = OWClassificationTreeGraph() data = Table("iris") clf = TreeLearner(max_depth=3)(data) clf.instances = data ow.ctree(clf) ow.show() ow.raise_() a.exec_() ow.saveSettings()
gpl-3.0
ningchi/scikit-learn
examples/cluster/plot_mini_batch_kmeans.py
265
4081
""" ==================================================================== Comparison of the K-Means and MiniBatchKMeans clustering algorithms ==================================================================== We want to compare the performance of the MiniBatchKMeans and KMeans: the MiniBatchKMeans is faster, but gives slightly different results (see :ref:`mini_batch_kmeans`). We will cluster a set of data, first with KMeans and then with MiniBatchKMeans, and plot the results. We will also plot the points that are labelled differently between the two algorithms. """ print(__doc__) import time import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import MiniBatchKMeans, KMeans from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.datasets.samples_generator import make_blobs ############################################################################## # Generate sample data np.random.seed(0) batch_size = 45 centers = [[1, 1], [-1, -1], [1, -1]] n_clusters = len(centers) X, labels_true = make_blobs(n_samples=3000, centers=centers, cluster_std=0.7) ############################################################################## # Compute clustering with Means k_means = KMeans(init='k-means++', n_clusters=3, n_init=10) t0 = time.time() k_means.fit(X) t_batch = time.time() - t0 k_means_labels = k_means.labels_ k_means_cluster_centers = k_means.cluster_centers_ k_means_labels_unique = np.unique(k_means_labels) ############################################################################## # Compute clustering with MiniBatchKMeans mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size, n_init=10, max_no_improvement=10, verbose=0) t0 = time.time() mbk.fit(X) t_mini_batch = time.time() - t0 mbk_means_labels = mbk.labels_ mbk_means_cluster_centers = mbk.cluster_centers_ mbk_means_labels_unique = np.unique(mbk_means_labels) ############################################################################## # Plot result fig = plt.figure(figsize=(8, 3)) fig.subplots_adjust(left=0.02, right=0.98, bottom=0.05, top=0.9) colors = ['#4EACC5', '#FF9C34', '#4E9A06'] # We want to have the same colors for the same cluster from the # MiniBatchKMeans and the KMeans algorithm. Let's pair the cluster centers per # closest one. order = pairwise_distances_argmin(k_means_cluster_centers, mbk_means_cluster_centers) # KMeans ax = fig.add_subplot(1, 3, 1) for k, col in zip(range(n_clusters), colors): my_members = k_means_labels == k cluster_center = k_means_cluster_centers[k] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('KMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % ( t_batch, k_means.inertia_)) # MiniBatchKMeans ax = fig.add_subplot(1, 3, 2) for k, col in zip(range(n_clusters), colors): my_members = mbk_means_labels == order[k] cluster_center = mbk_means_cluster_centers[order[k]] ax.plot(X[my_members, 0], X[my_members, 1], 'w', markerfacecolor=col, marker='.') ax.plot(cluster_center[0], cluster_center[1], 'o', markerfacecolor=col, markeredgecolor='k', markersize=6) ax.set_title('MiniBatchKMeans') ax.set_xticks(()) ax.set_yticks(()) plt.text(-3.5, 1.8, 'train time: %.2fs\ninertia: %f' % (t_mini_batch, mbk.inertia_)) # Initialise the different array to all False different = (mbk_means_labels == 4) ax = fig.add_subplot(1, 3, 3) for l in range(n_clusters): different += ((k_means_labels == k) != (mbk_means_labels == order[k])) identic = np.logical_not(different) ax.plot(X[identic, 0], X[identic, 1], 'w', markerfacecolor='#bbbbbb', marker='.') ax.plot(X[different, 0], X[different, 1], 'w', markerfacecolor='m', marker='.') ax.set_title('Difference') ax.set_xticks(()) ax.set_yticks(()) plt.show()
bsd-3-clause
ningchi/scikit-learn
sklearn/metrics/tests/test_classification.py
15
49665
from __future__ import division, print_function import numpy as np from scipy import linalg from functools import partial from itertools import product import warnings from sklearn import datasets from sklearn import svm from sklearn.datasets import make_multilabel_classification from sklearn.preprocessing import LabelBinarizer, MultiLabelBinarizer from sklearn.utils.fixes import np_version from sklearn.utils.validation import check_random_state from sklearn.utils.testing import assert_raises, clean_warning_registry from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_no_warnings from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import ignore_warnings from sklearn.metrics import accuracy_score from sklearn.metrics import average_precision_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import f1_score from sklearn.metrics import fbeta_score from sklearn.metrics import hamming_loss from sklearn.metrics import hinge_loss from sklearn.metrics import jaccard_similarity_score from sklearn.metrics import log_loss from sklearn.metrics import matthews_corrcoef from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import zero_one_loss from sklearn.metrics import brier_score_loss from sklearn.metrics.classification import _check_targets from sklearn.metrics.base import UndefinedMetricWarning ############################################################################### # Utilities for testing def make_prediction(dataset=None, binary=False): """Make some classification predictions on a toy dataset using a SVC If binary is True restrict to a binary classification problem instead of a multiclass classification problem """ if dataset is None: # import some data to play with dataset = datasets.load_iris() X = dataset.data y = dataset.target if binary: # restrict to a binary classification task X, y = X[y < 2], y[y < 2] n_samples, n_features = X.shape p = np.arange(n_samples) rng = check_random_state(37) rng.shuffle(p) X, y = X[p], y[p] half = int(n_samples / 2) # add noisy features to make the problem harder and avoid perfect results rng = np.random.RandomState(0) X = np.c_[X, rng.randn(n_samples, 200 * n_features)] # run classifier, get class probabilities and label predictions clf = svm.SVC(kernel='linear', probability=True, random_state=0) probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:]) if binary: # only interested in probabilities of the positive case # XXX: do we really want a special API for the binary case? probas_pred = probas_pred[:, 1] y_pred = clf.predict(X[half:]) y_true = y[half:] return y_true, y_pred, probas_pred ############################################################################### # Tests def test_multilabel_accuracy_score_subset_accuracy(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(accuracy_score(y1, y2), 0.5) assert_equal(accuracy_score(y1, y1), 1) assert_equal(accuracy_score(y2, y2), 1) assert_equal(accuracy_score(y2, np.logical_not(y2)), 0) assert_equal(accuracy_score(y1, np.logical_not(y1)), 0) assert_equal(accuracy_score(y1, np.zeros(y1.shape)), 0) assert_equal(accuracy_score(y2, np.zeros(y1.shape)), 0) with ignore_warnings(): # sequence of sequences is deprecated # List of tuple of label y1 = [(1, 2,), (0, 2,)] y2 = [(2,), (0, 2,)] assert_equal(accuracy_score(y1, y2), 0.5) assert_equal(accuracy_score(y1, y1), 1) assert_equal(accuracy_score(y2, y2), 1) assert_equal(accuracy_score(y2, [(), ()]), 0) assert_equal(accuracy_score(y1, y2, normalize=False), 1) assert_equal(accuracy_score(y1, y1, normalize=False), 2) assert_equal(accuracy_score(y2, y2, normalize=False), 2) assert_equal(accuracy_score(y2, [(), ()], normalize=False), 0) def test_precision_recall_f1_score_binary(): # Test Precision Recall and F1 Score for binary classification task y_true, y_pred, _ = make_prediction(binary=True) # detailed measures for each class p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.73, 0.85], 2) assert_array_almost_equal(r, [0.88, 0.68], 2) assert_array_almost_equal(f, [0.80, 0.76], 2) assert_array_equal(s, [25, 25]) # individual scoring function that can be used for grid search: in the # binary class case the score is the value of the measure for the positive # class (e.g. label == 1). This is deprecated for average != 'binary'. assert_dep_warning = partial(assert_warns, DeprecationWarning) for kwargs, my_assert in [({}, assert_no_warnings), ({'average': 'binary'}, assert_no_warnings), ({'average': 'micro'}, assert_dep_warning)]: ps = my_assert(precision_score, y_true, y_pred, **kwargs) assert_array_almost_equal(ps, 0.85, 2) rs = my_assert(recall_score, y_true, y_pred, **kwargs) assert_array_almost_equal(rs, 0.68, 2) fs = my_assert(f1_score, y_true, y_pred, **kwargs) assert_array_almost_equal(fs, 0.76, 2) assert_almost_equal(my_assert(fbeta_score, y_true, y_pred, beta=2, **kwargs), (1 + 2 ** 2) * ps * rs / (2 ** 2 * ps + rs), 2) @ignore_warnings def test_precision_recall_f_binary_single_class(): # Test precision, recall and F1 score behave with a single positive or # negative class # Such a case may occur with non-stratified cross-validation assert_equal(1., precision_score([1, 1], [1, 1])) assert_equal(1., recall_score([1, 1], [1, 1])) assert_equal(1., f1_score([1, 1], [1, 1])) assert_equal(0., precision_score([-1, -1], [-1, -1])) assert_equal(0., recall_score([-1, -1], [-1, -1])) assert_equal(0., f1_score([-1, -1], [-1, -1])) def test_average_precision_score_score_non_binary_class(): # Test that average_precision_score function returns an error when trying # to compute average_precision_score for multiclass task. rng = check_random_state(404) y_pred = rng.rand(10) # y_true contains three different class values y_true = rng.randint(0, 3, size=10) assert_raise_message(ValueError, "multiclass format is not supported", average_precision_score, y_true, y_pred) def test_average_precision_score_duplicate_values(): # Duplicate values with precision-recall require a different # processing than when computing the AUC of a ROC, because the # precision-recall curve is a decreasing curve # The following situtation corresponds to a perfect # test statistic, the average_precision_score should be 1 y_true = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] y_score = [0, .1, .1, .4, .5, .6, .6, .9, .9, 1, 1] assert_equal(average_precision_score(y_true, y_score), 1) def test_average_precision_score_tied_values(): # Here if we go from left to right in y_true, the 0 values are # are separated from the 1 values, so it appears that we've # Correctly sorted our classifications. But in fact the first two # values have the same score (0.5) and so the first two values # could be swapped around, creating an imperfect sorting. This # imperfection should come through in the end score, making it less # than one. y_true = [0, 1, 1] y_score = [.5, .5, .6] assert_not_equal(average_precision_score(y_true, y_score), 1.) @ignore_warnings def test_precision_recall_fscore_support_errors(): y_true, y_pred, _ = make_prediction(binary=True) # Bad beta assert_raises(ValueError, precision_recall_fscore_support, y_true, y_pred, beta=0.0) # Bad pos_label assert_raises(ValueError, precision_recall_fscore_support, y_true, y_pred, pos_label=2, average='macro') # Bad average option assert_raises(ValueError, precision_recall_fscore_support, [0, 1, 2], [1, 2, 0], average='mega') def test_confusion_matrix_binary(): # Test confusion matrix - binary classification case y_true, y_pred, _ = make_prediction(binary=True) def test(y_true, y_pred): cm = confusion_matrix(y_true, y_pred) assert_array_equal(cm, [[22, 3], [8, 17]]) tp, fp, fn, tn = cm.flatten() num = (tp * tn - fp * fn) den = np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) true_mcc = 0 if den == 0 else num / den mcc = matthews_corrcoef(y_true, y_pred) assert_array_almost_equal(mcc, true_mcc, decimal=2) assert_array_almost_equal(mcc, 0.57, decimal=2) test(y_true, y_pred) test([str(y) for y in y_true], [str(y) for y in y_pred]) @ignore_warnings def test_matthews_corrcoef_nan(): assert_equal(matthews_corrcoef([0], [1]), 0.0) assert_equal(matthews_corrcoef([0, 0], [0, 1]), 0.0) def test_precision_recall_f1_score_multiclass(): # Test Precision Recall and F1 Score for multiclass classification task y_true, y_pred, _ = make_prediction(binary=False) # compute scores with default labels introspection p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.83, 0.33, 0.42], 2) assert_array_almost_equal(r, [0.79, 0.09, 0.90], 2) assert_array_almost_equal(f, [0.81, 0.15, 0.57], 2) assert_array_equal(s, [24, 31, 20]) # averaging tests ps = precision_score(y_true, y_pred, pos_label=1, average='micro') assert_array_almost_equal(ps, 0.53, 2) rs = recall_score(y_true, y_pred, average='micro') assert_array_almost_equal(rs, 0.53, 2) fs = f1_score(y_true, y_pred, average='micro') assert_array_almost_equal(fs, 0.53, 2) ps = precision_score(y_true, y_pred, average='macro') assert_array_almost_equal(ps, 0.53, 2) rs = recall_score(y_true, y_pred, average='macro') assert_array_almost_equal(rs, 0.60, 2) fs = f1_score(y_true, y_pred, average='macro') assert_array_almost_equal(fs, 0.51, 2) ps = precision_score(y_true, y_pred, average='weighted') assert_array_almost_equal(ps, 0.51, 2) rs = recall_score(y_true, y_pred, average='weighted') assert_array_almost_equal(rs, 0.53, 2) fs = f1_score(y_true, y_pred, average='weighted') assert_array_almost_equal(fs, 0.47, 2) assert_raises(ValueError, precision_score, y_true, y_pred, average="samples") assert_raises(ValueError, recall_score, y_true, y_pred, average="samples") assert_raises(ValueError, f1_score, y_true, y_pred, average="samples") assert_raises(ValueError, fbeta_score, y_true, y_pred, average="samples", beta=0.5) # same prediction but with and explicit label ordering p, r, f, s = precision_recall_fscore_support( y_true, y_pred, labels=[0, 2, 1], average=None) assert_array_almost_equal(p, [0.83, 0.41, 0.33], 2) assert_array_almost_equal(r, [0.79, 0.90, 0.10], 2) assert_array_almost_equal(f, [0.81, 0.57, 0.15], 2) assert_array_equal(s, [24, 20, 31]) def test_precision_refcall_f1_score_multilabel_unordered_labels(): # test that labels need not be sorted in the multilabel case y_true = np.array([[1, 1, 0, 0]]) y_pred = np.array([[0, 0, 1, 1]]) for average in ['samples', 'micro', 'macro', 'weighted', None]: p, r, f, s = precision_recall_fscore_support( y_true, y_pred, labels=[4, 1, 2, 3], warn_for=[], average=average) assert_array_equal(p, 0) assert_array_equal(r, 0) assert_array_equal(f, 0) if average is None: assert_array_equal(s, [0, 1, 1, 0]) def test_precision_recall_f1_score_multiclass_pos_label_none(): # Test Precision Recall and F1 Score for multiclass classification task # GH Issue #1296 # initialize data y_true = np.array([0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1]) y_pred = np.array([1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1]) # compute scores with default labels introspection p, r, f, s = precision_recall_fscore_support(y_true, y_pred, pos_label=None, average='weighted') def test_zero_precision_recall(): # Check that pathological cases do not bring NaNs old_error_settings = np.seterr(all='raise') try: y_true = np.array([0, 1, 2, 0, 1, 2]) y_pred = np.array([2, 0, 1, 1, 2, 0]) assert_almost_equal(precision_score(y_true, y_pred, average='weighted'), 0.0, 2) assert_almost_equal(recall_score(y_true, y_pred, average='weighted'), 0.0, 2) assert_almost_equal(f1_score(y_true, y_pred, average='weighted'), 0.0, 2) finally: np.seterr(**old_error_settings) def test_confusion_matrix_multiclass(): # Test confusion matrix - multi-class case y_true, y_pred, _ = make_prediction(binary=False) def test(y_true, y_pred, string_type=False): # compute confusion matrix with default labels introspection cm = confusion_matrix(y_true, y_pred) assert_array_equal(cm, [[19, 4, 1], [4, 3, 24], [0, 2, 18]]) # compute confusion matrix with explicit label ordering labels = ['0', '2', '1'] if string_type else [0, 2, 1] cm = confusion_matrix(y_true, y_pred, labels=labels) assert_array_equal(cm, [[19, 1, 4], [0, 18, 2], [4, 24, 3]]) test(y_true, y_pred) test(list(str(y) for y in y_true), list(str(y) for y in y_pred), string_type=True) def test_confusion_matrix_multiclass_subset_labels(): # Test confusion matrix - multi-class case with subset of labels y_true, y_pred, _ = make_prediction(binary=False) # compute confusion matrix with only first two labels considered cm = confusion_matrix(y_true, y_pred, labels=[0, 1]) assert_array_equal(cm, [[19, 4], [4, 3]]) # compute confusion matrix with explicit label ordering for only subset # of labels cm = confusion_matrix(y_true, y_pred, labels=[2, 1]) assert_array_equal(cm, [[18, 2], [24, 3]]) def test_classification_report_multiclass(): # Test performance report iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.83 0.79 0.81 24 versicolor 0.33 0.10 0.15 31 virginica 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names) assert_equal(report, expected_report) # print classification report with label detection expected_report = """\ precision recall f1-score support 0 0.83 0.79 0.81 24 1 0.33 0.10 0.15 31 2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_digits(): # Test performance report with added digits in floating point values iris = datasets.load_iris() y_true, y_pred, _ = make_prediction(dataset=iris, binary=False) # print classification report with class names expected_report = """\ precision recall f1-score support setosa 0.82609 0.79167 0.80851 24 versicolor 0.33333 0.09677 0.15000 31 virginica 0.41860 0.90000 0.57143 20 avg / total 0.51375 0.53333 0.47310 75 """ report = classification_report( y_true, y_pred, labels=np.arange(len(iris.target_names)), target_names=iris.target_names, digits=5) assert_equal(report, expected_report) # print classification report with label detection expected_report = """\ precision recall f1-score support 0 0.83 0.79 0.81 24 1 0.33 0.10 0.15 31 2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_classification_report_multiclass_with_string_label(): y_true, y_pred, _ = make_prediction(binary=False) y_true = np.array(["blue", "green", "red"])[y_true] y_pred = np.array(["blue", "green", "red"])[y_pred] expected_report = """\ precision recall f1-score support blue 0.83 0.79 0.81 24 green 0.33 0.10 0.15 31 red 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred) assert_equal(report, expected_report) expected_report = """\ precision recall f1-score support a 0.83 0.79 0.81 24 b 0.33 0.10 0.15 31 c 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ report = classification_report(y_true, y_pred, target_names=["a", "b", "c"]) assert_equal(report, expected_report) def test_classification_report_multiclass_with_unicode_label(): y_true, y_pred, _ = make_prediction(binary=False) labels = np.array([u"blue\xa2", u"green\xa2", u"red\xa2"]) y_true = labels[y_true] y_pred = labels[y_pred] expected_report = u"""\ precision recall f1-score support blue\xa2 0.83 0.79 0.81 24 green\xa2 0.33 0.10 0.15 31 red\xa2 0.42 0.90 0.57 20 avg / total 0.51 0.53 0.47 75 """ if np_version[:3] < (1, 7, 0): expected_message = ("NumPy < 1.7.0 does not implement" " searchsorted on unicode data correctly.") assert_raise_message(RuntimeError, expected_message, classification_report, y_true, y_pred) else: report = classification_report(y_true, y_pred) assert_equal(report, expected_report) @ignore_warnings # sequence of sequences is deprecated def test_multilabel_classification_report(): n_classes = 4 n_samples = 50 make_ml = make_multilabel_classification _, y_true_ll = make_ml(n_features=1, n_classes=n_classes, random_state=0, n_samples=n_samples) _, y_pred_ll = make_ml(n_features=1, n_classes=n_classes, random_state=1, n_samples=n_samples) expected_report = """\ precision recall f1-score support 0 0.50 0.67 0.57 24 1 0.51 0.74 0.61 27 2 0.29 0.08 0.12 26 3 0.52 0.56 0.54 27 avg / total 0.45 0.51 0.46 104 """ lb = MultiLabelBinarizer() lb.fit([range(4)]) y_true_bi = lb.transform(y_true_ll) y_pred_bi = lb.transform(y_pred_ll) for y_true, y_pred in [(y_true_ll, y_pred_ll), (y_true_bi, y_pred_bi)]: report = classification_report(y_true, y_pred) assert_equal(report, expected_report) def test_multilabel_zero_one_loss_subset(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(zero_one_loss(y1, y2), 0.5) assert_equal(zero_one_loss(y1, y1), 0) assert_equal(zero_one_loss(y2, y2), 0) assert_equal(zero_one_loss(y2, np.logical_not(y2)), 1) assert_equal(zero_one_loss(y1, np.logical_not(y1)), 1) assert_equal(zero_one_loss(y1, np.zeros(y1.shape)), 1) assert_equal(zero_one_loss(y2, np.zeros(y1.shape)), 1) with ignore_warnings(): # sequence of sequences is deprecated # List of tuple of label y1 = [(1, 2,), (0, 2,)] y2 = [(2,), (0, 2,)] assert_equal(zero_one_loss(y1, y2), 0.5) assert_equal(zero_one_loss(y1, y1), 0) assert_equal(zero_one_loss(y2, y2), 0) assert_equal(zero_one_loss(y2, [(), ()]), 1) assert_equal(zero_one_loss(y2, [tuple(), (10, )]), 1) def test_multilabel_hamming_loss(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(hamming_loss(y1, y2), 1 / 6) assert_equal(hamming_loss(y1, y1), 0) assert_equal(hamming_loss(y2, y2), 0) assert_equal(hamming_loss(y2, np.logical_not(y2)), 1) assert_equal(hamming_loss(y1, np.logical_not(y1)), 1) assert_equal(hamming_loss(y1, np.zeros(y1.shape)), 4 / 6) assert_equal(hamming_loss(y2, np.zeros(y1.shape)), 0.5) with ignore_warnings(): # sequence of sequences is deprecated # List of tuple of label y1 = [(1, 2,), (0, 2,)] y2 = [(2,), (0, 2,)] assert_equal(hamming_loss(y1, y2), 1 / 6) assert_equal(hamming_loss(y1, y1), 0) assert_equal(hamming_loss(y2, y2), 0) assert_equal(hamming_loss(y2, [(), ()]), 0.75) assert_equal(hamming_loss(y1, [tuple(), (10, )]), 0.625) assert_almost_equal(hamming_loss(y2, [tuple(), (10, )], classes=np.arange(11)), 0.1818, 2) def test_multilabel_jaccard_similarity_score(): # Dense label indicator matrix format y1 = np.array([[0, 1, 1], [1, 0, 1]]) y2 = np.array([[0, 0, 1], [1, 0, 1]]) # size(y1 \inter y2) = [1, 2] # size(y1 \union y2) = [2, 2] assert_equal(jaccard_similarity_score(y1, y2), 0.75) assert_equal(jaccard_similarity_score(y1, y1), 1) assert_equal(jaccard_similarity_score(y2, y2), 1) assert_equal(jaccard_similarity_score(y2, np.logical_not(y2)), 0) assert_equal(jaccard_similarity_score(y1, np.logical_not(y1)), 0) assert_equal(jaccard_similarity_score(y1, np.zeros(y1.shape)), 0) assert_equal(jaccard_similarity_score(y2, np.zeros(y1.shape)), 0) with ignore_warnings(): # sequence of sequences is deprecated # List of tuple of label y1 = [(1, 2,), (0, 2,)] y2 = [(2,), (0, 2,)] assert_equal(jaccard_similarity_score(y1, y2), 0.75) assert_equal(jaccard_similarity_score(y1, y1), 1) assert_equal(jaccard_similarity_score(y2, y2), 1) assert_equal(jaccard_similarity_score(y2, [(), ()]), 0) # |y3 inter y4 | = [0, 1, 1] # |y3 union y4 | = [2, 1, 3] y3 = [(0,), (1,), (3,)] y4 = [(4,), (4,), (5, 6)] assert_almost_equal(jaccard_similarity_score(y3, y4), 0) # |y5 inter y6 | = [0, 1, 1] # |y5 union y6 | = [2, 1, 3] y5 = [(0,), (1,), (2, 3)] y6 = [(1,), (1,), (2, 0)] assert_almost_equal(jaccard_similarity_score(y5, y6), (1 + 1 / 3) / 3) @ignore_warnings def test_precision_recall_f1_score_multilabel_1(): # Test precision_recall_f1_score on a crafted multilabel example # First crafted example y_true_ll = [(0,), (1,), (2, 3)] y_pred_ll = [(1,), (1,), (2, 0)] lb = LabelBinarizer() lb.fit([range(4)]) y_true_bi = lb.transform(y_true_ll) y_pred_bi = lb.transform(y_pred_ll) for y_true, y_pred in [(y_true_ll, y_pred_ll), (y_true_bi, y_pred_bi)]: p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) #tp = [0, 1, 1, 0] #fn = [1, 0, 0, 1] #fp = [1, 1, 0, 0] # Check per class assert_array_almost_equal(p, [0.0, 0.5, 1.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 1.0, 1.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2) assert_array_almost_equal(s, [1, 1, 1, 1], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.83, 1, 0], 2) # Check macro p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 1.5 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2.5 / 1.5 * 0.25) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) # Check micro p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 0.5) assert_almost_equal(r, 0.5) assert_almost_equal(f, 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) # Check weigted p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 1.5 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2.5 / 1.5 * 0.25) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) # Check weigted # |h(x_i) inter y_i | = [0, 1, 1] # |y_i| = [1, 1, 2] # |h(x_i)| = [1, 1, 2] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") assert_almost_equal(p, 0.5) assert_almost_equal(r, 0.5) assert_almost_equal(f, 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.5) @ignore_warnings def test_precision_recall_f1_score_multilabel_2(): # Test precision_recall_f1_score on a crafted multilabel example 2 # Second crafted example y_true_ll = [(1,), (2,), (2, 3)] y_pred_ll = [(4,), (4,), (2, 1)] lb = LabelBinarizer() lb.fit([range(1, 5)]) y_true_bi = lb.transform(y_true_ll) y_pred_bi = lb.transform(y_pred_ll) for y_true, y_pred in [(y_true_ll, y_pred_ll), (y_true_bi, y_pred_bi)]: # tp = [ 0. 1. 0. 0.] # fp = [ 1. 0. 0. 2.] # fn = [ 1. 1. 1. 0.] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.0, 1.0, 0.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 0.5, 0.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 0.66, 0.0, 0.0], 2) assert_array_almost_equal(s, [1, 2, 1, 0], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.55, 0, 0], 2) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 0.25) assert_almost_equal(r, 0.25) assert_almost_equal(f, 2 * 0.25 * 0.25 / 0.5) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 0.25) assert_almost_equal(r, 0.125) assert_almost_equal(f, 2 / 12) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 2 / 4) assert_almost_equal(r, 1 / 4) assert_almost_equal(f, 2 / 3 * 2 / 4) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") # Check weigted # |h(x_i) inter y_i | = [0, 0, 1] # |y_i| = [1, 1, 2] # |h(x_i)| = [1, 1, 2] assert_almost_equal(p, 1 / 6) assert_almost_equal(r, 1 / 6) assert_almost_equal(f, 2 / 4 * 1 / 3) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.1666, 2) @ignore_warnings def test_precision_recall_f1_score_with_an_empty_prediction(): y_true_ll = [(1,), (0,), (2, 1,)] y_pred_ll = [tuple(), (3,), (2, 1)] lb = LabelBinarizer() lb.fit([range(4)]) y_true_bi = lb.transform(y_true_ll) y_pred_bi = lb.transform(y_pred_ll) for y_true, y_pred in [(y_true_ll, y_pred_ll), (y_true_bi, y_pred_bi)]: # true_pos = [ 0. 1. 1. 0.] # false_pos = [ 0. 0. 0. 1.] # false_neg = [ 1. 1. 0. 0.] p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average=None) assert_array_almost_equal(p, [0.0, 1.0, 1.0, 0.0], 2) assert_array_almost_equal(r, [0.0, 0.5, 1.0, 0.0], 2) assert_array_almost_equal(f, [0.0, 1 / 1.5, 1, 0.0], 2) assert_array_almost_equal(s, [1, 2, 1, 0], 2) f2 = fbeta_score(y_true, y_pred, beta=2, average=None) support = s assert_array_almost_equal(f2, [0, 0.55, 1, 0], 2) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="macro") assert_almost_equal(p, 0.5) assert_almost_equal(r, 1.5 / 4) assert_almost_equal(f, 2.5 / (4 * 1.5)) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="macro"), np.mean(f2)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="micro") assert_almost_equal(p, 2 / 3) assert_almost_equal(r, 0.5) assert_almost_equal(f, 2 / 3 / (2 / 3 + 0.5)) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="micro"), (1 + 4) * p * r / (4 * p + r)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="weighted") assert_almost_equal(p, 3 / 4) assert_almost_equal(r, 0.5) assert_almost_equal(f, (2 / 1.5 + 1) / 4) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="weighted"), np.average(f2, weights=support)) p, r, f, s = precision_recall_fscore_support(y_true, y_pred, average="samples") # |h(x_i) inter y_i | = [0, 0, 2] # |y_i| = [1, 1, 2] # |h(x_i)| = [0, 1, 2] assert_almost_equal(p, 1 / 3) assert_almost_equal(r, 1 / 3) assert_almost_equal(f, 1 / 3) assert_equal(s, None) assert_almost_equal(fbeta_score(y_true, y_pred, beta=2, average="samples"), 0.333, 2) def test_precision_recall_f1_no_labels(): y_true = np.zeros((20, 3)) y_pred = np.zeros_like(y_true) # tp = [0, 0, 0] # fn = [0, 0, 0] # fp = [0, 0, 0] # support = [0, 0, 0] # |y_hat_i inter y_i | = [0, 0, 0] # |y_i| = [0, 0, 0] # |y_hat_i| = [0, 0, 0] for beta in [1]: p, r, f, s = assert_warns(UndefinedMetricWarning, precision_recall_fscore_support, y_true, y_pred, average=None, beta=beta) assert_array_almost_equal(p, [0, 0, 0], 2) assert_array_almost_equal(r, [0, 0, 0], 2) assert_array_almost_equal(f, [0, 0, 0], 2) assert_array_almost_equal(s, [0, 0, 0], 2) fbeta = assert_warns(UndefinedMetricWarning, fbeta_score, y_true, y_pred, beta=beta, average=None) assert_array_almost_equal(fbeta, [0, 0, 0], 2) for average in ["macro", "micro", "weighted", "samples"]: p, r, f, s = assert_warns(UndefinedMetricWarning, precision_recall_fscore_support, y_true, y_pred, average=average, beta=beta) assert_almost_equal(p, 0) assert_almost_equal(r, 0) assert_almost_equal(f, 0) assert_equal(s, None) fbeta = assert_warns(UndefinedMetricWarning, fbeta_score, y_true, y_pred, beta=beta, average=average) assert_almost_equal(fbeta, 0) def test_prf_warnings(): # average of per-label scores f, w = precision_recall_fscore_support, UndefinedMetricWarning my_assert = assert_warns_message for average in [None, 'weighted', 'macro']: msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 in labels with no predicted samples.') my_assert(w, msg, f, [0, 1, 2], [1, 1, 2], average=average) msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 in labels with no true samples.') my_assert(w, msg, f, [1, 1, 2], [0, 1, 2], average=average) # average of per-sample scores msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 in samples with no predicted labels.') my_assert(w, msg, f, np.array([[1, 0], [1, 0]]), np.array([[1, 0], [0, 0]]), average='samples') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 in samples with no true labels.') my_assert(w, msg, f, np.array([[1, 0], [0, 0]]), np.array([[1, 0], [1, 0]]), average='samples') # single score: micro-average msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 due to no predicted samples.') my_assert(w, msg, f, np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 due to no true samples.') my_assert(w, msg, f, np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') # single postive label msg = ('Precision and F-score are ill-defined and ' 'being set to 0.0 due to no predicted samples.') my_assert(w, msg, f, [1, 1], [-1, -1], average='macro') msg = ('Recall and F-score are ill-defined and ' 'being set to 0.0 due to no true samples.') my_assert(w, msg, f, [-1, -1], [1, 1], average='macro') def test_recall_warnings(): assert_no_warnings(recall_score, np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') recall_score(np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') assert_equal(str(record.pop().message), 'Recall is ill-defined and ' 'being set to 0.0 due to no true samples.') def test_precision_warnings(): clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') precision_score(np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') assert_equal(str(record.pop().message), 'Precision is ill-defined and ' 'being set to 0.0 due to no predicted samples.') assert_no_warnings(precision_score, np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') def test_fscore_warnings(): clean_warning_registry() with warnings.catch_warnings(record=True) as record: warnings.simplefilter('always') for score in [f1_score, partial(fbeta_score, beta=2)]: score(np.array([[1, 1], [1, 1]]), np.array([[0, 0], [0, 0]]), average='micro') assert_equal(str(record.pop().message), 'F-score is ill-defined and ' 'being set to 0.0 due to no predicted samples.') score(np.array([[0, 0], [0, 0]]), np.array([[1, 1], [1, 1]]), average='micro') assert_equal(str(record.pop().message), 'F-score is ill-defined and ' 'being set to 0.0 due to no true samples.') def test_prf_average_compat(): # Ensure warning if f1_score et al.'s average is implicit for multiclass y_true = [1, 2, 3, 3] y_pred = [1, 2, 3, 1] y_true_bin = [0, 1, 1] y_pred_bin = [0, 1, 0] for metric in [precision_score, recall_score, f1_score, partial(fbeta_score, beta=2)]: score = assert_warns(DeprecationWarning, metric, y_true, y_pred) score_weighted = assert_no_warnings(metric, y_true, y_pred, average='weighted') assert_equal(score, score_weighted, 'average does not act like "weighted" by default') # check binary passes without warning assert_no_warnings(metric, y_true_bin, y_pred_bin) # but binary with pos_label=None should behave like multiclass score = assert_warns(DeprecationWarning, metric, y_true_bin, y_pred_bin, pos_label=None) score_weighted = assert_no_warnings(metric, y_true_bin, y_pred_bin, pos_label=None, average='weighted') assert_equal(score, score_weighted, 'average does not act like "weighted" by default with ' 'binary data and pos_label=None') @ignore_warnings # sequence of sequences is deprecated def test__check_targets(): # Check that _check_targets correctly merges target types, squeezes # output and fails if input lengths differ. IND = 'multilabel-indicator' SEQ = 'multilabel-sequences' MC = 'multiclass' BIN = 'binary' CNT = 'continuous' MMC = 'multiclass-multioutput' MCN = 'continuous-multioutput' # all of length 3 EXAMPLES = [ (IND, np.array([[0, 1, 1], [1, 0, 0], [0, 0, 1]])), # must not be considered binary (IND, np.array([[0, 1], [1, 0], [1, 1]])), (SEQ, [[2, 3], [1], [3]]), (MC, [2, 3, 1]), (BIN, [0, 1, 1]), (CNT, [0., 1.5, 1.]), (MC, np.array([[2], [3], [1]])), (BIN, np.array([[0], [1], [1]])), (CNT, np.array([[0.], [1.5], [1.]])), (MMC, np.array([[0, 2], [1, 3], [2, 3]])), (MCN, np.array([[0.5, 2.], [1.1, 3.], [2., 3.]])), ] # expected type given input types, or None for error # (types will be tried in either order) EXPECTED = { (IND, IND): IND, (SEQ, SEQ): IND, (MC, MC): MC, (BIN, BIN): BIN, (IND, SEQ): None, (MC, SEQ): None, (BIN, SEQ): None, (MC, IND): None, (BIN, IND): None, (BIN, MC): MC, # Disallowed types (CNT, CNT): None, (MMC, MMC): None, (MCN, MCN): None, (IND, CNT): None, (SEQ, CNT): None, (MC, CNT): None, (BIN, CNT): None, (MMC, CNT): None, (MCN, CNT): None, (IND, MMC): None, (SEQ, MMC): None, (MC, MMC): None, (BIN, MMC): None, (MCN, MMC): None, (IND, MCN): None, (SEQ, MCN): None, (MC, MCN): None, (BIN, MCN): None, } for (type1, y1), (type2, y2) in product(EXAMPLES, repeat=2): try: expected = EXPECTED[type1, type2] except KeyError: expected = EXPECTED[type2, type1] if expected is None: assert_raises(ValueError, _check_targets, y1, y2) if type1 != type2: assert_raise_message( ValueError, "Can't handle mix of {0} and {1}".format(type1, type2), _check_targets, y1, y2) else: if type1 not in (BIN, MC, SEQ, IND): assert_raise_message(ValueError, "{0} is not supported".format(type1), _check_targets, y1, y2) else: merged_type, y1out, y2out = _check_targets(y1, y2) assert_equal(merged_type, expected) if merged_type.startswith('multilabel'): assert_equal(y1out.format, 'csr') assert_equal(y2out.format, 'csr') else: assert_array_equal(y1out, np.squeeze(y1)) assert_array_equal(y2out, np.squeeze(y2)) assert_raises(ValueError, _check_targets, y1[:-1], y2) def test_hinge_loss_binary(): y_true = np.array([-1, 1, 1, -1]) pred_decision = np.array([-8.5, 0.5, 1.5, -0.3]) assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4) y_true = np.array([0, 2, 2, 0]) pred_decision = np.array([-8.5, 0.5, 1.5, -0.3]) assert_equal(hinge_loss(y_true, pred_decision), 1.2 / 4) def test_hinge_loss_multiclass(): pred_decision = np.array([ [0.36, -0.17, -0.58, -0.99], [-0.54, -0.37, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.54, -0.38, -0.48, -0.58], [-2.36, -0.79, -0.27, 0.24], [-1.45, -0.58, -0.38, -0.17] ]) y_true = np.array([0, 1, 2, 1, 3, 2]) dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][3] + pred_decision[4][2], 1 - pred_decision[5][2] + pred_decision[5][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision), dummy_hinge_loss) def test_hinge_loss_multiclass_missing_labels_with_labels_none(): y_true = np.array([0, 1, 2, 2]) pred_decision = np.array([ [1.27, 0.034, -0.68, -1.40], [-1.45, -0.58, -0.38, -0.17], [-2.36, -0.79, -0.27, 0.24], [-2.36, -0.79, -0.27, 0.24] ]) error_message = ("Please include all labels in y_true " "or pass labels as third argument") assert_raise_message(ValueError, error_message, hinge_loss, y_true, pred_decision) def test_hinge_loss_multiclass_with_missing_labels(): pred_decision = np.array([ [0.36, -0.17, -0.58, -0.99], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17] ]) y_true = np.array([0, 1, 2, 1, 2]) labels = np.array([0, 1, 2, 3]) dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][2] + pred_decision[4][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision, labels=labels), dummy_hinge_loss) def test_hinge_loss_multiclass_invariance_lists(): # Currently, invariance of string and integer labels cannot be tested # in common invariance tests because invariance tests for multiclass # decision functions is not implemented yet. y_true = ['blue', 'green', 'red', 'green', 'white', 'red'] pred_decision = [ [0.36, -0.17, -0.58, -0.99], [-0.55, -0.38, -0.48, -0.58], [-1.45, -0.58, -0.38, -0.17], [-0.55, -0.38, -0.48, -0.58], [-2.36, -0.79, -0.27, 0.24], [-1.45, -0.58, -0.38, -0.17]] dummy_losses = np.array([ 1 - pred_decision[0][0] + pred_decision[0][1], 1 - pred_decision[1][1] + pred_decision[1][2], 1 - pred_decision[2][2] + pred_decision[2][3], 1 - pred_decision[3][1] + pred_decision[3][2], 1 - pred_decision[4][3] + pred_decision[4][2], 1 - pred_decision[5][2] + pred_decision[5][3] ]) dummy_losses[dummy_losses <= 0] = 0 dummy_hinge_loss = np.mean(dummy_losses) assert_equal(hinge_loss(y_true, pred_decision), dummy_hinge_loss) def test_log_loss(): # binary case with symbolic labels ("no" < "yes") y_true = ["no", "no", "no", "yes", "yes", "yes"] y_pred = np.array([[0.5, 0.5], [0.1, 0.9], [0.01, 0.99], [0.9, 0.1], [0.75, 0.25], [0.001, 0.999]]) loss = log_loss(y_true, y_pred) assert_almost_equal(loss, 1.8817971) # multiclass case; adapted from http://bit.ly/RJJHWA y_true = [1, 0, 2] y_pred = [[0.2, 0.7, 0.1], [0.6, 0.2, 0.2], [0.6, 0.1, 0.3]] loss = log_loss(y_true, y_pred, normalize=True) assert_almost_equal(loss, 0.6904911) # check that we got all the shapes and axes right # by doubling the length of y_true and y_pred y_true *= 2 y_pred *= 2 loss = log_loss(y_true, y_pred, normalize=False) assert_almost_equal(loss, 0.6904911 * 6, decimal=6) # check eps and handling of absolute zero and one probabilities y_pred = np.asarray(y_pred) > .5 loss = log_loss(y_true, y_pred, normalize=True, eps=.1) assert_almost_equal(loss, log_loss(y_true, np.clip(y_pred, .1, .9))) # raise error if number of classes are not equal. y_true = [1, 0, 2] y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1]] assert_raises(ValueError, log_loss, y_true, y_pred) # case when y_true is a string array object y_true = ["ham", "spam", "spam", "ham"] y_pred = [[0.2, 0.7], [0.6, 0.5], [0.4, 0.1], [0.7, 0.2]] loss = log_loss(y_true, y_pred) assert_almost_equal(loss, 1.0383217, decimal=6) def test_brier_score_loss(): # Check brier_score_loss function y_true = np.array([0, 1, 1, 0, 1, 1]) y_pred = np.array([0.1, 0.8, 0.9, 0.3, 1., 0.95]) true_score = linalg.norm(y_true - y_pred) ** 2 / len(y_true) assert_almost_equal(brier_score_loss(y_true, y_true), 0.0) assert_almost_equal(brier_score_loss(y_true, y_pred), true_score) assert_almost_equal(brier_score_loss(1. + y_true, y_pred), true_score) assert_almost_equal(brier_score_loss(2 * y_true - 1, y_pred), true_score) assert_raises(ValueError, brier_score_loss, y_true, y_pred[1:]) assert_raises(ValueError, brier_score_loss, y_true, y_pred + 1.) assert_raises(ValueError, brier_score_loss, y_true, y_pred - 1.)
bsd-3-clause
carrillo/scikit-learn
examples/linear_model/plot_omp.py
385
2263
""" =========================== Orthogonal Matching Pursuit =========================== Using orthogonal matching pursuit for recovering a sparse signal from a noisy measurement encoded with a dictionary """ print(__doc__) import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import OrthogonalMatchingPursuit from sklearn.linear_model import OrthogonalMatchingPursuitCV from sklearn.datasets import make_sparse_coded_signal n_components, n_features = 512, 100 n_nonzero_coefs = 17 # generate the data ################### # y = Xw # |x|_0 = n_nonzero_coefs y, X, w = make_sparse_coded_signal(n_samples=1, n_components=n_components, n_features=n_features, n_nonzero_coefs=n_nonzero_coefs, random_state=0) idx, = w.nonzero() # distort the clean signal ########################## y_noisy = y + 0.05 * np.random.randn(len(y)) # plot the sparse signal ######################## plt.figure(figsize=(7, 7)) plt.subplot(4, 1, 1) plt.xlim(0, 512) plt.title("Sparse signal") plt.stem(idx, w[idx]) # plot the noise-free reconstruction #################################### omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_nonzero_coefs) omp.fit(X, y) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 2) plt.xlim(0, 512) plt.title("Recovered signal from noise-free measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction ############################### omp.fit(X, y_noisy) coef = omp.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 3) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements") plt.stem(idx_r, coef[idx_r]) # plot the noisy reconstruction with number of non-zeros set by CV ################################################################## omp_cv = OrthogonalMatchingPursuitCV() omp_cv.fit(X, y_noisy) coef = omp_cv.coef_ idx_r, = coef.nonzero() plt.subplot(4, 1, 4) plt.xlim(0, 512) plt.title("Recovered signal from noisy measurements with CV") plt.stem(idx_r, coef[idx_r]) plt.subplots_adjust(0.06, 0.04, 0.94, 0.90, 0.20, 0.38) plt.suptitle('Sparse signal recovery with Orthogonal Matching Pursuit', fontsize=16) plt.show()
bsd-3-clause
sirrice/pygg
tests/pygg_tests.py
2
15120
import unittest import io import pandas import tempfile import os.path import pygg import pandas.util.testing as pdt class IPythonTests(unittest.TestCase): """Test IPython integration""" def setUp(self): """Setup IPython tests, skipping if IPython isn't present""" try: import IPython except ImportError: self.skipTest("Couldn't import IPython") def testSizing(self): """Test that computing R sizes works properly""" self.assertAlmostEqual(pygg.size_r_img_inches(width=800, height=800), (pygg.R_IMAGE_SIZE, pygg.R_IMAGE_SIZE)) self.assertAlmostEqual(pygg.size_r_img_inches(width=400, height=400), (pygg.R_IMAGE_SIZE, pygg.R_IMAGE_SIZE)) self.assertAlmostEqual(pygg.size_r_img_inches(width=800, height=400), (pygg.R_IMAGE_SIZE, pygg.R_IMAGE_SIZE / 2.)) self.assertAlmostEqual(pygg.size_r_img_inches(width=400, height=800), (pygg.R_IMAGE_SIZE, pygg.R_IMAGE_SIZE * 2.)) def testIPython(self): """Test that gg_ipython returns a IPython formatted Image""" p = pygg.ggplot('diamonds', pygg.aes(x='carat', y='price')) p += pygg.geom_point() img = pygg.gg_ipython(p, data=None) self.assertIsNotNone(img.data) self.assertEqual(img.format, "jpeg") self.assertEqual(img.width, pygg.IPYTHON_IMAGE_SIZE) self.assertEqual(img.height, pygg.IPYTHON_IMAGE_SIZE) img = pygg.gg_ipython(p, data=None, width=600, height=400) self.assertEqual(img.width, 600) self.assertEqual(img.height, 400) img = pygg.gg_ipython(p, data=None, width=600) self.assertEqual(img.width, 600) self.assertEqual(img.height, 600) class TestUnits(unittest.TestCase): """Basic unit testing for pygg""" def testIsDataFrame(self): """Test that is_pandas_df works""" df = pandas.read_csv(io.StringIO(IRIS_DATA_CSV)) self.assertTrue(pygg.is_pandas_df(df)) self.assertTrue(pygg.is_pandas_df(df[0:1])) self.assertFalse(pygg.is_pandas_df(df.SepalLength)) self.assertFalse(pygg.is_pandas_df(1)) self.assertFalse(pygg.is_pandas_df(1.0)) self.assertFalse(pygg.is_pandas_df([])) self.assertFalse(pygg.is_pandas_df([1])) self.assertFalse(pygg.is_pandas_df({})) self.assertFalse(pygg.is_pandas_df({'a': 1})) def check_me(self, stmt, expectation): self.assertEqual(stmt.r.replace(" ", ""), expectation) def testDataPyWithDF(self): df = pandas.DataFrame({'a': [1, 2], 'b': [3, 4]}) datao = pygg.data_py(df) dffile, expr = datao.fname, str(datao) iodf = pandas.read_csv(dffile) pdt.assert_frame_equal(df, iodf) def testDataPyLoadStmtPlain(self): df = pandas.DataFrame({'a': [1, 2], 'b': [3, 4]}) datao = pygg.data_py(df) dffile, expr = datao.fname, str(datao) self.assertEqual(expr, 'data = read.csv("{}",sep=",")'.format(dffile)) def testDataPyLoadStmtArgs(self): df = pandas.DataFrame({'a': [1, 2], 'b': [3, 4]}) datao = pygg.data_py(df, 1, kwd=2) dffile, expr = datao.fname, str(datao) expected = 'data = read.csv("{}",1,kwd=2,sep=",")'.format(dffile) self.assertEqual(expr, expected) def testDataPyWithDict(self): src = {'a': [1, 2], 'b': [3, 4]} datao = pygg.data_py(src) dffile, expr = datao.fname, str(datao) iodf = pandas.read_csv(dffile) pdt.assert_frame_equal(pandas.DataFrame(src), iodf) def testDataPyWithListOfDict(self): src = [{'a': 1, 'b': 3}, {'a': 2, 'b': 4}] datao = pygg.data_py(src) dffile, expr = datao.fname, str(datao) iodf = pandas.read_csv(dffile) pdt.assert_frame_equal(pandas.DataFrame({'a': [1, 2], 'b': [3, 4]}), pandas.read_csv(dffile)) def testDataPyWithString(self): src = "my.csv" datao = pygg.data_py(src) dffile, expr = datao.fname, str(datao) self.assertEqual(dffile, src) self.assertEqual(expr, 'data = read.csv("{}",sep=",")'.format(src)) def testGGStatementToR(self): """Test that GGStatement converts to R properly""" self.check_me(pygg.geom_point(), "geom_point()") self.check_me(pygg.geom_point(size=1.0), "geom_point(size=1.0)") self.check_me(pygg.geom_point(size=1.0, alpha=2.0), "geom_point(alpha=2.0,size=1.0)") def testGGStatementsToR(self): """Test that GGStatement converts to R properly""" self.check_me(pygg.geom_point(), "geom_point()") self.check_me(pygg.geom_bar(), "geom_bar()") self.check_me(pygg.geom_point() + pygg.geom_bar(), "geom_point()+geom_bar()") self.check_me(pygg.geom_bar() + pygg.geom_point(), "geom_bar()+geom_point()") def testPython2RTypes(self): """Test GGStatement converts many python types properly""" self.check_me(pygg.geom_point(a=1), "geom_point(a=1)") self.check_me(pygg.geom_point(a=None), "geom_point(a=NA)") self.check_me(pygg.geom_point(a=1.0), "geom_point(a=1.0)") self.check_me(pygg.geom_point(a=1e-2), "geom_point(a=0.01)") self.check_me(pygg.geom_point(a="foo"), 'geom_point(a=foo)') self.check_me(pygg.geom_point(a=pygg.esc("foo")), 'geom_point(a="foo")') self.check_me(pygg.geom_point(a=True), 'geom_point(a=TRUE)') self.check_me(pygg.geom_point(a=False), 'geom_point(a=FALSE)') self.check_me(pygg.geom_point(a=[1, 2]), 'geom_point(a=c(1,2))') self.check_me(pygg.geom_point(a={'list1': 1, 'list2': 2}), 'geom_point(a=list(list1=1,list2=2))') self.check_me(pygg.geom_point(1, a=2.0, b=[3, 4], c={'list1': pygg.esc('s1'), 'list2': 2}), 'geom_point(1,a=2.0,b=c(3,4),c=list(list1="s1",list2=2))') def testPython2RStringEsc(self): """Test GGStatement escapes strings properly""" self.check_me(pygg.geom_point(a="b"), 'geom_point(a=b)') self.check_me(pygg.geom_point(a='b'), 'geom_point(a=b)') self.check_me(pygg.geom_point(a="'b'"), 'geom_point(a=\'b\')') self.check_me(pygg.geom_point(a='"b"'), 'geom_point(a="b")') self.check_me(pygg.geom_point(a={'k': pygg.esc("v")}), 'geom_point(a=list(k="v"))') self.check_me(pygg.geom_point(a=[pygg.esc("a"), pygg.esc("b")]), 'geom_point(a=c("a","b"))') class TestIntegration(unittest.TestCase): """Basic unit testing for pygg""" def testE2E(self): """Test end-to-end creation of figures with outputs to pdf and png""" p = pygg.ggplot('diamonds', pygg.aes(x='carat', y='price', color='clarity')) p += pygg.geom_point(alpha=0.5, size = .75) p += pygg.scale_x_log10() p += pygg.theme_bw() self.check_ggsave(p, None, ext=".pdf") self.check_ggsave(p, None, ext=".png") self.check_ggsave(p, None, ext=".jpg") def testPandasDF(self): data = pandas.read_csv(io.StringIO(IRIS_DATA_CSV)) self.assertIsInstance(data, pandas.DataFrame) p = pygg.ggplot('data', pygg.aes(x='SepalLength', y='PetalLength', color='Name')) p += pygg.geom_point() p += pygg.geom_smooth() p += pygg.ggtitle(pygg.esc('Test title')) self.check_ggsave(p, data) def testPandasDFggplot(self): data = pandas.read_csv(io.StringIO(IRIS_DATA_CSV)) self.assertIsInstance(data, pandas.DataFrame) p = pygg.ggplot(data, pygg.aes(x='SepalLength', y='PetalLength', color='Name')) p += pygg.geom_point() p += pygg.geom_smooth() p += pygg.ggtitle(pygg.esc('Test title')) self.check_ggsave(p) def testBasicDataggplot(self): data = dict(x=list(range(10)), y=list(range(10))) p = pygg.ggplot(data, pygg.aes(x='x', y='y')) p += pygg.geom_point() p += pygg.geom_smooth() p += pygg.ggtitle(pygg.esc('Test title')) self.check_ggsave(p) def testBasicDataggplot(self): data = [dict(x=x, y=y) for x, y in zip(list(range(10)), list(range(10)))] p = pygg.ggplot(data, pygg.aes(x='x', y='y')) p += pygg.geom_point() p += pygg.geom_smooth() p += pygg.ggtitle(pygg.esc('Test title')) self.check_ggsave(p) def testLimits(self): p = pygg.ggplot('diamonds', pygg.aes(x='carat', y='price', color='clarity')) p += pygg.geom_point(alpha=0.5, size = .75) p += pygg.scale_x_log10(limits=[1, 2]) self.check_ggsave(p, None) def testFacets1(self): p = pygg.ggplot('diamonds', pygg.aes(x='carat', y='price')) p += pygg.geom_point() p += pygg.facet_grid("clarity~.") self.check_ggsave(p, None) def testFacets2(self): p = pygg.ggplot('diamonds', pygg.aes(x='carat', y='price')) p += pygg.geom_point() p += pygg.facet_wrap("~clarity") self.check_ggsave(p, None) def testLibs(self): p = pygg.ggplot('diamonds', pygg.aes(x='carat', y='price')) p += pygg.geom_point() tmpfile = tempfile.NamedTemporaryFile(suffix='.pdf').name pygg.ggsave(tmpfile, p, data=None, libs=['grid'], quiet=True) self.assertTrue(os.path.exists(tmpfile)) self.assertTrue(os.path.getsize(tmpfile) > 0) def testNativeRDataset(self): p = pygg.ggplot('diamonds', pygg.aes(x='carat', y='carat')) + pygg.geom_point() self.check_ggsave(p, None) def check_ggsave(self, plotobj, data=None, ext='.pdf'): tmpfile = tempfile.NamedTemporaryFile(suffix=ext).name pygg.ggsave(tmpfile, plotobj, data=data, quiet=True) self.assertTrue(os.path.exists(tmpfile)) self.assertTrue(os.path.getsize(tmpfile) > 0) def testBadGGPlotFails(self): p = pygg.ggplot('diamonds', pygg.aes(x='MISSING')) + pygg.geom_point() with self.assertRaises(ValueError): tmpfile = tempfile.NamedTemporaryFile(suffix=".png").name pygg.ggsave(tmpfile, p, data=None, quiet=True) IRIS_DATA_CSV = """SepalLength,SepalWidth,PetalLength,PetalWidth,Name 5.1,3.5,1.4,0.2,Iris-setosa 4.9,3.0,1.4,0.2,Iris-setosa 4.7,3.2,1.3,0.2,Iris-setosa 4.6,3.1,1.5,0.2,Iris-setosa 5.0,3.6,1.4,0.2,Iris-setosa 5.4,3.9,1.7,0.4,Iris-setosa 4.6,3.4,1.4,0.3,Iris-setosa 5.0,3.4,1.5,0.2,Iris-setosa 4.4,2.9,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 5.4,3.7,1.5,0.2,Iris-setosa 4.8,3.4,1.6,0.2,Iris-setosa 4.8,3.0,1.4,0.1,Iris-setosa 4.3,3.0,1.1,0.1,Iris-setosa 5.8,4.0,1.2,0.2,Iris-setosa 5.7,4.4,1.5,0.4,Iris-setosa 5.4,3.9,1.3,0.4,Iris-setosa 5.1,3.5,1.4,0.3,Iris-setosa 5.7,3.8,1.7,0.3,Iris-setosa 5.1,3.8,1.5,0.3,Iris-setosa 5.4,3.4,1.7,0.2,Iris-setosa 5.1,3.7,1.5,0.4,Iris-setosa 4.6,3.6,1.0,0.2,Iris-setosa 5.1,3.3,1.7,0.5,Iris-setosa 4.8,3.4,1.9,0.2,Iris-setosa 5.0,3.0,1.6,0.2,Iris-setosa 5.0,3.4,1.6,0.4,Iris-setosa 5.2,3.5,1.5,0.2,Iris-setosa 5.2,3.4,1.4,0.2,Iris-setosa 4.7,3.2,1.6,0.2,Iris-setosa 4.8,3.1,1.6,0.2,Iris-setosa 5.4,3.4,1.5,0.4,Iris-setosa 5.2,4.1,1.5,0.1,Iris-setosa 5.5,4.2,1.4,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 5.0,3.2,1.2,0.2,Iris-setosa 5.5,3.5,1.3,0.2,Iris-setosa 4.9,3.1,1.5,0.1,Iris-setosa 4.4,3.0,1.3,0.2,Iris-setosa 5.1,3.4,1.5,0.2,Iris-setosa 5.0,3.5,1.3,0.3,Iris-setosa 4.5,2.3,1.3,0.3,Iris-setosa 4.4,3.2,1.3,0.2,Iris-setosa 5.0,3.5,1.6,0.6,Iris-setosa 5.1,3.8,1.9,0.4,Iris-setosa 4.8,3.0,1.4,0.3,Iris-setosa 5.1,3.8,1.6,0.2,Iris-setosa 4.6,3.2,1.4,0.2,Iris-setosa 5.3,3.7,1.5,0.2,Iris-setosa 5.0,3.3,1.4,0.2,Iris-setosa 7.0,3.2,4.7,1.4,Iris-versicolor 6.4,3.2,4.5,1.5,Iris-versicolor 6.9,3.1,4.9,1.5,Iris-versicolor 5.5,2.3,4.0,1.3,Iris-versicolor 6.5,2.8,4.6,1.5,Iris-versicolor 5.7,2.8,4.5,1.3,Iris-versicolor 6.3,3.3,4.7,1.6,Iris-versicolor 4.9,2.4,3.3,1.0,Iris-versicolor 6.6,2.9,4.6,1.3,Iris-versicolor 5.2,2.7,3.9,1.4,Iris-versicolor 5.0,2.0,3.5,1.0,Iris-versicolor 5.9,3.0,4.2,1.5,Iris-versicolor 6.0,2.2,4.0,1.0,Iris-versicolor 6.1,2.9,4.7,1.4,Iris-versicolor 5.6,2.9,3.6,1.3,Iris-versicolor 6.7,3.1,4.4,1.4,Iris-versicolor 5.6,3.0,4.5,1.5,Iris-versicolor 5.8,2.7,4.1,1.0,Iris-versicolor 6.2,2.2,4.5,1.5,Iris-versicolor 5.6,2.5,3.9,1.1,Iris-versicolor 5.9,3.2,4.8,1.8,Iris-versicolor 6.1,2.8,4.0,1.3,Iris-versicolor 6.3,2.5,4.9,1.5,Iris-versicolor 6.1,2.8,4.7,1.2,Iris-versicolor 6.4,2.9,4.3,1.3,Iris-versicolor 6.6,3.0,4.4,1.4,Iris-versicolor 6.8,2.8,4.8,1.4,Iris-versicolor 6.7,3.0,5.0,1.7,Iris-versicolor 6.0,2.9,4.5,1.5,Iris-versicolor 5.7,2.6,3.5,1.0,Iris-versicolor 5.5,2.4,3.8,1.1,Iris-versicolor 5.5,2.4,3.7,1.0,Iris-versicolor 5.8,2.7,3.9,1.2,Iris-versicolor 6.0,2.7,5.1,1.6,Iris-versicolor 5.4,3.0,4.5,1.5,Iris-versicolor 6.0,3.4,4.5,1.6,Iris-versicolor 6.7,3.1,4.7,1.5,Iris-versicolor 6.3,2.3,4.4,1.3,Iris-versicolor 5.6,3.0,4.1,1.3,Iris-versicolor 5.5,2.5,4.0,1.3,Iris-versicolor 5.5,2.6,4.4,1.2,Iris-versicolor 6.1,3.0,4.6,1.4,Iris-versicolor 5.8,2.6,4.0,1.2,Iris-versicolor 5.0,2.3,3.3,1.0,Iris-versicolor 5.6,2.7,4.2,1.3,Iris-versicolor 5.7,3.0,4.2,1.2,Iris-versicolor 5.7,2.9,4.2,1.3,Iris-versicolor 6.2,2.9,4.3,1.3,Iris-versicolor 5.1,2.5,3.0,1.1,Iris-versicolor 5.7,2.8,4.1,1.3,Iris-versicolor 6.3,3.3,6.0,2.5,Iris-virginica 5.8,2.7,5.1,1.9,Iris-virginica 7.1,3.0,5.9,2.1,Iris-virginica 6.3,2.9,5.6,1.8,Iris-virginica 6.5,3.0,5.8,2.2,Iris-virginica 7.6,3.0,6.6,2.1,Iris-virginica 4.9,2.5,4.5,1.7,Iris-virginica 7.3,2.9,6.3,1.8,Iris-virginica 6.7,2.5,5.8,1.8,Iris-virginica 7.2,3.6,6.1,2.5,Iris-virginica 6.5,3.2,5.1,2.0,Iris-virginica 6.4,2.7,5.3,1.9,Iris-virginica 6.8,3.0,5.5,2.1,Iris-virginica 5.7,2.5,5.0,2.0,Iris-virginica 5.8,2.8,5.1,2.4,Iris-virginica 6.4,3.2,5.3,2.3,Iris-virginica 6.5,3.0,5.5,1.8,Iris-virginica 7.7,3.8,6.7,2.2,Iris-virginica 7.7,2.6,6.9,2.3,Iris-virginica 6.0,2.2,5.0,1.5,Iris-virginica 6.9,3.2,5.7,2.3,Iris-virginica 5.6,2.8,4.9,2.0,Iris-virginica 7.7,2.8,6.7,2.0,Iris-virginica 6.3,2.7,4.9,1.8,Iris-virginica 6.7,3.3,5.7,2.1,Iris-virginica 7.2,3.2,6.0,1.8,Iris-virginica 6.2,2.8,4.8,1.8,Iris-virginica 6.1,3.0,4.9,1.8,Iris-virginica 6.4,2.8,5.6,2.1,Iris-virginica 7.2,3.0,5.8,1.6,Iris-virginica 7.4,2.8,6.1,1.9,Iris-virginica 7.9,3.8,6.4,2.0,Iris-virginica 6.4,2.8,5.6,2.2,Iris-virginica 6.3,2.8,5.1,1.5,Iris-virginica 6.1,2.6,5.6,1.4,Iris-virginica 7.7,3.0,6.1,2.3,Iris-virginica 6.3,3.4,5.6,2.4,Iris-virginica 6.4,3.1,5.5,1.8,Iris-virginica 6.0,3.0,4.8,1.8,Iris-virginica 6.9,3.1,5.4,2.1,Iris-virginica 6.7,3.1,5.6,2.4,Iris-virginica 6.9,3.1,5.1,2.3,Iris-virginica 5.8,2.7,5.1,1.9,Iris-virginica 6.8,3.2,5.9,2.3,Iris-virginica 6.7,3.3,5.7,2.5,Iris-virginica 6.7,3.0,5.2,2.3,Iris-virginica 6.3,2.5,5.0,1.9,Iris-virginica 6.5,3.0,5.2,2.0,Iris-virginica 6.2,3.4,5.4,2.3,Iris-virginica 5.9,3.0,5.1,1.8,Iris-virginica """ if __name__ == '__main__': unittest.main()
mit
sinhrks/pandas-ml
pandas_ml/skaccessors/test/test_naive_bayes.py
1
1236
#!/usr/bin/env python import sklearn.datasets as datasets import sklearn.naive_bayes as nb import pandas_ml as pdml import pandas_ml.util.testing as tm class TestNaiveBayes(tm.TestCase): def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.naive_bayes.GaussianNB, nb.GaussianNB) self.assertIs(df.naive_bayes.MultinomialNB, nb.MultinomialNB) self.assertIs(df.naive_bayes.BernoulliNB, nb.BernoulliNB) def test_Classifications(self): iris = datasets.load_iris() df = pdml.ModelFrame(iris) models = ['GaussianNB', 'MultinomialNB', 'BernoulliNB'] for model in models: mod1 = getattr(df.naive_bayes, model)() mod2 = getattr(nb, model)() df.fit(mod1) mod2.fit(iris.data, iris.target) result = df.predict(mod1) expected = mod2.predict(iris.data) self.assertIsInstance(result, pdml.ModelSeries) self.assert_numpy_array_almost_equal(result.values, expected) if __name__ == '__main__': import nose nose.runmodule(argv=[__file__, '-vvs', '-x', '--pdb', '--pdb-failure'], exit=False)
bsd-3-clause
vybstat/scikit-learn
sklearn/tree/tests/test_export.py
130
9950
""" Testing for export functions of decision trees (sklearn.tree.export). """ from re import finditer from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor from sklearn.ensemble import GradientBoostingClassifier from sklearn.tree import export_graphviz from sklearn.externals.six import StringIO from sklearn.utils.testing import assert_in # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] y = [-1, -1, -1, 1, 1, 1] y2 = [[-1, 1], [-1, 2], [-1, 3], [1, 1], [1, 2], [1, 3]] w = [1, 1, 1, .5, .5, .5] def test_graphviz_toy(): # Check correctness of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1, criterion="gini", random_state=2) clf.fit(X, y) # Test export code out = StringIO() export_graphviz(clf, out_file=out) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with feature_names out = StringIO() export_graphviz(clf, out_file=out, feature_names=["feature0", "feature1"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="feature0 <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test with class_names out = StringIO() export_graphviz(clf, out_file=out, class_names=["yes", "no"]) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = yes"] ;\n' \ '1 [label="gini = 0.0\\nsamples = 3\\nvalue = [3, 0]\\n' \ 'class = yes"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="gini = 0.0\\nsamples = 3\\nvalue = [0, 3]\\n' \ 'class = no"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test plot_options out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False, proportion=True, special_characters=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'edge [fontname=helvetica] ;\n' \ '0 [label=<X<SUB>0</SUB> &le; 0.0<br/>samples = 100.0%<br/>' \ 'value = [0.5, 0.5]>, fillcolor="#e5813900"] ;\n' \ '1 [label=<samples = 50.0%<br/>value = [1.0, 0.0]>, ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label=<samples = 50.0%<br/>value = [0.0, 1.0]>, ' \ 'fillcolor="#399de5ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, class_names=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box] ;\n' \ '0 [label="X[0] <= 0.0\\ngini = 0.5\\nsamples = 6\\n' \ 'value = [3, 3]\\nclass = y[0]"] ;\n' \ '1 [label="(...)"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test max_depth with plot_options out = StringIO() export_graphviz(clf, out_file=out, max_depth=0, filled=True, node_ids=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="node #0\\nX[0] <= 0.0\\ngini = 0.5\\n' \ 'samples = 6\\nvalue = [3, 3]", fillcolor="#e5813900"] ;\n' \ '1 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 1 ;\n' \ '2 [label="(...)", fillcolor="#C0C0C0"] ;\n' \ '0 -> 2 ;\n' \ '}' assert_equal(contents1, contents2) # Test multi-output with weighted samples clf = DecisionTreeClassifier(max_depth=2, min_samples_split=1, criterion="gini", random_state=2) clf = clf.fit(X, y2, sample_weight=w) out = StringIO() export_graphviz(clf, out_file=out, filled=True, impurity=False) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled", color="black"] ;\n' \ '0 [label="X[0] <= 0.0\\nsamples = 6\\n' \ 'value = [[3.0, 1.5, 0.0]\\n' \ '[1.5, 1.5, 1.5]]", fillcolor="#e5813900"] ;\n' \ '1 [label="X[1] <= -1.5\\nsamples = 3\\n' \ 'value = [[3, 0, 0]\\n[1, 1, 1]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="True"] ;\n' \ '2 [label="samples = 1\\nvalue = [[1, 0, 0]\\n' \ '[0, 0, 1]]", fillcolor="#e58139ff"] ;\n' \ '1 -> 2 ;\n' \ '3 [label="samples = 2\\nvalue = [[2, 0, 0]\\n' \ '[1, 1, 0]]", fillcolor="#e581398c"] ;\n' \ '1 -> 3 ;\n' \ '4 [label="X[0] <= 1.5\\nsamples = 3\\n' \ 'value = [[0.0, 1.5, 0.0]\\n[0.5, 0.5, 0.5]]", ' \ 'fillcolor="#e5813965"] ;\n' \ '0 -> 4 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="False"] ;\n' \ '5 [label="samples = 2\\nvalue = [[0.0, 1.0, 0.0]\\n' \ '[0.5, 0.5, 0.0]]", fillcolor="#e581398c"] ;\n' \ '4 -> 5 ;\n' \ '6 [label="samples = 1\\nvalue = [[0.0, 0.5, 0.0]\\n' \ '[0.0, 0.0, 0.5]]", fillcolor="#e58139ff"] ;\n' \ '4 -> 6 ;\n' \ '}' assert_equal(contents1, contents2) # Test regression output with plot_options clf = DecisionTreeRegressor(max_depth=3, min_samples_split=1, criterion="mse", random_state=2) clf.fit(X, y) out = StringIO() export_graphviz(clf, out_file=out, filled=True, leaves_parallel=True, rotate=True, rounded=True) contents1 = out.getvalue() contents2 = 'digraph Tree {\n' \ 'node [shape=box, style="filled, rounded", color="black", ' \ 'fontname=helvetica] ;\n' \ 'graph [ranksep=equally, splines=polyline] ;\n' \ 'edge [fontname=helvetica] ;\n' \ 'rankdir=LR ;\n' \ '0 [label="X[0] <= 0.0\\nmse = 1.0\\nsamples = 6\\n' \ 'value = 0.0", fillcolor="#e581397f"] ;\n' \ '1 [label="mse = 0.0\\nsamples = 3\\nvalue = -1.0", ' \ 'fillcolor="#e5813900"] ;\n' \ '0 -> 1 [labeldistance=2.5, labelangle=-45, ' \ 'headlabel="True"] ;\n' \ '2 [label="mse = 0.0\\nsamples = 3\\nvalue = 1.0", ' \ 'fillcolor="#e58139ff"] ;\n' \ '0 -> 2 [labeldistance=2.5, labelangle=45, ' \ 'headlabel="False"] ;\n' \ '{rank=same ; 0} ;\n' \ '{rank=same ; 1; 2} ;\n' \ '}' assert_equal(contents1, contents2) def test_graphviz_errors(): # Check for errors of export_graphviz clf = DecisionTreeClassifier(max_depth=3, min_samples_split=1) clf.fit(X, y) # Check feature_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, feature_names=[]) # Check class_names error out = StringIO() assert_raises(IndexError, export_graphviz, clf, out, class_names=[]) def test_friedman_mse_in_graphviz(): clf = DecisionTreeRegressor(criterion="friedman_mse", random_state=0) clf.fit(X, y) dot_data = StringIO() export_graphviz(clf, out_file=dot_data) clf = GradientBoostingClassifier(n_estimators=2, random_state=0) clf.fit(X, y) for estimator in clf.estimators_: export_graphviz(estimator[0], out_file=dot_data) for finding in finditer("\[.*?samples.*?\]", dot_data.getvalue()): assert_in("friedman_mse", finding.group())
bsd-3-clause
ifarup/website
imt6131/code/12_anisotropic_diff/12_anisotropic_diff.py
1
1125
#!/usr/bin/env python3 import numpy as np import matplotlib.pyplot as plt im = plt.imread('lena.png') im = np.sum(im, 2) / 3. dt = .25 eps = 1e-5 kappa = 1e4 gx, gy = np.gradient(im) gnormsq = gx**2 + gy**2 gnorm = np.sqrt(gnormsq) v1x = np.zeros(np.shape(gx)) v1y = np.zeros(np.shape(gx)) v2x = np.zeros(np.shape(gx)) v2y = np.zeros(np.shape(gx)) lambda1 = np.zeros(np.shape(gx)) lambda2 = np.zeros(np.shape(gx)) v1x[...] = 1 v1y[...] = 0 v2x[...] = 0 v2y[...] = 1 lambda1[...] = 1 lambda2[...] = 1 ind = (gnormsq != 0) v1x[ind] = gx[ind] / gnorm[ind] v1y[ind] = gy[ind] / gnorm[ind] v2x[ind] = v1y[ind] v2y[ind] = -v1x[ind] lambda1[ind] = 1 / (1 + kappa * gnormsq[ind]) lambda2[ind] = 1 D11 = lambda1 * v1x**2 + lambda2 * v2x**2 D22 = lambda1 * v1y**2 + lambda2 * v2y**2 D12 = lambda1 * v1x * v1y + lambda2 * v2x * v2y for i in range(100): plt.imsave('im_%04d.png' % i, im, cmap=plt.cm.gray, vmin=0, vmax=1) gx, gy = np.gradient(im) gxx, tmp = np.gradient(D11 * gx + D12 * gy) tmp, gyy = np.gradient(D12 * gx + D22 * gy) tv = gxx + gyy im[1:-1, 1:-1] = im[1:-1, 1:-1] + dt * tv[1:-1, 1:-1]
gpl-3.0
aleksandr-bakanov/astropy
astropy/modeling/powerlaws.py
3
15873
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Power law model variants """ import numpy as np from .core import Fittable1DModel from .parameters import Parameter, InputParameterError from astropy.units import Quantity __all__ = ['PowerLaw1D', 'BrokenPowerLaw1D', 'SmoothlyBrokenPowerLaw1D', 'ExponentialCutoffPowerLaw1D', 'LogParabola1D'] class PowerLaw1D(Fittable1DModel): """ One dimensional power law model. Parameters ---------- amplitude : float Model amplitude at the reference point x_0 : float Reference point alpha : float Power law index See Also -------- BrokenPowerLaw1D, ExponentialCutoffPowerLaw1D, LogParabola1D Notes ----- Model formula (with :math:`A` for ``amplitude`` and :math:`\\alpha` for ``alpha``): .. math:: f(x) = A (x / x_0) ^ {-\\alpha} """ amplitude = Parameter(default=1) x_0 = Parameter(default=1) alpha = Parameter(default=1) @staticmethod def evaluate(x, amplitude, x_0, alpha): """One dimensional power law model function""" xx = x / x_0 return amplitude * xx ** (-alpha) @staticmethod def fit_deriv(x, amplitude, x_0, alpha): """One dimensional power law derivative with respect to parameters""" xx = x / x_0 d_amplitude = xx ** (-alpha) d_x_0 = amplitude * alpha * d_amplitude / x_0 d_alpha = -amplitude * d_amplitude * np.log(xx) return [d_amplitude, d_x_0, d_alpha] @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return {'x_0': inputs_unit['x'], 'amplitude': outputs_unit['y']} class BrokenPowerLaw1D(Fittable1DModel): """ One dimensional power law model with a break. Parameters ---------- amplitude : float Model amplitude at the break point. x_break : float Break point. alpha_1 : float Power law index for x < x_break. alpha_2 : float Power law index for x > x_break. See Also -------- PowerLaw1D, ExponentialCutoffPowerLaw1D, LogParabola1D Notes ----- Model formula (with :math:`A` for ``amplitude`` and :math:`\\alpha_1` for ``alpha_1`` and :math:`\\alpha_2` for ``alpha_2``): .. math:: f(x) = \\left \\{ \\begin{array}{ll} A (x / x_{break}) ^ {-\\alpha_1} & : x < x_{break} \\\\ A (x / x_{break}) ^ {-\\alpha_2} & : x > x_{break} \\\\ \\end{array} \\right. """ amplitude = Parameter(default=1) x_break = Parameter(default=1) alpha_1 = Parameter(default=1) alpha_2 = Parameter(default=1) @staticmethod def evaluate(x, amplitude, x_break, alpha_1, alpha_2): """One dimensional broken power law model function""" alpha = np.where(x < x_break, alpha_1, alpha_2) xx = x / x_break return amplitude * xx ** (-alpha) @staticmethod def fit_deriv(x, amplitude, x_break, alpha_1, alpha_2): """One dimensional broken power law derivative with respect to parameters""" alpha = np.where(x < x_break, alpha_1, alpha_2) xx = x / x_break d_amplitude = xx ** (-alpha) d_x_break = amplitude * alpha * d_amplitude / x_break d_alpha = -amplitude * d_amplitude * np.log(xx) d_alpha_1 = np.where(x < x_break, d_alpha, 0) d_alpha_2 = np.where(x >= x_break, d_alpha, 0) return [d_amplitude, d_x_break, d_alpha_1, d_alpha_2] @property def input_units(self): if self.x_break.unit is None: return None else: return {'x': self.x_break.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return {'x_break': inputs_unit['x'], 'amplitude': outputs_unit['y']} class SmoothlyBrokenPowerLaw1D(Fittable1DModel): """One dimensional smoothly broken power law model. Parameters ---------- amplitude : float Model amplitude at the break point. x_break : float Break point. alpha_1 : float Power law index for ``x << x_break``. alpha_2 : float Power law index for ``x >> x_break``. delta : float Smoothness parameter. See Also -------- BrokenPowerLaw1D Notes ----- Model formula (with :math:`A` for ``amplitude``, :math:`x_b` for ``x_break``, :math:`\\alpha_1` for ``alpha_1``, :math:`\\alpha_2` for ``alpha_2`` and :math:`\\Delta` for ``delta``): .. math:: f(x) = A \\left( \\frac{x}{x_b} \\right) ^ {-\\alpha_1} \\left\\{ \\frac{1}{2} \\left[ 1 + \\left( \\frac{x}{x_b}\\right)^{1 / \\Delta} \\right] \\right\\}^{(\\alpha_1 - \\alpha_2) \\Delta} The change of slope occurs between the values :math:`x_1` and :math:`x_2` such that: .. math:: \\log_{10} \\frac{x_2}{x_b} = \\log_{10} \\frac{x_b}{x_1} \\sim \\Delta At values :math:`x \\lesssim x_1` and :math:`x \\gtrsim x_2` the model is approximately a simple power law with index :math:`\\alpha_1` and :math:`\\alpha_2` respectively. The two power laws are smoothly joined at values :math:`x_1 < x < x_2`, hence the :math:`\\Delta` parameter sets the "smoothness" of the slope change. The ``delta`` parameter is bounded to values greater than 1e-3 (corresponding to :math:`x_2 / x_1 \\gtrsim 1.002`) to avoid overflow errors. The ``amplitude`` parameter is bounded to positive values since this model is typically used to represent positive quantities. Examples -------- .. plot:: :include-source: import numpy as np import matplotlib.pyplot as plt from astropy.modeling import models x = np.logspace(0.7, 2.3, 500) f = models.SmoothlyBrokenPowerLaw1D(amplitude=1, x_break=20, alpha_1=-2, alpha_2=2) plt.figure() plt.title("amplitude=1, x_break=20, alpha_1=-2, alpha_2=2") f.delta = 0.5 plt.loglog(x, f(x), '--', label='delta=0.5') f.delta = 0.3 plt.loglog(x, f(x), '-.', label='delta=0.3') f.delta = 0.1 plt.loglog(x, f(x), label='delta=0.1') plt.axis([x.min(), x.max(), 0.1, 1.1]) plt.legend(loc='lower center') plt.grid(True) plt.show() """ amplitude = Parameter(default=1, min=0) x_break = Parameter(default=1) alpha_1 = Parameter(default=-2) alpha_2 = Parameter(default=2) delta = Parameter(default=1, min=1.e-3) @amplitude.validator def amplitude(self, value): if np.any(value <= 0): raise InputParameterError( "amplitude parameter must be > 0") @delta.validator def delta(self, value): if np.any(value < 0.001): raise InputParameterError( "delta parameter must be >= 0.001") @staticmethod def evaluate(x, amplitude, x_break, alpha_1, alpha_2, delta): """One dimensional smoothly broken power law model function""" # Pre-calculate `x/x_b` xx = x / x_break # Initialize the return value f = np.zeros_like(xx, subok=False) if isinstance(amplitude, Quantity): return_unit = amplitude.unit amplitude = amplitude.value else: return_unit = None # The quantity `t = (x / x_b)^(1 / delta)` can become quite # large. To avoid overflow errors we will start by calculating # its natural logarithm: logt = np.log(xx) / delta # When `t >> 1` or `t << 1` we don't actually need to compute # the `t` value since the main formula (see docstring) can be # significantly simplified by neglecting `1` or `t` # respectively. In the following we will check whether `t` is # much greater, much smaller, or comparable to 1 by comparing # the `logt` value with an appropriate threshold. threshold = 30 # corresponding to exp(30) ~ 1e13 i = logt > threshold if (i.max()): # In this case the main formula reduces to a simple power # law with index `alpha_2`. f[i] = amplitude * xx[i] ** (-alpha_2) \ / (2. ** ((alpha_1 - alpha_2) * delta)) i = logt < -threshold if (i.max()): # In this case the main formula reduces to a simple power # law with index `alpha_1`. f[i] = amplitude * xx[i] ** (-alpha_1) \ / (2. ** ((alpha_1 - alpha_2) * delta)) i = np.abs(logt) <= threshold if (i.max()): # In this case the `t` value is "comparable" to 1, hence we # we will evaluate the whole formula. t = np.exp(logt[i]) r = (1. + t) / 2. f[i] = amplitude * xx[i] ** (-alpha_1) \ * r ** ((alpha_1 - alpha_2) * delta) if return_unit: return Quantity(f, unit=return_unit, copy=False) else: return f @staticmethod def fit_deriv(x, amplitude, x_break, alpha_1, alpha_2, delta): """One dimensional smoothly broken power law derivative with respect to parameters""" # Pre-calculate `x_b` and `x/x_b` and `logt` (see comments in # SmoothlyBrokenPowerLaw1D.evaluate) xx = x / x_break logt = np.log(xx) / delta # Initialize the return values f = np.zeros_like(xx) d_amplitude = np.zeros_like(xx) d_x_break = np.zeros_like(xx) d_alpha_1 = np.zeros_like(xx) d_alpha_2 = np.zeros_like(xx) d_delta = np.zeros_like(xx) threshold = 30 # (see comments in SmoothlyBrokenPowerLaw1D.evaluate) i = logt > threshold if (i.max()): f[i] = amplitude * xx[i] ** (-alpha_2) \ / (2. ** ((alpha_1 - alpha_2) * delta)) d_amplitude[i] = f[i] / amplitude d_x_break[i] = f[i] * alpha_2 / x_break d_alpha_1[i] = f[i] * (-delta * np.log(2)) d_alpha_2[i] = f[i] * (-np.log(xx[i]) + delta * np.log(2)) d_delta[i] = f[i] * (-(alpha_1 - alpha_2) * np.log(2)) i = logt < -threshold if (i.max()): f[i] = amplitude * xx[i] ** (-alpha_1) \ / (2. ** ((alpha_1 - alpha_2) * delta)) d_amplitude[i] = f[i] / amplitude d_x_break[i] = f[i] * alpha_1 / x_break d_alpha_1[i] = f[i] * (-np.log(xx[i]) - delta * np.log(2)) d_alpha_2[i] = f[i] * delta * np.log(2) d_delta[i] = f[i] * (-(alpha_1 - alpha_2) * np.log(2)) i = np.abs(logt) <= threshold if (i.max()): t = np.exp(logt[i]) r = (1. + t) / 2. f[i] = amplitude * xx[i] ** (-alpha_1) \ * r ** ((alpha_1 - alpha_2) * delta) d_amplitude[i] = f[i] / amplitude d_x_break[i] = f[i] * (alpha_1 - (alpha_1 - alpha_2) * t / 2. / r) / x_break d_alpha_1[i] = f[i] * (-np.log(xx[i]) + delta * np.log(r)) d_alpha_2[i] = f[i] * (-delta * np.log(r)) d_delta[i] = f[i] * (alpha_1 - alpha_2) \ * (np.log(r) - t / (1. + t) / delta * np.log(xx[i])) return [d_amplitude, d_x_break, d_alpha_1, d_alpha_2, d_delta] @property def input_units(self): if self.x_break.unit is None: return None else: return {'x': self.x_break.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return {'x_break': inputs_unit['x'], 'amplitude': outputs_unit['y']} class ExponentialCutoffPowerLaw1D(Fittable1DModel): """ One dimensional power law model with an exponential cutoff. Parameters ---------- amplitude : float Model amplitude x_0 : float Reference point alpha : float Power law index x_cutoff : float Cutoff point See Also -------- PowerLaw1D, BrokenPowerLaw1D, LogParabola1D Notes ----- Model formula (with :math:`A` for ``amplitude`` and :math:`\\alpha` for ``alpha``): .. math:: f(x) = A (x / x_0) ^ {-\\alpha} \\exp (-x / x_{cutoff}) """ amplitude = Parameter(default=1) x_0 = Parameter(default=1) alpha = Parameter(default=1) x_cutoff = Parameter(default=1) @staticmethod def evaluate(x, amplitude, x_0, alpha, x_cutoff): """One dimensional exponential cutoff power law model function""" xx = x / x_0 return amplitude * xx ** (-alpha) * np.exp(-x / x_cutoff) @staticmethod def fit_deriv(x, amplitude, x_0, alpha, x_cutoff): """One dimensional exponential cutoff power law derivative with respect to parameters""" xx = x / x_0 xc = x / x_cutoff d_amplitude = xx ** (-alpha) * np.exp(-xc) d_x_0 = alpha * amplitude * d_amplitude / x_0 d_alpha = -amplitude * d_amplitude * np.log(xx) d_x_cutoff = amplitude * x * d_amplitude / x_cutoff ** 2 return [d_amplitude, d_x_0, d_alpha, d_x_cutoff] @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return {'x_0': inputs_unit['x'], 'x_cutoff': inputs_unit['x'], 'amplitude': outputs_unit['y']} class LogParabola1D(Fittable1DModel): """ One dimensional log parabola model (sometimes called curved power law). Parameters ---------- amplitude : float Model amplitude x_0 : float Reference point alpha : float Power law index beta : float Power law curvature See Also -------- PowerLaw1D, BrokenPowerLaw1D, ExponentialCutoffPowerLaw1D Notes ----- Model formula (with :math:`A` for ``amplitude`` and :math:`\\alpha` for ``alpha`` and :math:`\\beta` for ``beta``): .. math:: f(x) = A \\left(\\frac{x}{x_{0}}\\right)^{- \\alpha - \\beta \\log{\\left (\\frac{x}{x_{0}} \\right )}} """ amplitude = Parameter(default=1) x_0 = Parameter(default=1) alpha = Parameter(default=1) beta = Parameter(default=0) @staticmethod def evaluate(x, amplitude, x_0, alpha, beta): """One dimensional log parabola model function""" xx = x / x_0 exponent = -alpha - beta * np.log(xx) return amplitude * xx ** exponent @staticmethod def fit_deriv(x, amplitude, x_0, alpha, beta): """One dimensional log parabola derivative with respect to parameters""" xx = x / x_0 log_xx = np.log(xx) exponent = -alpha - beta * log_xx d_amplitude = xx ** exponent d_beta = -amplitude * d_amplitude * log_xx ** 2 d_x_0 = amplitude * d_amplitude * (beta * log_xx / x_0 - exponent / x_0) d_alpha = -amplitude * d_amplitude * log_xx return [d_amplitude, d_x_0, d_alpha, d_beta] @property def input_units(self): if self.x_0.unit is None: return None else: return {'x': self.x_0.unit} def _parameter_units_for_data_units(self, inputs_unit, outputs_unit): return {'x_0': inputs_unit['x'], 'amplitude': outputs_unit['y']}
bsd-3-clause
bryantbiggs/luther-02
src/aggregate.py
2
7563
''' Combine data sources on fuzzy-matched titles to create final data set ''' from multiprocessing import Pool, cpu_count from functools import partial import pandas as pd import numpy as np from fuzzywuzzy import process from src.my_aws import S3 KEY_OMDB_TOR = 'OMDB_Torrents.csv' KEY_NUM = 'TheNumbers_budgets.csv' KEY_FINAL = 'Final_Data.csv' BUCKET = 'movie-torrents' def fuzzy_match(search_title, match_titles): ''' Perform fuzzy match on provided title (searc_title) Args: search_title (str): Movie title to match up with Returns: dict: Dictionary of title searched, title it most closely matches and the percent that they match up ''' match_title, match_percent = process.extractOne( search_title, match_titles) return {'RowTitle': search_title, 'FuzzTitle': match_title, 'FuzzPercent': match_percent} class Aggregate(): ''' Combine data sources on fuzzy-matched titles and create final data set ''' def __init__(self): ''' Get a S3 connection object and pull down both data sources upon instantiation ''' self.s3_obj = S3() self.tor_data = self.s3_obj.get_data(KEY_OMDB_TOR, BUCKET) self.num_data = self.s3_obj.get_data(KEY_NUM, BUCKET) self.final_data = None def make_fuzzy_match(self): ''' Fuzzy match `The Numbers` data up to Torrent data up to a threshold of (95%) to prep Torrent data to be merged with `The Numbers` data Args: none Returns: pd.dataframe: Dataframe of torrent data with fuzzy matched title to join on ''' torrent_titles = self.tor_data['Title'].tolist() numbers_titles = self.num_data['title'].tolist() # Map fuzz search over available cpus num_cpus = cpu_count() worker_pool = Pool(num_cpus) fuzz_results = worker_pool.map( partial(fuzzy_match, match_titles=numbers_titles), torrent_titles) # fuzz_results = worker_pool.map(fuzzy_match, torrent_titles) worker_pool.close() worker_pool.join() # Put results into a dataframe and rename columns fuzz_data = pd.DataFrame(fuzz_results) fuzz_data = fuzz_data[['RowTitle', 'FuzzTitle', 'FuzzPercent']] fuzz_data.columns = ['Title', 'FuzzTitle', 'FuzzPercent'] # Append to torrent dataframe and drop duplicate titles merge_df = pd.merge(self.tor_data, fuzz_data, how='inner', on='Title') merge_df.drop_duplicates(subset='Title', inplace=True) # Drop rows where match was below 95% merge_df = merge_df[merge_df['FuzzPercent'] >= 95] self.tor_data = merge_df return merge_df def clean_fuzz_data(self): ''' Clean up date prior to merging with `The Numbers` data Args: none Returns: pd.dataframe: Dataframe of Torrent data ready to be merged with `The Numbers` data ''' tor = self.tor_data # remove where no torrent counts were received from any source tor['CheckTup'] = list(zip(tor['Kat_Count'].tolist(), tor['Pirate_Count'].tolist(), tor['Extra_Count'].tolist(), tor['Torrentz_Count'].tolist(), tor['Torrentz_Ver_Count'].tolist(), tor['Zoogle_Ver_Count'].tolist())) tor = tor[tor['CheckTup'] != ('Fail', 'Fail', 'Fail', 'Fail', 'Fail', 'Fail')].reset_index(drop=True) # Drop temp column for checking del tor['CheckTup'] # replace Fail, None, N and NaN with 0 - remove >, and < int_cols = ['Metascore', 'Runtime', 'imdbRating', 'imdbVotes', 'Kat_Count', 'Pirate_Count', 'Extra_Count', 'Torrentz_Count', 'Torrentz_Ver_Count', 'Zoogle_Ver_Count'] for col in int_cols: tor[col] = tor[col].replace(['Fail', 'None', 'N', 'NaN'], '0') tor[col] = tor[col].apply(lambda x: str(x).replace( '>', '').replace('<', '').replace(',', '')) tor[col] = tor[col].replace(np.nan, 0) tor[col] = tor[col].fillna(value=0) tor[col] = pd.to_numeric(tor[col], errors='coerce', downcast='integer') tor[col] = tor[col].fillna(value=0) # fill in remaining NaN's with blanks tor.fillna(value='', inplace=True) self.tor_data = tor return tor def merge_data_sources(self): ''' Merge Torrent data set with `The Numbers` data set Args: none Returns: pd.dataframe: Dataframe of resultant data set ''' self.num_data.columns = ['FuzzTitle', 'ReleaseDate', 'ProductionBudget', 'DomesticBudget', 'WorldGross'] # merge data frames data_df = pd.merge(self.tor_data, self.num_data, how='left', on='FuzzTitle') data_df = data_df.drop_duplicates(subset='imdbID') self.final_data = data_df return data_df def prepare_final_data(self): ''' Final preparations to final data set prior to upload to S3 Args: none Returns: pd.dataframe: Dataframe of final data set ''' data_df = self.final_data # Clean up dates data_df['Released'] = pd.to_datetime(data_df['Released']) data_df['ReleaseDate'] = pd.to_datetime(data_df['ReleaseDate']) data_df.loc[data_df['Released'].isnull( ), 'Released'] = data_df['ReleaseDate'] # Drop columns no longer needed del data_df['ReleaseDate'] del data_df['FuzzTitle'] del data_df['FuzzPercent'] # sum torrent counts data_df['Total_Torrents'] = data_df[['Kat_Count', 'Pirate_Count', 'Extra_Count', 'Torrentz_Count', 'Torrentz_Ver_Count', 'Zoogle_Ver_Count']].sum(axis=1) self.final_data = data_df return data_df def put_data_s3(self): ''' Upload clean data to S3 storage Args: none Returns: none ''' self.s3_obj.put_data(self.final_data, KEY_FINAL, BUCKET) def export_data(self, write_file): ''' Export data to csv file with the provided name/location (write_file) Args: write_file (str): Full file path of where to save csv file Returns: none ''' self.final_data.to_csv(write_file, sep=',', index=False) def aggregate_data(self): ''' Aggregate both data sources, clean, and then uplpoad to S3 Args: none Returns: none ''' self.make_fuzzy_match() self.clean_fuzz_data() self.merge_data_sources() self.prepare_final_data() self.put_data_s3() if __name__ == '__main__': AGG = Aggregate() AGG.aggregate_data()
mit
johankaito/fufuka
microblog/flask/venv/lib/python2.7/site-packages/scipy/signal/waveforms.py
17
14814
# Author: Travis Oliphant # 2003 # # Feb. 2010: Updated by Warren Weckesser: # Rewrote much of chirp() # Added sweep_poly() from __future__ import division, print_function, absolute_import import numpy as np from numpy import asarray, zeros, place, nan, mod, pi, extract, log, sqrt, \ exp, cos, sin, polyval, polyint __all__ = ['sawtooth', 'square', 'gausspulse', 'chirp', 'sweep_poly'] def sawtooth(t, width=1): """ Return a periodic sawtooth or triangle waveform. The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval ``width*2*pi`` to ``2*pi``. `width` must be in the interval [0, 1]. Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum. Parameters ---------- t : array_like Time. width : array_like, optional Width of the rising ramp as a proportion of the total cycle. Default is 1, producing a rising ramp, while 0 produces a falling ramp. `t` = 0.5 produces a triangle wave. If an array, causes wave shape to change over time, and must be the same length as t. Returns ------- y : ndarray Output array containing the sawtooth waveform. Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500) >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t)) """ t, w = asarray(t), asarray(width) w = asarray(w + (t - t)) t = asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y, mask1, nan) # take t modulo 2*pi tmod = mod(t, 2 * pi) # on the interval 0 to width*2*pi function is # tmod / (pi*w) - 1 mask2 = (1 - mask1) & (tmod < w * 2 * pi) tsub = extract(mask2, tmod) wsub = extract(mask2, w) place(y, mask2, tsub / (pi * wsub) - 1) # on the interval width*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) tsub = extract(mask3, tmod) wsub = extract(mask3, w) place(y, mask3, (pi * (wsub + 1) - tsub) / (pi * (1 - wsub))) return y def square(t, duty=0.5): """ Return a periodic square-wave waveform. The square wave has a period ``2*pi``, has value +1 from 0 to ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in the interval [0,1]. Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum. Parameters ---------- t : array_like The input time array. duty : array_like, optional Duty cycle. Default is 0.5 (50% duty cycle). If an array, causes wave shape to change over time, and must be the same length as t. Returns ------- y : ndarray Output array containing the square waveform. Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500, endpoint=False) >>> plt.plot(t, signal.square(2 * np.pi * 5 * t)) >>> plt.ylim(-2, 2) A pulse-width modulated sine wave: >>> plt.figure() >>> sig = np.sin(2 * np.pi * t) >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2) >>> plt.subplot(2, 1, 1) >>> plt.plot(t, sig) >>> plt.subplot(2, 1, 2) >>> plt.plot(t, pwm) >>> plt.ylim(-1.5, 1.5) """ t, w = asarray(t), asarray(duty) w = asarray(w + (t - t)) t = asarray(t + (w - w)) if t.dtype.char in ['fFdD']: ytype = t.dtype.char else: ytype = 'd' y = zeros(t.shape, ytype) # width must be between 0 and 1 inclusive mask1 = (w > 1) | (w < 0) place(y, mask1, nan) # on the interval 0 to duty*2*pi function is 1 tmod = mod(t, 2 * pi) mask2 = (1 - mask1) & (tmod < w * 2 * pi) place(y, mask2, 1) # on the interval duty*2*pi to 2*pi function is # (pi*(w+1)-tmod) / (pi*(1-w)) mask3 = (1 - mask1) & (1 - mask2) place(y, mask3, -1) return y def gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False, retenv=False): """ Return a Gaussian modulated sinusoid: ``exp(-a t^2) exp(1j*2*pi*fc*t).`` If `retquad` is True, then return the real and imaginary parts (in-phase and quadrature). If `retenv` is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid. Parameters ---------- t : ndarray or the string 'cutoff' Input array. fc : int, optional Center frequency (e.g. Hz). Default is 1000. bw : float, optional Fractional bandwidth in frequency domain of pulse (e.g. Hz). Default is 0.5. bwr : float, optional Reference level at which fractional bandwidth is calculated (dB). Default is -6. tpr : float, optional If `t` is 'cutoff', then the function returns the cutoff time for when the pulse amplitude falls below `tpr` (in dB). Default is -60. retquad : bool, optional If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False. retenv : bool, optional If True, return the envelope of the signal. Default is False. Returns ------- yI : ndarray Real part of signal. Always returned. yQ : ndarray Imaginary part of signal. Only returned if `retquad` is True. yenv : ndarray Envelope of signal. Only returned if `retenv` is True. See Also -------- scipy.signal.morlet Examples -------- Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False) >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True) >>> plt.plot(t, i, t, q, t, e, '--') """ if fc < 0: raise ValueError("Center frequency (fc=%.2f) must be >=0." % fc) if bw <= 0: raise ValueError("Fractional bandwidth (bw=%.2f) must be > 0." % bw) if bwr >= 0: raise ValueError("Reference level for bandwidth (bwr=%.2f) must " "be < 0 dB" % bwr) # exp(-a t^2) <-> sqrt(pi/a) exp(-pi^2/a * f^2) = g(f) ref = pow(10.0, bwr / 20.0) # fdel = fc*bw/2: g(fdel) = ref --- solve this for a # # pi^2/a * fc^2 * bw^2 /4=-log(ref) a = -(pi * fc * bw) ** 2 / (4.0 * log(ref)) if t == 'cutoff': # compute cut_off point # Solve exp(-a tc**2) = tref for tc # tc = sqrt(-log(tref) / a) where tref = 10^(tpr/20) if tpr >= 0: raise ValueError("Reference level for time cutoff must be < 0 dB") tref = pow(10.0, tpr / 20.0) return sqrt(-log(tref) / a) yenv = exp(-a * t * t) yI = yenv * cos(2 * pi * fc * t) yQ = yenv * sin(2 * pi * fc * t) if not retquad and not retenv: return yI if not retquad and retenv: return yI, yenv if retquad and not retenv: return yI, yQ if retquad and retenv: return yI, yQ, yenv def chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True): """Frequency-swept cosine generator. In the following, 'Hz' should be interpreted as 'cycles per unit'; there is no requirement here that the unit is one second. The important distinction is that the units of rotation are cycles, not radians. Likewise, `t` could be a measurement of space instead of time. Parameters ---------- t : array_like Times at which to evaluate the waveform. f0 : float Frequency (e.g. Hz) at time t=0. t1 : float Time at which `f1` is specified. f1 : float Frequency (e.g. Hz) of the waveform at time `t1`. method : {'linear', 'quadratic', 'logarithmic', 'hyperbolic'}, optional Kind of frequency sweep. If not given, `linear` is assumed. See Notes below for more details. phi : float, optional Phase offset, in degrees. Default is 0. vertex_zero : bool, optional This parameter is only used when `method` is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1. Returns ------- y : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below. See Also -------- sweep_poly Notes ----- There are four options for the `method`. The following formulas give the instantaneous frequency (in Hz) of the signal generated by `chirp()`. For convenience, the shorter names shown below may also be used. linear, lin, li: ``f(t) = f0 + (f1 - f0) * t / t1`` quadratic, quad, q: The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola is at (0, f0). If `vertex_zero` is False, then the vertex is at (t1, f1). The formula is: if vertex_zero is True: ``f(t) = f0 + (f1 - f0) * t**2 / t1**2`` else: ``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2`` To use a more general quadratic function, or an arbitrary polynomial, use the function `scipy.signal.waveforms.sweep_poly`. logarithmic, log, lo: ``f(t) = f0 * (f1/f0)**(t/t1)`` f0 and f1 must be nonzero and have the same sign. This signal is also known as a geometric or exponential chirp. hyperbolic, hyp: ``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)`` f0 and f1 must be nonzero. """ # 'phase' is computed in _chirp_phase, to make testing easier. phase = _chirp_phase(t, f0, t1, f1, method, vertex_zero) # Convert phi to radians. phi *= pi / 180 return cos(phase + phi) def _chirp_phase(t, f0, t1, f1, method='linear', vertex_zero=True): """ Calculate the phase used by chirp_phase to generate its output. See `chirp_phase` for a description of the arguments. """ t = asarray(t) f0 = float(f0) t1 = float(t1) f1 = float(f1) if method in ['linear', 'lin', 'li']: beta = (f1 - f0) / t1 phase = 2 * pi * (f0 * t + 0.5 * beta * t * t) elif method in ['quadratic', 'quad', 'q']: beta = (f1 - f0) / (t1 ** 2) if vertex_zero: phase = 2 * pi * (f0 * t + beta * t ** 3 / 3) else: phase = 2 * pi * (f1 * t + beta * ((t1 - t) ** 3 - t1 ** 3) / 3) elif method in ['logarithmic', 'log', 'lo']: if f0 * f1 <= 0.0: raise ValueError("For a logarithmic chirp, f0 and f1 must be " "nonzero and have the same sign.") if f0 == f1: phase = 2 * pi * f0 * t else: beta = t1 / log(f1 / f0) phase = 2 * pi * beta * f0 * (pow(f1 / f0, t / t1) - 1.0) elif method in ['hyperbolic', 'hyp']: if f0 == 0 or f1 == 0: raise ValueError("For a hyperbolic chirp, f0 and f1 must be " "nonzero.") if f0 == f1: # Degenerate case: constant frequency. phase = 2 * pi * f0 * t else: # Singular point: the instantaneous frequency blows up # when t == sing. sing = -f1 * t1 / (f0 - f1) phase = 2 * pi * (-sing * f0) * log(np.abs(1 - t/sing)) else: raise ValueError("method must be 'linear', 'quadratic', 'logarithmic'," " or 'hyperbolic', but a value of %r was given." % method) return phase def sweep_poly(t, poly, phi=0): """ Frequency-swept cosine generator, with a time-dependent frequency. This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time `t` is given by the polynomial `poly`. Parameters ---------- t : ndarray Times at which to evaluate the waveform. poly : 1-D array_like or instance of numpy.poly1d The desired frequency expressed as a polynomial. If `poly` is a list or ndarray of length n, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of numpy.poly1d, then the instantaneous frequency is ``f(t) = poly(t)`` phi : float, optional Phase offset, in degrees, Default: 0. Returns ------- sweep_poly : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above. See Also -------- chirp Notes ----- .. versionadded:: 0.8.0 If `poly` is a list or ndarray of length `n`, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is: ``f(t) = poly[0]*t**(n-1) + poly[1]*t**(n-2) + ... + poly[n-1]`` If `poly` is an instance of `numpy.poly1d`, then the instantaneous frequency is: ``f(t) = poly(t)`` Finally, the output `s` is: ``cos(phase + (pi/180)*phi)`` where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``, ``f(t)`` as defined above. """ # 'phase' is computed in _sweep_poly_phase, to make testing easier. phase = _sweep_poly_phase(t, poly) # Convert to radians. phi *= pi / 180 return cos(phase + phi) def _sweep_poly_phase(t, poly): """ Calculate the phase used by sweep_poly to generate its output. See `sweep_poly` for a description of the arguments. """ # polyint handles lists, ndarrays and instances of poly1d automatically. intpoly = polyint(poly) phase = 2 * pi * polyval(intpoly, t) return phase
apache-2.0
jblackburne/scikit-learn
examples/covariance/plot_outlier_detection.py
24
4318
""" ========================================== Outlier detection with several methods. ========================================== When the amount of contamination is known, this example illustrates three different ways of performing :ref:`outlier_detection`: - based on a robust estimator of covariance, which is assuming that the data are Gaussian distributed and performs better than the One-Class SVM in that case. - using the One-Class SVM and its ability to capture the shape of the data set, hence performing better when the data is strongly non-Gaussian, i.e. with two well-separated clusters; - using the Isolation Forest algorithm, which is based on random forests and hence more adapted to large-dimensional settings, even if it performs quite well in the examples below. The ground truth about inliers and outliers is given by the points colors while the orange-filled area indicates which points are reported as inliers by each method. Here, we assume that we know the fraction of outliers in the datasets. Thus rather than using the 'predict' method of the objects, we set the threshold on the decision_function to separate out the corresponding fraction. """ print(__doc__) import numpy as np from scipy import stats import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn import svm from sklearn.covariance import EllipticEnvelope from sklearn.ensemble import IsolationForest rng = np.random.RandomState(42) # Example settings n_samples = 200 outliers_fraction = 0.25 clusters_separation = [0, 1, 2] # define two outlier detection tools to be compared classifiers = { "One-Class SVM": svm.OneClassSVM(nu=0.95 * outliers_fraction + 0.05, kernel="rbf", gamma=0.1), "Robust covariance": EllipticEnvelope(contamination=outliers_fraction), "Isolation Forest": IsolationForest(max_samples=n_samples, contamination=outliers_fraction, random_state=rng)} # Compare given classifiers under given settings xx, yy = np.meshgrid(np.linspace(-7, 7, 500), np.linspace(-7, 7, 500)) n_inliers = int((1. - outliers_fraction) * n_samples) n_outliers = int(outliers_fraction * n_samples) ground_truth = np.ones(n_samples, dtype=int) ground_truth[-n_outliers:] = -1 # Fit the problem with varying cluster separation for i, offset in enumerate(clusters_separation): np.random.seed(42) # Data generation X1 = 0.3 * np.random.randn(n_inliers // 2, 2) - offset X2 = 0.3 * np.random.randn(n_inliers // 2, 2) + offset X = np.r_[X1, X2] # Add outliers X = np.r_[X, np.random.uniform(low=-6, high=6, size=(n_outliers, 2))] # Fit the model plt.figure(figsize=(10.8, 3.6)) for i, (clf_name, clf) in enumerate(classifiers.items()): # fit the data and tag outliers clf.fit(X) scores_pred = clf.decision_function(X) threshold = stats.scoreatpercentile(scores_pred, 100 * outliers_fraction) y_pred = clf.predict(X) n_errors = (y_pred != ground_truth).sum() # plot the levels lines and the points Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) subplot = plt.subplot(1, 3, i + 1) subplot.contourf(xx, yy, Z, levels=np.linspace(Z.min(), threshold, 7), cmap=plt.cm.Blues_r) a = subplot.contour(xx, yy, Z, levels=[threshold], linewidths=2, colors='red') subplot.contourf(xx, yy, Z, levels=[threshold, Z.max()], colors='orange') b = subplot.scatter(X[:-n_outliers, 0], X[:-n_outliers, 1], c='white') c = subplot.scatter(X[-n_outliers:, 0], X[-n_outliers:, 1], c='black') subplot.axis('tight') subplot.legend( [a.collections[0], b, c], ['learned decision function', 'true inliers', 'true outliers'], prop=matplotlib.font_manager.FontProperties(size=11), loc='lower right') subplot.set_title("%d. %s (errors: %d)" % (i + 1, clf_name, n_errors)) subplot.set_xlim((-7, 7)) subplot.set_ylim((-7, 7)) plt.subplots_adjust(0.04, 0.1, 0.96, 0.92, 0.1, 0.26) plt.show()
bsd-3-clause
dingocuster/scikit-learn
benchmarks/bench_plot_approximate_neighbors.py
244
6011
""" Benchmark for approximate nearest neighbor search using locality sensitive hashing forest. There are two types of benchmarks. First, accuracy of LSHForest queries are measured for various hyper-parameters and index sizes. Second, speed up of LSHForest queries compared to brute force method in exact nearest neighbors is measures for the aforementioned settings. In general, speed up is increasing as the index size grows. """ from __future__ import division import numpy as np from tempfile import gettempdir from time import time from sklearn.neighbors import NearestNeighbors from sklearn.neighbors.approximate import LSHForest from sklearn.datasets import make_blobs from sklearn.externals.joblib import Memory m = Memory(cachedir=gettempdir()) @m.cache() def make_data(n_samples, n_features, n_queries, random_state=0): """Create index and query data.""" print('Generating random blob-ish data') X, _ = make_blobs(n_samples=n_samples + n_queries, n_features=n_features, centers=100, shuffle=True, random_state=random_state) # Keep the last samples as held out query vectors: note since we used # shuffle=True we have ensured that index and query vectors are # samples from the same distribution (a mixture of 100 gaussians in this # case) return X[:n_samples], X[n_samples:] def calc_exact_neighbors(X, queries, n_queries, n_neighbors): """Measures average times for exact neighbor queries.""" print ('Building NearestNeighbors for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) average_time = 0 t0 = time() neighbors = nbrs.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time = (time() - t0) / n_queries return neighbors, average_time def calc_accuracy(X, queries, n_queries, n_neighbors, exact_neighbors, average_time_exact, **lshf_params): """Calculates accuracy and the speed up of LSHForest.""" print('Building LSHForest for %d samples in %d dimensions' % (X.shape[0], X.shape[1])) lshf = LSHForest(**lshf_params) t0 = time() lshf.fit(X) lshf_build_time = time() - t0 print('Done in %0.3fs' % lshf_build_time) accuracy = 0 t0 = time() approx_neighbors = lshf.kneighbors(queries, n_neighbors=n_neighbors, return_distance=False) average_time_approx = (time() - t0) / n_queries for i in range(len(queries)): accuracy += np.in1d(approx_neighbors[i], exact_neighbors[i]).mean() accuracy /= n_queries speed_up = average_time_exact / average_time_approx print('Average time for lshf neighbor queries: %0.3fs' % average_time_approx) print ('Average time for exact neighbor queries: %0.3fs' % average_time_exact) print ('Average Accuracy : %0.2f' % accuracy) print ('Speed up: %0.1fx' % speed_up) return speed_up, accuracy if __name__ == '__main__': import matplotlib.pyplot as plt # Initialize index sizes n_samples = [int(1e3), int(1e4), int(1e5), int(1e6)] n_features = int(1e2) n_queries = 100 n_neighbors = 10 X_index, X_query = make_data(np.max(n_samples), n_features, n_queries, random_state=0) params_list = [{'n_estimators': 3, 'n_candidates': 50}, {'n_estimators': 5, 'n_candidates': 70}, {'n_estimators': 10, 'n_candidates': 100}] accuracies = np.zeros((len(n_samples), len(params_list)), dtype=float) speed_ups = np.zeros((len(n_samples), len(params_list)), dtype=float) for i, sample_size in enumerate(n_samples): print ('==========================================================') print ('Sample size: %i' % sample_size) print ('------------------------') exact_neighbors, average_time_exact = calc_exact_neighbors( X_index[:sample_size], X_query, n_queries, n_neighbors) for j, params in enumerate(params_list): print ('LSHF parameters: n_estimators = %i, n_candidates = %i' % (params['n_estimators'], params['n_candidates'])) speed_ups[i, j], accuracies[i, j] = calc_accuracy( X_index[:sample_size], X_query, n_queries, n_neighbors, exact_neighbors, average_time_exact, random_state=0, **params) print ('') print ('==========================================================') # Set labels for LSHForest parameters colors = ['c', 'm', 'y'] legend_rects = [plt.Rectangle((0, 0), 0.1, 0.1, fc=color) for color in colors] legend_labels = ['n_estimators={n_estimators}, ' 'n_candidates={n_candidates}'.format(**p) for p in params_list] # Plot precision plt.figure() plt.legend(legend_rects, legend_labels, loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, accuracies[:, i], c=colors[i]) plt.plot(n_samples, accuracies[:, i], c=colors[i]) plt.ylim([0, 1.3]) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Precision@10") plt.xlabel("Index size") plt.grid(which='both') plt.title("Precision of first 10 neighbors with index size") # Plot speed up plt.figure() plt.legend(legend_rects, legend_labels, loc='upper left') for i in range(len(params_list)): plt.scatter(n_samples, speed_ups[:, i], c=colors[i]) plt.plot(n_samples, speed_ups[:, i], c=colors[i]) plt.ylim(0, np.max(speed_ups)) plt.xlim(np.min(n_samples), np.max(n_samples)) plt.semilogx() plt.ylabel("Speed up") plt.xlabel("Index size") plt.grid(which='both') plt.title("Relationship between Speed up and index size") plt.show()
bsd-3-clause
EconomicSL/housing-model
src/main/resources/calibration/code/IncomeDistByTenure.py
2
5549
# -*- coding: utf-8 -*- """ Code to read English Housing Survey data about income for different tenures and plot a histogram of it. @author: daniel, Adrian Carro """ import Datasets as ds import matplotlib.pyplot as plt # Read data rawData = ds.EHSinterview() # Data filtering according to the following fields: # - Prevten: Previous Tenure (new household; owned outright; buying with a mortgage; owned, unknown if outright or # mortgage; council; housing association; privately rented; rented, landlord unknown; household reference person # resident 3 years or more; does not apply; no answer) # - agehrpx: Age of HRP (no answer; does not apply; 95 or over) # - lenresb: Length of residence (less than 1 year; one year; two years; 3-4 years; 5-9 years; 10-19 years; # 20-29 years; 30+ years; does not apply; no answer) # - tenure4: Tenure Group 4 (no answer; owners; social sector; private renters; does not apply) # - HYEARGRx: Household gross annual income (inc. income from all adult household members). An extension of the gross # income of the HRP and any partner. This variable represents the household gross income of ALL adults living within # the household (£100,000 or more) # # First, select only these 5 columns, and only rows where Prevten does not assume the values "does not apply", # "no answer" nor "household reference person resident 3 years or more" data = rawData[['Prevten', 'agehrpx', 'lenresb', 'tenure4', 'HYEARGRx']][(rawData['Prevten'] != "does not apply") & (rawData['Prevten'] != "no answer") & (rawData['Prevten'] != "household reference " "person resident 3 " "years or more")] # data = rawData[['Prevten', 'agehrpx', 'lenresb', 'tenure4', 'HYEARGRx']][(rawData['Prevten'] > 0) & # (rawData['Prevten'] < 9)] # Replace the label "£100,000 or more" with the value 100000 data["HYEARGRx"].replace(to_replace=".*more$", value=100000, inplace=True, regex=True) # TODO: Old and devoid of much sense code, to be kept for now and decided upon later # # Transform labels at lenresb column into (average) values, filtering out "does not apply" and "no answer" # data = data[(data["lenresb"] != "does not apply") & (data["lenresb"] != "no answer")] # dictionary = {"less than 1 year": 0.5, # "one year": 1, # "two years": 2, # "3-4 years": 3.5, # "5-9 years": 7, # "10-19 years": 15, # "20-29 years": 25, # "30+ years": 30} # data["lenresb"].replace(dictionary, inplace=True) # # # Transform "95 or over" label at agehrpx into 95 # data["agehrpx"].replace({"95 or over": 95}, inplace=True) # # # Add new column with age of Household Repr. Person at moment of last move (current age - length of residence) # data["ageAtMove"] = data['agehrpx'] - data['lenresb'] # # # Transform labels at lenresb column into original value codes # dictionary = {"new household": 1, # "owned outright": 2, # "buying with a mortgage": 3, # "owned, unknown if outright or mortgage": 4, # "council": 5, # "housing association": 6, # "privately rented": 7, # "rented, landlord unknown": 8} # data["Prevten"].replace(dictionary, inplace=True) # # # Transform labels at tenure4 column into original value codes # dictionary = {"no answer": -8, # "owners": 1, # "social sector": 2, # "private renters": 3, # "does not apply": -9} # data["tenure4"].replace(dictionary, inplace=True) # # # Some absolute nonsense calculation # data['tenChange'] = ((data['Prevten'] < 5) & (data['Prevten'] > 1)) * 10.0 \ # + ((data['Prevten'] > 4) & (data['Prevten'] < 7)) * 20.0 + (data['Prevten'] > 6) * 30.0 \ # + data['tenure4'] # # # Some absolute nonsense filtering of ageAtMove data # formationData = data[['ageAtMove']][data['tenChange'] < 10] # formationRentData = data[['ageAtMove']][data['tenChange'] == 3] # This selects private renters # moverData = data[['ageAtMove']][(data['tenChange'] > 10) & (data['tenChange'] < 20)] # rentownData = data[['ageAtMove']][data['tenChange'] == 31] # fluxes = data[['tenChange']] # Selecting income values for private renters incomeFormRent = data[["HYEARGRx"]][data["tenure4"] == "private renters"] # incomeFormRent = data[['HYEARGRx']][data['tenure4'] == 3] # Old version # Selecting income values for socially housed households incomeFormSoc = data[["HYEARGRx"]][data["tenure4"] == "social sector"] # incomeFormSoc = data[['HYEARGRx']][data['tenure4'] == 2] # Old version # Selecting income values for owners incomeFormOwn = data[["HYEARGRx"]][data["tenure4"] == "owners"] # incomeFormOwn = data[['HYEARGRx']][data['tenure4'] == 1] # Old version # Plot histogram of data plt.figure(figsize=(9, 6)) plt.hist([incomeFormSoc.values, incomeFormRent.values, incomeFormOwn.values], bins=20, stacked=False, density=True, label=["Social housing", "Private renters", "Owners"], rwidth=0.9) plt.xlabel("Annual net household income") plt.ylabel("Density") plt.legend() plt.tight_layout() plt.show()
mit
gwpy/seismon
seismon/bits.py
2
22194
#!/usr/bin/python import os, glob, optparse, shutil, warnings, pickle, math, copy, pickle, matplotlib import matplotlib.pyplot as plt import numpy as np import scipy.signal, scipy.stats import seismon.NLNM, seismon.html import seismon.eqmon, seismon.utils try: import gwpy.time, gwpy.timeseries import gwpy.frequencyseries, gwpy.spectrogram import gwpy.plotter except: print("gwpy import fails... no plotting possible.") __author__ = "Michael Coughlin <[email protected]>" __date__ = "2012/8/26" __version__ = "0.1" # ============================================================================= # # DEFINITIONS # # ============================================================================= def save_data(params,channel,gpsStart,gpsEnd,data,attributeDics): """@saves spectral data in text files. @param params seismon params dictionary @param channel seismon channel structure @param gpsStart start gps @param gpsStart start gps @param gpsEnd end gps @param data spectral data structure """ ifo = seismon.utils.getIfo(params) psdDirectory = params["dirPath"] + "/Text_Files/PSD/" + channel.station_underscore + "/" + str(params["fftDuration"]) seismon.utils.mkdir(psdDirectory) fftDirectory = params["dirPath"] + "/Text_Files/FFT/" + channel.station_underscore + "/" + str(params["fftDuration"]) seismon.utils.mkdir(fftDirectory) timeseriesDirectory = params["dirPath"] + "/Text_Files/Timeseries/" + channel.station_underscore + "/" + str(params["fftDuration"]) seismon.utils.mkdir(timeseriesDirectory) earthquakesDirectory = params["dirPath"] + "/Text_Files/Earthquakes/" + channel.station_underscore + "/" + str(params["fftDuration"]) seismon.utils.mkdir(earthquakesDirectory) freq = np.array(data["dataASD"].frequencies) psdFile = os.path.join(psdDirectory,"%d-%d.txt"%(gpsStart,gpsEnd)) f = open(psdFile,"wb") for i in range(len(freq)): f.write("%e %e\n"%(freq[i],data["dataASD"][i])) f.close() freq = np.array(data["dataFFT"].frequencies) fftFile = os.path.join(fftDirectory,"%d-%d.txt"%(gpsStart,gpsEnd)) f = open(fftFile,"wb") for i in range(len(freq)): f.write("%e %e %e\n"%(freq[i],data["dataFFT"].data[i].real,data["dataFFT"].data[i].imag)) f.close() tt = np.array(data["dataLowpass"].times) timeseriesFile = os.path.join(timeseriesDirectory,"%d-%d.txt"%(gpsStart,gpsEnd)) f = open(timeseriesFile,"wb") f.write("%.10f %e\n"%(tt[np.argmin(data["dataLowpass"].data)],np.min(data["dataLowpass"].data))) f.write("%.10f %e\n"%(tt[np.argmax(data["dataLowpass"].data)],np.max(data["dataLowpass"].data))) f.close() for attributeDic in attributeDics: if params["ifo"] == "IRIS": attributeDic = seismon.eqmon.ifotraveltimes(attributeDic, "IRIS", channel.latitude, channel.longitude) traveltimes = attributeDic["traveltimes"]["IRIS"] else: traveltimes = attributeDic["traveltimes"][ifo] Ptime = max(traveltimes["Ptimes"]) Stime = max(traveltimes["Stimes"]) Rtwotime = max(traveltimes["Rtwotimes"]) RthreePointFivetime = max(traveltimes["RthreePointFivetimes"]) Rfivetime = max(traveltimes["Rfivetimes"]) distance = max(traveltimes["Distances"]) indexes = np.intersect1d(np.where(tt >= Rfivetime)[0],np.where(tt <= Rtwotime)[0]) if len(indexes) == 0: continue indexMin = np.min(indexes) indexMax = np.max(indexes) ttCut = tt[indexes] dataCut = data["dataLowpass"][indexMin:indexMax] ampMax = np.max(dataCut.data) ttMax = ttCut[np.argmax(dataCut.data)] ttDiff = ttMax - attributeDic["GPS"] velocity = distance / ttDiff velocity = velocity / 1000.0 earthquakesFile = os.path.join(earthquakesDirectory,"%s.txt"%(attributeDic["eventName"])) f = open(earthquakesFile,"wb") f.write("%.10f %e %e %e %e\n"%(ttMax,ttDiff,distance,velocity,ampMax)) f.close() def bits(params, channel, segment): """@calculates spectral data for given channel and segment. @param params seismon params dictionary @param channel seismon channel structure @param segment [start,end] gps """ ifo = seismon.utils.getIfo(params) gpsStart = segment[0] gpsEnd = segment[1] # set the times duration = np.ceil(gpsEnd-gpsStart) # make timeseries state = seismon.utils.retrieve_bits(params, channel, segment) flags = state.to_dqflags(round=True) if params["doPlots"]: plotDirectory = params["path"] + "/" + channel.station_underscore seismon.utils.mkdir(plotDirectory) pngFile = os.path.join(plotDirectory,"bits.png") #plot = gwpy.plotter.TimeSeriesPlot(figsize=[14,8]) valid={'facecolor': 'red'} plot = state.plot(valid=valid) #plot.ylabel = r"Velocity [$\mu$m/s]" #plot.title = channel.station.replace("_","\_") #plot.xlim = xlim #plot.ylim = ylim #plot.add_legend(loc=1,prop={'size':10}) plot.save(pngFile) plot.close() def freq_analysis(params,channel,tt,freq,spectra): """@frequency analysis of spectral data. @param params seismon params dictionary @param channel seismon channel structure @param tt array of start times @param freq frequency vector @param spectra spectrogram structure """ if params["doPlots"]: plotDirectory = params["path"] + "/" + channel.station_underscore + "/freq" seismon.utils.mkdir(plotDirectory) indexes = np.logspace(0,np.log10(len(freq)-1),num=100) indexes = list(np.unique(np.ceil(indexes))) indexes = range(len(freq)) #indexes = range(16) indexes = np.where(10.0 >= freq)[0] deltaT = tt[1] - tt[0] n_dist = [] for j in range(1000): n_dist.append(scipy.stats.chi2.rvs(2)) p_chi2_vals = [] p_ks_vals = [] ttCoh_vals = [] for i in indexes: vals = spectra[:,i] meanPSD = np.mean(vals) stdPSD = np.std(vals) vals_norm = 2 * vals / meanPSD bins = np.arange(0,10,1) (n,bins) = np.histogram(vals_norm,bins=bins) n_total = np.sum(n) bins = (bins[1:] + bins[:len(bins)-1])/2 n_expected = [] for bin in bins: expected_val = n_total * scipy.stats.chi2.pdf(bin, 2) n_expected.append(expected_val) n_expected = np.array(n_expected) (stat_chi2,p_chi2) = scipy.stats.mstats.chisquare(n, f_exp=n_expected) p_chi2_vals.append(p_chi2) (stat_ks,p_ks) = scipy.stats.ks_2samp(vals_norm, n_dist) p_ks_vals.append(p_ks) acov = np.correlate(vals,vals,"full") acov = acov / np.max(acov) ttCov = (np.arange(len(acov)) - len(acov)/2) * float(deltaT) #ttLimitMin = - 5/freq[i] #ttLimitMax = 5 /freq[i] ttLimitMin = - float('inf') ttLimitMax = float('inf') ttIndexes = np.intersect1d(np.where(ttCov >= ttLimitMin)[0],np.where(ttCov <= ttLimitMax)[0]) #ttCov = ttCov / (60) acov_minus_05 = np.absolute(acov[ttIndexes] - 0.66) index_min = acov_minus_05.argmin() ttCoh = np.absolute(ttCov[ttIndexes[index_min]]) ttCoh_vals.append(ttCoh) if len(ttIndexes) == 0: continue #if freq[i] > 0: # continue if params["doPlots"]: ax = plt.subplot(111) plt.plot(bins,n,label='true') plt.plot(bins,n_expected,'k*',label='expected') plt.xlabel("2 * data / mean") plt.ylabel("Counts") plot_title = "p-value: %f"%p_chi2 plt.title(plot_title) plt.legend() plt.show() plt.savefig(os.path.join(plotDirectory,"%s_dist.png"%str(freq[i])),dpi=200) plt.savefig(os.path.join(plotDirectory,"%s_dist.eps"%str(freq[i])),dpi=200) plt.close('all') ax = plt.subplot(111) plt.semilogy(ttCov[ttIndexes],acov[ttIndexes]) plt.vlines(ttCoh,10**(-3),1,color='r') plt.vlines(-ttCoh,10**(-3),1,color='r') plt.xlabel("Time [Seconds]") plt.ylabel("Correlation") plt.show() plt.savefig(os.path.join(plotDirectory,"%s_cov.png"%str(freq[i])),dpi=200) plt.savefig(os.path.join(plotDirectory,"%s_cov.eps"%str(freq[i])),dpi=200) plt.close('all') if params["doPlots"]: ax = plt.subplot(111) plt.loglog(freq[indexes],p_chi2_vals,label='chi2') plt.loglog(freq[indexes],p_ks_vals,label='k-s') plt.xlabel("Frequency [Hz]") plt.ylabel("p-value") plt.legend(loc=3) plt.show() plt.savefig(os.path.join(plotDirectory,"freq_analysis.png"),dpi=200) plt.savefig(os.path.join(plotDirectory,"freq_analysis.eps"),dpi=200) plt.close('all') ax = plt.subplot(111) plt.semilogx(freq[indexes],ttCoh_vals) plt.xlabel("Frequency [Hz]") plt.ylabel("Coherence Time [s]") plt.show() plt.savefig(os.path.join(plotDirectory,"ttCohs.png"),dpi=200) plt.savefig(os.path.join(plotDirectory,"ttCohs.eps"),dpi=200) plt.close('all') def analysis(params, channel): """@analysis of spectral data. @param params seismon params dictionary @param channel seismon channel structure """ psdDirectory = params["dirPath"] + "/Text_Files/PSD/" + channel.station_underscore + "/" + str(params["fftDuration"]) files = glob.glob(os.path.join(psdDirectory,"*.txt")) files = sorted(files) if not params["doFreqAnalysis"]: if len(files) > 1000: files = files[:1000] #files = files[-10:] tts = [] spectra = [] for file in files: fileSplit = file.split("/") txtFile = fileSplit[-1].replace(".txt","") txtFileSplit = txtFile.split("-") thisTTStart = int(txtFileSplit[0]) thisTTEnd = int(txtFileSplit[1]) tt = thisTTStart if tt in tts: continue tts.append(tt) spectra_out = gwpy.frequencyseries.Spectrum.read(file) spectra_out.unit = 'counts/Hz^(1/2)' spectra.append(spectra_out) if tt == params["gpsStart"]: spectraNow = spectra_out if not 'spectraNow' in locals(): print("no data at requested time... continuing\n") return if np.mean(spectraNow.data) == 0.0: print("data only zeroes... continuing\n") return dt = tts[1] - tts[0] epoch = gwpy.time.Time(tts[0], format='gps') specgram = gwpy.spectrogram.Spectrogram.from_spectra(*spectra, dt=dt,epoch=epoch) freq = np.array(specgram.frequencies) # Define bins for the spectral variation histogram kwargs = {'log':True,'nbins':500,'norm':True} #kwargs = {'log':True,'nbins':500} specvar = gwpy.frequencyseries.hist.SpectralVariance.from_spectrogram(specgram,**kwargs) bins = specvar.bins[:-1] specvar = specvar * 100 if params["doFreqAnalysis"]: freq_analysis(params,channel,ttStart,freq,specgram) # Calculate percentiles spectral_variation_1per = specvar.percentile(1) spectral_variation_10per = specvar.percentile(10) spectral_variation_50per = specvar.percentile(50) spectral_variation_90per = specvar.percentile(90) spectral_variation_99per = specvar.percentile(99) textDirectory = params["path"] + "/" + channel.station_underscore seismon.utils.mkdir(textDirectory) f = open(os.path.join(textDirectory,"spectra.txt"),"w") for i in range(len(freq)): f.write("%e %e %e %e %e %e %e\n"%(freq[i],spectral_variation_1per[i],spectral_variation_10per[i],spectral_variation_50per[i],spectral_variation_90per[i],spectral_variation_99per[i],spectraNow[i])) f.close() sigDict = {} # Break up entire frequency band into 6 segments ff_ave = [1/float(128), 1/float(64), 0.1, 1, 3, 5, 10] f = open(os.path.join(textDirectory,"sig.txt"),"w") for i in range(len(ff_ave)-1): newSpectra = [] newSpectraNow = [] newFreq = [] for j in range(len(freq)): if ff_ave[i] <= freq[j] and freq[j] <= ff_ave[i+1]: newFreq.append(freq[j]) newSpectraNow.append(spectraNow.data[j]) if newSpectra == []: newSpectra = specgram.data[:,j] else: newSpectra = np.vstack([newSpectra,specgram.data[:,j]]) newSpectra = np.array(newSpectra) if len(newSpectra.shape) > 1: newSpectra = np.mean(newSpectra, axis = 0) sig, bgcolor = seismon.utils.html_bgcolor(np.mean(newSpectraNow),newSpectra) f.write("%e %e %e %e %s\n"%(ff_ave[i],ff_ave[i+1],np.mean(newSpectraNow),sig,bgcolor)) key = "%s-%s"%(ff_ave[i],ff_ave[i+1]) dt = tts[-1] - tts[-2] epoch = gwpy.time.Time(tts[0], format='gps') timeseries = gwpy.timeseries.TimeSeries(newSpectra, epoch=epoch, sample_rate=1.0/dt) sigDict[key] = {} #timeseries.data = np.log10(timeseries.data) sigDict[key]["data"] = timeseries f.close() if params["doPlots"]: plotDirectory = params["path"] + "/" + channel.station_underscore seismon.utils.mkdir(plotDirectory) fl, low, fh, high = seismon.NLNM.NLNM(2) pngFile = os.path.join(plotDirectory,"psd.png") plot = spectraNow.plot() kwargs = {"linestyle":"-","color":"k"} plot.add_line(freq, spectral_variation_10per, **kwargs) plot.add_line(freq, spectral_variation_50per, **kwargs) plot.add_line(freq, spectral_variation_90per, **kwargs) kwargs = {"linestyle":"-.","color":"k"} plot.add_line(fl, low, **kwargs) plot.add_line(fh, high, **kwargs) plot.xlim = [params["fmin"],params["fmax"]] plot.ylim = [np.min(bins), np.max(bins)] plot.xlabel = "Frequency [Hz]" plot.ylabel = "Amplitude Spectrum [(m/s)/rtHz]" plot.save(pngFile,dpi=200) plot.close() pngFile = os.path.join(plotDirectory,"disp.png") spectraNowDisplacement = spectraNow / freq plot = spectraNowDisplacement.plot() kwargs = {"linestyle":"-","color":"w"} plot.add_line(freq, spectral_variation_10per/freq, **kwargs) plot.add_line(freq, spectral_variation_50per/freq, **kwargs) plot.add_line(freq, spectral_variation_90per/freq, **kwargs) kwargs = {"linestyle":"-.","color":"k"} plot.add_line(fl, low/fl, **kwargs) plot.add_line(fh, high/fh, **kwargs) plot.xlim = [params["fmin"],params["fmax"]] plot.ylim = [np.min(bins)/np.max(freq), np.max(bins)/np.min(freq)] plot.xlabel = "Frequency [Hz]" plot.ylabel = "Displacement Spectrum [m/rtHz]" plot.save(pngFile,dpi=200) plot.close() pngFile = os.path.join(plotDirectory,"tf.png") specgramLog = specgram.to_logf(fmin=np.min(freq),fmax=np.max(freq)) plot = specgramLog.plot() plot.ylim = [params["fmin"],params["fmax"]] plot.ylabel = "Frequency [Hz]" colorbar_label = "Amplitude Spectrum [(m/s)/rtHz]" kwargs = {} plot.add_colorbar(location='right', log=True, label=colorbar_label, clim=None, visible=True, **kwargs) plot.save(pngFile,dpi=200) plot.close() pngFile = os.path.join(plotDirectory,"psd.png") plot = spectraNow.plot() kwargs = {"linestyle":"-","color":"k"} plot.add_line(freq, spectral_variation_10per, **kwargs) plot.add_line(freq, spectral_variation_50per, **kwargs) plot.add_line(freq, spectral_variation_90per, **kwargs) kwargs = {"linestyle":"-.","color":"k"} plot.add_line(fl, low, **kwargs) plot.add_line(fh, high, **kwargs) plot.xlim = [params["fmin"],params["fmax"]] plot.ylim = [np.min(bins),np.max(bins)] plot.xlabel = "Frequency [Hz]" plot.ylabel = "Amplitude Spectrum [(m/s)/rtHz]" plot.save(pngFile,dpi=200) plot.close() pngFile = os.path.join(plotDirectory,"specvar.png") kwargs = {"linestyle":"-","color":"w"} #plot = specvar.plot(**kwargs) plot = spectraNow.plot(**kwargs) kwargs = {"linestyle":"-","color":"k"} plot.add_line(freq, spectral_variation_10per, **kwargs) plot.add_line(freq, spectral_variation_50per, **kwargs) plot.add_line(freq, spectral_variation_90per, **kwargs) extent = [np.min(freq), np.max(freq), np.min(bins), np.max(bins)] kwargs = {} #plot.plot_variance(specvar, extent=extent, **kwargs) plot.axes[0].set_xscale("log") plot.axes[0].set_yscale("log") kwargs = {"linestyle":"-.","color":"k"} plot.add_line(fl, low, **kwargs) plot.add_line(fh, high, **kwargs) plot.xlim = [params["fmin"],params["fmax"]] plot.ylim = [np.min(bins), np.max(bins)] plot.xlabel = "Frequency [Hz]" plot.ylabel = "Amplitude Spectrum [(m/s)/rtHz]" plot.save(pngFile,dpi=200) plot.close() X,Y = np.meshgrid(freq, bins) ax = plt.subplot(111) #im = plt.pcolor(X,Y,np.transpose(spectral_variation_norm), cmap=plt.cm.jet) im = plt.pcolor(X,Y,np.transpose(specvar.data), cmap=plt.cm.jet) ax.set_xscale('log') ax.set_yscale('log') plt.semilogx(freq,spectraNow, 'k', label='Current') plt.semilogx(freq,spectral_variation_10per,'w',label='10') plt.semilogx(freq,spectral_variation_50per,'w',label='50') plt.semilogx(freq,spectral_variation_90per,'w',label='90') plt.loglog(fl,low,'k-.') plt.loglog(fh,high,'k-.',label='LNM/HNM') plt.xlim([params["fmin"],params["fmax"]]) plt.ylim([np.min(bins), np.max(bins)]) plt.xlabel("Frequency [Hz]") plt.ylabel("Amplitude Spectrum [(m/s)/rtHz]") plt.clim(0,5) plt.grid() plt.show() plt.savefig(pngFile,dpi=200) plt.close('all') pngFile = os.path.join(plotDirectory,"bands.png") plot = gwpy.plotter.TimeSeriesPlot() for key in sigDict.iterkeys(): label = key plot.add_timeseries(sigDict[key]["data"], label=label) plot.axes[0].set_yscale("log") plot.ylabel = "Average Amplitude Spectrum log10[(m/s)/rtHz]" plot.add_legend(loc=1,prop={'size':10}) plot.save(pngFile,dpi=200) plot.close() htmlPage = seismon.html.seismon_page(channel,textDirectory) if htmlPage is not None: f = open(os.path.join(textDirectory,"psd.html"),"w") f.write(htmlPage) f.close() def channel_summary(params, segment): """@summary of channels of spectral data. @param params seismon params dictionary @param segment [start,end] gps """ gpsStart = segment[0] gpsEnd = segment[1] data = {} for channel in params["channels"]: psdDirectory = params["dirPath"] + "/Text_Files/PSD/" + channel.station_underscore + "/" + str(params["fftDuration"]) file = os.path.join(psdDirectory,"%d-%d.txt"%(gpsStart,gpsEnd)) if not os.path.isfile(file): continue spectra_out = gwpy.frequencyseries.Spectrum.read(file) spectra_out.unit = 'counts/Hz^(1/2)' if np.sum(spectra_out.data) == 0.0: continue data[channel.station_underscore] = {} data[channel.station_underscore]["data"] = spectra_out if data == {}: return if params["doPlots"]: plotDirectory = params["path"] + "/summary" seismon.utils.mkdir(plotDirectory) fl, low, fh, high = seismon.NLNM.NLNM(2) pngFile = os.path.join(plotDirectory,"psd.png") lowBin = np.inf highBin = -np.inf plot = gwpy.plotter.Plot(figsize=[14,8]) for key in data.iterkeys(): label = key.replace("_","\_") plot.add_spectrum(data[key]["data"], label=label) lowBin = np.min([lowBin,np.min(data[key]["data"])]) highBin = np.max([highBin,np.max(data[key]["data"])]) kwargs = {"linestyle":"-.","color":"k"} plot.add_line(fl, low, **kwargs) plot.add_line(fh, high, **kwargs) plot.xlim = [params["fmin"],params["fmax"]] plot.ylim = [lowBin, highBin] plot.xlabel = "Frequency [Hz]" plot.ylabel = "Amplitude Spectrum [(m/s)/rtHz]" plot.add_legend(loc=1,prop={'size':10}) plot.axes[0].set_xscale("log") plot.axes[0].set_yscale("log") plot.save(pngFile,dpi=200) plot.close() pngFile = os.path.join(plotDirectory,"ratio.png") lowBin = np.inf highBin = -np.inf ref = params["referenceChannel"].replace(":","_") plot = gwpy.plotter.Plot(figsize=[14,8]) for key in data.iterkeys(): label = key.replace("_","\_") plot.add_spectrum(data[key]["data"] / data[ref]["data"], label=label) lowBin = np.min([lowBin,np.min(data[key]["data"])]) highBin = np.max([highBin,np.max(data[key]["data"])]) kwargs = {"linestyle":"-.","color":"k"} #plot.add_line(fl, low, **kwargs) #plot.add_line(fh, high, **kwargs) plot.xlim = [params["fmin"],params["fmax"]] #plot.ylim = [lowBin, highBin] plot.xlabel = "Frequency [Hz]" label_ref = params["referenceChannel"].replace("_","\_") plot.ylabel = "Spectrum / Reference [%s]"%(label_ref) plot.add_legend(loc=1,prop={'size':10}) plot.axes[0].set_xscale("log") plot.axes[0].set_yscale("log") plot.save(pngFile,dpi=200) plot.close()
gpl-3.0