repo_name
stringlengths
6
112
path
stringlengths
4
204
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
714
810k
license
stringclasses
15 values
nbortolotti/tensorflow-code-experiences
experiences/bq_integration/bqtensor.py
1
1787
import tensorflow as tf import pandas as pd import ConfigParser tf.enable_eager_execution() # eager config = ConfigParser.ConfigParser() config.read('config.env') project_id = config.get('google','cloud_id') #is needed use a cloud project id df_train = pd.io.gbq.read_gbq('''SELECT * FROM [socialagilelearning:iris.training]''', project_id=project_id, private_key=config.get('google','service_key'), verbose=False) df_test = pd.io.gbq.read_gbq('''SELECT * FROM [socialagilelearning:iris.test]''', project_id=project_id, private_key=config.get('google','service_key'), verbose=False) categories='Plants' train_plantfeatures, train_categories = df_train, df_train.pop(categories) test_plantfeatures, test_categories = df_test, df_test.pop(categories) y_categorical = tf.contrib.keras.utils.to_categorical(train_categories, num_classes=3) y_categorical_test = tf.contrib.keras.utils.to_categorical(test_categories, num_classes=3) dataset = tf.data.Dataset.from_tensor_slices((train_plantfeatures.values, y_categorical)) dataset = dataset.batch(32) dataset = dataset.shuffle(1000) dataset = dataset.repeat() dataset_test = tf.data.Dataset.from_tensor_slices((test_plantfeatures.values, y_categorical_test)) dataset_test = dataset_test.batch(32) dataset_test = dataset_test.shuffle(1000) dataset_test = dataset_test.repeat() model = tf.keras.Sequential([ tf.keras.layers.Dense(16, input_dim=4), tf.keras.layers.Dense(3, activation=tf.nn.softmax), ]) opt = tf.train.GradientDescentOptimizer(learning_rate=0.001) model.compile(optimizer=opt, loss="categorical_crossentropy", metrics=["accuracy"]) model.fit(dataset, steps_per_epoch=32, epochs=100, verbose=1) loss, accuracy = model.evaluate(dataset_test, steps=32) print("loss:%f"% (loss)) print("accuracy: %f"% (accuracy))
apache-2.0
petercable/xray
xray/test/test_dataset.py
1
87064
from copy import copy, deepcopy from textwrap import dedent try: import cPickle as pickle except ImportError: import pickle try: import dask.array as da except ImportError: pass import numpy as np import pandas as pd from xray import (align, concat, conventions, backends, Dataset, DataArray, Variable, Coordinate, auto_combine, open_dataset, set_options) from xray.core import indexing, utils from xray.core.pycompat import iteritems, OrderedDict from . import (TestCase, unittest, InaccessibleArray, UnexpectedDataAccess, requires_dask) def create_test_data(seed=None): rs = np.random.RandomState(seed) _vars = {'var1': ['dim1', 'dim2'], 'var2': ['dim1', 'dim2'], 'var3': ['dim3', 'dim1']} _dims = {'dim1': 8, 'dim2': 9, 'dim3': 10} obj = Dataset() obj['time'] = ('time', pd.date_range('2000-01-01', periods=20)) obj['dim1'] = ('dim1', np.arange(_dims['dim1'], dtype='int64')) obj['dim2'] = ('dim2', 0.5 * np.arange(_dims['dim2'])) obj['dim3'] = ('dim3', list('abcdefghij')) for v, dims in sorted(_vars.items()): data = rs.normal(size=tuple(_dims[d] for d in dims)) obj[v] = (dims, data, {'foo': 'variable'}) obj.coords['numbers'] = ('dim3', np.array([0, 1, 2, 0, 0, 1, 1, 2, 2, 3], dtype='int64')) return obj class InaccessibleVariableDataStore(backends.InMemoryDataStore): def get_variables(self): def lazy_inaccessible(x): data = indexing.LazilyIndexedArray(InaccessibleArray(x.values)) return Variable(x.dims, data, x.attrs) return dict((k, lazy_inaccessible(v)) for k, v in iteritems(self._variables)) class TestDataset(TestCase): def test_repr(self): data = create_test_data(seed=123) data.attrs['foo'] = 'bar' # need to insert str dtype at runtime to handle both Python 2 & 3 expected = dedent("""\ <xray.Dataset> Dimensions: (dim1: 8, dim2: 9, dim3: 10, time: 20) Coordinates: * time (time) datetime64[ns] 2000-01-01 2000-01-02 2000-01-03 ... * dim1 (dim1) int64 0 1 2 3 4 5 6 7 * dim2 (dim2) float64 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 * dim3 (dim3) %s 'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'i' 'j' numbers (dim3) int64 0 1 2 0 0 1 1 2 2 3 Data variables: var1 (dim1, dim2) float64 -1.086 0.9973 0.283 -1.506 -0.5786 1.651 ... var2 (dim1, dim2) float64 1.162 -1.097 -2.123 1.04 -0.4034 -0.126 ... var3 (dim3, dim1) float64 0.5565 -0.2121 0.4563 1.545 -0.2397 0.1433 ... Attributes: foo: bar""") % data['dim3'].dtype actual = '\n'.join(x.rstrip() for x in repr(data).split('\n')) print(actual) self.assertEqual(expected, actual) with set_options(display_width=100): max_len = max(map(len, repr(data).split('\n'))) assert 90 < max_len < 100 expected = dedent("""\ <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: *empty*""") actual = '\n'.join(x.rstrip() for x in repr(Dataset()).split('\n')) print(actual) self.assertEqual(expected, actual) # verify that ... doesn't appear for scalar coordinates data = Dataset({'foo': ('x', np.ones(10))}).mean() expected = dedent("""\ <xray.Dataset> Dimensions: () Coordinates: *empty* Data variables: foo float64 1.0""") actual = '\n'.join(x.rstrip() for x in repr(data).split('\n')) print(actual) self.assertEqual(expected, actual) # verify long attributes are truncated data = Dataset(attrs={'foo': 'bar' * 1000}) self.assertTrue(len(repr(data)) < 1000) def test_constructor(self): x1 = ('x', 2 * np.arange(100)) x2 = ('x', np.arange(1000)) z = (['x', 'y'], np.arange(1000).reshape(100, 10)) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): Dataset({'a': x1, 'b': x2}) with self.assertRaisesRegexp(ValueError, 'must be defined with 1-d'): Dataset({'a': x1, 'x': z}) with self.assertRaisesRegexp(TypeError, 'must be an array or'): Dataset({'x': (1, 2, 3, 4, 5, 6, 7)}) with self.assertRaisesRegexp(ValueError, 'already exists as a scalar'): Dataset({'x': 0, 'y': ('x', [1, 2, 3])}) # verify handling of DataArrays expected = Dataset({'x': x1, 'z': z}) actual = Dataset({'z': expected['z']}) self.assertDatasetIdentical(expected, actual) def test_constructor_1d(self): expected = Dataset({'x': (['x'], 5.0 + np.arange(5))}) actual = Dataset({'x': 5.0 + np.arange(5)}) self.assertDatasetIdentical(expected, actual) actual = Dataset({'x': [5, 6, 7, 8, 9]}) self.assertDatasetIdentical(expected, actual) def test_constructor_0d(self): expected = Dataset({'x': ([], 1)}) for arg in [1, np.array(1), expected['x']]: actual = Dataset({'x': arg}) self.assertDatasetIdentical(expected, actual) d = pd.Timestamp('2000-01-01T12') args = [True, None, 3.4, np.nan, 'hello', u'uni', b'raw', np.datetime64('2000-01-01T00'), d, d.to_datetime()] for arg in args: print(arg) expected = Dataset({'x': ([], arg)}) actual = Dataset({'x': arg}) self.assertDatasetIdentical(expected, actual) def test_constructor_auto_align(self): a = DataArray([1, 2], [('x', [0, 1])]) b = DataArray([3, 4], [('x', [1, 2])]) # verify align uses outer join expected = Dataset({'a': ('x', [1, 2, np.nan]), 'b': ('x', [np.nan, 3, 4])}) actual = Dataset({'a': a, 'b': b}) self.assertDatasetIdentical(expected, actual) # regression test for GH346 self.assertIsInstance(actual.variables['x'], Coordinate) # variable with different dimensions c = ('y', [3, 4]) expected2 = expected.merge({'c': c}) actual = Dataset({'a': a, 'b': b, 'c': c}) self.assertDatasetIdentical(expected2, actual) # variable that is only aligned against the aligned variables d = ('x', [3, 2, 1]) expected3 = expected.merge({'d': d}) actual = Dataset({'a': a, 'b': b, 'd': d}) self.assertDatasetIdentical(expected3, actual) e = ('x', [0, 0]) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): Dataset({'a': a, 'b': b, 'e': e}) def test_constructor_compat(self): data = OrderedDict([('x', DataArray(0, coords={'y': 1})), ('y', ('z', [1, 1, 1]))]) with self.assertRaisesRegexp(ValueError, 'conflicting value'): Dataset(data, compat='equals') expected = Dataset({'x': 0}, {'y': ('z', [1, 1, 1])}) actual = Dataset(data) self.assertDatasetIdentical(expected, actual) actual = Dataset(data, compat='broadcast_equals') self.assertDatasetIdentical(expected, actual) data = OrderedDict([('y', ('z', [1, 1, 1])), ('x', DataArray(0, coords={'y': 1}))]) actual = Dataset(data) self.assertDatasetIdentical(expected, actual) original = Dataset({'a': (('x', 'y'), np.ones((2, 3)))}, {'c': (('x', 'y'), np.zeros((2, 3)))}) expected = Dataset({'a': ('x', np.ones(2)), 'b': ('y', np.ones(3))}, {'c': (('x', 'y'), np.zeros((2, 3)))}) # use an OrderedDict to ensure test results are reproducible; otherwise # the order of appearance of x and y matters for the order of # dimensions in 'c' actual = Dataset(OrderedDict([('a', original['a'][:, 0].drop('y')), ('b', original['a'][0].drop('x'))])) self.assertDatasetIdentical(expected, actual) data = {'x': DataArray(0, coords={'y': 3}), 'y': ('z', [1, 1, 1])} with self.assertRaisesRegexp(ValueError, 'conflicting value'): Dataset(data) data = {'x': DataArray(0, coords={'y': 1}), 'y': [1, 1]} actual = Dataset(data) expected = Dataset({'x': 0}, {'y': [1, 1]}) self.assertDatasetIdentical(expected, actual) def test_constructor_with_coords(self): with self.assertRaisesRegexp(ValueError, 'redundant variables and co'): Dataset({'a': ('x', [1])}, {'a': ('x', [1])}) ds = Dataset({}, {'a': ('x', [1])}) self.assertFalse(ds.data_vars) self.assertItemsEqual(ds.coords.keys(), ['x', 'a']) def test_properties(self): ds = create_test_data() self.assertEqual(ds.dims, {'dim1': 8, 'dim2': 9, 'dim3': 10, 'time': 20}) self.assertItemsEqual(ds, list(ds.variables)) self.assertItemsEqual(ds.keys(), list(ds.variables)) self.assertNotIn('aasldfjalskdfj', ds.variables) self.assertIn('dim1', repr(ds.variables)) self.assertEqual(len(ds), 8) self.assertItemsEqual(ds.data_vars, ['var1', 'var2', 'var3']) self.assertItemsEqual(ds.data_vars.keys(), ['var1', 'var2', 'var3']) self.assertIn('var1', ds.data_vars) self.assertNotIn('dim1', ds.data_vars) self.assertNotIn('numbers', ds.data_vars) self.assertEqual(len(ds.data_vars), 3) self.assertItemsEqual(ds.indexes, ['dim1', 'dim2', 'dim3', 'time']) self.assertEqual(len(ds.indexes), 4) self.assertIn('dim1', repr(ds.indexes)) self.assertItemsEqual(ds.coords, ['time', 'dim1', 'dim2', 'dim3', 'numbers']) self.assertIn('dim1', ds.coords) self.assertIn('numbers', ds.coords) self.assertNotIn('var1', ds.coords) self.assertEqual(len(ds.coords), 5) self.assertEqual(Dataset({'x': np.int64(1), 'y': np.float32([1, 2])}).nbytes, 16) def test_attr_access(self): ds = Dataset({'tmin': ('x', [42], {'units': 'Celcius'})}, attrs={'title': 'My test data'}) self.assertDataArrayIdentical(ds.tmin, ds['tmin']) self.assertDataArrayIdentical(ds.tmin.x, ds.x) self.assertEqual(ds.title, ds.attrs['title']) self.assertEqual(ds.tmin.units, ds['tmin'].attrs['units']) self.assertLessEqual(set(['tmin', 'title']), set(dir(ds))) self.assertIn('units', set(dir(ds.tmin))) # should defer to variable of same name ds.attrs['tmin'] = -999 self.assertEqual(ds.attrs['tmin'], -999) self.assertDataArrayIdentical(ds.tmin, ds['tmin']) def test_variable(self): a = Dataset() d = np.random.random((10, 3)) a['foo'] = (('time', 'x',), d) self.assertTrue('foo' in a.variables) self.assertTrue('foo' in a) a['bar'] = (('time', 'x',), d) # order of creation is preserved self.assertEqual(list(a), ['foo', 'time', 'x', 'bar']) self.assertTrue(all([a['foo'][i].values == d[i] for i in np.ndindex(*d.shape)])) # try to add variable with dim (10,3) with data that's (3,10) with self.assertRaises(ValueError): a['qux'] = (('time', 'x'), d.T) def test_modify_inplace(self): a = Dataset() vec = np.random.random((10,)) attributes = {'foo': 'bar'} a['x'] = ('x', vec, attributes) self.assertTrue('x' in a.coords) self.assertIsInstance(a.coords['x'].to_index(), pd.Index) self.assertVariableIdentical(a.coords['x'], a.variables['x']) b = Dataset() b['x'] = ('x', vec, attributes) self.assertVariableIdentical(a['x'], b['x']) self.assertEqual(a.dims, b.dims) # this should work a['x'] = ('x', vec[:5]) a['z'] = ('x', np.arange(5)) with self.assertRaises(ValueError): # now it shouldn't, since there is a conflicting length a['x'] = ('x', vec[:4]) arr = np.random.random((10, 1,)) scal = np.array(0) with self.assertRaises(ValueError): a['y'] = ('y', arr) with self.assertRaises(ValueError): a['y'] = ('y', scal) self.assertTrue('y' not in a.dims) def test_coords_properties(self): # use an OrderedDict for coordinates to ensure order across python # versions # use int64 for repr consistency on windows data = Dataset(OrderedDict([('x', ('x', np.array([-1, -2], 'int64'))), ('y', ('y', np.array([0, 1, 2], 'int64'))), ('foo', (['x', 'y'], np.random.randn(2, 3)))]), OrderedDict([('a', ('x', np.array([4, 5], 'int64'))), ('b', np.int64(-10))])) self.assertEqual(4, len(data.coords)) self.assertItemsEqual(['x', 'y', 'a', 'b'], list(data.coords)) self.assertVariableIdentical(data.coords['x'], data['x'].variable) self.assertVariableIdentical(data.coords['y'], data['y'].variable) self.assertIn('x', data.coords) self.assertIn('a', data.coords) self.assertNotIn(0, data.coords) self.assertNotIn('foo', data.coords) with self.assertRaises(KeyError): data.coords['foo'] with self.assertRaises(KeyError): data.coords[0] expected = dedent("""\ Coordinates: * x (x) int64 -1 -2 * y (y) int64 0 1 2 a (x) int64 4 5 b int64 -10""") actual = repr(data.coords) self.assertEqual(expected, actual) self.assertEqual({'x': 2, 'y': 3}, data.coords.dims) def test_coords_modify(self): data = Dataset({'x': ('x', [-1, -2]), 'y': ('y', [0, 1, 2]), 'foo': (['x', 'y'], np.random.randn(2, 3))}, {'a': ('x', [4, 5]), 'b': -10}) actual = data.copy(deep=True) actual.coords['x'] = ('x', ['a', 'b']) self.assertArrayEqual(actual['x'], ['a', 'b']) actual = data.copy(deep=True) actual.coords['z'] = ('z', ['a', 'b']) self.assertArrayEqual(actual['z'], ['a', 'b']) with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): data.coords['x'] = ('x', [-1]) actual = data.copy() del actual.coords['b'] expected = data.reset_coords('b', drop=True) self.assertDatasetIdentical(expected, actual) with self.assertRaises(KeyError): del data.coords['not_found'] with self.assertRaises(KeyError): del data.coords['foo'] actual = data.copy(deep=True) actual.coords.update({'c': 11}) expected = data.merge({'c': 11}).set_coords('c') self.assertDatasetIdentical(expected, actual) def test_coords_set(self): one_coord = Dataset({'x': ('x', [0]), 'yy': ('x', [1]), 'zzz': ('x', [2])}) two_coords = Dataset({'zzz': ('x', [2])}, {'x': ('x', [0]), 'yy': ('x', [1])}) all_coords = Dataset(coords={'x': ('x', [0]), 'yy': ('x', [1]), 'zzz': ('x', [2])}) actual = one_coord.set_coords('x') self.assertDatasetIdentical(one_coord, actual) actual = one_coord.set_coords(['x']) self.assertDatasetIdentical(one_coord, actual) actual = one_coord.set_coords('yy') self.assertDatasetIdentical(two_coords, actual) actual = one_coord.set_coords(['yy', 'zzz']) self.assertDatasetIdentical(all_coords, actual) actual = one_coord.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = two_coords.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords() self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords(['yy', 'zzz']) self.assertDatasetIdentical(one_coord, actual) actual = all_coords.reset_coords('zzz') self.assertDatasetIdentical(two_coords, actual) with self.assertRaisesRegexp(ValueError, 'cannot remove index'): one_coord.reset_coords('x') actual = all_coords.reset_coords('zzz', drop=True) expected = all_coords.drop('zzz') self.assertDatasetIdentical(expected, actual) expected = two_coords.drop('zzz') self.assertDatasetIdentical(expected, actual) def test_coords_to_dataset(self): orig = Dataset({'foo': ('y', [-1, 0, 1])}, {'x': 10, 'y': [2, 3, 4]}) expected = Dataset(coords={'x': 10, 'y': [2, 3, 4]}) actual = orig.coords.to_dataset() self.assertDatasetIdentical(expected, actual) def test_coords_merge(self): orig_coords = Dataset(coords={'a': ('x', [1, 2])}).coords other_coords = Dataset(coords={'b': ('x', ['a', 'b'])}).coords expected = Dataset(coords={'a': ('x', [1, 2]), 'b': ('x', ['a', 'b'])}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'x': ('x', ['a'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'x': ('x', ['a', 'b'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'x': ('x', ['a', 'b', 'c'])}).coords with self.assertRaisesRegexp(ValueError, 'not aligned'): orig_coords.merge(other_coords) other_coords = Dataset(coords={'a': ('x', [8, 9])}).coords expected = Dataset(coords={'x': range(2)}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'x': np.nan}).coords actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(orig_coords.to_dataset(), actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(orig_coords.to_dataset(), actual) def test_coords_merge_mismatched_shape(self): orig_coords = Dataset(coords={'a': ('x', [1, 1])}).coords other_coords = Dataset(coords={'a': 1}).coords expected = orig_coords.to_dataset() actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) other_coords = Dataset(coords={'a': ('y', [1])}).coords expected = Dataset(coords={'a': (['x', 'y'], [[1], [1]])}) actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) actual = other_coords.merge(orig_coords) self.assertDatasetIdentical(expected.T, actual) orig_coords = Dataset(coords={'a': ('x', [np.nan])}).coords other_coords = Dataset(coords={'a': np.nan}).coords expected = orig_coords.to_dataset() actual = orig_coords.merge(other_coords) self.assertDatasetIdentical(expected, actual) def test_equals_and_identical(self): data = create_test_data(seed=42) self.assertTrue(data.equals(data)) self.assertTrue(data.identical(data)) data2 = create_test_data(seed=42) data2.attrs['foobar'] = 'baz' self.assertTrue(data.equals(data2)) self.assertFalse(data.identical(data2)) del data2['time'] self.assertFalse(data.equals(data2)) data = create_test_data(seed=42).rename({'var1': None}) self.assertTrue(data.equals(data)) self.assertTrue(data.identical(data)) data2 = data.reset_coords() self.assertFalse(data2.equals(data)) self.assertFalse(data2.identical(data)) def test_equals_failures(self): data = create_test_data() self.assertFalse(data.equals('foo')) self.assertFalse(data.identical(123)) self.assertFalse(data.broadcast_equals({1: 2})) def test_broadcast_equals(self): data1 = Dataset(coords={'x': 0}) data2 = Dataset(coords={'x': [0]}) self.assertTrue(data1.broadcast_equals(data2)) self.assertFalse(data1.equals(data2)) self.assertFalse(data1.identical(data2)) def test_attrs(self): data = create_test_data(seed=42) data.attrs = {'foobar': 'baz'} self.assertTrue(data.attrs['foobar'], 'baz') self.assertIsInstance(data.attrs, OrderedDict) @requires_dask def test_chunk(self): data = create_test_data() for v in data.variables.values(): self.assertIsInstance(v.data, np.ndarray) self.assertEqual(data.chunks, {}) reblocked = data.chunk() for v in reblocked.variables.values(): self.assertIsInstance(v.data, da.Array) expected_chunks = dict((d, (s,)) for d, s in data.dims.items()) self.assertEqual(reblocked.chunks, expected_chunks) reblocked = data.chunk({'time': 5, 'dim1': 5, 'dim2': 5, 'dim3': 5}) expected_chunks = {'time': (5,) * 4, 'dim1': (5, 3), 'dim2': (5, 4), 'dim3': (5, 5)} self.assertEqual(reblocked.chunks, expected_chunks) reblocked = data.chunk(expected_chunks) self.assertEqual(reblocked.chunks, expected_chunks) # reblock on already blocked data reblocked = reblocked.chunk(expected_chunks) self.assertEqual(reblocked.chunks, expected_chunks) self.assertDatasetIdentical(reblocked, data) with self.assertRaisesRegexp(ValueError, 'some chunks'): data.chunk({'foo': 10}) @requires_dask def test_dask_is_lazy(self): store = InaccessibleVariableDataStore() create_test_data().dump_to_store(store) ds = open_dataset(store).chunk() with self.assertRaises(UnexpectedDataAccess): ds.load() with self.assertRaises(UnexpectedDataAccess): ds['var1'].values # these should not raise UnexpectedDataAccess: ds.var1.data ds.isel(time=10) ds.isel(time=slice(10), dim1=[0]).isel(dim1=0, dim2=-1) ds.transpose() ds.mean() ds.fillna(0) ds.rename({'dim1': 'foobar'}) ds.set_coords('var1') ds.drop('var1') def test_isel(self): data = create_test_data() slicers = {'dim1': slice(None, None, 2), 'dim2': slice(0, 2)} ret = data.isel(**slicers) # Verify that only the specified dimension was altered self.assertItemsEqual(data.dims, ret.dims) for d in data.dims: if d in slicers: self.assertEqual(ret.dims[d], np.arange(data.dims[d])[slicers[d]].size) else: self.assertEqual(data.dims[d], ret.dims[d]) # Verify that the data is what we expect for v in data: self.assertEqual(data[v].dims, ret[v].dims) self.assertEqual(data[v].attrs, ret[v].attrs) slice_list = [slice(None)] * data[v].values.ndim for d, s in iteritems(slicers): if d in data[v].dims: inds = np.nonzero(np.array(data[v].dims) == d)[0] for ind in inds: slice_list[ind] = s expected = data[v].values[slice_list] actual = ret[v].values np.testing.assert_array_equal(expected, actual) with self.assertRaises(ValueError): data.isel(not_a_dim=slice(0, 2)) ret = data.isel(dim1=0) self.assertEqual({'time': 20, 'dim2': 9, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1']) ret = data.isel(time=slice(2), dim1=0, dim2=slice(5)) self.assertEqual({'time': 2, 'dim2': 5, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1']) ret = data.isel(time=0, dim1=0, dim2=slice(5)) self.assertItemsEqual({'dim2': 5, 'dim3': 10}, ret.dims) self.assertItemsEqual(data.data_vars, ret.data_vars) self.assertItemsEqual(data.coords, ret.coords) self.assertItemsEqual(data.indexes, list(ret.indexes) + ['dim1', 'time']) def test_sel(self): data = create_test_data() int_slicers = {'dim1': slice(None, None, 2), 'dim2': slice(2), 'dim3': slice(3)} loc_slicers = {'dim1': slice(None, None, 2), 'dim2': slice(0, 0.5), 'dim3': slice('a', 'c')} self.assertDatasetEqual(data.isel(**int_slicers), data.sel(**loc_slicers)) data['time'] = ('time', pd.date_range('2000-01-01', periods=20)) self.assertDatasetEqual(data.isel(time=0), data.sel(time='2000-01-01')) self.assertDatasetEqual(data.isel(time=slice(10)), data.sel(time=slice('2000-01-01', '2000-01-10'))) self.assertDatasetEqual(data, data.sel(time=slice('1999', '2005'))) times = pd.date_range('2000-01-01', periods=3) self.assertDatasetEqual(data.isel(time=slice(3)), data.sel(time=times)) self.assertDatasetEqual(data.isel(time=slice(3)), data.sel(time=(data['time.dayofyear'] <= 3))) td = pd.to_timedelta(np.arange(3), unit='days') data = Dataset({'x': ('td', np.arange(3)), 'td': td}) self.assertDatasetEqual(data, data.sel(td=td)) self.assertDatasetEqual(data, data.sel(td=slice('3 days'))) self.assertDatasetEqual(data.isel(td=0), data.sel(td='0 days')) self.assertDatasetEqual(data.isel(td=0), data.sel(td='0h')) self.assertDatasetEqual(data.isel(td=slice(1, 3)), data.sel(td=slice('1 days', '2 days'))) def test_isel_points(self): data = create_test_data() pdim1 = [1, 2, 3] pdim2 = [4, 5, 1] pdim3 = [1, 2, 3] actual = data.isel_points(dim1=pdim1, dim2=pdim2, dim3=pdim3, dim='test_coord') assert 'test_coord' in actual.coords assert actual.coords['test_coord'].shape == (len(pdim1), ) actual = data.isel_points(dim1=pdim1, dim2=pdim2) assert 'points' in actual.coords np.testing.assert_array_equal(pdim1, actual['dim1']) # test that the order of the indexers doesn't matter self.assertDatasetIdentical(data.isel_points(dim1=pdim1, dim2=pdim2), data.isel_points(dim2=pdim2, dim1=pdim1)) # make sure we're raising errors in the right places with self.assertRaisesRegexp(ValueError, 'All indexers must be the same length'): data.isel_points(dim1=[1, 2], dim2=[1, 2, 3]) with self.assertRaisesRegexp(ValueError, 'dimension bad_key does not exist'): data.isel_points(bad_key=[1, 2]) with self.assertRaisesRegexp(TypeError, 'Indexers must be integers'): data.isel_points(dim1=[1.5, 2.2]) with self.assertRaisesRegexp(TypeError, 'Indexers must be integers'): data.isel_points(dim1=[1, 2, 3], dim2=slice(3)) with self.assertRaisesRegexp(ValueError, 'Indexers must be 1 dimensional'): data.isel_points(dim1=1, dim2=2) with self.assertRaisesRegexp(ValueError, 'Existing dimension names are not valid'): data.isel_points(dim1=[1, 2], dim2=[1, 2], dim='dim2') # test to be sure we keep around variables that were not indexed ds = Dataset({'x': [1, 2, 3, 4], 'y': 0}) actual = ds.isel_points(x=[0, 1, 2]) self.assertDataArrayIdentical(ds['y'], actual['y']) # tests using index or DataArray as a dim stations = Dataset() stations['station'] = ('station', ['A', 'B', 'C']) stations['dim1s'] = ('station', [1, 2, 3]) stations['dim2s'] = ('station', [4, 5, 1]) actual = data.isel_points(dim1=stations['dim1s'], dim2=stations['dim2s'], dim=stations['station']) assert 'station' in actual.coords assert 'station' in actual.dims self.assertDataArrayIdentical(actual['station'].drop(['dim1', 'dim2']), stations['station']) # make sure we get the default points coordinate when a list is passed actual = data.isel_points(dim1=stations['dim1s'], dim2=stations['dim2s'], dim=['A', 'B', 'C']) assert 'points' in actual.coords # can pass a numpy array data.isel_points(dim1=stations['dim1s'], dim2=stations['dim2s'], dim=np.array([4, 5, 6])) def test_sel_points(self): data = create_test_data() pdim1 = [1, 2, 3] pdim2 = [4, 5, 1] pdim3 = [1, 2, 3] expected = data.isel_points(dim1=pdim1, dim2=pdim2, dim3=pdim3, dim='test_coord') actual = data.sel_points(dim1=data.dim1[pdim1], dim2=data.dim2[pdim2], dim3=data.dim3[pdim3], dim='test_coord') self.assertDatasetIdentical(expected, actual) data = Dataset({'foo': (('x', 'y'), np.arange(9).reshape(3, 3))}) expected = Dataset({'foo': ('points', [0, 4, 8])}, {'x': ('points', range(3)), 'y': ('points', range(3))}) actual = data.sel_points(x=[0.1, 1.1, 2.5], y=[0, 1.2, 2.0], method='pad') self.assertDatasetIdentical(expected, actual) def test_sel_method(self): data = create_test_data() if pd.__version__ >= '0.16': expected = data.sel(dim1=1) actual = data.sel(dim1=0.95, method='nearest') self.assertDatasetIdentical(expected, actual) expected = data.sel(dim2=[1.5]) actual = data.sel(dim2=[1.45], method='backfill') self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(NotImplementedError, 'slice objects'): data.sel(dim2=slice(1, 3), method='ffill') with self.assertRaisesRegexp(TypeError, '``method``'): # this should not pass silently data.sel(data) def test_loc(self): data = create_test_data() expected = data.sel(dim3='a') actual = data.loc[dict(dim3='a')] self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(TypeError, 'can only lookup dict'): data.loc['a'] with self.assertRaises(TypeError): data.loc[dict(dim3='a')] = 0 def test_reindex_like(self): data = create_test_data() data['letters'] = ('dim3', 10 * ['a']) expected = data.isel(dim1=slice(10), time=slice(13)) actual = data.reindex_like(expected) self.assertDatasetIdentical(actual, expected) expected = data.copy(deep=True) expected['dim3'] = ('dim3', list('cdefghijkl')) expected['var3'][:-2] = expected['var3'][2:] expected['var3'][-2:] = np.nan expected['letters'] = expected['letters'].astype(object) expected['letters'][-2:] = np.nan expected['numbers'] = expected['numbers'].astype(float) expected['numbers'][:-2] = expected['numbers'][2:].values expected['numbers'][-2:] = np.nan actual = data.reindex_like(expected) self.assertDatasetIdentical(actual, expected) def test_reindex(self): data = create_test_data() self.assertDatasetIdentical(data, data.reindex()) expected = data.isel(dim1=slice(10)) actual = data.reindex(dim1=data['dim1'][:10]) self.assertDatasetIdentical(actual, expected) actual = data.reindex(dim1=data['dim1'][:10].values) self.assertDatasetIdentical(actual, expected) actual = data.reindex(dim1=data['dim1'][:10].to_index()) self.assertDatasetIdentical(actual, expected) # test dict-like argument actual = data.reindex({'dim1': data['dim1'][:10]}) self.assertDatasetIdentical(actual, expected) with self.assertRaisesRegexp(ValueError, 'cannot specify both'): data.reindex({'x': 0}, x=0) with self.assertRaisesRegexp(ValueError, 'dictionary'): data.reindex('foo') # out of order expected = data.sel(dim1=data['dim1'][:10:-1]) actual = data.reindex(dim1=data['dim1'][:10:-1]) self.assertDatasetIdentical(actual, expected) # regression test for #279 expected = Dataset({'x': ('time', np.random.randn(5))}) time2 = DataArray(np.arange(5), dims="time2") actual = expected.reindex(time=time2) self.assertDatasetIdentical(actual, expected) # another regression test ds = Dataset({'foo': (['x', 'y'], np.zeros((3, 4)))}) expected = Dataset({'foo': (['x', 'y'], np.zeros((3, 2))), 'x': [0, 1, 3]}) expected['foo'][-1] = np.nan actual = ds.reindex(x=[0, 1, 3], y=[0, 1]) self.assertDatasetIdentical(expected, actual) def test_reindex_method(self): ds = Dataset({'x': ('y', [10, 20])}) y = [-0.5, 0.5, 1.5] actual = ds.reindex(y=y, method='backfill') expected = Dataset({'x': ('y', [10, 20, np.nan]), 'y': y}) self.assertDatasetIdentical(expected, actual) actual = ds.reindex(y=y, method='pad') expected = Dataset({'x': ('y', [np.nan, 10, 20]), 'y': y}) self.assertDatasetIdentical(expected, actual) alt = Dataset({'y': y}) actual = ds.reindex_like(alt, method='pad') self.assertDatasetIdentical(expected, actual) def test_align(self): left = create_test_data() right = left.copy(deep=True) right['dim3'] = ('dim3', list('cdefghijkl')) right['var3'][:-2] = right['var3'][2:] right['var3'][-2:] = np.random.randn(*right['var3'][-2:].shape) right['numbers'][:-2] = right['numbers'][2:] right['numbers'][-2:] = -10 intersection = list('cdefghij') union = list('abcdefghijkl') left2, right2 = align(left, right, join='inner') self.assertArrayEqual(left2['dim3'], intersection) self.assertDatasetIdentical(left2, right2) left2, right2 = align(left, right, join='outer') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertArrayEqual(left2['dim3'], union) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(left2['var3'][-2:]).all()) self.assertTrue(np.isnan(right2['var3'][:2]).all()) left2, right2 = align(left, right, join='left') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertVariableEqual(left2['dim3'], left['dim3']) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(right2['var3'][:2]).all()) left2, right2 = align(left, right, join='right') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertVariableEqual(left2['dim3'], right['dim3']) self.assertDatasetIdentical(left2.sel(dim3=intersection), right2.sel(dim3=intersection)) self.assertTrue(np.isnan(left2['var3'][-2:]).all()) with self.assertRaisesRegexp(ValueError, 'invalid value for join'): align(left, right, join='foobar') with self.assertRaises(TypeError): align(left, right, foo='bar') def test_variable_indexing(self): data = create_test_data() v = data['var1'] d1 = data['dim1'] d2 = data['dim2'] self.assertVariableEqual(v, v[d1.values]) self.assertVariableEqual(v, v[d1]) self.assertVariableEqual(v[:3], v[d1 < 3]) self.assertVariableEqual(v[:, 3:], v[:, d2 >= 1.5]) self.assertVariableEqual(v[:3, 3:], v[d1 < 3, d2 >= 1.5]) self.assertVariableEqual(v[:3, :2], v[range(3), range(2)]) self.assertVariableEqual(v[:3, :2], v.loc[d1[:3], d2[:2]]) def test_drop_variables(self): data = create_test_data() self.assertDatasetIdentical(data, data.drop([])) expected = Dataset(dict((k, data[k]) for k in data if k != 'time')) actual = data.drop('time') self.assertDatasetIdentical(expected, actual) actual = data.drop(['time']) self.assertDatasetIdentical(expected, actual) expected = Dataset(dict((k, data[k]) for k in ['dim2', 'dim3', 'time', 'numbers'])) actual = data.drop('dim1') self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'cannot be found'): data.drop('not_found_here') def test_drop_index_labels(self): data = Dataset({'A': (['x', 'y'], np.random.randn(2, 3)), 'x': ['a', 'b']}) actual = data.drop(1, 'y') expected = data.isel(y=[0, 2]) self.assertDatasetIdentical(expected, actual) actual = data.drop(['a'], 'x') expected = data.isel(x=[1]) self.assertDatasetIdentical(expected, actual) actual = data.drop(['a', 'b'], 'x') expected = data.isel(x=slice(0, 0)) self.assertDatasetIdentical(expected, actual) with self.assertRaises(ValueError): # not contained in axis data.drop(['c'], dim='x') def test_copy(self): data = create_test_data() for copied in [data.copy(deep=False), copy(data)]: self.assertDatasetIdentical(data, copied) for k in data: v0 = data.variables[k] v1 = copied.variables[k] self.assertIs(v0, v1) copied['foo'] = ('z', np.arange(5)) self.assertNotIn('foo', data) for copied in [data.copy(deep=True), deepcopy(data)]: self.assertDatasetIdentical(data, copied) for k in data: v0 = data.variables[k] v1 = copied.variables[k] self.assertIsNot(v0, v1) def test_rename(self): data = create_test_data() newnames = {'var1': 'renamed_var1', 'dim2': 'renamed_dim2'} renamed = data.rename(newnames) variables = OrderedDict(data.variables) for k, v in iteritems(newnames): variables[v] = variables.pop(k) for k, v in iteritems(variables): dims = list(v.dims) for name, newname in iteritems(newnames): if name in dims: dims[dims.index(name)] = newname self.assertVariableEqual(Variable(dims, v.values, v.attrs), renamed[k]) self.assertEqual(v.encoding, renamed[k].encoding) self.assertEqual(type(v), type(renamed.variables[k])) self.assertTrue('var1' not in renamed) self.assertTrue('dim2' not in renamed) with self.assertRaisesRegexp(ValueError, "cannot rename 'not_a_var'"): data.rename({'not_a_var': 'nada'}) # verify that we can rename a variable without accessing the data var1 = data['var1'] data['var1'] = (var1.dims, InaccessibleArray(var1.values)) renamed = data.rename(newnames) with self.assertRaises(UnexpectedDataAccess): renamed['renamed_var1'].values def test_rename_inplace(self): times = pd.date_range('2000-01-01', periods=3) data = Dataset({'z': ('x', [2, 3, 4]), 't': ('t', times)}) copied = data.copy() renamed = data.rename({'x': 'y'}) data.rename({'x': 'y'}, inplace=True) self.assertDatasetIdentical(data, renamed) self.assertFalse(data.equals(copied)) self.assertEquals(data.dims, {'y': 3, 't': 3}) # check virtual variables self.assertArrayEqual(data['t.dayofyear'], [1, 2, 3]) def test_swap_dims(self): original = Dataset({'x': [1, 2, 3], 'y': ('x', list('abc')), 'z': 42}) expected = Dataset({'z': 42}, {'x': ('y', [1, 2, 3]), 'y': list('abc')}) actual = original.swap_dims({'x': 'y'}) self.assertDatasetIdentical(expected, actual) self.assertIsInstance(actual.variables['y'], Coordinate) self.assertIsInstance(actual.variables['x'], Variable) roundtripped = actual.swap_dims({'y': 'x'}) self.assertDatasetIdentical(original.set_coords('y'), roundtripped) actual = original.copy() actual.swap_dims({'x': 'y'}, inplace=True) self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'cannot swap'): original.swap_dims({'y': 'x'}) with self.assertRaisesRegexp(ValueError, 'replacement dimension'): original.swap_dims({'x': 'z'}) def test_update(self): data = create_test_data(seed=0) expected = data.copy() var2 = Variable('dim1', np.arange(8)) actual = data.update({'var2': var2}) expected['var2'] = var2 self.assertDatasetIdentical(expected, actual) actual = data.copy() actual_result = actual.update(data, inplace=True) self.assertIs(actual_result, actual) self.assertDatasetIdentical(expected, actual) actual = data.update(data, inplace=False) expected = data self.assertIsNot(actual, expected) self.assertDatasetIdentical(expected, actual) other = Dataset(attrs={'new': 'attr'}) actual = data.copy() actual.update(other) self.assertDatasetIdentical(expected, actual) def test_update_auto_align(self): ds = Dataset({'x': ('t', [3, 4])}) expected = Dataset({'x': ('t', [3, 4]), 'y': ('t', [np.nan, 5])}) actual = ds.copy() other = {'y': ('t', [5]), 't': [1]} with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): actual.update(other) actual.update(Dataset(other)) self.assertDatasetIdentical(expected, actual) actual = ds.copy() other = Dataset({'y': ('t', [5]), 't': [100]}) actual.update(other) expected = Dataset({'x': ('t', [3, 4]), 'y': ('t', [np.nan] * 2)}) self.assertDatasetIdentical(expected, actual) def test_merge(self): data = create_test_data() ds1 = data[['var1']] ds2 = data[['var3']] expected = data[['var1', 'var3']] actual = ds1.merge(ds2) self.assertDatasetIdentical(expected, actual) actual = ds2.merge(ds1) self.assertDatasetIdentical(expected, actual) actual = data.merge(data) self.assertDatasetIdentical(data, actual) actual = data.reset_coords(drop=True).merge(data) self.assertDatasetIdentical(data, actual) actual = data.merge(data.reset_coords(drop=True)) self.assertDatasetIdentical(data, actual) with self.assertRaises(ValueError): ds1.merge(ds2.rename({'var3': 'var1'})) with self.assertRaisesRegexp(ValueError, 'cannot merge'): data.reset_coords().merge(data) with self.assertRaisesRegexp(ValueError, 'cannot merge'): data.merge(data.reset_coords()) def test_merge_broadcast_equals(self): ds1 = Dataset({'x': 0}) ds2 = Dataset({'x': ('y', [0, 0])}) actual = ds1.merge(ds2) self.assertDatasetIdentical(ds2, actual) actual = ds2.merge(ds1) self.assertDatasetIdentical(ds2, actual) actual = ds1.copy() actual.update(ds2) self.assertDatasetIdentical(ds2, actual) ds1 = Dataset({'x': np.nan}) ds2 = Dataset({'x': ('y', [np.nan, np.nan])}) actual = ds1.merge(ds2) self.assertDatasetIdentical(ds2, actual) def test_merge_compat(self): ds1 = Dataset({'x': 0}) ds2 = Dataset({'x': 1}) for compat in ['broadcast_equals', 'equals', 'identical']: with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat=compat) ds2 = Dataset({'x': [0, 0]}) for compat in ['equals', 'identical']: with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat=compat) ds2 = Dataset({'x': ((), 0, {'foo': 'bar'})}) with self.assertRaisesRegexp(ValueError, 'conflicting value'): ds1.merge(ds2, compat='identical') with self.assertRaisesRegexp(ValueError, 'compat=\S+ invalid'): ds1.merge(ds2, compat='foobar') def test_merge_auto_align(self): ds1 = Dataset({'a': ('x', [1, 2])}) ds2 = Dataset({'b': ('x', [3, 4]), 'x': [1, 2]}) expected = Dataset({'a': ('x', [1, 2, np.nan]), 'b': ('x', [np.nan, 3, 4])}) self.assertDatasetIdentical(expected, ds1.merge(ds2)) self.assertDatasetIdentical(expected, ds2.merge(ds1)) expected = expected.isel(x=slice(2)) self.assertDatasetIdentical(expected, ds1.merge(ds2, join='left')) self.assertDatasetIdentical(expected, ds2.merge(ds1, join='right')) expected = expected.isel(x=slice(1, 2)) self.assertDatasetIdentical(expected, ds1.merge(ds2, join='inner')) self.assertDatasetIdentical(expected, ds2.merge(ds1, join='inner')) def test_getitem(self): data = create_test_data() self.assertIsInstance(data['var1'], DataArray) self.assertVariableEqual(data['var1'], data.variables['var1']) with self.assertRaises(KeyError): data['notfound'] with self.assertRaises(KeyError): data[['var1', 'notfound']] actual = data[['var1', 'var2']] expected = Dataset({'var1': data['var1'], 'var2': data['var2']}) self.assertDatasetEqual(expected, actual) actual = data['numbers'] expected = DataArray(data['numbers'].variable, [data['dim3']], name='numbers') self.assertDataArrayIdentical(expected, actual) actual = data[dict(dim1=0)] expected = data.isel(dim1=0) self.assertDatasetIdentical(expected, actual) def test_getitem_hashable(self): data = create_test_data() data[(3, 4)] = data['var1'] + 1 expected = data['var1'] + 1 expected.name = (3, 4) self.assertDataArrayIdentical(expected, data[(3, 4)]) with self.assertRaisesRegexp(KeyError, "('var1', 'var2')"): data[('var1', 'var2')] def test_virtual_variables(self): # access virtual variables data = create_test_data() expected = DataArray(1 + np.arange(20), coords=[data['time']], dims='time', name='dayofyear') self.assertDataArrayIdentical(expected, data['time.dayofyear']) self.assertArrayEqual(data['time.month'].values, data.variables['time'].to_index().month) self.assertArrayEqual(data['time.season'].values, 'DJF') # test virtual variable math self.assertArrayEqual(data['time.dayofyear'] + 1, 2 + np.arange(20)) self.assertArrayEqual(np.sin(data['time.dayofyear']), np.sin(1 + np.arange(20))) # ensure they become coordinates expected = Dataset({}, {'dayofyear': data['time.dayofyear']}) actual = data[['time.dayofyear']] self.assertDatasetEqual(expected, actual) # non-coordinate variables ds = Dataset({'t': ('x', pd.date_range('2000-01-01', periods=3))}) self.assertTrue((ds['t.year'] == 2000).all()) def test_time_season(self): ds = Dataset({'t': pd.date_range('2000-01-01', periods=12, freq='M')}) expected = ['DJF'] * 2 + ['MAM'] * 3 + ['JJA'] * 3 + ['SON'] * 3 + ['DJF'] self.assertArrayEqual(expected, ds['t.season']) def test_slice_virtual_variable(self): data = create_test_data() self.assertVariableEqual(data['time.dayofyear'][:10], Variable(['time'], 1 + np.arange(10))) self.assertVariableEqual(data['time.dayofyear'][0], Variable([], 1)) def test_setitem(self): # assign a variable var = Variable(['dim1'], np.random.randn(8)) data1 = create_test_data() data1['A'] = var data2 = data1.copy() data2['A'] = var self.assertDatasetIdentical(data1, data2) # assign a dataset array dv = 2 * data2['A'] data1['B'] = dv.variable data2['B'] = dv self.assertDatasetIdentical(data1, data2) # can't assign an ND array without dimensions with self.assertRaisesRegexp(ValueError, 'dimensions .* must have the same len'): data2['C'] = var.values.reshape(2, 4) # but can assign a 1D array data1['C'] = var.values data2['C'] = ('C', var.values) self.assertDatasetIdentical(data1, data2) # can assign a scalar data1['scalar'] = 0 data2['scalar'] = ([], 0) self.assertDatasetIdentical(data1, data2) # can't use the same dimension name as a scalar var with self.assertRaisesRegexp(ValueError, 'cannot merge'): data1['newvar'] = ('scalar', [3, 4, 5]) # can't resize a used dimension with self.assertRaisesRegexp(ValueError, 'conflicting sizes'): data1['dim1'] = data1['dim1'][:5] # override an existing value data1['A'] = 3 * data2['A'] self.assertVariableEqual(data1['A'], 3 * data2['A']) with self.assertRaises(NotImplementedError): data1[{'x': 0}] = 0 def test_setitem_auto_align(self): ds = Dataset() ds['x'] = ('y', range(3)) ds['y'] = 1 + np.arange(3) expected = Dataset({'x': ('y', range(3)), 'y': 1 + np.arange(3)}) self.assertDatasetIdentical(ds, expected) ds['y'] = DataArray(range(3), dims='y') expected = Dataset({'x': ('y', range(3))}) self.assertDatasetIdentical(ds, expected) ds['x'] = DataArray([1, 2], dims='y') expected = Dataset({'x': ('y', [1, 2, np.nan])}) self.assertDatasetIdentical(ds, expected) ds['x'] = 42 expected = Dataset({'x': 42, 'y': range(3)}) self.assertDatasetIdentical(ds, expected) ds['x'] = DataArray([4, 5, 6, 7], dims='y') expected = Dataset({'x': ('y', [4, 5, 6])}) self.assertDatasetIdentical(ds, expected) def test_assign(self): ds = Dataset() actual = ds.assign(x = [0, 1, 2], y = 2) expected = Dataset({'x': [0, 1, 2], 'y': 2}) self.assertDatasetIdentical(actual, expected) self.assertEqual(list(actual), ['x', 'y']) self.assertDatasetIdentical(ds, Dataset()) actual = actual.assign(y = lambda ds: ds.x ** 2) expected = Dataset({'y': ('x', [0, 1, 4])}) self.assertDatasetIdentical(actual, expected) actual = actual.assign_coords(z = 2) expected = Dataset({'y': ('x', [0, 1, 4])}, {'z': 2}) self.assertDatasetIdentical(actual, expected) ds = Dataset({'a': ('x', range(3))}, {'b': ('x', ['A'] * 2 + ['B'])}) actual = ds.groupby('b').assign(c = lambda ds: 2 * ds.a) expected = ds.merge({'c': ('x', [0, 2, 4])}) self.assertDatasetIdentical(actual, expected) actual = ds.groupby('b').assign(c = lambda ds: ds.a.sum()) expected = ds.merge({'c': ('x', [1, 1, 2])}) self.assertDatasetIdentical(actual, expected) actual = ds.groupby('b').assign_coords(c = lambda ds: ds.a.sum()) expected = expected.set_coords('c') self.assertDatasetIdentical(actual, expected) def test_delitem(self): data = create_test_data() all_items = set(data) self.assertItemsEqual(data, all_items) del data['var1'] self.assertItemsEqual(data, all_items - set(['var1'])) del data['dim1'] self.assertItemsEqual(data, set(['time', 'dim2', 'dim3', 'numbers'])) self.assertNotIn('dim1', data.dims) self.assertNotIn('dim1', data.coords) def test_squeeze(self): data = Dataset({'foo': (['x', 'y', 'z'], [[[1], [2]]])}) for args in [[], [['x']], [['x', 'z']]]: def get_args(v): return [set(args[0]) & set(v.dims)] if args else [] expected = Dataset(dict((k, v.squeeze(*get_args(v))) for k, v in iteritems(data.variables))) expected.set_coords(data.coords, inplace=True) self.assertDatasetIdentical(expected, data.squeeze(*args)) # invalid squeeze with self.assertRaisesRegexp(ValueError, 'cannot select a dimension'): data.squeeze('y') def test_groupby(self): data = Dataset({'z': (['x', 'y'], np.random.randn(3, 5))}, {'x': ('x', list('abc')), 'c': ('x', [0, 1, 0])}) groupby = data.groupby('x') self.assertEqual(len(groupby), 3) expected_groups = {'a': 0, 'b': 1, 'c': 2} self.assertEqual(groupby.groups, expected_groups) expected_items = [('a', data.isel(x=0)), ('b', data.isel(x=1)), ('c', data.isel(x=2))] for actual, expected in zip(groupby, expected_items): self.assertEqual(actual[0], expected[0]) self.assertDatasetEqual(actual[1], expected[1]) identity = lambda x: x for k in ['x', 'c', 'y']: actual = data.groupby(k, squeeze=False).apply(identity) self.assertDatasetEqual(data, actual) def test_groupby_returns_new_type(self): data = Dataset({'z': (['x', 'y'], np.random.randn(3, 5))}) actual = data.groupby('x').apply(lambda ds: ds['z']) expected = data['z'] self.assertDataArrayIdentical(expected, actual) actual = data['z'].groupby('x').apply(lambda x: x.to_dataset()) expected = data self.assertDatasetIdentical(expected, actual) def test_groupby_iter(self): data = create_test_data() for n, (t, sub) in enumerate(list(data.groupby('dim1'))[:3]): self.assertEqual(data['dim1'][n], t) self.assertVariableEqual(data['var1'][n], sub['var1']) self.assertVariableEqual(data['var2'][n], sub['var2']) self.assertVariableEqual(data['var3'][:, n], sub['var3']) def test_groupby_errors(self): data = create_test_data() with self.assertRaisesRegexp(ValueError, 'must be 1 dimensional'): data.groupby('var1') with self.assertRaisesRegexp(ValueError, 'must have a name'): data.groupby(np.arange(10)) with self.assertRaisesRegexp(ValueError, 'length does not match'): data.groupby(data['dim1'][:3]) with self.assertRaisesRegexp(ValueError, "must have a 'dims'"): data.groupby(data.coords['dim1'].to_index()) def test_groupby_reduce(self): data = Dataset({'xy': (['x', 'y'], np.random.randn(3, 4)), 'xonly': ('x', np.random.randn(3)), 'yonly': ('y', np.random.randn(4)), 'letters': ('y', ['a', 'a', 'b', 'b'])}) expected = data.mean('y') expected['yonly'] = expected['yonly'].variable.expand_dims({'x': 3}) actual = data.groupby('x').mean() self.assertDatasetAllClose(expected, actual) actual = data.groupby('x').mean('y') self.assertDatasetAllClose(expected, actual) letters = data['letters'] expected = Dataset({'xy': data['xy'].groupby(letters).mean(), 'xonly': (data['xonly'].mean().variable .expand_dims({'letters': 2})), 'yonly': data['yonly'].groupby(letters).mean()}) actual = data.groupby('letters').mean() self.assertDatasetAllClose(expected, actual) def test_groupby_math(self): reorder_dims = lambda x: x.transpose('dim1', 'dim2', 'dim3', 'time') ds = create_test_data() for squeeze in [True, False]: grouped = ds.groupby('dim1', squeeze=squeeze) expected = reorder_dims(ds + ds.coords['dim1']) actual = grouped + ds.coords['dim1'] self.assertDatasetIdentical(expected, reorder_dims(actual)) actual = ds.coords['dim1'] + grouped self.assertDatasetIdentical(expected, reorder_dims(actual)) ds2 = 2 * ds expected = reorder_dims(ds + ds2) actual = grouped + ds2 self.assertDatasetIdentical(expected, reorder_dims(actual)) actual = ds2 + grouped self.assertDatasetIdentical(expected, reorder_dims(actual)) grouped = ds.groupby('numbers') zeros = DataArray([0, 0, 0, 0], [('numbers', range(4))]) expected = ((ds + Variable('dim3', np.zeros(10))) .transpose('dim3', 'dim1', 'dim2', 'time')) actual = grouped + zeros self.assertDatasetEqual(expected, actual) actual = zeros + grouped self.assertDatasetEqual(expected, actual) with self.assertRaisesRegexp(ValueError, 'dimensions .* do not exist'): grouped + ds with self.assertRaisesRegexp(ValueError, 'dimensions .* do not exist'): ds + grouped with self.assertRaisesRegexp(TypeError, 'only support binary ops'): grouped + 1 with self.assertRaisesRegexp(TypeError, 'only support binary ops'): grouped + grouped with self.assertRaisesRegexp(TypeError, 'in-place operations'): ds += grouped ds = Dataset({'x': ('time', np.arange(100)), 'time': pd.date_range('2000-01-01', periods=100)}) with self.assertRaisesRegexp(ValueError, 'no overlapping labels'): ds + ds.groupby('time.month') def test_groupby_math_virtual(self): ds = Dataset({'x': ('t', [1, 2, 3])}, {'t': pd.date_range('20100101', periods=3)}) grouped = ds.groupby('t.day') actual = grouped - grouped.mean() expected = Dataset({'x': ('t', [0, 0, 0])}, ds[['t', 't.day']]) self.assertDatasetIdentical(actual, expected) def test_groupby_nan(self): # nan should be excluded from groupby ds = Dataset({'foo': ('x', [1, 2, 3, 4])}, {'bar': ('x', [1, 1, 2, np.nan])}) actual = ds.groupby('bar').mean() expected = Dataset({'foo': ('bar', [1.5, 3]), 'bar': [1, 2]}) self.assertDatasetIdentical(actual, expected) def test_resample_and_first(self): times = pd.date_range('2000-01-01', freq='6H', periods=10) ds = Dataset({'foo': (['time', 'x', 'y'], np.random.randn(10, 5, 3)), 'bar': ('time', np.random.randn(10), {'meta': 'data'}), 'time': times}) actual = ds.resample('1D', dim='time', how='first') expected = ds.isel(time=[0, 4, 8]) self.assertDatasetIdentical(expected, actual) # upsampling expected_time = pd.date_range('2000-01-01', freq='3H', periods=19) expected = ds.reindex(time=expected_time) for how in ['mean', 'sum', 'first', 'last', np.mean]: actual = ds.resample('3H', 'time', how=how) self.assertDatasetEqual(expected, actual) def test_to_array(self): ds = Dataset(OrderedDict([('a', 1), ('b', ('x', [1, 2, 3]))]), coords={'c': 42}, attrs={'Conventions': 'None'}) data = [[1, 1, 1], [1, 2, 3]] coords = {'x': range(3), 'c': 42, 'variable': ['a', 'b']} dims = ('variable', 'x') expected = DataArray(data, coords, dims, attrs=ds.attrs) actual = ds.to_array() self.assertDataArrayIdentical(expected, actual) actual = ds.to_array('abc', name='foo') expected = expected.rename({'variable': 'abc'}).rename('foo') self.assertDataArrayIdentical(expected, actual) def test_to_and_from_dataframe(self): x = np.random.randn(10) y = np.random.randn(10) t = list('abcdefghij') ds = Dataset(OrderedDict([('a', ('t', x)), ('b', ('t', y)), ('t', ('t', t))])) expected = pd.DataFrame(np.array([x, y]).T, columns=['a', 'b'], index=pd.Index(t, name='t')) actual = ds.to_dataframe() # use the .equals method to check all DataFrame metadata assert expected.equals(actual), (expected, actual) # verify coords are included actual = ds.set_coords('b').to_dataframe() assert expected.equals(actual), (expected, actual) # check roundtrip self.assertDatasetIdentical(ds, Dataset.from_dataframe(actual)) # test a case with a MultiIndex w = np.random.randn(2, 3) ds = Dataset({'w': (('x', 'y'), w)}) ds['y'] = ('y', list('abc')) exp_index = pd.MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1], ['a', 'b', 'c', 'a', 'b', 'c']], names=['x', 'y']) expected = pd.DataFrame(w.reshape(-1), columns=['w'], index=exp_index) actual = ds.to_dataframe() self.assertTrue(expected.equals(actual)) # check roundtrip self.assertDatasetIdentical(ds, Dataset.from_dataframe(actual)) # check pathological cases df = pd.DataFrame([1]) actual = Dataset.from_dataframe(df) expected = Dataset({0: ('index', [1])}) self.assertDatasetIdentical(expected, actual) df = pd.DataFrame() actual = Dataset.from_dataframe(df) expected = Dataset() self.assertDatasetIdentical(expected, actual) # regression test for GH278 # use int64 to ensure consistent results for the pandas .equals method # on windows (which requires the same dtype) ds = Dataset({'x': pd.Index(['bar']), 'a': ('y', np.array([1], 'int64'))}).isel(x=0) # use .loc to ensure consistent results on Python 3 actual = ds.to_dataframe().loc[:, ['a', 'x']] expected = pd.DataFrame([[1, 'bar']], index=pd.Index([0], name='y'), columns=['a', 'x']) assert expected.equals(actual), (expected, actual) ds = Dataset({'x': np.array([0], 'int64'), 'y': np.array([1], 'int64')}) actual = ds.to_dataframe() idx = pd.MultiIndex.from_arrays([[0], [1]], names=['x', 'y']) expected = pd.DataFrame([[]], index=idx) assert expected.equals(actual), (expected, actual) # regression test for GH449 df = pd.DataFrame(np.zeros((2, 2))) df.columns = ['foo', 'foo'] with self.assertRaisesRegexp(ValueError, 'non-unique columns'): Dataset.from_dataframe(df) def test_pickle(self): data = create_test_data() roundtripped = pickle.loads(pickle.dumps(data)) self.assertDatasetIdentical(data, roundtripped) # regression test for #167: self.assertEqual(data.dims, roundtripped.dims) def test_lazy_load(self): store = InaccessibleVariableDataStore() create_test_data().dump_to_store(store) for decode_cf in [True, False]: ds = open_dataset(store, decode_cf=decode_cf) with self.assertRaises(UnexpectedDataAccess): ds.load() with self.assertRaises(UnexpectedDataAccess): ds['var1'].values # these should not raise UnexpectedDataAccess: ds.isel(time=10) ds.isel(time=slice(10), dim1=[0]).isel(dim1=0, dim2=-1) def test_dropna(self): x = np.random.randn(4, 4) x[::2, 0] = np.nan y = np.random.randn(4) y[-1] = np.nan ds = Dataset({'foo': (('a', 'b'), x), 'bar': (('b', y))}) expected = ds.isel(a=slice(1, None, 2)) actual = ds.dropna('a') self.assertDatasetIdentical(actual, expected) expected = ds.isel(b=slice(1, 3)) actual = ds.dropna('b') self.assertDatasetIdentical(actual, expected) actual = ds.dropna('b', subset=['foo', 'bar']) self.assertDatasetIdentical(actual, expected) expected = ds.isel(b=slice(1, None)) actual = ds.dropna('b', subset=['foo']) self.assertDatasetIdentical(actual, expected) expected = ds.isel(b=slice(3)) actual = ds.dropna('b', subset=['bar']) self.assertDatasetIdentical(actual, expected) actual = ds.dropna('a', subset=[]) self.assertDatasetIdentical(actual, ds) actual = ds.dropna('a', subset=['bar']) self.assertDatasetIdentical(actual, ds) actual = ds.dropna('a', how='all') self.assertDatasetIdentical(actual, ds) actual = ds.dropna('b', how='all', subset=['bar']) expected = ds.isel(b=[0, 1, 2]) self.assertDatasetIdentical(actual, expected) actual = ds.dropna('b', thresh=1, subset=['bar']) self.assertDatasetIdentical(actual, expected) actual = ds.dropna('b', thresh=2) self.assertDatasetIdentical(actual, ds) actual = ds.dropna('b', thresh=4) expected = ds.isel(b=[1, 2, 3]) self.assertDatasetIdentical(actual, expected) actual = ds.dropna('a', thresh=3) expected = ds.isel(a=[1, 3]) self.assertDatasetIdentical(actual, ds) with self.assertRaisesRegexp(ValueError, 'a single dataset dimension'): ds.dropna('foo') with self.assertRaisesRegexp(ValueError, 'invalid how'): ds.dropna('a', how='somehow') with self.assertRaisesRegexp(TypeError, 'must specify how or thresh'): ds.dropna('a', how=None) def test_fillna(self): ds = Dataset({'a': ('x', [np.nan, 1, np.nan, 3])}) # fill with -1 actual = ds.fillna(-1) expected = Dataset({'a': ('x', [-1, 1, -1, 3])}) self.assertDatasetIdentical(expected, actual) actual = ds.fillna({'a': -1}) self.assertDatasetIdentical(expected, actual) other = Dataset({'a': -1}) actual = ds.fillna(other) self.assertDatasetIdentical(expected, actual) actual = ds.fillna({'a': other.a}) self.assertDatasetIdentical(expected, actual) # fill with range(4) b = DataArray(range(4), dims='x') actual = ds.fillna(b) expected = b.rename('a').to_dataset() self.assertDatasetIdentical(expected, actual) actual = ds.fillna(expected) self.assertDatasetIdentical(expected, actual) actual = ds.fillna(range(4)) self.assertDatasetIdentical(expected, actual) actual = ds.fillna(b[:3]) self.assertDatasetIdentical(expected, actual) # left align variables ds['b'] = np.nan actual = ds.fillna({'a': -1, 'c': 'foobar'}) expected = Dataset({'a': ('x', [-1, 1, -1, 3]), 'b': np.nan}) self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'no overlapping'): ds.fillna({'x': 0}) with self.assertRaisesRegexp(ValueError, 'no overlapping'): ds.fillna(Dataset(coords={'a': 0})) # groupby expected = Dataset({'a': ('x', range(4))}) for target in [ds, expected]: target.coords['b'] = ('x', [0, 0, 1, 1]) actual = ds.groupby('b').fillna(DataArray([0, 2], dims='b')) self.assertDatasetIdentical(expected, actual) actual = ds.groupby('b').fillna(Dataset({'a': ('b', [0, 2])})) self.assertDatasetIdentical(expected, actual) def test_where(self): ds = Dataset({'a': ('x', range(5))}) expected = Dataset({'a': ('x', [np.nan, np.nan, 2, 3, 4])}) actual = ds.where(ds > 1) self.assertDatasetIdentical(expected, actual) actual = ds.where(ds.a > 1) self.assertDatasetIdentical(expected, actual) actual = ds.where(ds.a.values > 1) self.assertDatasetIdentical(expected, actual) actual = ds.where(True) self.assertDatasetIdentical(ds, actual) expected = ds.copy(deep=True) expected['a'].values = [np.nan] * 5 actual = ds.where(False) self.assertDatasetIdentical(expected, actual) # 2d ds = Dataset({'a': (('x', 'y'), [[0, 1], [2, 3]])}) expected = Dataset({'a': (('x', 'y'), [[np.nan, 1], [2, 3]])}) actual = ds.where(ds > 0) self.assertDatasetIdentical(expected, actual) # groupby ds = Dataset({'a': ('x', range(5))}, {'c': ('x', [0, 0, 1, 1, 1])}) cond = Dataset({'a': ('c', [True, False])}) expected = ds.copy(deep=True) expected['a'].values = [0, 1] + [np.nan] * 3 actual = ds.groupby('c').where(cond) self.assertDatasetIdentical(expected, actual) def test_reduce(self): data = create_test_data() self.assertEqual(len(data.mean().coords), 0) actual = data.max() expected = Dataset(dict((k, v.max()) for k, v in iteritems(data.data_vars))) self.assertDatasetEqual(expected, actual) self.assertDatasetEqual(data.min(dim=['dim1']), data.min(dim='dim1')) for reduct, expected in [('dim2', ['dim1', 'dim3', 'time']), (['dim2', 'time'], ['dim1', 'dim3']), (('dim2', 'time'), ['dim1', 'dim3']), ((), ['dim1', 'dim2', 'dim3', 'time'])]: actual = data.min(dim=reduct).dims print(reduct, actual, expected) self.assertItemsEqual(actual, expected) self.assertDatasetEqual(data.mean(dim=[]), data) def test_reduce_bad_dim(self): data = create_test_data() with self.assertRaisesRegexp(ValueError, 'Dataset does not contain'): ds = data.mean(dim='bad_dim') def test_reduce_non_numeric(self): data1 = create_test_data(seed=44) data2 = create_test_data(seed=44) add_vars = {'var4': ['dim1', 'dim2']} for v, dims in sorted(add_vars.items()): size = tuple(data1.dims[d] for d in dims) data = np.random.random_integers(0, 100, size=size).astype(np.str_) data1[v] = (dims, data, {'foo': 'variable'}) self.assertTrue('var4' not in data1.mean()) self.assertDatasetEqual(data1.mean(), data2.mean()) self.assertDatasetEqual(data1.mean(dim='dim1'), data2.mean(dim='dim1')) def test_reduce_strings(self): expected = Dataset({'x': 'a'}) ds = Dataset({'x': ('y', ['a', 'b'])}) actual = ds.min() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': 'b'}) actual = ds.max() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': 0}) actual = ds.argmin() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': 1}) actual = ds.argmax() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': b'a'}) ds = Dataset({'x': ('y', np.array(['a', 'b'], 'S1'))}) actual = ds.min() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': u'a'}) ds = Dataset({'x': ('y', np.array(['a', 'b'], 'U1'))}) actual = ds.min() self.assertDatasetIdentical(expected, actual) def test_reduce_dtypes(self): # regression test for GH342 expected = Dataset({'x': 1}) actual = Dataset({'x': True}).sum() self.assertDatasetIdentical(expected, actual) # regression test for GH505 expected = Dataset({'x': 3}) actual = Dataset({'x': ('y', np.array([1, 2], 'uint16'))}).sum() self.assertDatasetIdentical(expected, actual) expected = Dataset({'x': 1 + 1j}) actual = Dataset({'x': ('y', [1, 1j])}).sum() self.assertDatasetIdentical(expected, actual) def test_reduce_keep_attrs(self): data = create_test_data() _attrs = {'attr1': 'value1', 'attr2': 2929} attrs = OrderedDict(_attrs) data.attrs = attrs # Test dropped attrs ds = data.mean() self.assertEqual(ds.attrs, {}) for v in ds.data_vars.values(): self.assertEqual(v.attrs, {}) # Test kept attrs ds = data.mean(keep_attrs=True) self.assertEqual(ds.attrs, attrs) for k, v in ds.data_vars.items(): self.assertEqual(v.attrs, data[k].attrs) def test_reduce_argmin(self): # regression test for #205 ds = Dataset({'a': ('x', [0, 1])}) expected = Dataset({'a': ([], 0)}) actual = ds.argmin() self.assertDatasetIdentical(expected, actual) actual = ds.argmin('x') self.assertDatasetIdentical(expected, actual) def test_reduce_scalars(self): ds = Dataset({'x': ('a', [2, 2]), 'y': 2, 'z': ('b', [2])}) expected = Dataset({'x': 0, 'y': 0, 'z': 0}) actual = ds.var() self.assertDatasetIdentical(expected, actual) def test_reduce_only_one_axis(self): def mean_only_one_axis(x, axis): if not isinstance(axis, (int, np.integer)): raise TypeError('non-integer axis') return x.mean(axis) ds = Dataset({'a': (['x', 'y'], [[0, 1, 2, 3, 4]])}) expected = Dataset({'a': ('x', [2])}) actual = ds.reduce(mean_only_one_axis, 'y') self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(TypeError, 'non-integer axis'): ds.reduce(mean_only_one_axis) with self.assertRaisesRegexp(TypeError, 'non-integer axis'): ds.reduce(mean_only_one_axis, ['x', 'y']) def test_count(self): ds = Dataset({'x': ('a', [np.nan, 1]), 'y': 0, 'z': np.nan}) expected = Dataset({'x': 1, 'y': 1, 'z': 0}) actual = ds.count() self.assertDatasetIdentical(expected, actual) def test_apply(self): data = create_test_data() data.attrs['foo'] = 'bar' self.assertDatasetIdentical(data.apply(np.mean), data.mean()) expected = data.mean(keep_attrs=True) actual = data.apply(lambda x: x.mean(keep_attrs=True), keep_attrs=True) self.assertDatasetIdentical(expected, actual) self.assertDatasetIdentical(data.apply(lambda x: x, keep_attrs=True), data.drop('time')) def scale(x, multiple=1): return multiple * x actual = data.apply(scale, multiple=2) self.assertDataArrayEqual(actual['var1'], 2 * data['var1']) self.assertDataArrayIdentical(actual['numbers'], data['numbers']) actual = data.apply(np.asarray) expected = data.drop('time') # time is not used on a data var self.assertDatasetEqual(expected, actual) def make_example_math_dataset(self): variables = OrderedDict( [('bar', ('x', np.arange(100, 400, 100))), ('foo', (('x', 'y'), 1.0 * np.arange(12).reshape(3, 4)))]) coords = {'abc': ('x', ['a', 'b', 'c']), 'y': 10 * np.arange(4)} ds = Dataset(variables, coords) ds['foo'][0, 0] = np.nan return ds def test_dataset_number_math(self): ds = self.make_example_math_dataset() self.assertDatasetIdentical(ds, +ds) self.assertDatasetIdentical(ds, ds + 0) self.assertDatasetIdentical(ds, 0 + ds) self.assertDatasetIdentical(ds, ds + np.array(0)) self.assertDatasetIdentical(ds, np.array(0) + ds) actual = ds.copy(deep=True) actual += 0 self.assertDatasetIdentical(ds, actual) def test_unary_ops(self): ds = self.make_example_math_dataset() self.assertDatasetIdentical(ds.apply(abs), abs(ds)) self.assertDatasetIdentical(ds.apply(lambda x: x + 4), ds + 4) for func in [lambda x: x.isnull(), lambda x: x.round(), lambda x: x.astype(int)]: self.assertDatasetIdentical(ds.apply(func), func(ds)) self.assertDatasetIdentical(ds.isnull(), ~ds.notnull()) # don't actually patch these methods in with self.assertRaises(AttributeError): ds.item with self.assertRaises(AttributeError): ds.searchsorted def test_dataset_array_math(self): ds = self.make_example_math_dataset() expected = ds.apply(lambda x: x - ds['foo']) self.assertDatasetIdentical(expected, ds - ds['foo']) self.assertDatasetIdentical(expected, -ds['foo'] + ds) self.assertDatasetIdentical(expected, ds - ds['foo'].variable) self.assertDatasetIdentical(expected, -ds['foo'].variable + ds) actual = ds.copy(deep=True) actual -= ds['foo'] self.assertDatasetIdentical(expected, actual) expected = ds.apply(lambda x: x + ds['bar']) self.assertDatasetIdentical(expected, ds + ds['bar']) actual = ds.copy(deep=True) actual += ds['bar'] self.assertDatasetIdentical(expected, actual) expected = Dataset({'bar': ds['bar'] + np.arange(3)}) self.assertDatasetIdentical(expected, ds[['bar']] + np.arange(3)) self.assertDatasetIdentical(expected, np.arange(3) + ds[['bar']]) def test_dataset_dataset_math(self): ds = self.make_example_math_dataset() self.assertDatasetIdentical(ds, ds + 0 * ds) self.assertDatasetIdentical(ds, ds + {'foo': 0, 'bar': 0}) expected = ds.apply(lambda x: 2 * x) self.assertDatasetIdentical(expected, 2 * ds) self.assertDatasetIdentical(expected, ds + ds) self.assertDatasetIdentical(expected, ds + ds.data_vars) self.assertDatasetIdentical(expected, ds + dict(ds.data_vars)) actual = ds.copy(deep=True) expected_id = id(actual) actual += ds self.assertDatasetIdentical(expected, actual) self.assertEqual(expected_id, id(actual)) self.assertDatasetIdentical(ds == ds, ds.notnull()) subsampled = ds.isel(y=slice(2)) expected = 2 * subsampled self.assertDatasetIdentical(expected, subsampled + ds) self.assertDatasetIdentical(expected, ds + subsampled) def test_dataset_math_auto_align(self): ds = self.make_example_math_dataset() subset = ds.isel(x=slice(2), y=[1, 3]) expected = 2 * subset actual = ds + subset self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'no overlapping labels'): ds.isel(x=slice(1)) + ds.isel(x=slice(1, None)) actual = ds + ds[['bar']] expected = (2 * ds[['bar']]).merge(ds.coords) self.assertDatasetIdentical(expected, actual) with self.assertRaisesRegexp(ValueError, 'no overlapping data'): ds + Dataset() with self.assertRaisesRegexp(ValueError, 'no overlapping data'): Dataset() + Dataset() ds2 = Dataset(coords={'bar': 42}) with self.assertRaisesRegexp(ValueError, 'no overlapping data'): ds + ds2 # maybe unary arithmetic with empty datasets should raise instead? self.assertDatasetIdentical(Dataset() + 1, Dataset()) for other in [ds.isel(x=slice(2)), ds.bar.isel(x=slice(0))]: actual = ds.copy(deep=True) other = ds.isel(x=slice(2)) actual += other expected = ds + other.reindex_like(ds) self.assertDatasetIdentical(expected, actual) def test_dataset_math_errors(self): ds = self.make_example_math_dataset() with self.assertRaises(TypeError): ds['foo'] += ds with self.assertRaises(TypeError): ds['foo'].variable += ds with self.assertRaisesRegexp(ValueError, 'must have the same'): ds += ds[['bar']] # verify we can rollback in-place operations if something goes wrong # nb. inplace datetime64 math actually will work with an integer array # but not floats thanks to numpy's inconsistent handling other = DataArray(np.datetime64('2000-01-01T12'), coords={'c': 2}) actual = ds.copy(deep=True) with self.assertRaises(TypeError): actual += other self.assertDatasetIdentical(actual, ds) def test_dataset_transpose(self): ds = Dataset({'a': (('x', 'y'), np.random.randn(3, 4)), 'b': (('y', 'x'), np.random.randn(4, 3))}) actual = ds.transpose() expected = ds.apply(lambda x: x.transpose()) self.assertDatasetIdentical(expected, actual) actual = ds.T self.assertDatasetIdentical(expected, actual) actual = ds.transpose('x', 'y') expected = ds.apply(lambda x: x.transpose('x', 'y')) self.assertDatasetIdentical(expected, actual) ds = create_test_data() actual = ds.transpose() for k in ds: self.assertEqual(actual[k].dims[::-1], ds[k].dims) new_order = ('dim2', 'dim3', 'dim1', 'time') actual = ds.transpose(*new_order) for k in ds: expected_dims = tuple(d for d in new_order if d in ds[k].dims) self.assertEqual(actual[k].dims, expected_dims) with self.assertRaisesRegexp(ValueError, 'arguments to transpose'): ds.transpose('dim1', 'dim2', 'dim3') with self.assertRaisesRegexp(ValueError, 'arguments to transpose'): ds.transpose('dim1', 'dim2', 'dim3', 'time', 'extra_dim') def test_dataset_diff_n1_simple(self): ds = Dataset({'foo': ('x', [5, 5, 6, 6])}) actual = ds.diff('x') expected = Dataset({'foo': ('x', [0, 1, 0])}) expected.coords['x'].values = [1, 2, 3] self.assertDatasetEqual(expected, actual) def test_dataset_diff_n1_lower(self): ds = Dataset({'foo': ('x', [5, 5, 6, 6])}) actual = ds.diff('x', label='lower') expected = Dataset({'foo': ('x', [0, 1, 0])}) expected.coords['x'].values = [0, 1, 2] self.assertDatasetEqual(expected, actual) def test_dataset_diff_n1(self): ds = create_test_data(seed=1) actual = ds.diff('dim2') expected = dict() expected['var1'] = DataArray(np.diff(ds['var1'].values, axis=1), [ds['dim1'].values, ds['dim2'].values[1:]], ['dim1', 'dim2']) expected['var2'] = DataArray(np.diff(ds['var2'].values, axis=1), [ds['dim1'].values, ds['dim2'].values[1:]], ['dim1', 'dim2']) expected['var3'] = ds['var3'] expected = Dataset(expected, coords={'time': ds['time'].values}) expected.coords['numbers'] = ('dim3', ds['numbers'].values) self.assertDatasetEqual(expected, actual) def test_dataset_diff_n2(self): ds = create_test_data(seed=1) actual = ds.diff('dim2', n=2) expected = dict() expected['var1'] = DataArray(np.diff(ds['var1'].values, axis=1, n=2), [ds['dim1'].values, ds['dim2'].values[2:]], ['dim1', 'dim2']) expected['var2'] = DataArray(np.diff(ds['var2'].values, axis=1, n=2), [ds['dim1'].values, ds['dim2'].values[2:]], ['dim1', 'dim2']) expected['var3'] = ds['var3'] expected = Dataset(expected, coords={'time': ds['time'].values}) expected.coords['numbers'] = ('dim3', ds['numbers'].values) self.assertDatasetEqual(expected, actual) def test_dataset_diff_exception_n_neg(self): ds = create_test_data(seed=1) with self.assertRaisesRegexp(ValueError, 'must be non-negative'): ds.diff('dim2', n=-1) def test_dataset_diff_exception_label_str(self): ds = create_test_data(seed=1) with self.assertRaisesRegexp(ValueError, '\'label\' argument has to'): ds.diff('dim2', label='raise_me') def test_real_and_imag(self): attrs = {'foo': 'bar'} ds = Dataset({'x': ((), 1 + 2j, attrs)}, attrs=attrs) expected_re = Dataset({'x': ((), 1, attrs)}, attrs=attrs) self.assertDatasetIdentical(ds.real, expected_re) expected_im = Dataset({'x': ((), 2, attrs)}, attrs=attrs) self.assertDatasetIdentical(ds.imag, expected_im)
apache-2.0
kiddinn/plaso
utils/plot_storage.py
4
2620
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Script to plot storage IO timing usage from profiling data. This script requires the matplotlib and numpy Python modules. """ import argparse import glob import os import sys import numpy from matplotlib import pyplot def Main(): """The main program function. Returns: bool: True if successful or False if not. """ argument_parser = argparse.ArgumentParser(description=( 'Plots storage IO timing from profiling data.')) argument_parser.add_argument( '--output', dest='output_file', type=str, help=( 'path of the output file to write the graph to instead of using ' 'interactive mode. The output format deduced from the extension ' 'of the filename.')) argument_parser.add_argument( '--process', dest='process', type=str, default='', help=( 'comma separated list of names of processes to graph.')) argument_parser.add_argument( 'profile_path', type=str, help=( 'path to the directory containing the profiling data.')) options = argument_parser.parse_args() if not os.path.isdir(options.profile_path): print('No such directory: {0:s}'.format(options.profile_path)) return False processes = [] if options.process: processes = options.process.split(',') names = [ 'time', 'name', 'operation', 'description', 'cpu', 'logical_size', 'size'] glob_expression = os.path.join(options.profile_path, 'storage-*.csv.gz') for csv_file_name in glob.glob(glob_expression): process_name = os.path.basename(csv_file_name) process_name = process_name.replace('storage-', '').replace('.csv.gz', '') if processes and process_name not in processes: continue data = numpy.genfromtxt( csv_file_name, delimiter='\t', dtype=None, encoding='utf-8', names=names, skip_header=1) if data.size > 0: for name in numpy.unique(data['name']): data_by_name = numpy.extract(data['name'] == name, data) data_bytes_per_second = numpy.divide( data_by_name['logical_size'], data_by_name['cpu']) label = '-'.join([name, process_name]) pyplot.plot(data_by_name['time'], data_bytes_per_second, label=label) pyplot.title('Bytes read/write over time') pyplot.xlabel('Time') pyplot.xscale('linear') pyplot.ylabel('Bytes per seconds') pyplot.yscale('linear') pyplot.legend() if options.output_file: pyplot.savefig(options.output_file) else: pyplot.show() return True if __name__ == '__main__': if not Main(): sys.exit(1) else: sys.exit(0)
apache-2.0
anlambert/tulip
doc/python/tabulate.py
1
60926
# -*- coding: utf-8 -*- # Copyright (c) 2011-2019 Sergey Astanin # https://bitbucket.org/astanin/python-tabulate # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # -*- coding: utf-8 -*- """Pretty-print tabular data.""" from __future__ import print_function from __future__ import unicode_literals from collections import namedtuple from platform import python_version_tuple import re import math if python_version_tuple() >= ("3", "3", "0"): from collections.abc import Iterable else: from collections import Iterable if python_version_tuple()[0] < "3": from itertools import izip_longest from functools import partial _none_type = type(None) _bool_type = bool _int_type = int _long_type = long # noqa _float_type = float _text_type = unicode # noqa _binary_type = str def _is_file(f): return isinstance(f, file) # noqa else: from itertools import zip_longest as izip_longest from functools import reduce, partial _none_type = type(None) _bool_type = bool _int_type = int _long_type = int _float_type = float _text_type = str _binary_type = bytes basestring = str import io def _is_file(f): return isinstance(f, io.IOBase) try: import wcwidth # optional wide-character (CJK) support except ImportError: wcwidth = None __all__ = ["tabulate", "tabulate_formats", "simple_separated_format"] __version__ = "0.8.4" # minimum extra space in headers MIN_PADDING = 2 # Whether or not to preserve leading/trailing whitespace in data. PRESERVE_WHITESPACE = False _DEFAULT_FLOATFMT = "g" _DEFAULT_MISSINGVAL = "" # if True, enable wide-character (CJK) support WIDE_CHARS_MODE = wcwidth is not None Line = namedtuple("Line", ["begin", "hline", "sep", "end"]) DataRow = namedtuple("DataRow", ["begin", "sep", "end"]) # A table structure is suppposed to be: # # --- lineabove --------- # headerrow # --- linebelowheader --- # datarow # --- linebewteenrows --- # ... (more datarows) ... # --- linebewteenrows --- # last datarow # --- linebelow --------- # # TableFormat's line* elements can be # # - either None, if the element is not used, # - or a Line tuple, # - or a function: [col_widths], [col_alignments] -> string. # # TableFormat's *row elements can be # # - either None, if the element is not used, # - or a DataRow tuple, # - or a function: [cell_values], [col_widths], [col_alignments] -> string. # # padding (an integer) is the amount of white space around data values. # # with_header_hide: # # - either None, to display all table elements unconditionally, # - or a list of elements not to be displayed if the table has column # headers. # TableFormat = namedtuple("TableFormat", ["lineabove", "linebelowheader", "linebetweenrows", "linebelow", "headerrow", "datarow", "padding", "with_header_hide"]) def _pipe_segment_with_colons(align, colwidth): """Return a segment of a horizontal line with optional colons which indicate column's alignment (as in `pipe` output format).""" w = colwidth if align in ["right", "decimal"]: return ('-' * (w - 1)) + ":" elif align == "center": return ":" + ('-' * (w - 2)) + ":" elif align == "left": return ":" + ('-' * (w - 1)) else: return '-' * w def _pipe_line_with_colons(colwidths, colaligns): """Return a horizontal line with optional colons to indicate column's alignment (as in `pipe` output format).""" segments = [_pipe_segment_with_colons(a, w) for a, w in zip(colaligns, colwidths)] return "|" + "|".join(segments) + "|" def _mediawiki_row_with_attrs(separator, cell_values, colwidths, colaligns): alignment = {"left": '', "right": 'align="right"| ', "center": 'align="center"| ', "decimal": 'align="right"| '} # hard-coded padding _around_ align attribute and value together # rather than padding parameter which affects only the value values_with_attrs = [' ' + alignment.get(a, '') + c + ' ' for c, a in zip(cell_values, colaligns)] colsep = separator*2 return (separator + colsep.join(values_with_attrs)).rstrip() def _textile_row_with_attrs(cell_values, colwidths, colaligns): cell_values[0] += ' ' alignment = {"left": "<.", "right": ">.", "center": "=.", "decimal": ">."} values = (alignment.get(a, '') + v for a, v in zip(colaligns, cell_values)) return '|' + '|'.join(values) + '|' def _html_begin_table_without_header(colwidths_ignore, colaligns_ignore): # this table header will be suppressed if there is a header row return "\n".join(["<table>", "<tbody>"]) def _html_row_with_attrs(celltag, cell_values, colwidths, colaligns): alignment = {"left": '', "right": ' style="text-align: right;"', "center": ' style="text-align: center;"', "decimal": ' style="text-align: right;"'} values_with_attrs = ["<{0}{1}>{2}</{0}>".format( celltag, alignment.get(a, ''), c) for c, a in zip(cell_values, colaligns)] rowhtml = "<tr>" + "".join(values_with_attrs).rstrip() + "</tr>" if celltag == "th": # it's a header row, create a new table header rowhtml = "\n".join(["<table>", "<thead>", rowhtml, "</thead>", "<tbody>"]) return rowhtml def _moin_row_with_attrs(celltag, cell_values, colwidths, colaligns, header=''): alignment = {"left": '', "right": '<style="text-align: right;">', "center": '<style="text-align: center;">', "decimal": '<style="text-align: right;">'} values_with_attrs = ["{0}{1} {2} ".format(celltag, alignment.get(a, ''), header+c+header) for c, a in zip(cell_values, colaligns)] return "".join(values_with_attrs)+"||" def _latex_line_begin_tabular(colwidths, colaligns, booktabs=False): alignment = {"left": "l", "right": "r", "center": "c", "decimal": "r"} tabular_columns_fmt = "".join([alignment.get(a, "l") for a in colaligns]) return "\n".join(["\\begin{tabular}{" + tabular_columns_fmt + "}", "\\toprule" if booktabs else "\\hline"]) LATEX_ESCAPE_RULES = {r"&": r"\&", r"%": r"\%", r"$": r"\$", r"#": r"\#", r"_": r"\_", r"^": r"\^{}", r"{": r"\{", r"}": r"\}", r"~": r"\textasciitilde{}", "\\": r"\textbackslash{}", r"<": r"\ensuremath{<}", r">": r"\ensuremath{>}"} def _latex_row(cell_values, colwidths, colaligns, escrules=LATEX_ESCAPE_RULES): def escape_char(c): return escrules.get(c, c) escaped_values = ["".join(map(escape_char, cell)) for cell in cell_values] rowfmt = DataRow("", "&", "\\\\") return _build_simple_row(escaped_values, rowfmt) def _rst_escape_first_column(rows, headers): def escape_empty(val): if isinstance(val, (_text_type, _binary_type)) and not val.strip(): return ".." else: return val new_headers = list(headers) new_rows = [] if headers: new_headers[0] = escape_empty(headers[0]) for row in rows: new_row = list(row) if new_row: new_row[0] = escape_empty(row[0]) new_rows.append(new_row) return new_rows, new_headers _table_formats = {"simple": TableFormat(lineabove=Line("", "-", " ", ""), linebelowheader=Line("", "-", " ", ""), linebetweenrows=None, linebelow=Line("", "-", " ", ""), headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=["lineabove", "linebelow"]), "plain": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=None), "grid": TableFormat(lineabove=Line("+", "-", "+", "+"), linebelowheader=Line("+", "=", "+", "+"), linebetweenrows=Line("+", "-", "+", "+"), linebelow=Line("+", "-", "+", "+"), headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "fancy_grid": TableFormat(lineabove=Line("╒", "═", "╤", "╕"), linebelowheader=Line("╞", "═", "╪", "╡"), linebetweenrows=Line("├", "─", "┼", "┤"), linebelow=Line("╘", "═", "╧", "╛"), headerrow=DataRow("│", "│", "│"), datarow=DataRow("│", "│", "│"), padding=1, with_header_hide=None), "github": TableFormat(lineabove=Line("|", "-", "|", "|"), linebelowheader=Line("|", "-", "|", "|"), linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=["lineabove"]), "pipe": TableFormat(lineabove=_pipe_line_with_colons, linebelowheader=_pipe_line_with_colons, linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=["lineabove"]), "orgtbl": TableFormat(lineabove=None, linebelowheader=Line("|", "-", "+", "|"), linebetweenrows=None, linebelow=None, headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "jira": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("||", "||", "||"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "presto": TableFormat(lineabove=None, linebelowheader=Line("", "-", "+", ""), linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", ""), datarow=DataRow("", "|", ""), padding=1, with_header_hide=None), "psql": TableFormat(lineabove=Line("+", "-", "+", "+"), linebelowheader=Line("|", "-", "+", "|"), linebetweenrows=None, linebelow=Line("+", "-", "+", "+"), headerrow=DataRow("|", "|", "|"), datarow=DataRow("|", "|", "|"), padding=1, with_header_hide=None), "rst": TableFormat(lineabove=Line("", "=", " ", ""), linebelowheader=Line("", "=", " ", ""), linebetweenrows=None, linebelow=Line("", "=", " ", ""), headerrow=DataRow("", " ", ""), datarow=DataRow("", " ", ""), padding=0, with_header_hide=None), "mediawiki": TableFormat(lineabove=Line( "{| class=\"wikitable\" style=\"text-align: left;\"", "", "", "\n|+ <!-- caption -->\n|-"), linebelowheader=Line("|-", "", "", ""), linebetweenrows=Line("|-", "", "", ""), linebelow=Line("|}", "", "", ""), headerrow=partial( _mediawiki_row_with_attrs, "!"), datarow=partial(_mediawiki_row_with_attrs, "|"), padding=0, with_header_hide=None), "moinmoin": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=partial(_moin_row_with_attrs, "||", header="'''"), datarow=partial(_moin_row_with_attrs, "||"), padding=1, with_header_hide=None), "youtrack": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("|| ", " || ", " || "), datarow=DataRow("| ", " | ", " |"), padding=1, with_header_hide=None), "html": TableFormat(lineabove=_html_begin_table_without_header, linebelowheader="", linebetweenrows=None, linebelow=Line("</tbody>\n</table>", "", "", ""), headerrow=partial(_html_row_with_attrs, "th"), datarow=partial(_html_row_with_attrs, "td"), padding=0, with_header_hide=["lineabove"]), "latex": TableFormat(lineabove=_latex_line_begin_tabular, linebelowheader=Line("\\hline", "", "", ""), linebetweenrows=None, linebelow=Line("\\hline\n\\end{tabular}", "", "", ""), headerrow=_latex_row, datarow=_latex_row, padding=1, with_header_hide=None), "latex_raw": TableFormat(lineabove=_latex_line_begin_tabular, linebelowheader=Line("\\hline", "", "", ""), linebetweenrows=None, linebelow=Line("\\hline\n\\end{tabular}", "", "", ""), headerrow=partial(_latex_row, escrules={}), datarow=partial(_latex_row, escrules={}), padding=1, with_header_hide=None), "latex_booktabs": TableFormat(lineabove=partial(_latex_line_begin_tabular, booktabs=True), linebelowheader=Line("\\midrule", "", "", ""), linebetweenrows=None, linebelow=Line("\\bottomrule\n\\end{tabular}", "", "", ""), headerrow=_latex_row, datarow=_latex_row, padding=1, with_header_hide=None), "tsv": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "\t", ""), datarow=DataRow("", "\t", ""), padding=0, with_header_hide=None), "textile": TableFormat(lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("|_. ", "|_.", "|"), datarow=_textile_row_with_attrs, padding=1, with_header_hide=None)} tabulate_formats = list(sorted(_table_formats.keys())) # The table formats for which multiline cells will be folded into subsequent # table rows. The key is the original format specified at the API. The value is # the format that will be used to represent the original format. multiline_formats = { "plain": "plain", "simple": "simple", "grid": "grid", "fancy_grid": "fancy_grid", "pipe": "pipe", "orgtbl": "orgtbl", "jira": "jira", "presto": "presto", "psql": "psql", "rst": "rst", } # TODO: Add multiline support for the remaining table formats: # - mediawiki: Replace \n with <br> # - moinmoin: TBD # - youtrack: TBD # - html: Replace \n with <br> # - latex*: Use "makecell" package: In header, replace X\nY with # \thead{X\\Y} and in data row, replace X\nY with \makecell{X\\Y} # - tsv: TBD # - textile: Replace \n with <br/> (must be well-formed XML) _multiline_codes = re.compile(r"\r|\n|\r\n") _multiline_codes_bytes = re.compile(b"\r|\n|\r\n") # ANSI color codes _invisible_codes = re.compile(r"\x1b\[\d+[;\d]*m|\x1b\[\d*\;\d*\;\d*m") # ANSI color codes _invisible_codes_bytes = re.compile(b"\x1b\[\d+[;\d]*m|\x1b\[\d*\;\d*\;\d*m") def simple_separated_format(separator): """Construct a simple TableFormat with columns separated by a separator. >>> tsv = simple_separated_format("\\t") ; \ tabulate([["foo", 1], ["spam", 23]], tablefmt=tsv) == 'foo \\t 1\\nspam\\t23' True """ # noqa return TableFormat(None, None, None, None, headerrow=DataRow('', separator, ''), datarow=DataRow('', separator, ''), padding=0, with_header_hide=None) def _isconvertible(conv, string): try: conv(string) return True except (ValueError, TypeError): return False def _isnumber(string): """ >>> _isnumber("123.45") True >>> _isnumber("123") True >>> _isnumber("spam") False >>> _isnumber("123e45678") False >>> _isnumber("inf") True """ if not _isconvertible(float, string): return False elif isinstance(string, (_text_type, _binary_type)) and ( math.isinf(float(string)) or math.isnan(float(string))): return string.lower() in ['inf', '-inf', 'nan'] return True def _isint(string, inttype=int): """ >>> _isint("123") True >>> _isint("123.45") False """ return (type(string) is inttype or (isinstance(string, _binary_type) or isinstance(string, _text_type)) and _isconvertible(inttype, string)) def _isbool(string): """ >>> _isbool(True) True >>> _isbool("False") True >>> _isbool(1) False """ return (type(string) is _bool_type or (isinstance(string, (_binary_type, _text_type)) and string in ("True", "False"))) def _type(string, has_invisible=True, numparse=True): """The least generic type (type(None), int, float, str, unicode). >>> _type(None) is type(None) True >>> _type("foo") is type("") True >>> _type("1") is type(1) True >>> _type('\x1b[31m42\x1b[0m') is type(42) True >>> _type('\x1b[31m42\x1b[0m') is type(42) True """ if has_invisible and \ (isinstance(string, _text_type) or isinstance(string, _binary_type)): string = _strip_invisible(string) if string is None: return _none_type elif hasattr(string, "isoformat"): # datetime.datetime, date, and time return _text_type elif _isbool(string): return _bool_type elif _isint(string) and numparse: return int elif _isint(string, _long_type) and numparse: return int elif _isnumber(string) and numparse: return float elif isinstance(string, _binary_type): return _binary_type else: return _text_type def _afterpoint(string): """Symbols after a decimal point, -1 if the string lacks the decimal point. >>> _afterpoint("123.45") 2 >>> _afterpoint("1001") -1 >>> _afterpoint("eggs") -1 >>> _afterpoint("123e45") 2 """ if _isnumber(string): if _isint(string): return -1 else: pos = string.rfind(".") pos = string.lower().rfind("e") if pos < 0 else pos if pos >= 0: return len(string) - pos - 1 else: return -1 # no point else: return -1 # not a number def _padleft(width, s): """Flush right. >>> _padleft(6, '\u044f\u0439\u0446\u0430') == ' \u044f\u0439\u0446\u0430' True """ fmt = "{0:>%ds}" % width return fmt.format(s) def _padright(width, s): """Flush left. >>> _padright(6, '\u044f\u0439\u0446\u0430') == '\u044f\u0439\u0446\u0430 ' True """ # noqa fmt = "{0:<%ds}" % width return fmt.format(s) def _padboth(width, s): """Center string. >>> _padboth(6, '\u044f\u0439\u0446\u0430') == ' \u044f\u0439\u0446\u0430 ' True """ fmt = "{0:^%ds}" % width return fmt.format(s) def _padnone(ignore_width, s): return s def _strip_invisible(s): "Remove invisible ANSI color codes." if isinstance(s, _text_type): return re.sub(_invisible_codes, "", s) else: # a bytestring return re.sub(_invisible_codes_bytes, "", s) def _visible_width(s): """Visible width of a printed string. ANSI color codes are removed. >>> _visible_width('\x1b[31mhello\x1b[0m'), _visible_width("world") (5, 5) """ # optional wide-character support if wcwidth is not None and WIDE_CHARS_MODE: len_fn = wcwidth.wcswidth else: len_fn = len if isinstance(s, _text_type) or isinstance(s, _binary_type): return len_fn(_strip_invisible(s)) else: return len_fn(_text_type(s)) def _is_multiline(s): if isinstance(s, _text_type): return bool(re.search(_multiline_codes, s)) else: # a bytestring return bool(re.search(_multiline_codes_bytes, s)) def _multiline_width(multiline_s, line_width_fn=len): """Visible width of a potentially multiline content.""" return max(map(line_width_fn, re.split("[\r\n]", multiline_s))) def _choose_width_fn(has_invisible, enable_widechars, is_multiline): """Return a function to calculate visible cell width.""" if has_invisible: line_width_fn = _visible_width elif enable_widechars: # optional wide-character support if available line_width_fn = wcwidth.wcswidth else: line_width_fn = len if is_multiline: width_fn = lambda s: _multiline_width(s, line_width_fn) # noqa else: width_fn = line_width_fn return width_fn def _align_column_choose_padfn(strings, alignment, has_invisible): if alignment == "right": if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padleft elif alignment == "center": if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padboth elif alignment == "decimal": if has_invisible: decimals = [_afterpoint(_strip_invisible(s)) for s in strings] else: decimals = [_afterpoint(s) for s in strings] maxdecimals = max(decimals) strings = [s + (maxdecimals - decs) * " " for s, decs in zip(strings, decimals)] padfn = _padleft elif not alignment: padfn = _padnone else: if not PRESERVE_WHITESPACE: strings = [s.strip() for s in strings] padfn = _padright return strings, padfn def _align_column(strings, alignment, minwidth=0, has_invisible=True, enable_widechars=False, is_multiline=False): """[string] -> [padded_string]""" strings, padfn = _align_column_choose_padfn(strings, alignment, has_invisible) width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline) s_widths = list(map(width_fn, strings)) maxwidth = max(max(s_widths), minwidth) # TODO: refactor column alignment in single-line and multiline modes if is_multiline: if not enable_widechars and not has_invisible: padded_strings = [ "\n".join([padfn(maxwidth, s) for s in ms.splitlines()]) for ms in strings] else: # enable wide-character width corrections s_lens = [max((len(s) for s in re.split("[\r\n]", ms))) for ms in strings] visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)] # wcswidth and _visible_width don't count invisible characters; # padfn doesn't need to apply another correction padded_strings = ["\n".join([padfn(w, s) for s in (ms.splitlines() or ms)]) for ms, w in zip(strings, visible_widths)] else: # single-line cell values if not enable_widechars and not has_invisible: padded_strings = [padfn(maxwidth, s) for s in strings] else: # enable wide-character width corrections s_lens = list(map(len, strings)) visible_widths = [maxwidth - (w - l) for w, l in zip(s_widths, s_lens)] # wcswidth and _visible_width don't count invisible characters; # padfn doesn't need to apply another correction padded_strings = [padfn(w, s) for s, w in zip(strings, visible_widths)] return padded_strings def _more_generic(type1, type2): types = {_none_type: 0, _bool_type: 1, int: 2, float: 3, _binary_type: 4, _text_type: 5} invtypes = {5: _text_type, 4: _binary_type, 3: float, 2: int, 1: _bool_type, 0: _none_type} moregeneric = max(types.get(type1, 5), types.get(type2, 5)) return invtypes[moregeneric] def _column_type(strings, has_invisible=True, numparse=True): """The least generic type all column values are convertible to. >>> _column_type([True, False]) is _bool_type True >>> _column_type(["1", "2"]) is _int_type True >>> _column_type(["1", "2.3"]) is _float_type True >>> _column_type(["1", "2.3", "four"]) is _text_type True >>> _column_type(["four", '\u043f\u044f\u0442\u044c']) is _text_type True >>> _column_type([None, "brux"]) is _text_type True >>> _column_type([1, 2, None]) is _int_type True >>> import datetime as dt >>> _column_type([dt.datetime(1991,2,19), dt.time(17,35)]) is _text_type True """ types = [_type(s, has_invisible, numparse) for s in strings] return reduce(_more_generic, types, _bool_type) def _format(val, valtype, floatfmt, missingval="", has_invisible=True): """Format a value according to its type. Unicode is supported: >>> hrow = ['\u0431\u0443\u043a\u0432\u0430', '\u0446\u0438\u0444\u0440\u0430'] ; \ tbl = [['\u0430\u0437', 2], ['\u0431\u0443\u043a\u0438', 4]] ; \ good_result = '\\u0431\\u0443\\u043a\\u0432\\u0430 \\u0446\\u0438\\u0444\\u0440\\u0430\\n------- -------\\n\\u0430\\u0437 2\\n\\u0431\\u0443\\u043a\\u0438 4' ; \ tabulate(tbl, headers=hrow) == good_result True """ # noqa if val is None: return missingval if valtype in [int, _text_type]: return "{0}".format(val) elif valtype is _binary_type: try: return _text_type(val, "ascii") except TypeError: return _text_type(val) elif valtype is float: is_a_colored_number = (has_invisible and isinstance(val, (_text_type, _binary_type))) if is_a_colored_number: raw_val = _strip_invisible(val) formatted_val = format(float(raw_val), floatfmt) return val.replace(raw_val, formatted_val) else: return format(float(val), floatfmt) else: return "{0}".format(val) def _align_header(header, alignment, width, visible_width, is_multiline=False, width_fn=None): "Pad string header to width chars given known visible_width of the header." if is_multiline: header_lines = re.split(_multiline_codes, header) padded_lines = [_align_header(h, alignment, width, width_fn(h)) for h in header_lines] return "\n".join(padded_lines) # else: not multiline ninvisible = len(header) - visible_width width += ninvisible if alignment == "left": return _padright(width, header) elif alignment == "center": return _padboth(width, header) elif not alignment: return "{0}".format(header) else: return _padleft(width, header) def _prepend_row_index(rows, index): """Add a left-most index column.""" if index is None or index is False: return rows if len(index) != len(rows): print('index=', index) print('rows=', rows) raise ValueError('index must be as long as the number of data rows') rows = [[v]+list(row) for v, row in zip(index, rows)] return rows def _bool(val): "A wrapper around standard bool() which doesn't throw on NumPy arrays" try: return bool(val) except ValueError: # val is likely to be a numpy array with many elements return False def _normalize_tabular_data(tabular_data, headers, showindex="default"): """Transform a supported data type to a list of lists, and a list of headers. Supported tabular data types: * list-of-lists or another iterable of iterables * list of named tuples (usually used with headers="keys") * list of dicts (usually used with headers="keys") * list of OrderedDicts (usually used with headers="keys") * 2D NumPy arrays * NumPy record arrays (usually used with headers="keys") * dict of iterables (usually used with headers="keys") * pandas.DataFrame (usually used with headers="keys") The first row can be used as headers if headers="firstrow", column indices can be used as headers if headers="keys". If showindex="default", show row indices of the pandas.DataFrame. If showindex="always", show row indices for all types of data. If showindex="never", don't show row indices for all types of data. If showindex is an iterable, show its values as row indices. """ try: bool(headers) except ValueError: # numpy.ndarray, pandas.core.index.Index, ... headers = list(headers) index = None if hasattr(tabular_data, "keys") and hasattr(tabular_data, "values"): # dict-like and pandas.DataFrame? if hasattr(tabular_data.values, "__call__"): # likely a conventional dict keys = tabular_data.keys() # columns have to be transposed rows = list(izip_longest(*tabular_data.values())) elif hasattr(tabular_data, "index"): # values is a property, has .index => it's likely a # pandas.DataFrame (pandas 0.11.0) keys = list(tabular_data) if tabular_data.index.name is not None: if isinstance(tabular_data.index.name, list): keys[:0] = tabular_data.index.name else: keys[:0] = [tabular_data.index.name] # values matrix doesn't need to be transposed vals = tabular_data.values # for DataFrames add an index per default index = list(tabular_data.index) rows = [list(row) for row in vals] else: raise ValueError( "tabular data doesn't appear to be a dict or a DataFrame") if headers == "keys": headers = list(map(_text_type, keys)) # headers should be strings else: # it's a usual an iterable of iterables, or a NumPy array rows = list(tabular_data) if (headers == "keys" and not rows): # an empty table (issue #81) headers = [] elif (headers == "keys" and hasattr(tabular_data, "dtype") and getattr(tabular_data.dtype, "names")): # numpy record array headers = tabular_data.dtype.names elif (headers == "keys" and len(rows) > 0 and isinstance(rows[0], tuple) and hasattr(rows[0], "_fields")): # namedtuple headers = list(map(_text_type, rows[0]._fields)) elif (len(rows) > 0 and isinstance(rows[0], dict)): # dict or OrderedDict uniq_keys = set() # implements hashed lookup keys = [] # storage for set if headers == "firstrow": firstdict = rows[0] if len(rows) > 0 else {} keys.extend(firstdict.keys()) uniq_keys.update(keys) rows = rows[1:] for row in rows: for k in row.keys(): # Save unique items in input order if k not in uniq_keys: keys.append(k) uniq_keys.add(k) if headers == 'keys': headers = keys elif isinstance(headers, dict): # a dict of headers for a list of dicts headers = [headers.get(k, k) for k in keys] headers = list(map(_text_type, headers)) elif headers == "firstrow": if len(rows) > 0: headers = [firstdict.get(k, k) for k in keys] headers = list(map(_text_type, headers)) else: headers = [] elif headers: raise ValueError( 'headers for a list of dicts is not a dict or a keyword') rows = [[row.get(k) for k in keys] for row in rows] elif (headers == "keys" and hasattr(tabular_data, "description") and hasattr(tabular_data, "fetchone") and hasattr(tabular_data, "rowcount")): # Python Database API cursor object (PEP 0249) # print tabulate(cursor, headers='keys') headers = [column[0] for column in tabular_data.description] elif headers == "keys" and len(rows) > 0: # keys are column indices headers = list(map(_text_type, range(len(rows[0])))) # take headers from the first row if necessary if headers == "firstrow" and len(rows) > 0: if index is not None: headers = [index[0]] + list(rows[0]) index = index[1:] else: headers = rows[0] headers = list(map(_text_type, headers)) # headers should be strings rows = rows[1:] headers = list(map(_text_type, headers)) rows = list(map(list, rows)) # add or remove an index column showindex_is_a_str = type(showindex) in [_text_type, _binary_type] if showindex == "default" and index is not None: rows = _prepend_row_index(rows, index) elif isinstance(showindex, Iterable) and not showindex_is_a_str: rows = _prepend_row_index(rows, list(showindex)) elif showindex == "always" or (_bool(showindex) and not showindex_is_a_str): if index is None: index = list(range(len(rows))) rows = _prepend_row_index(rows, index) elif showindex == "never" or (not _bool(showindex) and not showindex_is_a_str): pass # pad with empty headers for initial columns if necessary if headers and len(rows) > 0: nhs = len(headers) ncols = len(rows[0]) if nhs < ncols: headers = [""]*(ncols - nhs) + headers return rows, headers def tabulate(tabular_data, headers=(), tablefmt="simple", floatfmt=_DEFAULT_FLOATFMT, numalign="decimal", stralign="left", missingval=_DEFAULT_MISSINGVAL, showindex="default", disable_numparse=False, colalign=None): """Format a fixed width table for pretty printing. >>> print(tabulate([[1, 2.34], [-56, "8.999"], ["2", "10001"]])) --- --------- 1 2.34 -56 8.999 2 10001 --- --------- The first required argument (`tabular_data`) can be a list-of-lists (or another iterable of iterables), a list of named tuples, a dictionary of iterables, an iterable of dictionaries, a two-dimensional NumPy array, NumPy record array, or a Pandas' dataframe. Table headers ------------- To print nice column headers, supply the second argument (`headers`): - `headers` can be an explicit list of column headers - if `headers="firstrow"`, then the first row of data is used - if `headers="keys"`, then dictionary keys or column indices are used Otherwise a headerless table is produced. If the number of headers is less than the number of columns, they are supposed to be names of the last columns. This is consistent with the plain-text format of R and Pandas' dataframes. >>> print(tabulate([["sex","age"],["Alice","F",24],["Bob","M",19]], ... headers="firstrow")) sex age ----- ----- ----- Alice F 24 Bob M 19 By default, pandas.DataFrame data have an additional column called row index. To add a similar column to all other types of data, use `showindex="always"` or `showindex=True`. To suppress row indices for all types of data, pass `showindex="never" or `showindex=False`. To add a custom row index column, pass `showindex=some_iterable`. >>> print(tabulate([["F",24],["M",19]], showindex="always")) - - -- 0 F 24 1 M 19 - - -- Column alignment ---------------- `tabulate` tries to detect column types automatically, and aligns the values properly. By default it aligns decimal points of the numbers (or flushes integer numbers to the right), and flushes everything else to the left. Possible column alignments (`numalign`, `stralign`) are: "right", "center", "left", "decimal" (only for `numalign`), and None (to disable alignment). Table formats ------------- `floatfmt` is a format specification used for columns which contain numeric data with a decimal point. This can also be a list or tuple of format strings, one per column. `None` values are replaced with a `missingval` string (like `floatfmt`, this can also be a list of values for different columns): >>> print(tabulate([["spam", 1, None], ... ["eggs", 42, 3.14], ... ["other", None, 2.7]], missingval="?")) ----- -- ---- spam 1 ? eggs 42 3.14 other ? 2.7 ----- -- ---- Various plain-text table formats (`tablefmt`) are supported: 'plain', 'simple', 'grid', 'pipe', 'orgtbl', 'rst', 'mediawiki', 'latex', 'latex_raw' and 'latex_booktabs'. Variable `tabulate_formats` contains the list of currently supported formats. "plain" format doesn't use any pseudographics to draw tables, it separates columns with a double space: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "plain")) strings numbers spam 41.9999 eggs 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="plain")) spam 41.9999 eggs 451 "simple" format is like Pandoc simple_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "simple")) strings numbers --------- --------- spam 41.9999 eggs 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="simple")) ---- -------- spam 41.9999 eggs 451 ---- -------- "grid" is similar to tables produced by Emacs table.el package or Pandoc grid_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "grid")) +-----------+-----------+ | strings | numbers | +===========+===========+ | spam | 41.9999 | +-----------+-----------+ | eggs | 451 | +-----------+-----------+ >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="grid")) +------+----------+ | spam | 41.9999 | +------+----------+ | eggs | 451 | +------+----------+ "fancy_grid" draws a grid using box-drawing characters: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "fancy_grid")) ╒═══════════╤═══════════╕ │ strings │ numbers │ ╞═══════════╪═══════════╡ │ spam │ 41.9999 │ ├───────────┼───────────┤ │ eggs │ 451 │ ╘═══════════╧═══════════╛ "pipe" is like tables in PHP Markdown Extra extension or Pandoc pipe_tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "pipe")) | strings | numbers | |:----------|----------:| | spam | 41.9999 | | eggs | 451 | "presto" is like tables produce by the Presto CLI: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "presto")) strings | numbers -----------+----------- spam | 41.9999 eggs | 451 >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="pipe")) |:-----|---------:| | spam | 41.9999 | | eggs | 451 | "orgtbl" is like tables in Emacs org-mode and orgtbl-mode. They are slightly different from "pipe" format by not using colons to define column alignment, and using a "+" sign to indicate line intersections: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "orgtbl")) | strings | numbers | |-----------+-----------| | spam | 41.9999 | | eggs | 451 | >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="orgtbl")) | spam | 41.9999 | | eggs | 451 | "rst" is like a simple table format from reStructuredText; please note that reStructuredText accepts also "grid" tables: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], ... ["strings", "numbers"], "rst")) ========= ========= strings numbers ========= ========= spam 41.9999 eggs 451 ========= ========= >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="rst")) ==== ======== spam 41.9999 eggs 451 ==== ======== "mediawiki" produces a table markup used in Wikipedia and on other MediaWiki-based sites: >>> print(tabulate([["strings", "numbers"], ["spam", 41.9999], ["eggs", "451.0"]], ... headers="firstrow", tablefmt="mediawiki")) {| class="wikitable" style="text-align: left;" |+ <!-- caption --> |- ! strings !! align="right"| numbers |- | spam || align="right"| 41.9999 |- | eggs || align="right"| 451 |} "html" produces HTML markup: >>> print(tabulate([["strings", "numbers"], ["spam", 41.9999], ["eggs", "451.0"]], ... headers="firstrow", tablefmt="html")) <table> <thead> <tr><th>strings </th><th style="text-align: right;"> numbers</th></tr> </thead> <tbody> <tr><td>spam </td><td style="text-align: right;"> 41.9999</td></tr> <tr><td>eggs </td><td style="text-align: right;"> 451 </td></tr> </tbody> </table> "latex" produces a tabular environment of LaTeX document markup: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="latex")) \\begin{tabular}{lr} \\hline spam & 41.9999 \\\\ eggs & 451 \\\\ \\hline \\end{tabular} "latex_raw" is similar to "latex", but doesn't escape special characters, such as backslash and underscore, so LaTeX commands may embedded into cells' values: >>> print(tabulate([["spam$_9$", 41.9999], ["\\\\emph{eggs}", "451.0"]], tablefmt="latex_raw")) \\begin{tabular}{lr} \\hline spam$_9$ & 41.9999 \\\\ \\emph{eggs} & 451 \\\\ \\hline \\end{tabular} "latex_booktabs" produces a tabular environment of LaTeX document markup using the booktabs.sty package: >>> print(tabulate([["spam", 41.9999], ["eggs", "451.0"]], tablefmt="latex_booktabs")) \\begin{tabular}{lr} \\toprule spam & 41.9999 \\\\ eggs & 451 \\\\ \\bottomrule \end{tabular} Number parsing -------------- By default, anything which can be parsed as a number is a number. This ensures numbers represented as strings are aligned properly. This can lead to weird results for particular strings such as specific git SHAs e.g. "42992e1" will be parsed into the number 429920 and aligned as such. To completely disable number parsing (and alignment), use `disable_numparse=True`. For more fine grained control, a list column indices is used to disable number parsing only on those columns e.g. `disable_numparse=[0, 2]` would disable number parsing only on the first and third columns. """ # noqa if tabular_data is None: tabular_data = [] list_of_lists, headers = _normalize_tabular_data( tabular_data, headers, showindex=showindex) # empty values in the first column of RST tables should be # escaped (issue #82) # "" should be escaped as "\\ " or ".." if tablefmt == 'rst': list_of_lists, headers = _rst_escape_first_column(list_of_lists, headers) # optimization: look for ANSI control codes once, # enable smart width functions only if a control code is found plain_text = '\t'.join(['\t'.join(map(_text_type, headers))] + ['\t'.join(map(_text_type, row)) for row in list_of_lists]) has_invisible = re.search(_invisible_codes, plain_text) enable_widechars = wcwidth is not None and WIDE_CHARS_MODE if tablefmt in multiline_formats and _is_multiline(plain_text): tablefmt = multiline_formats.get(tablefmt, tablefmt) is_multiline = True else: is_multiline = False width_fn = _choose_width_fn(has_invisible, enable_widechars, is_multiline) # format rows and columns, convert numeric values to strings cols = list(izip_longest(*list_of_lists)) numparses = _expand_numparse(disable_numparse, len(cols)) coltypes = [_column_type(col, numparse=np) for col, np in zip(cols, numparses)] if isinstance(floatfmt, basestring): # old version # just duplicate the string to use in each column float_formats = len(cols) * [floatfmt] else: # if floatfmt is list, tuple etc we have one per column float_formats = list(floatfmt) if len(float_formats) < len(cols): float_formats.extend((len(cols)-len(float_formats)) * [_DEFAULT_FLOATFMT]) if isinstance(missingval, basestring): missing_vals = len(cols) * [missingval] else: missing_vals = list(missingval) if len(missing_vals) < len(cols): missing_vals.extend((len(cols)-len(missing_vals)) * [_DEFAULT_MISSINGVAL]) cols = [[_format(v, ct, fl_fmt, miss_v, has_invisible) for v in c] for c, ct, fl_fmt, miss_v in zip(cols, coltypes, float_formats, missing_vals)] # align columns aligns = [numalign if ct in [int, float] else stralign for ct in coltypes] if colalign is not None: assert isinstance(colalign, Iterable) for idx, align in enumerate(colalign): aligns[idx] = align minwidths = [width_fn(h) + MIN_PADDING for h in headers] if headers else [0]*len(cols) cols = [_align_column(c, a, minw, has_invisible, enable_widechars, is_multiline) for c, a, minw in zip(cols, aligns, minwidths)] if headers: # align headers and add headers t_cols = cols or [['']] * len(headers) t_aligns = aligns or [stralign] * len(headers) minwidths = [max(minw, max(width_fn(cl) for cl in c)) for minw, c in zip(minwidths, t_cols)] headers = [_align_header(h, a, minw, width_fn(h), is_multiline, width_fn) for h, a, minw in zip(headers, t_aligns, minwidths)] rows = list(zip(*cols)) else: minwidths = [max(width_fn(cl) for cl in c) for c in cols] rows = list(zip(*cols)) if not isinstance(tablefmt, TableFormat): tablefmt = _table_formats.get(tablefmt, _table_formats["simple"]) return _format_table(tablefmt, headers, rows, minwidths, aligns, is_multiline) def _expand_numparse(disable_numparse, column_count): """ Return a list of bools of length `column_count` which indicates whether number parsing should be used on each column. If `disable_numparse` is a list of indices, each of those indices are False, and everything else is True. If `disable_numparse` is a bool, then the returned list is all the same. """ if isinstance(disable_numparse, Iterable): numparses = [True] * column_count for index in disable_numparse: numparses[index] = False return numparses else: return [not disable_numparse] * column_count def _pad_row(cells, padding): if cells: pad = " "*padding padded_cells = [pad + cell + pad for cell in cells] return padded_cells else: return cells def _build_simple_row(padded_cells, rowfmt): "Format row according to DataRow format without padding." begin, sep, end = rowfmt return (begin + sep.join(padded_cells) + end).rstrip() def _build_row(padded_cells, colwidths, colaligns, rowfmt): "Return a string which represents a row of data cells." if not rowfmt: return None if hasattr(rowfmt, "__call__"): return rowfmt(padded_cells, colwidths, colaligns) else: return _build_simple_row(padded_cells, rowfmt) def _append_basic_row(lines, padded_cells, colwidths, colaligns, rowfmt): lines.append(_build_row(padded_cells, colwidths, colaligns, rowfmt)) return lines def _append_multiline_row(lines, padded_multiline_cells, padded_widths, colaligns, rowfmt, pad): colwidths = [w - 2*pad for w in padded_widths] cells_lines = [c.splitlines() for c in padded_multiline_cells] nlines = max(map(len, cells_lines)) # number of lines in the row # vertically pad cells where some lines are missing cells_lines = [(cl + [' '*w]*(nlines - len(cl))) for cl, w in zip(cells_lines, colwidths)] lines_cells = [[cl[i] for cl in cells_lines] for i in range(nlines)] for ln in lines_cells: padded_ln = _pad_row(ln, pad) _append_basic_row(lines, padded_ln, colwidths, colaligns, rowfmt) return lines def _build_line(colwidths, colaligns, linefmt): "Return a string which represents a horizontal line." if not linefmt: return None if hasattr(linefmt, "__call__"): return linefmt(colwidths, colaligns) else: begin, fill, sep, end = linefmt cells = [fill*w for w in colwidths] return _build_simple_row(cells, (begin, sep, end)) def _append_line(lines, colwidths, colaligns, linefmt): lines.append(_build_line(colwidths, colaligns, linefmt)) return lines def _format_table(fmt, headers, rows, colwidths, colaligns, is_multiline): """Produce a plain-text representation of the table.""" lines = [] hidden = fmt.with_header_hide if (headers and fmt.with_header_hide) else [] pad = fmt.padding headerrow = fmt.headerrow padded_widths = [(w + 2*pad) for w in colwidths] if is_multiline: # do it later, in _append_multiline_row pad_row = lambda row, _: row # noqa append_row = partial(_append_multiline_row, pad=pad) else: pad_row = _pad_row append_row = _append_basic_row padded_headers = pad_row(headers, pad) padded_rows = [pad_row(row, pad) for row in rows] if fmt.lineabove and "lineabove" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.lineabove) if padded_headers: append_row(lines, padded_headers, padded_widths, colaligns, headerrow) if fmt.linebelowheader and "linebelowheader" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.linebelowheader) if padded_rows and fmt.linebetweenrows and "linebetweenrows" not in hidden: # initial rows with a line below for row in padded_rows[:-1]: append_row(lines, row, padded_widths, colaligns, fmt.datarow) _append_line(lines, padded_widths, colaligns, fmt.linebetweenrows) # the last row without a line below append_row(lines, padded_rows[-1], padded_widths, colaligns, fmt.datarow) else: for row in padded_rows: append_row(lines, row, padded_widths, colaligns, fmt.datarow) if fmt.linebelow and "linebelow" not in hidden: _append_line(lines, padded_widths, colaligns, fmt.linebelow) if headers or rows: return "\n".join(lines) else: # a completely empty table return "" def _main(): """\ Usage: tabulate [options] [FILE ...] Pretty-print tabular data. See also https://bitbucket.org/astanin/python-tabulate FILE a filename of the file with tabular data; if "-" or missing, read data from stdin. Options: -h, --help show this message -1, --header use the first row of data as a table header -o FILE, --output FILE print table to FILE (default: stdout) -s REGEXP, --sep REGEXP use a custom column separator (default: whitespace) -F FPFMT, --float FPFMT floating point number format (default: g) -f FMT, --format FMT set output table format; supported formats: plain, simple, grid, fancy_grid, pipe, orgtbl, rst, mediawiki, html, latex, latex_raw, latex_booktabs, tsv (default: simple) """ # noqa import getopt import sys import textwrap usage = textwrap.dedent(_main.__doc__) try: opts, args = getopt.getopt(sys.argv[1:], "h1o:s:F:A:f:", ["help", "header", "output", "sep=", "float=", "align=", "format="]) except getopt.GetoptError as e: print(e) print(usage) sys.exit(2) headers = [] floatfmt = _DEFAULT_FLOATFMT colalign = None tablefmt = "simple" sep = r"\s+" outfile = "-" for opt, value in opts: if opt in ["-1", "--header"]: headers = "firstrow" elif opt in ["-o", "--output"]: outfile = value elif opt in ["-F", "--float"]: floatfmt = value elif opt in ["-C", "--colalign"]: colalign = value.split() elif opt in ["-f", "--format"]: if value not in tabulate_formats: print("%s is not a supported table format" % value) print(usage) sys.exit(3) tablefmt = value elif opt in ["-s", "--sep"]: sep = value elif opt in ["-h", "--help"]: print(usage) sys.exit(0) files = [sys.stdin] if not args else args with (sys.stdout if outfile == "-" else open(outfile, "w")) as out: for f in files: if f == "-": f = sys.stdin if _is_file(f): _pprint_file(f, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out, colalign=colalign) else: with open(f) as fobj: _pprint_file(fobj, headers=headers, tablefmt=tablefmt, sep=sep, floatfmt=floatfmt, file=out, colalign=colalign) def _pprint_file(fobject, headers, tablefmt, sep, floatfmt, file, colalign): rows = fobject.readlines() table = [re.split(sep, r.rstrip()) for r in rows if r.strip()] print(tabulate(table, headers, tablefmt, floatfmt=floatfmt, colalign=colalign), file=file) if __name__ == "__main__": _main()
lgpl-3.0
simonsgit/bachelor_stuff
tests/test1.py
1
2169
# -*- coding: utf-8 -*- """ Created on Wed Aug 19 12:12:29 2015 @author: stamylew """ import factorial print "__name__ is:", __name__ import numpy as np from factorial import factorial import matplotlib as mpl from matplotlib import pyplot as plt #for i in range (1,101): # if i % 3 == 0 and i % 5 == 0: # print "fizzbuzz" # elif i % 3 == 0: # print "fizz" # elif i % 5 == 0: # print "buzz" # else: # print i #s = "hello" #print s[1:] #print s[2:4] #print s[0:-1:1] #print s[::2] #import math #from math import pi as circle_number #print "cos(pi)=%f" % (math.cos(circle_number),) #a = np.zeros((4,6), dtype=np.uint8) #print a.ndim #print a.shape[1] #b = np.random.random(a.shape) #c = a + b #d = a * b #e = a / (b +1) #f = np.sqrt(b) #print b #a[:] = 1 #a[1,2] = 2 #s = np.sum(b) #assert s == 7 #print s #a[:,0] = 42 #a[0,...] = 42 #b = a[:,0:2] #b = np.zeros((150,200), dtype=np.uint8) #b[:,100] = 1 #b[75,:] = 1 #print b #def f(x): # return np.sin(x) #x = np.arange(-1.0, 1.0, 0.01) #plt.xlabel('x') #plt.ylabel('y') #plt.title('Graph of sin(x) from -1 to 1') #plt.plot(x, f(x)) #plt.axis([-1,1,-1,1]) #plt.savefig('graph') #print factorial(5) # #a = np.asarray([[2,5,4,3,1,],[1,2,1,5,7]]) #print a #print np.where(a == 4) #print a[np.where(a == 1)] a = [[4, 0, -1], [2, 5, 4], [0, 0, 5]] print a print "eigenvectors: ", np.linalg.eig(a) a = np.array(a) evs = np.array([[ 0.00000000e+00, 4.47213595e-01, -5.55111512e-16], [ 1.00000000e+00, -8.94427191e-01, -1.00000000e+00], [ 0.00000000e+00, 0.00000000e+00, 5.55111512e-16]]) invevs = np.linalg.inv(evs) #print invevs l = [[5, 0, 0], [0, 4, 0], [0, 0 ,5]] #print l b = np.dot(l, invevs) #print b c = np.dot(evs, b) #print c print np.dot(a, evs) #import vigra # #vigra.impex.writeHDF5(evs, "data_delme.hdf5", "blubb", compression="lzf") # #l = vigra.readHDF5("data_delme.hdf5", "blubb") #a = 5 #b = a == 3 #print b #print np.shape(evs) == (3, 2) #assert(np.shape(evs) == (3, 2)), "the shape schould be (3, 3)" #print "atest", a[:-1, :] # ##t = np.array([1,34,5]) #print np.dot(a, evs[0]) #print evs[0] * 5
mit
btabibian/scikit-learn
sklearn/cluster/birch.py
11
23640
# Authors: Manoj Kumar <[email protected]> # Alexandre Gramfort <[email protected]> # Joel Nothman <[email protected]> # License: BSD 3 clause from __future__ import division import warnings import numpy as np from scipy import sparse from math import sqrt from ..metrics.pairwise import euclidean_distances from ..base import TransformerMixin, ClusterMixin, BaseEstimator from ..externals.six.moves import xrange from ..utils import check_array from ..utils.extmath import row_norms, safe_sparse_dot from ..utils.validation import check_is_fitted from ..exceptions import NotFittedError from .hierarchical import AgglomerativeClustering def _iterate_sparse_X(X): """This little hack returns a densified row when iterating over a sparse matrix, instead of constructing a sparse matrix for every row that is expensive. """ n_samples = X.shape[0] X_indices = X.indices X_data = X.data X_indptr = X.indptr for i in xrange(n_samples): row = np.zeros(X.shape[1]) startptr, endptr = X_indptr[i], X_indptr[i + 1] nonzero_indices = X_indices[startptr:endptr] row[nonzero_indices] = X_data[startptr:endptr] yield row def _split_node(node, threshold, branching_factor): """The node has to be split if there is no place for a new subcluster in the node. 1. Two empty nodes and two empty subclusters are initialized. 2. The pair of distant subclusters are found. 3. The properties of the empty subclusters and nodes are updated according to the nearest distance between the subclusters to the pair of distant subclusters. 4. The two nodes are set as children to the two subclusters. """ new_subcluster1 = _CFSubcluster() new_subcluster2 = _CFSubcluster() new_node1 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_node2 = _CFNode( threshold, branching_factor, is_leaf=node.is_leaf, n_features=node.n_features) new_subcluster1.child_ = new_node1 new_subcluster2.child_ = new_node2 if node.is_leaf: if node.prev_leaf_ is not None: node.prev_leaf_.next_leaf_ = new_node1 new_node1.prev_leaf_ = node.prev_leaf_ new_node1.next_leaf_ = new_node2 new_node2.prev_leaf_ = new_node1 new_node2.next_leaf_ = node.next_leaf_ if node.next_leaf_ is not None: node.next_leaf_.prev_leaf_ = new_node2 dist = euclidean_distances( node.centroids_, Y_norm_squared=node.squared_norm_, squared=True) n_clusters = dist.shape[0] farthest_idx = np.unravel_index( dist.argmax(), (n_clusters, n_clusters)) node1_dist, node2_dist = dist[[farthest_idx]] node1_closer = node1_dist < node2_dist for idx, subcluster in enumerate(node.subclusters_): if node1_closer[idx]: new_node1.append_subcluster(subcluster) new_subcluster1.update(subcluster) else: new_node2.append_subcluster(subcluster) new_subcluster2.update(subcluster) return new_subcluster1, new_subcluster2 class _CFNode(object): """Each node in a CFTree is called a CFNode. The CFNode can have a maximum of branching_factor number of CFSubclusters. Parameters ---------- threshold : float Threshold needed for a new subcluster to enter a CFSubcluster. branching_factor : int Maximum number of CF subclusters in each node. is_leaf : bool We need to know if the CFNode is a leaf or not, in order to retrieve the final subclusters. n_features : int The number of features. Attributes ---------- subclusters_ : array-like list of subclusters for a particular CFNode. prev_leaf_ : _CFNode prev_leaf. Useful only if is_leaf is True. next_leaf_ : _CFNode next_leaf. Useful only if is_leaf is True. the final subclusters. init_centroids_ : ndarray, shape (branching_factor + 1, n_features) manipulate ``init_centroids_`` throughout rather than centroids_ since the centroids are just a view of the ``init_centroids_`` . init_sq_norm_ : ndarray, shape (branching_factor + 1,) manipulate init_sq_norm_ throughout. similar to ``init_centroids_``. centroids_ : ndarray view of ``init_centroids_``. squared_norm_ : ndarray view of ``init_sq_norm_``. """ def __init__(self, threshold, branching_factor, is_leaf, n_features): self.threshold = threshold self.branching_factor = branching_factor self.is_leaf = is_leaf self.n_features = n_features # The list of subclusters, centroids and squared norms # to manipulate throughout. self.subclusters_ = [] self.init_centroids_ = np.zeros((branching_factor + 1, n_features)) self.init_sq_norm_ = np.zeros((branching_factor + 1)) self.squared_norm_ = [] self.prev_leaf_ = None self.next_leaf_ = None def append_subcluster(self, subcluster): n_samples = len(self.subclusters_) self.subclusters_.append(subcluster) self.init_centroids_[n_samples] = subcluster.centroid_ self.init_sq_norm_[n_samples] = subcluster.sq_norm_ # Keep centroids and squared norm as views. In this way # if we change init_centroids and init_sq_norm_, it is # sufficient, self.centroids_ = self.init_centroids_[:n_samples + 1, :] self.squared_norm_ = self.init_sq_norm_[:n_samples + 1] def update_split_subclusters(self, subcluster, new_subcluster1, new_subcluster2): """Remove a subcluster from a node and update it with the split subclusters. """ ind = self.subclusters_.index(subcluster) self.subclusters_[ind] = new_subcluster1 self.init_centroids_[ind] = new_subcluster1.centroid_ self.init_sq_norm_[ind] = new_subcluster1.sq_norm_ self.append_subcluster(new_subcluster2) def insert_cf_subcluster(self, subcluster): """Insert a new subcluster into the node.""" if not self.subclusters_: self.append_subcluster(subcluster) return False threshold = self.threshold branching_factor = self.branching_factor # We need to find the closest subcluster among all the # subclusters so that we can insert our new subcluster. dist_matrix = np.dot(self.centroids_, subcluster.centroid_) dist_matrix *= -2. dist_matrix += self.squared_norm_ closest_index = np.argmin(dist_matrix) closest_subcluster = self.subclusters_[closest_index] # If the subcluster has a child, we need a recursive strategy. if closest_subcluster.child_ is not None: split_child = closest_subcluster.child_.insert_cf_subcluster( subcluster) if not split_child: # If it is determined that the child need not be split, we # can just update the closest_subcluster closest_subcluster.update(subcluster) self.init_centroids_[closest_index] = \ self.subclusters_[closest_index].centroid_ self.init_sq_norm_[closest_index] = \ self.subclusters_[closest_index].sq_norm_ return False # things not too good. we need to redistribute the subclusters in # our child node, and add a new subcluster in the parent # subcluster to accommodate the new child. else: new_subcluster1, new_subcluster2 = _split_node( closest_subcluster.child_, threshold, branching_factor) self.update_split_subclusters( closest_subcluster, new_subcluster1, new_subcluster2) if len(self.subclusters_) > self.branching_factor: return True return False # good to go! else: merged = closest_subcluster.merge_subcluster( subcluster, self.threshold) if merged: self.init_centroids_[closest_index] = \ closest_subcluster.centroid_ self.init_sq_norm_[closest_index] = \ closest_subcluster.sq_norm_ return False # not close to any other subclusters, and we still # have space, so add. elif len(self.subclusters_) < self.branching_factor: self.append_subcluster(subcluster) return False # We do not have enough space nor is it closer to an # other subcluster. We need to split. else: self.append_subcluster(subcluster) return True class _CFSubcluster(object): """Each subcluster in a CFNode is called a CFSubcluster. A CFSubcluster can have a CFNode has its child. Parameters ---------- linear_sum : ndarray, shape (n_features,), optional Sample. This is kept optional to allow initialization of empty subclusters. Attributes ---------- n_samples_ : int Number of samples that belong to each subcluster. linear_sum_ : ndarray Linear sum of all the samples in a subcluster. Prevents holding all sample data in memory. squared_sum_ : float Sum of the squared l2 norms of all samples belonging to a subcluster. centroid_ : ndarray Centroid of the subcluster. Prevent recomputing of centroids when ``CFNode.centroids_`` is called. child_ : _CFNode Child Node of the subcluster. Once a given _CFNode is set as the child of the _CFNode, it is set to ``self.child_``. sq_norm_ : ndarray Squared norm of the subcluster. Used to prevent recomputing when pairwise minimum distances are computed. """ def __init__(self, linear_sum=None): if linear_sum is None: self.n_samples_ = 0 self.squared_sum_ = 0.0 self.linear_sum_ = 0 else: self.n_samples_ = 1 self.centroid_ = self.linear_sum_ = linear_sum self.squared_sum_ = self.sq_norm_ = np.dot( self.linear_sum_, self.linear_sum_) self.child_ = None def update(self, subcluster): self.n_samples_ += subcluster.n_samples_ self.linear_sum_ += subcluster.linear_sum_ self.squared_sum_ += subcluster.squared_sum_ self.centroid_ = self.linear_sum_ / self.n_samples_ self.sq_norm_ = np.dot(self.centroid_, self.centroid_) def merge_subcluster(self, nominee_cluster, threshold): """Check if a cluster is worthy enough to be merged. If yes then merge. """ new_ss = self.squared_sum_ + nominee_cluster.squared_sum_ new_ls = self.linear_sum_ + nominee_cluster.linear_sum_ new_n = self.n_samples_ + nominee_cluster.n_samples_ new_centroid = (1 / new_n) * new_ls new_norm = np.dot(new_centroid, new_centroid) dot_product = (-2 * new_n) * new_norm sq_radius = (new_ss + dot_product) / new_n + new_norm if sq_radius <= threshold ** 2: (self.n_samples_, self.linear_sum_, self.squared_sum_, self.centroid_, self.sq_norm_) = \ new_n, new_ls, new_ss, new_centroid, new_norm return True return False @property def radius(self): """Return radius of the subcluster""" dot_product = -2 * np.dot(self.linear_sum_, self.centroid_) return sqrt( ((self.squared_sum_ + dot_product) / self.n_samples_) + self.sq_norm_) class Birch(BaseEstimator, TransformerMixin, ClusterMixin): """Implements the Birch clustering algorithm. It is a memory-efficient, online-learning algorithm provided as an alternative to :class:`MiniBatchKMeans`. It constructs a tree data structure with the cluster centroids being read off the leaf. These can be either the final cluster centroids or can be provided as input to another clustering algorithm such as :class:`AgglomerativeClustering`. Read more in the :ref:`User Guide <birch>`. Parameters ---------- threshold : float, default 0.5 The radius of the subcluster obtained by merging a new sample and the closest subcluster should be lesser than the threshold. Otherwise a new subcluster is started. Setting this value to be very low promotes splitting and vice-versa. branching_factor : int, default 50 Maximum number of CF subclusters in each node. If a new samples enters such that the number of subclusters exceed the branching_factor then that node is split into two nodes with the subclusters redistributed in each. The parent subcluster of that node is removed and two new subclusters are added as parents of the 2 split nodes. n_clusters : int, instance of sklearn.cluster model, default 3 Number of clusters after the final clustering step, which treats the subclusters from the leaves as new samples. - `None` : the final clustering step is not performed and the subclusters are returned as they are. - `sklearn.cluster` Estimator : If a model is provided, the model is fit treating the subclusters as new samples and the initial data is mapped to the label of the closest subcluster. - `int` : the model fit is :class:`AgglomerativeClustering` with `n_clusters` set to be equal to the int. compute_labels : bool, default True Whether or not to compute labels for each fit. copy : bool, default True Whether or not to make a copy of the given data. If set to False, the initial data will be overwritten. Attributes ---------- root_ : _CFNode Root of the CFTree. dummy_leaf_ : _CFNode Start pointer to all the leaves. subcluster_centers_ : ndarray, Centroids of all subclusters read directly from the leaves. subcluster_labels_ : ndarray, Labels assigned to the centroids of the subclusters after they are clustered globally. labels_ : ndarray, shape (n_samples,) Array of labels assigned to the input data. if partial_fit is used instead of fit, they are assigned to the last batch of data. Examples -------- >>> from sklearn.cluster import Birch >>> X = [[0, 1], [0.3, 1], [-0.3, 1], [0, -1], [0.3, -1], [-0.3, -1]] >>> brc = Birch(branching_factor=50, n_clusters=None, threshold=0.5, ... compute_labels=True) >>> brc.fit(X) Birch(branching_factor=50, compute_labels=True, copy=True, n_clusters=None, threshold=0.5) >>> brc.predict(X) array([0, 0, 0, 1, 1, 1]) References ---------- * Tian Zhang, Raghu Ramakrishnan, Maron Livny BIRCH: An efficient data clustering method for large databases. http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf * Roberto Perdisci JBirch - Java implementation of BIRCH clustering algorithm https://code.google.com/archive/p/jbirch Notes ----- The tree data structure consists of nodes with each node consisting of a number of subclusters. The maximum number of subclusters in a node is determined by the branching factor. Each subcluster maintains a linear sum, squared sum and the number of samples in that subcluster. In addition, each subcluster can also have a node as its child, if the subcluster is not a member of a leaf node. For a new point entering the root, it is merged with the subcluster closest to it and the linear sum, squared sum and the number of samples of that subcluster are updated. This is done recursively till the properties of the leaf node are updated. """ def __init__(self, threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True): self.threshold = threshold self.branching_factor = branching_factor self.n_clusters = n_clusters self.compute_labels = compute_labels self.copy = copy def fit(self, X, y=None): """ Build a CF Tree for the input data. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. """ self.fit_, self.partial_fit_ = True, False return self._fit(X) def _fit(self, X): X = check_array(X, accept_sparse='csr', copy=self.copy) threshold = self.threshold branching_factor = self.branching_factor if branching_factor <= 1: raise ValueError("Branching_factor should be greater than one.") n_samples, n_features = X.shape # If partial_fit is called for the first time or fit is called, we # start a new tree. partial_fit = getattr(self, 'partial_fit_') has_root = getattr(self, 'root_', None) if getattr(self, 'fit_') or (partial_fit and not has_root): # The first root is the leaf. Manipulate this object throughout. self.root_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) # To enable getting back subclusters. self.dummy_leaf_ = _CFNode(threshold, branching_factor, is_leaf=True, n_features=n_features) self.dummy_leaf_.next_leaf_ = self.root_ self.root_.prev_leaf_ = self.dummy_leaf_ # Cannot vectorize. Enough to convince to use cython. if not sparse.issparse(X): iter_func = iter else: iter_func = _iterate_sparse_X for sample in iter_func(X): subcluster = _CFSubcluster(linear_sum=sample) split = self.root_.insert_cf_subcluster(subcluster) if split: new_subcluster1, new_subcluster2 = _split_node( self.root_, threshold, branching_factor) del self.root_ self.root_ = _CFNode(threshold, branching_factor, is_leaf=False, n_features=n_features) self.root_.append_subcluster(new_subcluster1) self.root_.append_subcluster(new_subcluster2) centroids = np.concatenate([ leaf.centroids_ for leaf in self._get_leaves()]) self.subcluster_centers_ = centroids self._global_clustering(X) return self def _get_leaves(self): """ Retrieve the leaves of the CF Node. Returns ------- leaves : array-like List of the leaf nodes. """ leaf_ptr = self.dummy_leaf_.next_leaf_ leaves = [] while leaf_ptr is not None: leaves.append(leaf_ptr) leaf_ptr = leaf_ptr.next_leaf_ return leaves def partial_fit(self, X=None, y=None): """ Online learning. Prevents rebuilding of CFTree from scratch. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features), None Input data. If X is not provided, only the global clustering step is done. """ self.partial_fit_, self.fit_ = True, False if X is None: # Perform just the final global clustering step. self._global_clustering() return self else: self._check_fit(X) return self._fit(X) def _check_fit(self, X): is_fitted = hasattr(self, 'subcluster_centers_') # Called by partial_fit, before fitting. has_partial_fit = hasattr(self, 'partial_fit_') # Should raise an error if one does not fit before predicting. if not (is_fitted or has_partial_fit): raise NotFittedError("Fit training data before predicting") if is_fitted and X.shape[1] != self.subcluster_centers_.shape[1]: raise ValueError( "Training data and predicted data do " "not have same number of features.") def predict(self, X): """ Predict data using the ``centroids_`` of subclusters. Avoid computation of the row norms of X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- labels : ndarray, shape(n_samples) Labelled data. """ X = check_array(X, accept_sparse='csr') self._check_fit(X) reduced_distance = safe_sparse_dot(X, self.subcluster_centers_.T) reduced_distance *= -2 reduced_distance += self._subcluster_norms return self.subcluster_labels_[np.argmin(reduced_distance, axis=1)] def transform(self, X): """ Transform X into subcluster centroids dimension. Each dimension represents the distance from the sample point to each cluster centroid. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Input data. Returns ------- X_trans : {array-like, sparse matrix}, shape (n_samples, n_clusters) Transformed data. """ check_is_fitted(self, 'subcluster_centers_') return euclidean_distances(X, self.subcluster_centers_) def _global_clustering(self, X=None): """ Global clustering for the subclusters obtained after fitting """ clusterer = self.n_clusters centroids = self.subcluster_centers_ compute_labels = (X is not None) and self.compute_labels # Preprocessing for the global clustering. not_enough_centroids = False if isinstance(clusterer, int): clusterer = AgglomerativeClustering( n_clusters=self.n_clusters) # There is no need to perform the global clustering step. if len(centroids) < self.n_clusters: not_enough_centroids = True elif (clusterer is not None and not hasattr(clusterer, 'fit_predict')): raise ValueError("n_clusters should be an instance of " "ClusterMixin or an int") # To use in predict to avoid recalculation. self._subcluster_norms = row_norms( self.subcluster_centers_, squared=True) if clusterer is None or not_enough_centroids: self.subcluster_labels_ = np.arange(len(centroids)) if not_enough_centroids: warnings.warn( "Number of subclusters found (%d) by Birch is less " "than (%d). Decrease the threshold." % (len(centroids), self.n_clusters)) else: # The global clustering step that clusters the subclusters of # the leaves. It assumes the centroids of the subclusters as # samples and finds the final centroids. self.subcluster_labels_ = clusterer.fit_predict( self.subcluster_centers_) if compute_labels: self.labels_ = self.predict(X)
bsd-3-clause
justincassidy/scikit-learn
examples/linear_model/plot_lasso_model_selection.py
311
5431
""" =================================================== Lasso model selection: Cross-Validation / AIC / BIC =================================================== Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization parameter alpha of the :ref:`lasso` estimator. Results obtained with LassoLarsIC are based on AIC/BIC criteria. Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when the problem is badly conditioned (more features than samples). For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms give roughly the same results. They differ with regards to their execution speed and sources of numerical errors. Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the coordinate descent algorithm will only sample the path on a grid. Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice of parameter may not be optimal for unseen data. """ print(__doc__) # Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target rng = np.random.RandomState(42) X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features # normalize data as done by Lars to allow for comparison X /= np.sqrt(np.sum(X ** 2, axis=0)) ############################################################################## # LassoLarsIC: least angle regression with BIC/AIC criterion model_bic = LassoLarsIC(criterion='bic') t1 = time.time() model_bic.fit(X, y) t_bic = time.time() - t1 alpha_bic_ = model_bic.alpha_ model_aic = LassoLarsIC(criterion='aic') model_aic.fit(X, y) alpha_aic_ = model_aic.alpha_ def plot_ic_criterion(model, name, color): alpha_ = model.alpha_ alphas_ = model.alphas_ criterion_ = model.criterion_ plt.plot(-np.log10(alphas_), criterion_, '--', color=color, linewidth=3, label='%s criterion' % name) plt.axvline(-np.log10(alpha_), color=color, linewidth=3, label='alpha: %s estimate' % name) plt.xlabel('-log(alpha)') plt.ylabel('criterion') plt.figure() plot_ic_criterion(model_aic, 'AIC', 'b') plot_ic_criterion(model_bic, 'BIC', 'r') plt.legend() plt.title('Information-criterion for model selection (training time %.3fs)' % t_bic) ############################################################################## # LassoCV: coordinate descent # Compute paths print("Computing regularization path using the coordinate descent lasso...") t1 = time.time() model = LassoCV(cv=20).fit(X, y) t_lasso_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.alphas_) plt.figure() ymin, ymax = 2300, 3800 plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha: CV estimate') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: coordinate descent ' '(train time: %.2fs)' % t_lasso_cv) plt.axis('tight') plt.ylim(ymin, ymax) ############################################################################## # LassoLarsCV: least angle regression # Compute paths print("Computing regularization path using the Lars lasso...") t1 = time.time() model = LassoLarsCV(cv=20).fit(X, y) t_lasso_lars_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphas, model.cv_mse_path_, ':') plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: Lars (train time: %.2fs)' % t_lasso_lars_cv) plt.axis('tight') plt.ylim(ymin, ymax) plt.show()
bsd-3-clause
kagayakidan/scikit-learn
examples/model_selection/plot_underfitting_overfitting.py
230
2649
""" ============================ Underfitting vs. Overfitting ============================ This example demonstrates the problems of underfitting and overfitting and how we can use linear regression with polynomial features to approximate nonlinear functions. The plot shows the function that we want to approximate, which is a part of the cosine function. In addition, the samples from the real function and the approximations of different models are displayed. The models have polynomial features of different degrees. We can see that a linear function (polynomial with degree 1) is not sufficient to fit the training samples. This is called **underfitting**. A polynomial of degree 4 approximates the true function almost perfectly. However, for higher degrees the model will **overfit** the training data, i.e. it learns the noise of the training data. We evaluate quantitatively **overfitting** / **underfitting** by using cross-validation. We calculate the mean squared error (MSE) on the validation set, the higher, the less likely the model generalizes correctly from the training data. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn import cross_validation np.random.seed(0) n_samples = 30 degrees = [1, 4, 15] true_fun = lambda X: np.cos(1.5 * np.pi * X) X = np.sort(np.random.rand(n_samples)) y = true_fun(X) + np.random.randn(n_samples) * 0.1 plt.figure(figsize=(14, 5)) for i in range(len(degrees)): ax = plt.subplot(1, len(degrees), i + 1) plt.setp(ax, xticks=(), yticks=()) polynomial_features = PolynomialFeatures(degree=degrees[i], include_bias=False) linear_regression = LinearRegression() pipeline = Pipeline([("polynomial_features", polynomial_features), ("linear_regression", linear_regression)]) pipeline.fit(X[:, np.newaxis], y) # Evaluate the models using crossvalidation scores = cross_validation.cross_val_score(pipeline, X[:, np.newaxis], y, scoring="mean_squared_error", cv=10) X_test = np.linspace(0, 1, 100) plt.plot(X_test, pipeline.predict(X_test[:, np.newaxis]), label="Model") plt.plot(X_test, true_fun(X_test), label="True function") plt.scatter(X, y, label="Samples") plt.xlabel("x") plt.ylabel("y") plt.xlim((0, 1)) plt.ylim((-2, 2)) plt.legend(loc="best") plt.title("Degree {}\nMSE = {:.2e}(+/- {:.2e})".format( degrees[i], -scores.mean(), scores.std())) plt.show()
bsd-3-clause
vybstat/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
57
8062
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed.size, 0) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
bsd-3-clause
ronanki/merlin
src/keras_lib/data_utils.py
1
14709
################################################################################ # The Neural Network (NN) based Speech Synthesis System # https://github.com/CSTR-Edinburgh/merlin # # Centre for Speech Technology Research # University of Edinburgh, UK # Copyright (c) 2014-2015 # All Rights Reserved. # # The system as a whole and most of the files in it are distributed # under the following copyright and conditions # # Permission is hereby granted, free of charge, to use and distribute # this software and its documentation without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of this work, and to # permit persons to whom this work is furnished to do so, subject to # the following conditions: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # - The authors' names may not be used to endorse or promote products derived # from this software without specific prior written permission. # # THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK # DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING # ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT # SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE # FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN # AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, # ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF # THIS SOFTWARE. ################################################################################ import os, sys import regex as re import time import random import numpy as np from sklearn import preprocessing from io_funcs.binary_io import BinaryIOCollection ############################ ##### Memory variables ##### ############################ UTT_BUFFER_SIZE = 10000 FRAME_BUFFER_SIZE = 3000000 def read_data_from_file_list(inp_file_list, out_file_list, inp_dim, out_dim, sequential_training=True): io_funcs = BinaryIOCollection() num_of_utt = len(inp_file_list) file_length_dict = {'framenum2utt':{}, 'utt2framenum':{}} if sequential_training: temp_set_x = {} temp_set_y = {} else: temp_set_x = np.empty((FRAME_BUFFER_SIZE, inp_dim)) temp_set_y = np.empty((FRAME_BUFFER_SIZE, out_dim)) ### read file by file ### current_index = 0 for i in xrange(num_of_utt): inp_file_name = inp_file_list[i] out_file_name = out_file_list[i] inp_features, inp_frame_number = io_funcs.load_binary_file_frame(inp_file_name, inp_dim) out_features, out_frame_number = io_funcs.load_binary_file_frame(out_file_name, out_dim) base_file_name = os.path.basename(inp_file_name).split(".")[0] if abs(inp_frame_number-out_frame_number)>5: print 'the number of frames in input and output features are different: %d vs %d (%s)' %(inp_frame_number, out_frame_number, base_file_name) sys.exit(0) else: frame_number = min(inp_frame_number, out_frame_number) if sequential_training: temp_set_x[base_file_name] = inp_features[0:frame_number] temp_set_y[base_file_name] = out_features[0:frame_number] else: temp_set_x[current_index:current_index+frame_number, ] = inp_features[0:frame_number] temp_set_y[current_index:current_index+frame_number, ] = out_features[0:frame_number] current_index += frame_number if frame_number not in file_length_dict['framenum2utt']: file_length_dict['framenum2utt'][frame_number] = [base_file_name] else: file_length_dict['framenum2utt'][frame_number].append(base_file_name) file_length_dict['utt2framenum'][base_file_name] = frame_number drawProgressBar(i+1, num_of_utt) sys.stdout.write("\n") if not sequential_training: temp_set_x = temp_set_x[0:current_index, ] temp_set_y = temp_set_y[0:current_index, ] return temp_set_x, temp_set_y, file_length_dict def read_test_data_from_file_list(inp_file_list, inp_dim, sequential_training=True): io_funcs = BinaryIOCollection() num_of_utt = len(inp_file_list) file_length_dict = {'framenum2utt':{}, 'utt2framenum':{}} if sequential_training: temp_set_x = {} else: temp_set_x = np.empty((FRAME_BUFFER_SIZE, inp_dim)) ### read file by file ### current_index = 0 for i in xrange(num_of_utt): inp_file_name = inp_file_list[i] inp_features, frame_number = io_funcs.load_binary_file_frame(inp_file_name, inp_dim) base_file_name = os.path.basename(inp_file_name).split(".")[0] if sequential_training: temp_set_x[base_file_name] = inp_features else: temp_set_x[current_index:current_index+frame_number, ] = inp_features[0:frame_number] current_index += frame_number if frame_number not in file_length_dict['framenum2utt']: file_length_dict['framenum2utt'][frame_number] = [base_file_name] else: file_length_dict['framenum2utt'][frame_number].append(base_file_name) file_length_dict['utt2framenum'][base_file_name] = frame_number drawProgressBar(i+1, num_of_utt) sys.stdout.write("\n") if not sequential_training: temp_set_x = temp_set_x[0:current_index, ] return temp_set_x, file_length_dict def transform_data_to_3d_matrix(data, seq_length=200, max_length=0, merge_size=1, shuffle_data = True, shuffle_type = 1, padding="right"): num_of_utt = len(data) feat_dim = data[data.keys()[0]].shape[1] if max_length > 0: temp_set = np.zeros((num_of_utt, max_length, feat_dim)) ### read file by file ### current_index = 0 for base_file_name, in_features in data.iteritems(): frame_number = min(in_features.shape[0], max_length) if padding=="right": temp_set[current_index, 0:frame_number, ] = in_features else: temp_set[current_index, -frame_number:, ] = in_features current_index += 1 else: temp_set = np.zeros((FRAME_BUFFER_SIZE, feat_dim)) train_idx_list = data.keys() train_idx_list.sort() if shuffle_data: if shuffle_type == 1: train_idx_list = shuffle_file_list(train_idx_list) elif shuffle_type == 2: train_idx_list = shuffle_file_list(train_idx_list, shuffle_type=2, merge_size=merge_size) ### read file by file ### current_index = 0 for file_number in xrange(num_of_utt): base_file_name = train_idx_list[file_number] in_features = data[base_file_name] frame_number = in_features.shape[0] temp_set[current_index:current_index+frame_number, ] = in_features current_index += frame_number if (file_number+1)%merge_size == 0: current_index = seq_length * (int(np.ceil(float(current_index)/float(seq_length)))) num_of_samples = int(np.ceil(float(current_index)/float(seq_length))) temp_set = temp_set[0: num_of_samples*seq_length, ] temp_set = temp_set.reshape(-1, seq_length, feat_dim) return temp_set def read_and_transform_data_from_file_list(in_file_list, dim, seq_length=200, merge_size=1): io_funcs = BinaryIOCollection() num_of_utt = len(in_file_list) temp_set = np.zeros((FRAME_BUFFER_SIZE, dim)) ### read file by file ### current_index = 0 for i in range(num_of_utt): in_file_name = in_file_list[i] in_features, frame_number = io_funcs.load_binary_file_frame(in_file_name, dim) base_file_name = os.path.basename(in_file_name).split(".")[0] temp_set[current_index:current_index+frame_number, ] = in_features current_index += frame_number if (i+1)%merge_size == 0: current_index = seq_length * (int(np.ceil(float(current_index)/float(seq_length)))) drawProgressBar(i+1, num_of_utt) sys.stdout.write("\n") num_of_samples = int(np.ceil(float(current_index)/float(seq_length))) temp_set = temp_set[0: num_of_samples*seq_length, ] temp_set = temp_set.reshape(num_of_samples, seq_length) return temp_set def merge_data(train_x, train_y, merge_size): temp_train_x = {} temp_train_y = {} train_id_list = train_x.keys() train_file_number = len(train_id_list) train_id_list.sort() inp_dim = train_x[train_id_list[0]].shape[1] out_dim = train_y[train_id_list[0]].shape[1] merged_features_x = np.zeros((0, inp_dim)) merged_features_y = np.zeros((0, out_dim)) new_file_count = 0 for file_index in xrange(1, train_file_number+1): inp_features = train_x[train_id_list[file_index-1]] out_features = train_y[train_id_list[file_index-1]] merged_features_x = np.vstack((merged_features_x, inp_features)) merged_features_y = np.vstack((merged_features_y, out_features)) if file_index % merge_size == 0 or file_index==train_file_number: base_file_name = "new_utterance_%04d" % (new_file_count) temp_train_x[base_file_name] = merged_features_x temp_train_y[base_file_name] = merged_features_y new_file_count += 1 merged_features_x = np.zeros((0, inp_dim)) merged_features_y = np.zeros((0, out_dim)) return temp_train_x, temp_train_y def shuffle_file_list(train_idx_list, shuffle_type=1, merge_size=5): ### shuffle train id list ### random.seed(271638) train_file_number = len(train_idx_list) if shuffle_type==1: ## shuffle by sentence random.shuffle(train_idx_list) return train_idx_list elif shuffle_type==2: ## shuffle by a group of sentences id_numbers = range(0, train_file_number, merge_size) random.shuffle(id_numbers) new_train_idx_list = [] for i in xrange(len(id_numbers)): new_train_idx_list += train_idx_list[id_numbers[i]:id_numbers[i]+merge_size] return new_train_idx_list def get_stateful_data(train_x, train_y, batch_size): num_of_batches = int(train_x.shape[0]/batch_size) train_x = train_x[0: num_of_batches*batch_size, ] train_y = train_y[0: num_of_batches*batch_size, ] stateful_seq = np.zeros(num_of_batches*batch_size, dtype="int32") for i in xrange(num_of_batches): stateful_seq[i*batch_size:(i+1)*batch_size] = np.array(range(batch_size))*num_of_batches+i temp_train_x = train_x[stateful_seq] temp_train_y = train_y[stateful_seq] return temp_train_x, temp_train_y def get_stateful_input(test_x, seq_length, batch_size=1): [n_frames, n_dim] = test_x.shape num_of_samples = batch_size*seq_length num_of_batches = int(n_frames/num_of_samples) + 1 new_data_size = num_of_batches*num_of_samples temp_test_x = np.zeros((new_data_size, n_dim)) temp_test_x[0: n_frames, ] = test_x temp_test_x = temp_test_x.reshape(-1, seq_length, n_dim) return temp_test_x def compute_norm_stats(data, stats_file, method="MVN"): #### normalize training data #### io_funcs = BinaryIOCollection() if method=="MVN": scaler = preprocessing.StandardScaler().fit(data) norm_matrix = np.vstack((scaler.mean_, scaler.scale_)) elif method=="MINMAX": scaler = preprocessing.MinMaxScaler(feature_range=(0.01, 0.99)).fit(data) norm_matrix = np.vstack((scaler.min_, scaler.scale_)) print norm_matrix.shape io_funcs.array_to_binary_file(norm_matrix, stats_file) return scaler def load_norm_stats(stats_file, dim, method="MVN"): #### load norm stats #### io_funcs = BinaryIOCollection() norm_matrix, frame_number = io_funcs.load_binary_file_frame(stats_file, dim) assert frame_number==2 if method=="MVN": scaler = preprocessing.StandardScaler() scaler.mean_ = norm_matrix[0, :] scaler.scale_ = norm_matrix[1, :] elif method=="MINMAX": scaler = preprocessing.MinMaxScaler(feature_range=(0.01, 0.99)) scaler.min_ = norm_matrix[0, :] scaler.scale_ = norm_matrix[1, :] return scaler def norm_data(data, scaler, sequential_training=True): if scaler is None: return; #### normalize data #### if not sequential_training: data = scaler.transform(data) else: for filename, features in data.iteritems(): data[filename] = scaler.transform(features) def denorm_data(data, scaler): if scaler is None: return; #### de-normalize data #### data = scaler.inverse_transform(data) def prepare_file_path_list(file_id_list, file_dir, file_extension, new_dir_switch=True): if not os.path.exists(file_dir) and new_dir_switch: os.makedirs(file_dir) file_name_list = [] for file_id in file_id_list: file_name = file_dir + '/' + file_id + file_extension file_name_list.append(file_name) return file_name_list def read_file_list(file_name): file_lists = [] fid = open(file_name) for line in fid.readlines(): line = line.strip() if len(line) < 1: continue file_lists.append(line) fid.close() return file_lists def print_status(i, length): pr = int(float(i)/float(length)*100) st = int(float(pr)/7) sys.stdout.write(("\r%d/%d ")%(i,length)+("[ %d"%pr+"% ] <<< ")+('='*st)+(''*(100-st))) sys.stdout.flush() def drawProgressBar(indx, length, barLen = 20): percent = float(indx)/length sys.stdout.write("\r") progress = "" for i in range(barLen): if i < int(barLen * percent): progress += "=" else: progress += " " sys.stdout.write("[%s] <<< %d/%d (%d%%)" % (progress, indx, length, percent * 100)) sys.stdout.flush()
apache-2.0
shangwuhencc/scikit-learn
examples/applications/plot_out_of_core_classification.py
255
13919
""" ====================================================== Out-of-core classification of text documents ====================================================== This is an example showing how scikit-learn can be used for classification using an out-of-core approach: learning from data that doesn't fit into main memory. We make use of an online classifier, i.e., one that supports the partial_fit method, that will be fed with batches of examples. To guarantee that the features space remains the same over time we leverage a HashingVectorizer that will project each example into the same feature space. This is especially useful in the case of text classification where new features (words) may appear in each batch. The dataset used in this example is Reuters-21578 as provided by the UCI ML repository. It will be automatically downloaded and uncompressed on first run. The plot represents the learning curve of the classifier: the evolution of classification accuracy over the course of the mini-batches. Accuracy is measured on the first 1000 samples, held out as a validation set. To limit the memory consumption, we queue examples up to a fixed amount before feeding them to the learner. """ # Authors: Eustache Diemert <[email protected]> # @FedericoV <https://github.com/FedericoV/> # License: BSD 3 clause from __future__ import print_function from glob import glob import itertools import os.path import re import tarfile import time import numpy as np import matplotlib.pyplot as plt from matplotlib import rcParams from sklearn.externals.six.moves import html_parser from sklearn.externals.six.moves import urllib from sklearn.datasets import get_data_home from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier from sklearn.linear_model import PassiveAggressiveClassifier from sklearn.linear_model import Perceptron from sklearn.naive_bayes import MultinomialNB def _not_in_sphinx(): # Hack to detect whether we are running by the sphinx builder return '__file__' in globals() ############################################################################### # Reuters Dataset related routines ############################################################################### class ReutersParser(html_parser.HTMLParser): """Utility class to parse a SGML file and yield documents one at a time.""" def __init__(self, encoding='latin-1'): html_parser.HTMLParser.__init__(self) self._reset() self.encoding = encoding def handle_starttag(self, tag, attrs): method = 'start_' + tag getattr(self, method, lambda x: None)(attrs) def handle_endtag(self, tag): method = 'end_' + tag getattr(self, method, lambda: None)() def _reset(self): self.in_title = 0 self.in_body = 0 self.in_topics = 0 self.in_topic_d = 0 self.title = "" self.body = "" self.topics = [] self.topic_d = "" def parse(self, fd): self.docs = [] for chunk in fd: self.feed(chunk.decode(self.encoding)) for doc in self.docs: yield doc self.docs = [] self.close() def handle_data(self, data): if self.in_body: self.body += data elif self.in_title: self.title += data elif self.in_topic_d: self.topic_d += data def start_reuters(self, attributes): pass def end_reuters(self): self.body = re.sub(r'\s+', r' ', self.body) self.docs.append({'title': self.title, 'body': self.body, 'topics': self.topics}) self._reset() def start_title(self, attributes): self.in_title = 1 def end_title(self): self.in_title = 0 def start_body(self, attributes): self.in_body = 1 def end_body(self): self.in_body = 0 def start_topics(self, attributes): self.in_topics = 1 def end_topics(self): self.in_topics = 0 def start_d(self, attributes): self.in_topic_d = 1 def end_d(self): self.in_topic_d = 0 self.topics.append(self.topic_d) self.topic_d = "" def stream_reuters_documents(data_path=None): """Iterate over documents of the Reuters dataset. The Reuters archive will automatically be downloaded and uncompressed if the `data_path` directory does not exist. Documents are represented as dictionaries with 'body' (str), 'title' (str), 'topics' (list(str)) keys. """ DOWNLOAD_URL = ('http://archive.ics.uci.edu/ml/machine-learning-databases/' 'reuters21578-mld/reuters21578.tar.gz') ARCHIVE_FILENAME = 'reuters21578.tar.gz' if data_path is None: data_path = os.path.join(get_data_home(), "reuters") if not os.path.exists(data_path): """Download the dataset.""" print("downloading dataset (once and for all) into %s" % data_path) os.mkdir(data_path) def progress(blocknum, bs, size): total_sz_mb = '%.2f MB' % (size / 1e6) current_sz_mb = '%.2f MB' % ((blocknum * bs) / 1e6) if _not_in_sphinx(): print('\rdownloaded %s / %s' % (current_sz_mb, total_sz_mb), end='') archive_path = os.path.join(data_path, ARCHIVE_FILENAME) urllib.request.urlretrieve(DOWNLOAD_URL, filename=archive_path, reporthook=progress) if _not_in_sphinx(): print('\r', end='') print("untarring Reuters dataset...") tarfile.open(archive_path, 'r:gz').extractall(data_path) print("done.") parser = ReutersParser() for filename in glob(os.path.join(data_path, "*.sgm")): for doc in parser.parse(open(filename, 'rb')): yield doc ############################################################################### # Main ############################################################################### # Create the vectorizer and limit the number of features to a reasonable # maximum vectorizer = HashingVectorizer(decode_error='ignore', n_features=2 ** 18, non_negative=True) # Iterator over parsed Reuters SGML files. data_stream = stream_reuters_documents() # We learn a binary classification between the "acq" class and all the others. # "acq" was chosen as it is more or less evenly distributed in the Reuters # files. For other datasets, one should take care of creating a test set with # a realistic portion of positive instances. all_classes = np.array([0, 1]) positive_class = 'acq' # Here are some classifiers that support the `partial_fit` method partial_fit_classifiers = { 'SGD': SGDClassifier(), 'Perceptron': Perceptron(), 'NB Multinomial': MultinomialNB(alpha=0.01), 'Passive-Aggressive': PassiveAggressiveClassifier(), } def get_minibatch(doc_iter, size, pos_class=positive_class): """Extract a minibatch of examples, return a tuple X_text, y. Note: size is before excluding invalid docs with no topics assigned. """ data = [(u'{title}\n\n{body}'.format(**doc), pos_class in doc['topics']) for doc in itertools.islice(doc_iter, size) if doc['topics']] if not len(data): return np.asarray([], dtype=int), np.asarray([], dtype=int) X_text, y = zip(*data) return X_text, np.asarray(y, dtype=int) def iter_minibatches(doc_iter, minibatch_size): """Generator of minibatches.""" X_text, y = get_minibatch(doc_iter, minibatch_size) while len(X_text): yield X_text, y X_text, y = get_minibatch(doc_iter, minibatch_size) # test data statistics test_stats = {'n_test': 0, 'n_test_pos': 0} # First we hold out a number of examples to estimate accuracy n_test_documents = 1000 tick = time.time() X_test_text, y_test = get_minibatch(data_stream, 1000) parsing_time = time.time() - tick tick = time.time() X_test = vectorizer.transform(X_test_text) vectorizing_time = time.time() - tick test_stats['n_test'] += len(y_test) test_stats['n_test_pos'] += sum(y_test) print("Test set is %d documents (%d positive)" % (len(y_test), sum(y_test))) def progress(cls_name, stats): """Report progress information, return a string.""" duration = time.time() - stats['t0'] s = "%20s classifier : \t" % cls_name s += "%(n_train)6d train docs (%(n_train_pos)6d positive) " % stats s += "%(n_test)6d test docs (%(n_test_pos)6d positive) " % test_stats s += "accuracy: %(accuracy).3f " % stats s += "in %.2fs (%5d docs/s)" % (duration, stats['n_train'] / duration) return s cls_stats = {} for cls_name in partial_fit_classifiers: stats = {'n_train': 0, 'n_train_pos': 0, 'accuracy': 0.0, 'accuracy_history': [(0, 0)], 't0': time.time(), 'runtime_history': [(0, 0)], 'total_fit_time': 0.0} cls_stats[cls_name] = stats get_minibatch(data_stream, n_test_documents) # Discard test set # We will feed the classifier with mini-batches of 1000 documents; this means # we have at most 1000 docs in memory at any time. The smaller the document # batch, the bigger the relative overhead of the partial fit methods. minibatch_size = 1000 # Create the data_stream that parses Reuters SGML files and iterates on # documents as a stream. minibatch_iterators = iter_minibatches(data_stream, minibatch_size) total_vect_time = 0.0 # Main loop : iterate on mini-batchs of examples for i, (X_train_text, y_train) in enumerate(minibatch_iterators): tick = time.time() X_train = vectorizer.transform(X_train_text) total_vect_time += time.time() - tick for cls_name, cls in partial_fit_classifiers.items(): tick = time.time() # update estimator with examples in the current mini-batch cls.partial_fit(X_train, y_train, classes=all_classes) # accumulate test accuracy stats cls_stats[cls_name]['total_fit_time'] += time.time() - tick cls_stats[cls_name]['n_train'] += X_train.shape[0] cls_stats[cls_name]['n_train_pos'] += sum(y_train) tick = time.time() cls_stats[cls_name]['accuracy'] = cls.score(X_test, y_test) cls_stats[cls_name]['prediction_time'] = time.time() - tick acc_history = (cls_stats[cls_name]['accuracy'], cls_stats[cls_name]['n_train']) cls_stats[cls_name]['accuracy_history'].append(acc_history) run_history = (cls_stats[cls_name]['accuracy'], total_vect_time + cls_stats[cls_name]['total_fit_time']) cls_stats[cls_name]['runtime_history'].append(run_history) if i % 3 == 0: print(progress(cls_name, cls_stats[cls_name])) if i % 3 == 0: print('\n') ############################################################################### # Plot results ############################################################################### def plot_accuracy(x, y, x_legend): """Plot accuracy as a function of x.""" x = np.array(x) y = np.array(y) plt.title('Classification accuracy as a function of %s' % x_legend) plt.xlabel('%s' % x_legend) plt.ylabel('Accuracy') plt.grid(True) plt.plot(x, y) rcParams['legend.fontsize'] = 10 cls_names = list(sorted(cls_stats.keys())) # Plot accuracy evolution plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with #examples accuracy, n_examples = zip(*stats['accuracy_history']) plot_accuracy(n_examples, accuracy, "training examples (#)") ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') plt.figure() for _, stats in sorted(cls_stats.items()): # Plot accuracy evolution with runtime accuracy, runtime = zip(*stats['runtime_history']) plot_accuracy(runtime, accuracy, 'runtime (s)') ax = plt.gca() ax.set_ylim((0.8, 1)) plt.legend(cls_names, loc='best') # Plot fitting times plt.figure() fig = plt.gcf() cls_runtime = [] for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['total_fit_time']) cls_runtime.append(total_vect_time) cls_names.append('Vectorization') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=10) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Training Times') def autolabel(rectangles): """attach some text vi autolabel on rectangles.""" for rect in rectangles: height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2., 1.05 * height, '%.4f' % height, ha='center', va='bottom') autolabel(rectangles) plt.show() # Plot prediction times plt.figure() #fig = plt.gcf() cls_runtime = [] cls_names = list(sorted(cls_stats.keys())) for cls_name, stats in sorted(cls_stats.items()): cls_runtime.append(stats['prediction_time']) cls_runtime.append(parsing_time) cls_names.append('Read/Parse\n+Feat.Extr.') cls_runtime.append(vectorizing_time) cls_names.append('Hashing\n+Vect.') bar_colors = rcParams['axes.color_cycle'][:len(cls_names)] ax = plt.subplot(111) rectangles = plt.bar(range(len(cls_names)), cls_runtime, width=0.5, color=bar_colors) ax.set_xticks(np.linspace(0.25, len(cls_names) - 0.75, len(cls_names))) ax.set_xticklabels(cls_names, fontsize=8) plt.setp(plt.xticks()[1], rotation=30) ymax = max(cls_runtime) * 1.2 ax.set_ylim((0, ymax)) ax.set_ylabel('runtime (s)') ax.set_title('Prediction Times (%d instances)' % n_test_documents) autolabel(rectangles) plt.show()
bsd-3-clause
RobertABT/heightmap
build/matplotlib/examples/pylab_examples/newscalarformatter_demo.py
13
3313
#!/usr/bin/env python # Demonstrating the improvements and options of the proposed new ScalarFormatter from pylab import * from matplotlib.ticker import OldScalarFormatter x=frange(0,1,.01) f=figure(figsize=(6,6)) f.text(0.5,0.975,'The old formatter',horizontalalignment='center',verticalalignment='top') subplot(221) plot(x*1e5+1e10,x*1e-10+1e-5) gca().xaxis.set_major_formatter(OldScalarFormatter()) gca().yaxis.set_major_formatter(OldScalarFormatter()) subplot(222) plot(x*1e5,x*1e-4) gca().xaxis.set_major_formatter(OldScalarFormatter()) gca().yaxis.set_major_formatter(OldScalarFormatter()) subplot(223) plot(-x*1e5-1e10,-x*1e-5-1e-10) gca().xaxis.set_major_formatter(OldScalarFormatter()) gca().yaxis.set_major_formatter(OldScalarFormatter()) subplot(224) plot(-x*1e5,-x*1e-4) gca().xaxis.set_major_formatter(OldScalarFormatter()) gca().yaxis.set_major_formatter(OldScalarFormatter()) x=frange(0,1,.01) f=figure(figsize=(6,6)) f.text(0.5,0.975,'The new formatter, default settings',horizontalalignment='center', verticalalignment='top') subplot(221) plot(x*1e5+1e10,x*1e-10+1e-5) gca().xaxis.set_major_formatter(ScalarFormatter()) gca().yaxis.set_major_formatter(ScalarFormatter()) subplot(222) plot(x*1e5,x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter()) gca().yaxis.set_major_formatter(ScalarFormatter()) subplot(223) plot(-x*1e5-1e10,-x*1e-5-1e-10) gca().xaxis.set_major_formatter(ScalarFormatter()) gca().yaxis.set_major_formatter(ScalarFormatter()) subplot(224) plot(-x*1e5,-x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter()) gca().yaxis.set_major_formatter(ScalarFormatter()) x=frange(0,1,.01) f=figure(figsize=(6,6)) f.text(0.5,0.975,'The new formatter, no numerical offset',horizontalalignment='center', verticalalignment='top') subplot(221) plot(x*1e5+1e10,x*1e-10+1e-5) gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) gca().yaxis.set_major_formatter(ScalarFormatter(useOffset=False)) subplot(222) plot(x*1e5,x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) gca().yaxis.set_major_formatter(ScalarFormatter(useOffset=False)) subplot(223) plot(-x*1e5-1e10,-x*1e-5-1e-10) gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) gca().yaxis.set_major_formatter(ScalarFormatter(useOffset=False)) subplot(224) plot(-x*1e5,-x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter(useOffset=False)) gca().yaxis.set_major_formatter(ScalarFormatter(useOffset=False)) x=frange(0,1,.01) f=figure(figsize=(6,6)) f.text(0.5,0.975,'The new formatter, with mathtext',horizontalalignment='center', verticalalignment='top') subplot(221) plot(x*1e5+1e10,x*1e-10+1e-5) gca().xaxis.set_major_formatter(ScalarFormatter(useMathText=True)) gca().yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) subplot(222) plot(x*1e5,x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter(useMathText=True)) gca().yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) subplot(223) plot(-x*1e5-1e10,-x*1e-5-1e-10) gca().xaxis.set_major_formatter(ScalarFormatter(useMathText=True)) gca().yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) subplot(224) plot(-x*1e5,-x*1e-4) gca().xaxis.set_major_formatter(ScalarFormatter(useMathText=True)) gca().yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) show()
mit
cauchycui/scikit-learn
examples/feature_stacker.py
246
1906
""" ================================================= Concatenating multiple feature extraction methods ================================================= In many real-world examples, there are many ways to extract features from a dataset. Often it is beneficial to combine several methods to obtain good performance. This example shows how to use ``FeatureUnion`` to combine features obtained by PCA and univariate selection. Combining features using this transformer has the benefit that it allows cross validation and grid searches over the whole process. The combination used in this example is not particularly helpful on this dataset and is only used to illustrate the usage of FeatureUnion. """ # Author: Andreas Mueller <[email protected]> # # License: BSD 3 clause from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.grid_search import GridSearchCV from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.decomposition import PCA from sklearn.feature_selection import SelectKBest iris = load_iris() X, y = iris.data, iris.target # This dataset is way to high-dimensional. Better do PCA: pca = PCA(n_components=2) # Maybe some original features where good, too? selection = SelectKBest(k=1) # Build estimator from PCA and Univariate selection: combined_features = FeatureUnion([("pca", pca), ("univ_select", selection)]) # Use combined features to transform dataset: X_features = combined_features.fit(X, y).transform(X) svm = SVC(kernel="linear") # Do grid search over k, n_components and C: pipeline = Pipeline([("features", combined_features), ("svm", svm)]) param_grid = dict(features__pca__n_components=[1, 2, 3], features__univ_select__k=[1, 2], svm__C=[0.1, 1, 10]) grid_search = GridSearchCV(pipeline, param_grid=param_grid, verbose=10) grid_search.fit(X, y) print(grid_search.best_estimator_)
bsd-3-clause
zihua/scikit-learn
sklearn/preprocessing/tests/test_label.py
34
18227
import numpy as np from scipy.sparse import issparse from scipy.sparse import coo_matrix from scipy.sparse import csc_matrix from scipy.sparse import csr_matrix from scipy.sparse import dok_matrix from scipy.sparse import lil_matrix from sklearn.utils.multiclass import type_of_target from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn.preprocessing.label import LabelBinarizer from sklearn.preprocessing.label import MultiLabelBinarizer from sklearn.preprocessing.label import LabelEncoder from sklearn.preprocessing.label import label_binarize from sklearn.preprocessing.label import _inverse_binarize_thresholding from sklearn.preprocessing.label import _inverse_binarize_multiclass from sklearn import datasets iris = datasets.load_iris() def toarray(a): if hasattr(a, "toarray"): a = a.toarray() return a def test_label_binarizer(): # one-class case defaults to negative label # For dense case: inp = ["pos", "pos", "pos", "pos"] lb = LabelBinarizer(sparse_output=False) expected = np.array([[0, 0, 0, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) # For sparse case: lb = LabelBinarizer(sparse_output=True) got = lb.fit_transform(inp) assert_true(issparse(got)) assert_array_equal(lb.classes_, ["pos"]) assert_array_equal(expected, got.toarray()) assert_array_equal(lb.inverse_transform(got.toarray()), inp) lb = LabelBinarizer(sparse_output=False) # two-class case inp = ["neg", "pos", "pos", "neg"] expected = np.array([[0, 1, 1, 0]]).T got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ["neg", "pos"]) assert_array_equal(expected, got) to_invert = np.array([[1, 0], [0, 1], [0, 1], [1, 0]]) assert_array_equal(lb.inverse_transform(to_invert), inp) # multi-class case inp = ["spam", "ham", "eggs", "ham", "0"] expected = np.array([[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0]]) got = lb.fit_transform(inp) assert_array_equal(lb.classes_, ['0', 'eggs', 'ham', 'spam']) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) def test_label_binarizer_unseen_labels(): lb = LabelBinarizer() expected = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) got = lb.fit_transform(['b', 'd', 'e']) assert_array_equal(expected, got) expected = np.array([[0, 0, 0], [1, 0, 0], [0, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]]) got = lb.transform(['a', 'b', 'c', 'd', 'e', 'f']) assert_array_equal(expected, got) def test_label_binarizer_set_label_encoding(): lb = LabelBinarizer(neg_label=-2, pos_label=0) # two-class case with pos_label=0 inp = np.array([0, 1, 1, 0]) expected = np.array([[-2, 0, 0, -2]]).T got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) lb = LabelBinarizer(neg_label=-2, pos_label=2) # multi-class case inp = np.array([3, 2, 1, 2, 0]) expected = np.array([[-2, -2, -2, +2], [-2, -2, +2, -2], [-2, +2, -2, -2], [-2, -2, +2, -2], [+2, -2, -2, -2]]) got = lb.fit_transform(inp) assert_array_equal(expected, got) assert_array_equal(lb.inverse_transform(got), inp) @ignore_warnings def test_label_binarizer_errors(): # Check that invalid arguments yield ValueError one_class = np.array([0, 0, 0, 0]) lb = LabelBinarizer().fit(one_class) multi_label = [(2, 3), (0,), (0, 2)] assert_raises(ValueError, lb.transform, multi_label) lb = LabelBinarizer() assert_raises(ValueError, lb.transform, []) assert_raises(ValueError, lb.inverse_transform, []) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=1) assert_raises(ValueError, LabelBinarizer, neg_label=2, pos_label=2) assert_raises(ValueError, LabelBinarizer, neg_label=1, pos_label=2, sparse_output=True) # Fail on y_type assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2], threshold=0) # Sequence of seq type should raise ValueError y_seq_of_seqs = [[], [1, 2], [3], [0, 1, 3], [2]] assert_raises(ValueError, LabelBinarizer().fit_transform, y_seq_of_seqs) # Fail on the number of classes assert_raises(ValueError, _inverse_binarize_thresholding, y=csr_matrix([[1, 2], [2, 1]]), output_type="foo", classes=[1, 2, 3], threshold=0) # Fail on the dimension of 'binary' assert_raises(ValueError, _inverse_binarize_thresholding, y=np.array([[1, 2, 3], [2, 1, 3]]), output_type="binary", classes=[1, 2, 3], threshold=0) # Fail on multioutput data assert_raises(ValueError, LabelBinarizer().fit, np.array([[1, 3], [2, 1]])) assert_raises(ValueError, label_binarize, np.array([[1, 3], [2, 1]]), [1, 2, 3]) def test_label_encoder(): # Test LabelEncoder's transform and inverse_transform methods le = LabelEncoder() le.fit([1, 1, 4, 5, -1, 0]) assert_array_equal(le.classes_, [-1, 0, 1, 4, 5]) assert_array_equal(le.transform([0, 1, 4, 4, 5, -1, -1]), [1, 2, 3, 3, 4, 0, 0]) assert_array_equal(le.inverse_transform([1, 2, 3, 3, 4, 0, 0]), [0, 1, 4, 4, 5, -1, -1]) assert_raises(ValueError, le.transform, [0, 6]) le.fit(["apple", "orange"]) msg = "bad input shape" assert_raise_message(ValueError, msg, le.transform, "apple") def test_label_encoder_fit_transform(): # Test fit_transform le = LabelEncoder() ret = le.fit_transform([1, 1, 4, 5, -1, 0]) assert_array_equal(ret, [2, 2, 3, 4, 0, 1]) le = LabelEncoder() ret = le.fit_transform(["paris", "paris", "tokyo", "amsterdam"]) assert_array_equal(ret, [1, 1, 2, 0]) def test_label_encoder_errors(): # Check that invalid arguments yield ValueError le = LabelEncoder() assert_raises(ValueError, le.transform, []) assert_raises(ValueError, le.inverse_transform, []) # Fail on unseen labels le = LabelEncoder() le.fit([1, 2, 3, 1, -1]) assert_raises(ValueError, le.inverse_transform, [-1]) def test_sparse_output_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for sparse_output in [True, False]: for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit_transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer(sparse_output=sparse_output) got = mlb.fit(inp()).transform(inp()) assert_equal(issparse(got), sparse_output) if sparse_output: got = got.toarray() assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) assert_raises(ValueError, mlb.inverse_transform, csr_matrix(np.array([[0, 1, 1], [2, 0, 0], [1, 1, 0]]))) def test_multilabel_binarizer(): # test input as iterable of iterables inputs = [ lambda: [(2, 3), (1,), (1, 2)], lambda: (set([2, 3]), set([1]), set([1, 2])), lambda: iter([iter((2, 3)), iter((1,)), set([1, 2])]), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) inverse = inputs[0]() for inp in inputs: # With fit_tranform mlb = MultiLabelBinarizer() got = mlb.fit_transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) # With fit mlb = MultiLabelBinarizer() got = mlb.fit(inp()).transform(inp()) assert_array_equal(indicator_mat, got) assert_array_equal([1, 2, 3], mlb.classes_) assert_equal(mlb.inverse_transform(got), inverse) def test_multilabel_binarizer_empty_sample(): mlb = MultiLabelBinarizer() y = [[1, 2], [1], []] Y = np.array([[1, 1], [1, 0], [0, 0]]) assert_array_equal(mlb.fit_transform(y), Y) def test_multilabel_binarizer_unknown_class(): mlb = MultiLabelBinarizer() y = [[1, 2]] assert_raises(KeyError, mlb.fit(y).transform, [[0]]) mlb = MultiLabelBinarizer(classes=[1, 2]) assert_raises(KeyError, mlb.fit_transform, [[0]]) def test_multilabel_binarizer_given_classes(): inp = [(2, 3), (1,), (1, 2)] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # fit().transform() mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, [1, 3, 2]) # ensure works with extra class mlb = MultiLabelBinarizer(classes=[4, 1, 3, 2]) assert_array_equal(mlb.fit_transform(inp), np.hstack(([[0], [0], [0]], indicator_mat))) assert_array_equal(mlb.classes_, [4, 1, 3, 2]) # ensure fit is no-op as iterable is not consumed inp = iter(inp) mlb = MultiLabelBinarizer(classes=[1, 3, 2]) assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) def test_multilabel_binarizer_same_length_sequence(): # Ensure sequences of the same length are not interpreted as a 2-d array inp = [[1], [0], [2]] indicator_mat = np.array([[0, 1, 0], [1, 0, 0], [0, 0, 1]]) # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) def test_multilabel_binarizer_non_integer_labels(): tuple_classes = np.empty(3, dtype=object) tuple_classes[:] = [(1,), (2,), (3,)] inputs = [ ([('2', '3'), ('1',), ('1', '2')], ['1', '2', '3']), ([('b', 'c'), ('a',), ('a', 'b')], ['a', 'b', 'c']), ([((2,), (3,)), ((1,),), ((1,), (2,))], tuple_classes), ] indicator_mat = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) for inp, classes in inputs: # fit_transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) # fit().transform() mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit(inp).transform(inp), indicator_mat) assert_array_equal(mlb.classes_, classes) assert_array_equal(mlb.inverse_transform(indicator_mat), inp) mlb = MultiLabelBinarizer() assert_raises(TypeError, mlb.fit_transform, [({}), ({}, {'a': 'b'})]) def test_multilabel_binarizer_non_unique(): inp = [(1, 1, 1, 0)] indicator_mat = np.array([[1, 1]]) mlb = MultiLabelBinarizer() assert_array_equal(mlb.fit_transform(inp), indicator_mat) def test_multilabel_binarizer_inverse_validation(): inp = [(1, 1, 1, 0)] mlb = MultiLabelBinarizer() mlb.fit_transform(inp) # Not binary assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 3]])) # The following binary cases are fine, however mlb.inverse_transform(np.array([[0, 0]])) mlb.inverse_transform(np.array([[1, 1]])) mlb.inverse_transform(np.array([[1, 0]])) # Wrong shape assert_raises(ValueError, mlb.inverse_transform, np.array([[1]])) assert_raises(ValueError, mlb.inverse_transform, np.array([[1, 1, 1]])) def test_label_binarize_with_class_order(): out = label_binarize([1, 6], classes=[1, 2, 4, 6]) expected = np.array([[1, 0, 0, 0], [0, 0, 0, 1]]) assert_array_equal(out, expected) # Modified class order out = label_binarize([1, 6], classes=[1, 6, 4, 2]) expected = np.array([[1, 0, 0, 0], [0, 1, 0, 0]]) assert_array_equal(out, expected) out = label_binarize([0, 1, 2, 3], classes=[3, 2, 0, 1]) expected = np.array([[0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0], [1, 0, 0, 0]]) assert_array_equal(out, expected) def check_binarized_results(y, classes, pos_label, neg_label, expected): for sparse_output in [True, False]: if ((pos_label == 0 or neg_label != 0) and sparse_output): assert_raises(ValueError, label_binarize, y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) continue # check label_binarize binarized = label_binarize(y, classes, neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) # check inverse y_type = type_of_target(y) if y_type == "multiclass": inversed = _inverse_binarize_multiclass(binarized, classes=classes) else: inversed = _inverse_binarize_thresholding(binarized, output_type=y_type, classes=classes, threshold=((neg_label + pos_label) / 2.)) assert_array_equal(toarray(inversed), toarray(y)) # Check label binarizer lb = LabelBinarizer(neg_label=neg_label, pos_label=pos_label, sparse_output=sparse_output) binarized = lb.fit_transform(y) assert_array_equal(toarray(binarized), expected) assert_equal(issparse(binarized), sparse_output) inverse_output = lb.inverse_transform(binarized) assert_array_equal(toarray(inverse_output), toarray(y)) assert_equal(issparse(inverse_output), issparse(y)) def test_label_binarize_binary(): y = [0, 1, 0] classes = [0, 1] pos_label = 2 neg_label = -1 expected = np.array([[2, -1], [-1, 2], [2, -1]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected # Binary case where sparse_output = True will not result in a ValueError y = [0, 1, 0] classes = [0, 1] pos_label = 3 neg_label = 0 expected = np.array([[3, 0], [0, 3], [3, 0]])[:, 1].reshape((-1, 1)) yield check_binarized_results, y, classes, pos_label, neg_label, expected def test_label_binarize_multiclass(): y = [0, 1, 2] classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = 2 * np.eye(3) yield check_binarized_results, y, classes, pos_label, neg_label, expected assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_label_binarize_multilabel(): y_ind = np.array([[0, 1, 0], [1, 1, 1], [0, 0, 0]]) classes = [0, 1, 2] pos_label = 2 neg_label = 0 expected = pos_label * y_ind y_sparse = [sparse_matrix(y_ind) for sparse_matrix in [coo_matrix, csc_matrix, csr_matrix, dok_matrix, lil_matrix]] for y in [y_ind] + y_sparse: yield (check_binarized_results, y, classes, pos_label, neg_label, expected) assert_raises(ValueError, label_binarize, y, classes, neg_label=-1, pos_label=pos_label, sparse_output=True) def test_invalid_input_label_binarize(): assert_raises(ValueError, label_binarize, [0, 2], classes=[0, 2], pos_label=0, neg_label=1) def test_inverse_binarize_multiclass(): got = _inverse_binarize_multiclass(csr_matrix([[0, 1, 0], [-1, 0, -1], [0, 0, 0]]), np.arange(3)) assert_array_equal(got, np.array([1, 1, 0]))
bsd-3-clause
brdfdr/trading-with-python
sandbox/spreadCalculations.py
78
1496
''' Created on 28 okt 2011 @author: jev ''' from tradingWithPython import estimateBeta, Spread, returns, Portfolio, readBiggerScreener from tradingWithPython.lib import yahooFinance from pandas import DataFrame, Series import numpy as np import matplotlib.pyplot as plt import os symbols = ['SPY','IWM'] y = yahooFinance.HistData('temp.csv') y.startDate = (2007,1,1) df = y.loadSymbols(symbols,forceDownload=False) #df = y.downloadData(symbols) res = readBiggerScreener('CointPairs.csv') #---check with spread scanner #sp = DataFrame(index=symbols) # #sp['last'] = df.ix[-1,:] #sp['targetCapital'] = Series({'SPY':100,'IWM':-100}) #sp['targetShares'] = sp['targetCapital']/sp['last'] #print sp #The dollar-neutral ratio is about 1 * IWM - 1.7 * IWM. You will get the spread = zero (or probably very near zero) #s = Spread(symbols, histClose = df) #print s #s.value.plot() #print 'beta (returns)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='returns') #print 'beta (log)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='log') #print 'beta (standard)', estimateBeta(df[symbols[0]],df[symbols[1]],algo='standard') #p = Portfolio(df) #p.setShares([1, -1.7]) #p.value.plot() quote = yahooFinance.getQuote(symbols) print quote s = Spread(symbols,histClose=df, estimateBeta = False) s.setLast(quote['last']) s.setShares(Series({'SPY':1,'IWM':-1.7})) print s #s.value.plot() #s.plot() fig = figure(2) s.plot()
bsd-3-clause
lbishal/scikit-learn
sklearn/metrics/cluster/unsupervised.py
230
8281
""" Unsupervised evaluation metrics. """ # Authors: Robert Layton <[email protected]> # # License: BSD 3 clause import numpy as np from ...utils import check_random_state from ..pairwise import pairwise_distances def silhouette_score(X, labels, metric='euclidean', sample_size=None, random_state=None, **kwds): """Compute the mean Silhouette Coefficient of all samples. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. To clarify, ``b`` is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the mean Silhouette Coefficient over all samples. To obtain the values for each sample, use :func:`silhouette_samples`. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Negative values generally indicate that a sample has been assigned to the wrong cluster, as a different cluster is more similar. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] Predicted labels for each sample. metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`metrics.pairwise.pairwise_distances <sklearn.metrics.pairwise.pairwise_distances>`. If X is the distance array itself, use ``metric="precomputed"``. sample_size : int or None The size of the sample to use when computing the Silhouette Coefficient on a random subset of the data. If ``sample_size is None``, no sampling is used. random_state : integer or numpy.RandomState, optional The generator used to randomly select a subset of samples if ``sample_size is not None``. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a scipy.spatial.distance metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : float Mean Silhouette Coefficient for all samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ n_labels = len(np.unique(labels)) n_samples = X.shape[0] if not 1 < n_labels < n_samples: raise ValueError("Number of labels is %d. Valid values are 2 " "to n_samples - 1 (inclusive)" % n_labels) if sample_size is not None: random_state = check_random_state(random_state) indices = random_state.permutation(X.shape[0])[:sample_size] if metric == "precomputed": X, labels = X[indices].T[indices].T, labels[indices] else: X, labels = X[indices], labels[indices] return np.mean(silhouette_samples(X, labels, metric=metric, **kwds)) def silhouette_samples(X, labels, metric='euclidean', **kwds): """Compute the Silhouette Coefficient for each sample. The Silhouette Coefficient is a measure of how well samples are clustered with samples that are similar to themselves. Clustering models with a high Silhouette Coefficient are said to be dense, where samples in the same cluster are similar to each other, and well separated, where samples in different clusters are not very similar to each other. The Silhouette Coefficient is calculated using the mean intra-cluster distance (``a``) and the mean nearest-cluster distance (``b``) for each sample. The Silhouette Coefficient for a sample is ``(b - a) / max(a, b)``. Note that Silhouette Coefficent is only defined if number of labels is 2 <= n_labels <= n_samples - 1. This function returns the Silhouette Coefficient for each sample. The best value is 1 and the worst value is -1. Values near 0 indicate overlapping clusters. Read more in the :ref:`User Guide <silhouette_coefficient>`. Parameters ---------- X : array [n_samples_a, n_samples_a] if metric == "precomputed", or, \ [n_samples_a, n_features] otherwise Array of pairwise distances between samples, or a feature array. labels : array, shape = [n_samples] label values for each sample metric : string, or callable The metric to use when calculating distance between instances in a feature array. If metric is a string, it must be one of the options allowed by :func:`sklearn.metrics.pairwise.pairwise_distances`. If X is the distance array itself, use "precomputed" as the metric. `**kwds` : optional keyword parameters Any further parameters are passed directly to the distance function. If using a ``scipy.spatial.distance`` metric, the parameters are still metric dependent. See the scipy docs for usage examples. Returns ------- silhouette : array, shape = [n_samples] Silhouette Coefficient for each samples. References ---------- .. [1] `Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis". Computational and Applied Mathematics 20: 53-65. <http://www.sciencedirect.com/science/article/pii/0377042787901257>`_ .. [2] `Wikipedia entry on the Silhouette Coefficient <http://en.wikipedia.org/wiki/Silhouette_(clustering)>`_ """ distances = pairwise_distances(X, metric=metric, **kwds) n = labels.shape[0] A = np.array([_intra_cluster_distance(distances[i], labels, i) for i in range(n)]) B = np.array([_nearest_cluster_distance(distances[i], labels, i) for i in range(n)]) sil_samples = (B - A) / np.maximum(A, B) return sil_samples def _intra_cluster_distance(distances_row, labels, i): """Calculate the mean intra-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is excluded from calculation and used to determine the current label Returns ------- a : float Mean intra-cluster distance for sample i """ mask = labels == labels[i] mask[i] = False if not np.any(mask): # cluster of size 1 return 0 a = np.mean(distances_row[mask]) return a def _nearest_cluster_distance(distances_row, labels, i): """Calculate the mean nearest-cluster distance for sample i. Parameters ---------- distances_row : array, shape = [n_samples] Pairwise distance matrix between sample i and each sample. labels : array, shape = [n_samples] label values for each sample i : int Sample index being calculated. It is used to determine the current label. Returns ------- b : float Mean nearest-cluster distance for sample i """ label = labels[i] b = np.min([np.mean(distances_row[labels == cur_label]) for cur_label in set(labels) if not cur_label == label]) return b
bsd-3-clause
oztalha/Islamicity
islamicity.py
1
1051
# by Talha Oz # @tozCSS import pandas as pd from countrycode import countrycode #Extracted the table using Tabula from Rehman, Scheherazade S., and Hossein Askari. # “How Islamic Are Islamic Countries?” Global Economy Journal 10, no. 2 (May 21, 2010) # http://www.degruyter.com/abstract/j/gej.2010.10.2/gej.2010.10.2.1614/gej.2010.10.2.1614.xml islam = pd.read_csv('Islamicity.csv') ccodes = countrycode(codes=[ct.strip() for ct in islam.Country.tolist()], origin='country_name', target='iso2c') # saved it as CSV and uploaded to Google Fusion Tables # Scraped list from http://en.wikipedia.org/wiki/Member_states_of_the_Organisation_of_Islamic_Cooperation using kimono results = json.load(urllib.urlopen("https://www.kimonolabs.com/api/bdhe04wo?apikey=VPXUp7hOkUYDIL3wC8GVMHFQcOW3O7HC")) r = results.get('results').get('collection1') oic = [ct[u'oic_countries'][u'text'] for ct in r] oic_codes = countrycode(codes=oic, origin='country_name', target='iso2c') # saved it as CSV and uploaded this to Google Fusion Tables as well
mit
vermouthmjl/scikit-learn
sklearn/neighbors/tests/test_approximate.py
55
19053
""" Testing for the approximate neighbor search using Locality Sensitive Hashing Forest module (sklearn.neighbors.LSHForest). """ # Author: Maheshakya Wijewardena, Joel Nothman import numpy as np import scipy.sparse as sp from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_array_less from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_not_equal from sklearn.utils.testing import assert_warns_message from sklearn.utils.testing import ignore_warnings from sklearn.metrics.pairwise import pairwise_distances from sklearn.neighbors import LSHForest from sklearn.neighbors import NearestNeighbors def test_neighbors_accuracy_with_n_candidates(): # Checks whether accuracy increases as `n_candidates` increases. n_candidates_values = np.array([.1, 50, 500]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_candidates_values.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, n_candidates in enumerate(n_candidates_values): lshf = LSHForest(n_candidates=n_candidates) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") def test_neighbors_accuracy_with_n_estimators(): # Checks whether accuracy increases as `n_estimators` increases. n_estimators = np.array([1, 10, 100]) n_samples = 100 n_features = 10 n_iter = 10 n_points = 5 rng = np.random.RandomState(42) accuracies = np.zeros(n_estimators.shape[0], dtype=float) X = rng.rand(n_samples, n_features) for i, t in enumerate(n_estimators): lshf = LSHForest(n_candidates=500, n_estimators=t) ignore_warnings(lshf.fit)(X) for j in range(n_iter): query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_points, return_distance=False) distances = pairwise_distances(query, X, metric='cosine') ranks = np.argsort(distances)[0, :n_points] intersection = np.intersect1d(ranks, neighbors).shape[0] ratio = intersection / float(n_points) accuracies[i] = accuracies[i] + ratio accuracies[i] = accuracies[i] / float(n_iter) # Sorted accuracies should be equal to original accuracies assert_true(np.all(np.diff(accuracies) >= 0), msg="Accuracies are not non-decreasing.") # Highest accuracy should be strictly greater than the lowest assert_true(np.ptp(accuracies) > 0, msg="Highest accuracy is not strictly greater than lowest.") @ignore_warnings def test_kneighbors(): # Checks whether desired number of neighbors are returned. # It is guaranteed to return the requested number of neighbors # if `min_hash_match` is set to 0. Returned distances should be # in ascending order. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) # Test unfitted estimator assert_raises(ValueError, lshf.kneighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=False) # Desired number of neighbors should be returned. assert_equal(neighbors.shape[1], n_neighbors) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=True) assert_equal(neighbors.shape[0], n_queries) assert_equal(distances.shape[0], n_queries) # Test only neighbors neighbors = lshf.kneighbors(queries, n_neighbors=1, return_distance=False) assert_equal(neighbors.shape[0], n_queries) # Test random point(not in the data set) query = rng.randn(n_features).reshape(1, -1) lshf.kneighbors(query, n_neighbors=1, return_distance=False) # Test n_neighbors at initialization neighbors = lshf.kneighbors(query, return_distance=False) assert_equal(neighbors.shape[1], 5) # Test `neighbors` has an integer dtype assert_true(neighbors.dtype.kind == 'i', msg="neighbors are not in integer dtype.") def test_radius_neighbors(): # Checks whether Returned distances are less than `radius` # At least one point should be returned when the `radius` is set # to mean distance from the considering point to other points in # the database. # Moreover, this test compares the radius neighbors of LSHForest # with the `sklearn.neighbors.NearestNeighbors`. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() # Test unfitted estimator assert_raises(ValueError, lshf.radius_neighbors, X[0]) ignore_warnings(lshf.fit)(X) for i in range(n_iter): # Select a random point in the dataset as the query query = X[rng.randint(0, n_samples)].reshape(1, -1) # At least one neighbor should be returned when the radius is the # mean distance from the query to the points of the dataset. mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=False) assert_equal(neighbors.shape, (1,)) assert_equal(neighbors.dtype, object) assert_greater(neighbors[0].shape[0], 0) # All distances to points in the results of the radius query should # be less than mean_dist distances, neighbors = lshf.radius_neighbors(query, radius=mean_dist, return_distance=True) assert_array_less(distances[0], mean_dist) # Multiple points n_queries = 5 queries = X[rng.randint(0, n_samples, n_queries)] distances, neighbors = lshf.radius_neighbors(queries, return_distance=True) # dists and inds should not be 1D arrays or arrays of variable lengths # hence the use of the object dtype. assert_equal(distances.shape, (n_queries,)) assert_equal(distances.dtype, object) assert_equal(neighbors.shape, (n_queries,)) assert_equal(neighbors.dtype, object) # Compare with exact neighbor search query = X[rng.randint(0, n_samples)].reshape(1, -1) mean_dist = np.mean(pairwise_distances(query, X, metric='cosine')) nbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) distances_exact, _ = nbrs.radius_neighbors(query, radius=mean_dist) distances_approx, _ = lshf.radius_neighbors(query, radius=mean_dist) # Radius-based queries do not sort the result points and the order # depends on the method, the random_state and the dataset order. Therefore # we need to sort the results ourselves before performing any comparison. sorted_dists_exact = np.sort(distances_exact[0]) sorted_dists_approx = np.sort(distances_approx[0]) # Distances to exact neighbors are less than or equal to approximate # counterparts as the approximate radius query might have missed some # closer neighbors. assert_true(np.all(np.less_equal(sorted_dists_exact, sorted_dists_approx))) @ignore_warnings def test_radius_neighbors_boundary_handling(): X = [[0.999, 0.001], [0.5, 0.5], [0, 1.], [-1., 0.001]] n_points = len(X) # Build an exact nearest neighbors model as reference model to ensure # consistency between exact and approximate methods nnbrs = NearestNeighbors(algorithm='brute', metric='cosine').fit(X) # Build a LSHForest model with hyperparameter values that always guarantee # exact results on this toy dataset. lsfh = LSHForest(min_hash_match=0, n_candidates=n_points).fit(X) # define a query aligned with the first axis query = [[1., 0.]] # Compute the exact cosine distances of the query to the four points of # the dataset dists = pairwise_distances(query, X, metric='cosine').ravel() # The first point is almost aligned with the query (very small angle), # the cosine distance should therefore be almost null: assert_almost_equal(dists[0], 0, decimal=5) # The second point form an angle of 45 degrees to the query vector assert_almost_equal(dists[1], 1 - np.cos(np.pi / 4)) # The third point is orthogonal from the query vector hence at a distance # exactly one: assert_almost_equal(dists[2], 1) # The last point is almost colinear but with opposite sign to the query # therefore it has a cosine 'distance' very close to the maximum possible # value of 2. assert_almost_equal(dists[3], 2, decimal=5) # If we query with a radius of one, all the samples except the last sample # should be included in the results. This means that the third sample # is lying on the boundary of the radius query: exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1) assert_array_equal(np.sort(exact_idx[0]), [0, 1, 2]) assert_array_equal(np.sort(approx_idx[0]), [0, 1, 2]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-1]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-1]) # If we perform the same query with a slightly lower radius, the third # point of the dataset that lay on the boundary of the previous query # is now rejected: eps = np.finfo(np.float64).eps exact_dists, exact_idx = nnbrs.radius_neighbors(query, radius=1 - eps) approx_dists, approx_idx = lsfh.radius_neighbors(query, radius=1 - eps) assert_array_equal(np.sort(exact_idx[0]), [0, 1]) assert_array_equal(np.sort(approx_idx[0]), [0, 1]) assert_array_almost_equal(np.sort(exact_dists[0]), dists[:-2]) assert_array_almost_equal(np.sort(approx_dists[0]), dists[:-2]) def test_distances(): # Checks whether returned neighbors are from closest to farthest. n_samples = 12 n_features = 2 n_iter = 10 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest() ignore_warnings(lshf.fit)(X) for i in range(n_iter): n_neighbors = rng.randint(0, n_samples) query = X[rng.randint(0, n_samples)].reshape(1, -1) distances, neighbors = lshf.kneighbors(query, n_neighbors=n_neighbors, return_distance=True) # Returned neighbors should be from closest to farthest, that is # increasing distance values. assert_true(np.all(np.diff(distances[0]) >= 0)) # Note: the radius_neighbors method does not guarantee the order of # the results. def test_fit(): # Checks whether `fit` method sets all attribute values correctly. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators) ignore_warnings(lshf.fit)(X) # _input_array = X assert_array_equal(X, lshf._fit_X) # A hash function g(p) for each tree assert_equal(n_estimators, len(lshf.hash_functions_)) # Hash length = 32 assert_equal(32, lshf.hash_functions_[0].components_.shape[0]) # Number of trees_ in the forest assert_equal(n_estimators, len(lshf.trees_)) # Each tree has entries for every data point assert_equal(n_samples, len(lshf.trees_[0])) # Original indices after sorting the hashes assert_equal(n_estimators, len(lshf.original_indices_)) # Each set of original indices in a tree has entries for every data point assert_equal(n_samples, len(lshf.original_indices_[0])) def test_partial_fit(): # Checks whether inserting array is consistent with fitted data. # `partial_fit` method should set all attribute values correctly. n_samples = 12 n_samples_partial_fit = 3 n_features = 2 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) X_partial_fit = rng.rand(n_samples_partial_fit, n_features) lshf = LSHForest() # Test unfitted estimator ignore_warnings(lshf.partial_fit)(X) assert_array_equal(X, lshf._fit_X) ignore_warnings(lshf.fit)(X) # Insert wrong dimension assert_raises(ValueError, lshf.partial_fit, np.random.randn(n_samples_partial_fit, n_features - 1)) ignore_warnings(lshf.partial_fit)(X_partial_fit) # size of _input_array = samples + 1 after insertion assert_equal(lshf._fit_X.shape[0], n_samples + n_samples_partial_fit) # size of original_indices_[1] = samples + 1 assert_equal(len(lshf.original_indices_[0]), n_samples + n_samples_partial_fit) # size of trees_[1] = samples + 1 assert_equal(len(lshf.trees_[1]), n_samples + n_samples_partial_fit) def test_hash_functions(): # Checks randomness of hash functions. # Variance and mean of each hash function (projection vector) # should be different from flattened array of hash functions. # If hash functions are not randomly built (seeded with # same value), variances and means of all functions are equal. n_samples = 12 n_features = 2 n_estimators = 5 rng = np.random.RandomState(42) X = rng.rand(n_samples, n_features) lshf = LSHForest(n_estimators=n_estimators, random_state=rng.randint(0, np.iinfo(np.int32).max)) ignore_warnings(lshf.fit)(X) hash_functions = [] for i in range(n_estimators): hash_functions.append(lshf.hash_functions_[i].components_) for i in range(n_estimators): assert_not_equal(np.var(hash_functions), np.var(lshf.hash_functions_[i].components_)) for i in range(n_estimators): assert_not_equal(np.mean(hash_functions), np.mean(lshf.hash_functions_[i].components_)) def test_candidates(): # Checks whether candidates are sufficient. # This should handle the cases when number of candidates is 0. # User should be warned when number of candidates is less than # requested number of neighbors. X_train = np.array([[5, 5, 2], [21, 5, 5], [1, 1, 1], [8, 9, 1], [6, 10, 2]], dtype=np.float32) X_test = np.array([7, 10, 3], dtype=np.float32).reshape(1, -1) # For zero candidates lshf = LSHForest(min_hash_match=32) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (3, 32)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=3) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=3) assert_equal(distances.shape[1], 3) # For candidates less than n_neighbors lshf = LSHForest(min_hash_match=31) ignore_warnings(lshf.fit)(X_train) message = ("Number of candidates is not sufficient to retrieve" " %i neighbors with" " min_hash_match = %i. Candidates are filled up" " uniformly from unselected" " indices." % (5, 31)) assert_warns_message(UserWarning, message, lshf.kneighbors, X_test, n_neighbors=5) distances, neighbors = lshf.kneighbors(X_test, n_neighbors=5) assert_equal(distances.shape[1], 5) def test_graphs(): # Smoke tests for graph methods. n_samples_sizes = [5, 10, 20] n_features = 3 rng = np.random.RandomState(42) for n_samples in n_samples_sizes: X = rng.rand(n_samples, n_features) lshf = LSHForest(min_hash_match=0) ignore_warnings(lshf.fit)(X) kneighbors_graph = lshf.kneighbors_graph(X) radius_neighbors_graph = lshf.radius_neighbors_graph(X) assert_equal(kneighbors_graph.shape[0], n_samples) assert_equal(kneighbors_graph.shape[1], n_samples) assert_equal(radius_neighbors_graph.shape[0], n_samples) assert_equal(radius_neighbors_graph.shape[1], n_samples) def test_sparse_input(): # note: Fixed random state in sp.rand is not supported in older scipy. # The test should succeed regardless. X1 = sp.rand(50, 100) X2 = sp.rand(10, 100) forest_sparse = LSHForest(radius=1, random_state=0).fit(X1) forest_dense = LSHForest(radius=1, random_state=0).fit(X1.A) d_sparse, i_sparse = forest_sparse.kneighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.kneighbors(X2.A, return_distance=True) assert_almost_equal(d_sparse, d_dense) assert_almost_equal(i_sparse, i_dense) d_sparse, i_sparse = forest_sparse.radius_neighbors(X2, return_distance=True) d_dense, i_dense = forest_dense.radius_neighbors(X2.A, return_distance=True) assert_equal(d_sparse.shape, d_dense.shape) for a, b in zip(d_sparse, d_dense): assert_almost_equal(a, b) for a, b in zip(i_sparse, i_dense): assert_almost_equal(a, b)
bsd-3-clause
buguen/pylayers
pylayers/antprop/tests/test_reciprocity.py
2
1761
from pylayers.antprop.rays import * from pylayers.gis.layout import * from pylayers.antprop.signature import Signatures import pylayers.signal.bsignal as bs import pylayers.signal.waveform as wvf from pylayers.simul.link import * import matplotlib.pyplot as plt import time print "=======================" print " start test_reciprocity.py " print "=======================" S1 = DLink(L='defstr.ini') S2 = DLink(L='defstr.ini') S1.a=array([759,1114,1.0]) S1.b=array([767,1114,1.5]) S2.a=array([767,1114,1.5]) S2.b=array([759,1114,1.0]) fGHz =np.arange(2,11,0.1) wav = wvf.Waveform(fcGHz=5,bandGHz=3) # # Dans un sens # S1.eval(force=1) S2.eval(force=1) ###### ####### puis dans l'autre ####### ######print "second rayon" #print '##############' #print '# reciprocal #' #print '##############' # #r2d2 = r2d.reciprocal() ####### get new reciprocal r3d #r3d2 = r2d2.to3D(S.L) #r3d2.locbas(S.L) # #r3d2.fillinter(S.L) #C2=r3d2.eval(fGHz) ######C2.sort() #sc2=C2.prop2tran() #sc2.sort() #chw2 = sc2.apply(wav.sfg) #rir2 = chw2.rir(Nz=500,ffts=1) #plt.imshow(rir2,interpolation='nearest',cmap=plt.cm.jet) #plt.axis('auto') #plt.figure() #plt.imshow(np.log10(abs(rir2)),interpolation='nearest',cmap=plt.cm.jet) #plt.axis('auto') ## sc2=C2.prop2tran() ## chw = sc2.apply(wav.sfg) ## cir = chw.rir(Nz=500,ffts=1) ## plt.imshow(cir.y[:,0,0,:],interpolation='nearest') ## plt.axis('auto') ## cir2 = sc2.applywavB(wav.sfg) ####### #######print r3d1[2]['sig'][:,:,0] #######print r3d2[2]['sig'][:,:,1] ####### ####### #r3d1.check_reciprocity(r3d2) #C1.check_reciprocity(C2) ## plt.figure() ## plt.plot(cir1.x,cir1.y[0,0,:],'b',cir2.x,cir2.y[0,0,:],'r') ## plt.axis('auto') ## plt.figure() ## plt.plot(cir1.x,cir1.y[0,0,:],'b',cir2.x,cir2.y[0,0,:],'r') ## plt.axis('auto')
lgpl-3.0
NSLS-II-XPD/ipython_ophyd
archived/profile_collection-dev/ipython_config.py
2
23016
# Configuration file for ipython. #------------------------------------------------------------------------------ # Configurable configuration #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # InteractiveShellApp configuration #------------------------------------------------------------------------------ # A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # The following methods should be called by the :meth:`initialize` method of the # subclass: # # - :meth:`init_path` # - :meth:`init_shell` (to be implemented by the subclass) # - :meth:`init_gui_pylab` # - :meth:`init_extensions` # - :meth:`init_code` # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.InteractiveShellApp.pylab_import_all = True # A file to be run # c.InteractiveShellApp.file_to_run = '' # Configure matplotlib for interactive use with the default matplotlib backend. # c.InteractiveShellApp.matplotlib = None # List of files to run at IPython startup. # c.InteractiveShellApp.exec_files = traitlets.Undefined # Execute the given command string. # c.InteractiveShellApp.code_to_run = '' # dotted module name of an IPython extension to load. # c.InteractiveShellApp.extra_extension = '' # Reraise exceptions encountered loading IPython extensions? # c.InteractiveShellApp.reraise_ipython_extension_failures = False # Run the module as a script. # c.InteractiveShellApp.module_to_run = '' # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.InteractiveShellApp.hide_initial_ns = True # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.InteractiveShellApp.exec_PYTHONSTARTUP = True # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'osx', # 'pyglet', 'qt', 'qt5', 'tk', 'wx'). # c.InteractiveShellApp.gui = None # lines of code to run at IPython startup. # c.InteractiveShellApp.exec_lines = traitlets.Undefined # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.InteractiveShellApp.pylab = None # A list of dotted module names of IPython extensions to load. # c.InteractiveShellApp.extensions = traitlets.Undefined #------------------------------------------------------------------------------ # SingletonConfigurable configuration #------------------------------------------------------------------------------ # A configurable that only allows one instance. # # This class is for classes that should only have one instance of itself or # *any* subclass. To create and retrieve such a class use the # :meth:`SingletonConfigurable.instance` method. #------------------------------------------------------------------------------ # Application configuration #------------------------------------------------------------------------------ # This is an application. # The Logging format template # c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' # The date format used by logging formatters for %(asctime)s # c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' # Set the log level by value or name. # c.Application.log_level = 30 #------------------------------------------------------------------------------ # BaseIPythonApplication configuration #------------------------------------------------------------------------------ # IPython: an enhanced interactive Python shell. # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.BaseIPythonApplication.copy_config_files = False # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. # c.BaseIPythonApplication.ipython_dir = '' # Whether to create profile dir if it doesn't exist # c.BaseIPythonApplication.auto_create = False # The IPython profile to use. # c.BaseIPythonApplication.profile = 'default' # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.BaseIPythonApplication.extra_config_file = '' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.BaseIPythonApplication.verbose_crash = False # Whether to overwrite existing config files when copying # c.BaseIPythonApplication.overwrite = False #------------------------------------------------------------------------------ # TerminalIPythonApp configuration #------------------------------------------------------------------------------ # Start IPython quickly by skipping the loading of config files. # c.TerminalIPythonApp.quick = False # Whether to display a banner upon starting IPython. # c.TerminalIPythonApp.display_banner = True # If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. # c.TerminalIPythonApp.force_interact = False #------------------------------------------------------------------------------ # InteractiveShell configuration #------------------------------------------------------------------------------ # An enhanced, interactive shell for Python. # The part of the banner to be printed after the profile # c.InteractiveShell.banner2 = '' # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.InteractiveShell.ast_node_interactivity = 'last_expr' # Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. # c.InteractiveShell.logstart = False # Save multi-line entries as one entry in readline history # c.InteractiveShell.multiline_history = True # # c.InteractiveShell.wildcards_case_sensitive = True # # c.InteractiveShell.readline_use = True # # c.InteractiveShell.quiet = False # # c.InteractiveShell.readline_remove_delims = '-/~' # # c.InteractiveShell.separate_out = '' # # c.InteractiveShell.history_length = 10000 # # c.InteractiveShell.ipython_dir = '' # If True, anything that would be passed to the pager will be displayed as # regular output instead. # c.InteractiveShell.display_page = False # Deprecated, will be removed in IPython 5.0, use PromptManager.in_template # c.InteractiveShell.prompt_in1 = 'In [\\#]: ' # Enable magic commands to be called without the leading %. # c.InteractiveShell.automagic = True # Don't call post-execute functions that have failed in the past. # c.InteractiveShell.disable_failing_post_execute = False # Deprecated, will be removed in IPython 5.0, use PromptManager.in2_template # c.InteractiveShell.prompt_in2 = ' .\\D.: ' # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.InteractiveShell.ast_transformers = traitlets.Undefined # The name of the logfile to use. # c.InteractiveShell.logfile = '' # Show rewritten input, e.g. for autocall. # c.InteractiveShell.show_rewritten_input = True # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.InteractiveShell.cache_size = 1000 # Autoindent IPython code entered interactively. # c.InteractiveShell.autoindent = True # # c.InteractiveShell.object_info_string_level = 0 # **Deprecated** # # Will be removed in IPython 6.0 # # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). `deep_reload` # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.InteractiveShell.deep_reload = False # # c.InteractiveShell.readline_parse_and_bind = traitlets.Undefined # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.InteractiveShell.autocall = 0 # Deprecated, will be removed in IPython 5.0, use PromptManager.justify # c.InteractiveShell.prompts_pad_left = True # # c.InteractiveShell.debug = False # Set the color scheme (NoColor, Linux, or LightBG). # c.InteractiveShell.colors = 'Linux' # Deprecated, will be removed in IPython 5.0, use PromptManager.out_template # c.InteractiveShell.prompt_out = 'Out[\\#]: ' # # c.InteractiveShell.separate_in = '\n' # Automatically call the pdb debugger after every exception. # c.InteractiveShell.pdb = False # # c.InteractiveShell.separate_out2 = '' # Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. # c.InteractiveShell.logappend = '' # The part of the banner to be printed before the profile # c.InteractiveShell.banner1 = 'Python 3.4.4 |Continuum Analytics, Inc.| (default, Jan 11 2016, 13:54:01) \nType "copyright", "credits" or "license" for more information.\n\nIPython 4.2.0 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.InteractiveShell.color_info = True # # c.InteractiveShell.xmode = 'Context' # The number of saved history entries to be loaded into the readline buffer at # startup. # c.InteractiveShell.history_load_length = 1000 #------------------------------------------------------------------------------ # TerminalInteractiveShell configuration #------------------------------------------------------------------------------ # Enable auto setting the terminal title. # c.TerminalInteractiveShell.term_title = False # The shell program to be used for paging. # c.TerminalInteractiveShell.pager = 'less' # auto editing of files with syntax errors. # c.TerminalInteractiveShell.autoedit_syntax = False # Number of lines of your screen, used to control printing of very long strings. # Strings longer than this number of lines will be sent through a pager instead # of directly printed. The default value for this is 0, which means IPython # will auto-detect your screen size every time it needs to print certain # potentially long strings (this doesn't change the behavior of the 'print' # keyword, it's only triggered internally). If for some reason this isn't # working well (it needs curses support), specify it yourself. Otherwise don't # change the default. # c.TerminalInteractiveShell.screen_length = 0 # Set the editor used by IPython (default to $EDITOR/vi/notepad). # c.TerminalInteractiveShell.editor = 'vi' # Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. # c.TerminalInteractiveShell.confirm_exit = True #------------------------------------------------------------------------------ # PromptManager configuration #------------------------------------------------------------------------------ # This is the primary interface for producing IPython's prompts. # Input prompt. '\#' will be transformed to the prompt number # c.PromptManager.in_template = 'In [\\#]: ' # Output prompt. '\#' will be transformed to the prompt number # c.PromptManager.out_template = 'Out[\\#]: ' # # c.PromptManager.color_scheme = 'Linux' # Continuation prompt. # c.PromptManager.in2_template = ' .\\D.: ' # If True (default), each prompt will be right-aligned with the preceding one. # c.PromptManager.justify = True #------------------------------------------------------------------------------ # LoggingConfigurable configuration #------------------------------------------------------------------------------ # A parent class for Configurables that log. # # Subclasses have a log trait, and the default behavior is to get the logger # from the currently running Application. #------------------------------------------------------------------------------ # HistoryAccessorBase configuration #------------------------------------------------------------------------------ # An abstract class for History Accessors #------------------------------------------------------------------------------ # HistoryAccessor configuration #------------------------------------------------------------------------------ # Access the history database without adding to it. # # This is intended for use by standalone history tools. IPython shells use # HistoryManager, below, which is a subclass of this. # Options for configuring the SQLite connection # # These options are passed as keyword args to sqlite3.connect when establishing # database conenctions. # c.HistoryAccessor.connection_options = traitlets.Undefined # enable the SQLite history # # set enabled=False to disable the SQLite history, in which case there will be # no stored history, no SQLite connection, and no background saving thread. # This may be necessary in some threaded environments where IPython is embedded. # c.HistoryAccessor.enabled = True # Path to file to use for SQLite history database. # # By default, IPython will put the history database in the IPython profile # directory. If you would rather share one history among profiles, you can set # this value in each, so that they are consistent. # # Due to an issue with fcntl, SQLite is known to misbehave on some NFS mounts. # If you see IPython hanging, try setting this to something on a local disk, # e.g:: # # ipython --HistoryManager.hist_file=/tmp/ipython_hist.sqlite # c.HistoryAccessor.hist_file = '' #------------------------------------------------------------------------------ # HistoryManager configuration #------------------------------------------------------------------------------ # A class to organize all history-related functionality in one place. # Should the history database include output? (default: no) # c.HistoryManager.db_log_output = False # Write to database every x commands (higher values save disk access & power). # Values of 1 or less effectively disable caching. # c.HistoryManager.db_cache_size = 0 #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = '' #------------------------------------------------------------------------------ # BaseFormatter configuration #------------------------------------------------------------------------------ # A base formatter class that is configurable. # # This formatter should usually be used as the base class of all formatters. It # is a traited :class:`Configurable` class and includes an extensible API for # users to determine how their objects are formatted. The following logic is # used to find a function to format an given object. # # 1. The object is introspected to see if it has a method with the name # :attr:`print_method`. If is does, that object is passed to that method # for formatting. # 2. If no print method is found, three internal dictionaries are consulted # to find print method: :attr:`singleton_printers`, :attr:`type_printers` # and :attr:`deferred_printers`. # # Users should use these dictionaries to register functions that will be used to # compute the format data for their objects (if those objects don't have the # special print methods). The easiest way of using these dictionaries is through # the :meth:`for_type` and :meth:`for_type_by_name` methods. # # If no function/callable is found to compute the format data, ``None`` is # returned and this format type is not used. # # c.BaseFormatter.enabled = True # # c.BaseFormatter.singleton_printers = traitlets.Undefined # # c.BaseFormatter.deferred_printers = traitlets.Undefined # # c.BaseFormatter.type_printers = traitlets.Undefined #------------------------------------------------------------------------------ # PlainTextFormatter configuration #------------------------------------------------------------------------------ # The default pretty-printer. # # This uses :mod:`IPython.lib.pretty` to compute the format data of the object. # If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.lib.pretty` for details on how to write pretty # printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') # # c.PlainTextFormatter.verbose = False # # c.PlainTextFormatter.max_width = 79 # Truncate large collections (lists, dicts, tuples, sets) to this size. # # Set to 0 to disable truncation. # c.PlainTextFormatter.max_seq_length = 1000 # # c.PlainTextFormatter.pprint = True # # c.PlainTextFormatter.float_precision = '' # # c.PlainTextFormatter.newline = '\n' #------------------------------------------------------------------------------ # Completer configuration #------------------------------------------------------------------------------ # Activate greedy completion # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. # c.Completer.greedy = False #------------------------------------------------------------------------------ # IPCompleter configuration #------------------------------------------------------------------------------ # Extension of the completer class with IPython-specific features # Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. # c.IPCompleter.omit__names = 2 # Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. # c.IPCompleter.merge_completions = True # Instruct the completer to use __all__ for the completion # # Specifically, when completing on ``object.<tab>``. # # When True: only those names in obj.__all__ will be included. # # When False [default]: the __all__ attribute is ignored # c.IPCompleter.limit_to__all__ = False #------------------------------------------------------------------------------ # Magics configuration #------------------------------------------------------------------------------ # Base class for implementing magic functions. # # Shell functions which can be reached as %function_name. All magic functions # should accept a string, which they can parse for their own needs. This can # make some functions easier to type, eg `%cd ../` vs. `%cd("../")` # # Classes providing magic functions need to subclass this class, and they MUST: # # - Use the method decorators `@line_magic` and `@cell_magic` to decorate # individual methods as magic functions, AND # # - Use the class decorator `@magics_class` to ensure that the magic # methods are properly registered at the instance level upon instance # initialization. # # See :mod:`magic_functions` for examples of actual implementation classes. #------------------------------------------------------------------------------ # ScriptMagics configuration #------------------------------------------------------------------------------ # Magics for talking to scripts # # This defines a base `%%script` cell magic for running a cell with a program in # a subprocess, and registers a few top-level magics that call %%script with # common interpreters. # Dict mapping short 'ruby' names to full paths, such as '/opt/secret/bin/ruby' # # Only necessary for items in script_magics where the default path will not find # the right interpreter. # c.ScriptMagics.script_paths = traitlets.Undefined # Extra script cell magics to define # # This generates simple wrappers of `%%script foo` as `%%foo`. # # If you want to add script magics that aren't on your path, specify them in # script_paths # c.ScriptMagics.script_magics = traitlets.Undefined #------------------------------------------------------------------------------ # StoreMagics configuration #------------------------------------------------------------------------------ # Lightweight persistence for python variables. # # Provides the %store magic. # If True, any %store-d variables will be automatically restored when IPython # starts. # c.StoreMagics.autorestore = False
bsd-2-clause
anntzer/scipy
scipy/spatial/_spherical_voronoi.py
5
13698
""" Spherical Voronoi Code .. versionadded:: 0.18.0 """ # # Copyright (C) Tyler Reddy, Ross Hemsley, Edd Edmondson, # Nikolai Nowaczyk, Joe Pitt-Francis, 2015. # # Distributed under the same BSD license as SciPy. # import warnings import numpy as np import scipy from . import _voronoi from scipy.spatial import cKDTree __all__ = ['SphericalVoronoi'] def calculate_solid_angles(R): """Calculates the solid angles of plane triangles. Implements the method of Van Oosterom and Strackee [VanOosterom]_ with some modifications. Assumes that input points have unit norm.""" # Original method uses a triple product `R1 . (R2 x R3)` for the numerator. # This is equal to the determinant of the matrix [R1 R2 R3], which can be # computed with better stability. numerator = np.linalg.det(R) denominator = 1 + (np.einsum('ij,ij->i', R[:, 0], R[:, 1]) + np.einsum('ij,ij->i', R[:, 1], R[:, 2]) + np.einsum('ij,ij->i', R[:, 2], R[:, 0])) return np.abs(2 * np.arctan2(numerator, denominator)) class SphericalVoronoi: """ Voronoi diagrams on the surface of a sphere. .. versionadded:: 0.18.0 Parameters ---------- points : ndarray of floats, shape (npoints, ndim) Coordinates of points from which to construct a spherical Voronoi diagram. radius : float, optional Radius of the sphere (Default: 1) center : ndarray of floats, shape (ndim,) Center of sphere (Default: origin) threshold : float Threshold for detecting duplicate points and mismatches between points and sphere parameters. (Default: 1e-06) Attributes ---------- points : double array of shape (npoints, ndim) the points in `ndim` dimensions to generate the Voronoi diagram from radius : double radius of the sphere center : double array of shape (ndim,) center of the sphere vertices : double array of shape (nvertices, ndim) Voronoi vertices corresponding to points regions : list of list of integers of shape (npoints, _ ) the n-th entry is a list consisting of the indices of the vertices belonging to the n-th point in points Methods ------- calculate_areas Calculates the areas of the Voronoi regions. For 2D point sets, the regions are circular arcs. The sum of the areas is `2 * pi * radius`. For 3D point sets, the regions are spherical polygons. The sum of the areas is `4 * pi * radius**2`. Raises ------ ValueError If there are duplicates in `points`. If the provided `radius` is not consistent with `points`. Notes ----- The spherical Voronoi diagram algorithm proceeds as follows. The Convex Hull of the input points (generators) is calculated, and is equivalent to their Delaunay triangulation on the surface of the sphere [Caroli]_. The Convex Hull neighbour information is then used to order the Voronoi region vertices around each generator. The latter approach is substantially less sensitive to floating point issues than angle-based methods of Voronoi region vertex sorting. Empirical assessment of spherical Voronoi algorithm performance suggests quadratic time complexity (loglinear is optimal, but algorithms are more challenging to implement). References ---------- .. [Caroli] Caroli et al. Robust and Efficient Delaunay triangulations of points on or close to a sphere. Research Report RR-7004, 2009. .. [VanOosterom] Van Oosterom and Strackee. The solid angle of a plane triangle. IEEE Transactions on Biomedical Engineering, 2, 1983, pp 125--126. See Also -------- Voronoi : Conventional Voronoi diagrams in N dimensions. Examples -------- Do some imports and take some points on a cube: >>> import matplotlib.pyplot as plt >>> from scipy.spatial import SphericalVoronoi, geometric_slerp >>> from mpl_toolkits.mplot3d import proj3d >>> # set input data >>> points = np.array([[0, 0, 1], [0, 0, -1], [1, 0, 0], ... [0, 1, 0], [0, -1, 0], [-1, 0, 0], ]) Calculate the spherical Voronoi diagram: >>> radius = 1 >>> center = np.array([0, 0, 0]) >>> sv = SphericalVoronoi(points, radius, center) Generate plot: >>> # sort vertices (optional, helpful for plotting) >>> sv.sort_vertices_of_regions() >>> t_vals = np.linspace(0, 1, 2000) >>> fig = plt.figure() >>> ax = fig.add_subplot(111, projection='3d') >>> # plot the unit sphere for reference (optional) >>> u = np.linspace(0, 2 * np.pi, 100) >>> v = np.linspace(0, np.pi, 100) >>> x = np.outer(np.cos(u), np.sin(v)) >>> y = np.outer(np.sin(u), np.sin(v)) >>> z = np.outer(np.ones(np.size(u)), np.cos(v)) >>> ax.plot_surface(x, y, z, color='y', alpha=0.1) >>> # plot generator points >>> ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='b') >>> # plot Voronoi vertices >>> ax.scatter(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2], ... c='g') >>> # indicate Voronoi regions (as Euclidean polygons) >>> for region in sv.regions: ... n = len(region) ... for i in range(n): ... start = sv.vertices[region][i] ... end = sv.vertices[region][(i + 1) % n] ... result = geometric_slerp(start, end, t_vals) ... ax.plot(result[..., 0], ... result[..., 1], ... result[..., 2], ... c='k') >>> ax.azim = 10 >>> ax.elev = 40 >>> _ = ax.set_xticks([]) >>> _ = ax.set_yticks([]) >>> _ = ax.set_zticks([]) >>> fig.set_size_inches(4, 4) >>> plt.show() """ def __init__(self, points, radius=1, center=None, threshold=1e-06): if radius is None: radius = 1. warnings.warn('`radius` is `None`. ' 'This will raise an error in a future version. ' 'Please provide a floating point number ' '(i.e. `radius=1`).', DeprecationWarning) self.radius = float(radius) self.points = np.array(points).astype(np.double) self._dim = self.points.shape[1] if center is None: self.center = np.zeros(self._dim) else: self.center = np.array(center, dtype=float) # test degenerate input self._rank = np.linalg.matrix_rank(self.points - self.points[0], tol=threshold * self.radius) if self._rank < self._dim: raise ValueError("Rank of input points must be at least {0}".format(self._dim)) if cKDTree(self.points).query_pairs(threshold * self.radius): raise ValueError("Duplicate generators present.") radii = np.linalg.norm(self.points - self.center, axis=1) max_discrepancy = np.abs(radii - self.radius).max() if max_discrepancy >= threshold * self.radius: raise ValueError("Radius inconsistent with generators.") self._calc_vertices_regions() def _calc_vertices_regions(self): """ Calculates the Voronoi vertices and regions of the generators stored in self.points. The vertices will be stored in self.vertices and the regions in self.regions. This algorithm was discussed at PyData London 2015 by Tyler Reddy, Ross Hemsley and Nikolai Nowaczyk """ # get Convex Hull conv = scipy.spatial.ConvexHull(self.points) # get circumcenters of Convex Hull triangles from facet equations # for 3D input circumcenters will have shape: (2N-4, 3) self.vertices = self.radius * conv.equations[:, :-1] + self.center self._simplices = conv.simplices # calculate regions from triangulation # for 3D input simplex_indices will have shape: (2N-4,) simplex_indices = np.arange(len(self._simplices)) # for 3D input tri_indices will have shape: (6N-12,) tri_indices = np.column_stack([simplex_indices] * self._dim).ravel() # for 3D input point_indices will have shape: (6N-12,) point_indices = self._simplices.ravel() # for 3D input indices will have shape: (6N-12,) indices = np.argsort(point_indices, kind='mergesort') # for 3D input flattened_groups will have shape: (6N-12,) flattened_groups = tri_indices[indices].astype(np.intp) # intervals will have shape: (N+1,) intervals = np.cumsum(np.bincount(point_indices + 1)) # split flattened groups to get nested list of unsorted regions groups = [list(flattened_groups[intervals[i]:intervals[i + 1]]) for i in range(len(intervals) - 1)] self.regions = groups def sort_vertices_of_regions(self): """Sort indices of the vertices to be (counter-)clockwise ordered. Raises ------ TypeError If the points are not three-dimensional. Notes ----- For each region in regions, it sorts the indices of the Voronoi vertices such that the resulting points are in a clockwise or counterclockwise order around the generator point. This is done as follows: Recall that the n-th region in regions surrounds the n-th generator in points and that the k-th Voronoi vertex in vertices is the circumcenter of the k-th triangle in self._simplices. For each region n, we choose the first triangle (=Voronoi vertex) in self._simplices and a vertex of that triangle not equal to the center n. These determine a unique neighbor of that triangle, which is then chosen as the second triangle. The second triangle will have a unique vertex not equal to the current vertex or the center. This determines a unique neighbor of the second triangle, which is then chosen as the third triangle and so forth. We proceed through all the triangles (=Voronoi vertices) belonging to the generator in points and obtain a sorted version of the vertices of its surrounding region. """ if self._dim != 3: raise TypeError("Only supported for three-dimensional point sets") _voronoi.sort_vertices_of_regions(self._simplices, self.regions) def _calculate_areas_3d(self): self.sort_vertices_of_regions() sizes = [len(region) for region in self.regions] csizes = np.cumsum(sizes) num_regions = csizes[-1] # We create a set of triangles consisting of one point and two Voronoi # vertices. The vertices of each triangle are adjacent in the sorted # regions list. point_indices = [i for i, size in enumerate(sizes) for j in range(size)] nbrs1 = np.array([r for region in self.regions for r in region]) # The calculation of nbrs2 is a vectorized version of: # np.array([r for region in self.regions for r in np.roll(region, 1)]) nbrs2 = np.roll(nbrs1, 1) indices = np.roll(csizes, 1) indices[0] = 0 nbrs2[indices] = nbrs1[csizes - 1] # Normalize points and vertices. pnormalized = (self.points - self.center) / self.radius vnormalized = (self.vertices - self.center) / self.radius # Create the complete set of triangles and calculate their solid angles triangles = np.hstack([pnormalized[point_indices], vnormalized[nbrs1], vnormalized[nbrs2] ]).reshape((num_regions, 3, 3)) triangle_solid_angles = calculate_solid_angles(triangles) # Sum the solid angles of the triangles in each region solid_angles = np.cumsum(triangle_solid_angles)[csizes - 1] solid_angles[1:] -= solid_angles[:-1] # Get polygon areas using A = omega * r**2 return solid_angles * self.radius**2 def _calculate_areas_2d(self): # Find start and end points of arcs arcs = self.points[self._simplices] - self.center # Calculate the angle subtended by arcs cosine = np.einsum('ij,ij->i', arcs[:, 0], arcs[:, 1]) sine = np.abs(np.linalg.det(arcs)) theta = np.arctan2(sine, cosine) # Get areas using A = r * theta areas = self.radius * theta # Correct arcs which go the wrong way (single-hemisphere inputs) signs = np.sign(np.einsum('ij,ij->i', arcs[:, 0], self.vertices - self.center)) indices = np.where(signs < 0) areas[indices] = 2 * np.pi * self.radius - areas[indices] return areas def calculate_areas(self): """Calculates the areas of the Voronoi regions. For 2D point sets, the regions are circular arcs. The sum of the areas is `2 * pi * radius`. For 3D point sets, the regions are spherical polygons. The sum of the areas is `4 * pi * radius**2`. .. versionadded:: 1.5.0 Returns ------- areas : double array of shape (npoints,) The areas of the Voronoi regions. """ if self._dim == 2: return self._calculate_areas_2d() elif self._dim == 3: return self._calculate_areas_3d() else: raise TypeError("Only supported for 2D and 3D point sets")
bsd-3-clause
nvoron23/scikit-learn
examples/semi_supervised/plot_label_propagation_digits.py
268
2723
""" =================================================== Label Propagation digits: Demonstrating performance =================================================== This example demonstrates the power of semisupervised learning by training a Label Spreading model to classify handwritten digits with sets of very few labels. The handwritten digit dataset has 1797 total points. The model will be trained using all points, but only 30 will be labeled. Results in the form of a confusion matrix and a series of metrics over each class will be very good. At the end, the top 10 most uncertain predictions will be shown. """ print(__doc__) # Authors: Clay Woolam <[email protected]> # Licence: BSD import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn import datasets from sklearn.semi_supervised import label_propagation from sklearn.metrics import confusion_matrix, classification_report digits = datasets.load_digits() rng = np.random.RandomState(0) indices = np.arange(len(digits.data)) rng.shuffle(indices) X = digits.data[indices[:330]] y = digits.target[indices[:330]] images = digits.images[indices[:330]] n_total_samples = len(y) n_labeled_points = 30 indices = np.arange(n_total_samples) unlabeled_set = indices[n_labeled_points:] # shuffle everything around y_train = np.copy(y) y_train[unlabeled_set] = -1 ############################################################################### # Learn with LabelSpreading lp_model = label_propagation.LabelSpreading(gamma=0.25, max_iter=5) lp_model.fit(X, y_train) predicted_labels = lp_model.transduction_[unlabeled_set] true_labels = y[unlabeled_set] cm = confusion_matrix(true_labels, predicted_labels, labels=lp_model.classes_) print("Label Spreading model: %d labeled & %d unlabeled points (%d total)" % (n_labeled_points, n_total_samples - n_labeled_points, n_total_samples)) print(classification_report(true_labels, predicted_labels)) print("Confusion matrix") print(cm) # calculate uncertainty values for each transduced distribution pred_entropies = stats.distributions.entropy(lp_model.label_distributions_.T) # pick the top 10 most uncertain labels uncertainty_index = np.argsort(pred_entropies)[-10:] ############################################################################### # plot f = plt.figure(figsize=(7, 5)) for index, image_index in enumerate(uncertainty_index): image = images[image_index] sub = f.add_subplot(2, 5, index + 1) sub.imshow(image, cmap=plt.cm.gray_r) plt.xticks([]) plt.yticks([]) sub.set_title('predict: %i\ntrue: %i' % ( lp_model.transduction_[image_index], y[image_index])) f.suptitle('Learning with small amount of labeled data') plt.show()
bsd-3-clause
f3r/scikit-learn
examples/linear_model/lasso_dense_vs_sparse_data.py
348
1862
""" ============================== Lasso on dense and sparse data ============================== We show that linear_model.Lasso provides the same results for dense and sparse data and that in the case of sparse data the speed is improved. """ print(__doc__) from time import time from scipy import sparse from scipy import linalg from sklearn.datasets.samples_generator import make_regression from sklearn.linear_model import Lasso ############################################################################### # The two Lasso implementations on Dense data print("--- Dense matrices") X, y = make_regression(n_samples=200, n_features=5000, random_state=0) X_sp = sparse.coo_matrix(X) alpha = 1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=1000) t0 = time() sparse_lasso.fit(X_sp, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(X, y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_)) ############################################################################### # The two Lasso implementations on Sparse data print("--- Sparse matrices") Xs = X.copy() Xs[Xs < 2.5] = 0.0 Xs = sparse.coo_matrix(Xs) Xs = Xs.tocsc() print("Matrix density : %s %%" % (Xs.nnz / float(X.size) * 100)) alpha = 0.1 sparse_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) dense_lasso = Lasso(alpha=alpha, fit_intercept=False, max_iter=10000) t0 = time() sparse_lasso.fit(Xs, y) print("Sparse Lasso done in %fs" % (time() - t0)) t0 = time() dense_lasso.fit(Xs.toarray(), y) print("Dense Lasso done in %fs" % (time() - t0)) print("Distance between coefficients : %s" % linalg.norm(sparse_lasso.coef_ - dense_lasso.coef_))
bsd-3-clause
Circumstellar/ChannelMaps
chmaps.py
1
9863
#!/usr/bin/env python # Reads everything from a config.yaml file located in the same directory. import argparse parser = argparse.ArgumentParser(description="Plot channel maps.") parser.add_argument("--config", default="config.yaml", help="The configuration file specifying defaults.") parser.add_argument("--measure", action="store_true", help="Just measure the basic properties, like the RMS and number of channels, so that you may add them into the config.yaml file.") parser.add_argument("--fmt", default="pdf", help="What file format to save the maps in.") args = parser.parse_args() import yaml f = open(args.config) config = yaml.load(f) f.close() # Do the measureing operations here import math import numpy as np import matplotlib import matplotlib.pyplot as plt import chmaps_common as common matplotlib.rc("contour", negative_linestyle="dashed") matplotlib.rc("axes", linewidth=0.5) matplotlib.rc("xtick.major", size=2) matplotlib.rc("ytick.major", size=2) from matplotlib.ticker import FormatStrFormatter as FSF from matplotlib.ticker import MaxNLocator from matplotlib.ticker import MultipleLocator import matplotlib.patheffects as path_effects if config["telescope"] == "ALMA": readfn = common.read_ALMA elif config["telescope"] == "SMA": readfn = common.read_SMA if args.measure: # Use the dataset to actually measure quantities like the maximum intensity and RMS # so that they can be replicated for the other types of measurements and put on the same scale. vs, data, header = readfn(config["data"]) # Now, think about truncating the channels low = config["trim"]["blue"] high = config["trim"]["red"] if high != 0: vs = vs[low:-high] data = data[low:-high] else: vs = vs[low:] data = data[low:] print("Data shape", data.shape) print("Average velocity", np.average(vs)) # Before truncation, try to measure an average RMS away from the emission. region = config["RMS_region"] print("RMS", np.std(data[:,0:region,0:region]), "Jy/beam") print("RMS", np.std(data[:,0:region,-region:-1]), "Jy/beam") print("RMS", np.std(data[:,-region:-1,-region:-1]), "Jy/beam") print("RMS", np.std(data[:,-region:-1,0:region]), "Jy/beam") # If we have the data, model, and residual specified, try determining the scaling factors from all of the channels, all of the datasets # else, just use the data try: all_data = [] for kw in ["data", "model", "resid"]: fname = config[kw] vs, data, header = readfn(fname) all_data.append(data) all_data = np.concatenate(all_data) except FileNotFoundError as e: vs, data, header = readfn(config["data"]) all_data = data vmin = np.min(all_data) vmax = np.max(all_data) vvmax = np.max(np.abs(all_data)) print("vvmax {:.4f}, vmin {:.4f}, vmax {:.4f}".format(vvmax, vmin, vmax)) import sys sys.exit() ax_size = 1.0 # in margin = 0.5 # in. sides and bottom nrows = config["nrows"] ncols = config["ncols"] radius = config["radius"]/3600. # [degrees] rms = config["RMS"] panel_width = ax_size * ncols # in panel_height = ax_size * nrows # in fig_width = panel_width + 2 * margin # in fig_height = panel_height + 2 * margin # in dx = ax_size / fig_width dy = ax_size / fig_height vvmax = config["vvmax"] norm = matplotlib.colors.Normalize(-vvmax, vvmax) cmap = plt.get_cmap("RdBu") mu_RA = config["mu_RA"] mu_DEC = config["mu_DEC"] # If the ellipse is specified, read it and plot it crosshairs = config.get("crosshairs", None) if crosshairs: a = crosshairs["major"] incl = crosshairs["incl"] PA = crosshairs["PA"] b = a * math.cos(incl * np.pi/180.) slope = math.tan(PA * np.pi/180.) print("slope", slope) # Because the crosshairs will be plotted on the channel map, where RA runs positive to the # left, we will use a separate coordinate for RA plotting. # if (PA > 0) and (PA < 90): x_a = np.linspace(-a * math.cos(PA * np.pi/180.), a * math.cos(PA * np.pi/180.)) RA_a = -x_a DEC_a = x_a * slope x_b = np.linspace(-b * math.sin(PA * np.pi/180.), b * math.sin(PA * np.pi/180.)) RA_b = -x_b DEC_b = -x_b / slope def plot_maps(fits_name, fname): try: vs, data, header = readfn(fits_name) except FileNotFoundError as e: print("Cannot load {}, continuing.".format(fits_name)) return if vs[-1] < vs[0]: print("Reversing velocity to be increasing.") vs = vs[::-1] data = data[::-1] # Now, think about truncating the channels low = config["trim"]["blue"] high = config["trim"]["red"] if high != 0: vs = vs[low:-high] data = data[low:-high] else: vs = vs[low:] data = data[low:] nchan = data.shape[0] dict = common.get_coords(data, header, radius, mu_RA, mu_DEC) RA = 3600 * dict["RA"] # [arcsec] DEC = 3600 * dict["DEC"] # [arcsec] decl, decr = dict["DEC_slice"] ral, rar = dict["RA_slice"] data = dict["data"] ext = (RA[0], RA[-1], DEC[0], DEC[-1]) # [arcsec] print("Extent", ext) # data = data[:, decl:decr, ral:rar] # Using the systemic velocity, normalize these to the interval [0, 1], with 0.5 being the middle corresponding to the systemic velocity. Note that in this case, it is not likely that v_min = 0.0 && v_max = 1.0. Either v_min or v_max will be greater than 0.0 or less than 1.0, respectively, unless the systemic velocity is perfectly centered. vsys = config["vsys"] v_cent = vs - vsys vrange = np.max(np.abs(v_cent)) vel_min = -vrange vel_max = vrange vel_fracs = 1 - (v_cent - vel_min)/(2 * vrange) # Get contour levels specific to this data/model/resid set vmin = np.min(data) vmax = np.max(data) levels = common.get_levels(rms, vmin, vmax) # print("3 sigma contour levels:", levels) fig = plt.figure(figsize=(fig_width, fig_height)) for row in range(nrows): for col in range(ncols): chan = row * ncols + col if chan >= nchan: continue xmin = (margin + ax_size * col)/fig_width ymin = 1.0 - ((margin + ax_size * (row + 1))/fig_height) rect = [xmin, ymin, dx, dy] ax = fig.add_axes(rect) # cmap = make_cmap(vel_fracs[chan]) # print("Color", cmap(vel_fracs[chan])) # Plot image ax.imshow(data[chan], cmap=cmap, norm=norm, origin="lower", extent=ext) # Plot contours ax.contour(data[chan], origin="lower", levels=levels, linewidths=0.2, colors="black", extent=ext) if crosshairs: ax.plot(RA_a, DEC_a, lw=0.2, ls=":", color="0.2") ax.plot(RA_b, DEC_b, lw=0.2, ls="-", color="0.2") # Annotate the velocity text = ax.annotate("{:.1f}".format(vs[chan]), (0.1, 0.8), xycoords="axes fraction", size=5, color=cmap(vel_fracs[chan])) text.set_path_effects([path_effects.Stroke(linewidth=0.2, foreground='black'), path_effects.Normal()]) if row == 0 and col == 0: ax.annotate(r"$\textrm{km s}^{-1}$", (0.15, 0.6), xycoords="axes fraction", size=5) # Plot the beam if row == (nrows - 1) and col == 0: common.plot_beam(ax, header, xy=(0.75 * 3600 * radius,-0.75 * 3600 * radius)) # Actually create axis labels ax.set_xlabel(r"$\Delta \alpha$ [${}^{\prime\prime}$]", fontsize=8) ax.set_ylabel(r"$\Delta \delta$ [${}^{\prime\prime}$]", fontsize=8) ax.tick_params(axis='both', which='major', labelsize=8) # # ax.xaxis.set_major_formatter(FSF("%.0f")) # ax.yaxis.set_major_formatter(FSF("%.0f")) # ax.xaxis.set_major_locator(MultipleLocator(1.)) # ax.yaxis.set_major_locator(MultipleLocator(1.)) else: # Hide axis label and tick labels ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticklabels([]) fig.savefig(fname) def plot_spectrum(fits_name, fname): ''' Sum up all of the flux in each image to make a spatially-integrated line spectrum. ''' try: vs, data, header = readfn(fits_name) except FileNotFoundError as e: print("Cannot load {}, continuing.".format(fits_name)) return # We always want to display the data from blueshifted to redshifted. This means we want to # find out if the velocities are decreasing, and if so, switch them to increasing if vs[-1] < vs[0]: print("Reversing velocity to be increasing.") vs = vs[::-1] data = data[::-1] nchan = data.shape[0] dict = common.get_coords(data, header, radius, mu_RA, mu_DEC) RA = 3600 * dict["RA"] # [arcsec] DEC = 3600 * dict["DEC"] # [arcsec] decl, decr = dict["DEC_slice"] ral, rar = dict["RA_slice"] data = dict["data"] # Need to divide by how many pixels are in a beam, so that we get Jy/pixel vsys = config["vsys"] v_cent = vs - vsys print(data.shape) flux = np.sum(data, axis=(1,2)) fig, ax = plt.subplots(nrows=1) ax.plot(v_cent, flux, ls="steps-mid") ax.set_xlabel(r"$v$ [km/s]") ax.set_ylabel("Flux [Jy]") fig.savefig(fname) # Go through and plot data, model, and residuals. If the file doesn't exist, the routine will skip. plot_maps(config["data"], "data." + args.fmt) plot_maps(config["model"], "model." + args.fmt) plot_maps(config["resid"], "resid." + args.fmt) # plot_spectrum(config["data"], "spec_data.pdf") # plot_spectrum(config["model"], "spec_model.pdf") # plot_spectrum(config["resid"], "spec_resid.pdf")
mit
BrechtBa/plottools
plottools/cm/hotwater.py
1
13692
from matplotlib.colors import ListedColormap from numpy import nan, inf # Used to reconstruct the colormap in viscm parameters = {'xp': [1.2291944322885904, 15.686577994354849, 30.928398202273232, 36.957902166964374, 39.352619720280053, 37.854922859529893], 'yp': [-17.104696078108354, -28.200058582308117, -14.15860623697381, 0.48569724700903905, 13.595593405835402, 23.29120992542855], 'min_Jp': 9.74051896208, 'max_Jp': 59.6407185629} cm_data = [[ 0.06334758, 0.04767714, 0.20764926], [ 0.0668604 , 0.04840216, 0.21191903], [ 0.07037658, 0.0490898 , 0.21617819], [ 0.07389749, 0.04973982, 0.22042582], [ 0.07742434, 0.05035199, 0.22466091], [ 0.08096457, 0.05091956, 0.22889053], [ 0.08451233, 0.05144902, 0.23310476], [ 0.08806829, 0.05194035, 0.23730226], [ 0.09163313, 0.05239343, 0.24148177], [ 0.09520958, 0.0528058 , 0.24564459], [ 0.09879869, 0.05317664, 0.24978991], [ 0.10239764, 0.05350941, 0.25391239], [ 0.10600672, 0.05380415, 0.25801055], [ 0.10962615, 0.05406096, 0.26208286], [ 0.11325606, 0.05427998, 0.26612774], [ 0.11690003, 0.05445719, 0.27014746], [ 0.1205542 , 0.05459734, 0.27413598], [ 0.12421844, 0.05470086, 0.27809157], [ 0.12789261, 0.05476814, 0.28201255], [ 0.13157654, 0.05479966, 0.28589722], [ 0.13526997, 0.05479595, 0.28974386], [ 0.13897261, 0.05475763, 0.29355076], [ 0.14268604, 0.05468282, 0.29731803], [ 0.14640781, 0.05457496, 0.30104191], [ 0.15013739, 0.05443505, 0.30472063], [ 0.15387432, 0.05426399, 0.30835258], [ 0.15761816, 0.05406275, 0.31193617], [ 0.16136839, 0.05383237, 0.31546987], [ 0.1651245 , 0.05357394, 0.31895217], [ 0.16888596, 0.05328865, 0.32238164], [ 0.1726522 , 0.05297774, 0.32575692], [ 0.17642268, 0.05264248, 0.3290767 ], [ 0.18019683, 0.05228424, 0.33233977], [ 0.18397441, 0.05190387, 0.3355452 ], [ 0.18775467, 0.05150312, 0.33869179], [ 0.19153678, 0.05108387, 0.34177839], [ 0.19532021, 0.05064763, 0.34480416], [ 0.19910443, 0.05019595, 0.34776833], [ 0.20288891, 0.04973039, 0.35067022], [ 0.20667315, 0.04925253, 0.35350927], [ 0.21045667, 0.04876397, 0.35628499], [ 0.21423901, 0.04826632, 0.358997 ], [ 0.21801972, 0.04776117, 0.36164501], [ 0.22179838, 0.04725013, 0.36422884], [ 0.22557459, 0.04673477, 0.36674838], [ 0.229348 , 0.04621667, 0.36920361], [ 0.23311825, 0.04569736, 0.3715946 ], [ 0.23688503, 0.04517836, 0.37392151], [ 0.24064806, 0.04466115, 0.37618456], [ 0.24440706, 0.04414717, 0.37838406], [ 0.24816181, 0.0436378 , 0.38052038], [ 0.25191208, 0.0431344 , 0.38259396], [ 0.25565771, 0.04263825, 0.38460528], [ 0.25939854, 0.04215059, 0.3865549 ], [ 0.26313442, 0.04167259, 0.38844342], [ 0.26686525, 0.04120537, 0.39027148], [ 0.27059094, 0.04074996, 0.39203976], [ 0.27431143, 0.04030508, 0.39374899], [ 0.27802666, 0.0398711 , 0.39539992], [ 0.28173662, 0.03945441, 0.39699332], [ 0.2854413 , 0.0390555 , 0.39852999], [ 0.2891407 , 0.03867475, 0.40001076], [ 0.29283486, 0.03831249, 0.40143645], [ 0.2965238 , 0.03796897, 0.40280792], [ 0.30020759, 0.03764436, 0.404126 ], [ 0.30388629, 0.03733877, 0.40539157], [ 0.30755997, 0.03705225, 0.40660548], [ 0.31122873, 0.03678479, 0.40776859], [ 0.31489267, 0.03653631, 0.40888175], [ 0.31855185, 0.03630675, 0.40994582], [ 0.3222064 , 0.03609595, 0.41096166], [ 0.32585645, 0.03590364, 0.41193007], [ 0.32950214, 0.03572956, 0.41285189], [ 0.33314359, 0.03557341, 0.41372793], [ 0.33678094, 0.03543485, 0.41455897], [ 0.34041433, 0.03531353, 0.41534579], [ 0.34404389, 0.03520905, 0.41608917], [ 0.34766978, 0.03512098, 0.41678985], [ 0.35129214, 0.0350489 , 0.41744855], [ 0.35491111, 0.03499232, 0.418066 ], [ 0.35852685, 0.03495077, 0.41864287], [ 0.3621395 , 0.03492374, 0.41917986], [ 0.3657492 , 0.03491073, 0.4196776 ], [ 0.36935611, 0.03491119, 0.42013675], [ 0.37296037, 0.0349246 , 0.42055792], [ 0.37656213, 0.03495041, 0.4209417 ], [ 0.38016152, 0.03498806, 0.42128867], [ 0.3837587 , 0.03503698, 0.4215994 ], [ 0.38735379, 0.03509663, 0.42187443], [ 0.39094694, 0.03516642, 0.42211427], [ 0.39453828, 0.0352458 , 0.42231944], [ 0.39812795, 0.03533418, 0.42249041], [ 0.40171607, 0.035431 , 0.42262766], [ 0.40530277, 0.0355357 , 0.42273165], [ 0.40888809, 0.0356479 , 0.4228029 ], [ 0.41247224, 0.03576683, 0.42284173], [ 0.41605535, 0.03589193, 0.42284854], [ 0.41963751, 0.03602264, 0.42282371], [ 0.42321886, 0.0361584 , 0.42276761], [ 0.42679949, 0.03629868, 0.42268061], [ 0.43037952, 0.03644293, 0.42256303], [ 0.43395904, 0.03659062, 0.4224152 ], [ 0.43753815, 0.03674122, 0.42223744], [ 0.44111695, 0.03689422, 0.42203005], [ 0.44469553, 0.03704909, 0.42179331], [ 0.44827399, 0.03720534, 0.4215275 ], [ 0.4518524 , 0.03736247, 0.42123288], [ 0.45543084, 0.03752 , 0.4209097 ], [ 0.45900941, 0.03767745, 0.4205582 ], [ 0.46258817, 0.03783434, 0.42017862], [ 0.46616718, 0.03799028, 0.4197712 ], [ 0.46974651, 0.03814479, 0.41933615], [ 0.47332626, 0.03829737, 0.41887362], [ 0.47690648, 0.03844759, 0.41838382], [ 0.48048724, 0.03859504, 0.41786692], [ 0.48406859, 0.0387393 , 0.4173231 ], [ 0.48765059, 0.03887996, 0.41675252], [ 0.49123329, 0.03901664, 0.41615535], [ 0.49481674, 0.03914896, 0.41553173], [ 0.49840098, 0.03927654, 0.41488182], [ 0.50198607, 0.03939903, 0.41420574], [ 0.50557203, 0.03951606, 0.41350363], [ 0.5091589 , 0.03962732, 0.41277563], [ 0.51274673, 0.03973246, 0.41202183], [ 0.51633554, 0.03983116, 0.41124237], [ 0.51992537, 0.0399231 , 0.41043733], [ 0.52351627, 0.04000795, 0.40960679], [ 0.52710824, 0.04008545, 0.40875088], [ 0.53070131, 0.04015532, 0.40786969], [ 0.53429549, 0.04021731, 0.40696332], [ 0.53789081, 0.04027117, 0.40603183], [ 0.54148728, 0.04031665, 0.40507533], [ 0.54508492, 0.04035352, 0.40409389], [ 0.54868373, 0.04038156, 0.40308758], [ 0.55228372, 0.04040058, 0.40205647], [ 0.5558849 , 0.04041036, 0.40100064], [ 0.55948729, 0.04041074, 0.39992014], [ 0.56309087, 0.04040153, 0.39881503], [ 0.56669565, 0.04038259, 0.39768539], [ 0.57030163, 0.04035375, 0.39653126], [ 0.57390881, 0.04031489, 0.39535269], [ 0.57751722, 0.04026573, 0.39414962], [ 0.58112686, 0.0402062 , 0.39292215], [ 0.58473768, 0.0401363 , 0.39167036], [ 0.58834967, 0.04005594, 0.39039431], [ 0.59196282, 0.03996504, 0.38909403], [ 0.59557712, 0.03986355, 0.38776957], [ 0.59919256, 0.03975142, 0.38642097], [ 0.60280911, 0.03962862, 0.38504824], [ 0.60642675, 0.03949512, 0.38365143], [ 0.61004548, 0.03935093, 0.38223057], [ 0.61366525, 0.03919605, 0.38078568], [ 0.61728607, 0.03903051, 0.37931679], [ 0.62090789, 0.03885434, 0.37782392], [ 0.62453069, 0.03866759, 0.37630709], [ 0.62815445, 0.03847033, 0.37476633], [ 0.63177914, 0.03826264, 0.37320164], [ 0.63540472, 0.03804462, 0.37161305], [ 0.63903116, 0.03781638, 0.37000055], [ 0.64265844, 0.03757805, 0.36836417], [ 0.64628652, 0.03732977, 0.36670392], [ 0.64991535, 0.03707171, 0.36501978], [ 0.65354494, 0.03680393, 0.36331169], [ 0.65717526, 0.03652658, 0.36157961], [ 0.66080623, 0.03624002, 0.35982365], [ 0.66443779, 0.03594451, 0.35804381], [ 0.66806992, 0.03564027, 0.35624009], [ 0.67170256, 0.03532758, 0.35441247], [ 0.67533568, 0.03500673, 0.35256094], [ 0.67896921, 0.03467803, 0.35068548], [ 0.68260313, 0.0343418 , 0.34878608], [ 0.68623737, 0.03399838, 0.3468627 ], [ 0.68987188, 0.03364815, 0.34491533], [ 0.69350662, 0.03329149, 0.34294394], [ 0.69714152, 0.03292882, 0.34094848], [ 0.70077654, 0.03256056, 0.33892892], [ 0.70441162, 0.03218717, 0.33688522], [ 0.7080467 , 0.03180913, 0.33481734], [ 0.71168172, 0.03142694, 0.3327252 ], [ 0.71531661, 0.03104113, 0.33060877], [ 0.71895133, 0.03065224, 0.32846798], [ 0.72258579, 0.03026085, 0.32630275], [ 0.72621995, 0.02986757, 0.32411302], [ 0.72985373, 0.02947302, 0.32189871], [ 0.73348706, 0.02907787, 0.31965972], [ 0.73711987, 0.02868279, 0.31739597], [ 0.7407521 , 0.02828849, 0.31510735], [ 0.74438366, 0.02789574, 0.31279376], [ 0.74801449, 0.02750528, 0.31045508], [ 0.7516445 , 0.02711795, 0.30809118], [ 0.75527362, 0.02673455, 0.30570194], [ 0.75890177, 0.02635598, 0.3032872 ], [ 0.76252886, 0.02598314, 0.30084681], [ 0.76615481, 0.02561695, 0.29838061], [ 0.76977964, 0.02525791, 0.29588802], [ 0.77340318, 0.02490739, 0.29336914], [ 0.77702532, 0.0245665 , 0.29082383], [ 0.78064598, 0.02423635, 0.28825188], [ 0.78426506, 0.02391805, 0.28565305], [ 0.78788245, 0.02361278, 0.2830271 ], [ 0.79149806, 0.02332175, 0.28037377], [ 0.7951118 , 0.02304622, 0.27769277], [ 0.79872355, 0.02278747, 0.27498381], [ 0.8023332 , 0.02254687, 0.27224656], [ 0.80594065, 0.0223258 , 0.26948069], [ 0.80954578, 0.02212571, 0.26668583], [ 0.81314848, 0.02194809, 0.2638616 ], [ 0.81674864, 0.02179449, 0.26100757], [ 0.82034612, 0.02166651, 0.2581233 ], [ 0.82394098, 0.02156487, 0.25520748], [ 0.82753303, 0.02149164, 0.25225992], [ 0.83112203, 0.02144911, 0.24928052], [ 0.83470785, 0.02143911, 0.24626869], [ 0.83829034, 0.02146355, 0.24322381], [ 0.84186938, 0.02152438, 0.24014521], [ 0.8454448 , 0.02162365, 0.23703217], [ 0.84901646, 0.02176345, 0.23388393], [ 0.85258421, 0.02194596, 0.23069966], [ 0.85614815, 0.02217192, 0.22747701], [ 0.85970797, 0.02244453, 0.22421582], [ 0.86326339, 0.02276678, 0.22091562], [ 0.86681423, 0.02314115, 0.21757527], [ 0.87036031, 0.02357023, 0.21419359], [ 0.87390146, 0.02405668, 0.21076926], [ 0.87743748, 0.02460327, 0.20730089], [ 0.8809686 , 0.02521042, 0.20378433], [ 0.88449422, 0.02588333, 0.20022025], [ 0.88801412, 0.0266252 , 0.19660697], [ 0.89152806, 0.02743921, 0.19294251], [ 0.89503584, 0.02832862, 0.18922472], [ 0.89853741, 0.02929578, 0.18544999], [ 0.90203267, 0.03034339, 0.18161467], [ 0.90552105, 0.03147694, 0.177718 ], [ 0.9090023 , 0.03270019, 0.17375685], [ 0.91247616, 0.03401705, 0.1697277 ], [ 0.91594267, 0.03542982, 0.16562435], [ 0.91940148, 0.03694304, 0.16144277], [ 0.92285205, 0.03856246, 0.15717991], [ 0.92629411, 0.04029256, 0.15283036], [ 0.9297275 , 0.04208891, 0.14838643], [ 0.93315213, 0.04394793, 0.14383905], [ 0.93656726, 0.04587337, 0.13918364], [ 0.93997257, 0.04786426, 0.1344111 ], [ 0.94336796, 0.04991831, 0.12950803], [ 0.94675308, 0.05203472, 0.12446169], [ 0.95012726, 0.05421413, 0.11926072], [ 0.95349009, 0.05645569, 0.11388811], [ 0.95684173, 0.05875624, 0.10831624], [ 0.96018119, 0.06111767, 0.10252706], [ 0.96350801, 0.06353929, 0.09649019], [ 0.96682217, 0.06601885, 0.09016074], [ 0.97012287, 0.06855717, 0.08349422], [ 0.97340949, 0.07115419, 0.07642881], [ 0.97668194, 0.07380809, 0.06886982], [ 0.97993936, 0.07651969, 0.06070177], [ 0.98318108, 0.07928898, 0.05174878]] test_cm = ListedColormap(cm_data, name=__file__) if __name__ == "__main__": import matplotlib.pyplot as plt import numpy as np try: from viscm import viscm viscm(test_cm) except ImportError: print("viscm not found, falling back on simple display") plt.imshow(np.linspace(0, 100, 256)[None, :], aspect='auto', cmap=test_cm) plt.show()
gpl-2.0
Sentient07/scikit-learn
examples/classification/plot_classification_probability.py
138
2871
""" =============================== Plot classification probability =============================== Plot the classification probability for different classifiers. We use a 3 class dataset, and we classify it with a Support Vector classifier, L1 and L2 penalized logistic regression with either a One-Vs-Rest or multinomial setting, and Gaussian process classification. The logistic regression is not a multiclass classifier out of the box. As a result it can identify only the first class. """ print(__doc__) # Author: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import matplotlib.pyplot as plt import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn import datasets iris = datasets.load_iris() X = iris.data[:, 0:2] # we only take the first two features for visualization y = iris.target n_features = X.shape[1] C = 1.0 kernel = 1.0 * RBF([1.0, 1.0]) # for GPC # Create different classifiers. The logistic regression cannot do # multiclass out of the box. classifiers = {'L1 logistic': LogisticRegression(C=C, penalty='l1'), 'L2 logistic (OvR)': LogisticRegression(C=C, penalty='l2'), 'Linear SVC': SVC(kernel='linear', C=C, probability=True, random_state=0), 'L2 logistic (Multinomial)': LogisticRegression( C=C, solver='lbfgs', multi_class='multinomial'), 'GPC': GaussianProcessClassifier(kernel) } n_classifiers = len(classifiers) plt.figure(figsize=(3 * 2, n_classifiers * 2)) plt.subplots_adjust(bottom=.2, top=.95) xx = np.linspace(3, 9, 100) yy = np.linspace(1, 5, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] for index, (name, classifier) in enumerate(classifiers.items()): classifier.fit(X, y) y_pred = classifier.predict(X) classif_rate = np.mean(y_pred.ravel() == y.ravel()) * 100 print("classif_rate for %s : %f " % (name, classif_rate)) # View probabilities= probas = classifier.predict_proba(Xfull) n_classes = np.unique(y_pred).size for k in range(n_classes): plt.subplot(n_classifiers, n_classes, index * n_classes + k + 1) plt.title("Class %d" % k) if k == 0: plt.ylabel(name) imshow_handle = plt.imshow(probas[:, k].reshape((100, 100)), extent=(3, 9, 1, 5), origin='lower') plt.xticks(()) plt.yticks(()) idx = (y_pred == k) if idx.any(): plt.scatter(X[idx, 0], X[idx, 1], marker='o', c='k') ax = plt.axes([0.15, 0.04, 0.7, 0.05]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax, orientation='horizontal') plt.show()
bsd-3-clause
mne-tools/mne-tools.github.io
stable/_downloads/e2d6793c13f4efc273574a721815d5b9/20_seeg.py
10
7388
""" .. _tut_working_with_seeg: ====================== Working with sEEG data ====================== MNE supports working with more than just MEG and EEG data. Here we show some of the functions that can be used to facilitate working with stereoelectroencephalography (sEEG) data. This example shows how to use: - sEEG data - channel locations in MNI space - projection into a volume Note that our sample sEEG electrodes are already assumed to be in MNI space. If you want to map positions from your subject MRI space to MNI fsaverage space, you must apply the FreeSurfer's talairach.xfm transform for your dataset. You can take a look at :ref:`tut-freesurfer-mne` for more information. For an example that involves ECoG data, channel locations in a subject-specific MRI, or projection into a surface, see :ref:`tut_working_with_ecog`. In the ECoG example, we show how to visualize surface grid channels on the brain. """ # Authors: Eric Larson <[email protected]> # Adam Li <[email protected]> # # License: BSD (3-clause) import os.path as op import numpy as np import pandas as pd import mne from mne.datasets import fetch_fsaverage print(__doc__) # paths to mne datasets - sample sEEG and FreeSurfer's fsaverage subject # which is in MNI space misc_path = mne.datasets.misc.data_path() sample_path = mne.datasets.sample.data_path() subject = 'fsaverage' subjects_dir = sample_path + '/subjects' # use mne-python's fsaverage data fetch_fsaverage(subjects_dir=subjects_dir, verbose=True) # downloads if needed ############################################################################### # Let's load some sEEG electrode locations and names, and turn them into # a :class:`mne.channels.DigMontage` class. First, use pandas to read in the # ``.tsv`` file. # In mne-python, the electrode coordinates are required to be in meters elec_df = pd.read_csv(misc_path + '/seeg/sample_seeg_electrodes.tsv', sep='\t', header=0, index_col=None) ch_names = elec_df['name'].tolist() ch_coords = elec_df[['x', 'y', 'z']].to_numpy(dtype=float) # the test channel coordinates were in mm, so we convert them to meters ch_coords = ch_coords / 1000. # create dictionary of channels and their xyz coordinates (now in MNI space) ch_pos = dict(zip(ch_names, ch_coords)) # Ideally the nasion/LPA/RPA will also be present from the digitization, here # we use fiducials estimated from the subject's FreeSurfer MNI transformation: lpa, nasion, rpa = mne.coreg.get_mni_fiducials( subject, subjects_dir=subjects_dir) lpa, nasion, rpa = lpa['r'], nasion['r'], rpa['r'] ############################################################################### # Now we make a :class:`mne.channels.DigMontage` stating that the sEEG # contacts are in the FreeSurfer surface RAS (i.e., MRI) coordinate system # for the given subject. Keep in mind that ``fsaverage`` is special in that # it is already in MNI space. montage = mne.channels.make_dig_montage( ch_pos, coord_frame='mri', nasion=nasion, lpa=lpa, rpa=rpa) print('Created %s channel positions' % len(ch_names)) ############################################################################### # Now we get the :term:`trans` that transforms from our MRI coordinate system # to the head coordinate frame. This transform will be applied to the # data when applying the montage so that standard plotting functions like # :func:`mne.viz.plot_evoked_topomap` will be aligned properly. trans = mne.channels.compute_native_head_t(montage) print(trans) ############################################################################### # Now that we have our montage, we can load in our corresponding # time-series data and set the montage to the raw data. # first we'll load in the sample dataset raw = mne.io.read_raw_edf(misc_path + '/seeg/sample_seeg.edf') # drop bad channels raw.info['bads'].extend([ch for ch in raw.ch_names if ch not in ch_names]) raw.load_data() raw.drop_channels(raw.info['bads']) raw.crop(0, 2) # just process 2 sec of data for speed # attach montage raw.set_montage(montage) # set channel types to sEEG (instead of EEG) that have actual positions raw.set_channel_types( {ch_name: 'seeg' if np.isfinite(ch_pos[ch_name]).all() else 'misc' for ch_name in raw.ch_names}) ############################################################################### # Let's check to make sure everything is aligned. fig = mne.viz.plot_alignment(raw.info, trans, 'fsaverage', subjects_dir=subjects_dir, show_axes=True, surfaces=["pial", "head"]) ############################################################################### # Next, we'll get the raw data and plot its amplitude over time. raw.plot() ############################################################################### # We can visualize this raw data on the ``fsaverage`` brain (in MNI space) as # a heatmap. This works by first creating an ``Evoked`` data structure # from the data of interest (in this example, it is just the raw LFP). # Then one should generate a ``stc`` data structure, which will be able # to visualize source activity on the brain in various different formats. # get standard fsaverage volume (5mm grid) source space fname_src = op.join(subjects_dir, 'fsaverage', 'bem', 'fsaverage-vol-5-src.fif') vol_src = mne.read_source_spaces(fname_src) evoked = mne.EvokedArray(raw.get_data(), raw.info).crop(0, 1) # shorter stc = mne.stc_near_sensors( evoked, trans, subject, subjects_dir=subjects_dir, src=vol_src, verbose='error') # ignore missing electrode warnings stc = abs(stc) # just look at magnitude clim = dict(kind='value', lims=np.percentile(abs(evoked.data), [10, 50, 75])) ############################################################################### # Plot 3D source (brain region) visualization: # # By default, `stc.plot_3d() <mne.VolSourceEstimate.plot_3d>` will show a time # course of the source with the largest absolute value across any time point. # In this example, it is simply the source with the largest raw signal value. # Its location is marked on the brain by a small blue sphere. # sphinx_gallery_thumbnail_number = 4 brain = stc.plot_3d( src=vol_src, subjects_dir=subjects_dir, view_layout='horizontal', views=['axial', 'coronal', 'sagittal'], size=(800, 300), show_traces=0.4, clim=clim, add_data_kwargs=dict(colorbar_kwargs=dict(label_font_size=8))) # You can save a movie like the one on our documentation website with: # brain.save_movie(time_dilation=3, interpolation='linear', framerate=10, # time_viewer=True, filename='./mne-test-seeg.m4') ############################################################################### # In this tutorial, we used a BEM surface for the ``fsaverage`` subject from # FreeSurfer. # # For additional common analyses of interest, see the following: # # - For volumetric plotting options, including limiting to a specific area of # the volume specified by say an atlas, or plotting different types of # source visualizations see: # :ref:`tut-viz-stcs`. # - For extracting activation within a specific FreeSurfer volume and using # different FreeSurfer volumes, see: :ref:`tut-freesurfer-mne`. # - For working with BEM surfaces and using FreeSurfer, or mne to generate # them, see: :ref:`tut-forward`.
bsd-3-clause
FCH808/FCH808.github.io
Intro to Data Science/Project1_Part1.py
2
34015
# -*- coding: utf-8 -*- """ Created on Fri Dec 19 13:46:12 2014 @author: fch """ import pandas as pd import pandasql import csv filename="..\\data\\turnstile_data_master_with_weather.csv" ## Question 2.1 def num_rainy_days(filename): ''' This function should run a SQL query on a dataframe of weather data. The SQL query should return one column and one row - a count of the number of days in the dataframe where the rain column is equal to 1 (i.e., the number of days it rained). The dataframe will be titled 'weather_data'. You'll need to provide the SQL query. You might find SQL's count function useful for this exercise. You can read more about it here: https://dev.mysql.com/doc/refman/5.1/en/counting-rows.html You might also find that interpreting numbers as integers or floats may not work initially. In order to get around this issue, it may be equal to cast these numbers as integers. This can be done by writing cast(column as integer). So for example, if we wanted to cast the maxtempi column as an integer, we would actually write something like where cast(maxtempi as integer) = 76, as opposed to simply where maxtempi = 76. ''' weather_data = pd.read_csv(filename) weather_data.rename(columns = lambda x: x.replace(' ', '_').lower(), inplace=True) ## Correct Grader Solution: # q = """ # SELECT count(*) # FROM weather_data # WHERE cast(rain as integer) = 1 # """ ## ## Correct grader solution only works on the very small 30x70 dataframe with unique dates. ## Below query works on full turnstile dataset provided to us. q = """ SELECT COUNT(DISTINCT DATEn) as 'count(*)' FROM weather_data WHERE cast(rain as integer) = 1 """ #Execute your SQL command against the pandas frame rainy_days = pandasql.sqldf(q, locals()) return rainy_days #print num_rainy_days(filename) ## Question 2.2 def max_temp_aggregate_by_fog(filename): ''' This function should run a SQL query on a dataframe of weather data. The SQL query should return two columns and two rows - whether it was foggy or not (0 or 1) and the max maxtempi for that fog value (i.e., the maximum max temperature for both foggy and non-foggy days). The dataframe will be titled 'weather_data'. You'll need to provide the SQL query. You might also find that interpreting numbers as integers or floats may not work initially. In order to get around this issue, it may be useful to cast these numbers as integers. This can be done by writing cast(column as integer). So for example, if we wanted to cast the maxtempi column as an integer, we would actually write something like where cast(maxtempi as integer) = 76, as opposed to simply where maxtempi = 76. ''' weather_data = pd.read_csv(filename) weather_data.rename(columns = lambda x: x.replace(' ', '_').lower(), inplace=True) q = """ SELECT fog, max(cast (maxtempi as integer)) as MaxTemp FROM weather_data GROUP BY fog; """ #Execute your SQL command against the pandas frame rainy_days = pandasql.sqldf(q, locals()) return rainy_days # print max_temp_aggregate_by_fog(filename) def avg_min_temperature(filename): ''' This function should run a SQL query on a dataframe of weather data. The SQL query should return one column and one row - the average meantempi on days that are a Saturday or Sunday (i.e., the the average mean temperature on weekends). The dataframe will be titled 'weather_data' and the you can access the date in the dataframe via the 'date' column. You'll need to provide the SQL query. You might also find that interpreting numbers as integers or floats may not work initially. In order to get around this issue, it may be equal to cast these numbers as integers. This can be done by writing cast(column as integer). So for example, if we wanted to cast the maxtempi column as an integer, we would actually write something like where cast(maxtempi as integer) = 76, as opposed to simply where maxtempi = 76. Also, you can convert dates t\ the week via the 'strftime' keyword in SQL. For example, cast (strftime('%w', date) as integer) will return 0 if the date is a Sunday or 6 if the date is a Saturday. ''' weather_data = pd.read_csv(filename) weather_data.rename(columns = lambda x: x.replace(' ', '_').lower(), inplace=True) ## Correct Grader Solution: # q = """ # SELECT AVG(cast (meantempi as integer)) # FROM weather_data # WHERE cast (strftime('%w', date) as integer) in (0, 6) ## q = """ SELECT AVG(cast (meantempi as integer)) FROM weather_data WHERE cast (strftime('%w', DATEn) as integer) in (0, 6) """ #Execute your SQL command against the pandas frame mean_temp_weekends = pandasql.sqldf(q, locals()) return mean_temp_weekends #print avg_min_temperature(filename) def avg_min_temperature(filename): ''' This function should run a SQL query on a dataframe of weather data. More specifically you want to find the average minimum temperature on rainy days where the minimum temperature is greater than 55 degrees. You might also find that interpreting numbers as integers or floats may not work initially. In order to get around this issue, it may be equal to cast these numbers as integers. This can be done by writing cast(column as integer). So for example, if we wanted to cast the maxtempi column as an integer, we would actually write something like where cast(maxtempi as integer) = 76, as opposed to simply where maxtempi = 76. ''' weather_data = pd.read_csv(filename) weather_data.rename(columns = lambda x: x.replace(' ', '_').lower(), inplace=True) q = """ SELECT AVG(cast (mintempi as integer)) FROM weather_data WHERE mintempi > 55 AND rain = 1 """ #Execute your SQL command against the pandas frame mean_temp_weekends = pandasql.sqldf(q, locals()) return mean_temp_weekends #print avg_min_temperature(filename) def split_seq(seq, size): """ Split up seq in pieces of size """ return [seq[i:i+size] for i in range(0, len(seq), size)] filename=["turnstile_110528.txt"] def fix_turnstile_data(filenames): ''' Filenames is a list of MTA Subway turnstile text files. A link to an example MTA Subway turnstile text file can be seen at the URL below: http://web.mta.info/developers/data/nyct/turnstile/turnstile_110507.txt As you can see, there are numerous data points included in each row of the a MTA Subway turnstile text file. You want to write a function that will update each row in the text file so there is only one entry per row. A few examples below: A002,R051,02-00-00,05-28-11,00:00:00,REGULAR,003178521,001100739 A002,R051,02-00-00,05-28-11,04:00:00,REGULAR,003178541,001100746 A002,R051,02-00-00,05-28-11,08:00:00,REGULAR,003178559,001100775 Write the updates to a different text file in the format of "updated_" + filename. For example: 1) if you read in a text file called "turnstile_110521.txt" 2) you should write the updated data to "updated_turnstile_110521.txt" The order of the fields should be preserved. You can see a sample of the turnstile text file that's passed into this function and the the corresponding updated file in the links below: Sample input file: https://www.dropbox.com/s/mpin5zv4hgrx244/turnstile_110528.txt Sample updated file: https://www.dropbox.com/s/074xbgio4c39b7h/solution_turnstile_110528.txt ''' for one_file in filenames: with open(one_file, "r") as read_data: # Get rid of extra blank line. # Open outfile with mode 'wb' instead of 'w'. # The csv.writer writes \r\n into the file directly. # If you don't open the file in binary mode, # it will write \r\r\n because on Windows text mode will translate each \n into \r\n. with open("updated_{}".format(one_file), "wb") as write_data: reader = csv.reader(read_data) writer = csv.writer(write_data) for line in reader: header = line[:3] clean_line = [s.strip() for s in line] rest = [clean_line[i:i+5] for i in range(3, len(clean_line), 5)] for each_one in rest: writer.writerow(header + each_one) write_data.close() read_data.close() #fix_turnstile_data(filename) filenames = ["updated_turnstile_110528.txt", "updated_turnstile_110528.txt"] output_file = "output.txt" def create_master_turnstile_file(filenames, output_file): ''' Write a function that takes the files in the list filenames, which all have the columns 'C/A, UNIT, SCP, DATEn, TIMEn, DESCn, ENTRIESn, EXITSn', and consolidates them into one file located at output file. There should be ONE row with the column headers, located at the top of the file. For example, if file_1 has: 'C/A, UNIT, SCP, DATEn, TIMEn, DESCn, ENTRIESn, EXITSn' line 1 ... line 2 ... and another file, file_2 has: 'C/A, UNIT, SCP, DATEn, TIMEn, DESCn, ENTRIESn, EXITSn' line 3 ... line 4 ... line 5 ... We need to combine file_1 and file_2 into a master_file like below: 'C/A, UNIT, SCP, DATEn, TIMEn, DESCn, ENTRIESn, EXITSn' line 1 ... line 2 ... line 3 ... line 4 ... line 5 ... ''' with open(output_file, 'w') as master_file: master_file.write('C/A,UNIT,SCP,DATEn,TIMEn,DESCn,ENTRIESn,EXITSn\n') for filename in filenames: with open(filename, 'r') as f: ## discard header f.readline() content = f.read() master_file.write(content) f.close() master_file.close() # create_master_turnstile_file(filenames, output_file) filename = filename="output.txt" def filter_by_regular(filename): ''' This function should read the csv file located at filename into a pandas dataframe, and filter the dataframe to only rows where the 'DESCn' column has the value 'REGULAR'. For eample, if the pandas dataframe is as follows: ,C/A,UNIT,SCP,DATEn,TIMEn,DESCn,ENTRIESn,EXITSn 0,A002,R051,02-00-00,05-01-11,00:00:00,REGULAR,3144312,1088151 1,A002,R051,02-00-00,05-01-11,04:00:00,DOOR,3144335,1088159 2,A002,R051,02-00-00,05-01-11,08:00:00,REGULAR,3144353,1088177 3,A002,R051,02-00-00,05-01-11,12:00:00,DOOR,3144424,1088231 The dataframe will look like below after filtering to only rows where DESCn column has the value 'REGULAR': 0,A002,R051,02-00-00,05-01-11,00:00:00,REGULAR,3144312,1088151 2,A002,R051,02-00-00,05-01-11,08:00:00,REGULAR,3144353,1088177 ''' turnstile_data = pd.read_csv(filename) #for DESCn, row in turnstile_data.iterrows(): # if row['DESCn'] == 'REGULAR' turnstile_data = turnstile_data[turnstile_data.DESCn == 'REGULAR'] return turnstile_data #print filter_by_regular(filename) #filename = filename="output.txt" #df = pd.read_csv(filename) #df = df[(df['SCP'] == '02-00-00') & (df['C/A']=='A002') & (df['UNIT']=='R051')] def get_hourly_entries(df): ''' The data in the MTA Subway Turnstile data reports on the cumulative number of entries and exits per row. Assume that you have a dataframe called df that contains only the rows for a particular turnstile machine (i.e., unique SCP, C/A, and UNIT). This function should change these cumulative entry numbers to a count of entries since the last reading (i.e., entries since the last row in the dataframe). More specifically, you want to do two things: 1) Create a new column called ENTRIESn_hourly 2) Assign to the column the difference between ENTRIESn of the current row and the previous row. If there is any NaN, fill/replace it with 1. You may find the pandas functions shift() and fillna() to be helpful in this exercise. Examples of what your dataframe should look like at the end of this exercise: C/A UNIT SCP DATEn TIMEn DESCn ENTRIESn EXITSn ENTRIESn_hourly 0 A002 R051 02-00-00 05-01-11 00:00:00 REGULAR 3144312 1088151 1 1 A002 R051 02-00-00 05-01-11 04:00:00 REGULAR 3144335 1088159 23 2 A002 R051 02-00-00 05-01-11 08:00:00 REGULAR 3144353 1088177 18 3 A002 R051 02-00-00 05-01-11 12:00:00 REGULAR 3144424 1088231 71 4 A002 R051 02-00-00 05-01-11 16:00:00 REGULAR 3144594 1088275 170 5 A002 R051 02-00-00 05-01-11 20:00:00 REGULAR 3144808 1088317 214 6 A002 R051 02-00-00 05-02-11 00:00:00 REGULAR 3144895 1088328 87 7 A002 R051 02-00-00 05-02-11 04:00:00 REGULAR 3144905 1088331 10 8 A002 R051 02-00-00 05-02-11 08:00:00 REGULAR 3144941 1088420 36 9 A002 R051 02-00-00 05-02-11 12:00:00 REGULAR 3145094 1088753 153 10 A002 R051 02-00-00 05-02-11 16:00:00 REGULAR 3145337 1088823 243 ... ... ''' # print df df['temp'] = df.ENTRIESn.shift(1) # df['ENTRIESn_hourly'] = 0 # df['ENTRIESn_hourly'] = (df['ENTRIESn'] - df['temp']) # df = df.drop('ENTRIESn',1) del df['temp'] df['ENTRIESn_hourly'].fillna(1, inplace=True) return df #df = get_hourly_entries(df) #print df.head() ## Question 2.9 def get_hourly_exits(df): ''' The data in the MTA Subway Turnstile data reports on the cumulative number of entries and exits per row. Assume that you have a dataframe called df that contains only the rows for a particular turnstile machine (i.e., unique SCP, C/A, and UNIT). This function should change these cumulative exit numbers to a count of exits since the last reading (i.e., exits since the last row in the dataframe). More specifically, you want to do two things: 1) Create a new column called EXITSn_hourly 2) Assign to the column the difference between EXITSn of the current row and the previous row. If there is any NaN, fill/replace it with 0. You may find the pandas functions shift() and fillna() to be helpful in this exercise. Example dataframe below: Unnamed: 0 C/A UNIT SCP DATEn TIMEn DESCn ENTRIESn EXITSn ENTRIESn_hourly EXITSn_hourly 0 0 A002 R051 02-00-00 05-01-11 00:00:00 REGULAR 3144312 1088151 0 0 1 1 A002 R051 02-00-00 05-01-11 04:00:00 REGULAR 3144335 1088159 23 8 2 2 A002 R051 02-00-00 05-01-11 08:00:00 REGULAR 3144353 1088177 18 18 3 3 A002 R051 02-00-00 05-01-11 12:00:00 REGULAR 3144424 1088231 71 54 4 4 A002 R051 02-00-00 05-01-11 16:00:00 REGULAR 3144594 1088275 170 44 5 5 A002 R051 02-00-00 05-01-11 20:00:00 REGULAR 3144808 1088317 214 42 6 6 A002 R051 02-00-00 05-02-11 00:00:00 REGULAR 3144895 1088328 87 11 7 7 A002 R051 02-00-00 05-02-11 04:00:00 REGULAR 3144905 1088331 10 3 8 8 A002 R051 02-00-00 05-02-11 08:00:00 REGULAR 3144941 1088420 36 89 9 9 A002 R051 02-00-00 05-02-11 12:00:00 REGULAR 3145094 1088753 153 333 ''' df['temp'] = df.EXITSn.shift(1) df['EXITSn_hourly'] = (df['EXITSn'] - df['temp']) del df['temp'] df['EXITSn_hourly'].fillna(0, inplace=True) return df #df = get_hourly_exits(df) #print df.head() ## Question 2.10 #time = df['TIMEn'][0] def time_to_hour(time): ''' Given an input variable time that represents time in the format of: 00:00:00 (hour:minutes:seconds) Write a function to extract the hour part from the input variable time and return it as an integer. For example: 1) if hour is 00, your code should return 0 2) if hour is 01, your code should return 1 3) if hour is 21, your code should return 21 Please return hour as an integer. ''' hour = int(time[:2]) return hour #print "Time:", time_to_hour(time) ## Question 2.11 import datetime #date = df['DATEn'][0] def reformat_subway_dates(date): ''' The dates in our subway data are formatted in the format month-day-year. The dates in our weather underground data are formatted year-month-day. In order to join these two data sets together, we'll want the dates formatted the same way. Write a function that takes as its input a date in the MTA Subway data format, and returns a date in the weather underground format. Hint: There is a useful function in the datetime library called strptime. More info can be seen here: http://docs.python.org/2/library/datetime.html#datetime.datetime.strptime ''' date_formatted = datetime.datetime.strptime(date, "%m-%d-%y").strftime("%Y-%m-%d") return date_formatted #print "Old format: ", date #print "New format: ", reformat_subway_dates(date) ################################################################### ## Question 3.1 import numpy as np import matplotlib.pyplot as plt filename="..\\data\\turnstile_data_master_with_weather.csv" weather_data = pd.read_csv(filename) #print weather_data.head() def entries_histogram(turnstile_weather): ''' Before we perform any analysis, it might be useful to take a look at the data we're hoping to analyze. More specifically, let's examine the hourly entries in our NYC subway data and determine what distribution the data follows. This data is stored in a dataframe called turnstile_weather under the ['ENTRIESn_hourly'] column. Let's plot two histograms on the same axes to show hourly entries when raining vs. when not raining. Here's an example on how to plot histograms with pandas and matplotlib: turnstile_weather['column_to_graph'].hist() Your histograph may look similar to bar graph in the instructor notes below. You can read a bit about using matplotlib and pandas to plot histograms here: http://pandas.pydata.org/pandas-docs/stable/visualization.html#histograms You can see the information contained within the turnstile weather data here: https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv ''' plt.figure() turnstile_weather[turnstile_weather['rain'] == 0]['ENTRIESn_hourly'].hist(bins=200, label="No rain").set_xlim([0, 6000]) # your code here to plot a historgram for hourly entries when it is not raining turnstile_weather[turnstile_weather['rain'] == 1]['ENTRIESn_hourly'].hist(bins=200, label="Rain").set_xlim([0, 6000]) # your code here to plot a historgram for hourly entries when it is raining plt.legend() return plt #print entries_histogram(weather_data) ## Question 3.2 ## If we had a small sample size, we could not use Welch's T test, ## but since we have a sufficiently large enough sample size; ## we can use it although the Mann-Whitney would help bolster our claims ## since it is a non-parametric test used for non-normal distribution comparisons. ## Question 3.3 import scipy import scipy.stats def mann_whitney_plus_means(turnstile_weather): ''' This function will consume the turnstile_weather dataframe containing our final turnstile weather data. You will want to take the means and run the Mann Whitney U-test on the ENTRIESn_hourly column in the turnstile_weather dataframe. This function should return: 1) the mean of entries with rain 2) the mean of entries without rain 3) the Mann-Whitney U-statistic and p-value comparing the number of entries with rain and the number of entries without rain You should feel free to use scipy's Mann-Whitney implementation, and you might also find it useful to use numpy's mean function. Here are the functions' documentation: http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html You can look at the final turnstile weather data at the link below: https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv ''' with_rain = turnstile_weather[turnstile_weather['rain'] == 0]['ENTRIESn_hourly'].reset_index(drop=True) without_rain = turnstile_weather[turnstile_weather['rain'] == 1]['ENTRIESn_hourly'].reset_index(drop=True) U, p = scipy.stats.mannwhitneyu(without_rain, with_rain) return without_rain.mean(),with_rain.mean(), U, p # Grader output for means are reversed compared to instructions # print mann_whitney_plus_means(weather_data) ## Question 3.4 ## I ran the Mann-Whiteney U-test and \ ## got a difference with (p = 0.019) chance of the difference being due to chance; \ ## the result is statistically significant. ## We can reject the null hypothesis that two populations are the same. ## Question 3.5 import pandas from ggplot import * """ In this question, you need to: 1) implement the compute_cost() and gradient_descent() procedures 2) Select features (in the predictions procedure) and make predictions. """ def normalize_features(array): """ Normalize the features in the data set. """ mu = array.mean() sigma = array.std() array_normalized = (array - mu)/ sigma return array_normalized, mu, sigma def compute_cost(features, values, theta): """ Compute the cost function given a set of features / values, and the values for our thetas. This can be the same code as the compute_cost function in the lesson #3 exercises, but feel free to implement your own. """ m = len(values) sum_of_square_errors = np.square(np.dot(features, theta) - values).sum() cost = sum_of_square_errors / (2*m) return cost def gradient_descent(features, values, theta, alpha, num_iterations): """ Perform gradient descent given a data set with an arbitrary number of features. This can be the same gradient descent code as in the lesson #3 exercises, but feel free to implement your own. """ m = len(values) cost_history = [] for i in range(num_iterations): cost_history.append(compute_cost(features, values, theta)) theta = theta + (alpha/m)* np.dot((values - np.dot(features, theta)), features) return theta, pandas.Series(cost_history) def predictions(dataframe): ''' The NYC turnstile data is stored in a pandas dataframe called weather_turnstile. Using the information stored in the dataframe, let's predict the ridership of the NYC subway using linear regression with gradient descent. You can download the complete turnstile weather dataframe here: https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv Your prediction should have a R^2 value of 0.20 or better. You need to experiment using various input features contained in the dataframe. We recommend that you don't use the EXITSn_hourly feature as an input to the linear model because we cannot use it as a predictor: we cannot use exits counts as a way to predict entry counts. Note: Due to the memory and CPU limitation of our Amazon EC2 instance, we will give you a random subet (~15%) of the data contained in turnstile_data_master_with_weather.csv. You are encouraged to experiment with this computer on your own computer, locally. If you'd like to view a plot of your cost history, uncomment the call to plot_cost_history below. The slowdown from plotting is significant, so if you are timing out, the first thing to do is to comment out the plot command again. If you receive a "server has encountered an error" message, that means you are hitting the 30-second limit that's placed on running your program. Try using a smaller number for num_iterations if that's the case. If you are using your own algorithm/models, see if you can optimize your code so that it runs faster. ''' # Select Features (try different features!) features = dataframe[['rain', 'precipi', 'Hour', 'meantempi']] # Add UNIT to features using dummy variables dummy_units = pandas.get_dummies(dataframe['UNIT'], prefix='unit') features = features.join(dummy_units) # Values values = dataframe['ENTRIESn_hourly'] m = len(values) features, mu, sigma = normalize_features(features) features['ones'] = np.ones(m) # Add a column of 1s (y intercept) # Convert features and values to numpy arrays features_array = np.array(features) values_array = np.array(values) # Set values for alpha, number of iterations. alpha = 0.2 # please feel free to change this value num_iterations = 15 # please feel free to change this value # Initialize theta, perform gradient descent theta_gradient_descent = np.zeros(len(features.columns)) theta_gradient_descent, cost_history = gradient_descent(features_array, values_array, theta_gradient_descent, alpha, num_iterations) plot = None # ------------------------------------------------- # Uncomment the next line to see your cost history # ------------------------------------------------- plot = plot_cost_history(alpha, cost_history) # # Please note, there is a possibility that plotting # this in addition to your calculation will exceed # the 30 second limit on the compute servers. predictions = np.dot(features_array, theta_gradient_descent) return predictions, plot def plot_cost_history(alpha, cost_history): """This function is for viewing the plot of your cost history. You can run it by uncommenting this plot_cost_history(alpha, cost_history) call in predictions. If you want to run this locally, you should print the return value from this function. """ cost_df = pandas.DataFrame({ 'Cost_History': cost_history, 'Iteration': range(len(cost_history)) }) return ggplot(cost_df, aes('Iteration', 'Cost_History')) + \ geom_point() + ggtitle('Cost History for alpha = %.3f' % alpha ) filename="..\\data\\turnstile_data_master_with_weather.csv" weather_data = pd.read_csv(filename) #preds, plot1 = predictions(weather_data) #print preds #print plot1 ## Question 3.6 def plot_residuals(turnstile_weather, predictions): ''' Using the same methods that we used to plot a histogram of entries per hour for our data, why don't you make a histogram of the residuals (that is, the difference between the original hourly entry data and the predicted values). Based on this residual histogram, do you have any insight into how our model performed? Reading a bit on this webpage might be useful: http://www.itl.nist.gov/div898/handbook/pri/section2/pri24.htm ''' plt.figure() (turnstile_weather['ENTRIESn_hourly'] - predictions).hist(bins = 100) return plt #print plot_residuals(weather_data, preds) ## Question 3.7 import sys def compute_r_squared(data, predictions): ''' In exercise 5, we calculated the R^2 value for you. But why don't you try and and calculate the R^2 value yourself. Given a list of original data points, and also a list of predicted data points, write a function that will compute and return the coefficient of determination (R^2) for this data. numpy.mean() and numpy.sum() might both be useful here, but not necessary. Documentation about numpy.mean() and numpy.sum() below: http://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html http://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html ''' r_squared = 1 - np.sum(np.square(data - predictions)) / np.sum(np.square(data - np.mean(data))) #r_squared = 1 - np.square(data - predictions).sum() / np.square(data - np.mean(data)).sum() return r_squared #print "R^2: ", compute_r_squared(weather_data['ENTRIESn_hourly'], preds) ## Question 3.8 import statsmodels.formula.api as smf """ In this optional exercise, you should complete the function called predictions(turnstile_weather). This function takes in our pandas turnstile weather dataframe, and returns a set of predicted ridership values, based on the other information in the dataframe. In exercise 3.5 we used Gradient Descent in order to compute the coefficients theta used for the ridership prediction. Here you should attempt to implement another way of computing the coeffcients theta. You may also try using a reference implementation such as: http://statsmodels.sourceforge.net/devel/generated/statsmodels.regression.linear_model.OLS.html One of the advantages of the statsmodels implementation is that it gives you easy access to the values of the coefficients theta. This can help you infer relationships between variables in the dataset. You may also experiment with polynomial terms as part of the input variables. The following links might be useful: http://en.wikipedia.org/wiki/Ordinary_least_squares http://en.wikipedia.org/w/index.php?title=Linear_least_squares_(mathematics) http://en.wikipedia.org/wiki/Polynomial_regression This is your playground. Go wild! How does your choice of linear regression compare to linear regression with gradient descent computed in Exercise 3.5? You can look at the information contained in the turnstile_weather dataframe below: https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv Note: due to the memory and CPU limitation of our amazon EC2 instance, we will give you a random subset (~10%) of the data contained in turnstile_data_master_with_weather.csv If you receive a "server has encountered an error" message, that means you are hitting the 30 second limit that's placed on running your program. See if you can optimize your code so it runs faster. """ def predictions(weather_turnstile): #print weather_turnstile #unit_groups = weather_turnstile.groupby(['UNIT']) #weather_turnstile['popularity'] = unit_groups[['ENTRIESn_hourly']].transform(sum).sort('ENTRIESn_hourly', ascending=False) ## Not used in exercise problem. Hour here is 0-23 and much less predictive than hour in the version 2 of the dataset. model = smf.ols(formula="ENTRIESn_hourly ~ UNIT + C(Hour)", data=weather_turnstile) results = model.fit() predictions = results.predict() #print predictions #print results.summary() return predictions #pred2 = predictions(weather_data) ## Question 4.1/4.2 from pandas import * def plot_weather_data(turnstile_weather): ''' plot_weather_data is passed a dataframe called turnstile_weather. Use turnstile_weather along with ggplot to make a data visualization focused on the MTA and weather data we used in Project 3. You should feel free to implement something that we discussed in class (e.g., scatterplots, line plots, or histograms) or attempt to implement something more advanced if you'd like. Here are some suggestions for things to investigate and illustrate: * Ridership by time-of-day or day-of-week * How ridership varies by subway station * Which stations have more exits or entries at different times of day If you'd like to learn more about ggplot and its capabilities, take a look at the documentation at: https://pypi.python.org/pypi/ggplot/ You can check out the link https://www.dropbox.com/s/meyki2wl9xfa7yk/turnstile_data_master_with_weather.csv to see all the columns and data points included in the turnstile_weather dataframe. However, due to the limitation of our Amazon EC2 server, we will give you only about 1/3 of the actual data in the turnstile_weather dataframe. ''' ## The server encountered an error. Please try running again. encountered a lot. ## ggplot missing many features. Only basic plots shown for inbrowser exercises. ## Q4.1 plot = ggplot(turnstile_weather, aes('ENTRIESn_hourly', fill='rain')) + geom_bar(binwidth=100) + xlim(low=0, high=5000) + \ xlab("Hourly Entries - Bins of Size 100") + \ ylab("Hourly Entries - Count in each bin") + \ ggtitle("Hourly Entries Histogram - Rain vs. No Rain (Stacked)") ## Q. 4.2 plot2 = ggplot(weather_data, aes('Hour', 'ENTRIESn_hourly', fill='rain')) + geom_bar() + \ xlab("Hour of the day") + ggtitle("Distribution of ridership throughout the day - Rain (Blue) / No Rain (Red)") + ylab("Entries") return plot, plot2 #print plot_weather_data(weather_data)
mit
lesteve/joblib
examples/compressors_comparison.py
3
9085
""" =============================== Improving I/O using compressors =============================== This example compares the compressors available in Joblib. In the example, Zlib, LZMA and LZ4 compression only are used but Joblib also supports BZ2 and GZip compression methods. For each compared compression method, this example dumps and reloads a dataset fetched from an online machine-learning database. This gives 3 informations: the size on disk of the compressed data, the time spent to dump and the time spent to reload the data from disk. """ import os import os.path import time ############################################################################### # Get some data from real-world use cases # --------------------------------------- # # First fetch the benchmark dataset from an online machine-learning database # and load it in a pandas dataframe. import pandas as pd url = ("https://archive.ics.uci.edu/ml/machine-learning-databases/" "kddcup99-mld/kddcup.data.gz") names = ("duration, protocol_type, service, flag, src_bytes, " "dst_bytes, land, wrong_fragment, urgent, hot, " "num_failed_logins, logged_in, num_compromised, " "root_shell, su_attempted, num_root, " "num_file_creations, ").split(', ') data = pd.read_csv(url, names=names, nrows=1e6) ############################################################################### # Dump and load the dataset without compression # --------------------------------------------- # # This gives reference values for later comparison. from joblib import dump, load pickle_file = './pickle_data.joblib' ############################################################################### # Start by measuring the time spent for dumping the raw data: start = time.time() with open(pickle_file, 'wb') as f: dump(data, f) raw_dump_duration = time.time() - start print("Raw dump duration: %0.3fs" % raw_dump_duration) ############################################################################### # Then measure the size of the raw dumped data on disk: raw_file_size = os.stat(pickle_file).st_size / 1e6 print("Raw dump file size: %0.3fMB" % raw_file_size) ############################################################################### # Finally measure the time spent for loading the raw data: start = time.time() with open(pickle_file, 'rb') as f: load(f) raw_load_duration = time.time() - start print("Raw load duration: %0.3fs" % raw_load_duration) ############################################################################### # Dump and load the dataset using the Zlib compression method # ----------------------------------------------------------- # # The compression level is using the default value, 3, which is, in general, a # good compromise between compression and speed. ############################################################################### # Start by measuring the time spent for dumping of the zlib data: start = time.time() with open(pickle_file, 'wb') as f: dump(data, f, compress='zlib') zlib_dump_duration = time.time() - start print("Zlib dump duration: %0.3fs" % zlib_dump_duration) ############################################################################### # Then measure the size of the zlib dump data on disk: zlib_file_size = os.stat(pickle_file).st_size / 1e6 print("Zlib file size: %0.3fMB" % zlib_file_size) ############################################################################### # Finally measure the time spent for loading the compressed dataset: start = time.time() with open(pickle_file, 'rb') as f: load(f) zlib_load_duration = time.time() - start print("Zlib load duration: %0.3fs" % zlib_load_duration) ############################################################################### # .. note:: The compression format is detected automatically by Joblib. # The compression format is identified by the standard magic number present # at the beginning of the file. Joblib uses this information to determine # the compression method used. # This is the case for all compression methods supported by Joblib. ############################################################################### # Dump and load the dataset using the LZMA compression method # ----------------------------------------------------------- # # LZMA compression method has a very good compression rate but at the cost # of being very slow. # In this example, a light compression level, e.g. 3, is used to speed up a # bit the dump/load cycle. ############################################################################### # Start by measuring the time spent for dumping the lzma data: start = time.time() with open(pickle_file, 'wb') as f: dump(data, f, compress=('lzma', 3)) lzma_dump_duration = time.time() - start print("LZMA dump duration: %0.3fs" % lzma_dump_duration) ############################################################################### # Then measure the size of the lzma dump data on disk: lzma_file_size = os.stat(pickle_file).st_size / 1e6 print("LZMA file size: %0.3fMB" % lzma_file_size) ############################################################################### # Finally measure the time spent for loading the lzma data: start = time.time() with open(pickle_file, 'rb') as f: load(f) lzma_load_duration = time.time() - start print("LZMA load duration: %0.3fs" % lzma_load_duration) ############################################################################### # Dump and load the dataset using the LZ4 compression method # ---------------------------------------------------------- # # LZ4 compression method is known to be one of the fastest available # compression method but with a compression rate a bit lower than Zlib. In # most of the cases, this method is a good choice. ############################################################################### # .. note:: In order to use LZ4 compression with Joblib, the # `lz4 <https://pypi.python.org/pypi/lz4>`_ package must be installed # on the system. ############################################################################### # Start by measuring the time spent for dumping the lz4 data: start = time.time() with open(pickle_file, 'wb') as f: dump(data, f, compress='lz4') lz4_dump_duration = time.time() - start print("LZ4 dump duration: %0.3fs" % lz4_dump_duration) ############################################################################### # Then measure the size of the lz4 dump data on disk: lz4_file_size = os.stat(pickle_file).st_size / 1e6 print("LZ4 file size: %0.3fMB" % lz4_file_size) ############################################################################### # Finally measure the time spent for loading the lz4 data: start = time.time() with open(pickle_file, 'rb') as f: load(f) lz4_load_duration = time.time() - start print("LZ4 load duration: %0.3fs" % lz4_load_duration) ############################################################################### # Comparing the results # --------------------- import numpy as np import matplotlib.pyplot as plt N = 4 load_durations = (raw_load_duration, lz4_load_duration, zlib_load_duration, lzma_load_duration) dump_durations = (raw_dump_duration, lz4_dump_duration, zlib_dump_duration, lzma_dump_duration) file_sizes = (raw_file_size, lz4_file_size, zlib_file_size, lzma_file_size) ind = np.arange(N) width = 0.5 plt.figure(1, figsize=(5, 4)) p1 = plt.bar(ind, dump_durations, width) p2 = plt.bar(ind, load_durations, width, bottom=dump_durations) plt.ylabel('Time in seconds') plt.title('Dump and load durations') plt.xticks(ind, ('Raw', 'LZ4', 'Zlib', 'LZMA')) plt.yticks(np.arange(0, lzma_load_duration + lzma_dump_duration)) plt.legend((p1[0], p2[0]), ('Dump duration', 'Load duration')) ############################################################################### # Compared with other compressors, LZ4 is clearly the fastest, especially for # dumping compressed data on disk. In this particular case, it can even be # faster than the raw dump. # Also note that dump and load durations depend on the I/O speed of the # underlying storage: for example, with SSD hard drives the LZ4 compression # will be slightly slower than raw dump/load, whereas with spinning hard disk # drives (HDD) or remote storage (NFS), LZ4 is faster in general. # # LZMA and Zlib, even if always slower for dumping data, are quite fast when # re-loading compressed data from disk. plt.figure(2, figsize=(5, 4)) plt.bar(ind, file_sizes, width, log=True) plt.ylabel('File size in MB') plt.xticks(ind, ('Raw', 'LZ4', 'Zlib', 'LZMA')) ############################################################################### # Compressed data obviously takes a lot less space on disk than raw data. LZMA # is the best compression method in terms of compression rate. Zlib also has a # better compression rate than LZ4. plt.show() ############################################################################### # Clear the pickle file # --------------------- import os os.remove(pickle_file)
bsd-3-clause
FabriceSalvaire/PyValentina
Patro/GraphicEngine/Painter/MplPainter.py
1
4266
#################################################################################################### # # Patro - A Python library to make patterns for fashion design # Copyright (C) 2017 Fabrice Salvaire # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. # #################################################################################################### #################################################################################################### import logging from matplotlib import pyplot as plt from matplotlib.path import Path import matplotlib.patches as patches from Patro.GeometryEngine.Vector import Vector2D from Patro.GraphicStyle import StrokeStyle from .Painter import Painter, Tiler #################################################################################################### _module_logger = logging.getLogger(__name__) #################################################################################################### class MplPainter(Painter): __STROKE_STYLE__ = { StrokeStyle.NoPen: None, StrokeStyle.SolidLine: 'solid', # '-' StrokeStyle.DashLine: '', # Fixme: StrokeStyle.DotLine: 'dotted', # ':' StrokeStyle.DashDotLine: 'dashdot', # '--' StrokeStyle.DashDotDotLine: '', # Fixme: } ############################################## def __init__(self, scene, paper): super().__init__(scene) self._paper = paper self._figure = plt.figure( # figsize=(self._paper.width_in, self._paper.height_in), # dpi=200, ) self._axes = self._figure.add_subplot(111) bounding_box = scene.bounding_box factor = 10 / 100 x_margin = bounding_box.x.length * factor y_margin = bounding_box.y.length * factor margin = max(x_margin, y_margin) bounding_box = bounding_box.clone().enlarge(margin) self._axes.set_xlim(bounding_box.x.inf, bounding_box.x.sup) self._axes.set_ylim(bounding_box.y.inf, bounding_box.y.sup) self._axes.set_aspect('equal') self.paint() ############################################## def show(self): plt.show() ############################################## def _add_path(self, item, vertices, codes): path = Path(vertices, codes) path_syle = item.path_style color = path_syle.stroke_color.name line_style = self.__STROKE_STYLE__[path_syle.stroke_style] line_width = path_syle.line_width_as_float patch = patches.PathPatch(path, edgecolor=color, facecolor='none', linewidth=line_width, linestyle=line_style) self._axes.add_patch(patch) ############################################## def paint_TextItem(self, item): position = self.cast_position(item.position) # Fixme: anchor position self._axes.text(position.x, position.y, item.text) ############################################## def paint_CircleItem(self, item): center = list(self.cast_position(item.position)) circle = plt.Circle(center, .5, color='black') self._axes.add_artist(circle) ############################################## def paint_SegmentItem(self, item): vertices = self.cast_item_coordinates(item) codes = [Path.MOVETO, Path.LINETO] self._add_path(item, vertices, codes) ############################################## def paint_CubicBezierItem(self, item): vertices = self.cast_item_coordinates(item) codes = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] self._add_path(item, vertices, codes)
gpl-3.0
pypot/scikit-learn
sklearn/metrics/tests/test_regression.py
272
6066
from __future__ import division, print_function import numpy as np from itertools import product from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import median_absolute_error from sklearn.metrics import r2_score from sklearn.metrics.regression import _check_reg_targets def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.) def test_multioutput_regression(): y_true = np.array([[1, 0, 0, 1], [0, 1, 1, 1], [1, 1, 0, 1]]) y_pred = np.array([[0, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 1]]) error = mean_squared_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. error = mean_absolute_error(y_true, y_pred) assert_almost_equal(error, (1. / 3 + 2. / 3 + 2. / 3) / 4.) error = r2_score(y_true, y_pred, multioutput='variance_weighted') assert_almost_equal(error, 1. - 5. / 2) error = r2_score(y_true, y_pred, multioutput='uniform_average') assert_almost_equal(error, -.875) def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) def test__check_reg_targets(): # All of length 3 EXAMPLES = [ ("continuous", [1, 2, 3], 1), ("continuous", [[1], [2], [3]], 1), ("continuous-multioutput", [[1, 1], [2, 2], [3, 1]], 2), ("continuous-multioutput", [[5, 1], [4, 2], [3, 1]], 2), ("continuous-multioutput", [[1, 3, 4], [2, 2, 2], [3, 1, 1]], 3), ] for (type1, y1, n_out1), (type2, y2, n_out2) in product(EXAMPLES, repeat=2): if type1 == type2 and n_out1 == n_out2: y_type, y_check1, y_check2, multioutput = _check_reg_targets( y1, y2, None) assert_equal(type1, y_type) if type1 == 'continuous': assert_array_equal(y_check1, np.reshape(y1, (-1, 1))) assert_array_equal(y_check2, np.reshape(y2, (-1, 1))) else: assert_array_equal(y_check1, y1) assert_array_equal(y_check2, y2) else: assert_raises(ValueError, _check_reg_targets, y1, y2, None) def test_regression_multioutput_array(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [0.125, 0.5625], decimal=2) assert_array_almost_equal(mae, [0.25, 0.625], decimal=2) assert_array_almost_equal(r, [0.95, 0.93], decimal=2) assert_array_almost_equal(evs, [0.95, 0.93], decimal=2) # mean_absolute_error and mean_squared_error are equal because # it is a binary problem. y_true = [[0, 0]]*4 y_pred = [[1, 1]]*4 mse = mean_squared_error(y_true, y_pred, multioutput='raw_values') mae = mean_absolute_error(y_true, y_pred, multioutput='raw_values') r = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(mse, [1., 1.], decimal=2) assert_array_almost_equal(mae, [1., 1.], decimal=2) assert_array_almost_equal(r, [0., 0.], decimal=2) r = r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(r, [0, -3.5], decimal=2) assert_equal(np.mean(r), r2_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='uniform_average')) evs = explained_variance_score([[0, -1], [0, 1]], [[2, 2], [1, 1]], multioutput='raw_values') assert_array_almost_equal(evs, [0, -1.25], decimal=2) # Checking for the condition in which both numerator and denominator is # zero. y_true = [[1, 3], [-1, 2]] y_pred = [[1, 4], [-1, 1]] r2 = r2_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(r2, [1., -3.], decimal=2) assert_equal(np.mean(r2), r2_score(y_true, y_pred, multioutput='uniform_average')) evs = explained_variance_score(y_true, y_pred, multioutput='raw_values') assert_array_almost_equal(evs, [1., -3.], decimal=2) assert_equal(np.mean(evs), explained_variance_score(y_true, y_pred)) def test_regression_custom_weights(): y_true = [[1, 2], [2.5, -1], [4.5, 3], [5, 7]] y_pred = [[1, 1], [2, -1], [5, 4], [5, 6.5]] msew = mean_squared_error(y_true, y_pred, multioutput=[0.4, 0.6]) maew = mean_absolute_error(y_true, y_pred, multioutput=[0.4, 0.6]) rw = r2_score(y_true, y_pred, multioutput=[0.4, 0.6]) evsw = explained_variance_score(y_true, y_pred, multioutput=[0.4, 0.6]) assert_almost_equal(msew, 0.39, decimal=2) assert_almost_equal(maew, 0.475, decimal=3) assert_almost_equal(rw, 0.94, decimal=2) assert_almost_equal(evsw, 0.94, decimal=2)
bsd-3-clause
ElchinValiyev/GameAI
Project_3/breakout/fuzzy_agent.py
1
1804
import numpy as np import skfuzzy as fuzz from skfuzzy import control as ctrl import matplotlib.pyplot as plt class FuzzyAgent: def __init__(self): # Generate universe variables distance = ctrl.Antecedent(np.arange(-440, 441, 1), 'distance') # paddle.x - ball.x paddle_speed = ctrl.Consequent(np.arange(-12,13,4), 'speed') # paddle.x +=paddle_speed # Auto-membership function population is possible with .automf(3, 5, or 7) # Generate fuzzy membership functions distance['far right'] = fuzz.trimf(distance.universe, [-440, -250, -110]) distance['close right'] = fuzz.trimf(distance.universe, [-200, -10, 0]) distance['close left'] = fuzz.trimf(distance.universe, [0, 10, 200]) distance['far left'] = fuzz.trimf(distance.universe, [200, 440, 440]) paddle_speed.automf(7) rule1 = ctrl.Rule(distance['far left'], paddle_speed['dismal']) rule2 = ctrl.Rule(distance['close left'], paddle_speed['dismal']) rule3 = ctrl.Rule(distance['close right'], paddle_speed['excellent']) rule4 = ctrl.Rule(distance['far right'], paddle_speed['excellent']) # rule5 = ctrl.Rule(distance['above'], paddle_speed['average']) paddle_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4]) self.agent = ctrl.ControlSystemSimulation(paddle_ctrl) def compute(self, distance): # Pass inputs to the ControlSystem using Antecedent labels with Pythonic API # Note: if you like passing many inputs all at once, use .inputs(dict_of_data) self.agent.input['distance'] = distance # Crunch the numbers self.agent.compute() return self.agent.output['speed'] if __name__ == '__main__': agent = FuzzyAgent() print agent.compute(0)
mit
mjescobar/RF_Estimation
Clustering/clustering/spaceClustering.py
2
4653
#!/usr/bin/env python # -*- coding: utf-8 -*- # # spaceClustering.py # # Copyright 2014 Carlos "casep" Sepulveda <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, # MA 02110-1301, USA. # # # Performs basic clustering based on the size of the RF import sys, os sys.path.append(os.path.join(os.path.dirname(__file__), '../..','LIB')) import rfestimationLib as rfe import argparse # argument parsing import numpy as np # Numpy import densityPeaks as dp import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt from sklearn import mixture clustersColours = ['blue', 'red', 'green', 'orange', 'black','yellow', \ '#ff006f','#00e8ff','#fcfa00', '#ff0000', '#820c2c', \ '#ff006f', '#af00ff','#0200ff','#008dff','#00e8ff', \ '#0c820e','#28ea04','#ea8404','#c8628f','#6283ff', \ '#5b6756','#0c8248','k','#820cff','#932c11', \ '#002c11','#829ca7'] def main(): parser = argparse.ArgumentParser(prog='spaceClustering.py', description='Performs basic clustering based on the size of th RF', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--sourceFolder', help='Source folder', type=str, required=True) parser.add_argument('--outputFolder', help='Output folder', type=str, required=True) parser.add_argument('--percentage', help='Percentage used to calculate the distance', type=float, default='2', required=False) parser.add_argument('--xSize', help='X size of the stimuli', type=int, default='31', required=False) parser.add_argument('--ySize', help='Y size of the stimuli', type=int, default='31', required=False) args = parser.parse_args() #Source folder of the files with the timestamps sourceFolder = rfe.fixPath(args.sourceFolder) if not os.path.exists(sourceFolder): print '' print 'Source folder does not exists ' + sourceFolder print '' sys.exit() #Output folder for the graphics outputFolder = rfe.fixPath(args.outputFolder) if not os.path.exists(outputFolder): try: os.makedirs(outputFolder) except: print '' print 'Unable to create folder ' + outputFolder print '' sys.exit() units = [] dataCluster = np.zeros((1,7)) for unitFile in sorted(os.listdir(sourceFolder)): if os.path.isdir(sourceFolder+unitFile): unitName = unitFile.rsplit('_', 1)[0] fitResult = rfe.loadFitMatrix(sourceFolder,unitFile) dataCluster = np.vstack((dataCluster,[fitResult[0][2],\ fitResult[0][3],fitResult[0][1],fitResult[0][4],\ fitResult[0][5],fitResult[0][2]*fitResult[0][3]*3,\ (fitResult[0][2]+fitResult[0][3])/2])) units.append(unitName) # remove the first row of zeroes dataCluster = dataCluster[1:,:] percentage = args.percentage #exploratory, '...for large data sets, the results of the analysis are robust with respect to the choice of d_c' # Area instead o Radius #clustersNumber, labels = dp.predict(dataCluster[:,0:2], percentage) clustersNumber, labels = dp.predict(dataCluster[:,5:7], percentage) gmix = mixture.GMM(n_components=clustersNumber, covariance_type='spherical') gmix.fit(dataCluster[:,5:7]) labels = gmix.predict(dataCluster[:,5:7]) for clusterId in range(clustersNumber): clusterFile = open(outputFolder+'cluster_'+str(clusterId)+'.csv', "w") for unit in range(labels.size): if labels[unit] == clusterId: clusterFile.write(units[unit]+'\n') clusterFile.close xSize = args.xSize ySize = args.ySize # generate graphics of all ellipses for clusterId in range(clustersNumber): dataGrilla = np.zeros((1,7)) for unitId in range(dataCluster.shape[0]): if labels[unitId] == clusterId: datos=np.zeros((1,7)) datos[0]=dataCluster[unitId,:] dataGrilla = np.append(dataGrilla,datos, axis=0) ## remove the first row of zeroes dataGrilla = dataGrilla[1:,:] rfe.graficaGrilla(dataGrilla, outputFolder+'Grilla_'+str(clusterId)+'.png', 0, clustersColours[clusterId], xSize, ySize) return 0 if __name__ == '__main__': main()
gpl-2.0
rohangoel96/IRCLogParser
IRCLogParser/lib/deprecated/scripts/parser-time_series.py
2
6235
#This code generates a time-series graph. Such a graph has users on the y axis and msg transmission time on x axis.This means that if there exit 4 users- A,B,C,D. #Then if any of these users send a message at time t, then we put a dot infront of that user at time t in the graph. import os.path import re import networkx as nx import numpy as np import matplotlib.pyplot as plt import pylab import pygraphviz as pygraphviz import numpy import datetime import time import pandas as pd #yofel shadeslayer, yofel pheonixbrd for iterator in range(2,3): for fileiterator in range(1,2): if(fileiterator<10): sttring="/home/dhruvie/LOP/2013/"+str(iterator)+"/0" sttring=sttring+str(fileiterator)+"/#kubuntu-devel.txt" else: sttring="/home/dhruvie/LOP/2013/"+str(iterator)+"/" sttring=sttring+str(fileiterator)+"/#kubuntu-devel.txt" if not os.path.exists(sttring): continue with open(sttring) as f: content = f.readlines() #contents stores all the lines of the file kubunutu-devel nicks = [] #list of all the nicknames send_time = [] #list of all the times a user sends a message to another user conv_time = [] Numofmsg = [] channel= "#kubuntu-devel" #channel name groups = ['yofel_','phoenix_firebrd', 'shadeslayer'] #first will be assigned UID 50, second 100, third 150 and so on groupsnum = [] groupsnum.append(50) for i in range(0, len(groups)-1): groupsnum.append(50+groupsnum[i]) #code for getting all the nicknames in a list for i in content: if(i[0] != '=' and "] <" in i and "> " in i): m = re.search(r"\<(.*?)\>", i) if m.group(0) not in nicks: nicks.append(m.group(0)) #used regex to get the string between <> and appended it to the nicks list for i in xrange(0,len(nicks)): nicks[i] = nicks[i][1:-1] #removed <> from the nicknames for i in xrange(0,len(nicks)): if(nicks[i][len(nicks[i])-1]=='\\'): nicks[i]=nicks[i][:-1] nicks[i]=nicks[i]+'CR' for j in content: if(j[0]=='=' and "changed the topic of" not in j): line1=j[j.find("=")+1:j.find(" is")] line2=j[j.find("wn as")+1:j.find("\n")] line1=line1[3:] line2=line2[5:] if(line1[len(line1)-1]=='\\'): line1=line1[:-1] line1=line1 + 'CR' if(line2[len(line2)-1]=='\\'): line2=line2[:-1] line2=line2 + 'CR' if line1 not in nicks: nicks.append(line1) if line2 not in nicks: nicks.append(line2) #code for forming list of lists for avoiding nickname duplicacy x=[[] for i in range(len(nicks))] for line in content: if(line[0]=='=' and "changed the topic of" not in line): line1=line[line.find("=")+1:line.find(" is")] line2=line[line.find("wn as")+1:line.find("\n")] line1=line1[3:] line2=line2[5:] if(line1[len(line1)-1]=='\\'): line1=line1[:-1] line1=line1 + 'CR' if(line2[len(line2)-1]=='\\'): line2=line2[:-1] line2=line2 + 'CR' for i in range(len(nicks)): if line1 in x[i]: x[i].append(line1) x[i].append(line2) break if not x[i]: x[i].append(line1) x[i].append(line2) break #code for making relation map between clients for line in content: flag_comma = 0 if(line[0] != '=' and "] <" in line and "> " in line): m = re.search(r"\<(.*?)\>", line) var = m.group(0)[1:-1] if(var[len(var)-1]=='\\'): var=var[:-1] var=var + 'CR' for d in range(len(nicks)): if var in x[d]: pehla = x[d][0] break else: pehla=var for i in nicks: data=[e.strip() for e in line.split(':')] data[1]=data[1][data[1].find(">")+1:len(data[1])] data[1]=data[1][1:] if not data[1]: break for ik in xrange(0,len(data)): if(data[ik] and data[ik][len(data[ik])-1]=='\\'): data[ik]=data[ik][:-1] data[ik]=data[ik] + 'CR' for z in data: if(z==i): send_time.append(line[1:6]) if(var != i): for d in range(len(nicks)): if i in x[d]: second=x[d][0] break else: second=i if pehla in groups and second in groups: conv_time.append(line[1:6]) #We store time and index of sender, so that in our graph we can put a mark on that index at that time. Numofmsg.append(groupsnum[groups.index(pehla)]) if "," in data[1]: flag_comma = 1 data1=[e.strip() for e in data[1].split(',')] for ij in xrange(0,len(data1)): if(data1[ij] and data1[ij][len(data1[ij])-1]=='\\'): data1[ij]=data1[ij][:-1] data1[ij]=data1[ij] + 'CR' for j in data1: if(j==i): send_time.append(line[1:6]) if(var != i): for d in range(len(nicks)): if i in x[d]: second=x[d][0] break else: second=i if pehla in groups and second in groups: conv_time.append(line[1:6]) Numofmsg.append(groupsnum[groups.index(pehla)]) if(flag_comma == 0): search2=line[line.find(">")+1:line.find(", ")] search2=search2[1:] if(search2[len(search2)-1]=='\\'): search2=search2[:-1] search2=search2 + 'CR' if(search2==i): send_time.append(line[1:6]) if(var != i): for d in range(len(nicks)): if i in x[d]: second=x[d][0] break else: second=i if pehla in groups and second in groups: conv_time.append(line[1:6]) Numofmsg.append(groupsnum[groups.index(pehla)]) print(conv_time) print(Numofmsg) data = {'Time': conv_time, 'Message_Sent': Numofmsg} df = pd.DataFrame(data, columns = ['Time', 'Message_Sent']) df.index = df['Time'] del df['Time'] df print(df) axes = plt.gca() axes.set_ylim([0,200]) df.plot(ax=axes ,style=['o','rx']) plt.savefig('time-series.png') plt.close() #Here we have plotted the graph with msg transmission time as x axis and users(A(50),B(100),C(150).....) as y axis. #User who sends more messages will have a higher density of dots infront of its index.
mit
BiaDarkia/scikit-learn
examples/svm/plot_svm_regression.py
37
1505
""" =================================================================== Support Vector Regression (SVR) using linear and non-linear kernels =================================================================== Toy example of 1D regression using linear, polynomial and RBF kernels. """ print(__doc__) import numpy as np from sklearn.svm import SVR import matplotlib.pyplot as plt # ############################################################################# # Generate sample data X = np.sort(5 * np.random.rand(40, 1), axis=0) y = np.sin(X).ravel() # ############################################################################# # Add noise to targets y[::5] += 3 * (0.5 - np.random.rand(8)) # ############################################################################# # Fit regression model svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.1) svr_lin = SVR(kernel='linear', C=1e3) svr_poly = SVR(kernel='poly', C=1e3, degree=2) y_rbf = svr_rbf.fit(X, y).predict(X) y_lin = svr_lin.fit(X, y).predict(X) y_poly = svr_poly.fit(X, y).predict(X) # ############################################################################# # Look at the results lw = 2 plt.scatter(X, y, color='darkorange', label='data') plt.plot(X, y_rbf, color='navy', lw=lw, label='RBF model') plt.plot(X, y_lin, color='c', lw=lw, label='Linear model') plt.plot(X, y_poly, color='cornflowerblue', lw=lw, label='Polynomial model') plt.xlabel('data') plt.ylabel('target') plt.title('Support Vector Regression') plt.legend() plt.show()
bsd-3-clause
nkhuyu/blaze
blaze/expr/tests/test_table.py
12
25536
from __future__ import absolute_import, division, print_function import pytest import pandas as pd from operator import (add, sub, mul, floordiv, mod, pow, truediv, eq, ne, lt, gt, le, ge, getitem) from functools import partial from datetime import datetime import datashape from datashape.predicates import iscollection, isscalar from blaze import CSV, Table from blaze.expr import (TableSymbol, projection, Field, selection, Broadcast, join, cos, by, exp, distinct, Apply, broadcast, eval_str, merge, common_subexpression, sum, Label, ReLabel, Head, Sort, any, summary, Summary, count, symbol, Field, discover, max, min, label, Symbol, transform ) from blaze.compatibility import PY3, builtins from blaze.utils import raises, tmpfile from datashape import dshape, var, int32, int64, Record, DataShape from toolz import identity, first import numpy as np def test_dshape(): t = TableSymbol('t', '{name: string, amount: int}') assert t.dshape == dshape('var * {name: string, amount: int}') def test_length(): t = TableSymbol('t', '10 * {name: string, amount: int}') s = TableSymbol('s', '{name:string, amount:int}') assert t.dshape == dshape('10 * {name: string, amount: int}') assert len(t) == 10 assert len(t.name) == 10 assert len(t[['name']]) == 10 assert len(t.sort('name')) == 10 assert len(t.head(5)) == 5 assert len(t.head(50)) == 10 with pytest.raises(ValueError): len(s) def test_tablesymbol_eq(): assert not (TableSymbol('t', '{name: string}') == TableSymbol('v', '{name: string}')) def test_table_name(): t = TableSymbol('t', '10 * {people: string, amount: int}') r = TableSymbol('r', 'int64') with pytest.raises(AttributeError): t.name with pytest.raises(AttributeError): r.name def test_shape(): t = TableSymbol('t', '{name: string, amount: int}') assert t.shape assert isinstance(t.shape, tuple) assert len(t.shape) == 1 def test_eq(): assert TableSymbol('t', '{a: string, b: int}').isidentical( TableSymbol('t', '{a: string, b: int}')) assert not TableSymbol('t', '{b: string, a: int}').isidentical( TableSymbol('t', '{a: string, b: int}')) def test_arithmetic(): t = TableSymbol('t', '{x: int, y: int, z: int}') x, y, z = t['x'], t['y'], t['z'] exprs = [x + 1, x + y, 1 + y, x - y, 1 - x, x - 1, x ** y, x ** 2, 2 ** x, x * y, x ** 2, 2 ** x, x / y, x / 2, 2 / x, x % y, x % 2, 2 % x] def test_column(): t = TableSymbol('t', '{name: string, amount: int}') assert t.fields== ['name', 'amount'] assert eval(str(t.name)) == t.name assert str(t.name) == "t.name" with pytest.raises(AttributeError): t.name.balance with pytest.raises((NotImplementedError, ValueError)): getitem(t, set('balance')) def test_symbol_projection_failures(): t = TableSymbol('t', '10 * {name: string, amount: int}') with pytest.raises(ValueError): t._project(['name', 'id']) with pytest.raises(AttributeError): t.foo with pytest.raises(TypeError): t._project(t.dshape) def test_Projection(): t = TableSymbol('t', '{name: string, amount: int, id: int32}') p = projection(t, ['amount', 'name']) assert p.schema == dshape('{amount: int32, name: string}') print(t['amount'].dshape) print(dshape('var * int32')) assert t['amount'].dshape == dshape('var * int32') assert t['amount']._name == 'amount' assert eval(str(p)).isidentical(p) assert p._project(['amount','name']) == p[['amount','name']] with pytest.raises(ValueError): p._project('balance') def test_Projection_retains_shape(): t = TableSymbol('t', '5 * {name: string, amount: int, id: int32}') assert t[['name', 'amount']].dshape == \ dshape('5 * {name: string, amount: int}') def test_indexing(): t = TableSymbol('t', '{name: string, amount: int, id: int}') assert t[['amount', 'id']] == projection(t, ['amount', 'id']) assert t['amount'].isidentical(Field(t, 'amount')) def test_relational(): t = TableSymbol('t', '{name: string, amount: int, id: int}') r = (t['name'] == 'Alice') assert 'bool' in str(r.dshape) assert r._name def test_selection(): t = TableSymbol('t', '{name: string, amount: int, id: int}') s = selection(t, t['name'] == 'Alice') f = selection(t, t['id'] > t['amount']) p = t[t['amount'] > 100] with pytest.raises(ValueError): selection(t, p) assert s.dshape == t.dshape def test_selection_typecheck(): t = TableSymbol('t', '{name: string, amount: int, id: int}') assert raises(TypeError, lambda: t[t['amount'] + t['id']]) assert raises(TypeError, lambda: t[t['name']]) def test_selection_by_indexing(): t = TableSymbol('t', '{name: string, amount: int, id: int}') result = t[t['name'] == 'Alice'] assert t.schema == result.schema assert 'Alice' in str(result) def test_selection_by_getattr(): t = TableSymbol('t', '{name: string, amount: int, id: int}') result = t[t.name == 'Alice'] assert t.schema == result.schema assert 'Alice' in str(result) def test_selection_path_check(): t = TableSymbol('t', '{name: string, amount: int, id: int}') t2 = t[t.name == 'Alice'] t3 = t2[t2.amount > 0] def test_path_issue(): t = TableSymbol('t', "{topic: string, word: string, result: ?float64}") t2 = transform(t, sizes=t.result.map(lambda x: (x - MIN)*10/(MAX - MIN), schema='float64', name='size')) assert builtins.any(t2.sizes.isidentical(node) for node in t2.children) def test_getattr_doesnt_override_properties(): t = TableSymbol('t', '{_subs: string, schema: string}') assert callable(t._subs) assert isinstance(t.schema, DataShape) def test_dir_contains_columns(): t = TableSymbol('t', '{name: string, amount: int, id: int}') result = dir(t) columns_set = set(t.fields) assert set(result) & columns_set == columns_set def test_selection_consistent_children(): t = TableSymbol('t', '{name: string, amount: int, id: int}') expr = t['name'][t['amount'] < 0] assert list(expr.fields) == ['name'] def test_str(): import re t = TableSymbol('t', '{name: string, amount: int, id: int}') expr = t[t['amount'] < 0]['id'] * 2 assert '<class' not in str(expr) assert not re.search('0x[0-9a-f]+', str(expr)) assert eval(str(expr)) == expr assert '*' in repr(expr) def test_join(): t = TableSymbol('t', '{name: string, amount: int}') s = TableSymbol('t', '{name: string, id: int}') r = TableSymbol('r', '{name: string, amount: int}') q = TableSymbol('q', '{name: int}') j = join(t, s, 'name', 'name') assert j.schema == dshape('{name: string, amount: int, id: int}') assert join(t, s, 'name') == join(t, s, 'name') assert join(t, s, 'name').on_left == 'name' assert join(t, s, 'name').on_right == 'name' assert join(t, r, ('name', 'amount')).on_left == ['name', 'amount'] with pytest.raises(TypeError): join(t, q, 'name') with pytest.raises(ValueError): join(t, s, how='upside_down') def test_join_different_on_right_left_columns(): t = TableSymbol('t', '{x: int, y: int}') s = TableSymbol('t', '{a: int, b: int}') j = join(t, s, 'x', 'a') assert j.on_left == 'x' assert j.on_right == 'a' def test_joined_column_first_in_schema(): t = TableSymbol('t', '{x: int, y: int, z: int}') s = TableSymbol('s', '{w: int, y: int}') assert join(t, s).schema == dshape('{y: int, x: int, z: int, w: int}') def test_outer_join(): t = TableSymbol('t', '{name: string, amount: int}') s = TableSymbol('t', '{name: string, id: int}') jleft = join(t, s, 'name', 'name', how='left') jright = join(t, s, 'name', 'name', how='right') jinner = join(t, s, 'name', 'name', how='inner') jouter = join(t, s, 'name', 'name', how='outer') js = [jleft, jright, jinner, jouter] assert len(set(js)) == 4 # not equal assert jinner.schema == dshape('{name: string, amount: int, id: int}') assert jleft.schema == dshape('{name: string, amount: int, id: ?int}') assert jright.schema == dshape('{name: string, amount: ?int, id: int}') assert jouter.schema == dshape('{name: string, amount: ?int, id: ?int}') # Default behavior assert join(t, s, 'name', 'name', how='inner') == \ join(t, s, 'name', 'name') def test_join_default_shared_columns(): t = TableSymbol('t', '{name: string, amount: int}') s = TableSymbol('t', '{name: string, id: int}') assert join(t, s) == join(t, s, 'name', 'name') def test_multi_column_join(): a = TableSymbol('a', '{x: int, y: int, z: int}') b = TableSymbol('b', '{w: int, x: int, y: int}') j = join(a, b, ['x', 'y']) assert set(j.fields) == set('wxyz') assert j.on_left == j.on_right == ['x', 'y'] assert hash(j) assert j.fields == ['x', 'y', 'z', 'w'] def test_traverse(): t = TableSymbol('t', '{name: string, amount: int}') assert t in list(t._traverse()) expr = t.amount.sum() trav = list(expr._traverse()) assert builtins.any(t.amount.isidentical(x) for x in trav) def test_unary_ops(): t = TableSymbol('t', '{name: string, amount: int}') expr = cos(exp(t['amount'])) assert 'cos' in str(expr) assert '~' in str(~(t.amount > 0)) def test_reduction(): t = TableSymbol('t', '{name: string, amount: int32}') r = sum(t['amount']) assert r.dshape in (dshape('int64'), dshape('{amount: int64}'), dshape('{amount_sum: int64}')) assert 'amount' not in str(t.count().dshape) assert t.count().dshape[0] in (int32, int64) assert 'int' in str(t.count().dshape) assert 'int' in str(t.nunique().dshape) assert 'string' in str(t['name'].max().dshape) assert 'string' in str(t['name'].min().dshape) assert 'string' not in str(t.count().dshape) t = TableSymbol('t', '{name: string, amount: real, id: int}') assert 'int' in str(t['id'].sum().dshape) assert 'int' not in str(t['amount'].sum().dshape) def test_reduction_name(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') assert (t.amount + t.id).sum()._name def test_max_min_class(): t = TableSymbol('t', '{name: string, amount: int32}') assert str(max(t).dshape) == '{name: string, amount: int32}' assert str(min(t).dshape) == '{name: string, amount: int32}' @pytest.fixture def symsum(): t = TableSymbol('t', '{name: string, amount: int32}') return t, t.amount.sum() @pytest.fixture def ds(): return dshape("var * { " "transaction_key : int64, " "user_from_key : int64, " "user_to_key : int64, " "date : int64, " "value : float64 " "}") def test_discover_dshape_symbol(ds): t_ds = TableSymbol('t', dshape=ds) assert t_ds.fields is not None t_sch = TableSymbol('t', dshape=ds.subshape[0]) assert t_sch.fields is not None assert t_ds.isidentical(t_sch) class TestScalarArithmetic(object): ops = {'+': add, '-': sub, '*': mul, '/': truediv, '//': floordiv, '%': mod, '**': pow, '==': eq, '!=': ne, '<': lt, '>': gt, '<=': le, '>=': ge} def test_scalar_arith(self, symsum): def runner(f): result = f(r, 1) assert eval('r %s 1' % op).isidentical(result) a = f(r, r) b = eval('r %s r' % op) assert a is b or a.isidentical(b) result = f(1, r) assert eval('1 %s r' % op).isidentical(result) t, r = symsum r = t.amount.sum() for op, f in self.ops.items(): runner(f) def test_scalar_usub(self, symsum): t, r = symsum result = -r assert eval(str(result)).isidentical(result) @pytest.mark.xfail def test_scalar_uadd(self, symsum): t, r = symsum +r def test_summary(): t = TableSymbol('t', '{id: int32, name: string, amount: int32}') s = summary(total=t.amount.sum(), num=t.id.count()) assert s.dshape == dshape('{num: int32, total: int64}') assert hash(s) assert eval(str(s)).isidentical(s) assert 'summary(' in str(s) assert 'total=' in str(s) assert 'num=' in str(s) assert str(t.amount.sum()) in str(s) assert not summary(total=t.amount.sum())._child.isidentical( t.amount.sum()) assert iscollection(summary(total=t.amount.sum() + 1)._child.dshape) def test_reduction_arithmetic(): t = TableSymbol('t', '{id: int32, name: string, amount: int32}') expr = t.amount.sum() + 1 assert eval(str(expr)).isidentical(expr) def test_Distinct(): t = TableSymbol('t', '{name: string, amount: int32}') r = distinct(t['name']) print(r.dshape) assert r.dshape == dshape('var * string') assert r._name == 'name' r = t.distinct() assert r.dshape == t.dshape def test_by(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') r = by(t['name'], total=sum(t['amount'])) print(r.schema) assert isinstance(r.schema[0], Record) assert str(r.schema[0]['name']) == 'string' def test_by_summary(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') a = by(t['name'], sum=sum(t['amount'])) b = by(t['name'], summary(sum=sum(t['amount']))) assert a.isidentical(b) def test_by_summary_printing(): t = symbol('t', 'var * {name: string, amount: int32, id: int32}') assert str(by(t.name, total=sum(t.amount))) == \ 'by(t.name, total=sum(t.amount))' def test_by_columns(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') assert len(by(t['id'], total=t['amount'].sum()).fields) == 2 assert len(by(t['id'], count=t['id'].count()).fields) == 2 print(by(t, count=t.count()).fields) assert len(by(t, count=t.count()).fields) == 4 def test_sort(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') s = t.sort('amount', ascending=True) print(str(s)) assert eval(str(s)).isidentical(s) assert s.schema == t.schema assert t['amount'].sort().key == 'amount' def test_head(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') s = t.head(10) assert eval(str(s)).isidentical(s) assert s.schema == t.schema def test_label(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') quantity = (t['amount'] + 100).label('quantity') assert eval(str(quantity)).isidentical(quantity) assert quantity.fields == ['quantity'] with pytest.raises(ValueError): quantity['balance'] def test_map_label(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') c = t.amount.map(identity, schema='int32') assert c.label('bar')._name == 'bar' assert c.label('bar')._child.isidentical(c._child) def test_columns(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') assert list(t.fields) == ['name', 'amount', 'id'] assert list(t['name'].fields) == ['name'] (t['amount'] + 1).fields def test_relabel(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') rl = t.relabel({'name': 'NAME', 'id': 'ID'}) rlc = t['amount'].relabel({'amount': 'BALANCE'}) assert eval(str(rl)).isidentical(rl) print(rl.fields) assert rl.fields == ['NAME', 'amount', 'ID'] assert not isscalar(rl.dshape.measure) assert isscalar(rlc.dshape.measure) def test_relabel_join(): names = TableSymbol('names', '{first: string, last: string}') siblings = join(names.relabel({'last': 'left'}), names.relabel({'last': 'right'}), 'first') assert siblings.fields == ['first', 'left', 'right'] def test_map(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') inc = lambda x: x + 1 assert isscalar(t['amount'].map(inc, schema='int').dshape.measure) s = t['amount'].map(inc, schema='{amount: int}') assert not isscalar(s.dshape.measure) assert s.dshape == dshape('var * {amount: int}') expr = (t[['name', 'amount']] .map(identity, schema='{name: string, amount: int}')) assert expr._name is None @pytest.mark.xfail(reason="Not sure that we should even support this") def test_map_without_any_info(): t = TableSymbol('t', '{name: string, amount: int32, id: int32}') assert iscolumn(t['amount'].map(inc, 'int')) assert not iscolumn(t[['name', 'amount']].map(identity)) def test_apply(): t = Symbol('t', 'var * {name: string, amount: int32, id: int32}') s = t['amount'].apply(sum, dshape='real') r = t['amount'].apply(sum, dshape='3 * real') assert s.dshape == dshape('real') assert r.schema == dshape('real') def test_TableSymbol_printing_is_legible(): accounts = TableSymbol('accounts', '{name: string, balance: int, id: int}') expr = (exp(accounts.balance * 10)) + accounts['id'] assert "exp(accounts.balance * 10)" in str(expr) assert "+ accounts.id" in str(expr) def test_merge(): t = TableSymbol('t', 'int64') p = TableSymbol('p', '{amount:int}') accounts = TableSymbol('accounts', '{name: string, balance: int32, id: int32}') new_amount = (accounts.balance * 1.5).label('new') c = merge(accounts[['name', 'balance']], new_amount) assert c.fields == ['name', 'balance', 'new'] assert c.schema == dshape('{name: string, balance: int32, new: float64}') with pytest.raises(ValueError): merge(t, t) with pytest.raises(ValueError): merge(t, p) def test_merge_repeats(): accounts = TableSymbol('accounts', '{name: string, balance: int32, id: int32}') with pytest.raises(ValueError): merge(accounts, (accounts.balance + 1).label('balance')) def test_merge_project(): accounts = TableSymbol('accounts', '{name: string, balance: int32, id: int32}') new_amount = (accounts['balance'] * 1.5).label('new') c = merge(accounts[['name', 'balance']], new_amount) assert c['new'].isidentical(new_amount) assert c['name'].isidentical(accounts['name']) assert c[['name', 'new']].isidentical(merge(accounts.name, new_amount)) inc = lambda x: x + 1 def test_subterms(): a = TableSymbol('a', '{x: int, y: int, z: int}') assert list(a._subterms()) == [a] assert set(a['x']._subterms()) == set([a, a['x']]) assert set(a['x'].map(inc, 'int')._subterms()) == \ set([a, a['x'], a['x'].map(inc, 'int')]) assert a in set((a['x'] + 1)._subterms()) def test_common_subexpression(): a = TableSymbol('a', '{x: int, y: int, z: int}') assert common_subexpression(a).isidentical(a) assert common_subexpression(a, a['x']).isidentical(a) assert common_subexpression(a['y'] + 1, a['x']).isidentical(a) assert common_subexpression(a['x'].map(inc, 'int'), a['x']).isidentical(a['x']) def test_schema_of_complex_interaction(): a = TableSymbol('a', '{x: int, y: int, z: int}') expr = (a['x'] + a['y']) / a['z'] assert expr.schema == dshape('float64') expr = expr.label('foo') assert expr.schema == dshape('float64') def iscolumn(x): return isscalar(x.dshape.measure) def test_iscolumn(): a = TableSymbol('a', '{x: int, y: int, z: int}') assert not iscolumn(a) assert iscolumn(a['x']) assert not iscolumn(a[['x', 'y']]) assert not iscolumn(a[['x']]) assert iscolumn((a['x'] + a['y'])) assert iscolumn(a['x'].distinct()) assert not iscolumn(a[['x']].distinct()) assert not iscolumn(by(a['x'], total=a['y'].sum())) assert iscolumn(a['x'][a['x'] > 1]) assert not iscolumn(a[['x', 'y']][a['x'] > 1]) assert iscolumn(a['x'].sort()) assert not iscolumn(a[['x', 'y']].sort()) assert iscolumn(a['x'].head()) assert not iscolumn(a[['x', 'y']].head()) assert iscolumn(TableSymbol('b', 'int')) assert not iscolumn(TableSymbol('b', '{x: int}')) def test_discover(): schema = '{x: int, y: int, z: int}' a = TableSymbol('a', schema) assert discover(a) == var * schema def test_improper_selection(): t = TableSymbol('t', '{x: int, y: int, z: int}') assert raises(Exception, lambda: t[t['x'] > 0][t.sort()[t['y' > 0]]]) def test_serializable(): t = TableSymbol('t', '{id: int, name: string, amount: int}') import pickle t2 = pickle.loads(pickle.dumps(t)) assert t.isidentical(t2) s = TableSymbol('t', '{id: int, city: string}') expr = join(t[t.amount < 0], s).sort('id').city.head() expr2 = pickle.loads(pickle.dumps(expr)) assert expr.isidentical(expr2) def test_table_coercion(): from datetime import date t = TableSymbol('t', '{name: string, amount: int, timestamp: ?date}') assert (t.amount + '10').rhs == 10 assert (t.timestamp < '2014-12-01').rhs == date(2014, 12, 1) def test_isnan(): from blaze import isnan t = TableSymbol('t', '{name: string, amount: real, timestamp: ?date}') for expr in [t.amount.isnan(), ~t.amount.isnan()]: assert eval(str(expr)).isidentical(expr) assert iscollection(t.amount.isnan().dshape) assert 'bool' in str(t.amount.isnan().dshape) def test_distinct_name(): t = TableSymbol('t', '{id: int32, name: string}') assert t.name.isidentical(t['name']) assert t.distinct().name.isidentical(t.distinct()['name']) assert t.id.distinct()._name == 'id' assert t.name._name == 'name' def test_leaves(): t = TableSymbol('t', '{id: int32, name: string}') v = TableSymbol('v', '{id: int32, city: string}') x = symbol('x', 'int32') assert t._leaves() == [t] assert t.id._leaves() == [t] assert by(t.name, count=t.id.nunique())._leaves() == [t] assert join(t, v)._leaves() == [t, v] assert join(v, t)._leaves() == [v, t] assert (x + 1)._leaves() == [x] @pytest.fixture def t(): return TableSymbol('t', '{id: int, amount: float64, name: string}') def funcname(x, y='<lambda>'): if PY3: return 'TestRepr.%s.<locals>.%s' % (x, y) return 'test_table.%s' % y class TestRepr(object): def test_partial_lambda(self, t): expr = t.amount.map(partial(lambda x, y: x + y, 1)) s = str(expr) assert s == ("Map(_child=t.amount, " "func=partial(%s, 1), " "_schema=None, _name0=None)" % funcname('test_partial_lambda')) def test_lambda(self, t): expr = t.amount.map(lambda x: x) s = str(expr) assert s == ("Map(_child=t.amount, " "func=%s, _schema=None, _name0=None)" % funcname('test_lambda')) def test_partial(self, t): def myfunc(x, y): return x + y expr = t.amount.map(partial(myfunc, 1)) s = str(expr) assert s == ("Map(_child=t.amount, " "func=partial(%s, 1), " "_schema=None, _name0=None)" % funcname('test_partial', 'myfunc')) def test_builtin(self, t): expr = t.amount.map(datetime.fromtimestamp) s = str(expr) assert s == ("Map(_child=t.amount, " "func=datetime.fromtimestamp, _schema=None," " _name0=None)") def test_udf(self, t): def myfunc(x): return x + 1 expr = t.amount.map(myfunc) s = str(expr) assert s == ("Map(_child=t.amount, " "func=%s, _schema=None," " _name0=None)" % funcname('test_udf', 'myfunc')) def test_nested_partial(self, t): def myfunc(x, y, z): return x + y + z f = partial(partial(myfunc, 2), 1) expr = t.amount.map(f) s = str(expr) assert s == ("Map(_child=t.amount, func=partial(partial(%s, 2), 1)," " _schema=None, _name0=None)" % funcname('test_nested_partial', 'myfunc')) def test_count_values(): t = TableSymbol('t', '{name: string, amount: int, city: string}') assert t.name.count_values(sort=False).isidentical( by(t.name, count=t.name.count())) assert t.name.count_values(sort=True).isidentical( by(t.name, count=t.name.count()).sort('count', ascending=False)) def test_dir(): t = TableSymbol('t', '{name: string, amount: int, dt: datetime}') assert 'day' in dir(t.dt) assert 'mean' not in dir(t.dt) assert 'mean' in dir(t.amount) assert 'like' not in dir(t[['amount', 'dt']]) assert 'any' not in dir(t.name) def test_distinct_column(): t = TableSymbol('t', '{name: string, amount: int, dt: datetime}') assert t.name.distinct().name.dshape == t.name.distinct().dshape assert t.name.distinct().name.isidentical(t.name.distinct()) def test_columns_attribute_for_backwards_compatibility(): t = TableSymbol('t', '{name: string, amount: int, dt: datetime}') assert t.columns == t.fields assert 'columns' in dir(t) assert 'columns' not in dir(t.name)
bsd-3-clause
rpp0/lora-phy-fingerprinting
tf_train.py
1
73515
#!/usr/bin/python2 # tf_train.py # # Collection of ML algorithms to fingerprint radio devices using Tensorflow. # A high level overview of the functionality provided by this code is given in # the paper entitled "Physical-Layer Fingerprinting of LoRa devices using # Supervised and Zero-Shot Learning", which was presented at WiSec 2017. A VM # containing the training data and scripts required to reproduce the results # from our paper will be published on Zenodo. Please contact one of the authors # for more information. # # The code provides an abstraction layer on top of Tensorflow, consisting of # "Models" and "Layers", in order to build a "Classifier" for raw radio signals. # If you plan on using this framework for your research, I would recommend using # the library "Keras" to build the models instead of "raw" Tensorflow. Keras was # developed concurrently with this work, and provides a more concise and mature # implementation for the same types of models that are used here. # # Author: Pieter Robyns # Contact: [email protected] import tensorflow as tf import colorama import random import numpy as np import scipy.io as sio import os import configparser import argparse import preprocessing import visualization import pickle import json import sklearn import utilities from colorama import Fore,Back,Style from pymongo import MongoClient from pymongo.errors import OperationFailure, AutoReconnect from scipy import stats from sklearn.manifold import TSNE from sklearn.svm import SVC from mapping import Mapping from cache import GenericCache from datetime import datetime from random import randint from tensorflow.contrib.tensorboard.plugins import projector from sklearn.cluster import DBSCAN from itertools import combinations from collections import defaultdict # ---------------------------------------------------- # Globals # ---------------------------------------------------- colorama.init(autoreset=True) EPSILON = 0.00000000001 defaults = { 'exclude_classes': '', 'epochs': -1, 'num_zs_test_samples': 40, } cp = configparser.RawConfigParser(defaults) flags = tf.app.flags FLAGS = flags.FLAGS # ---------------------------------------------------- # Static functions # ---------------------------------------------------- def load_conf(conf): # Configure the classifier using settings from conf file cp.read(conf) # Flags flags.DEFINE_string('logdir', '/tmp/tensorboard', 'Tensorboard summaries directory') flags.DEFINE_string('trainedmodelsdir', cp.get("DEFAULT", "trained_models_path"), 'Trained models directory') flags.DEFINE_string('dataset', cp.get("DEFAULT", "dataset"), 'Dataset type (mongo or matlab)') flags.DEFINE_string('classifier', cp.get("DEFAULT", "classifier"), 'Type of classifier to use') flags.DEFINE_string('clustering', cp.get("DEFAULT", "clustering"), 'Type of clustering to use if doing open set classification') flags.DEFINE_string('model_name', cp.get("DEFAULT", "model_name"), 'Name of the experiment / model. Used for saving it') flags.DEFINE_integer('limit', cp.getint("DEFAULT", "limit"), 'Limit input tensor to n samples') flags.DEFINE_integer('num_train_samples', cp.getint("DEFAULT", "num_train_samples"), 'Number of training samples') flags.DEFINE_integer('num_test_samples', cp.getint("DEFAULT", "num_test_samples"), 'Number of test samples') flags.DEFINE_integer('num_zs_test_samples', cp.getint("DEFAULT", "num_zs_test_samples"), 'Number of zero shot test samples') flags.DEFINE_integer('batch_size', cp.getint("DEFAULT", "batch_size"), 'Training batch size') flags.DEFINE_integer('print_step', cp.getint("DEFAULT", "print_step"), 'Print step') flags.DEFINE_integer('epochs', cp.getint("DEFAULT", "epochs"), 'Epochs to train') flags.DEFINE_integer('sampling_freq', cp.getint("DEFAULT", "sampling_freq"), 'Sampling frequency') flags.DEFINE_string('mode', cp.get("DEFAULT", "mode"), 'Analysis mode (ifreq, iphase, or fft)') flags.DEFINE_float('keep_prob', cp.getfloat("DEFAULT", "keep_prob"), 'Probability to keep neuron when using CNN') flags.DEFINE_integer('retrain_batch', cp.getint("DEFAULT", "retrain_batch"), 'Number of times to retrain the same batch (speeds up, but also overfits)') flags.DEFINE_string('exclude_classes', cp.get("DEFAULT", "exclude_classes"), 'Classes to exclude from training') # Mode specific options if cp.get("DEFAULT", "dataset") == 'matlab': # TODO: Bug in Tensorflow: once FLAGS.dataset is accessed it's no longer possible to define new strings flags.DEFINE_string('matlabfile', cp.get("matlab", "matlabfile"), 'MATLAB LoRa database') flags.DEFINE_integer('chirp_length', cp.getint("matlab", "chirp_length"), 'Length of a single chirp') elif cp.get("DEFAULT", "dataset") == 'mongo': flags.DEFINE_string ('ip', cp.get("mongo", "ip"), 'MongoDB server IP') flags.DEFINE_integer('port', cp.get("mongo", "port"), 'MongoDB server port') flags.DEFINE_string ('db', cp.get("mongo", "db"), 'MongoDB database name') flags.DEFINE_string ('collection', cp.get("mongo", "collection"), 'MongoDB chirp collection name') flags.DEFINE_string ('test_collection', cp.get("mongo", "test_collection"), 'MongoDB test chirp collection name') flags.DEFINE_integer ('random_mode', RandomMode.s2e(cp.get("mongo", "random_mode")), 'Data randomization approach') flags.DEFINE_string ('random_date', cp.get("mongo", "random_date"), 'Date for split date mode') flags.DEFINE_string ('filter', cp.get("mongo", "filter"), 'Query filter for "find" queries') elif cp.get("DEFAULT", "dataset") == 'random': flags.DEFINE_integer('num_classes', cp.get("random", "num_classes"), 'Number of random classes') flags.DEFINE_integer('num_samples', cp.get("random", "num_samples"), 'Number of random samples') # Classifier specific options if cp.get("DEFAULT", "classifier") == 'mlp': flags.DEFINE_integer('num_hidden_layers', cp.getint("mlp", "num_hidden_layers"), 'Number of hidden layers') flags.DEFINE_integer('num_hidden_neurons', cp.getint("mlp", "num_hidden_neurons"), 'Number of hidden neurons in a hidden layer') elif cp.get("DEFAULT", "classifier") == 'cnn': flags.DEFINE_integer('conv_kernel_width', cp.getint("cnn", "conv_kernel_width"), 'Convolution kernel width') flags.DEFINE_integer('pooling_kernel_width', cp.getint("cnn", "pooling_kernel_width"), 'Max pooling kernel width') elif cp.get("DEFAULT", "classifier") == 'mdn': flags.DEFINE_integer('num_hidden_layers', cp.getint("mdn", "num_hidden_layers"), 'Number of hidden layers') flags.DEFINE_integer('num_hidden_neurons', cp.getint("mdn", "num_hidden_neurons"), 'Number of hidden neurons in a hidden layer') def print_conf(cp): # Print settings to terminal for e in cp.defaults(): print("[+] " + Fore.YELLOW + Style.BRIGHT + e + ": " + str(cp.get("DEFAULT", e))) def select_cols(matrix, c1, c2): # Select two columns from a numpy matrix return matrix[:, [c1, c2]] # ---------------------------------------------------- # Dataset classes # ---------------------------------------------------- class TensorIO(): def __init__(self, x, y): self.x = x # Input self.y = y # Output class Dataset(): # Dataset base class def __init__(self): self.num_training_samples = FLAGS.num_train_samples self.num_test_samples = FLAGS.num_test_samples # Based on the tag, get the LoRa ID def _determine_id(self, tag): if 'lora' in tag: lora_id = int(tag[4:]) return lora_id print("[!] Warning: unable to determine lora_id for entry " + str(tag)) return None # Preprocess an input so that it can be learned by Tensorflow def _data_to_tf_record(self, lora_id, chirp, debug=False): features = [] #visualization.dbg_plot(preprocessing.iphase(chirp), title='Preprocessed chirp') chirp = preprocessing.roll_to_base(chirp) for m in FLAGS.mode.split(','): if m == 'iphase': features.append(preprocessing.iphase(chirp)) elif m == 'fft': features.append(preprocessing.fft(chirp)) elif m == 'ifreq': features.append(preprocessing.ifreq(chirp, FLAGS.sampling_freq)) elif m == 'iamp': features.append(preprocessing.iamp(chirp)) elif m == 'raw': features.append(preprocessing.normalize(chirp)) else: print(Fore.RED + Style.BRIGHT + "[-] Analysis mode must be configured to be either 'fft', 'iphase', 'ifreq', or a comma separated combination.") exit(1) if debug: if lora_id == 1: visualization.dbg_plot(features[0], title='First feature vector of LoRa 1 chirp') tf_record = {"lora_id": lora_id, "iq": features} return tf_record class GNURadioDataset(Dataset): # Convert pmt of IQ samples to numpy complex 64 def __init__(self, pmt, symbol_length): self.pmt = pmt self.symbol_length = symbol_length def get(self): data = [] frame = np.frombuffer(self.pmt, dtype=np.complex64) symbols = [frame[i:i+self.symbol_length] for i in range(0, len(frame), self.symbol_length)] for symbol in symbols: tf_record = self._data_to_tf_record(None, symbol) data.append(tf_record) return data class FakeSampleDataset(Dataset): def __init__(self, host='localhost', port=27017, name="chirps"): Dataset.__init__(self) self.name = name def get(self, projection={}, num_records=500): return [{"lora_id": 1, "iq": [0+0j] * 74200}] * num_records class UniformRandomDataset(Dataset): # Sanity check dataset def __init__(self): Dataset.__init__(self) self.num_classes = FLAGS.num_classes self.lora_ids = set() for i in range(1, self.num_classes+1): self.lora_ids.add(i) def get(self, projection={}): data = [] for i in range(0, FLAGS.num_samples): record = {"lora_id": random.randint(1,self.num_classes), "iq": [random.random() for x in range(0, FLAGS.limit)]} data.append(record) return data class MatlabDataset(Dataset): def __init__(self): Dataset.__init__(self) self.path = FLAGS.matlabfile self.data = [] self.lora_ids = set() # Load the file and contents mat_contents = sio.loadmat(self.path) self.all_samples = mat_contents['all_samples'] # Determine number of classes for entry in self.all_samples: entry_name = os.path.basename(entry[0][0]) lora_id = self._determine_id(entry_name) if lora_id is None: continue self.lora_ids.add(lora_id) def _determine_id(self, filename): for elem in filename.split('-'): if 'lora' in elem: return Dataset._determine_id(self, elem) def get(self, projection={}, num_records=0): # TODO: projection data = [] # Parse class data for entry in self.all_samples: entry_name = os.path.basename(entry[0][0]) entry_data = entry[1] lora_id = self._determine_id(entry_name) if lora_id is None: continue print("Parsing " + entry_name + " (class " + str(lora_id) + ", " + str(len(entry_data)) + " samples)") for record in entry_data: for i in range(0, 8): chirp = record[i*FLAGS.chirp_length:(i+1)*FLAGS.chirp_length] tf_record = self._data_to_tf_record(lora_id, chirp, debug=args.debug) data.append(tf_record) return data class RandomMode: RANDOMIZE_SYMBOLS = 0 RANDOMIZE_FRAMES = 1 SPLIT_DATE = 2 SPLIT_COLLECTION = 3 _STR_RANDOMIZE_SYMBOLS = 'randomize_symbols' _STR_RANDOMIZE_FRAMES = 'randomize_frames' _STR_SPLIT_DATE = 'split_date' _STR_SPLIT_COLLECTION = 'split_collection' @staticmethod def e2s(enum): if enum == RandomMode.RANDOMIZE_SYMBOLS: return RandomMode._STR_RANDOMIZE_SYMBOLS elif enum == RandomMode.RANDOMIZE_FRAMES: return RandomMode._STR_RANDOMIZE_FRAMES elif enum == RandomMode.SPLIT_DATE: return RandomMode._STR_SPLIT_DATE elif enum == RandomMode.SPLIT_COLLECTION: return RandomMode._STR_SPLIT_COLLECTION else: print(Fore.YELLOW + Style.BRIGHT + "[!] Warning: unknown enum %d. Defaulting to 0." % enum) return 0 @staticmethod def s2e(string): if string == RandomMode._STR_RANDOMIZE_SYMBOLS: return RandomMode.RANDOMIZE_SYMBOLS elif string == RandomMode._STR_RANDOMIZE_FRAMES: return RandomMode.RANDOMIZE_FRAMES elif string == RandomMode._STR_SPLIT_DATE: return RandomMode.SPLIT_DATE elif string == RandomMode._STR_SPLIT_COLLECTION: return RandomMode.SPLIT_COLLECTION else: print(Fore.YELLOW + Style.BRIGHT + "[!] Warning: unknown randomization mode '%s'. Defaulting to randomize_symbols." % string) return RandomMode.RANDOMIZE_SYMBOLS class MongoDataset(Dataset): def __init__(self): Dataset.__init__(self) self.ip = FLAGS.ip self.port = FLAGS.port self.client = MongoClient(self.ip, self.port) self.db = self.client[FLAGS.db] self.collection = self.db[FLAGS.collection] self.collection_test = self.db[FLAGS.test_collection] self.lora_ids = set() self.random_mode = FLAGS.random_mode self.filter = json.loads(FLAGS.filter) self.num_samples = self.collection.find(self.filter).count() print(Fore.MAGENTA + Style.BRIGHT + "[+] Filter: %s" % str(self.filter)) self.sort = '$natural' if args.natural else 'rand' # Randomize mongo set self.randomize() # Randomize all symbols and divide into training and test set if self.random_mode == RandomMode.RANDOMIZE_SYMBOLS: self.cursor_train = self.collection.find(self.filter).sort(self.sort, 1).skip(0).limit(self.num_training_samples) self.cursor_test = self.collection.find(self.filter).sort(self.sort, 1).skip(self.num_training_samples).limit(self.num_test_samples) elif self.random_mode == RandomMode.RANDOMIZE_FRAMES: self.collection.create_index("fn") # Find out how many test frames we need frames_for_test = int(self.num_test_samples / 36) # 36 = number of symbols in frame # Find highest frame number print("[+] Finding highest frame number") last_fn = self.collection.find(self.filter).sort("fn", -1).limit(1)[0]['fn'] # Generate list of random frame numbers to be used as test set test_fns = [] for i in range(0, frames_for_test): test_fns.append(randint(0, last_fn)) # Assign the cursors train_query = self.filter.copy() train_query["fn"] = {"$nin": test_fns} self.cursor_train = self.collection.find(train_query).sort(self.sort, 1).limit(self.num_training_samples) test_query = self.filter.copy() test_query["fn"] = {"$in": test_fns} self.cursor_test = self.collection.find(test_query).sort(self.sort, 1).limit(self.num_test_samples) elif self.random_mode == RandomMode.SPLIT_DATE: self.collection.create_index("date") print("[+] Splitting test set after date: %s" % FLAGS.random_date) the_date = datetime.strptime(FLAGS.random_date,'%Y-%m-%dT%H:%M:%SZ') train_query = self.filter.copy() train_query["date"] = {"$lt": the_date} self.cursor_train = self.collection.find(train_query).sort(self.sort, 1).limit(self.num_training_samples) test_query = self.filter.copy() test_query["date"] = {"$gte": the_date} self.cursor_test = self.collection.find(test_query).sort(self.sort, 1).limit(self.num_test_samples) elif self.random_mode == RandomMode.SPLIT_COLLECTION: self.cursor_train = self.collection.find(self.filter).sort(self.sort, 1).limit(self.num_training_samples) self.cursor_test = self.collection_test.find(self.filter).sort(self.sort, 1).limit(self.num_test_samples) # Determine number of classes print("[+] Determining number of classes") for tag in self.cursor_train.distinct('tag'): lora_id = self._determine_id(tag) if lora_id is None: continue self.lora_ids.add(lora_id) self.cursor_train.rewind() # Create caches self.cache_train = GenericCache(name="train") self.cache_test = GenericCache(name="test") def randomize(self): if os.path.isfile('/tmp/randomized_mongo'): print("[+] MongoDB dataset is already randomized") return self._randomize(self.collection, "") if self.random_mode == RandomMode.SPLIT_COLLECTION: # If random mode is set to split collection, also randomize this collection self._randomize(self.collection_test, "(test set)") with open('/tmp/randomized_mongo', "w") as f: f.write('') def _randomize(self, collection, label=""): print("[+] Randomizing MongoDB dataset %s" % label) progress = 0 for entry in collection.find(self.filter): collection.update({"_id": entry["_id"]}, {"$set": {"rand": random.random()}}, upsert=False, multi=False) progress += 1 print("\r[+] Progress: %d / %d (estimation) " % (progress, self.num_samples)), print("") print("[+] Creating index") collection.create_index("rand") def get(self, train=True, projection={}, num_records=1000): data = [] set_in_memory = False if train: cursor = self.cursor_train cache = self.cache_train num_records_total = self.num_training_samples else: cursor = self.cursor_test cache = self.cache_test num_records_total = self.num_test_samples if len(cache) == num_records_total: set_in_memory = True # Set is already loaded in cache memory if set_in_memory: for i in range(0, num_records): try: tf_record = cache.next() except StopIteration: cache.rewind() tf_record = cache.next() data.append(tf_record) else: # Go through each record in the MongoDB for i in range(0, num_records): try: record = cursor.next() except StopIteration: cursor.rewind() record = cursor.next() except (OperationFailure, AutoReconnect) as e: print("[!] Warning: Got other exception than StopIteration: "), print(e) cursor.rewind() record = cursor.next() lora_id = self._determine_id(record['tag']) if lora_id is None: continue tf_record = cache.get(record['_id']) if tf_record is None: chirp = np.frombuffer(record['chirp'], dtype=np.complex64) tf_record = self._data_to_tf_record(lora_id, chirp, debug=args.debug) cache.store(record['_id'], tf_record) data.append(tf_record) return data # The Instances class is responsible for providing: # - Preprocessing of the raw chirp data into features # - Separation of dataset into training and test sets # - Random shuffling of training and test data class Instances(): def __init__(self, limit=None, exclude_classes=[], name="", mapping=None): self.name = name self.num_excluded_samples = 0 self.limit = limit self.exclude_classes = exclude_classes # Select dataset type if cp.get("DEFAULT", "dataset") == 'matlab': self.dataset = MatlabDataset() elif cp.get("DEFAULT", "dataset") == 'mongo': self.dataset = MongoDataset() elif cp.get("DEFAULT", "dataset") == 'random': self.dataset = UniformRandomDataset() else: print(Fore.RED + Style.BRIGHT + "[-] Unknown dataset type '" + cp.get("DEFAULT", "dataset") + "'. Exiting") exit(1) # Make sure we don't underestimate available data print("[+] Got " + Fore.GREEN + Style.BRIGHT + str(self.dataset.num_samples) + Style.RESET_ALL + " samples") if self.dataset.num_test_samples + self.dataset.num_training_samples > self.dataset.num_samples: print(Fore.RED + Style.BRIGHT + "[-] Sum of training and test samples exceeds available samples. Exiting") exit(1) # Get length of input samples (= number of features) and configure limit print("[+] Getting number of features (1 record get from test set)") self.num_features = self._get_num_features(self.dataset.get(train=False, num_records=1)) if self.limit == -1 or self.limit is None: self.limit = self.num_features print("[+] First sample contains %d features (limited to %d)" % (self.num_features, self.limit)) # Create mapping from LoRa ID to One Hot Vector if necessary if mapping is None: self.mapping = Mapping(self.dataset.lora_ids, exclude_classes=self.exclude_classes) self.mapping.display() else: # Update existing map with any new entries found self.mapping = mapping self.mapping.update(self.dataset.lora_ids, exclude_classes=self.exclude_classes) self.mapping.display() def next_batch(self, train, size): temp = list(self.dataset.get(train=train, num_records=size)) if len(temp) > 0: # Randomize (already done in Mongo, but not for other datasets) random.shuffle(temp) # Create instances instances_x = [] instances_y = [] for i in range(0, size): processed_record = self.process_record(temp[i]) if not (processed_record is None): instances_x.append(processed_record.x[0:self.limit]) instances_y.append(processed_record.y) instances_x = np.array(instances_x, dtype=np.float32) instances_y = np.array(instances_y, dtype=np.float32) # Done! #if len(self.exclude_classes) > 0: # print(Fore.GREEN + Style.BRIGHT + "[+] EXCLUDING %d samples" % self.num_excluded_samples) else: print("[-] No samples found in dataset. Exiting") exit(1) if len(instances_x) == 0: raise Exception return instances_x, instances_y def _get_num_features(self, x): return len(np.array(x[0]["iq"]).flatten()) def process_record(self, record): # Do some preprocessing on the records here if record["lora_id"] in self.exclude_classes: self.num_excluded_samples += 1 return None one_hot_vector = self.mapping.lora_id_to_oh(record["lora_id"]) features = np.array(record["iq"]).flatten() return TensorIO(features, one_hot_vector) # ---------------------------------------------------- # ML models # Some of these models are based on the reference im- # plementations provided by Aymeric Damien. See # https://github.com/aymericdamien/TensorFlow-Examples # for more information. # ---------------------------------------------------- class MLModel(): # Base class for ML models def __init__(self): self.learning_rate = None self.layers = [] self.output_layer = None self.cost_function = None self.correct_prediction = None class MLPModel(MLModel): def __init__(self, x, num_inputs, y, num_classes, hidden_layers=0, hidden_neurons=0, name='mlp'): MLModel.__init__(self) self.learning_rate = 0.0001 #0.001 works pretty good too next_layer = x next_layer_size = num_inputs for i in range(0, hidden_layers): self.layers.append(LinearReluLayer(next_layer, next_layer_size, hidden_neurons, name=name+'lin' + str(i))) self.output_layer = self.layers[-1] next_layer = self.output_layer.h next_layer_size = hidden_neurons self.layers.append(LinearLayer(next_layer, next_layer_size, num_classes, name=name+'clin', init_zero=True)) # Since it will be softmaxed later, init to zero. Seems to affect training speed and making the weights align on a diagonal faster self.output_layer = self.layers[-1] #self.cost_function = tf.reduce_mean(-tf.reduce_sum(y * tf.log(tf.nn.softmax(self.output_layer.h)+EPSILON), reduction_indices=[1])) # Doesn't deal with edge cases so we need to add EPSILON self.cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.output_layer.h, labels=y)) #self.cost_function = tf.reduce_mean(tf.reduce_sum(tf.square(y - tf.nn.softmax(self.output_layer.h)), reduction_indices=[1])) self.correct_prediction = tf.equal(tf.argmax(self.output_layer.h,1), tf.argmax(y,1)) class ConvNeuralNetModel(MLModel): def __init__(self, x, num_inputs, y, num_classes, keep_prob=None, name='cnn'): MLModel.__init__(self) self.learning_rate = 0.001 # 0.0001 # Make image x_shaped = tf.reshape(x, shape=[-1, 1, num_inputs, 1]) # Append convolution layers self.layers.append(NNLayer(x_shaped, [1, FLAGS.conv_kernel_width, 1, 32], [32], name=name+'wc1')) self.output_layer = self.layers[-1] self.layers.append(NNLayer(self.output_layer.h, [1, FLAGS.conv_kernel_width, 32, 64], [64], name=name+'wc2')) self.output_layer = self.layers[-1] # Reshape conv2 output to fit fully connected layer input relu_inputs = (num_inputs/pow(FLAGS.pooling_kernel_width, 2))*64 # 64 = output channels per sample from conv. 4 = k from polling (see paper notes). Power of two because max pooling twice relu_outputs = num_inputs out_shaped = tf.reshape(self.output_layer.h, [-1, relu_inputs]) # Append fully connected layer self.layers.append(LinearReluDropLayer(out_shaped, relu_inputs, relu_outputs, keep_prob)) self.output_layer = self.layers[-1] # Output, class prediction self.layers.append(LinearLayer(self.output_layer.h, relu_outputs, num_classes, name=name+'lin')) self.output_layer = self.layers[-1] self.cost_function = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.output_layer.h, labels=y)) self.correct_prediction = tf.equal(tf.argmax(self.output_layer.h,1), tf.argmax(y,1)) class MDNModel(MLModel): def __init__(self, x, num_inputs, y, num_classes, hidden_layers=0, hidden_neurons=0, name='mdn'): MLModel.__init__(self) self.num_classes = num_classes self.learning_rate = 0.001 next_layer = x next_layer_size = num_inputs # Hidden layers for i in range(0, hidden_layers): self.layers.append(LinearLayer(next_layer, next_layer_size, hidden_neurons, name=name+'lin' + str(i))) self.output_layer = self.layers[-1] next_layer = self.output_layer.h next_layer_size = hidden_neurons # MDN layer self.layers.append(MixtureLayer(next_layer, next_layer_size, num_classes, name=name+"mix")) self.output_layer = self.layers[-1] self.pi, self.mu, self.sigma = self._get_components(self.output_layer) self.gauss = tf.contrib.distributions.Normal(mu=self.mu, sigma=self.sigma) # Cost function self.cost_function = self._get_cost_function(y) # Evaluation self.correct_prediction = tf.equal(tf.argmax(tf.mul(self.pi,self.gauss.mean()), 1), tf.argmax(y,1)) def _get_components(self, layer): pi = tf.placeholder("float", [None, layer.num_components]) mu = tf.placeholder("float", [None, layer.num_components]) sigma = tf.placeholder("float", [None, layer.num_components]) pi, mu, sigma = tf.split(1, layer.num_components, layer.h) pi = tf.nn.softmax(pi) #assert_op = tf.Assert(tf.equal(tf.reduce_sum(pi), 1.), [pi]) #pi = tf.with_dependencies([assert_op], pi) sigma = tf.exp(sigma) return pi, mu, sigma def _get_cost_function(self, y): return tf.reduce_mean(-tf.log(tf.reduce_sum(tf.mul(self.pi, self.gauss.pdf(y)), 1, keep_dims=True))) def _sample(self, n): # Randomly sample x times according to pi distribution mixture_indices = tf.reshape(tf.multinomial(tf.log(self.pi), n), [-1]) # Pi must be a log probability # Sample all gaussian distributions x times samples = tf.reshape(self.gauss.sample(n), [-1, self.num_classes]) # Select only the one according to pi select_gaussians = tf.reduce_sum(tf.one_hot(mixture_indices, self.num_classes) * samples, 1) return select_gaussians def _mean(self): # Get the indices of the most likely mixtures beloning to each x mixture_indices = tf.argmax(self.pi, 1) # Get the expected values of all gaussians exp_values = self.gauss.mean() # Get expected value of most likely mixture select_exp = tf.reduce_sum(tf.one_hot(mixture_indices, self.num_classes) * exp_values, 1) return select_exp class ModelType: MLP = 0 CONVNET = 1 MDN = 2 @staticmethod def str2type(string): if string == "mlp": return ModelType.MLP elif string == "cnn": return ModelType.CONVNET elif string == "mdn": return ModelType.MDN else: print(Fore.RED + Style.BRIGHT + "[-] Model type "+ string +" does not exist.") exit(1) # ---------------------------------------------------- # ML classifiers # ---------------------------------------------------- class SVM(): def __init__(self, name="svc"): print("[+] SVM Classifier") self.m = SVC() self.name = name def _get_lora_id_labels(self, instances, oh_labels): result = [] for i in range(0, len(oh_labels)): result.append(instances.mapping.oh_to_lora_id(oh_labels[i])) return result def _to_vendor(self, instances, lora_id_labels): result = [] for i in range(0, len(lora_id_labels)): result.append(instances.mapping.lora_id_to_vendor_id(lora_id_labels[i])) return result def train(self, instances, batch_size=2500): print("[+] Getting %d training samples" % batch_size) train_samples_x, train_samples_y = instances.next_batch(True, batch_size) train_samples_y = self._get_lora_id_labels(instances, train_samples_y) print("[+] Training model") self.m.fit(train_samples_x, train_samples_y) def save(self): path = FLAGS.trainedmodelsdir + self.name + "/" if not os.path.exists(path): os.makedirs(path) # Save model pickle.dump(self.m, open(path + 'svc_model.p', "wb")) @staticmethod def load(): path = FLAGS.trainedmodelsdir + FLAGS.model_name + "/" # Set up classifier based on config and stored data net = SVM() net.m = pickle.load(open(path + 'svc_model.p', "rb")) return net def bin_class_per_sample(self, instances, limit=200, adv_detect=True, vendor_only=False): print("[+] Getting %d test samples" % limit) test_samples_x, test_samples_y = instances.next_batch(False, limit) test_samples_y = self._get_lora_id_labels(instances, test_samples_y) print("[+] Evaluating model") predicted_y = self.m.predict(test_samples_x) if vendor_only: metrics = utilities.get_eval_metrics_percent(self._to_vendor(instances, test_samples_y), self._to_vendor(instances, predicted_y)) else: metrics = utilities.get_eval_metrics_percent(test_samples_y, predicted_y) utilities.print_metrics(metrics) return def visualize_embeddings(self, instances, limit=200, train=True): print("[!] Warning: visualize_embeddings not implemented for SVM") return class Classifier(): # Build the classifier def __init__(self, num_inputs, num_classes, name, modeltype=ModelType.MLP): self.num_inputs = num_inputs self.num_classes = num_classes self.name = name self.step = 0 self.modeltype = modeltype self.expected_values = None self.std = None self.distance_threshold = np.zeros(num_classes) self.sess = None self.instances_mapping = None model_summaries = [] self.x = tf.placeholder("float", [None, self.num_inputs], name='inputs') self.y = tf.placeholder("float", [None, self.num_classes], name='map-id-oh') self.keep_prob = tf.placeholder(tf.float32, name='dropout') if modeltype == ModelType.MLP: self.m = MLPModel(self.x, self.num_inputs, self.y, self.num_classes, hidden_layers=FLAGS.num_hidden_layers, hidden_neurons=FLAGS.num_hidden_neurons, name="mlp") # Build MLP model elif modeltype == ModelType.CONVNET: self.m = ConvNeuralNetModel(self.x, self.num_inputs, self.y, self.num_classes, keep_prob=self.keep_prob, name="cnn") # Build Convolutional Neural Network model elif modeltype == ModelType.MDN: self.m = MDNModel(self.x, self.num_inputs, self.y, self.num_classes, hidden_layers=FLAGS.num_hidden_layers, hidden_neurons=FLAGS.num_hidden_neurons, name="mdn") # Build MDN model else: raise Exception("No model type specified") # Define optimizer self.optimizer = tf.train.AdamOptimizer(learning_rate=self.m.learning_rate).minimize(self.m.cost_function) # Define accuracy model self.accuracy = tf.reduce_mean(tf.cast(self.m.correct_prediction, tf.float32)) # Merge TensorBoard summaries for the model model_summaries.append(tf.summary.scalar('accuracy', self.accuracy)) model_summaries.append(tf.summary.scalar('cost', self.m.cost_function)) self.merged_model_summaries = tf.summary.merge(model_summaries, collections=None, name=None) # Define session object and summary writers self.sess = tf.Session() self.train_writer = tf.summary.FileWriter(FLAGS.logdir + '/train', graph=self.sess.graph) self.test_writer = tf.summary.FileWriter(FLAGS.logdir + '/test') def __del__(self): if not (self.sess is None): self.sess.close() self.train_writer.close() self.test_writer.close() # Plot sample data to Tensorboard def _plot_samples(self, samples_x, samples_y): # Register plot summaries plot_summaries = [] plots_to_show = 5 learned_weights_tensor = tf.identity(self.m.output_layer.W) learned_weights = self.sess.run(learned_weights_tensor) plot_summaries.append(visualization.plot_values(samples_x[0], self.instances_mapping, height=500, width=self.num_inputs, tag="weights", title="Weights", label=np.argmax(samples_y[0]), backdrop=learned_weights)) for i in range(1, 6): label = np.argmax(samples_y[i]) guess = self.get_accuracy([samples_x[i]], [samples_y[i]]) plot_summaries.append(visualization.plot_values(samples_x[i], self.instances_mapping, height=500, width=self.num_inputs, tag="trd" + str(i) + "c" + str(label) + "g" + str(guess), title="Training data", label=label)) # Merge TensorBoard summaries for plots merged_plot_summaries = tf.summary.merge(plot_summaries, collections=None, name=None) summary_plot = self.sess.run(merged_plot_summaries) self.train_writer.add_summary(summary_plot) # Plot kernel data to Tensorboard def _plot_kernels(self): plot_summaries = [] # TODO go through layers and check .startswith("wc") kernels_tensor = self.m.layers[0].W kernels_shaped_tensor = tf.reshape(kernels_tensor, [-1, FLAGS.conv_kernel_width]) # Arrange kernels so that there is one per row kernels_shaped = self.sess.run(kernels_shaped_tensor) plot_summaries.append(visualization.plot_kernels(kernels_shaped, FLAGS.conv_kernel_width, height=4096, width=1024, tag="kernels", title="CNN Kernels")) # Merge TensorBoard summaries for plots TODO dup code merged_plot_summaries = tf.summary.merge(plot_summaries, collections=None, name=None) summary_plot = self.sess.run(merged_plot_summaries) self.train_writer.add_summary(summary_plot) def get_output_weights(self, samples_x): return self.sess.run(self.m.output_layer.h, feed_dict={self.x: samples_x, self.keep_prob: 1.0}) def _plot_output_weights_2d(self, samples_x, samples_y, predictions_y, instances, metrics): # Do not use new samples from instances plot_summaries = [] # Get the output weight values for all classes output_weights = self.get_output_weights(samples_x) # OLD: Get first two weights to visualize # weights = select_cols(output_weights, 0, 1) # Reduce dimensionality of weights to 2 tsne = TSNE(n_components=2, init='pca', n_iter=5000) weights = tsne.fit_transform(output_weights) #xlabel = "Weight #" + str(0) + " values" #ylabel = "Weight #" + str(1) + " values" xlabel = "t-SNE dimension 1" ylabel = "t-SNE dimension 2" plot_summaries.append(visualization.plot_weights(weights, samples_y, predictions_y, self.expected_values, self.distance_threshold, instances.mapping, tag=self.name+"-w", title="2D projection of output feature weights", xlabel=xlabel, ylabel=ylabel, metrics=metrics)) # Merge TensorBoard summaries for plots TODO dup code merged_plot_summaries = tf.summary.merge(plot_summaries, collections=None, name=None) summary_plot = self.sess.run(merged_plot_summaries) self.train_writer.add_summary(summary_plot) def train(self, instances, batch_size=2500): # Let's go print("[+] Training") self.sess.run(tf.global_variables_initializer()) # Start learning weights try: while True: train_batch_x, train_batch_y = instances.next_batch(True, batch_size) test_batch_x, test_batch_y = instances.next_batch(False, batch_size) # Execute training step(s) on batch #print(self.sess.run(self.m.tmp, feed_dict={self.x: train_batch_x, self.y: train_batch_y, self.keep_prob: FLAGS.keep_prob})) # To test something inside model with the same data for i in range(0, FLAGS.retrain_batch): self.sess.run(self.optimizer, feed_dict={self.x: train_batch_x, self.y: train_batch_y, self.keep_prob: FLAGS.keep_prob}) # Print progress if self.step % FLAGS.print_step == 0: # Print stats about step summary_train, c_train, a_train = self.sess.run([self.merged_model_summaries, self.m.cost_function, self.accuracy], feed_dict={self.x: train_batch_x, self.y: train_batch_y, self.keep_prob: 1.0}) summary_test = self.sess.run(self.merged_model_summaries, feed_dict={self.x: test_batch_x, self.y: test_batch_y, self.keep_prob: 1.0}) # Add summaries self.train_writer.add_summary(summary_train, self.step) self.test_writer.add_summary(summary_test, self.step) # Print info about training print("Epoch {:d}: cost={:.6f}, tr_acc={:.6f}, W0_0={:.6f}".format(self.step, c_train, a_train, self.sess.run(self.m.output_layer.W)[0][0])) # Next step self.step += 1 if self.step == FLAGS.epochs: raise KeyboardInterrupt except KeyboardInterrupt: pass # Save the mapping used during training from LoRa ID to Map ID self.instances_mapping = instances.mapping # Mixture components self.expected_values, self.std = self.calculate_mixture_components(instances) # Show results print(Fore.GREEN + Style.BRIGHT + "[+] Done training!") if self.modeltype == ModelType.MLP: print(Fore.GREEN + Style.BRIGHT + "[+] Plotting training samples") self._plot_samples(train_batch_x, train_batch_y) else: print(Fore.GREEN + Style.BRIGHT + "[+] Plotting model kernels") self._plot_kernels() # Evaluation print("[+] Training set accuracy") print(self.get_accuracy(train_batch_x, train_batch_y)) print("[+] Test set accuracy") print(self.get_accuracy(test_batch_x, test_batch_y)) # Assert that nothing unexpected happened during the whole process GenericCache.assert_disjunction(instances.dataset.cache_train, instances.dataset.cache_test) print(Fore.GREEN + Style.BRIGHT + "[+] Training assertions passed") def determine_ideal_threshold(self, map_id, samples_x, expected_values): output_weights = self.sess.run(self.m.output_layer.h, feed_dict={self.x: samples_x, self.keep_prob: 1.0}) threshold = 0.0 for output_weight in output_weights: #threshold = max(np.linalg.norm(output_weight - expected_values), threshold) #threshold = (np.linalg.norm(output_weight - expected_values) + threshold) / 2.0 threshold += np.linalg.norm(output_weight - expected_values) threshold /= len(output_weights) return threshold def calculate_mixture_components(self, instances, num_samples_to_use=10000): print("[+] Determining mixture model components") train_batch_x, train_batch_y = instances.next_batch(True, num_samples_to_use) expected_values = np.ndarray(shape=(self.num_classes,self.num_classes), dtype=np.float32) std = np.ndarray(shape=(self.num_classes,self.num_classes), dtype=np.float32) for lora_id in instances.mapping.keys(): map_id = instances.mapping.lora_to_map_id(lora_id) samples_x = [] # Collect samples belonging to class map_id for i in range(0, len(train_batch_x)): if np.argmax(train_batch_y[i]) == map_id: samples_x.append(train_batch_x[i]) if len(samples_x) == 0: print(train_batch_y) print("[-] Error: no samples in training set for LoRa %d. Dumped y training set" % lora_id) exit() # Determine mean and std deviation for all features nn_output_weights = self.sess.run(tf.identity(self.m.output_layer.h), feed_dict={self.x: samples_x, self.keep_prob: 1.0}) expected_values[map_id] = np.mean(nn_output_weights, axis=0) std[map_id] = np.std(nn_output_weights, axis=0) # Determine ideal threshold based on expected values # this threshold is used when doing nearest neighbor classification # as the outlier detection (not discussed in paper) if args.distance_threshold == 'auto': print("\r[+] Determining expected value distance threshold for LoRa %d " % lora_id), self.distance_threshold[map_id] = self.determine_ideal_threshold(map_id, samples_x, expected_values[map_id]) else: self.distance_threshold[map_id] = args.distance_threshold # Clean up del samples_x print("") return expected_values, std # Calculates the distance between a point and a centroid def calculate_expected_values_distance(self, samples_x): if self.expected_values is None or self.distance_threshold is None: raise Exception("Tried to evaluate expected value MSE without training values") output_weights = self.sess.run(self.m.output_layer.h, feed_dict={self.x: samples_x, self.keep_prob: 1.0}) distances = [] for output_weight_v in output_weights: distances.append(np.linalg.norm(output_weight_v - self.expected_values, axis=1)) # Distance from E(X) for each class to X return distances def get_accuracy(self, samples_x, samples_y): return self.sess.run(self.accuracy, feed_dict={self.x: samples_x, self.y: samples_y, self.keep_prob: 1.0}) def save(self): path = FLAGS.trainedmodelsdir + self.name + "/" if not os.path.exists(path): os.makedirs(path) # Save number of inputs np.save(path + 'value-inputs', self.num_inputs) # Save number of classes np.save(path + 'value-classes', self.num_classes) # Save layers for layer in self.m.layers: filename = path + 'layer-' + layer.name layer.saver.save(self.sess, filename, global_step=0) # Save expected classification output np.save(path + 'value-expected', self.expected_values) np.save(path + 'value-std', self.std) # Save distance threshold np.save(path + 'value-dt', self.distance_threshold) # Save instance mapping pickle.dump(self.instances_mapping, open(path + 'value-mapping.p', "wb")) @staticmethod def load(self, step=0): path = FLAGS.trainedmodelsdir + FLAGS.model_name + "/" # Load inputs and classes. Required to set up models. num_inputs = np.load(path + 'value-inputs' + '.npy') num_classes = np.load(path + 'value-classes' + '.npy') # Set up classifier based on config and stored data net = Classifier(num_inputs=num_inputs, num_classes=num_classes, name=FLAGS.model_name, modeltype=ModelType.str2type(FLAGS.classifier)) for layer in net.m.layers: filename = path + 'layer-' + layer.name + '-' + str(step) layer.saver.restore(net.sess, filename) try: net.expected_values = np.load(path + 'value-expected' + '.npy') net.std = np.load(path + 'value-std' + '.npy') except IOError: print("[!] Warning: model does not have 'value-expected' and/or 'value-std', and will not be able to perform zero shot classification as a result.") pass net.distance_threshold = np.load(path + 'value-dt' + '.npy') net.instances_mapping = pickle.load(open(path + 'value-mapping.p', "rb")) return net def test(self, instances, limit=200): test_samples_x, test_samples_y = instances.next_batch(False, limit) # Metrics accuracy = self.get_accuracy(test_samples_x, test_samples_y) print(Fore.GREEN + Style.BRIGHT + "[+] Evaluation accuracy for %d samples: %.2f percent" % (limit, accuracy * 100.0)) # Determine to which class a (set of) symbols belongs. # If clustering is used, then the frame is sent by an attacker if it does not belong to any cluster def _predict(self, samples_x, adv_detect): if FLAGS.clustering == "l1nn": return self._predict_nearest_neighbor_l1(samples_x, adv_detect) elif FLAGS.clustering == "argmax" or FLAGS.clustering == "none": if adv_detect: # TODO: Threshold in this case? print("[!] Warning: adv_detect cannot be used with argmax clustering at the moment") return self._predict_argmax(samples_x) else: # Don't do clustering, but use the closest predicted class print("[!] Warning: unknown clustering approach '%s'; defaulting to 'none'" % FLAGS.clustering) return self._predict_argmax(samples_x) # Predict class with least L1 distance to expected weight def _predict_nearest_neighbor_l1(self, samples_x, adv_detect): expected_values_distance = self.calculate_expected_values_distance(samples_x) idmap_predictions = [] for ed in expected_values_distance: map_id = np.argmin(ed) if adv_detect and (ed[map_id] > self.distance_threshold[map_id]): map_id = -1 idmap_predictions.append(map_id) most_probable = stats.mode(idmap_predictions)[0][0] return most_probable, idmap_predictions # Predict class with highest weight def _predict_argmax(self, samples_x): idmap_predictions = self.sess.run(tf.argmax(self.m.output_layer.h, 1), feed_dict={self.x: samples_x, self.keep_prob: 1.0}) most_probable = stats.mode(idmap_predictions)[0][0] return most_probable, idmap_predictions def _predict_zeroshot(self, samples_x): weights = self.sess.run(self.m.output_layer.h, feed_dict={self.x: samples_x, self.keep_prob: 1.0}) probabilities = self.sess.run(tf.nn.softmax(self.m.output_layer.h), feed_dict={self.x: samples_x, self.keep_prob: 1.0}) return weights, probabilities # Function to visualize confusion matrix and calculate the metrics ourselves def _print_statistics(self, confusion_matrix): num_classes = confusion_matrix.shape[0] true_positives = np.zeros(num_classes) false_positives = np.zeros(num_classes) false_negatives = np.zeros(num_classes) true_negatives = np.zeros(num_classes) precision = np.zeros(num_classes) recall = np.zeros(num_classes) accuracy = np.zeros(num_classes) # Calculate metrics for i in range(num_classes): true_positives[i] = confusion_matrix[i,i] for i in range(num_classes): false_positives[i] = np.sum(confusion_matrix[:,i]) - true_positives[i] for i in range(num_classes): false_negatives[i] = np.sum(confusion_matrix[i,:]) - true_positives[i] for i in range(num_classes): true_negatives[i] = np.sum(confusion_matrix) - (false_positives[i] + false_negatives[i] + true_positives[i]) for i in range(num_classes): precision[i] = true_positives[i] / (true_positives[i] + false_positives[i]) for i in range(num_classes): recall[i] = true_positives[i] / (true_positives[i] + false_negatives[i]) for i in range(num_classes): accuracy[i] = (true_positives[i] + true_negatives[i]) / (true_positives[i] + false_positives[i] + false_negatives[i] + true_negatives[i]) np.set_printoptions(threshold='nan', linewidth=200) print("Confusion matrix") print(confusion_matrix) print("TP") print(true_positives) print("FP") print(false_positives) print("FN") print(false_negatives) print("TN") print(true_negatives) print("Precision") print(precision) print("Recall") print(recall) print("Accuracy") print(accuracy) # Accuracy according to Wikipedia. This metric is not correct because # it counts partially correct samples in the true negatives part of the # confusion matrix. For example: when class 5 is a true negative with # respect to a class 3 one-v-all classifier, it is considered correct # even though the true class is 7. model_accuracy_partial_correct = np.mean(accuracy) # Decent metrics model_accuracy = np.sum(true_positives) / np.sum(confusion_matrix) model_precision_macro = np.mean(precision) model_recall_macro = np.mean(recall) print("Macc_PARTIAL : %.2f" % (model_accuracy_partial_correct*100.0)) print("Macc : %.2f" % (model_accuracy*100.0)) print("Mprec (macro): %.2f" % (model_precision_macro*100.0)) print("Mrec (macro) : %.2f" % (model_recall_macro*100.0)) # Perform a per-sample classification of whether it belongs to a class or not # This is done by calculating the distance to the expected value (mode) of the # Gaussian distribution of output weights for each class, and choosing the shortest # distance. def bin_class_per_sample(self, instances, limit=200, adv_detect=True, vendor_only=False): test_samples_x, test_samples_y = instances.next_batch(False, limit) num_samples = len(test_samples_x) num_classes = instances.mapping.size+1 if adv_detect else instances.mapping.size # If adv_detect: use extra class for unknown # Metrics predicted_y = [] true_y = [] true_y_vis = [] confusion_matrix = np.zeros(shape=(num_classes,num_classes)) print('[+] Predicting %d samples...' % num_samples) for i in range(0, num_samples): true_class_map = np.argmax(test_samples_y[i]) # Get the true map ID from the dataset predicted_class_map,_ = self._predict([test_samples_x[i]], adv_detect) # Get the map ID according to the model true_class = instances.mapping.map_to_lora_id(true_class_map) # Get the LoRa ID from the dataset predicted_class = self.instances_mapping.map_to_lora_id(predicted_class_map) # Get the LoRa ID according to the model if predicted_class is None: predicted_class = -1 if vendor_only: true_class = instances.mapping.lora_id_to_vendor_id(true_class) predicted_class = self.instances_mapping.lora_id_to_vendor_id(predicted_class) predicted_y.append(predicted_class) if adv_detect: if not true_class in self.instances_mapping.keys(): # self.instances_mapping = learned mapping from model true_y_vis.append(true_class) true_y.append(-1) confusion_matrix[0, predicted_class_map+1] += 1 # Make it so adv class(=-1) becomes class 0 else: true_y.append(true_class) true_y_vis.append(true_class) confusion_matrix[true_class_map+1, predicted_class_map+1] += 1 else: true_y.append(true_class) true_y_vis.append(true_class) confusion_matrix[true_class_map, predicted_class_map] += 1 print("[+] True classes encountered: %s" % len(set(true_y))) self._print_statistics(confusion_matrix) # For debugging assert(np.sum(confusion_matrix) == num_samples) metrics = utilities.get_eval_metrics_percent(true_y, predicted_y) utilities.print_metrics(metrics) print('[+] Plotting output weights for first %d samples' % num_samples) self._plot_output_weights_2d(test_samples_x, true_y_vis, predicted_y, instances, metrics) def bin_class_per_frame(self, frame, symbol_length, adv_detect=True): dataset = GNURadioDataset(frame, symbol_length) data_x = [np.array(x["iq"]).flatten() for x in dataset.get()] map_id, all_map_id_predictions = self._predict(data_x, adv_detect) # Debug lora_id_predictions = [] for map_id in all_map_id_predictions: lora_id_predictions.append(self.instances_mapping.map_to_lora_id(map_id)) print("%s: %s" % (FLAGS.clustering, str(lora_id_predictions))) return stats.mode(lora_id_predictions)[0][0] def _labels_to_tsv_file(self, labels, mapping, out=None): result = "" for i in range(len(labels)): result += str(mapping.oh_to_lora_id(labels[i])) + "\n" if out: with open(out, "w") as f: f.write(result) # TODO: Actually doesn't need to be inside the Classifier class def visualize_embeddings(self, instances, limit=200, train=True): print("[+] Gathering instances...") samples_x, samples_y = instances.next_batch(train, limit) weights = net.get_output_weights(samples_x) print(Fore.GREEN + Style.BRIGHT + "[+] Visualizing embeddings for %d samples" % limit) embeddings_instances = tf.Variable(tf.stack(samples_x, axis=0), trainable=False, name='instances') embeddings_weights = tf.Variable(tf.stack(weights, axis=0), trainable=False, name='weights') self.sess.run(tf.variables_initializer([embeddings_instances, embeddings_weights])) embeddings_saver = tf.train.Saver([embeddings_instances, embeddings_weights]) embeddings_writer = tf.summary.FileWriter(FLAGS.logdir + '/projector', self.sess.graph) conf = projector.ProjectorConfig() # Add embeddings # Instances e = conf.embeddings.add() e.tensor_name = embeddings_instances.name self._labels_to_tsv_file(samples_y, instances.mapping, out=FLAGS.logdir + '/projector/metadata.tsv') e.metadata_path = FLAGS.logdir + '/projector/metadata.tsv' # Generate sprite, save to tmp and assign here #e.sprite.image_path = FLAGS.logdir + #e.sprite.single_image_dim.extend([1024, 768]) # Weights e = conf.embeddings.add() e.tensor_name = embeddings_weights.name self._labels_to_tsv_file(samples_y, instances.mapping, out=FLAGS.logdir + '/projector/metadata.tsv') e.metadata_path = FLAGS.logdir + '/projector/metadata.tsv' projector.visualize_embeddings(embeddings_writer, conf) embeddings_saver.save(self.sess, FLAGS.logdir + '/projector/model_embeddings.ckpt') # Calculates distance between pairs of centroids def _intercluster_distance(self, centroids, method='min'): num_centroids = len(centroids) if not method in ['min','mean','mean_of_min']: print("[!] Warning: _intercluster_distance: no such method '%s'. Defaulting to 'min'." % method) method = 'min' print("[+] Finding %s distance between %d centroids" % ("minimum" if method == 'min' else ("mean" if method == "mean" else "mean of minimum"), num_centroids)) if method == 'mean_of_min': minimums = [] for i in range(len(centroids)): first = centroids[i] distances = [] for j in range(len(centroids)): if i == j: continue second = centroids[j] distance = np.linalg.norm(second - first) distances.append(distance) minimums.append(np.min(distances)) return np.mean(minimums) else: distances = [] for pair in combinations(range(num_centroids), 2): distance = np.linalg.norm(centroids[pair[0]] - centroids[pair[1]]) distances.append(distance) if method == 'min': return np.min(distances) elif method == 'mean': return np.mean(distances) # Convert predicted labels to real labels so that they can be compared # in terms of accuracy def _get_zeroshot_labels(self, dbscan_labels, real_labels): counts = defaultdict(list) # Get dbscan labels for each real label for i in range(len(real_labels)): counts[real_labels[i]].append(dbscan_labels[i]) # Get most frequent dbscan label for each real label # and use dbscan label as key for lookup dict keys = {} keys_counts = defaultdict(lambda: 0) for key in set(real_labels): mode_count = stats.mode(counts[key])[1][0] mode_value = stats.mode(counts[key])[0][0] if mode_count > keys_counts[mode_value]: keys[mode_value] = key keys_counts[mode_value] = mode_count # Apply lookup dict to transform labels result = [] for i in range(len(dbscan_labels)): try: result.append(keys[dbscan_labels[i]]) except KeyError: # No prevalent real label for this dbscan label found, so use outlier result.append(-1) return np.array(result) def classify_zeroshot(self, instances, limit=40, threshold_outlier=0.0001, vendor_only=False): num_mixtures = len(self.std) mixtures = [] outlier_points = [] outlier_labels = [] print("[+] Gathering test samples") test_samples_x, test_samples_y = instances.next_batch(False, limit) num_samples = len(test_samples_x) print("[+] Building %d gaussian mixtures based on trained parameters" % num_mixtures) from scipy.stats import multivariate_normal for i in range(num_mixtures): # TF method #g = tf.contrib.distributions.Normal(mu=self.expected_values[i], sigma=self.std[i]) # Numpy method #g = multivariate_normal(self.expected_values[i], np.diag(np.power(self.std[i], 2))) g = NumpyNormWrapper(mu=self.expected_values[i], sigma=self.std[i]) mixtures.append(g) print("[+] Finding inter-cluster distance of training samples") icd = self._intercluster_distance(self.expected_values, method='mean_of_min') print("[+] ICD is %f" % icd) print("[+] Calculating weights and probabilities") weights, probabilities = self._predict_zeroshot(test_samples_x) print("[+] Calculating marginals") marginals = np.zeros(shape=(num_samples, num_mixtures)) for i in range(num_samples): point = weights[i] pi = probabilities[i] for j in range(num_mixtures): # TF method #marginals[i] += pi[j] * self.sess.run(mixtures[j].pdf(point)) # Numpy method marginals[i] += pi[j] * mixtures[j].pdf(point) outlier = False for j in range(num_mixtures): if marginals[i][j] < threshold_outlier: outlier = True outlier_points.append(point) lora_id = instances.mapping.oh_to_lora_id(test_samples_y[i]) if vendor_only: # If we only care about classifying correct vendor lora_id = instances.mapping.lora_id_to_vendor_id(lora_id) outlier_labels.append(lora_id) break #print("%02d: %s | marg:%s, pi:%s, meanmarg:%s (%d/%d)" % (instances.mapping.oh_to_lora_id(test_samples_y[i]), str(outlier), str(marginals[i]), pi, str(np.mean(marginals[i])),i,num_samples)) print("[+] Finding nearest neighbors based on inter-cluster distance of training data") db = DBSCAN(eps=icd, min_samples=1).fit(outlier_points) zeroshot_labels = self._get_zeroshot_labels(db.labels_, outlier_labels) guess_clusters = len(set(db.labels_)) - (1 if -1 in db.labels_ else 0) print(db.labels_) print(np.array(outlier_labels)) print(zeroshot_labels) print(guess_clusters) metrics = utilities.get_eval_metrics_percent(outlier_labels, zeroshot_labels) utilities.print_metrics(metrics) # Reduce dimensionality of weights to 2 tsne = TSNE(n_components=2, init='pca', n_iter=5000) vis = tsne.fit_transform(outlier_points) visualization.plot_weights(vis, outlier_labels, zeroshot_labels, None, None, instances.mapping, tag=self.name+"-zero-w", metrics=metrics, tf=True) # Class to make numpy normal distribution act the same as TF normal distribution class NumpyNormWrapper(): def __init__(self, mu, sigma): from scipy.stats import norm if len(mu) != len(sigma): raise Exception # Initialize self.num_distributions = len(mu) self.distributions = [] for i in range(self.num_distributions): self.distributions.append(norm(mu[i], sigma[i])) def pdf(self, values): if len(values) != self.num_distributions: raise Exception result = [] for i in range(self.num_distributions): result.append(self.distributions[i].pdf(values[i])) return np.array(result) # ---------------------------------------------------- # ML layers # ---------------------------------------------------- class NNLayer(): def __init__(self, inputs, Wshape, bshape, name=''): # input features and outputs self.inputs = inputs self.Wshape = Wshape self.bshape = bshape self.name = name # Define model self.W = tf.Variable(tf.random_normal(Wshape)) # Filter kernel self.b = tf.Variable(tf.random_normal(bshape)) # Input: [batch, height, width, channels] # Kernel: [filter_height, filter_width, in_channels, out_channels] k = FLAGS.pooling_kernel_width s = 1 self.conv = tf.nn.conv2d(inputs, self.W, strides=[1, 1, s, 1], padding='SAME') # Convolution Layer self.conv_b = tf.nn.bias_add(self.conv, self.b) # Convolution layer bias self.relu = tf.nn.relu(self.conv_b) # ReLU activation layer self.h = tf.nn.max_pool(self.relu, ksize=[1, 1, k, 1], strides=[1, 1, k, 1], padding='SAME') # Max pooling layer (down-sampling) self.saver = tf.train.Saver([self.W, self.b]) class LinearLayer(): def __init__(self, inputs, num_inputs, num_outputs, name='', init_zero=False): # input features and outputs self.inputs = inputs self.num_inputs = num_inputs self.num_outputs = num_outputs self.name = name # Define model if init_zero: self.W = tf.Variable(tf.zeros([num_inputs, num_outputs])) self.b = tf.Variable(tf.zeros([num_outputs])) else: self.W = tf.Variable(tf.random_normal([num_inputs, num_outputs])) self.b = tf.Variable(tf.random_normal([num_outputs])) self.h = tf.add(tf.matmul(inputs, self.W), self.b) self.saver = tf.train.Saver([self.W, self.b]) class LinearReluLayer(): def __init__(self, inputs, num_inputs, num_outputs, name='', init_zero=False): # input features and outputs self.inputs = inputs self.num_inputs = num_inputs self.num_outputs = num_outputs self.name = name # Define model if init_zero: self.W = tf.Variable(tf.zeros([num_inputs, num_outputs])) self.b = tf.Variable(tf.zeros([num_outputs])) else: self.W = tf.Variable(tf.random_normal([num_inputs, num_outputs])) self.b = tf.Variable(tf.random_normal([num_outputs])) self.h = tf.nn.relu(tf.add(tf.matmul(inputs, self.W), self.b)) self.saver = tf.train.Saver([self.W, self.b]) class MixtureLayer(): def __init__(self, inputs, num_inputs, num_mixtures, mixture_type='gaussian', name='', init_zero=False): # input features and outputs self.inputs = inputs self.num_inputs = num_inputs self.num_mixtures = num_mixtures self.num_components = 3 self.num_outputs = self.num_mixtures * self.num_components self.name = name # Define model if init_zero: self.W = tf.Variable(tf.zeros([self.num_inputs, self.num_outputs])) self.b = tf.Variable(tf.zeros([self.num_outputs])) else: self.W = tf.Variable(tf.random_normal([self.num_inputs, self.num_outputs], stddev=0.1)) self.b = tf.Variable(tf.random_normal([self.num_outputs], stddev=0.1)) # Mixture model hypothesis tanh_inputs = tf.nn.tanh(inputs) self.h = tf.add(tf.matmul(tanh_inputs, self.W), self.b) self.saver = tf.train.Saver([self.W, self.b]) class LinearReluDropLayer(): def __init__(self, inputs, num_inputs, num_outputs, keep, name=''): self.inputs = inputs self.num_inputs = num_inputs self.num_outputs = num_outputs self.name = name # Define model self.W = tf.Variable(tf.random_normal([num_inputs, num_outputs])) self.b = tf.Variable(tf.random_normal([num_outputs])) self.h = tf.add(tf.matmul(inputs, self.W), self.b) self.h = tf.nn.relu(self.h) self.h = tf.nn.dropout(self.h, keep) self.saver = tf.train.Saver([self.W, self.b]) class SoftmaxLayer(): def __init__(self, inputs, num_inputs, num_outputs, name=''): # input features and outputs self.inputs = inputs self.num_inputs = num_inputs self.num_outputs = num_outputs self.name = name # Define model self.W = tf.Variable(tf.zeros([num_inputs, num_outputs])) self.b = tf.Variable(tf.zeros([num_outputs])) self.h = tf.nn.softmax(tf.add(tf.matmul(inputs, self.W), self.b)) # Hypothesis # If requested, save weights W and biases b self.saver = tf.train.Saver([self.W, self.b]) # ---------------------------------------------------- # Standalone run code # ---------------------------------------------------- if __name__ == "__main__": parser = argparse.ArgumentParser(description='Tensorflow based fingerprinting of devices implementing the LoRa PHY layer') parser.add_argument('action', type=str, choices=['train', 'test', 'train_embeddings', 'test_embeddings', 'zeroshot'], help='Action to perform') parser.add_argument('configfile', type=str, help='Path to the config file to use') parser.add_argument('--dt', dest='distance_threshold', type=str, help='Distance threshold to determine whether a device is an adversary. Set to "auto" to calculate automatically', default='auto') parser.add_argument('--debug', dest='debug', action='store_true', default=False, help='Debug mode') parser.add_argument('--save', dest='save', action='store_true', default=False, help='Save trained network') parser.add_argument('--adv', dest='adv', action='store_true', default=False, help='Treat excluded classes as attackers') parser.add_argument('--vendor', dest='vendor', action='store_true', default=False, help='Test on chip model only') parser.add_argument('--natural', dest='natural', action='store_true', default=False, help='Natural sorting') args, unknown = parser.parse_known_args() # Argument preprocessing] if args.distance_threshold != 'auto': # Define distance threshold args.distance_threshold = float(args.distance_threshold) # Conf stuff load_conf(args.configfile) print_conf(cp) if tf.gfile.Exists(FLAGS.logdir): tf.gfile.DeleteRecursively(FLAGS.logdir) # Clean tmp dir if type(FLAGS.exclude_classes) == str and FLAGS.exclude_classes != '': # Exclude classes from training exclude_classes = [int(x) for x in FLAGS.exclude_classes.split(',')] else: exclude_classes = [] # Let's go if args.action == 'train': print("[+] Excluding %s" % str(exclude_classes)) instances = Instances(limit=FLAGS.limit, exclude_classes=exclude_classes, name="train") if cp.get("DEFAULT", "classifier") == 'svm': net = SVM(name=FLAGS.model_name) else: net = Classifier(num_inputs=instances.limit, num_classes=instances.mapping.size, name=FLAGS.model_name, modeltype=ModelType.str2type(FLAGS.classifier)) net.train(instances, batch_size=FLAGS.batch_size) if args.save: net.save() net.bin_class_per_sample(instances, limit=1000, adv_detect=False, vendor_only=False) # Never adv detect during training net.visualize_embeddings(instances, limit=1000, train=True) elif args.action == 'test': instances = Instances(limit=FLAGS.limit, exclude_classes=[], name="test") if cp.get("DEFAULT", "classifier") == 'svm': net = SVM.load() else: net = Classifier.load(0) print("[+] Testing...") net.bin_class_per_sample(instances, limit=1500, adv_detect=args.adv, vendor_only=args.vendor) net.visualize_embeddings(instances, limit=1000, train=False) elif args.action == 'train_embeddings': instances = Instances(limit=FLAGS.limit, exclude_classes=exclude_classes, name="train") print("[+] Loading model...") net = Classifier.load(0) net.visualize_embeddings(instances, limit=1000, train=True) elif args.action == 'test_embeddings': instances = Instances(limit=FLAGS.limit, exclude_classes=[], name="test") print("[+] Loading model...") net = Classifier.load(0) net.visualize_embeddings(instances, limit=1000, train=False) elif args.action == 'zeroshot': instances = Instances(limit=FLAGS.limit, exclude_classes=[], name="test") net = Classifier.load(0) net.classify_zeroshot(instances, FLAGS.num_zs_test_samples, vendor_only=args.vendor)
bsd-3-clause
DeercoderResearch/pyexperiment
setup.py
3
2159
"""Setup for pyexperiment """ from __future__ import print_function # from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import import os import sys from setuptools import setup ON_RTD = os.environ.get('READTHEDOCS', None) == 'True' if ON_RTD: __version__ = 'master' else: # Hack to avoid having to import __init__.py before pyexperiment # is installed sys.path.insert(0, os.path.abspath('./pyexperiment')) from version import __version__ sys.path.pop(0) read_plain = lambda fname: open( os.path.join(os.path.dirname(__file__), fname), 'r').read() try: from pypandoc import convert read_md = lambda fname: convert(fname, 'rst') except ImportError: print("Warning: pypandoc module not found") read_md = read_plain LONG_DESCRIPTION = 'Framework for quick and clean experiments with python.' if os.path.exists('README.rst'): print("README.rst found...") LONG_DESCRIPTION = read_plain('README.rst') elif os.path.exists('README.md'): print("RADME.md found, converting to rst") LONG_DESCRIPTION = read_md('README.md') setup( name="pyexperiment", version=__version__, author="Peter Duerr", author_email="[email protected]", description="Run experiments with Python - quick and clean.", license="MIT", keywords="science experiment", url="https://github.com/duerrp/pyexperiment", packages=['pyexperiment', 'pyexperiment.utils'], long_description=LONG_DESCRIPTION, install_requires=[ 'six', 'configobj', 'numpy', 'h5py', 'matplotlib', 'mock', 'lockfile', 'toolz' ], classifiers=[ "Development Status :: 3 - Alpha", "Topic :: Utilities", "License :: OSI Approved :: MIT License", 'Programming Language :: Python', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: Implementation :: CPython', ], )
mit
TheMutley/openpilot
panda/tests/safety/test_honda.py
1
6359
#!/usr/bin/env python2 import unittest import numpy as np import libpandasafety_py class TestHondaSafety(unittest.TestCase): @classmethod def setUp(cls): cls.safety = libpandasafety_py.libpandasafety cls.safety.honda_init(0) cls.safety.init_tests_honda() def _speed_msg(self, speed): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0x158 << 21 to_send[0].RDLR = speed return to_send def _button_msg(self, buttons, msg): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = msg << 21 to_send[0].RDLR = buttons << 5 return to_send def _brake_msg(self, brake): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0x17C << 21 to_send[0].RDHR = 0x200000 if brake else 0 return to_send def _alt_brake_msg(self, brake): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0x1BE << 21 to_send[0].RDLR = 0x10 if brake else 0 return to_send def _gas_msg(self, gas): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0x17C << 21 to_send[0].RDLR = 1 if gas else 0 return to_send def _send_brake_msg(self, brake): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0x1FA << 21 to_send[0].RDLR = brake return to_send def _send_gas_msg(self, gas): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0x200 << 21 to_send[0].RDLR = gas return to_send def _send_steer_msg(self, steer): to_send = libpandasafety_py.ffi.new('CAN_FIFOMailBox_TypeDef *') to_send[0].RIR = 0xE4 << 21 to_send[0].RDLR = steer return to_send def test_default_controls_not_allowed(self): self.assertFalse(self.safety.get_controls_allowed()) def test_resume_button(self): RESUME_BTN = 4 self.safety.set_controls_allowed(0) self.safety.honda_rx_hook(self._button_msg(RESUME_BTN, 0x1A6)) self.assertTrue(self.safety.get_controls_allowed()) def test_set_button(self): SET_BTN = 3 self.safety.set_controls_allowed(0) self.safety.honda_rx_hook(self._button_msg(SET_BTN, 0x1A6)) self.assertTrue(self.safety.get_controls_allowed()) def test_cancel_button(self): CANCEL_BTN = 2 self.safety.set_controls_allowed(1) self.safety.honda_rx_hook(self._button_msg(CANCEL_BTN, 0x1A6)) self.assertFalse(self.safety.get_controls_allowed()) def test_sample_speed(self): self.assertEqual(0, self.safety.get_ego_speed()) self.safety.honda_rx_hook(self._speed_msg(100)) self.assertEqual(100, self.safety.get_ego_speed()) def test_prev_brake(self): self.assertFalse(self.safety.get_brake_prev()) self.safety.honda_rx_hook(self._brake_msg(True)) self.assertTrue(self.safety.get_brake_prev()) def test_disengage_on_brake(self): self.safety.set_controls_allowed(1) self.safety.honda_rx_hook(self._brake_msg(1)) self.assertFalse(self.safety.get_controls_allowed()) def test_alt_disengage_on_brake(self): self.safety.set_honda_alt_brake_msg(1) self.safety.set_controls_allowed(1) self.safety.honda_rx_hook(self._alt_brake_msg(1)) self.assertFalse(self.safety.get_controls_allowed()) self.safety.set_honda_alt_brake_msg(0) self.safety.set_controls_allowed(1) self.safety.honda_rx_hook(self._alt_brake_msg(1)) self.assertTrue(self.safety.get_controls_allowed()) def test_allow_brake_at_zero_speed(self): # Brake was already pressed self.safety.honda_rx_hook(self._brake_msg(True)) self.safety.set_controls_allowed(1) self.safety.honda_rx_hook(self._brake_msg(True)) self.assertTrue(self.safety.get_controls_allowed()) self.safety.honda_rx_hook(self._brake_msg(False)) # reset no brakes def test_not_allow_brake_when_moving(self): # Brake was already pressed self.safety.honda_rx_hook(self._brake_msg(True)) self.safety.honda_rx_hook(self._speed_msg(100)) self.safety.set_controls_allowed(1) self.safety.honda_rx_hook(self._brake_msg(True)) self.assertFalse(self.safety.get_controls_allowed()) def test_prev_gas(self): self.assertFalse(self.safety.get_gas_prev()) self.safety.honda_rx_hook(self._gas_msg(True)) self.assertTrue(self.safety.get_gas_prev()) def test_disengage_on_gas(self): self.safety.set_controls_allowed(1) self.safety.honda_rx_hook(self._gas_msg(1)) self.assertFalse(self.safety.get_controls_allowed()) def test_allow_engage_with_gas_pressed(self): self.safety.honda_rx_hook(self._gas_msg(1)) self.safety.set_controls_allowed(1) self.safety.honda_rx_hook(self._gas_msg(1)) self.assertTrue(self.safety.get_controls_allowed()) def test_brake_safety_check(self): self.assertTrue(self.safety.honda_tx_hook(self._send_brake_msg(0x0000))) self.assertFalse(self.safety.honda_tx_hook(self._send_brake_msg(0x1000))) self.safety.set_controls_allowed(1) self.assertTrue(self.safety.honda_tx_hook(self._send_brake_msg(0x1000))) self.assertFalse(self.safety.honda_tx_hook(self._send_brake_msg(0x00F0))) def test_gas_safety_check(self): self.safety.set_controls_allowed(0) self.assertTrue(self.safety.honda_tx_hook(self._send_gas_msg(0x0000))) self.assertFalse(self.safety.honda_tx_hook(self._send_gas_msg(0x1000))) def test_steer_safety_check(self): self.safety.set_controls_allowed(0) self.assertTrue(self.safety.honda_tx_hook(self._send_steer_msg(0x0000))) self.assertFalse(self.safety.honda_tx_hook(self._send_steer_msg(0x1000))) def test_spam_cancel_safety_check(self): RESUME_BTN = 4 SET_BTN = 3 CANCEL_BTN = 2 BUTTON_MSG = 0x296 self.safety.set_bosch_hardware(1) self.safety.set_controls_allowed(0) self.assertTrue(self.safety.honda_tx_hook(self._button_msg(CANCEL_BTN, BUTTON_MSG))) self.assertFalse(self.safety.honda_tx_hook(self._button_msg(RESUME_BTN, BUTTON_MSG))) self.assertFalse(self.safety.honda_tx_hook(self._button_msg(SET_BTN, BUTTON_MSG))) # do not block resume if we are engaged already self.safety.set_controls_allowed(1) self.assertTrue(self.safety.honda_tx_hook(self._button_msg(RESUME_BTN, BUTTON_MSG))) if __name__ == "__main__": unittest.main()
mit
jw2100/beginning.github.io
MachineLearning/MachineLearningInAction/machinelearninginaction/Ch06/EXTRAS/notLinSeperable.py
7
2336
''' Created on Oct 6, 2010 @author: Peter ''' from numpy import * import matplotlib import matplotlib.pyplot as plt xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = [] markers =[] colors =[] fr = open('testSet.txt')#this file was generated by 2normalGen.py for line in fr.readlines(): lineSplit = line.strip().split('\t') xPt = float(lineSplit[0]) yPt = float(lineSplit[1]) label = int(lineSplit[2]) if (label == 0): xcord0.append(xPt) ycord0.append(yPt) else: xcord1.append(xPt) ycord1.append(yPt) fr.close() fig = plt.figure() ax = fig.add_subplot(221) xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = [] for i in range(300): [x,y] = random.uniform(0,1,2) if ((x > 0.5) and (y < 0.5)) or ((x < 0.5) and (y > 0.5)): xcord0.append(x); ycord0.append(y) else: xcord1.append(x); ycord1.append(y) ax.scatter(xcord0,ycord0, marker='s', s=90) ax.scatter(xcord1,ycord1, marker='o', s=50, c='red') plt.title('A') ax = fig.add_subplot(222) xcord0 = random.standard_normal(150); ycord0 = random.standard_normal(150) xcord1 = random.standard_normal(150)+2.0; ycord1 = random.standard_normal(150)+2.0 ax.scatter(xcord0,ycord0, marker='s', s=90) ax.scatter(xcord1,ycord1, marker='o', s=50, c='red') plt.title('B') ax = fig.add_subplot(223) xcord0 = []; ycord0 = []; xcord1 = []; ycord1 = [] for i in range(300): [x,y] = random.uniform(0,1,2) if (x > 0.5): xcord0.append(x*cos(2.0*pi*y)); ycord0.append(x*sin(2.0*pi*y)) else: xcord1.append(x*cos(2.0*pi*y)); ycord1.append(x*sin(2.0*pi*y)) ax.scatter(xcord0,ycord0, marker='s', s=90) ax.scatter(xcord1,ycord1, marker='o', s=50, c='red') plt.title('C') ax = fig.add_subplot(224) xcord1 = zeros(150); ycord1 = zeros(150) xcord0 = random.uniform(-3,3,350); ycord0 = random.uniform(-3,3,350); xcord1[0:50] = 0.3*random.standard_normal(50)+2.0; ycord1[0:50] = 0.3*random.standard_normal(50)+2.0 xcord1[50:100] = 0.3*random.standard_normal(50)-2.0; ycord1[50:100] = 0.3*random.standard_normal(50)-3.0 xcord1[100:150] = 0.3*random.standard_normal(50)+1.0; ycord1[100:150] = 0.3*random.standard_normal(50) ax.scatter(xcord0,ycord0, marker='s', s=90) ax.scatter(xcord1,ycord1, marker='o', s=50, c='red') plt.title('D') plt.show()
gpl-3.0
idf/dotfiles
ipython/ipython_config.py
1
23145
# Configuration file for ipython. #------------------------------------------------------------------------------ # Configurable configuration #------------------------------------------------------------------------------ #------------------------------------------------------------------------------ # InteractiveShellApp configuration #------------------------------------------------------------------------------ # A Mixin for applications that start InteractiveShell instances. # # Provides configurables for loading extensions and executing files as part of # configuring a Shell environment. # # The following methods should be called by the :meth:`initialize` method of the # subclass: # # - :meth:`init_path` # - :meth:`init_shell` (to be implemented by the subclass) # - :meth:`init_gui_pylab` # - :meth:`init_extensions` # - :meth:`init_code` # Execute the given command string. # c.InteractiveShellApp.code_to_run = '' # Run the file referenced by the PYTHONSTARTUP environment variable at IPython # startup. # c.InteractiveShellApp.exec_PYTHONSTARTUP = True # List of files to run at IPython startup. # c.InteractiveShellApp.exec_files = [] # lines of code to run at IPython startup. # c.InteractiveShellApp.exec_lines = [] # A list of dotted module names of IPython extensions to load. # c.InteractiveShellApp.extensions = [] # dotted module name of an IPython extension to load. # c.InteractiveShellApp.extra_extension = '' # A file to be run # c.InteractiveShellApp.file_to_run = '' # Enable GUI event loop integration with any of ('glut', 'gtk', 'gtk3', 'osx', # 'pyglet', 'qt', 'qt5', 'tk', 'wx'). # c.InteractiveShellApp.gui = None # Should variables loaded at startup (by startup files, exec_lines, etc.) be # hidden from tools like %who? # c.InteractiveShellApp.hide_initial_ns = True # Configure matplotlib for interactive use with the default matplotlib backend. # c.InteractiveShellApp.matplotlib = None # Run the module as a script. # c.InteractiveShellApp.module_to_run = '' # Pre-load matplotlib and numpy for interactive use, selecting a particular # matplotlib backend and loop integration. # c.InteractiveShellApp.pylab = None # If true, IPython will populate the user namespace with numpy, pylab, etc. and # an ``import *`` is done from numpy and pylab, when using pylab mode. # # When False, pylab mode should not import any names into the user namespace. # c.InteractiveShellApp.pylab_import_all = True # Reraise exceptions encountered loading IPython extensions? # c.InteractiveShellApp.reraise_ipython_extension_failures = False #------------------------------------------------------------------------------ # LoggingConfigurable configuration #------------------------------------------------------------------------------ # A parent class for Configurables that log. # # Subclasses have a log trait, and the default behavior is to get the logger # from the currently running Application. #------------------------------------------------------------------------------ # SingletonConfigurable configuration #------------------------------------------------------------------------------ # A configurable that only allows one instance. # # This class is for classes that should only have one instance of itself or # *any* subclass. To create and retrieve such a class use the # :meth:`SingletonConfigurable.instance` method. #------------------------------------------------------------------------------ # Application configuration #------------------------------------------------------------------------------ # This is an application. # The date format used by logging formatters for %(asctime)s # c.Application.log_datefmt = '%Y-%m-%d %H:%M:%S' # The Logging format template # c.Application.log_format = '[%(name)s]%(highlevel)s %(message)s' # Set the log level by value or name. # c.Application.log_level = 30 #------------------------------------------------------------------------------ # BaseIPythonApplication configuration #------------------------------------------------------------------------------ # IPython: an enhanced interactive Python shell. # Whether to create profile dir if it doesn't exist # c.BaseIPythonApplication.auto_create = False # Whether to install the default config files into the profile dir. If a new # profile is being created, and IPython contains config files for that profile, # then they will be staged into the new directory. Otherwise, default config # files will be automatically generated. # c.BaseIPythonApplication.copy_config_files = False # Path to an extra config file to load. # # If specified, load this config file in addition to any other IPython config. # c.BaseIPythonApplication.extra_config_file = u'' # The name of the IPython directory. This directory is used for logging # configuration (through profiles), history storage, etc. The default is usually # $HOME/.ipython. This option can also be specified through the environment # variable IPYTHONDIR. # c.BaseIPythonApplication.ipython_dir = u'' # Whether to overwrite existing config files when copying # c.BaseIPythonApplication.overwrite = False # The IPython profile to use. # c.BaseIPythonApplication.profile = u'default' # Create a massive crash report when IPython encounters what may be an internal # error. The default is to append a short message to the usual traceback # c.BaseIPythonApplication.verbose_crash = False #------------------------------------------------------------------------------ # TerminalIPythonApp configuration #------------------------------------------------------------------------------ # Whether to display a banner upon starting IPython. # c.TerminalIPythonApp.display_banner = True # If a command or file is given via the command-line, e.g. 'ipython foo.py', # start an interactive shell after executing the file or command. # c.TerminalIPythonApp.force_interact = False # Start IPython quickly by skipping the loading of config files. # c.TerminalIPythonApp.quick = False #------------------------------------------------------------------------------ # InteractiveShell configuration #------------------------------------------------------------------------------ # An enhanced, interactive shell for Python. # 'all', 'last', 'last_expr' or 'none', specifying which nodes should be run # interactively (displaying output from expressions). # c.InteractiveShell.ast_node_interactivity = 'last_expr' # A list of ast.NodeTransformer subclass instances, which will be applied to # user input before code is run. # c.InteractiveShell.ast_transformers = [] # Make IPython automatically call any callable object even if you didn't type # explicit parentheses. For example, 'str 43' becomes 'str(43)' automatically. # The value can be '0' to disable the feature, '1' for 'smart' autocall, where # it is not applied if there are no more arguments on the line, and '2' for # 'full' autocall, where all callable objects are automatically called (even if # no arguments are present). # c.InteractiveShell.autocall = 0 # Autoindent IPython code entered interactively. # c.InteractiveShell.autoindent = True # Enable magic commands to be called without the leading %. # c.InteractiveShell.automagic = True # The part of the banner to be printed before the profile # c.InteractiveShell.banner1 = 'Python 2.7.9 (default, Apr 2 2015, 15:33:21) \nType "copyright", "credits" or "license" for more information.\n\nIPython 4.1.2 -- An enhanced Interactive Python.\n? -> Introduction and overview of IPython\'s features.\n%quickref -> Quick reference.\nhelp -> Python\'s own help system.\nobject? -> Details about \'object\', use \'object??\' for extra details.\n' # The part of the banner to be printed after the profile # c.InteractiveShell.banner2 = '' # Set the size of the output cache. The default is 1000, you can change it # permanently in your config file. Setting it to 0 completely disables the # caching system, and the minimum value accepted is 20 (if you provide a value # less than 20, it is reset to 0 and a warning is issued). This limit is # defined because otherwise you'll spend more time re-flushing a too small cache # than working # c.InteractiveShell.cache_size = 1000 # Use colors for displaying information about objects. Because this information # is passed through a pager (like 'less'), and some pagers get confused with # color codes, this capability can be turned off. # c.InteractiveShell.color_info = True # Set the color scheme (NoColor, Linux, or LightBG). # c.InteractiveShell.colors = 'Linux' # # c.InteractiveShell.debug = False # **Deprecated** # # Will be removed in IPython 6.0 # # Enable deep (recursive) reloading by default. IPython can use the deep_reload # module which reloads changes in modules recursively (it replaces the reload() # function, so you don't need to change anything to use it). `deep_reload` # forces a full reload of modules whose code may have changed, which the default # reload() function does not. When deep_reload is off, IPython will use the # normal reload(), but deep_reload will still be available as dreload(). # c.InteractiveShell.deep_reload = False # Don't call post-execute functions that have failed in the past. # c.InteractiveShell.disable_failing_post_execute = False # If True, anything that would be passed to the pager will be displayed as # regular output instead. # c.InteractiveShell.display_page = False # # c.InteractiveShell.history_length = 10000 # The number of saved history entries to be loaded into the readline buffer at # startup. # c.InteractiveShell.history_load_length = 1000 # # c.InteractiveShell.ipython_dir = '' # Start logging to the given file in append mode. Use `logfile` to specify a log # file to **overwrite** logs to. # c.InteractiveShell.logappend = '' # The name of the logfile to use. # c.InteractiveShell.logfile = '' # Start logging to the default log file in overwrite mode. Use `logappend` to # specify a log file to **append** logs to. # c.InteractiveShell.logstart = False # Save multi-line entries as one entry in readline history # c.InteractiveShell.multiline_history = True # # c.InteractiveShell.object_info_string_level = 0 # Automatically call the pdb debugger after every exception. # c.InteractiveShell.pdb = False # Deprecated, will be removed in IPython 5.0, use PromptManager.in_template # c.InteractiveShell.prompt_in1 = 'In [\\#]: ' # Deprecated, will be removed in IPython 5.0, use PromptManager.in2_template # c.InteractiveShell.prompt_in2 = ' .\\D.: ' # Deprecated, will be removed in IPython 5.0, use PromptManager.out_template # c.InteractiveShell.prompt_out = 'Out[\\#]: ' # Deprecated, will be removed in IPython 5.0, use PromptManager.justify # c.InteractiveShell.prompts_pad_left = True # # c.InteractiveShell.quiet = False # # c.InteractiveShell.readline_parse_and_bind = ['tab: complete', '"\\C-l": clear-screen', 'set show-all-if-ambiguous on', '"\\C-o": tab-insert', '"\\C-r": reverse-search-history', '"\\C-s": forward-search-history', '"\\C-p": history-search-backward', '"\\C-n": history-search-forward', '"\\e[A": history-search-backward', '"\\e[B": history-search-forward', '"\\C-k": kill-line', '"\\C-u": unix-line-discard'] # # c.InteractiveShell.readline_remove_delims = '-/~' # # c.InteractiveShell.readline_use = True # # c.InteractiveShell.separate_in = '\n' # # c.InteractiveShell.separate_out = '' # # c.InteractiveShell.separate_out2 = '' # Show rewritten input, e.g. for autocall. # c.InteractiveShell.show_rewritten_input = True # # c.InteractiveShell.wildcards_case_sensitive = True # # c.InteractiveShell.xmode = 'Context' #------------------------------------------------------------------------------ # TerminalInteractiveShell configuration #------------------------------------------------------------------------------ # auto editing of files with syntax errors. # c.TerminalInteractiveShell.autoedit_syntax = False # Set to confirm when you try to exit IPython with an EOF (Control-D in Unix, # Control-Z/Enter in Windows). By typing 'exit' or 'quit', you can force a # direct exit without any confirmation. # c.TerminalInteractiveShell.confirm_exit = True # Set the editor used by IPython (default to $EDITOR/vi/notepad). # c.TerminalInteractiveShell.editor = u'emacsclient -t' # The shell program to be used for paging. # c.TerminalInteractiveShell.pager = 'less' # Number of lines of your screen, used to control printing of very long strings. # Strings longer than this number of lines will be sent through a pager instead # of directly printed. The default value for this is 0, which means IPython # will auto-detect your screen size every time it needs to print certain # potentially long strings (this doesn't change the behavior of the 'print' # keyword, it's only triggered internally). If for some reason this isn't # working well (it needs curses support), specify it yourself. Otherwise don't # change the default. # c.TerminalInteractiveShell.screen_length = 0 # Enable auto setting the terminal title. # c.TerminalInteractiveShell.term_title = False #------------------------------------------------------------------------------ # PromptManager configuration #------------------------------------------------------------------------------ # This is the primary interface for producing IPython's prompts. # # c.PromptManager.color_scheme = 'Linux' # Continuation prompt. # c.PromptManager.in2_template = ' .\\D.: ' # Input prompt. '\#' will be transformed to the prompt number # c.PromptManager.in_template = 'In [\\#]: ' # If True (default), each prompt will be right-aligned with the preceding one. # c.PromptManager.justify = True # Output prompt. '\#' will be transformed to the prompt number # c.PromptManager.out_template = 'Out[\\#]: ' #------------------------------------------------------------------------------ # HistoryAccessorBase configuration #------------------------------------------------------------------------------ # An abstract class for History Accessors #------------------------------------------------------------------------------ # HistoryAccessor configuration #------------------------------------------------------------------------------ # Access the history database without adding to it. # # This is intended for use by standalone history tools. IPython shells use # HistoryManager, below, which is a subclass of this. # Options for configuring the SQLite connection # # These options are passed as keyword args to sqlite3.connect when establishing # database conenctions. # c.HistoryAccessor.connection_options = {} # enable the SQLite history # # set enabled=False to disable the SQLite history, in which case there will be # no stored history, no SQLite connection, and no background saving thread. # This may be necessary in some threaded environments where IPython is embedded. # c.HistoryAccessor.enabled = True # Path to file to use for SQLite history database. # # By default, IPython will put the history database in the IPython profile # directory. If you would rather share one history among profiles, you can set # this value in each, so that they are consistent. # # Due to an issue with fcntl, SQLite is known to misbehave on some NFS mounts. # If you see IPython hanging, try setting this to something on a local disk, # e.g:: # # ipython --HistoryManager.hist_file=/tmp/ipython_hist.sqlite # c.HistoryAccessor.hist_file = u'' #------------------------------------------------------------------------------ # HistoryManager configuration #------------------------------------------------------------------------------ # A class to organize all history-related functionality in one place. # Write to database every x commands (higher values save disk access & power). # Values of 1 or less effectively disable caching. # c.HistoryManager.db_cache_size = 0 # Should the history database include output? (default: no) # c.HistoryManager.db_log_output = False #------------------------------------------------------------------------------ # ProfileDir configuration #------------------------------------------------------------------------------ # An object to manage the profile directory and its resources. # # The profile directory is used by all IPython applications, to manage # configuration, logging and security. # # This object knows how to find, create and manage these directories. This # should be used by any code that wants to handle profiles. # Set the profile location directly. This overrides the logic used by the # `profile` option. # c.ProfileDir.location = u'' #------------------------------------------------------------------------------ # BaseFormatter configuration #------------------------------------------------------------------------------ # A base formatter class that is configurable. # # This formatter should usually be used as the base class of all formatters. It # is a traited :class:`Configurable` class and includes an extensible API for # users to determine how their objects are formatted. The following logic is # used to find a function to format an given object. # # 1. The object is introspected to see if it has a method with the name # :attr:`print_method`. If is does, that object is passed to that method # for formatting. # 2. If no print method is found, three internal dictionaries are consulted # to find print method: :attr:`singleton_printers`, :attr:`type_printers` # and :attr:`deferred_printers`. # # Users should use these dictionaries to register functions that will be used to # compute the format data for their objects (if those objects don't have the # special print methods). The easiest way of using these dictionaries is through # the :meth:`for_type` and :meth:`for_type_by_name` methods. # # If no function/callable is found to compute the format data, ``None`` is # returned and this format type is not used. # # c.BaseFormatter.deferred_printers = {} # # c.BaseFormatter.enabled = True # # c.BaseFormatter.singleton_printers = {} # # c.BaseFormatter.type_printers = {} #------------------------------------------------------------------------------ # PlainTextFormatter configuration #------------------------------------------------------------------------------ # The default pretty-printer. # # This uses :mod:`IPython.lib.pretty` to compute the format data of the object. # If the object cannot be pretty printed, :func:`repr` is used. See the # documentation of :mod:`IPython.lib.pretty` for details on how to write pretty # printers. Here is a simple example:: # # def dtype_pprinter(obj, p, cycle): # if cycle: # return p.text('dtype(...)') # if hasattr(obj, 'fields'): # if obj.fields is None: # p.text(repr(obj)) # else: # p.begin_group(7, 'dtype([') # for i, field in enumerate(obj.descr): # if i > 0: # p.text(',') # p.breakable() # p.pretty(field) # p.end_group(7, '])') # # c.PlainTextFormatter.float_precision = '' # Truncate large collections (lists, dicts, tuples, sets) to this size. # # Set to 0 to disable truncation. # c.PlainTextFormatter.max_seq_length = 1000 # # c.PlainTextFormatter.max_width = 79 # # c.PlainTextFormatter.newline = '\n' # # c.PlainTextFormatter.pprint = True # # c.PlainTextFormatter.verbose = False #------------------------------------------------------------------------------ # Completer configuration #------------------------------------------------------------------------------ # Activate greedy completion # # This will enable completion on elements of lists, results of function calls, # etc., but can be unsafe because the code is actually evaluated on TAB. # c.Completer.greedy = False #------------------------------------------------------------------------------ # IPCompleter configuration #------------------------------------------------------------------------------ # Extension of the completer class with IPython-specific features # Instruct the completer to use __all__ for the completion # # Specifically, when completing on ``object.<tab>``. # # When True: only those names in obj.__all__ will be included. # # When False [default]: the __all__ attribute is ignored # c.IPCompleter.limit_to__all__ = False # Whether to merge completion results into a single list # # If False, only the completion results from the first non-empty completer will # be returned. # c.IPCompleter.merge_completions = True # Instruct the completer to omit private method names # # Specifically, when completing on ``object.<tab>``. # # When 2 [default]: all names that start with '_' will be excluded. # # When 1: all 'magic' names (``__foo__``) will be excluded. # # When 0: nothing will be excluded. # c.IPCompleter.omit__names = 2 #------------------------------------------------------------------------------ # Magics configuration #------------------------------------------------------------------------------ # Base class for implementing magic functions. # # Shell functions which can be reached as %function_name. All magic functions # should accept a string, which they can parse for their own needs. This can # make some functions easier to type, eg `%cd ../` vs. `%cd("../")` # # Classes providing magic functions need to subclass this class, and they MUST: # # - Use the method decorators `@line_magic` and `@cell_magic` to decorate # individual methods as magic functions, AND # # - Use the class decorator `@magics_class` to ensure that the magic # methods are properly registered at the instance level upon instance # initialization. # # See :mod:`magic_functions` for examples of actual implementation classes. #------------------------------------------------------------------------------ # ScriptMagics configuration #------------------------------------------------------------------------------ # Magics for talking to scripts # # This defines a base `%%script` cell magic for running a cell with a program in # a subprocess, and registers a few top-level magics that call %%script with # common interpreters. # Extra script cell magics to define # # This generates simple wrappers of `%%script foo` as `%%foo`. # # If you want to add script magics that aren't on your path, specify them in # script_paths # c.ScriptMagics.script_magics = [] # Dict mapping short 'ruby' names to full paths, such as '/opt/secret/bin/ruby' # # Only necessary for items in script_magics where the default path will not find # the right interpreter. # c.ScriptMagics.script_paths = {} #------------------------------------------------------------------------------ # StoreMagics configuration #------------------------------------------------------------------------------ # Lightweight persistence for python variables. # # Provides the %store magic. # If True, any %store-d variables will be automatically restored when IPython # starts. # c.StoreMagics.autorestore = False %config IPCompleter.greedy=True
mit
walshjon/openmc
setup.py
1
2138
#!/usr/bin/env python import glob import sys import numpy as np from setuptools import setup, find_packages try: from Cython.Build import cythonize have_cython = True except ImportError: have_cython = False # Determine shared library suffix if sys.platform == 'darwin': suffix = 'dylib' else: suffix = 'so' # Get version information from __init__.py. This is ugly, but more reliable than # using an import. with open('openmc/__init__.py', 'r') as f: version = f.readlines()[-1].split()[-1].strip("'") kwargs = { 'name': 'openmc', 'version': version, 'packages': find_packages(exclude=['tests*']), 'scripts': glob.glob('scripts/openmc-*'), # Data files and librarries 'package_data': { 'openmc.capi': ['libopenmc.{}'.format(suffix)], 'openmc.data': ['mass.mas12', 'fission_Q_data_endfb71.h5'] }, # Metadata 'author': 'The OpenMC Development Team', 'author_email': '[email protected]', 'description': 'OpenMC', 'url': 'https://github.com/mit-crpg/openmc', 'classifiers': [ 'Development Status :: 4 - Beta', 'Intended Audience :: Developers', 'Intended Audience :: End Users/Desktop', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Natural Language :: English', 'Topic :: Scientific/Engineering' 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], # Required dependencies 'install_requires': [ 'numpy>=1.9', 'h5py', 'scipy', 'ipython', 'matplotlib', 'pandas', 'lxml', 'uncertainties' ], # Optional dependencies 'extras_require': { 'test': ['pytest', 'pytest-cov'], 'vtk': ['vtk', 'silomesh'], }, } # If Cython is present, add resonance reconstruction capability if have_cython: kwargs.update({ 'ext_modules': cythonize('openmc/data/reconstruct.pyx'), 'include_dirs': [np.get_include()] }) setup(**kwargs)
mit
brclark-usgs/flopy
flopy/plot/map.py
1
30643
import copy import numpy as np try: import matplotlib.pyplot as plt import matplotlib.colors except: plt = None from . import plotutil from .plotutil import bc_color_dict from ..utils import SpatialReference class ModelMap(object): """ Class to create a map of the model. Parameters ---------- sr : flopy.utils.reference.SpatialReference The spatial reference class (Default is None) ax : matplotlib.pyplot axis The plot axis. If not provided it, plt.gca() will be used. If there is not a current axis then a new one will be created. model : flopy.modflow object flopy model object. (Default is None) dis : flopy.modflow.ModflowDis object flopy discretization object. (Default is None) layer : int Layer to plot. Default is 0. Must be between 0 and nlay - 1. xul : float x coordinate for upper left corner yul : float y coordinate for upper left corner. The default is the sum of the delc array. rotation : float Angle of grid rotation around the upper left corner. A positive value indicates clockwise rotation. Angles are in degrees. extent : tuple of floats (xmin, xmax, ymin, ymax) will be used to specify axes limits. If None then these will be calculated based on grid, coordinates, and rotation. Notes ----- ModelMap must know the position and rotation of the grid in order to make the plot. This information is contained in the SpatialReference class (sr), which can be passed. If sr is None, then it looks for sr in dis. If dis is None, then it looks for sr in model.dis. If all of these arguments are none, then it uses xul, yul, and rotation. If none of these arguments are provided, then it puts the lower-left-hand corner of the grid at (0, 0). """ def __init__(self, sr=None, ax=None, model=None, dis=None, layer=0, extent=None, xul=None, yul=None, xll=None, yll=None, rotation=0., length_multiplier=1.): if plt is None: s = 'Could not import matplotlib. Must install matplotlib ' + \ ' in order to use ModelMap method' raise Exception(s) self.model = model self.layer = layer self.dis = dis self.sr = None if sr is not None: self.sr = copy.deepcopy(sr) elif dis is not None: # print("warning: the dis arg to model map is deprecated") self.sr = copy.deepcopy(dis.parent.sr) elif model is not None: # print("warning: the model arg to model map is deprecated") self.sr = copy.deepcopy(model.sr) else: self.sr = SpatialReference(xll=xll, yll=yll, xul=xul, yul=yul, rotation=rotation, length_multiplier=length_multiplier) # model map override spatial reference settings if any(elem is not None for elem in (xul, yul, xll, yll)) or \ rotation != 0 or length_multiplier != 1.: self.sr.length_multiplier = length_multiplier self.sr.set_spatialreference(xul, yul, xll, yll, rotation) if ax is None: try: self.ax = plt.gca() self.ax.set_aspect('equal') except: self.ax = plt.subplot(1, 1, 1, aspect='equal', axisbg="white") else: self.ax = ax if extent is not None: self._extent = extent else: self._extent = None return @property def extent(self): if self._extent is None: self._extent = self.sr.get_extent() return self._extent def plot_array(self, a, masked_values=None, **kwargs): """ Plot an array. If the array is three-dimensional, then the method will plot the layer tied to this class (self.layer). Parameters ---------- a : numpy.ndarray Array to plot. masked_values : iterable of floats, ints Values to mask. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.pcolormesh Returns ------- quadmesh : matplotlib.collections.QuadMesh """ if a.ndim == 3: plotarray = a[self.layer, :, :] elif a.ndim == 2: plotarray = a elif a.ndim == 1: plotarray = a else: raise Exception('Array must be of dimension 1, 2 or 3') if masked_values is not None: for mval in masked_values: plotarray = np.ma.masked_equal(plotarray, mval) if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax # quadmesh = ax.pcolormesh(self.sr.xgrid, self.sr.ygrid, plotarray, # **kwargs) quadmesh = self.sr.plot_array(plotarray, ax=ax) # set max and min if 'vmin' in kwargs: vmin = kwargs.pop('vmin') else: vmin = None if 'vmax' in kwargs: vmax = kwargs.pop('vmax') else: vmax = None quadmesh.set_clim(vmin=vmin, vmax=vmax) # send rest of kwargs to quadmesh quadmesh.set(**kwargs) # add collection to axis ax.add_collection(quadmesh) # set limits ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return quadmesh def contour_array(self, a, masked_values=None, **kwargs): """ Contour an array. If the array is three-dimensional, then the method will contour the layer tied to this class (self.layer). Parameters ---------- a : numpy.ndarray Array to plot. masked_values : iterable of floats, ints Values to mask. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.pcolormesh Returns ------- contour_set : matplotlib.pyplot.contour """ if a.ndim == 3: plotarray = a[self.layer, :, :] elif a.ndim == 2: plotarray = a elif a.ndim == 1: plotarray = a else: raise Exception('Array must be of dimension 1, 2 or 3') if masked_values is not None: for mval in masked_values: plotarray = np.ma.masked_equal(plotarray, mval) if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax if 'colors' in kwargs.keys(): if 'cmap' in kwargs.keys(): cmap = kwargs.pop('cmap') cmap = None # contour_set = ax.contour(self.sr.xcentergrid, self.sr.ycentergrid, # plotarray, **kwargs) contour_set = self.sr.contour_array(ax, plotarray, **kwargs) ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return contour_set def plot_inactive(self, ibound=None, color_noflow='black', **kwargs): """ Make a plot of inactive cells. If not specified, then pull ibound from the self.ml Parameters ---------- ibound : numpy.ndarray ibound array to plot. (Default is ibound in 'BAS6' package.) color_noflow : string (Default is 'black') Returns ------- quadmesh : matplotlib.collections.QuadMesh """ if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax if ibound is None: bas = self.model.get_package('BAS6') ibound = bas.ibound.array plotarray = np.zeros(ibound.shape, dtype=np.int) idx1 = (ibound == 0) plotarray[idx1] = 1 plotarray = np.ma.masked_equal(plotarray, 0) cmap = matplotlib.colors.ListedColormap(['0', color_noflow]) bounds = [0, 1, 2] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) quadmesh = self.plot_array(plotarray, cmap=cmap, norm=norm, **kwargs) return quadmesh def plot_ibound(self, ibound=None, color_noflow='black', color_ch='blue', **kwargs): """ Make a plot of ibound. If not specified, then pull ibound from the self.ml Parameters ---------- ibound : numpy.ndarray ibound array to plot. (Default is ibound in 'BAS6' package.) color_noflow : string (Default is 'black') color_ch : string Color for constant heads (Default is 'blue'.) Returns ------- quadmesh : matplotlib.collections.QuadMesh """ if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax if ibound is None: bas = self.model.get_package('BAS6') ibound = bas.ibound.array plotarray = np.zeros(ibound.shape, dtype=np.int) idx1 = (ibound == 0) idx2 = (ibound < 0) plotarray[idx1] = 1 plotarray[idx2] = 2 plotarray = np.ma.masked_equal(plotarray, 0) cmap = matplotlib.colors.ListedColormap(['0', color_noflow, color_ch]) bounds = [0, 1, 2, 3] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) quadmesh = self.plot_array(plotarray, cmap=cmap, norm=norm, **kwargs) return quadmesh def plot_grid(self, **kwargs): """ Plot the grid lines. Parameters ---------- kwargs : ax, colors. The remaining kwargs are passed into the the LineCollection constructor. Returns ------- lc : matplotlib.collections.LineCollection """ if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax if 'colors' not in kwargs: kwargs['colors'] = '0.5' lc = self.sr.get_grid_line_collection(**kwargs) ax.add_collection(lc) ax.set_xlim(self.extent[0], self.extent[1]) ax.set_ylim(self.extent[2], self.extent[3]) return lc def plot_bc(self, ftype=None, package=None, kper=0, color=None, plotAll=False, **kwargs): """ Plot boundary conditions locations for a specific boundary type from a flopy model Parameters ---------- ftype : string Package name string ('WEL', 'GHB', etc.). (Default is None) package : flopy.modflow.Modflow package class instance flopy package class instance. (Default is None) kper : int Stress period to plot color : string matplotlib color string. (Default is None) plotAll : bool Boolean used to specify that boundary condition locations for all layers will be plotted on the current ModelMap layer. (Default is False) **kwargs : dictionary keyword arguments passed to matplotlib.collections.PatchCollection Returns ------- quadmesh : matplotlib.collections.QuadMesh """ if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax # Find package to plot if package is not None: p = package ftype = p.name[0] elif self.model is not None: if ftype is None: raise Exception('ftype not specified') ftype = ftype.upper() p = self.model.get_package(ftype) else: raise Exception('Cannot find package to plot') # Get the list data try: mflist = p.stress_period_data[kper] except Exception as e: raise Exception('Not a list-style boundary package:' + str(e)) # Return if MfList is None if mflist is None: return None nlay = self.model.nlay # Plot the list locations plotarray = np.zeros((nlay, self.sr.nrow, self.sr.ncol), dtype=np.int) if plotAll: idx = [mflist['i'], mflist['j']] # plotarray[:, idx] = 1 pa = np.zeros((self.sr.nrow, self.sr.ncol), dtype=np.int) pa[idx] = 1 for k in range(nlay): plotarray[k, :, :] = pa.copy() else: idx = [mflist['k'], mflist['i'], mflist['j']] plotarray[idx] = 1 plotarray = np.ma.masked_equal(plotarray, 0) if color is None: if ftype in bc_color_dict: c = bc_color_dict[ftype] else: c = bc_color_dict['default'] else: c = color cmap = matplotlib.colors.ListedColormap(['0', c]) bounds = [0, 1, 2] norm = matplotlib.colors.BoundaryNorm(bounds, cmap.N) quadmesh = self.plot_array(plotarray, cmap=cmap, norm=norm, **kwargs) return quadmesh def plot_shapefile(self, shp, **kwargs): """ Plot a shapefile. The shapefile must be in the same coordinates as the rotated and offset grid. Parameters ---------- shp : string Name of the shapefile to plot kwargs : dictionary Keyword arguments passed to plotutil.plot_shapefile() """ if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax patch_collection = plotutil.plot_shapefile(shp, ax, **kwargs) return patch_collection def plot_cvfd(self, verts, iverts, **kwargs): """ Plot a cvfd grid. The vertices must be in the same coordinates as the rotated and offset grid. Parameters ---------- verts : ndarray 2d array of x and y points. iverts : list of lists should be of len(ncells) with a list of vertex number for each cell kwargs : dictionary Keyword arguments passed to plotutil.plot_cvfd() """ if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax patch_collection = plotutil.plot_cvfd(verts, iverts, ax, self.layer, **kwargs) return patch_collection def contour_array_cvfd(self, vertc, a, masked_values=None, **kwargs): """ Contour an array. If the array is three-dimensional, then the method will contour the layer tied to this class (self.layer). Parameters ---------- vertc : np.ndarray Array with of size (nc, 2) with centroid location of cvfd a : numpy.ndarray Array to plot. masked_values : iterable of floats, ints Values to mask. **kwargs : dictionary keyword arguments passed to matplotlib.pyplot.pcolormesh Returns ------- contour_set : matplotlib.pyplot.contour """ if 'ncpl' in kwargs: nlay = self.layer + 1 ncpl = kwargs.pop('ncpl') if isinstance(ncpl, int): i = int(ncpl) ncpl = np.ones((nlay), dtype=np.int) * i elif isinstance(ncpl, list) or isinstance(ncpl, tuple): ncpl = np.array(ncpl) i0 = 0 i1 = 0 for k in range(nlay): i0 = i1 i1 = i0 + ncpl[k] # retain vertc in selected layer vertc = vertc[i0:i1, :] else: i0 = 0 i1 = vertc.shape[0] plotarray = a[i0:i1] if masked_values is not None: for mval in masked_values: plotarray = np.ma.masked_equal(plotarray, mval) if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax if 'colors' in kwargs.keys(): if 'cmap' in kwargs.keys(): cmap = kwargs.pop('cmap') cmap = None contour_set = ax.tricontour(vertc[:, 0], vertc[:, 1], plotarray, **kwargs) return contour_set def plot_discharge(self, frf, fff, dis=None, flf=None, head=None, istep=1, jstep=1, normalize=False, **kwargs): """ Use quiver to plot vectors. Parameters ---------- frf : numpy.ndarray MODFLOW's 'flow right face' fff : numpy.ndarray MODFLOW's 'flow front face' flf : numpy.ndarray MODFLOW's 'flow lower face' (Default is None.) head : numpy.ndarray MODFLOW's head array. If not provided, then will assume confined conditions in order to calculated saturated thickness. istep : int row frequency to plot. (Default is 1.) jstep : int column frequency to plot. (Default is 1.) normalize : bool boolean flag used to determine if discharge vectors should be normalized using the magnitude of the specific discharge in each cell. (default is False) kwargs : dictionary Keyword arguments passed to plt.quiver() Returns ------- quiver : matplotlib.pyplot.quiver Vectors of specific discharge. """ # remove 'pivot' keyword argument # by default the center of the arrow is plotted in the center of a cell if 'pivot' in kwargs: pivot = kwargs.pop('pivot') else: pivot = 'middle' # Calculate specific discharge # make sure dis is defined if dis is None: if self.model is not None: dis = self.model.dis else: print('ModelMap.plot_quiver() error: self.dis is None and dis ' 'arg is None.') return ib = self.model.bas6.ibound.array delr = dis.delr.array delc = dis.delc.array top = dis.top.array botm = dis.botm.array nlay, nrow, ncol = botm.shape laytyp = None hnoflo = 999. hdry = 999. if self.model is not None: lpf = self.model.get_package('LPF') if lpf is not None: laytyp = lpf.laytyp.array hdry = lpf.hdry bas = self.model.get_package('BAS6') if bas is not None: hnoflo = bas.hnoflo # If no access to head or laytyp, then calculate confined saturated # thickness by setting laytyp to zeros if head is None or laytyp is None: head = np.zeros(botm.shape, np.float32) laytyp = np.zeros((nlay), dtype=np.int) sat_thk = plotutil.saturated_thickness(head, top, botm, laytyp, [hnoflo, hdry]) # Calculate specific discharge qx, qy, qz = plotutil.centered_specific_discharge(frf, fff, flf, delr, delc, sat_thk) # Select correct slice u = qx[self.layer, :, :] v = qy[self.layer, :, :] # apply step x = self.sr.xcentergrid[::istep, ::jstep] y = self.sr.ycentergrid[::istep, ::jstep] u = u[::istep, ::jstep] v = v[::istep, ::jstep] # normalize if normalize: vmag = np.sqrt(u ** 2. + v ** 2.) idx = vmag > 0. u[idx] /= vmag[idx] v[idx] /= vmag[idx] if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax # mask discharge in inactive cells idx = (ib[self.layer, ::istep, ::jstep] == 0) u[idx] = np.nan v[idx] = np.nan # Rotate and plot urot, vrot = self.sr.rotate(u, v, self.sr.rotation) quiver = ax.quiver(x, y, urot, vrot, pivot=pivot, **kwargs) return quiver def plot_pathline(self, pl, travel_time=None, **kwargs): """ Plot the MODPATH pathlines. Parameters ---------- pl : list of rec arrays or a single rec array rec array or list of rec arrays is data returned from modpathfile PathlineFile get_data() or get_alldata() methods. Data in rec array is 'x', 'y', 'z', 'time', 'k', and 'particleid'. travel_time: float or str travel_time is a travel time selection for the displayed pathlines. If a float is passed then pathlines with times less than or equal to the passed time are plotted. If a string is passed a variety logical constraints can be added in front of a time value to select pathlines for a select period of time. Valid logical constraints are <=, <, >=, and >. For example, to select all pathlines less than 10000 days travel_time='< 10000' would be passed to plot_pathline. (default is None) kwargs : layer, ax, colors. The remaining kwargs are passed into the LineCollection constructor. If layer='all', pathlines are output for all layers Returns ------- lc : matplotlib.collections.LineCollection """ from matplotlib.collections import LineCollection # make sure pathlines is a list if not isinstance(pl, list): pl = [pl] if 'layer' in kwargs: kon = kwargs.pop('layer') if isinstance(kon, bytes): kon = kon.decode() if isinstance(kon, str): if kon.lower() == 'all': kon = -1 else: kon = self.layer else: kon = self.layer if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax if 'colors' not in kwargs: kwargs['colors'] = '0.5' linecol = [] for p in pl: if travel_time is None: tp = p.copy() else: if isinstance(travel_time, str): if '<=' in travel_time: time = float(travel_time.replace('<=', '')) idx = (p['time'] <= time) elif '<' in travel_time: time = float(travel_time.replace('<', '')) idx = (p['time'] < time) elif '>=' in travel_time: time = float(travel_time.replace('>=', '')) idx = (p['time'] >= time) elif '<' in travel_time: time = float(travel_time.replace('>', '')) idx = (p['time'] > time) else: try: time = float(travel_time) idx = (p['time'] <= time) except: errmsg = 'flopy.map.plot_pathline travel_time ' + \ 'variable cannot be parsed. ' + \ 'Acceptable logical variables are , ' + \ '<=, <, >=, and >. ' + \ 'You passed {}'.format(travel_time) raise Exception(errmsg) else: time = float(travel_time) idx = (p['time'] <= time) tp = p[idx] vlc = [] # rotate data x0r, y0r = self.sr.rotate(tp['x'], tp['y'], self.sr.rotation, 0., self.sr.yedge[0]) x0r += self.sr.xul y0r += self.sr.yul - self.sr.yedge[0] # build polyline array arr = np.vstack((x0r, y0r)).T # select based on layer if kon >= 0: kk = p['k'].copy().reshape(p.shape[0], 1) kk = np.repeat(kk, 2, axis=1) arr = np.ma.masked_where((kk != kon), arr) else: arr = np.ma.asarray(arr) # append line to linecol if there is some unmasked segment if not arr.mask.all(): linecol.append(arr) # create line collection lc = None if len(linecol) > 0: lc = LineCollection(linecol, **kwargs) ax.add_collection(lc) return lc def plot_endpoint(self, ep, direction='ending', selection=None, selection_direction=None, **kwargs): """ Plot the MODPATH endpoints. Parameters ---------- ep : rec array A numpy recarray with the endpoint particle data from the MODPATH 6 endpoint file direction : str String defining if starting or ending particle locations should be considered. (default is 'ending') selection : tuple tuple that defines the zero-base layer, row, column location (l, r, c) to use to make a selection of particle endpoints. The selection could be a well location to determine capture zone for the well. If selection is None, all particle endpoints for the user-sepcified direction will be plotted. (default is None) selection_direction : str String defining is a selection should be made on starting or ending particle locations. If selection is not None and selection_direction is None, the selection direction will be set to the opposite of direction. (default is None) kwargs : ax, c, s or size, colorbar, colorbar_label, shrink. The remaining kwargs are passed into the matplotlib scatter method. If colorbar is True a colorbar will be added to the plot. If colorbar_label is passed in and colorbar is True then colorbar_label will be passed to the colorbar set_label() method. If shrink is passed in and colorbar is True then the colorbar size will be set using shrink. Returns ------- sp : matplotlib.pyplot.scatter """ if direction.lower() == 'ending': direction = 'ending' elif direction.lower() == 'starting': direction = 'starting' else: errmsg = 'flopy.map.plot_endpoint direction must be "ending" ' + \ 'or "starting".' raise Exception(errmsg) if direction == 'starting': xp, yp = 'x0', 'y0' elif direction == 'ending': xp, yp = 'x', 'y' if selection_direction is not None: if selection_direction.lower() != 'starting' and \ selection_direction.lower() != 'ending': errmsg = 'flopy.map.plot_endpoint selection_direction ' + \ 'must be "ending" or "starting".' raise Exception(errmsg) else: if direction.lower() == 'starting': selection_direction = 'ending' elif direction.lower() == 'ending': selection_direction = 'starting' if selection is not None: try: k, i, j = selection[0], selection[1], selection[2] if selection_direction.lower() == 'starting': ksel, isel, jsel = 'k0', 'i0', 'j0' elif selection_direction.lower() == 'ending': ksel, isel, jsel = 'k', 'i', 'j' except: errmsg = 'flopy.map.plot_endpoint selection must be a ' + \ 'zero-based layer, row, column tuple (l, r, c) ' + \ 'of the location to evaluate (i.e., well location).' raise Exception(errmsg) if selection is not None: idx = (ep[ksel] == k) & (ep[isel] == i) & (ep[jsel] == j) tep = ep[idx] else: tep = ep.copy() if 'ax' in kwargs: ax = kwargs.pop('ax') else: ax = self.ax # scatter kwargs that users may redefine if 'c' not in kwargs: c = tep['finaltime'] - tep['initialtime'] else: c = np.empty((tep.shape[0]), dtype="S30") c.fill(kwargs.pop('c')) s = 50 if 's' in kwargs: s = float(kwargs.pop('s')) ** 2. elif 'size' in kwargs: s = float(kwargs.pop('size')) ** 2. # colorbar kwargs createcb = False if 'colorbar' in kwargs: createcb = kwargs.pop('colorbar') colorbar_label = 'Endpoint Time' if 'colorbar_label' in kwargs: colorbar_label = kwargs.pop('colorbar_label') shrink = 1. if 'shrink' in kwargs: shrink = float(kwargs.pop('shrink')) # rotate data x0r, y0r = self.sr.rotate(tep[xp], tep[yp], self.sr.rotation, 0., self.sr.yedge[0]) x0r += self.sr.xul y0r += self.sr.yul - self.sr.yedge[0] # build array to plot arr = np.vstack((x0r, y0r)).T # plot the end point data sp = plt.scatter(arr[:, 0], arr[:, 1], c=c, s=s, **kwargs) # add a colorbar for travel times if createcb: cb = plt.colorbar(sp, shrink=shrink) cb.set_label(colorbar_label) return sp
bsd-3-clause
ankurankan/scikit-learn
sklearn/metrics/cluster/__init__.py
312
1322
""" The :mod:`sklearn.metrics.cluster` submodule contains evaluation metrics for cluster analysis results. There are two forms of evaluation: - supervised, which uses a ground truth class values for each sample. - unsupervised, which does not and measures the 'quality' of the model itself. """ from .supervised import adjusted_mutual_info_score from .supervised import normalized_mutual_info_score from .supervised import adjusted_rand_score from .supervised import completeness_score from .supervised import contingency_matrix from .supervised import expected_mutual_information from .supervised import homogeneity_completeness_v_measure from .supervised import homogeneity_score from .supervised import mutual_info_score from .supervised import v_measure_score from .supervised import entropy from .unsupervised import silhouette_samples from .unsupervised import silhouette_score from .bicluster import consensus_score __all__ = ["adjusted_mutual_info_score", "normalized_mutual_info_score", "adjusted_rand_score", "completeness_score", "contingency_matrix", "expected_mutual_information", "homogeneity_completeness_v_measure", "homogeneity_score", "mutual_info_score", "v_measure_score", "entropy", "silhouette_samples", "silhouette_score", "consensus_score"]
bsd-3-clause
rjfarmer/mesaplot
tests/test_mesaplot.py
1
2297
try: import unittest as unittest except ImportError: import unittest2 as unittest import mesaPlot as mp import os import matplotlib.pyplot as plt os.chdir('tests') class TestFileReader(unittest.TestCase): def test_init(self): m=mp.MESA() def test_load_history1(self): m=mp.MESA() m.loadHistory() def test_load_history2(self): m=mp.MESA() m.log_fold='LOGS/' m.loadHistory() def test_load_profile1(self): m=mp.MESA() m.loadProfile(num=1) def test_load_profile2(self): m=mp.MESA() m.log_fold='LOGS/' m.loadProfile(num=-1) def test_load_profile3(self): m=mp.MESA() m.log_fold='LOGS/' m.loadProfile(num=-2) def test_load_profile3(self): m=mp.MESA() m.log_fold='LOGS/' m.loadProfile(f='LOGS/profile1.data') class TestPlot(unittest.TestCase): def setUp(self): self.m=mp.MESA() self.p=mp.plot() self.m.loadHistory() self.m.loadProfile(num=1) def tearDown(self): plt.close('all') def test_plotHR(self): self.p.plotHR(self.m,show=False) def test_plotNeu(self): self.p.plotNeu(self.m,show=False) def test_abun(self): self.p.plotAbun(self.m,show=False) def test_plotAbunByA(self): self.p.plotAbunByA(self.m,show=False) def test_plotAbunHist(self): self.p.plotAbunHist(self.m,show=False) def test_plotAbunPAndN(self): self.p.plotAbunPAndN(self.m,show=False) def test_plotAngMom(self): self.p.plotAngMom(self.m,show=False) def test_plotBurn(self): self.p.plotBurn(self.m,show=False) def test_plotBurnHist(self): self.p.plotBurnHist(self.m,show=False) def test_plotDynamo(self): self.p.plotDynamo(self.m,show=False) def test_plotHistory(self): self.p.plotHistory(self.m,show=False) def test_plotProfile(self): self.p.plotProfile(self.m,show=False) def test_plotKip(self): self.p.plotKip(self.m,show=False) def test_plotKip2(self): self.p.plotKip2(self.m,show=False) def test_plotKip3(self): self.p.plotKip3(self.m,show=False) def test_plotKip3(self): self.p.plotKip3(self.m,show=False,age_lookback=True,xaxis='star_age') def test_plotMix(self): self.p.plotMix(self.m,show=False) def test_plotTRho(self): self.p.plotTRho(self.m,show=False) def test_plotLdivM(self): self.p.plotLdivM(self.m,show=False)
gpl-2.0
PmagPy/PmagPy
programs/qqplot.py
2
2180
#!/usr/bin/env python from __future__ import print_function from builtins import input import sys import matplotlib if matplotlib.get_backend() != "TKAgg": matplotlib.use("TKAgg") import pmagpy.pmagplotlib as pmagplotlib def main(): """ NAME qqplot.py DESCRIPTION makes qq plot of input data against a Normal distribution. INPUT FORMAT takes real numbers in single column SYNTAX qqplot.py [-h][-i][-f FILE] OPTIONS -f FILE, specify file on command line -fmt [png,svg,jpg,eps] set plot output format [default is svg] -sav saves and quits OUTPUT calculates the K-S D and the D expected for a normal distribution when D<Dc, distribution is normal (at 95% level of confidence). """ fmt,plot='svg',0 if '-h' in sys.argv: # check if help is needed print(main.__doc__) sys.exit() # graceful quit if '-sav' in sys.argv: plot=1 if '-fmt' in sys.argv: ind=sys.argv.index('-fmt') fmt=sys.argv[ind+1] if '-f' in sys.argv: # ask for filename ind=sys.argv.index('-f') file=sys.argv[ind+1] f=open(file,'r') data=f.readlines() X= [] # set up list for data for line in data: # read in the data from standard input rec=line.split() # split each line on space to get records X.append(float(rec[0])) # append data to X # QQ={'qq':1} pmagplotlib.plot_init(QQ['qq'],5,5) pmagplotlib.plot_qq_norm(QQ['qq'],X,'Q-Q Plot') # make plot if plot==0: pmagplotlib.draw_figs(QQ) files={} for key in list(QQ.keys()): files[key]=key+'.'+fmt if pmagplotlib.isServer: black = '#000000' purple = '#800080' titles={} titles['eq']='Q-Q Plot' QQ = pmagplotlib.add_borders(EQ,titles,black,purple) pmagplotlib.save_plots(QQ,files) elif plot==0: ans=input(" S[a]ve to save plot, [q]uit without saving: ") if ans=="a": pmagplotlib.save_plots(QQ,files) else: pmagplotlib.save_plots(QQ,files) # if __name__ == "__main__": main()
bsd-3-clause
NickC1/skCCM
skccm/skccm.py
1
9086
# # Data for analyzing causality. # By Nick Cortale # # Classes: # ccm # embed # # Paper: # Detecting Causality in Complex Ecosystems # George Sugihara et al. 2012 # # Thanks to Kenneth Ells and Dylan McNamara # # Notes: # Originally I thought this can be made way faster by only calculting the # distances once and then chopping it to a specific library length. It turns out # that calculating the distances is cheaper than filtering the indices. # import numpy as np from sklearn import neighbors from sklearn import metrics from . import utilities import pandas as pd import time class CCM: """Convergent cross mapping for two embedded time series. Parameters ---------- weights : str Weighting scheme for predictions. Options: - 'exp' : exponential weighting score : str How to score the predictions. Options: - 'score' - 'corrcoef' verbose : bool Prints out calculation status. """ def __init__(self, weights='exp', verbose=False): self.weights = weights self.verbose = verbose def fit(self, X1_train, X2_train): """Fit the training data for ccm. Can be thought of as reconstructing the shadow manifolds of each time series. Amount of near neighbors is set to be embedding dimension plus one. Creates seperate near neighbor regressors for X1 and X2 independently. Parameters ---------- X1_train : 2d array Embed time series of shape (num_samps,embed_dim). X2_train : 2d array Embed time series of shape (num_samps,embed_dim). """ # Save X1_train and X2_train for prediction later. Confusing, # but we need to make predictions about our testing set using these. self.X1_train = X1_train self.X2_train = X2_train #to sorround a point, there must be ndim + 1 points near_neighs = X1_train.shape[1] + 1 self.knn1 = neighbors.KNeighborsRegressor(near_neighs) self.knn2 = neighbors.KNeighborsRegressor(near_neighs) def predict(self, X1_test, X2_test, lib_lengths): """Make a prediction. Parameters ---------- X1_test : 2d array Embed time series of shape (num_samps,embed_dim). X2_test : 2d array Embed time series of shape (num_samps,embed_dim). lib_lengths : 1d array of ints Library lengths to test. Returns ------- X1_pred : list of 2d arrays Predictions for each library length. X2_pred : list of 2d arrays Predictions for each library length. """ #store X1_test and X2_test for use later self.X1_test = X1_test self.X2_test = X2_test X1_pred = [] X2_pred = [] for liblen in lib_lengths: x1_p = np.empty(X1_test.shape) x2_p = np.empty(X2_test.shape) #keep only the indices that are less than library length self.knn1.fit(self.X1_train[:liblen], self.X1_train[:liblen]) self.knn2.fit(self.X2_train[:liblen], self.X2_train[:liblen]) dist1,ind1 = self.knn1.kneighbors(X1_test) dist2,ind2 = self.knn2.kneighbors(X2_test) for j in range(self.X1_train.shape[1]): W1 = utilities.exp_weight(dist1) W2 = utilities.exp_weight(dist2) #flip the weights and indices x1_p[:, j] = np.sum(self.X1_train[ind2, j] * W2, axis=1) x2_p[:, j] = np.sum(self.X2_train[ind1, j] * W1, axis=1) X1_pred.append(x1_p) X2_pred.append(x2_p) self.X1_pred = X1_pred self.X2_pred = X2_pred return X1_pred, X2_pred def score(self, score_metric='corrcoef'): """Evalulate the predictions. Parameters ---------- how : string How to score the predictions. Options: - 'score' - 'corrcoef' Returns ------- score_1 : 2d array Scores for the first time series using the weights from the second time series. score_2 : 2d array Scores for the second time series using the weights from the first time series. """ num_preds = self.X1_train.shape[1] score_1 = [] score_2 = [] for x1_p, x2_p in zip(self.X1_pred, self.X2_pred): sc1 = np.empty(num_preds) sc2 = np.empty(num_preds) for ii in range(num_preds): p1 = x1_p[:,ii] p2 = x2_p[:,ii] if score_metric == 'score': sc1[ii] = utilities.score(p1,self.X1_test[:,ii]) sc2[ii] = utilities.score(p2,self.X2_test[:,ii]) if score_metric == 'corrcoef': sc1[ii] = utilities.corrcoef(p1,self.X1_test[:,ii]) sc2[ii] = utilities.corrcoef(p2,self.X2_test[:,ii]) score_1.append( np.mean(sc1) ) score_2.append( np.mean(sc2) ) return score_1, score_2 class Embed: """Embed a time series. Parameters ---------- X : 1D array Time series to be embed. """ def __init__(self,X): if type(X) is pd.pandas.core.frame.DataFrame: self.df = X else: self.X = X def df_mutual_information(self, max_lag): """Calculates the mutual information along each column of a dataframe. Ensure that the time series is continuous in time and sampled regularly. You can resample it hourly, daily, minutely etc. if needed. Parameters ---------- max_lag : int maximum amount to shift the time series Returns ------- mi : dataframe columns are the columns of the original dataframe with rows being the mutual information. shape(max_lag,num_cols) """ cols = self.df.columns mi = np.empty((max_lag, len(cols))) for i,col in enumerate(cols): self.X = self.df[col].values mi[:,i] = self.mutual_information(max_lag) mi = pd.DataFrame(mi,columns=cols) return mi def mutual_information(self, max_lag): """Calculates the mutual information between the an unshifted time series and a shifted time series. Utilizes scikit-learn's implementation of the mutual information found in sklearn.metrics. Parameters ---------- max_lag : integer Maximum amount to shift the time series. Returns ------- m_score : 1-D array Mutual information at between the unshifted time series and the shifted time series, """ #number of bins - say ~ 20 pts / bin for joint distribution #and that at least 4 bins are required N = max(self.X.shape) num_bins = max(4.,np.floor(np.sqrt(N/20))) num_bins = int(num_bins) m_score = np.zeros((max_lag)) for jj in range(max_lag): lag = jj+1 ts = self.X[0:-lag] ts_shift = self.X[lag::] min_ts = np.min(self.X) max_ts = np.max(self.X)+.0001 #needed to bin them up bins = np.linspace(min_ts,max_ts,num_bins+1) bin_tracker = np.zeros_like(ts) bin_tracker_shift = np.zeros_like(ts_shift) for ii in range(num_bins): locs = np.logical_and( ts>=bins[ii], ts<bins[ii+1] ) bin_tracker[locs] = ii locs_shift = np.logical_and( ts_shift>=bins[ii], ts_shift<bins[ii+1] ) bin_tracker_shift[locs_shift]=ii m_score[jj] = metrics.mutual_info_score(bin_tracker,bin_tracker_shift) return m_score def embed_vectors_1d(self, lag, embed): """Embeds vectors from a one dimensional time series in m-dimensional space. Parameters ---------- X : 1d array Training or testing set. lag : int Lag value as calculated from the first minimum of the mutual info. embed : int Embedding dimension. How many lag values to take. predict : int Distance to forecast (see example). Returns ------- features : 2d array Contains all of the embedded vectors. Shape (num_vectors,embed). Example ------- >>> X = [0,1,2,3,4,5,6,7,8,9,10] em = 3 lag = 2 predict=3 >>> embed_vectors_1d features = [[0,2,4], [1,3,5], [2,4,6], [3,5,7]] """ tsize = self.X.shape[0] t_iter = tsize-(lag*(embed-1)) features = np.zeros((t_iter,embed)) for ii in range(t_iter): end_val = ii+lag*(embed-1)+1 part = self.X[ii : end_val] features[ii,:] = part[::lag] return features
mit
raghavrv/scikit-learn
sklearn/cross_decomposition/cca_.py
151
3192
from .pls_ import _PLS __all__ = ['CCA'] class CCA(_PLS): """CCA Canonical Correlation Analysis. CCA inherits from PLS with mode="B" and deflation_mode="canonical". Read more in the :ref:`User Guide <cross_decomposition>`. Parameters ---------- n_components : int, (default 2). number of components to keep. scale : boolean, (default True) whether to scale the data? max_iter : an integer, (default 500) the maximum number of iterations of the NIPALS inner loop tol : non-negative real, default 1e-06. the tolerance used in the iterative algorithm copy : boolean Whether the deflation be done on a copy. Let the default value to True unless you don't care about side effects Attributes ---------- x_weights_ : array, [p, n_components] X block weights vectors. y_weights_ : array, [q, n_components] Y block weights vectors. x_loadings_ : array, [p, n_components] X block loadings vectors. y_loadings_ : array, [q, n_components] Y block loadings vectors. x_scores_ : array, [n_samples, n_components] X scores. y_scores_ : array, [n_samples, n_components] Y scores. x_rotations_ : array, [p, n_components] X block to latents rotations. y_rotations_ : array, [q, n_components] Y block to latents rotations. n_iter_ : array-like Number of iterations of the NIPALS inner loop for each component. Notes ----- For each component k, find the weights u, v that maximizes max corr(Xk u, Yk v), such that ``|u| = |v| = 1`` Note that it maximizes only the correlations between the scores. The residual matrix of X (Xk+1) block is obtained by the deflation on the current X score: x_score. The residual matrix of Y (Yk+1) block is obtained by deflation on the current Y score. Examples -------- >>> from sklearn.cross_decomposition import CCA >>> X = [[0., 0., 1.], [1.,0.,0.], [2.,2.,2.], [3.,5.,4.]] >>> Y = [[0.1, -0.2], [0.9, 1.1], [6.2, 5.9], [11.9, 12.3]] >>> cca = CCA(n_components=1) >>> cca.fit(X, Y) ... # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE CCA(copy=True, max_iter=500, n_components=1, scale=True, tol=1e-06) >>> X_c, Y_c = cca.transform(X, Y) References ---------- Jacob A. Wegelin. A survey of Partial Least Squares (PLS) methods, with emphasis on the two-block case. Technical Report 371, Department of Statistics, University of Washington, Seattle, 2000. In french but still a reference: Tenenhaus, M. (1998). La regression PLS: theorie et pratique. Paris: Editions Technic. See also -------- PLSCanonical PLSSVD """ def __init__(self, n_components=2, scale=True, max_iter=500, tol=1e-06, copy=True): super(CCA, self).__init__(n_components=n_components, scale=scale, deflation_mode="canonical", mode="B", norm_y_weights=True, algorithm="nipals", max_iter=max_iter, tol=tol, copy=copy)
bsd-3-clause
fillycheezstake/MissionPlanner
Lib/site-packages/numpy/lib/function_base.py
53
108301
__docformat__ = "restructuredtext en" __all__ = ['select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile', 'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'extract', 'place', 'nansum', 'nanmax', 'nanargmax', 'nanargmin', 'nanmin', 'vectorize', 'asarray_chkfinite', 'average', 'histogram', 'histogramdd', 'bincount', 'digitize', 'cov', 'corrcoef', 'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett', 'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring', 'meshgrid', 'delete', 'insert', 'append', 'interp'] import warnings import types import sys import numpy.core.numeric as _nx from numpy.core import linspace from numpy.core.numeric import ones, zeros, arange, concatenate, array, \ asarray, asanyarray, empty, empty_like, ndarray, around from numpy.core.numeric import ScalarType, dot, where, newaxis, intp, \ integer, isscalar from numpy.core.umath import pi, multiply, add, arctan2, \ frompyfunc, isnan, cos, less_equal, sqrt, sin, mod, exp, log10 from numpy.core.fromnumeric import ravel, nonzero, choose, sort, mean from numpy.core.numerictypes import typecodes, number from numpy.core import atleast_1d, atleast_2d from numpy.lib.twodim_base import diag if sys.platform != 'cli': from _compiled_base import _insert, add_docstring from _compiled_base import digitize, bincount, interp as compiled_interp else: from _compiled_base import _insert, bincount # TODO: Implement these def add_docstring(*args, **kw): pass def digitize(*args, **kw): raise NotImplementedError() def compiled_interp(*args, **kw): raise NotImplementedError() from arraysetops import setdiff1d from utils import deprecate import numpy as np def iterable(y): """ Check whether or not an object can be iterated over. Parameters ---------- y : object Input object. Returns ------- b : {0, 1} Return 1 if the object has an iterator method or is a sequence, and 0 otherwise. Examples -------- >>> np.iterable([1, 2, 3]) 1 >>> np.iterable(2) 0 """ try: iter(y) except: return 0 return 1 def histogram(a, bins=10, range=None, normed=False, weights=None): """ Compute the histogram of a set of data. Parameters ---------- a : array_like Input data. The histogram is computed over the flattened array. bins : int or sequence of scalars, optional If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines the bin edges, including the rightmost edge, allowing for non-uniform bin widths. range : (float, float), optional The lower and upper range of the bins. If not provided, range is simply ``(a.min(), a.max())``. Values outside the range are ignored. normed : bool, optional If False, the result will contain the number of samples in each bin. If True, the result is the value of the probability *density* function at the bin, normalized such that the *integral* over the range is 1. Note that the sum of the histogram values will not be equal to 1 unless bins of unity width are chosen; it is not a probability *mass* function. weights : array_like, optional An array of weights, of the same shape as `a`. Each value in `a` only contributes its associated weight towards the bin count (instead of 1). If `normed` is True, the weights are normalized, so that the integral of the density over the range remains 1 Returns ------- hist : array The values of the histogram. See `normed` and `weights` for a description of the possible semantics. bin_edges : array of dtype float Return the bin edges ``(length(hist)+1)``. See Also -------- histogramdd, bincount, searchsorted Notes ----- All but the last (righthand-most) bin is half-open. In other words, if `bins` is:: [1, 2, 3, 4] then the first bin is ``[1, 2)`` (including 1, but excluding 2) and the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which *includes* 4. Examples -------- >>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3]) (array([0, 2, 1]), array([0, 1, 2, 3])) >>> np.histogram(np.arange(4), bins=np.arange(5), normed=True) (array([ 0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4])) >>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3]) (array([1, 4, 1]), array([0, 1, 2, 3])) >>> a = np.arange(5) >>> hist, bin_edges = np.histogram(a, normed=True) >>> hist array([ 0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5]) >>> hist.sum() 2.4999999999999996 >>> np.sum(hist*np.diff(bin_edges)) 1.0 """ a = asarray(a) if weights is not None: weights = asarray(weights) if np.any(weights.shape != a.shape): raise ValueError( 'weights should have the same shape as a.') weights = weights.ravel() a = a.ravel() if (range is not None): mn, mx = range if (mn > mx): raise AttributeError( 'max must be larger than min in range parameter.') if not iterable(bins): if range is None: range = (a.min(), a.max()) mn, mx = [mi+0.0 for mi in range] if mn == mx: mn -= 0.5 mx += 0.5 bins = linspace(mn, mx, bins+1, endpoint=True) uniform = True else: bins = asarray(bins) uniform = False if (np.diff(bins) < 0).any(): raise AttributeError( 'bins must increase monotonically.') # Histogram is an integer or a float array depending on the weights. if weights is None: ntype = int else: ntype = weights.dtype n = np.zeros(bins.shape, ntype) block = 65536 if weights is None: for i in arange(0, len(a), block): sa = sort(a[i:i+block]) n += np.r_[sa.searchsorted(bins[:-1], 'left'), \ sa.searchsorted(bins[-1], 'right')] else: zero = array(0, dtype=ntype) for i in arange(0, len(a), block): tmp_a = a[i:i+block] tmp_w = weights[i:i+block] sorting_index = np.argsort(tmp_a) sa = tmp_a[sorting_index] sw = tmp_w[sorting_index] cw = np.concatenate(([zero,], sw.cumsum())) bin_index = np.r_[sa.searchsorted(bins[:-1], 'left'), \ sa.searchsorted(bins[-1], 'right')] n += cw[bin_index] n = np.diff(n) if normed: db = array(np.diff(bins), float) if not uniform: warnings.warn(""" This release of NumPy fixes a normalization bug in histogram function occuring with non-uniform bin widths. The returned value is now a density: n / (N * bin width), where n is the bin count and N the total number of points. """) return n/db/n.sum(), bins else: return n, bins def histogramdd(sample, bins=10, range=None, normed=False, weights=None): """ Compute the multidimensional histogram of some data. Parameters ---------- sample : array_like The data to be histogrammed. It must be an (N,D) array or data that can be converted to such. The rows of the resulting array are the coordinates of points in a D dimensional polytope. bins : sequence or int, optional The bin specification: * A sequence of arrays describing the bin edges along each dimension. * The number of bins for each dimension (nx, ny, ... =bins) * The number of bins for all dimensions (nx=ny=...=bins). range : sequence, optional A sequence of lower and upper bin edges to be used if the edges are not given explicitely in `bins`. Defaults to the minimum and maximum values along each dimension. normed : boolean, optional If False, returns the number of samples in each bin. If True, returns the bin density, ie, the bin count divided by the bin hypervolume. weights : array_like (N,), optional An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`. Weights are normalized to 1 if normed is True. If normed is False, the values of the returned histogram are equal to the sum of the weights belonging to the samples falling into each bin. Returns ------- H : ndarray The multidimensional histogram of sample x. See normed and weights for the different possible semantics. edges : list A list of D arrays describing the bin edges for each dimension. See Also -------- histogram: 1D histogram histogram2d: 2D histogram Examples -------- >>> r = np.random.randn(100,3) >>> H, edges = np.histogramdd(r, bins = (5, 8, 4)) >>> H.shape, edges[0].size, edges[1].size, edges[2].size ((5, 8, 4), 6, 9, 5) """ try: # Sample is an ND-array. N, D = sample.shape except (AttributeError, ValueError): # Sample is a sequence of 1D arrays. sample = atleast_2d(sample).T N, D = sample.shape nbin = empty(D, int) edges = D*[None] dedges = D*[None] if weights is not None: weights = asarray(weights) try: M = len(bins) if M != D: raise AttributeError( 'The dimension of bins must be equal'\ ' to the dimension of the sample x.') except TypeError: bins = D*[bins] # Select range for each dimension # Used only if number of bins is given. if range is None: smin = atleast_1d(array(sample.min(0), float)) smax = atleast_1d(array(sample.max(0), float)) else: smin = zeros(D) smax = zeros(D) for i in arange(D): smin[i], smax[i] = range[i] # Make sure the bins have a finite width. for i in arange(len(smin)): if smin[i] == smax[i]: smin[i] = smin[i] - .5 smax[i] = smax[i] + .5 # Create edge arrays for i in arange(D): if isscalar(bins[i]): nbin[i] = bins[i] + 2 # +2 for outlier bins edges[i] = linspace(smin[i], smax[i], nbin[i]-1) else: edges[i] = asarray(bins[i], float) nbin[i] = len(edges[i])+1 # +1 for outlier bins dedges[i] = diff(edges[i]) nbin = asarray(nbin) # Compute the bin number each sample falls into. Ncount = {} for i in arange(D): Ncount[i] = digitize(sample[:,i], edges[i]) # Using digitize, values that fall on an edge are put in the right bin. # For the rightmost bin, we want values equal to the right # edge to be counted in the last bin, and not as an outlier. outliers = zeros(N, int) for i in arange(D): # Rounding precision decimal = int(-log10(dedges[i].min())) +6 # Find which points are on the rightmost edge. on_edge = where(around(sample[:,i], decimal) == around(edges[i][-1], decimal))[0] # Shift these points one bin to the left. Ncount[i][on_edge] -= 1 # Flattened histogram matrix (1D) # Reshape is used so that overlarge arrays # will raise an error. hist = zeros(nbin, float).reshape(-1) # Compute the sample indices in the flattened histogram matrix. ni = nbin.argsort() shape = [] xy = zeros(N, int) for i in arange(0, D-1): xy += Ncount[ni[i]] * nbin[ni[i+1:]].prod() xy += Ncount[ni[-1]] # Compute the number of repetitions in xy and assign it to the # flattened histmat. if len(xy) == 0: return zeros(nbin-2, int), edges flatcount = bincount(xy, weights) a = arange(len(flatcount)) hist[a] = flatcount # Shape into a proper matrix hist = hist.reshape(sort(nbin)) for i in arange(nbin.size): j = ni.argsort()[i] hist = hist.swapaxes(i,j) ni[i],ni[j] = ni[j],ni[i] # Remove outliers (indices 0 and -1 for each dimension). core = D*[slice(1,-1)] hist = hist[core] # Normalize if normed is True if normed: s = hist.sum() for i in arange(D): shape = ones(D, int) shape[i] = nbin[i] - 2 hist = hist / dedges[i].reshape(shape) hist /= s if (hist.shape != nbin - 2).any(): raise RuntimeError( "Internal Shape Error") return hist, edges def average(a, axis=None, weights=None, returned=False): """ Compute the weighted average along the specified axis. Parameters ---------- a : array_like Array containing data to be averaged. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which to average `a`. If `None`, averaging is done over the flattened array. weights : array_like, optional An array of weights associated with the values in `a`. Each value in `a` contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of `a` along the given axis) or of the same shape as `a`. If `weights=None`, then all data in `a` are assumed to have a weight equal to one. returned : bool, optional Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`) is returned, otherwise only the average is returned. If `weights=None`, `sum_of_weights` is equivalent to the number of elements over which the average is taken. Returns ------- average, [sum_of_weights] : {array_type, double} Return the average along the specified axis. When returned is `True`, return a tuple with the average as the first element and the sum of the weights as the second element. The return type is `Float` if `a` is of integer type, otherwise it is of the same type as `a`. `sum_of_weights` is of the same type as `average`. Raises ------ ZeroDivisionError When all weights along axis are zero. See `numpy.ma.average` for a version robust to this type of error. TypeError When the length of 1D `weights` is not the same as the shape of `a` along axis. See Also -------- mean ma.average : average for masked arrays Examples -------- >>> data = range(1,5) >>> data [1, 2, 3, 4] >>> np.average(data) 2.5 >>> np.average(range(1,11), weights=range(10,0,-1)) 4.0 >>> data = np.arange(6).reshape((3,2)) >>> data array([[0, 1], [2, 3], [4, 5]]) >>> np.average(data, axis=1, weights=[1./4, 3./4]) array([ 0.75, 2.75, 4.75]) >>> np.average(data, weights=[1./4, 3./4]) Traceback (most recent call last): ... TypeError: Axis must be specified when shapes of a and weights differ. """ if not isinstance(a, np.matrix) : a = np.asarray(a) if weights is None : avg = a.mean(axis) scl = avg.dtype.type(a.size/avg.size) else : a = a + 0.0 wgt = np.array(weights, dtype=a.dtype, copy=0) # Sanity checks if a.shape != wgt.shape : if axis is None : raise TypeError( "Axis must be specified when shapes of a "\ "and weights differ.") if wgt.ndim != 1 : raise TypeError( "1D weights expected when shapes of a and "\ "weights differ.") if wgt.shape[0] != a.shape[axis] : raise ValueError( "Length of weights not compatible with "\ "specified axis.") # setup wgt to broadcast along axis wgt = np.array(wgt, copy=0, ndmin=a.ndim).swapaxes(-1, axis) scl = wgt.sum(axis=axis) if (scl == 0.0).any(): raise ZeroDivisionError( "Weights sum to zero, can't be normalized") avg = np.multiply(a, wgt).sum(axis)/scl if returned: scl = np.multiply(avg, 0) + scl return avg, scl else: return avg def asarray_chkfinite(a): """ Convert the input to an array, checking for NaNs or Infs. Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. Success requires no NaNs or Infs. dtype : data-type, optional By default, the data-type is inferred from the input data. order : {'C', 'F'}, optional Whether to use row-major ('C') or column-major ('FORTRAN') memory representation. Defaults to 'C'. Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray. If `a` is a subclass of ndarray, a base class ndarray is returned. Raises ------ ValueError Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity). See Also -------- asarray : Create and array. asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions. Examples -------- Convert a list into an array. If all elements are finite ``asarray_chkfinite`` is identical to ``asarray``. >>> a = [1, 2] >>> np.asarray_chkfinite(a) array([1, 2]) Raises ValueError if array_like contains Nans or Infs. >>> a = [1, 2, np.inf] >>> try: ... np.asarray_chkfinite(a) ... except ValueError: ... print 'ValueError' ... ValueError """ a = asarray(a) if (a.dtype.char in typecodes['AllFloat']) \ and (_nx.isnan(a).any() or _nx.isinf(a).any()): raise ValueError( "array must not contain infs or NaNs") return a def piecewise(x, condlist, funclist, *args, **kw): """ Evaluate a piecewise-defined function. Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. Parameters ---------- x : ndarray The input domain. condlist : list of bool arrays Each boolean array corresponds to a function in `funclist`. Wherever `condlist[i]` is True, `funclist[i](x)` is used as the output value. Each boolean array in `condlist` selects a piece of `x`, and should therefore be of the same shape as `x`. The length of `condlist` must correspond to that of `funclist`. If one extra function is given, i.e. if ``len(funclist) - len(condlist) == 1``, then that extra function is the default value, used wherever all conditions are false. funclist : list of callables, f(x,*args,**kw), or scalars Each function is evaluated over `x` wherever its corresponding condition is True. It should take an array as input and give an array or a scalar value as output. If, instead of a callable, a scalar is provided then a constant function (``lambda x: scalar``) is assumed. args : tuple, optional Any further arguments given to `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then each function is called as ``f(x, 1, 'a')``. kw : dict, optional Keyword arguments used in calling `piecewise` are passed to the functions upon execution, i.e., if called ``piecewise(..., ..., lambda=1)``, then each function is called as ``f(x, lambda=1)``. Returns ------- out : ndarray The output is the same shape and type as x and is found by calling the functions in `funclist` on the appropriate portions of `x`, as defined by the boolean arrays in `condlist`. Portions not covered by any condition have undefined values. See Also -------- choose, select, where Notes ----- This is similar to choose or select, except that functions are evaluated on elements of `x` that satisfy the corresponding condition from `condlist`. The result is:: |-- |funclist[0](x[condlist[0]]) out = |funclist[1](x[condlist[1]]) |... |funclist[n2](x[condlist[n2]]) |-- Examples -------- Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``. >>> x = np.arange(6) - 2.5 >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1]) array([-1., -1., -1., 1., 1., 1.]) Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for ``x >= 0``. >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x]) array([ 2.5, 1.5, 0.5, 0.5, 1.5, 2.5]) """ x = asanyarray(x) n2 = len(funclist) if isscalar(condlist) or \ not (isinstance(condlist[0], list) or isinstance(condlist[0], ndarray)): condlist = [condlist] condlist = [asarray(c, dtype=bool) for c in condlist] n = len(condlist) if n == n2-1: # compute the "otherwise" condition. totlist = condlist[0] for k in range(1, n): totlist |= condlist[k] condlist.append(~totlist) n += 1 if (n != n2): raise ValueError( "function list and condition list must be the same") zerod = False # This is a hack to work around problems with NumPy's # handling of 0-d arrays and boolean indexing with # numpy.bool_ scalars if x.ndim == 0: x = x[None] zerod = True newcondlist = [] for k in range(n): if condlist[k].ndim == 0: condition = condlist[k][None] else: condition = condlist[k] newcondlist.append(condition) condlist = newcondlist y = zeros(x.shape, x.dtype) for k in range(n): item = funclist[k] if not callable(item): y[condlist[k]] = item else: vals = x[condlist[k]] if vals.size > 0: y[condlist[k]] = item(vals, *args, **kw) if zerod: y = y.squeeze() return y def select(condlist, choicelist, default=0): """ Return an array drawn from elements in choicelist, depending on conditions. Parameters ---------- condlist : list of bool ndarrays The list of conditions which determine from which array in `choicelist` the output elements are taken. When multiple conditions are satisfied, the first one encountered in `condlist` is used. choicelist : list of ndarrays The list of arrays from which the output elements are taken. It has to be of the same length as `condlist`. default : scalar, optional The element inserted in `output` when all conditions evaluate to False. Returns ------- output : ndarray The output at position m is the m-th element of the array in `choicelist` where the m-th element of the corresponding array in `condlist` is True. See Also -------- where : Return elements from one of two arrays depending on condition. take, choose, compress, diag, diagonal Examples -------- >>> x = np.arange(10) >>> condlist = [x<3, x>5] >>> choicelist = [x, x**2] >>> np.select(condlist, choicelist) array([ 0, 1, 2, 0, 0, 0, 36, 49, 64, 81]) """ n = len(condlist) n2 = len(choicelist) if n2 != n: raise ValueError( "list of cases must be same length as list of conditions") choicelist = [default] + choicelist S = 0 pfac = 1 for k in range(1, n+1): S += k * pfac * asarray(condlist[k-1]) if k < n: pfac *= (1-asarray(condlist[k-1])) # handle special case of a 1-element condition but # a multi-element choice if type(S) in ScalarType or max(asarray(S).shape)==1: pfac = asarray(1) for k in range(n2+1): pfac = pfac + asarray(choicelist[k]) if type(S) in ScalarType: S = S*ones(asarray(pfac).shape, type(S)) else: S = S*ones(asarray(pfac).shape, S.dtype) return choose(S, tuple(choicelist)) def copy(a): """ Return an array copy of the given object. Parameters ---------- a : array_like Input data. Returns ------- arr : ndarray Array interpretation of `a`. Notes ----- This is equivalent to >>> np.array(a, copy=True) #doctest: +SKIP Examples -------- Create an array x, with a reference y and a copy z: >>> x = np.array([1, 2, 3]) >>> y = x >>> z = np.copy(x) Note that, when we modify x, y changes, but not z: >>> x[0] = 10 >>> x[0] == y[0] True >>> x[0] == z[0] False """ return array(a, copy=True) # Basic operations def gradient(f, *varargs): """ Return the gradient of an N-dimensional array. The gradient is computed using central differences in the interior and first differences at the boundaries. The returned gradient hence has the same shape as the input array. Parameters ---------- f : array_like An N-dimensional array containing samples of a scalar function. `*varargs` : scalars 0, 1, or N scalars specifying the sample distances in each direction, that is: `dx`, `dy`, `dz`, ... The default distance is 1. Returns ------- g : ndarray N arrays of the same shape as `f` giving the derivative of `f` with respect to each dimension. Examples -------- >>> x = np.array([1, 2, 4, 7, 11, 16], dtype=np.float) >>> np.gradient(x) array([ 1. , 1.5, 2.5, 3.5, 4.5, 5. ]) >>> np.gradient(x, 2) array([ 0.5 , 0.75, 1.25, 1.75, 2.25, 2.5 ]) >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=np.float)) [array([[ 2., 2., -1.], [ 2., 2., -1.]]), array([[ 1. , 2.5, 4. ], [ 1. , 1. , 1. ]])] """ N = len(f.shape) # number of dimensions n = len(varargs) if n == 0: dx = [1.0]*N elif n == 1: dx = [varargs[0]]*N elif n == N: dx = list(varargs) else: raise SyntaxError( "invalid number of arguments") # use central differences on interior and first differences on endpoints outvals = [] # create slice objects --- initially all are [:, :, ..., :] slice1 = [slice(None)]*N slice2 = [slice(None)]*N slice3 = [slice(None)]*N otype = f.dtype.char if otype not in ['f', 'd', 'F', 'D']: otype = 'd' for axis in range(N): # select out appropriate parts for this dimension out = np.zeros_like(f).astype(otype) slice1[axis] = slice(1, -1) slice2[axis] = slice(2, None) slice3[axis] = slice(None, -2) # 1D equivalent -- out[1:-1] = (f[2:] - f[:-2])/2.0 out[slice1] = (f[slice2] - f[slice3])/2.0 slice1[axis] = 0 slice2[axis] = 1 slice3[axis] = 0 # 1D equivalent -- out[0] = (f[1] - f[0]) out[slice1] = (f[slice2] - f[slice3]) slice1[axis] = -1 slice2[axis] = -1 slice3[axis] = -2 # 1D equivalent -- out[-1] = (f[-1] - f[-2]) out[slice1] = (f[slice2] - f[slice3]) # divide by step size outvals.append(out / dx[axis]) # reset the slice object in this dimension to ":" slice1[axis] = slice(None) slice2[axis] = slice(None) slice3[axis] = slice(None) if N == 1: return outvals[0] else: return outvals def diff(a, n=1, axis=-1): """ Calculate the n-th order discrete difference along given axis. The first order difference is given by ``out[n] = a[n+1] - a[n]`` along the given axis, higher order differences are calculated by using `diff` recursively. Parameters ---------- a : array_like Input array n : int, optional The number of times values are differenced. axis : int, optional The axis along which the difference is taken, default is the last axis. Returns ------- out : ndarray The `n` order differences. The shape of the output is the same as `a` except along `axis` where the dimension is smaller by `n`. See Also -------- gradient, ediff1d Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) """ if n == 0: return a if n < 0: raise ValueError( "order must be non-negative but got " + repr(n)) a = asanyarray(a) nd = len(a.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1, None) slice2[axis] = slice(None, -1) slice1 = tuple(slice1) slice2 = tuple(slice2) if n > 1: return diff(a[slice1]-a[slice2], n-1, axis=axis) else: return a[slice1]-a[slice2] def interp(x, xp, fp, left=None, right=None): """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : array_like The x-coordinates of the interpolated values. xp : 1-D sequence of floats The x-coordinates of the data points, must be increasing. fp : 1-D sequence of floats The y-coordinates of the data points, same length as `xp`. left : float, optional Value to return for `x < xp[0]`, default is `fp[0]`. right : float, optional Value to return for `x > xp[-1]`, defaults is `fp[-1]`. Returns ------- y : {float, ndarray} The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasingness is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() """ if isinstance(x, (float, int, number)): return compiled_interp([x], xp, fp, left, right).item() elif isinstance(x, np.ndarray) and x.ndim == 0: return compiled_interp([x], xp, fp, left, right).item() else: return compiled_interp(x, xp, fp, left, right) def angle(z, deg=0): """ Return the angle of the complex argument. Parameters ---------- z : array_like A complex number or sequence of complex numbers. deg : bool, optional Return angle in degrees if True, radians if False (default). Returns ------- angle : {ndarray, scalar} The counterclockwise angle from the positive real axis on the complex plane, with dtype as numpy.float64. See Also -------- arctan2 absolute Examples -------- >>> np.angle([1.0, 1.0j, 1+1j]) # in radians array([ 0. , 1.57079633, 0.78539816]) >>> np.angle(1+1j, deg=True) # in degrees 45.0 """ if deg: fact = 180/pi else: fact = 1.0 z = asarray(z) if (issubclass(z.dtype.type, _nx.complexfloating)): zimag = z.imag zreal = z.real else: zimag = 0 zreal = z return arctan2(zimag, zreal) * fact def unwrap(p, discont=pi, axis=-1): """ Unwrap by changing deltas between values to 2*pi complement. Unwrap radian phase `p` by changing absolute jumps greater than `discont` to their 2*pi complement along the given axis. Parameters ---------- p : array_like Input array. discont : float, optional Maximum discontinuity between values, default is ``pi``. axis : int, optional Axis along which unwrap will operate, default is the last axis. Returns ------- out : ndarray Output array. See Also -------- rad2deg, deg2rad Notes ----- If the discontinuity in `p` is smaller than ``pi``, but larger than `discont`, no unwrapping is done because taking the 2*pi complement would only make the discontinuity larger. Examples -------- >>> phase = np.linspace(0, np.pi, num=5) >>> phase[3:] += np.pi >>> phase array([ 0. , 0.78539816, 1.57079633, 5.49778714, 6.28318531]) >>> np.unwrap(phase) array([ 0. , 0.78539816, 1.57079633, -0.78539816, 0. ]) """ p = asarray(p) nd = len(p.shape) dd = diff(p, axis=axis) slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) ddmod = mod(dd+pi, 2*pi)-pi _nx.putmask(ddmod, (ddmod==-pi) & (dd > 0), pi) ph_correct = ddmod - dd; _nx.putmask(ph_correct, abs(dd)<discont, 0) up = array(p, copy=True, dtype='d') up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up def sort_complex(a): """ Sort a complex array using the real part first, then the imaginary part. Parameters ---------- a : array_like Input array Returns ------- out : complex ndarray Always returns a sorted complex array. Examples -------- >>> np.sort_complex([5, 3, 6, 2, 1]) array([ 1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j]) >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j]) array([ 1.+2.j, 2.-1.j, 3.-3.j, 3.-2.j, 3.+5.j]) """ b = array(a,copy=True) b.sort() if not issubclass(b.dtype.type, _nx.complexfloating): if b.dtype.char in 'bhBH': return b.astype('F') elif b.dtype.char == 'g': return b.astype('G') else: return b.astype('D') else: return b def trim_zeros(filt, trim='fb'): """ Trim the leading and/or trailing zeros from a 1-D array or sequence. Parameters ---------- filt : 1-D array or sequence Input array. trim : str, optional A string with 'f' representing trim from front and 'b' to trim from back. Default is 'fb', trim zeros from both front and back of the array. Returns ------- trimmed : 1-D array or sequence The result of trimming the input. The input data type is preserved. Examples -------- >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) >>> np.trim_zeros(a) array([1, 2, 3, 0, 2, 1]) >>> np.trim_zeros(a, 'b') array([0, 0, 0, 1, 2, 3, 0, 2, 1]) The input data type is preserved, list/tuple in means list/tuple out. >>> np.trim_zeros([0, 1, 2, 0]) [1, 2] """ first = 0 trim = trim.upper() if 'F' in trim: for i in filt: if i != 0.: break else: first = first + 1 last = len(filt) if 'B' in trim: for i in filt[::-1]: if i != 0.: break else: last = last - 1 return filt[first:last] import sys if sys.hexversion < 0x2040000: from sets import Set as set @deprecate def unique(x): """ This function is deprecated. Use numpy.lib.arraysetops.unique() instead. """ try: tmp = x.flatten() if tmp.size == 0: return tmp tmp.sort() idx = concatenate(([True],tmp[1:]!=tmp[:-1])) return tmp[idx] except AttributeError: items = list(set(x)) items.sort() return asarray(items) def extract(condition, arr): """ Return the elements of an array that satisfy some condition. This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``. Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`. See Also -------- take, put, putmask, compress Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) >>> condition = np.mod(arr, 3)==0 >>> condition array([[ True, False, False, True], [False, False, True, False], [False, True, False, False]], dtype=bool) >>> np.extract(condition, arr) array([0, 3, 6, 9]) If `condition` is boolean: >>> arr[condition] array([0, 3, 6, 9]) """ return _nx.take(ravel(arr), nonzero(ravel(condition))[0]) def place(arr, mask, vals): """ Change elements of an array based on conditional and input values. Similar to ``np.putmask(arr, mask, vals)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `putmask` uses the elements where `mask` is True. Note that `extract` does the exact opposite of `place`. Parameters ---------- arr : array_like Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N it will be repeated. See Also -------- putmask, put, take, extract Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, [44, 55]) >>> arr array([[ 0, 1, 2], [44, 55, 44]]) """ return _insert(arr, mask, vals) def _nanop(op, fill, a, axis=None): """ General operation on arrays with not-a-number values. Parameters ---------- op : callable Operation to perform. fill : float NaN values are set to fill before doing the operation. a : array-like Input array. axis : {int, None}, optional Axis along which the operation is computed. By default the input is flattened. Returns ------- y : {ndarray, scalar} Processed data. """ y = array(a, subok=True) # We only need to take care of NaN's in floating point arrays if np.issubdtype(y.dtype, np.integer): return op(y, axis=axis) mask = isnan(a) # y[mask] = fill # We can't use fancy indexing here as it'll mess w/ MaskedArrays # Instead, let's fill the array directly... np.putmask(y, mask, fill) res = op(y, axis=axis) mask_all_along_axis = mask.all(axis=axis) # Along some axes, only nan's were encountered. As such, any values # calculated along that axis should be set to nan. if mask_all_along_axis.any(): if np.isscalar(res): res = np.nan else: res[mask_all_along_axis] = np.nan return res def nansum(a, axis=None): """ Return the sum of array elements over a given axis treating Not a Numbers (NaNs) as zero. Parameters ---------- a : array_like Array containing numbers whose sum is desired. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which the sum is computed. The default is to compute the sum of the flattened array. Returns ------- y : ndarray An array with the same shape as a, with the specified axis removed. If a is a 0-d array, or if axis is None, a scalar is returned with the same dtype as `a`. See Also -------- numpy.sum : Sum across array including Not a Numbers. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are not: Not a Number, positive and negative infinity Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. If positive or negative infinity are present the result is positive or negative infinity. But if both positive and negative infinity are present, the result is Not A Number (NaN). Arithmetic is modular when using integer types (all elements of `a` must be finite i.e. no elements that are NaNs, positive infinity and negative infinity because NaNs are floating point types), and no error is raised on overflow. Examples -------- >>> np.nansum(1) 1 >>> np.nansum([1]) 1 >>> np.nansum([1, np.nan]) 1.0 >>> a = np.array([[1, 1], [1, np.nan]]) >>> np.nansum(a) 3.0 >>> np.nansum(a, axis=0) array([ 2., 1.]) When positive infinity and negative infinity are present >>> np.nansum([1, np.nan, np.inf]) inf >>> np.nansum([1, np.nan, np.NINF]) -inf >>> np.nansum([1, np.nan, np.inf, np.NINF]) nan """ return _nanop(np.sum, 0, a, axis) def nanmin(a, axis=None): """ Return the minimum of an array or minimum along an axis ignoring any NaNs. Parameters ---------- a : array_like Array containing numbers whose minimum is desired. axis : int, optional Axis along which the minimum is computed.The default is to compute the minimum of the flattened array. Returns ------- nanmin : ndarray A new array or a scalar array with the result. See Also -------- numpy.amin : Minimum across array including any Not a Numbers. numpy.nanmax : Maximum across array ignoring any Not a Numbers. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are not: Not a Number, positive and negative infinity Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is treated as a very small (i.e. negative) number. If the input has a integer type, an integer type is returned unless the input contains NaNs and infinity. Examples -------- >>> a = np.array([[1, 2], [3, np.nan]]) >>> np.nanmin(a) 1.0 >>> np.nanmin(a, axis=0) array([ 1., 2.]) >>> np.nanmin(a, axis=1) array([ 1., 3.]) When positive infinity and negative infinity are present: >>> np.nanmin([1, 2, np.nan, np.inf]) 1.0 >>> np.nanmin([1, 2, np.nan, np.NINF]) -inf """ return _nanop(np.min, np.inf, a, axis) def nanargmin(a, axis=None): """ Return indices of the minimum values over an axis, ignoring NaNs. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which to operate. By default flattened input is used. Returns ------- index_array : ndarray An array of indices or a single index value. See Also -------- argmin, nanargmax Examples -------- >>> a = np.array([[np.nan, 4], [2, 3]]) >>> np.argmin(a) 0 >>> np.nanargmin(a) 2 >>> np.nanargmin(a, axis=0) array([1, 1]) >>> np.nanargmin(a, axis=1) array([1, 0]) """ return _nanop(np.argmin, np.inf, a, axis) def nanmax(a, axis=None): """ Return the maximum of an array or maximum along an axis ignoring any NaNs. Parameters ---------- a : array_like Array containing numbers whose maximum is desired. If `a` is not an array, a conversion is attempted. axis : int, optional Axis along which the maximum is computed. The default is to compute the maximum of the flattened array. Returns ------- nanmax : ndarray An array with the same shape as `a`, with the specified axis removed. If `a` is a 0-d array, or if axis is None, a ndarray scalar is returned. The the same dtype as `a` is returned. See Also -------- numpy.amax : Maximum across array including any Not a Numbers. numpy.nanmin : Minimum across array ignoring any Not a Numbers. isnan : Shows which elements are Not a Number (NaN). isfinite: Shows which elements are not: Not a Number, positive and negative infinity Notes ----- Numpy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Positive infinity is treated as a very large number and negative infinity is treated as a very small (i.e. negative) number. If the input has a integer type, an integer type is returned unless the input contains NaNs and infinity. Examples -------- >>> a = np.array([[1, 2], [3, np.nan]]) >>> np.nanmax(a) 3.0 >>> np.nanmax(a, axis=0) array([ 3., 2.]) >>> np.nanmax(a, axis=1) array([ 2., 3.]) When positive infinity and negative infinity are present: >>> np.nanmax([1, 2, np.nan, np.NINF]) 2.0 >>> np.nanmax([1, 2, np.nan, np.inf]) inf """ return _nanop(np.max, -np.inf, a, axis) def nanargmax(a, axis=None): """ Return indices of the maximum values over an axis, ignoring NaNs. Parameters ---------- a : array_like Input data. axis : int, optional Axis along which to operate. By default flattened input is used. Returns ------- index_array : ndarray An array of indices or a single index value. See Also -------- argmax, nanargmin Examples -------- >>> a = np.array([[np.nan, 4], [2, 3]]) >>> np.argmax(a) 0 >>> np.nanargmax(a) 1 >>> np.nanargmax(a, axis=0) array([1, 0]) >>> np.nanargmax(a, axis=1) array([1, 1]) """ return _nanop(np.argmax, -np.inf, a, axis) def disp(mesg, device=None, linefeed=True): """ Display a message on a device. Parameters ---------- mesg : str Message to display. device : object Device to write message. If None, defaults to ``sys.stdout`` which is very similar to ``print``. `device` needs to have ``write()`` and ``flush()`` methods. linefeed : bool, optional Option whether to print a line feed or not. Defaults to True. Raises ------ AttributeError If `device` does not have a ``write()`` or ``flush()`` method. Examples -------- Besides ``sys.stdout``, a file-like object can also be used as it has both required methods: >>> from StringIO import StringIO >>> buf = StringIO() >>> np.disp('"Display" in a file', device=buf) >>> buf.getvalue() '"Display" in a file\\n' """ if device is None: import sys device = sys.stdout if linefeed: device.write('%s\n' % mesg) else: device.write('%s' % mesg) device.flush() return # return number of input arguments and # number of default arguments def _get_nargs(obj): import re terr = re.compile(r'.*? takes (exactly|at least) (?P<exargs>(\d+)|(\w+))' + r' argument(s|) \((?P<gargs>(\d+)|(\w+)) given\)') def _convert_to_int(strval): try: result = int(strval) except ValueError: if strval=='zero': result = 0 elif strval=='one': result = 1 elif strval=='two': result = 2 # How high to go? English only? else: raise return result if not callable(obj): raise TypeError( "Object is not callable.") if sys.version_info[0] >= 3: # inspect currently fails for binary extensions # like math.cos. So fall back to other methods if # it fails. import inspect try: spec = inspect.getargspec(obj) nargs = len(spec.args) if spec.defaults: ndefaults = len(spec.defaults) else: ndefaults = 0 if inspect.ismethod(obj): nargs -= 1 return nargs, ndefaults except: pass if hasattr(obj,'func_code'): fcode = obj.func_code nargs = fcode.co_argcount if obj.func_defaults is not None: ndefaults = len(obj.func_defaults) else: ndefaults = 0 if isinstance(obj, types.MethodType): nargs -= 1 return nargs, ndefaults try: obj() return 0, 0 except TypeError, msg: m = terr.match(str(msg)) if m: nargs = _convert_to_int(m.group('exargs')) ndefaults = _convert_to_int(m.group('gargs')) if isinstance(obj, types.MethodType): nargs -= 1 return nargs, ndefaults raise ValueError( "failed to determine the number of arguments for %s" % (obj)) class vectorize(object): """ vectorize(pyfunc, otypes='', doc=None) Generalized function class. Define a vectorized function which takes a nested sequence of objects or numpy arrays as inputs and returns a numpy array as output. The vectorized function evaluates `pyfunc` over successive tuples of the input arrays like the python map function, except it uses the broadcasting rules of numpy. The data type of the output of `vectorized` is determined by calling the function with the first element of the input. This can be avoided by specifying the `otypes` argument. Parameters ---------- pyfunc : callable A python function or method. otypes : str or list of dtypes, optional The output data type. It must be specified as either a string of typecode characters or a list of data type specifiers. There should be one data type specifier for each output. doc : str, optional The docstring for the function. If None, the docstring will be the `pyfunc` one. Examples -------- >>> def myfunc(a, b): ... \"\"\"Return a-b if a>b, otherwise return a+b\"\"\" ... if a > b: ... return a - b ... else: ... return a + b >>> vfunc = np.vectorize(myfunc) >>> vfunc([1, 2, 3, 4], 2) array([3, 4, 1, 2]) The docstring is taken from the input function to `vectorize` unless it is specified >>> vfunc.__doc__ 'Return a-b if a>b, otherwise return a+b' >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`') >>> vfunc.__doc__ 'Vectorized `myfunc`' The output type is determined by evaluating the first element of the input, unless it is specified >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.int32'> >>> vfunc = np.vectorize(myfunc, otypes=[np.float]) >>> out = vfunc([1, 2, 3, 4], 2) >>> type(out[0]) <type 'numpy.float64'> """ def __init__(self, pyfunc, otypes='', doc=None): self.thefunc = pyfunc self.ufunc = None nin, ndefault = _get_nargs(pyfunc) if nin == 0 and ndefault == 0: self.nin = None self.nin_wo_defaults = None else: self.nin = nin self.nin_wo_defaults = nin - ndefault self.nout = None if doc is None: self.__doc__ = pyfunc.__doc__ else: self.__doc__ = doc if isinstance(otypes, str): self.otypes = otypes for char in self.otypes: if char not in typecodes['All']: raise ValueError( "invalid otype specified") elif iterable(otypes): self.otypes = ''.join([_nx.dtype(x).char for x in otypes]) else: raise ValueError( "Invalid otype specification") self.lastcallargs = 0 def __call__(self, *args): # get number of outputs and output types by calling # the function on the first entries of args nargs = len(args) if self.nin: if (nargs > self.nin) or (nargs < self.nin_wo_defaults): raise ValueError( "Invalid number of arguments") # we need a new ufunc if this is being called with more arguments. if (self.lastcallargs != nargs): self.lastcallargs = nargs self.ufunc = None self.nout = None if self.nout is None or self.otypes == '': newargs = [] for arg in args: newargs.append(asarray(arg).flat[0]) theout = self.thefunc(*newargs) if isinstance(theout, tuple): self.nout = len(theout) else: self.nout = 1 theout = (theout,) if self.otypes == '': otypes = [] for k in range(self.nout): otypes.append(asarray(theout[k]).dtype.char) self.otypes = ''.join(otypes) # Create ufunc if not already created if (self.ufunc is None): self.ufunc = frompyfunc(self.thefunc, nargs, self.nout) # Convert to object arrays first newargs = [array(arg,copy=False,subok=True,dtype=object) for arg in args] if self.nout == 1: _res = array(self.ufunc(*newargs),copy=False, subok=True,dtype=self.otypes[0]) else: _res = tuple([array(x,copy=False,subok=True,dtype=c) \ for x, c in zip(self.ufunc(*newargs), self.otypes)]) return _res def cov(m, y=None, rowvar=1, bias=0, ddof=None): """ Estimate a covariance matrix, given data. Covariance indicates the level to which two variables vary together. If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`, then the covariance matrix element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance of :math:`x_i`. Parameters ---------- m : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same form as that of `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations given (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : int, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The covariance matrix of the variables. See Also -------- corrcoef : Normalized covariance matrix Examples -------- Consider two variables, :math:`x_0` and :math:`x_1`, which correlate perfectly, but in opposite directions: >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T >>> x array([[0, 1, 2], [2, 1, 0]]) Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance matrix shows this clearly: >>> np.cov(x) array([[ 1., -1.], [-1., 1.]]) Note that element :math:`C_{0,1}`, which shows the correlation between :math:`x_0` and :math:`x_1`, is negative. Further, note how `x` and `y` are combined: >>> x = [-2.1, -1, 4.3] >>> y = [3, 1.1, 0.12] >>> X = np.vstack((x,y)) >>> print np.cov(X) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x, y) [[ 11.71 -4.286 ] [ -4.286 2.14413333]] >>> print np.cov(x) 11.71 """ # Check inputs if ddof is not None and ddof != int(ddof): raise ValueError("ddof must be integer") X = array(m, ndmin=2, dtype=float) if X.shape[0] == 1: rowvar = 1 if rowvar: axis = 0 tup = (slice(None),newaxis) else: axis = 1 tup = (newaxis, slice(None)) if y is not None: y = array(y, copy=False, ndmin=2, dtype=float) X = concatenate((X,y), axis) X -= X.mean(axis=1-axis)[tup] if rowvar: N = X.shape[1] else: N = X.shape[0] if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 fact = float(N - ddof) if not rowvar: return (dot(X.T, X.conj()) / fact).squeeze() else: return (dot(X, X.T.conj()) / fact).squeeze() def corrcoef(x, y=None, rowvar=1, bias=0, ddof=None): """ Return correlation coefficients. Please refer to the documentation for `cov` for more detail. The relationship between the correlation coefficient matrix, `P`, and the covariance matrix, `C`, is .. math:: P_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } } The values of `P` are between -1 and 1, inclusive. Parameters ---------- m : array_like A 1-D or 2-D array containing multiple variables and observations. Each row of `m` represents a variable, and each column a single observation of all those variables. Also see `rowvar` below. y : array_like, optional An additional set of variables and observations. `y` has the same shape as `m`. rowvar : int, optional If `rowvar` is non-zero (default), then each row represents a variable, with observations in the columns. Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations. bias : int, optional Default normalization is by ``(N - 1)``, where ``N`` is the number of observations (unbiased estimate). If `bias` is 1, then normalization is by ``N``. These values can be overridden by using the keyword ``ddof`` in numpy versions >= 1.5. ddof : {None, int}, optional .. versionadded:: 1.5 If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is the number of observations; this overrides the value implied by ``bias``. The default value is ``None``. Returns ------- out : ndarray The correlation coefficient matrix of the variables. See Also -------- cov : Covariance matrix """ c = cov(x, y, rowvar, bias, ddof) try: d = diag(c) except ValueError: # scalar covariance return 1 return c/sqrt(multiply.outer(d,d)) def blackman(M): """ Return the Blackman window. The Blackman window is a taper formed by using the the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, hamming, hanning, kaiser Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> from numpy import blackman >>> blackman(12) array([ -1.38777878e-17, 3.26064346e-02, 1.59903635e-01, 4.14397981e-01, 7.36045180e-01, 9.67046769e-01, 9.67046769e-01, 7.36045180e-01, 4.14397981e-01, 1.59903635e-01, 3.26064346e-02, -1.38777878e-17]) Plot the window and the frequency response: >>> from numpy import clip, log10, array, blackman, linspace >>> from numpy.fft import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = blackman(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = abs(fftshift(A)) >>> freq = linspace(-0.5,0.5,len(A)) >>> response = 20*log10(mag) >>> response = clip(response,-100,100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Blackman window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0,M) return 0.42-0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1)) def bartlett(M): """ Return the Bartlett window. The Bartlett window is very similar to a triangular window, except that the end points are at zero. It is often used in signal processing for tapering a signal, without generating too much ripple in the frequency domain. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : array The triangular window, normalized to one (the value one appears only if the number of samples is odd), with the first and last samples equal to zero. See Also -------- blackman, hamming, hanning, kaiser Notes ----- The Bartlett window is defined as .. math:: w(n) = \\frac{2}{M-1} \\left( \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right| \\right) Most references to the Bartlett window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. Note that convolution with this window produces linear interpolation. It is also known as an apodization (which means"removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. The fourier transform of the Bartlett is the product of two sinc functions. Note the excellent discussion in Kanasewich. References ---------- .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra", Biometrika 37, 1-16, 1950. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal Processing", Prentice-Hall, 1999, pp. 468-471. .. [4] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [5] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 429. Examples -------- >>> np.bartlett(12) array([ 0. , 0.18181818, 0.36363636, 0.54545455, 0.72727273, 0.90909091, 0.90909091, 0.72727273, 0.54545455, 0.36363636, 0.18181818, 0. ]) Plot the window and its frequency response (requires SciPy and matplotlib): >>> from numpy import clip, log10, array, bartlett, linspace >>> from numpy.fft import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = bartlett(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = abs(fftshift(A)) >>> freq = linspace(-0.5,0.5,len(A)) >>> response = 20*log10(mag) >>> response = clip(response,-100,100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Bartlett window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0,M) return where(less_equal(n,(M-1)/2.0),2.0*n/(M-1),2.0-2.0*n/(M-1)) def hanning(M): """ Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray, shape(M,) The window, normalized to one (the value one appears only if `M` is odd). See Also -------- bartlett, blackman, hamming, kaiser Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hanning was named for Julius van Hann, an Austrian meterologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> from numpy import hanning >>> hanning(12) array([ 0. , 0.07937323, 0.29229249, 0.57115742, 0.82743037, 0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249, 0.07937323, 0. ]) Plot the window and its frequency response: >>> from numpy.fft import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = np.hanning(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = abs(fftshift(A)) >>> freq = np.linspace(-0.5,0.5,len(A)) >>> response = 20*np.log10(mag) >>> response = np.clip(response,-100,100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of the Hann window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ # XXX: this docstring is inconsistent with other filter windows, e.g. # Blackman and Bartlett - they should all follow the same convention for # clarity. Either use np. for all numpy members (as above), or import all # numpy members (as in Blackman and Bartlett examples) if M < 1: return array([]) if M == 1: return ones(1, float) n = arange(0,M) return 0.5-0.5*cos(2.0*pi*n/(M-1)) def hamming(M): """ Return the Hamming window. The Hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. Returns ------- out : ndarray The window, normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hanning, kaiser Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 + 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right) \\qquad 0 \\leq n \\leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([ 0.08 , 0.15302337, 0.34890909, 0.60546483, 0.84123594, 0.98136677, 0.98136677, 0.84123594, 0.60546483, 0.34890909, 0.15302337, 0.08 ]) Plot the window and the frequency response: >>> from numpy.fft import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = np.hamming(51) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = np.abs(fftshift(A)) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(mag) >>> response = np.clip(response, -100, 100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Hamming window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ if M < 1: return array([]) if M == 1: return ones(1,float) n = arange(0,M) return 0.54-0.46*cos(2.0*pi*n/(M-1)) ## Code from cephes for i0 _i0A = [ -4.41534164647933937950E-18, 3.33079451882223809783E-17, -2.43127984654795469359E-16, 1.71539128555513303061E-15, -1.16853328779934516808E-14, 7.67618549860493561688E-14, -4.85644678311192946090E-13, 2.95505266312963983461E-12, -1.72682629144155570723E-11, 9.67580903537323691224E-11, -5.18979560163526290666E-10, 2.65982372468238665035E-9, -1.30002500998624804212E-8, 6.04699502254191894932E-8, -2.67079385394061173391E-7, 1.11738753912010371815E-6, -4.41673835845875056359E-6, 1.64484480707288970893E-5, -5.75419501008210370398E-5, 1.88502885095841655729E-4, -5.76375574538582365885E-4, 1.63947561694133579842E-3, -4.32430999505057594430E-3, 1.05464603945949983183E-2, -2.37374148058994688156E-2, 4.93052842396707084878E-2, -9.49010970480476444210E-2, 1.71620901522208775349E-1, -3.04682672343198398683E-1, 6.76795274409476084995E-1] _i0B = [ -7.23318048787475395456E-18, -4.83050448594418207126E-18, 4.46562142029675999901E-17, 3.46122286769746109310E-17, -2.82762398051658348494E-16, -3.42548561967721913462E-16, 1.77256013305652638360E-15, 3.81168066935262242075E-15, -9.55484669882830764870E-15, -4.15056934728722208663E-14, 1.54008621752140982691E-14, 3.85277838274214270114E-13, 7.18012445138366623367E-13, -1.79417853150680611778E-12, -1.32158118404477131188E-11, -3.14991652796324136454E-11, 1.18891471078464383424E-11, 4.94060238822496958910E-10, 3.39623202570838634515E-9, 2.26666899049817806459E-8, 2.04891858946906374183E-7, 2.89137052083475648297E-6, 6.88975834691682398426E-5, 3.36911647825569408990E-3, 8.04490411014108831608E-1] def _chbevl(x, vals): b0 = vals[0] b1 = 0.0 for i in xrange(1,len(vals)): b2 = b1 b1 = b0 b0 = x*b1 - b2 + vals[i] return 0.5*(b0 - b2) def _i0_1(x): return exp(x) * _chbevl(x/2.0-2, _i0A) def _i0_2(x): return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x) def i0(x): """ Modified Bessel function of the first kind, order 0. Usually denoted :math:`I_0`. This function does broadcast, but will *not* "up-cast" int dtype arguments unless accompanied by at least one float or complex dtype argument (see Raises below). Parameters ---------- x : array_like, dtype float or complex Argument of the Bessel function. Returns ------- out : ndarray, shape = x.shape, dtype = x.dtype The modified Bessel function evaluated at each of the elements of `x`. Raises ------ TypeError: array cannot be safely cast to required type If argument consists exclusively of int dtypes. See Also -------- scipy.special.iv, scipy.special.ive Notes ----- We use the algorithm published by Clenshaw [1]_ and referenced by Abramowitz and Stegun [2]_, for which the function domain is partitioned into the two intervals [0,8] and (8,inf), and Chebyshev polynomial expansions are employed in each interval. Relative error on the domain [0,30] using IEEE arithmetic is documented [3]_ as having a peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000). References ---------- .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions," in *National Physical Laboratory Mathematical Tables*, vol. 5, London: Her Majesty's Stationery Office, 1962. .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 379. http://www.math.sfu.ca/~cbm/aands/page_379.htm .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html Examples -------- >>> np.i0([0.]) array(1.0) >>> np.i0([0., 1. + 2j]) array([ 1.00000000+0.j , 0.18785373+0.64616944j]) """ x = atleast_1d(x).copy() y = empty_like(x) ind = (x<0) x[ind] = -x[ind] ind = (x<=8.0) y[ind] = _i0_1(x[ind]) ind2 = ~ind y[ind2] = _i0_2(x[ind2]) return y.squeeze() ## End of cephes code for i0 def kaiser(M,beta): """ Return the Kaiser window. The Kaiser window is a taper formed by using a Bessel function. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. beta : float Shape parameter for window. Returns ------- out : array The window, normalized to one (the value one appears only if the number of samples is odd). See Also -------- bartlett, blackman, hamming, hanning Notes ----- The Kaiser window is defined as .. math:: w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}} \\right)/I_0(\\beta) with .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2}, where :math:`I_0` is the modified zeroth-order Bessel function. The Kaiser was named for Jim Kaiser, who discovered a simple approximation to the DPSS window based on Bessel functions. The Kaiser window is a very good approximation to the Digital Prolate Spheroidal Sequence, or Slepian window, which is the transform which maximizes the energy in the main lobe of the window relative to total energy. The Kaiser can approximate many other windows by varying the beta parameter. ==== ======================= beta Window shape ==== ======================= 0 Rectangular 5 Similar to a Hamming 6 Similar to a Hanning 8.6 Similar to a Blackman ==== ======================= A beta value of 14 is probably a good starting point. Note that as beta gets large, the window narrows, and so the number of samples needs to be large enough to sample the increasingly narrow spike, otherwise nans will get returned. Most references to the Kaiser window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285. John Wiley and Sons, New York, (1966). .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 177-178. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function Examples -------- >>> from numpy import kaiser >>> kaiser(12, 14) array([ 7.72686684e-06, 3.46009194e-03, 4.65200189e-02, 2.29737120e-01, 5.99885316e-01, 9.45674898e-01, 9.45674898e-01, 5.99885316e-01, 2.29737120e-01, 4.65200189e-02, 3.46009194e-03, 7.72686684e-06]) Plot the window and the frequency response: >>> from numpy import clip, log10, array, kaiser, linspace >>> from numpy.fft import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = kaiser(51, 14) >>> plt.plot(window) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Sample") <matplotlib.text.Text object at 0x...> >>> plt.show() >>> plt.figure() <matplotlib.figure.Figure object at 0x...> >>> A = fft(window, 2048) / 25.5 >>> mag = abs(fftshift(A)) >>> freq = linspace(-0.5,0.5,len(A)) >>> response = 20*log10(mag) >>> response = clip(response,-100,100) >>> plt.plot(freq, response) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Frequency response of Kaiser window") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Magnitude [dB]") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("Normalized frequency [cycles per sample]") <matplotlib.text.Text object at 0x...> >>> plt.axis('tight') (-0.5, 0.5, -100.0, ...) >>> plt.show() """ from numpy.dual import i0 if M == 1: return np.array([1.]) n = arange(0,M) alpha = (M-1)/2.0 return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta)) def sinc(x): """ Return the sinc function. The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`. Parameters ---------- x : ndarray Array (possibly multi-dimensional) of values for which to to calculate ``sinc(x)``. Returns ------- out : ndarray ``sinc(x)``, which has the same shape as the input. Notes ----- ``sinc(0)`` is the limit value 1. The name sinc is short for "sine cardinal" or "sinus cardinalis". The sinc function is used in various signal processing applications, including in anti-aliasing, in the construction of a Lanczos resampling filter, and in interpolation. For bandlimited interpolation of discrete-time signals, the ideal interpolation kernel is proportional to the sinc function. References ---------- .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/SincFunction.html .. [2] Wikipedia, "Sinc function", http://en.wikipedia.org/wiki/Sinc_function Examples -------- >>> x = np.arange(-20., 21.)/5. >>> np.sinc(x) array([ -3.89804309e-17, -4.92362781e-02, -8.40918587e-02, -8.90384387e-02, -5.84680802e-02, 3.89804309e-17, 6.68206631e-02, 1.16434881e-01, 1.26137788e-01, 8.50444803e-02, -3.89804309e-17, -1.03943254e-01, -1.89206682e-01, -2.16236208e-01, -1.55914881e-01, 3.89804309e-17, 2.33872321e-01, 5.04551152e-01, 7.56826729e-01, 9.35489284e-01, 1.00000000e+00, 9.35489284e-01, 7.56826729e-01, 5.04551152e-01, 2.33872321e-01, 3.89804309e-17, -1.55914881e-01, -2.16236208e-01, -1.89206682e-01, -1.03943254e-01, -3.89804309e-17, 8.50444803e-02, 1.26137788e-01, 1.16434881e-01, 6.68206631e-02, 3.89804309e-17, -5.84680802e-02, -8.90384387e-02, -8.40918587e-02, -4.92362781e-02, -3.89804309e-17]) >>> import matplotlib.pyplot as plt >>> plt.plot(x, np.sinc(x)) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Sinc Function") <matplotlib.text.Text object at 0x...> >>> plt.ylabel("Amplitude") <matplotlib.text.Text object at 0x...> >>> plt.xlabel("X") <matplotlib.text.Text object at 0x...> >>> plt.show() It works in 2-D as well: >>> x = np.arange(-200., 201.)/50. >>> xx = np.outer(x, x) >>> plt.imshow(np.sinc(xx)) <matplotlib.image.AxesImage object at 0x...> """ x = np.asanyarray(x) y = pi* where(x == 0, 1.0e-20, x) return sin(y)/y def msort(a): """ Return a copy of an array sorted along the first axis. Parameters ---------- a : array_like Array to be sorted. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. See Also -------- sort Notes ----- ``np.msort(a)`` is equivalent to ``np.sort(a, axis=0)``. """ b = array(a,subok=True,copy=True) b.sort(0) return b def median(a, axis=None, out=None, overwrite_input=False): """ Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : {None, int}, optional Axis along which the medians are computed. The default (axis=None) is to compute the median along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : {False, True}, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an ndarray, an error will be raised. Returns ------- median : ndarray A new array holding the result (unless `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, percentile Notes ----- Given a vector V of length N, the median of V is the middle value of a sorted copy of V, ``V_sorted`` - i.e., ``V_sorted[(N-1)/2]``, when N is odd. When N is even, it is the average of the two middle values of ``V_sorted``. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([ 7., 2.]) >>> m = np.median(a, axis=0) >>> out = np.zeros_like(m) >>> np.median(a, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.median(b, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.median(b, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ if overwrite_input: if axis is None: sorted = a.ravel() sorted.sort() else: a.sort(axis=axis) sorted = a else: sorted = sort(a, axis=axis) if axis is None: axis = 0 indexer = [slice(None)] * sorted.ndim index = int(sorted.shape[axis]/2) if sorted.shape[axis] % 2 == 1: # index with slice to allow mean (below) to work indexer[axis] = slice(index, index+1) else: indexer[axis] = slice(index-1, index+1) # Use mean in odd and even case to coerce data type # and check, use out array. return mean(sorted[indexer], axis=axis, out=out) def percentile(a, q, axis=None, out=None, overwrite_input=False): """ Compute the qth percentile of the data along the specified axis. Returns the qth percentile of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. q : float in range of [0,100] (or sequence of floats) percentile to compute which must be between 0 and 100 inclusive axis : {None, int}, optional Axis along which the percentiles are computed. The default (axis=None) is to compute the median along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : {False, True}, optional If True, then allow use of memory of input array (a) for calculations. The input array will be modified by the call to median. This will save memory when you do not need to preserve the contents of the input array. Treat the input as undefined, but it will probably be fully or partially sorted. Default is False. Note that, if `overwrite_input` is True and the input is not already an ndarray, an error will be raised. Returns ------- pcntile : ndarray A new array holding the result (unless `out` is specified, in which case that array is returned instead). If the input contains integers, or floats of smaller precision than 64, then the output data-type is float64. Otherwise, the output data-type is the same as that of the input. See Also -------- mean, median Notes ----- Given a vector V of length N, the qth percentile of V is the qth ranked value in a sorted copy of V. A weighted average of the two nearest neighbors is used if the normalized ranking does not match q exactly. The same as the median if q is 0.5; the same as the min if q is 0; and the same as the max if q is 1 Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, 0.5) 3.5 >>> np.percentile(a, 0.5, axis=0) array([ 6.5, 4.5, 2.5]) >>> np.percentile(a, 0.5, axis=1) array([ 7., 2.]) >>> m = np.percentile(a, 0.5, axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, 0.5, axis=0, out=m) array([ 6.5, 4.5, 2.5]) >>> m array([ 6.5, 4.5, 2.5]) >>> b = a.copy() >>> np.percentile(b, 0.5, axis=1, overwrite_input=True) array([ 7., 2.]) >>> assert not np.all(a==b) >>> b = a.copy() >>> np.percentile(b, 0.5, axis=None, overwrite_input=True) 3.5 >>> assert not np.all(a==b) """ a = np.asarray(a) if q == 0: return a.min(axis=axis, out=out) elif q == 100: return a.max(axis=axis, out=out) if overwrite_input: if axis is None: sorted = a.ravel() sorted.sort() else: a.sort(axis=axis) sorted = a else: sorted = sort(a, axis=axis) if axis is None: axis = 0 return _compute_qth_percentile(sorted, q, axis, out) # handle sequence of q's without calling sort multiple times def _compute_qth_percentile(sorted, q, axis, out): if not isscalar(q): p = [_compute_qth_percentile(sorted, qi, axis, None) for qi in q] if out is not None: out.flat = p return p q = q / 100.0 if (q < 0) or (q > 1): raise ValueError, "percentile must be either in the range [0,100]" indexer = [slice(None)] * sorted.ndim Nx = sorted.shape[axis] index = q*(Nx-1) i = int(index) if i == index: indexer[axis] = slice(i, i+1) weights = array(1) sumval = 1.0 else: indexer[axis] = slice(i, i+2) j = i + 1 weights = array([(j - index), (index - i)],float) wshape = [1]*sorted.ndim wshape[axis] = 2 weights.shape = wshape sumval = weights.sum() # Use add.reduce in both cases to coerce data type as well as # check and use out array. return add.reduce(sorted[indexer]*weights, axis=axis, out=out)/sumval def trapz(y, x=None, dx=1.0, axis=-1): """ Integrate along the given axis using the composite trapezoidal rule. Integrate `y` (`x`) along given axis. Parameters ---------- y : array_like Input array to integrate. x : array_like, optional If `x` is None, then spacing between all `y` elements is `dx`. dx : scalar, optional If `x` is None, spacing given by `dx` is assumed. Default is 1. axis : int, optional Specify the axis. Returns ------- out : float Definite integral as approximated by trapezoidal rule. See Also -------- sum, cumsum Notes ----- Image [2]_ illustrates trapezoidal rule -- y-axis locations of points will be taken from `y` array, by default x-axis distances between points will be 1.0, alternatively they can be provided with `x` array or with `dx` scalar. Return value will be equal to combined area under the red lines. References ---------- .. [1] Wikipedia page: http://en.wikipedia.org/wiki/Trapezoidal_rule .. [2] Illustration image: http://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png Examples -------- >>> np.trapz([1,2,3]) 4.0 >>> np.trapz([1,2,3], x=[4,6,8]) 8.0 >>> np.trapz([1,2,3], dx=2) 8.0 >>> a = np.arange(6).reshape(2, 3) >>> a array([[0, 1, 2], [3, 4, 5]]) >>> np.trapz(a, axis=0) array([ 1.5, 2.5, 3.5]) >>> np.trapz(a, axis=1) array([ 2., 8.]) """ y = asanyarray(y) if x is None: d = dx else: x = asanyarray(x) if x.ndim == 1: d = diff(x) # reshape to correct shape shape = [1]*y.ndim shape[axis] = d.shape[0] d = d.reshape(shape) else: d = diff(x, axis=axis) nd = len(y.shape) slice1 = [slice(None)]*nd slice2 = [slice(None)]*nd slice1[axis] = slice(1,None) slice2[axis] = slice(None,-1) try: ret = (d * (y[slice1] +y [slice2]) / 2.0).sum(axis) except ValueError: # Operations didn't work, cast to ndarray d = np.asarray(d) y = np.asarray(y) ret = add.reduce(d * (y[slice1]+y[slice2])/2.0, axis) return ret #always succeed def add_newdoc(place, obj, doc): """Adds documentation to obj which is in module place. If doc is a string add it to obj as a docstring If doc is a tuple, then the first element is interpreted as an attribute of obj and the second as the docstring (method, docstring) If doc is a list, then each element of the list should be a sequence of length two --> [(method1, docstring1), (method2, docstring2), ...] This routine never raises an error. """ try: new = {} exec 'from %s import %s' % (place, obj) in new if isinstance(doc, str): add_docstring(new[obj], doc.strip()) elif isinstance(doc, tuple): add_docstring(getattr(new[obj], doc[0]), doc[1].strip()) elif isinstance(doc, list): for val in doc: add_docstring(getattr(new[obj], val[0]), val[1].strip()) except: pass # From matplotlib def meshgrid(x,y): """ Return coordinate matrices from two coordinate vectors. Parameters ---------- x, y : ndarray Two 1-D arrays representing the x and y coordinates of a grid. Returns ------- X, Y : ndarray For vectors `x`, `y` with lengths ``Nx=len(x)`` and ``Ny=len(y)``, return `X`, `Y` where `X` and `Y` are ``(Ny, Nx)`` shaped arrays with the elements of `x` and y repeated to fill the matrix along the first dimension for `x`, the second for `y`. See Also -------- index_tricks.mgrid : Construct a multi-dimensional "meshgrid" using indexing notation. index_tricks.ogrid : Construct an open multi-dimensional "meshgrid" using indexing notation. Examples -------- >>> X, Y = np.meshgrid([1,2,3], [4,5,6,7]) >>> X array([[1, 2, 3], [1, 2, 3], [1, 2, 3], [1, 2, 3]]) >>> Y array([[4, 4, 4], [5, 5, 5], [6, 6, 6], [7, 7, 7]]) `meshgrid` is very useful to evaluate functions on a grid. >>> x = np.arange(-5, 5, 0.1) >>> y = np.arange(-5, 5, 0.1) >>> xx, yy = np.meshgrid(x, y) >>> z = np.sin(xx**2+yy**2)/(xx**2+yy**2) """ x = asarray(x) y = asarray(y) numRows, numCols = len(y), len(x) # yes, reversed x = x.reshape(1,numCols) X = x.repeat(numRows, axis=0) y = y.reshape(numRows,1) Y = y.repeat(numCols, axis=1) return X, Y def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. Parameters ---------- arr : array_like Input array. obj : slice, int or array of ints Indicate which sub-arrays to remove. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. append : Append elements at the end of an array. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1, 2, 3, 4], [ 5, 6, 7, 8], [ 9, 10, 11, 12]]) >>> np.delete(arr, 1, 0) array([[ 1, 2, 3, 4], [ 9, 10, 11, 12]]) >>> np.delete(arr, np.s_[::2], 1) array([[ 2, 4], [ 6, 8], [10, 12]]) >>> np.delete(arr, [1,3,5], None) array([ 1, 3, 5, 7, 8, 9, 10, 11, 12]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim; axis = ndim-1; if ndim == 0: if wrap: return wrap(arr) else: return arr.copy() slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, (int, long, integer)): if (obj < 0): obj += N if (obj < 0 or obj >=N): raise ValueError( "invalid entry") newshape[axis]-=1; new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, obj) new[slobj] = arr[slobj] slobj[axis] = slice(obj,None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(obj+1,None) new[slobj] = arr[slobj2] elif isinstance(obj, slice): start, stop, step = obj.indices(N) numtodel = len(xrange(start, stop, step)) if numtodel <= 0: if wrap: return wrap(new) else: return arr.copy() newshape[axis] -= numtodel new = empty(newshape, arr.dtype, arr.flags.fnc) # copy initial chunk if start == 0: pass else: slobj[axis] = slice(None, start) new[slobj] = arr[slobj] # copy end chunck if stop == N: pass else: slobj[axis] = slice(stop-numtodel,None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(stop, None) new[slobj] = arr[slobj2] # copy middle pieces if step == 1: pass else: # use array indexing. obj = arange(start, stop, step, dtype=intp) all = arange(start, stop, dtype=intp) obj = setdiff1d(all, obj) slobj[axis] = slice(start, stop-numtodel) slobj2 = [slice(None)]*ndim slobj2[axis] = obj new[slobj] = arr[slobj2] else: # default behavior obj = array(obj, dtype=intp, copy=0, ndmin=1) all = arange(N, dtype=intp) obj = setdiff1d(all, obj) slobj[axis] = obj new = arr[slobj] if wrap: return wrap(new) else: return new def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : array_like Input array. obj : int, slice or sequence of ints Object that defines the index or indices before which `values` is inserted. values : array_like Values to insert into `arr`. If the type of `values` is different from that of `arr`, `values` is converted to the type of `arr`. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. See Also -------- append : Append elements at the end of an array. delete : Delete elements from an array. Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1, 1], [2, 2], [3, 3]]) >>> np.insert(a, 1, 5) array([1, 5, 1, 2, 2, 3, 3]) >>> np.insert(a, 1, 5, axis=1) array([[1, 5, 1], [2, 5, 2], [3, 5, 3]]) >>> b = a.flatten() >>> b array([1, 1, 2, 2, 3, 3]) >>> np.insert(b, [2, 2], [5, 6]) array([1, 1, 5, 6, 2, 2, 3, 3]) >>> np.insert(b, slice(2, 4), [5, 6]) array([1, 1, 5, 2, 6, 2, 3, 3]) >>> np.insert(b, [2, 2], [7.13, False]) # type casting array([1, 1, 7, 0, 2, 2, 3, 3]) >>> x = np.arange(8).reshape(2, 4) >>> idx = (1, 3) >>> np.insert(x, idx, 999, axis=1) array([[ 0, 999, 1, 2, 999, 3], [ 4, 999, 5, 6, 999, 7]]) """ wrap = None if type(arr) is not ndarray: try: wrap = arr.__array_wrap__ except AttributeError: pass arr = asarray(arr) ndim = arr.ndim if axis is None: if ndim != 1: arr = arr.ravel() ndim = arr.ndim axis = ndim-1 if (ndim == 0): arr = arr.copy() arr[...] = values if wrap: return wrap(arr) else: return arr slobj = [slice(None)]*ndim N = arr.shape[axis] newshape = list(arr.shape) if isinstance(obj, (int, long, integer)): if (obj < 0): obj += N if obj < 0 or obj > N: raise ValueError( "index (%d) out of range (0<=index<=%d) "\ "in dimension %d" % (obj, N, axis)) newshape[axis] += 1; new = empty(newshape, arr.dtype, arr.flags.fnc) slobj[axis] = slice(None, obj) new[slobj] = arr[slobj] slobj[axis] = obj new[slobj] = values slobj[axis] = slice(obj+1,None) slobj2 = [slice(None)]*ndim slobj2[axis] = slice(obj,None) new[slobj] = arr[slobj2] if wrap: return wrap(new) return new elif isinstance(obj, slice): # turn it into a range object obj = arange(*obj.indices(N),**{'dtype':intp}) # get two sets of indices # one is the indices which will hold the new stuff # two is the indices where arr will be copied over obj = asarray(obj, dtype=intp) numnew = len(obj) index1 = obj + arange(numnew) index2 = setdiff1d(arange(numnew+N),index1) newshape[axis] += numnew new = empty(newshape, arr.dtype, arr.flags.fnc) slobj2 = [slice(None)]*ndim slobj[axis] = index1 slobj2[axis] = index2 new[slobj] = values new[slobj2] = arr if wrap: return wrap(new) return new def append(arr, values, axis=None): """ Append values to the end of an array. Parameters ---------- arr : array_like Values are appended to a copy of this array. values : array_like These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- out : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. See Also -------- insert : Insert elements into an array. delete : Delete elements from an array. Examples -------- >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]]) array([1, 2, 3, 4, 5, 6, 7, 8, 9]) When `axis` is specified, `values` must have the correct shape. >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0) array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0) Traceback (most recent call last): ... ValueError: arrays must have same number of dimensions """ arr = asanyarray(arr) if axis is None: if arr.ndim != 1: arr = arr.ravel() values = ravel(values) axis = arr.ndim-1 return concatenate((arr, values), axis=axis)
gpl-3.0
andreabduque/GAFE
main.py
1
1148
from functions.FE import FE from fitness import Classifier from sklearn.preprocessing import MinMaxScaler import numpy as np import pandas as pd import ga def testIris(): iris = pd.read_csv("data/iris.data", sep=",") irisAtts = iris.drop("class", 1) target = iris["class"] #Scale to [0,1] before expanding scaledIris = MinMaxScaler().fit_transform(irisAtts) bestSingleMatch = {'knn': [(1,5) for x in range(4)], 'cart': [(3,2) for x in range(4)], 'svm': [(7,4) for x in range(4)]} functionalExp = FE() for cl in ['knn', 'cart', 'svm']: model = Classifier(cl, target, folds=10, jobs=6) print("original accuracy " + cl + " " + str(model.getAccuracy(irisAtts))) expandedData = functionalExp.expandMatrix(scaledIris, bestSingleMatch[cl]) print("single match expansion accuracy " + cl + " " + str(model.getAccuracy(expandedData))) gafe = ga.GAFE(model, scaledIris, target, scaled=True) avg, bestPair = gafe.runGAFE(n_population=21, n_iter=1, verbose=True) print("gafe " + cl + " " + str(avg) ) def main(): testIris() if __name__ == "__main__": main()
mit
freedomtan/workload-automation
wlauto/workloads/telemetry/__init__.py
2
11987
# Copyright 2015 ARM Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pylint: disable=attribute-defined-outside-init import os import re import csv import math import shutil import json import urllib import stat from zipfile import is_zipfile, ZipFile from collections import defaultdict try: import pandas as pd except ImportError: pd = None from wlauto import Workload, Parameter from wlauto.exceptions import WorkloadError, ConfigError from wlauto.utils.misc import check_output, get_null, get_meansd from wlauto.utils.types import numeric, identifier RESULT_REGEX = re.compile(r'RESULT ([^:]+): ([^=]+)\s*=\s*' # preamble and test/metric name r'(\[([^\]]+)\]|(\S+))' # value r'\s*(\S+)') # units TRACE_REGEX = re.compile(r'Trace saved as ([^\n]+)') # Trace event that signifies rendition of a Frame FRAME_EVENT = 'SwapBuffersLatency' TELEMETRY_ARCHIVE_URL = 'http://storage.googleapis.com/chromium-telemetry/snapshots/telemetry.zip' class Telemetry(Workload): name = 'telemetry' description = """ Executes Google's Telemetery benchmarking framework Url: https://www.chromium.org/developers/telemetry From the web site: Telemetry is Chrome's performance testing framework. It allows you to perform arbitrary actions on a set of web pages and report metrics about it. The framework abstracts: - Launching a browser with arbitrary flags on any platform. - Opening a tab and navigating to the page under test. - Fetching data via the Inspector timeline and traces. - Using Web Page Replay to cache real-world websites so they don't change when used in benchmarks. Design Principles - Write one performance test that runs on all platforms - Windows, Mac, Linux, Chrome OS, and Android for both Chrome and ContentShell. - Runs on browser binaries, without a full Chromium checkout, and without having to build the browser yourself. - Use WebPageReplay to get repeatable test results. - Clean architecture for writing benchmarks that keeps measurements and use cases separate. - Run on non-Chrome browsers for comparative studies. This instrument runs telemetry via its ``run_benchmark`` script (which must be in PATH or specified using ``run_benchmark_path`` parameter) and parses metrics from the resulting output. **device setup** The device setup will depend on whether you're running a test image (in which case little or no setup should be necessary) """ parameters = [ Parameter('run_benchmark_path', default=None, description=""" This is the path to run_benchmark script which runs a Telemetry benchmark. If not specified, the assumption will be that it is in path (i.e. with be invoked as ``run_benchmark``). """), Parameter('test', default='page_cycler.top_10_mobile', description=""" Specifies the telemetry test to run. """), Parameter('run_benchmark_params', default='', description=""" Additional paramters to be passed to ``run_benchmark``. """), Parameter('run_timeout', kind=int, default=900, description=""" Timeout for execution of the test. """), Parameter('extract_fps', kind=bool, default=False, description=""" if ``True``, FPS for the run will be computed from the trace (must be enabled). """), ] def validate(self): ret = os.system('{} > {} 2>&1'.format(self.run_benchmark_path, get_null())) if ret > 255: pass # telemetry found and appears to be installed properly. elif ret == 127: raise WorkloadError('run_benchmark not found (did you specify correct run_benchmark_path?)') else: raise WorkloadError('Unexected error from run_benchmark: {}'.format(ret)) if self.extract_fps and 'trace' not in self.run_benchmark_params: raise ConfigError('"trace" profiler must be enabled in order to extract FPS for Telemetry') self._resolve_run_benchmark_path() def setup(self, context): self.raw_output = None self.command = self.build_command() def run(self, context): self.logger.debug(self.command) self.raw_output, _ = check_output(self.command, shell=True, timeout=self.run_timeout, ignore='all') def update_result(self, context): # pylint: disable=too-many-locals if not self.raw_output: self.logger.warning('Did not get run_benchmark output.') return raw_outfile = os.path.join(context.output_directory, 'telemetry_raw.out') with open(raw_outfile, 'w') as wfh: wfh.write(self.raw_output) context.add_artifact('telemetry-raw', raw_outfile, kind='raw') results, artifacts = parse_telemetry_results(raw_outfile) csv_outfile = os.path.join(context.output_directory, 'telemetry.csv') with open(csv_outfile, 'wb') as wfh: writer = csv.writer(wfh) writer.writerow(['kind', 'url', 'iteration', 'value', 'units']) for result in results: writer.writerows(result.rows) for i, value in enumerate(result.values, 1): context.add_metric(result.kind, value, units=result.units, classifiers={'url': result.url, 'time': i}) context.add_artifact('telemetry', csv_outfile, kind='data') for idx, artifact in enumerate(artifacts): if is_zipfile(artifact): zf = ZipFile(artifact) for item in zf.infolist(): zf.extract(item, context.output_directory) zf.close() context.add_artifact('telemetry_trace_{}'.format(idx), path=item.filename, kind='data') else: # not a zip archive wa_path = os.path.join(context.output_directory, os.path.basename(artifact)) shutil.copy(artifact, wa_path) context.add_artifact('telemetry_artifact_{}'.format(idx), path=wa_path, kind='data') if self.extract_fps: self.logger.debug('Extracting FPS...') _extract_fps(context) def build_command(self): device_opts = '' if self.device.platform == 'chromeos': if '--remote' not in self.run_benchmark_params: device_opts += '--remote={} '.format(self.device.host) if '--browser' not in self.run_benchmark_params: device_opts += '--browser=cros-chrome ' elif self.device.platform == 'android': if '--device' not in self.run_benchmark_params and self.device.adb_name: device_opts += '--device={} '.format(self.device.adb_name) if '--browser' not in self.run_benchmark_params: device_opts += '--browser=android-webview-shell ' else: raise WorkloadError('Currently, telemetry workload supports only ChromeOS or Android devices.') return '{} {} {} {}'.format(self.run_benchmark_path, self.test, device_opts, self.run_benchmark_params) def _resolve_run_benchmark_path(self): # pylint: disable=access-member-before-definition if self.run_benchmark_path: if not os.path.exists(self.run_benchmark_path): raise ConfigError('run_benchmark path "{}" does not exist'.format(self.run_benchmark_path)) else: self.run_benchmark_path = os.path.join(self.dependencies_directory, 'telemetry', 'run_benchmark') self.logger.debug('run_benchmark_path not specified using {}'.format(self.run_benchmark_path)) if not os.path.exists(self.run_benchmark_path): self.logger.debug('Telemetry not found locally; downloading...') local_archive = os.path.join(self.dependencies_directory, 'telemetry.zip') urllib.urlretrieve(TELEMETRY_ARCHIVE_URL, local_archive) zf = ZipFile(local_archive) zf.extractall(self.dependencies_directory) if not os.path.exists(self.run_benchmark_path): raise WorkloadError('Could not download and extract Telemetry') old_mode = os.stat(self.run_benchmark_path).st_mode os.chmod(self.run_benchmark_path, old_mode | stat.S_IXUSR) def _extract_fps(context): trace_files = [a.path for a in context.iteration_artifacts if a.name.startswith('telemetry_trace_')] for tf in trace_files: name = os.path.splitext(os.path.basename(tf))[0] fps_file = os.path.join(context.output_directory, name + '-fps.csv') with open(tf) as fh: data = json.load(fh) events = pd.Series([e['ts'] for e in data['traceEvents'] if FRAME_EVENT == e['name']]) fps = (1000000 / (events - events.shift(1))) fps.index = events df = fps.dropna().reset_index() df.columns = ['timestamp', 'fps'] with open(fps_file, 'w') as wfh: df.to_csv(wfh, index=False) context.add_artifact('{}_fps'.format(name), fps_file, kind='data') context.result.add_metric('{} FPS'.format(name), df.fps.mean(), units='fps') context.result.add_metric('{} FPS (std)'.format(name), df.fps.std(), units='fps', lower_is_better=True) class TelemetryResult(object): @property def average(self): return get_meansd(self.values)[0] @property def std(self): return get_meansd(self.values)[1] @property def rows(self): for i, v in enumerate(self.values): yield [self.kind, self.url, i, v, self.units] def __init__(self, kind=None, url=None, values=None, units=None): self.kind = kind self.url = url self.values = values or [] self.units = units def __str__(self): return 'TR({kind},{url},{values},{units})'.format(**self.__dict__) __repr__ = __str__ def parse_telemetry_results(filepath): results = [] artifacts = [] with open(filepath) as fh: for line in fh: match = RESULT_REGEX.search(line) if match: result = TelemetryResult() result.kind = match.group(1) result.url = match.group(2) if match.group(4): result.values = map(numeric, match.group(4).split(',')) else: result.values = [numeric(match.group(5))] result.units = match.group(6) results.append(result) match = TRACE_REGEX.search(line) if match: artifacts.append(match.group(1)) return results, artifacts if __name__ == '__main__': import sys from pprint import pprint path = sys.argv[1] pprint(parse_telemetry_results(path))
apache-2.0
PatrickChrist/scikit-learn
sklearn/cluster/mean_shift_.py
96
15434
"""Mean shift clustering algorithm. Mean shift clustering aims to discover *blobs* in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. """ # Authors: Conrad Lee <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Martino Sorbaro <[email protected]> import numpy as np import warnings from collections import defaultdict from ..externals import six from ..utils.validation import check_is_fitted from ..utils import extmath, check_random_state, gen_batches, check_array from ..base import BaseEstimator, ClusterMixin from ..neighbors import NearestNeighbors from ..metrics.pairwise import pairwise_distances_argmin from ..externals.joblib import Parallel from ..externals.joblib import delayed def estimate_bandwidth(X, quantile=0.3, n_samples=None, random_state=0): """Estimate the bandwidth to use with the mean-shift algorithm. That this function takes time at least quadratic in n_samples. For large datasets, it's wise to set that parameter to a small value. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points. quantile : float, default 0.3 should be between [0, 1] 0.5 means that the median of all pairwise distances is used. n_samples : int, optional The number of samples to use. If not given, all samples are used. random_state : int or RandomState Pseudo-random number generator state used for random sampling. Returns ------- bandwidth : float The bandwidth parameter. """ random_state = check_random_state(random_state) if n_samples is not None: idx = random_state.permutation(X.shape[0])[:n_samples] X = X[idx] nbrs = NearestNeighbors(n_neighbors=int(X.shape[0] * quantile)) nbrs.fit(X) bandwidth = 0. for batch in gen_batches(len(X), 500): d, _ = nbrs.kneighbors(X[batch, :], return_distance=True) bandwidth += np.max(d, axis=1).sum() return bandwidth / X.shape[0] # separate function for each seed's iterative loop def _mean_shift_single_seed(my_mean, X, nbrs, max_iter): # For each seed, climb gradient until convergence or max_iter bandwidth = nbrs.get_params()['radius'] stop_thresh = 1e-3 * bandwidth # when mean has converged completed_iterations = 0 while True: # Find mean of points within bandwidth i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0] points_within = X[i_nbrs] if len(points_within) == 0: break # Depending on seeding strategy this condition may occur my_old_mean = my_mean # save the old mean my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if (extmath.norm(my_mean - my_old_mean) < stop_thresh or completed_iterations == max_iter): return tuple(my_mean), len(points_within) completed_iterations += 1 def mean_shift(X, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, max_iter=300, max_iterations=None, n_jobs=1): """Perform mean shift clustering of data using a flat kernel. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input data. bandwidth : float, optional Kernel bandwidth. If bandwidth is not given, it is determined using a heuristic based on the median of all pairwise distances. This will take quadratic time in the number of samples. The sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently. seeds : array-like, shape=[n_seeds, n_features] or None Point used as initial kernel locations. If None and bin_seeding=False, each data point is used as a seed. If None and bin_seeding=True, see bin_seeding. bin_seeding : boolean, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. max_iter : int, default 300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Returns ------- cluster_centers : array, shape=[n_clusters, n_features] Coordinates of cluster centers. labels : array, shape=[n_samples] Cluster labels for each point. Notes ----- See examples/cluster/plot_meanshift.py for an example. """ # FIXME To be removed in 0.18 if max_iterations is not None: warnings.warn("The `max_iterations` parameter has been renamed to " "`max_iter` from version 0.16. The `max_iterations` " "parameter will be removed in 0.18", DeprecationWarning) max_iter = max_iterations if bandwidth is None: bandwidth = estimate_bandwidth(X) elif bandwidth <= 0: raise ValueError("bandwidth needs to be greater than zero or None,\ got %f" % bandwidth) if seeds is None: if bin_seeding: seeds = get_bin_seeds(X, bandwidth, min_bin_freq) else: seeds = X n_samples, n_features = X.shape center_intensity_dict = {} nbrs = NearestNeighbors(radius=bandwidth).fit(X) # execute iterations on all seeds in parallel all_res = Parallel(n_jobs=n_jobs)( delayed(_mean_shift_single_seed) (seed, X, nbrs, max_iter) for seed in seeds) # copy results in a dictionary for i in range(len(seeds)): if all_res[i] is not None: center_intensity_dict[all_res[i][0]] = all_res[i][1] if not center_intensity_dict: # nothing near seeds raise ValueError("No point was within bandwidth=%f of any seed." " Try a different seeding strategy \ or increase the bandwidth." % bandwidth) # POST PROCESSING: remove near duplicate points # If the distance between two kernels is less than the bandwidth, # then we have to remove one because it is a duplicate. Remove the # one with fewer points. sorted_by_intensity = sorted(center_intensity_dict.items(), key=lambda tup: tup[1], reverse=True) sorted_centers = np.array([tup[0] for tup in sorted_by_intensity]) unique = np.ones(len(sorted_centers), dtype=np.bool) nbrs = NearestNeighbors(radius=bandwidth).fit(sorted_centers) for i, center in enumerate(sorted_centers): if unique[i]: neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[0] unique[neighbor_idxs] = 0 unique[i] = 1 # leave the current point as unique cluster_centers = sorted_centers[unique] # ASSIGN LABELS: a point belongs to the cluster that it is closest to nbrs = NearestNeighbors(n_neighbors=1).fit(cluster_centers) labels = np.zeros(n_samples, dtype=np.int) distances, idxs = nbrs.kneighbors(X) if cluster_all: labels = idxs.flatten() else: labels.fill(-1) bool_selector = distances.flatten() <= bandwidth labels[bool_selector] = idxs.flatten()[bool_selector] return cluster_centers, labels def get_bin_seeds(X, bin_size, min_bin_freq=1): """Finds seeds for mean_shift. Finds seeds by first binning data onto a grid whose lines are spaced bin_size apart, and then choosing those bins with at least min_bin_freq points. Parameters ---------- X : array-like, shape=[n_samples, n_features] Input points, the same points that will be used in mean_shift. bin_size : float Controls the coarseness of the binning. Smaller values lead to more seeding (which is computationally more expensive). If you're not sure how to set this, set it to the value of the bandwidth used in clustering.mean_shift. min_bin_freq : integer, optional Only bins with at least min_bin_freq will be selected as seeds. Raising this value decreases the number of seeds found, which makes mean_shift computationally cheaper. Returns ------- bin_seeds : array-like, shape=[n_samples, n_features] Points used as initial kernel positions in clustering.mean_shift. """ # Bin points bin_sizes = defaultdict(int) for point in X: binned_point = np.round(point / bin_size) bin_sizes[tuple(binned_point)] += 1 # Select only those bins as seeds which have enough members bin_seeds = np.array([point for point, freq in six.iteritems(bin_sizes) if freq >= min_bin_freq], dtype=np.float32) if len(bin_seeds) == len(X): warnings.warn("Binning data failed with provided bin_size=%f," " using data points as seeds." % bin_size) return X bin_seeds = bin_seeds * bin_size return bin_seeds class MeanShift(BaseEstimator, ClusterMixin): """Mean shift clustering using a flat kernel. Mean shift clustering aims to discover "blobs" in a smooth density of samples. It is a centroid-based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- bandwidth : float, optional Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the documentation for that function for hints on scalability (see also the Notes, below). seeds : array, shape=[n_samples, n_features], optional Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters. bin_seeding : boolean, optional If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. default value: False Ignored if seeds argument is not None. min_bin_freq : int, optional To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. If not defined, set to 1. cluster_all : boolean, default True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. n_jobs : int The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. Attributes ---------- cluster_centers_ : array, [n_clusters, n_features] Coordinates of cluster centers. labels_ : Labels of each point. Notes ----- Scalability: Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will is to O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2). Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function. Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used. References ---------- Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. """ def __init__(self, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, n_jobs=1): self.bandwidth = bandwidth self.seeds = seeds self.bin_seeding = bin_seeding self.cluster_all = cluster_all self.min_bin_freq = min_bin_freq self.n_jobs = n_jobs def fit(self, X, y=None): """Perform clustering. Parameters ----------- X : array-like, shape=[n_samples, n_features] Samples to cluster. """ X = check_array(X) self.cluster_centers_, self.labels_ = \ mean_shift(X, bandwidth=self.bandwidth, seeds=self.seeds, min_bin_freq=self.min_bin_freq, bin_seeding=self.bin_seeding, cluster_all=self.cluster_all, n_jobs=self.n_jobs) return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : {array-like, sparse matrix}, shape=[n_samples, n_features] New data to predict. Returns ------- labels : array, shape [n_samples,] Index of the cluster each sample belongs to. """ check_is_fitted(self, "cluster_centers_") return pairwise_distances_argmin(X, self.cluster_centers_)
bsd-3-clause
Urinx/Machine_Learning
SVM/svm.py
1
8600
#! /usr/bin/env python # coding:utf-8 ######################################### # SVM # ######################################### from numpy import * import numpy as np from random import random from matplotlib.pyplot import * from pylab import * from scipy.optimize import fmin_bfgs from scipy.optimize import fmin_cg from scipy.io import loadmat class ML(): def __init__(self,x=[],y=[]): self.X=x self.Y=y self.Theta=[] self.Alpha=0.01 self.Iterations=50 self.Lambda=1 def load(self,fname,d=','): data=loadtxt(fname,delimiter=d) self.X=data[:,:-1] self.Y=data[:,-1:] def loadMat(self,fname): return loadmat(fname) def initXY(self,data): m=data.shape[0] x=hstack((ones((m,1)),data)) return x,self.Y,m # Feature Normalize def Normalization(self,data): mu=mean(data,0) sigma=std(data,0) data_Norm=(data-mu)/sigma return data_Norm,mu,sigma def sigmoid(self,z): return 1/(1+exp(-z)) def sigmoidGradient(self,z): return self.sigmoid(z)*(1-self.sigmoid(z)) def J(self): pass def predict(self,x): return array([1]+x).dot(self.Theta) def evaluate(self): pass # x,x^2,x^3,....x^p def polyFeatures(self,x,p): x_poly=zeros((x.shape[0],p)) for i in xrange(p): x_poly[:,i:i+1]=x**(i+1) return x_poly # x1,x2,x1*x2,... def mapFeature(self,data,k): x1,x2=data[:,0:1],data[:,1:] m=x1.shape[0] x=ones((m,1)) for i in xrange(1,k+1): for j in xrange(i+1): x=hstack((x,x1**j+x2**(i-j))) return x def addOne(self,x): m=x.shape[0] one=ones((m,1)) return hstack((one,x)) def plot(self): pass def show(self): show() class SVM(ML): def __init__(self,fname,x=[],y=[]): self.Lambda=1 self.Theta=[] mat=self.loadMat(fname) self.X=mat['X'] self.Y=mat['y'] if 'Xval' in mat: self.Xval=mat['Xval'] self.Yval=mat['yval'] #self.Xtest=mat['Xtest'] # x1,x2: column vectors def linearKernel(self,x1,x2): sim=x1.T.dot(x2) return sim # To find non-linear decision boundaries def gaussianKernel(self,x1,x2,sigma): sim=e**(-sum((x1-x2)**2)/(2.0*sigma**2)) return sim def svmTrain(self,X,Y,C,kernelFunction,tol=1e-3,max_passes=5): # An SVM classifier using a simplified version of the SMO algorithm # X: matrix of training examples # Y: column matrix containing 1 for positive examples and 0 for negative ones # C: standard SVM regularization parameter # tol: tolerance value used for determining equality of floating point number # max_passes: control the number of iterations over the dataset m,n=X.shape # Map 0 to -1 # The data in Octave is alright but loaded in python # cause wrong calculate result, and it cost my some # time to find this problem. # Because Y.dtype is unit8, it's overfloat when I set -1 # So change type to int64 Y=Y.astype('int64') Y[Y==0]=-1 # Variables alphas=zeros((m,1)) b=0 E=zeros((m,1)) passes=0 eta=0 L=0 H=0 fcn=kernelFunction.func_name if fcn=='linearKernel': K=X.dot(X.T) elif fcn=='gaussianKernel': X2=sum(X**2,1).reshape((m,1)) K=X2+X2.T-2*(X.dot(X.T)) K=kernelFunction(1,0)**K else: K=zeros((m,m)) for i in xrange(m): for j in xrange(j,m): K[i,j]=kernelFunction(X[i,:].T,X[j,:].T) K[j,i]=K[i,j] # Train while passes<max_passes: num_change_alphas=0 for i in xrange(m): E[i]=b+sum(alphas*Y*K[:,i:i+1])-Y[i] if (Y[i]*E[i]<-tol and alphas[i]<C) or (Y[i]*E[i]>tol and alphas[i]>0): # randomly select j j=int(floor(m*random())) while j==i: j=int(floor(m*random())) E[j]=b+sum(alphas*Y*K[:,j:j+1])-Y[j] # Save old alphas # Here is a uneasy find problem if your code like this: # alpha_i_old=alphas[i] # The alpha_i_old will change if alphas[i] has changed # So fixed as following: alpha_i_old=float(alphas[i]) alpha_j_old=float(alphas[j]) # Compute L and H if Y[i]==Y[j]: L=max(0,float(alphas[j]+alphas[i]-C)) H=min(C,float(alphas[j]+alphas[i])) else: L=max(0,float(alphas[j]-alphas[i])) H=min(C,float(C+alphas[j]-alphas[i])) if L==H: continue # Compute eta eta=2*K[i,j]-K[i,i]-K[j,j] if eta>=0: continue # Compute and clip new value for alpha[j] alphas[j]=alphas[j]-(Y[j]*(E[i]-E[j]))/eta alphas[j]=min(H,float(alphas[j])) alphas[j]=max(L,float(alphas[j])) # Check if change in alpha is significant if abs(alphas[j]-alpha_j_old)<tol: alphas[j]=alpha_j_old continue # Determine value for alpha[i] alphas[i]=alphas[i]+Y[i]*Y[j]*(alpha_j_old-alphas[j]) # Compute b1 and b2 b1=b-E[i]-Y[i]*(alphas[i]-alpha_i_old)*K[i,j]-Y[j]*(alphas[j]-alpha_j_old)*K[i,j] b2=b-E[j]-Y[i]*(alphas[i]-alpha_i_old)*K[i,j]-Y[j]*(alphas[j]-alpha_j_old)*K[j,j] # Compute b if 0<alphas[i] and alphas[i]<C : b=b1 elif 0<alphas[j] and alphas[j]<C: b=b2 else: b=(b1+b2)/2 num_change_alphas+=1 if num_change_alphas==0: passes+=1 else: passes=0 class Model(): def __init__(self): self.X=array([]) self.Y=array([]) self.kernelFunction=0 self.b=0 self.alphas=0 self.w=0 # Save the model model=Model() #idx=alphas>0 #model.X=X[idx,:] #model.Y=Y[idx,:] idx=where(alphas>0)[0] model.X=X[idx] model.Y=Y[idx] model.kernelFunction=kernelFunction model.b=b model.alphas=alphas[idx] model.w=((alphas*Y).T.dot(X)).T return model # x: m x n matrix, each example is a row # pred: m x 1 column of prediction of {0,1} values def svmPredict(self,model,x): m=x.shape[0] M=model.X.shape[0] p=zeros((m,1)) pred=zeros((m,1)) if model.kernelFunction.func_name=='linearKernel': p=x.dot(model.w)+model.b elif model.kernelFunction.func_name=='gaussianKernel': x1=sum(x**2,1).reshape((m,1)) x2=sum(model.X**2,1).reshape((M,1)).T K=x1+(x2-2*x.dot(model.X.T)) K=model.kernelFunction(1,0)**K K=model.Y.T*K K=model.alphas.T*K p=sum(K,1) else: for i in xrange(m): prediction=0 for j in xrange(M): prediction+=model.alphas[j]*model.Y[j]*model.kernelFunction(x[i:i+1,:].T,model.X[j:j+1,:].T) p[i]=prediction+model.b pred[p>=0]=1 pred[p<0]=0 return pred # Determine the best C and sigma parameter to use def selectParams(self,x,y,xval,yval): C=1 sigma=0.3 m=1 param=[0.01,0.03,0.1,0.3,1,3,10,30] for s in param: def gaussianKernel(x1,x2): return self.gaussianKernel(x1,x2,s) for c in param: model=self.svmTrain(x,y,c,gaussianKernel) prediction=self.svmPredict(model,xval) tmp=mean(double(prediction!=yval)) if tmp<m: m=tmp C=c sigma=s return C,sigma ################# # Plot Function # ################# def plotData(self): pos,neg=where(self.Y==1),where(self.Y==0) plot(self.X[pos,0],self.X[pos,1],'k+',markersize=7,linewidth=1) plot(self.X[neg,0],self.X[neg,1],'ro',markersize=7,linewidth=1) return self # plot a linear decision boundary learned by the SVM def visualizeBoundaryLinear(self,x,y,model): w=model.w b=model.b xp=array([min(x[:,0]),max(x[:,0])]) yp=-(w[0]*xp+b)/w[1] self.plotData() plot(xp,yp,'g-') return self def visualizeBoundary(self,x,y,model): self.plotData() x1plot=linspace(min(x[:,0]),max(x[:,0]),100) x2plot=linspace(min(x[:,1]),max(x[:,1]),100) x1,x2=meshgrid(x1plot,x2plot) vals=zeros(x1.shape) for i in xrange(x1.shape[1]): this_x=hstack((x1[:,i:i+1],x2[:,i:i+1])) vals[:,i:i+1]=self.svmPredict(model,this_x) contour(x1,x2,vals,(0,0)) return self ################## def trainLinearSVM(self): x,y=self.X,self.Y C=1 kernel=self.linearKernel model=self.svmTrain(x,y,C,kernel,1e-3,20) self.visualizeBoundaryLinear(x,y,model).show() def trainNonLinearSVM(self): x,y=self.X,self.Y C=1 sigma=0.1 def gaussianKernel(x1,x2): return self.gaussianKernel(x1,x2,sigma) kernel=gaussianKernel model=self.svmTrain(x,y,C,kernel) self.visualizeBoundary(x,y,model).show() def findBestParams(self): x,y=self.X,self.Y xval,yval=self.Xval,self.Yval C,sigma=self.selectParams(x,y,xval,yval) def gaussianKernel(x1,x2): return self.gaussianKernel(x1,x2,sigma) model=self.svmTrain(x,y,C,gaussianKernel) self.visualizeBoundary(x,y,model).show() if __name__=='__main__': test=SVM('ex6data1.mat') #test.plotData().show() #test.trainLinearSVM() test2=SVM('ex6data2.mat') #test2.plotData().show() #test2.trainNonLinearSVM() test3=SVM('ex6data3.mat') #test3.plotData().show() #test3.findBestParams()
gpl-2.0
johndamen/pyeasyplot
easyplot/gui/basewidgets.py
1
13141
from PyQt4 import QtGui, QtCore from collections import OrderedDict import numpy as np import re from matplotlib import colors, cm class InvalidColorError(Exception): pass class SettingWidget(QtGui.QWidget): value_changed = QtCore.pyqtSignal(object) def __init__(self, val=None, parent=None, **kwargs): super().__init__(parent=parent) self.build(**kwargs) if val is not None: self.set_value(val) def build(self, **kwargs): pass def value(self): pass def set_value(self, v): pass def is_empty(self): pass def changed(self, *args): self.value_changed.emit(self.value()) class Fieldset(SettingWidget): def __init__(self, ftype, val=(), parent=None, field_width=None, **fkwargs): self.ftype = ftype self.fkwargs = fkwargs val = tuple(val) self.fieldcount = len(val) super().__init__(val=val, parent=parent, field_width=field_width) def build(self, field_width=None): self.layout = QtGui.QHBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.layout.setSpacing(3) self.fields = [] for i in range(self.fieldcount): field = self.ftype(val=None, **self.fkwargs) if field_width is not None: field.setFixedWidth(field_width) self.fields.append(field) field.value_changed.connect(self.changed) self.layout.addWidget(field) def value(self): return tuple(f.value() for f in self.fields) def set_value(self, v): if len(v) != self.fieldcount: raise ValueError('invalid value for fieldset of length {}'.format(self.fieldcount)) for i, f in enumerate(self.fields): f.set_value(v[i]) def __getitem__(self, item): return self.fields[item] class Text(SettingWidget): def __init__(self, val, fmt='{}', parent=None, **kwargs): self.fmt = fmt super().__init__(val, parent=parent, **kwargs) def build(self, onchange=False): self.layout = QtGui.QHBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.textfield = QtGui.QLineEdit() if onchange: self.textfield.textChanged.connect(self.changed) else: self.textfield.editingFinished.connect(self.changed) self.layout.addWidget(self.textfield) def value(self): return str(self.textfield.text()) or None def set_value(self, v, ifempty=False): if ifempty and not self.is_empty(): return self.textfield.setText(self._format_value(v)) def is_empty(self): return str(self.textfield.text()) == '' def _format_value(self, v): return self.fmt.format(v) class TextOrNone(Text): def __init__(self, val=None, **kwargs): super().__init__(val, **kwargs) def value(self): s = str(self.textfield.text()) if s == '': return None return self._cast(s) def _cast(self, v): return str(v) class Int(TextOrNone): def _cast(self, v): return int(v) class Float(TextOrNone): def _cast(self, v): return float(v) class MinMax(SettingWidget): def __init__(self, *args, fmt='{}', parent=None): if len(args) == 1: vmin, vmax = args[0] elif len(args) > 2: raise ValueError('invalid number of values') else: vmin, vmax = args self.vmin = vmin self.vmax = vmax self.fmt = fmt super().__init__(parent=parent) def build(self): self.layout = QtGui.QHBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.vmin_field = Float(self.vmin) self.vmin_field.value_changed.connect(self.changed) self.layout.addWidget(self.vmin_field) self.vmax_field = Float(self.vmax) self.vmax_field.value_changed.connect(self.changed) self.layout.addWidget(self.vmax_field) def value(self): return self.vmin_field.value(), self.vmax_field.value() def setValue(self, *args, ifempty=False): if ifempty and not self.is_empty(): return if len(args) == 1: vmin, vmax = args[0] elif len(args) > 2: raise ValueError('invalid number of values') else: vmin, vmax = args self.vmin_field.set_value(vmin) self.vmax_field.set_value(vmax) def isempty(self): return self.vmin_field.is_empty() and self.vmax_field.is_empty() class ListedSlider(SettingWidget): def __init__(self, values, default=None, fmt='{:.2f}', parent=None): self.values = values if default is None: default = self.values.size // 2 self.i = int(default) self.fmt = fmt super().__init__(parent=parent) def build(self): self.layout = QtGui.QHBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.layout.setSpacing(0) self.slider = QtGui.QSlider() self.slider.setTickPosition(QtGui.QSlider.TicksBelow) self.slider.setOrientation(QtCore.Qt.Horizontal) self.slider.setMinimum(0) self.slider.setMaximum(self.values.size-1) self.slider.setSingleStep(1) self.slider.setTickInterval(1) self.slider.setSliderPosition(self.i) self.slider.valueChanged.connect(self.changed) self.slider.setFixedWidth(100) self.layout.addWidget(self.slider) self.label = QtGui.QLabel(self.format_value()) self.label.setFixedWidth(60) self.label.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignVCenter) self.layout.addWidget(self.label) def changed(self, *args): self.set_from_slider(*args) super().changed(*args) def slider2value(self, v): return self.vmin + v * self.step def value2slider(self, v): return np.floor(1e-5+(v - self.vmin) / self.step) def set_from_slider(self, i): self.i = int(i) self.label.setText(self.format_value()) def value(self): return self.values[self.i] def format_value(self): return self.fmt.format(self.value()) class RangeSlider(ListedSlider): def __init__(self, vmin, vmax, step, default=None, decimals=None, parent=None): values = np.arange(vmin, vmax+step, step) if decimals is None: decimals = int(max(0, np.ceil(-np.log10(step)))) fmt = '{:.'+str(decimals)+'f}' super().__init__(values, default=default, fmt=fmt, parent=parent) class Dropdown(SettingWidget): def __init__(self, opts, default_index=0, parent=None): if isinstance(opts, list): if opts and isinstance(opts[0], str): opts = [(o, o) for o in opts] opts = OrderedDict(opts) elif not isinstance(opts, OrderedDict): raise TypeError('invalid options') self.opts = opts self.default_index = default_index super().__init__(parent=parent) def build(self): self.layout = QtGui.QHBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.layout.setSpacing(0) self.dd = QtGui.QComboBox() self.dd.addItem('default') self.dd.addItems(list(self.opts.keys())) self.dd.setCurrentIndex(self.default_index) self.dd.currentIndexChanged.connect(self.changed) self.layout.addWidget(self.dd) def value(self): i = self.dd.currentIndex() if i == 0: return None else: return list(self.opts.values())[i-1] class Color(SettingWidget): def __init__(self, color=None, **kwargs): self.colortuple_patterns = [ (self.parse_int, re.compile(r'^\(?([0-9]+),\s*([0-9]+),\s*([0-9]+)\)?\s*$')), (self.parse_float, re.compile(r'^\(?([0-9\.]+),\s*([0-9\.]+),\s*([0-9\.]+)\)?\s*$'))] self.color = color super().__init__(**kwargs) def scale_colorvalue(self, v): scaled_v = float(v)/255 return max(min(scaled_v, 1), 0) def build(self): self.layout = QtGui.QHBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.textfield = QtGui.QLineEdit(self.format_color(self.color)) self.textfield.editingFinished.connect(self.changed) self.textfield.setFixedWidth(120) self.layout.addWidget(self.textfield) self.pick_button = QtGui.QPushButton('...') self.pick_button.clicked.connect(self.pick) self.layout.addWidget(self.pick_button) def parse_int(self, v): scaled_v = float(v)/255 return self.parse_float(scaled_v) def parse_float(self, v): v = float(v) if v > 1 or v < 0: raise ValueError(str(v)) return v def parse_color_tuple(self, t): if len(t) != 3: raise InvalidColorError(str(t)) if all(isinstance(v, int) for v in t): val_parser = self.parse_int elif all(isinstance(v, float) for v in t): val_parser = self.parse_float else: raise InvalidColorError(str(t)) return tuple(val_parser(v) for v in t) def parse_color_str(self, s): for t, p in self.colortuple_patterns: m = p.match(s) if not m: continue try: return tuple(t(item) for item in m.groups()) except ValueError: raise InvalidColorError(s) if colors.is_color_like(s): return s else: raise InvalidColorError(s) def parse_color(self, v): if v is None: return v try: if isinstance(v, str): return self.parse_color_str(v) elif isinstance(v, tuple): return self.parse_color_tuple(v) except InvalidColorError as e: QtGui.QMessageBox.warning(self, 'invalid color', 'invalid color value: {}'.format(e)) self.textfield.setText(self.format_color(self.color)) def format_color(self, c): if c is None: return '' if isinstance(c, tuple) and len(c) == 3: if all(isinstance(v, float) for v in c): return '({:.2f}, {:.2f}, {:.2f})'.format(*c) else: return '({}, {}, {})'.format(*c) return str(c) @property def color(self): return self._color @color.setter def color(self, v): self._color = self.parse_color(v) def pick(self): color = QtGui.QColorDialog.getColor() rgb = (self.scale_colorvalue(color.red()), self.scale_colorvalue(color.green()), self.scale_colorvalue(color.blue())) self.color = rgb self.textfield.setText(self.format_color(rgb)) self.changed() def value(self): s = str(self.textfield.text()) if s == '': return None else: self.color = s return self.color class Colormap(Dropdown): def __init__(self, default, parent=None): opts = OrderedDict(self.list_colormaps()) if isinstance(default, str): default_cmap = cm.get_cmap(default) elif isinstance(default, colors.Colormap): default, default_cmap = default.name, default opts[default] = default_cmap default_index = list(opts.keys()).index(default) super().__init__(opts, default_index=default_index, parent=parent) @classmethod def list_colormaps(cls): return [(name, c) for name, c in cm.__dict__.items() if isinstance(c, colors.Colormap)] class Checkbox(SettingWidget): def __init__(self, checked): super().__init__(checked) def build(self): self.layout = QtGui.QHBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.cb = QtGui.QCheckBox() self.cb.setChecked(False) self.cb.toggled.connect(self.changed) self.layout.addWidget(self.cb) def set_value(self, b): self.cb.setChecked(bool(b)) def value(self): return self.cb.isChecked() class ClickableLabel(QtGui.QLabel): clicked = QtCore.pyqtSignal() def mousePressEvent(self, QMouseEvent): self.clicked.emit() class ToggleLabel(ClickableLabel): toggled = QtCore.pyqtSignal(bool) def __init__(self, *args, selected=False, toggle_internal=True, **kwargs): super().__init__(*args, **kwargs) self.set_selected(selected) self.toggle_internal = toggle_internal self.clicked.connect(self.toggle) def toggle(self): print('toggled', self) if self.toggle_internal: self.set_selected(not self.selected) self.toggled.emit(self.selected) def set_selected(self, b): self.selected = b if b: self.setStyleSheet('''text-decoration: underline''') else: self.setStyleSheet('''''')
gpl-3.0
plaidml/plaidml
networks/keras/examples/mnist_swwae.py
1
7875
'''Trains a stacked what-where autoencoder built on residual blocks on the MNIST dataset. It exemplifies two influential methods that have been developed in the past few years. The first is the idea of properly 'unpooling.' During any max pool, the exact location (the 'where') of the maximal value in a pooled receptive field is lost, however it can be very useful in the overall reconstruction of an input image. Therefore, if the 'where' is handed from the encoder to the corresponding decoder layer, features being decoded can be 'placed' in the right location, allowing for reconstructions of much higher fidelity. References: [1] 'Visualizing and Understanding Convolutional Networks' Matthew D Zeiler, Rob Fergus https://arxiv.org/abs/1311.2901v3 [2] 'Stacked What-Where Auto-encoders' Junbo Zhao, Michael Mathieu, Ross Goroshin, Yann LeCun https://arxiv.org/abs/1506.02351v8 The second idea exploited here is that of residual learning. Residual blocks ease the training process by allowing skip connections that give the network the ability to be as linear (or non-linear) as the data sees fit. This allows for much deep networks to be easily trained. The residual element seems to be advantageous in the context of this example as it allows a nice symmetry between the encoder and decoder. Normally, in the decoder, the final projection to the space where the image is reconstructed is linear, however this does not have to be the case for a residual block as the degree to which its output is linear or non-linear is determined by the data it is fed. However, in order to cap the reconstruction in this example, a hard softmax is applied as a bias because we know the MNIST digits are mapped to [0,1]. References: [3] 'Deep Residual Learning for Image Recognition' Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun https://arxiv.org/abs/1512.03385v1 [4] 'Identity Mappings in Deep Residual Networks' Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun https://arxiv.org/abs/1603.05027v3 ''' from __future__ import print_function import numpy as np import keras.callbacks from keras.datasets import mnist from keras.models import Model from keras.layers import Activation from keras.layers import UpSampling2D, Conv2D, MaxPooling2D from keras.layers import Input, BatchNormalization, ELU # import matplotlib.pyplot as plt import keras.backend as K from keras import layers from example_correctness_test_utils import TrainingHistory, StopwatchManager def convresblock(x, nfeats=8, ksize=3, nskipped=2, elu=True): """The proposed residual block from [4]. Running with elu=True will use ELU nonlinearity and running with elu=False will use BatchNorm + RELU nonlinearity. While ELU's are fast due to the fact they do not suffer from BatchNorm overhead, they may overfit because they do not offer the stochastic element of the batch formation process of BatchNorm, which acts as a good regularizer. # Arguments x: 4D tensor, the tensor to feed through the block nfeats: Integer, number of feature maps for conv layers. ksize: Integer, width and height of conv kernels in first convolution. nskipped: Integer, number of conv layers for the residual function. elu: Boolean, whether to use ELU or BN+RELU. # Input shape 4D tensor with shape: `(batch, channels, rows, cols)` # Output shape 4D tensor with shape: `(batch, filters, rows, cols)` """ y0 = Conv2D(nfeats, ksize, padding='same')(x) y = y0 for i in range(nskipped): if elu: y = ELU()(y) else: y = BatchNormalization(axis=1)(y) y = Activation('relu')(y) y = Conv2D(nfeats, 1, padding='same')(y) return layers.add([y0, y]) def getwhere(x): ''' Calculate the 'where' mask that contains switches indicating which index contained the max value when MaxPool2D was applied. Using the gradient of the sum is a nice trick to keep everything high level.''' y_prepool, y_postpool = x return K.gradients(K.sum(y_postpool), y_prepool) if K.backend() == 'tensorflow': raise RuntimeError('This example can only run with the ' 'Theano backend for the time being, ' 'because it requires taking the gradient ' 'of a gradient, which isn\'t ' 'supported for all TF ops.') # This example assume 'channels_first' data format. K.set_image_data_format('channels_first') # input image dimensions img_rows, img_cols = 28, 28 # the data, shuffled and split between train and test sets (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols) x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') print(x_test.shape[0], 'test samples') # The size of the kernel used for the MaxPooling2D pool_size = 2 # The total number of feature maps at each layer nfeats = [8, 16, 32, 64, 128] # The sizes of the pooling kernel at each layer pool_sizes = np.array([1, 1, 1, 1, 1]) * pool_size # The convolution kernel size ksize = 3 # Number of epochs to train for epochs = 1 # Batch size during training batch_size = 128 if pool_size == 2: # if using a 5 layer net of pool_size = 2 x_train = np.pad(x_train, [[0, 0], [0, 0], [2, 2], [2, 2]], mode='constant') x_test = np.pad(x_test, [[0, 0], [0, 0], [2, 2], [2, 2]], mode='constant') nlayers = 5 elif pool_size == 3: # if using a 3 layer net of pool_size = 3 x_train = x_train[:, :, :-1, :-1] x_test = x_test[:, :, :-1, :-1] nlayers = 3 else: import sys sys.exit('Script supports pool_size of 2 and 3.') # Shape of input to train on (note that model is fully convolutional however) input_shape = x_train.shape[1:] # The final list of the size of axis=1 for all layers, including input nfeats_all = [input_shape[0]] + nfeats # First build the encoder, all the while keeping track of the 'where' masks img_input = Input(shape=input_shape) # We push the 'where' masks to the following list wheres = [None] * nlayers y = img_input for i in range(nlayers): y_prepool = convresblock(y, nfeats=nfeats_all[i + 1], ksize=ksize) y = MaxPooling2D(pool_size=(pool_sizes[i], pool_sizes[i]))(y_prepool) wheres[i] = layers.Lambda(getwhere, output_shape=lambda x: x[0])([y_prepool, y]) # Now build the decoder, and use the stored 'where' masks to place the features for i in range(nlayers): ind = nlayers - 1 - i y = UpSampling2D(size=(pool_sizes[ind], pool_sizes[ind]))(y) y = layers.multiply([y, wheres[ind]]) y = convresblock(y, nfeats=nfeats_all[ind], ksize=ksize) # Use hard_simgoid to clip range of reconstruction y = Activation('hard_sigmoid')(y) # Define the model and it's mean square error loss, and compile it with Adam model = Model(img_input, y) model.compile('adam', 'mse') history = TrainingHistory() sw_manager = StopwatchManager(stop_watch, compile_stop_watch) # Fit the model model.fit(x_train, x_train, batch_size=batch_size, epochs=epochs, validation_data=(x_test, x_test), callbacks=[history, sw_manager]) output.contents = np.array([history.acc, history.loss, history.val_acc, history.val_loss]) # Plot """ x_recon = model.predict(x_test[:25]) x_plot = np.concatenate((x_test[:25], x_recon), axis=1) x_plot = x_plot.reshape((5, 10, input_shape[-2], input_shape[-1])) x_plot = np.vstack([np.hstack(x) for x in x_plot]) plt.figure() plt.axis('off') plt.title('Test Samples: Originals/Reconstructions') plt.imshow(x_plot, interpolation='none', cmap='gray') plt.savefig('reconstructions.png') """
apache-2.0
ntvis/tushare
tushare/datayes/IV.py
10
3423
# -*- coding:utf-8 -*- """ 通联数据 Created on 2015/10/12 @author: Jimmy Liu @group : waditu @contact: [email protected] """ from pandas.compat import StringIO import pandas as pd from tushare.util import vars as vs from tushare.util.common import Client from tushare.util import upass as up class IV(): def __init__(self, client=None): if client is None: self.client = Client(up.get_token()) else: self.client = client def DerIv(self, beginDate='', endDate='', optID='', SecID='', field=''): """ 原始隐含波动率,包括期权价格、累计成交量、持仓量、隐含波动率等。 """ code, result = self.client.getData(vs.DERIV%(beginDate, endDate, optID, SecID, field)) return _ret_data(code, result) def DerIvHv(self, beginDate='', endDate='', SecID='', period='', field=''): """ 历史波动率,各个时间段的收盘-收盘历史波动率。 """ code, result = self.client.getData(vs.DERIVHV%(beginDate, endDate, SecID, period, field)) return _ret_data(code, result) def DerIvIndex(self, beginDate='', endDate='', SecID='', period='', field=''): """ 隐含波动率指数,衡量30天至1080天到期平价期权的平均波动性的主要方法。 """ code, result = self.client.getData(vs.DERIVINDEX%(beginDate, endDate, SecID, period, field)) return _ret_data(code, result) def DerIvIvpDelta(self, beginDate='', endDate='', SecID='', delta='', period='', field=''): """ 隐含波动率曲面(基于参数平滑曲线),基于delta(0.1至0.9,0.05升步)和到期日(1个月至3年)而标准化的曲面。 """ code, result = self.client.getData(vs.DERIVIVPDELTA%(beginDate, endDate, SecID, delta, period, field)) return _ret_data(code, result) def DerIvParam(self, beginDate='', endDate='', SecID='', expDate='', field=''): """ 隐含波动率参数化曲面,由二阶方程波动曲线在每个到期日平滑后的曲面(a,b,c曲线系数) """ code, result = self.client.getData(vs.DERIVPARAM%(beginDate, endDate, SecID, expDate, field)) return _ret_data(code, result) def DerIvRawDelta(self, beginDate='', endDate='', SecID='', delta='', period='', field=''): """ 隐含波动率曲面(基于原始隐含波动率),基于delta(0.1至0.9,0.05升步)和到期日(1个月至3年)而标准化的曲面。 """ code, result = self.client.getData(vs.DERIVRAWDELTA%(beginDate, endDate, SecID, delta, period, field)) return _ret_data(code, result) def DerIvSurface(self, beginDate='', endDate='', SecID='', contractType='', field=''): """ 隐含波动率曲面(在值程度),基于在值程度而标准化的曲面。执行价格区间在-60%到+60%,5%升步,到期区间为1个月至3年。 """ code, result = self.client.getData(vs.DERIVSURFACE%(beginDate, endDate, SecID, contractType, field)) return _ret_data(code, result) def _ret_data(code, result): if code==200: result = result.decode('utf-8') if vs.PY3 else result df = pd.read_csv(StringIO(result)) return df else: print(result) return None
bsd-3-clause
saketkc/statsmodels
statsmodels/datasets/utils.py
25
10983
from statsmodels.compat.python import (range, StringIO, urlopen, HTTPError, URLError, lrange, cPickle, urljoin, BytesIO) import sys import shutil from os import environ from os import makedirs from os.path import expanduser from os.path import exists from os.path import join import numpy as np from numpy import array from pandas import read_csv, DataFrame, Index def webuse(data, baseurl='http://www.stata-press.com/data/r11/', as_df=True): """ Download and return an example dataset from Stata. Parameters ---------- data : str Name of dataset to fetch. baseurl : str The base URL to the stata datasets. as_df : bool If True, returns a `pandas.DataFrame` Returns ------- dta : Record Array A record array containing the Stata dataset. Examples -------- >>> dta = webuse('auto') Notes ----- Make sure baseurl has trailing forward slash. Doesn't do any error checking in response URLs. """ # lazy imports from statsmodels.iolib import genfromdta url = urljoin(baseurl, data+'.dta') dta = urlopen(url) dta = BytesIO(dta.read()) # make it truly file-like if as_df: # could make this faster if we don't process dta twice? return DataFrame.from_records(genfromdta(dta)) else: return genfromdta(dta) class Dataset(dict): def __init__(self, **kw): # define some default attributes, so pylint can find them self.endog = None self.exog = None self.data = None self.names = None dict.__init__(self, kw) self.__dict__ = self # Some datasets have string variables. If you want a raw_data # attribute you must create this in the dataset's load function. try: # some datasets have string variables self.raw_data = self.data.view((float, len(self.names))) except: pass def __repr__(self): return str(self.__class__) def process_recarray(data, endog_idx=0, exog_idx=None, stack=True, dtype=None): names = list(data.dtype.names) if isinstance(endog_idx, int): endog = array(data[names[endog_idx]], dtype=dtype) endog_name = names[endog_idx] endog_idx = [endog_idx] else: endog_name = [names[i] for i in endog_idx] if stack: endog = np.column_stack(data[field] for field in endog_name) else: endog = data[endog_name] if exog_idx is None: exog_name = [names[i] for i in range(len(names)) if i not in endog_idx] else: exog_name = [names[i] for i in exog_idx] if stack: exog = np.column_stack(data[field] for field in exog_name) else: exog = data[exog_name] if dtype: endog = endog.astype(dtype) exog = exog.astype(dtype) dataset = Dataset(data=data, names=names, endog=endog, exog=exog, endog_name=endog_name, exog_name=exog_name) return dataset def process_recarray_pandas(data, endog_idx=0, exog_idx=None, dtype=None, index_idx=None): data = DataFrame(data, dtype=dtype) names = data.columns if isinstance(endog_idx, int): endog_name = names[endog_idx] endog = data[endog_name] if exog_idx is None: exog = data.drop([endog_name], axis=1) else: exog = data.filter(names[exog_idx]) else: endog = data.ix[:, endog_idx] endog_name = list(endog.columns) if exog_idx is None: exog = data.drop(endog_name, axis=1) elif isinstance(exog_idx, int): exog = data.filter([names[exog_idx]]) else: exog = data.filter(names[exog_idx]) if index_idx is not None: # NOTE: will have to be improved for dates endog.index = Index(data.ix[:, index_idx]) exog.index = Index(data.ix[:, index_idx]) data = data.set_index(names[index_idx]) exog_name = list(exog.columns) dataset = Dataset(data=data, names=list(names), endog=endog, exog=exog, endog_name=endog_name, exog_name=exog_name) return dataset def _maybe_reset_index(data): """ All the Rdatasets have the integer row.labels from R if there is no real index. Strip this for a zero-based index """ if data.index.equals(Index(lrange(1, len(data) + 1))): data = data.reset_index(drop=True) return data def _get_cache(cache): if cache is False: # do not do any caching or load from cache cache = None elif cache is True: # use default dir for cache cache = get_data_home(None) else: cache = get_data_home(cache) return cache def _cache_it(data, cache_path): if sys.version_info[0] >= 3: # for some reason encode("zip") won't work for me in Python 3? import zlib # use protocol 2 so can open with python 2.x if cached in 3.x open(cache_path, "wb").write(zlib.compress(cPickle.dumps(data, protocol=2))) else: open(cache_path, "wb").write(cPickle.dumps(data).encode("zip")) def _open_cache(cache_path): if sys.version_info[0] >= 3: # NOTE: don't know why but decode('zip') doesn't work on my # Python 3 build import zlib data = zlib.decompress(open(cache_path, 'rb').read()) # return as bytes object encoded in utf-8 for cross-compat of cached data = cPickle.loads(data).encode('utf-8') else: data = open(cache_path, 'rb').read().decode('zip') data = cPickle.loads(data) return data def _urlopen_cached(url, cache): """ Tries to load data from cache location otherwise downloads it. If it downloads the data and cache is not None then it will put the downloaded data in the cache path. """ from_cache = False if cache is not None: cache_path = join(cache, url.split("://")[-1].replace('/', ',') + ".zip") try: data = _open_cache(cache_path) from_cache = True except: pass # not using the cache or didn't find it in cache if not from_cache: data = urlopen(url).read() if cache is not None: # then put it in the cache _cache_it(data, cache_path) return data, from_cache def _get_data(base_url, dataname, cache, extension="csv"): url = base_url + (dataname + ".%s") % extension try: data, from_cache = _urlopen_cached(url, cache) except HTTPError as err: if '404' in str(err): raise ValueError("Dataset %s was not found." % dataname) else: raise err data = data.decode('utf-8', 'strict') return StringIO(data), from_cache def _get_dataset_meta(dataname, package, cache): # get the index, you'll probably want this cached because you have # to download info about all the data to get info about any of the data... index_url = ("https://raw.github.com/vincentarelbundock/Rdatasets/master/" "datasets.csv") data, _ = _urlopen_cached(index_url, cache) # Python 3 if sys.version[0] == '3': # pragma: no cover data = data.decode('utf-8', 'strict') index = read_csv(StringIO(data)) idx = np.logical_and(index.Item == dataname, index.Package == package) dataset_meta = index.ix[idx] return dataset_meta["Title"].item() def get_rdataset(dataname, package="datasets", cache=False): """download and return R dataset Parameters ---------- dataname : str The name of the dataset you want to download package : str The package in which the dataset is found. The default is the core 'datasets' package. cache : bool or str If True, will download this data into the STATSMODELS_DATA folder. The default location is a folder called statsmodels_data in the user home folder. Otherwise, you can specify a path to a folder to use for caching the data. If False, the data will not be cached. Returns ------- dataset : Dataset instance A `statsmodels.data.utils.Dataset` instance. This objects has attributes:: * data - A pandas DataFrame containing the data * title - The dataset title * package - The package from which the data came * from_cache - Whether not cached data was retrieved * __doc__ - The verbatim R documentation. Notes ----- If the R dataset has an integer index. This is reset to be zero-based. Otherwise the index is preserved. The caching facilities are dumb. That is, no download dates, e-tags, or otherwise identifying information is checked to see if the data should be downloaded again or not. If the dataset is in the cache, it's used. """ # NOTE: use raw github bc html site might not be most up to date data_base_url = ("https://raw.github.com/vincentarelbundock/Rdatasets/" "master/csv/"+package+"/") docs_base_url = ("https://raw.github.com/vincentarelbundock/Rdatasets/" "master/doc/"+package+"/rst/") cache = _get_cache(cache) data, from_cache = _get_data(data_base_url, dataname, cache) data = read_csv(data, index_col=0) data = _maybe_reset_index(data) title = _get_dataset_meta(dataname, package, cache) doc, _ = _get_data(docs_base_url, dataname, cache, "rst") return Dataset(data=data, __doc__=doc.read(), package=package, title=title, from_cache=from_cache) # The below function were taken from sklearn def get_data_home(data_home=None): """Return the path of the statsmodels data dir. This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'statsmodels_data' in the user home folder. Alternatively, it can be set by the 'STATSMODELS_DATA' environment variable or programatically by giving an explit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is None: data_home = environ.get('STATSMODELS_DATA', join('~', 'statsmodels_data')) data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home) def check_internet(): """Check if internet is available""" try: urlopen("https://github.com") except URLError as err: return False return True
bsd-3-clause
treverhines/PyGeoNS
pygeons/clean/clean.py
1
4945
''' Defines cleaning functions which are called by the PyGeoNS executable. ''' from __future__ import division import numpy as np import logging import matplotlib.pyplot as plt from pygeons.io.convert import dict_from_hdf5,hdf5_from_dict from pygeons.mjd import mjd,mjd_inv from pygeons.basemap import make_basemap from pygeons.clean.iclean import InteractiveCleaner from pygeons.units import unit_conversion from pygeons.plot.plot import (_unit_string, _setup_map_ax, _setup_ts_ax) logger = logging.getLogger(__name__) def _remove_extension(f): '''remove file extension if one exists''' if '.' not in f: return f else: return '.'.join(f.split('.')[:-1]) def pygeons_clean(input_file,resolution='i', input_edits_file=None, break_lons=None,break_lats=None, break_conn=None,no_display=False, output_stem=None,**kwargs): ''' runs the PyGeoNS Interactive Cleaner Parameters ---------- data : dict data dictionary resolution : str basemap resolution input_edits_file : str Name of the file containing edits which will automatically be applied before opening up the interactive viewer. output_edits_file : str Name of the file where all edits will be recorded. **kwargs : gets passed to pygeons.clean.clean Returns ------- out : dict output data dictionary ''' logger.info('Running pygeons clean ...') data = dict_from_hdf5(input_file) out = dict((k,np.copy(v)) for k,v in data.iteritems()) ts_fig,ts_ax = plt.subplots(3,1,sharex=True,num='Time Series View',facecolor='white') _setup_ts_ax(ts_ax) map_fig,map_ax = plt.subplots(num='Map View',facecolor='white') bm = make_basemap(data['longitude'],data['latitude'],resolution=resolution) _setup_map_ax(bm,map_ax) x,y = bm(data['longitude'],data['latitude']) pos = np.array([x,y]).T t = data['time'] dates = [mjd_inv(ti,'%Y-%m-%d') for ti in t] units = _unit_string(data['space_exponent'],data['time_exponent']) conv = 1.0/unit_conversion(units,time='day',space='m') u = conv*data['east'] v = conv*data['north'] z = conv*data['vertical'] su = conv*data['east_std_dev'] sv = conv*data['north_std_dev'] sz = conv*data['vertical_std_dev'] ic = InteractiveCleaner( t,pos,u=u,v=v,z=z,su=su,sv=sv,sz=sz, map_ax=map_ax,ts_ax=ts_ax, time_labels=dates, units=units, station_labels=data['id'], **kwargs) # make edits to the data set prior to displaying it if input_edits_file is not None: with open(input_edits_file,'r') as fin: for line in fin: # ignore blank lines if line.isspace(): continue type,sta,a,b = line.strip().split() # set the current station in *ic* to the station for this edit xidx, = (data['id'] == sta).nonzero() if len(xidx) == 0: # continue because the station does not exist in this # dataset continue ic.xidx = xidx[0] if type == 'outliers': start_time = mjd(a,'%Y-%m-%d') stop_time = mjd(b,'%Y-%m-%d') ic.remove_outliers(start_time,stop_time) elif type == 'jump': jump_time = mjd(a,'%Y-%m-%d') delta = int(b) ic.remove_jump(jump_time,delta) else: raise ValueError('edit type must be either "outliers" or "jump"') if not no_display: ic.update() ic.connect() # set output file name if output_stem is None: output_stem = _remove_extension(input_file) + '.clean' output_file = output_stem + '.h5' output_edits_file = output_stem + '.txt' with open(output_edits_file,'w') as fout: for i in ic.log: type,xidx,a,b = i if type == 'outliers': station = data['id'][xidx] start_date = mjd_inv(a,'%Y-%m-%d') stop_date = mjd_inv(b,'%Y-%m-%d') fout.write('outliers %s %s %s\n' % (station,start_date,stop_date)) elif type == 'jump': station = data['id'][xidx] jump_date = mjd_inv(a,'%Y-%m-%d') fout.write('jump %s %s %s\n' % (station,jump_date,b)) else: raise ValueError('edit type must be either "outliers" or "jump"') logger.info('Edits saved to %s' % output_edits_file) clean_data = ic.get_data() out['east'] = clean_data[0]/conv out['north'] = clean_data[1]/conv out['vertical'] = clean_data[2]/conv out['east_std_dev'] = clean_data[3]/conv out['north_std_dev'] = clean_data[4]/conv out['vertical_std_dev'] = clean_data[5]/conv hdf5_from_dict(output_file,out) logger.info('Cleaned data written to %s' % output_file) logger.info('Edits written to %s' % output_edits_file) return
mit
RPGOne/Skynet
scikit-learn-0.18.1/sklearn/tests/test_discriminant_analysis.py
7
13097
import sys import numpy as np from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_warns from sklearn.utils.testing import assert_greater from sklearn.utils.testing import ignore_warnings from sklearn.utils.testing import SkipTest from sklearn.datasets import make_blobs from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.discriminant_analysis import _cov # import reload version = sys.version_info if version[0] == 3: # Python 3+ import for reload. Builtin in Python2 if version[1] == 3: reload = None else: from importlib import reload # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]], dtype='f') y = np.array([1, 1, 1, 2, 2, 2]) y3 = np.array([1, 1, 2, 2, 3, 3]) # Degenerate data with only one feature (still should be separable) X1 = np.array([[-2, ], [-1, ], [-1, ], [1, ], [1, ], [2, ]], dtype='f') # Data is just 9 separable points in the plane X6 = np.array([[0, 0], [-2, -2], [-2, -1], [-1, -1], [-1, -2], [1, 3], [1, 2], [2, 1], [2, 2]]) y6 = np.array([1, 1, 1, 1, 1, 2, 2, 2, 2]) y7 = np.array([1, 2, 3, 2, 3, 1, 2, 3, 1]) # Degenerate data with 1 feature (still should be separable) X7 = np.array([[-3, ], [-2, ], [-1, ], [-1, ], [0, ], [1, ], [1, ], [2, ], [3, ]]) # Data that has zero variance in one dimension and needs regularization X2 = np.array([[-3, 0], [-2, 0], [-1, 0], [-1, 0], [0, 0], [1, 0], [1, 0], [2, 0], [3, 0]]) # One element class y4 = np.array([1, 1, 1, 1, 1, 1, 1, 1, 2]) # Data with less samples in a class than n_features X5 = np.c_[np.arange(8), np.zeros((8, 3))] y5 = np.array([0, 0, 0, 0, 0, 1, 1, 1]) solver_shrinkage = [('svd', None), ('lsqr', None), ('eigen', None), ('lsqr', 'auto'), ('lsqr', 0), ('lsqr', 0.43), ('eigen', 'auto'), ('eigen', 0), ('eigen', 0.43)] def test_lda_predict(): # Test LDA classification. # This checks that LDA implements fit and predict and returns correct # values for simple toy data. for test_case in solver_shrinkage: solver, shrinkage = test_case clf = LinearDiscriminantAnalysis(solver=solver, shrinkage=shrinkage) y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y, 'solver %s' % solver) # Assert that it works with 1D data y_pred1 = clf.fit(X1, y).predict(X1) assert_array_equal(y_pred1, y, 'solver %s' % solver) # Test probability estimates y_proba_pred1 = clf.predict_proba(X1) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y, 'solver %s' % solver) y_log_proba_pred1 = clf.predict_log_proba(X1) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8, 'solver %s' % solver) # Primarily test for commit 2f34950 -- "reuse" of priors y_pred3 = clf.fit(X, y3).predict(X) # LDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y3), 'solver %s' % solver) # Test invalid shrinkages clf = LinearDiscriminantAnalysis(solver="lsqr", shrinkage=-0.2231) assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="eigen", shrinkage="dummy") assert_raises(ValueError, clf.fit, X, y) clf = LinearDiscriminantAnalysis(solver="svd", shrinkage="auto") assert_raises(NotImplementedError, clf.fit, X, y) # Test unknown solver clf = LinearDiscriminantAnalysis(solver="dummy") assert_raises(ValueError, clf.fit, X, y) def test_lda_priors(): # Test priors (negative priors) priors = np.array([0.5, -0.5]) clf = LinearDiscriminantAnalysis(priors=priors) msg = "priors must be non-negative" assert_raise_message(ValueError, msg, clf.fit, X, y) # Test that priors passed as a list are correctly handled (run to see if # failure) clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) clf.fit(X, y) # Test that priors always sum to 1 priors = np.array([0.5, 0.6]) prior_norm = np.array([0.45, 0.55]) clf = LinearDiscriminantAnalysis(priors=priors) assert_warns(UserWarning, clf.fit, X, y) assert_array_almost_equal(clf.priors_, prior_norm, 2) def test_lda_coefs(): # Test if the coefficients of the solvers are approximately the same. n_features = 2 n_classes = 2 n_samples = 1000 X, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=n_classes, random_state=11) clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_lsqr = LinearDiscriminantAnalysis(solver="lsqr") clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_svd.fit(X, y) clf_lda_lsqr.fit(X, y) clf_lda_eigen.fit(X, y) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_lsqr.coef_, 1) assert_array_almost_equal(clf_lda_svd.coef_, clf_lda_eigen.coef_, 1) assert_array_almost_equal(clf_lda_eigen.coef_, clf_lda_lsqr.coef_, 1) def test_lda_transform(): # Test LDA transform. clf = LinearDiscriminantAnalysis(solver="svd", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="eigen", n_components=1) X_transformed = clf.fit(X, y).transform(X) assert_equal(X_transformed.shape[1], 1) clf = LinearDiscriminantAnalysis(solver="lsqr", n_components=1) clf.fit(X, y) msg = "transform not implemented for 'lsqr'" assert_raise_message(NotImplementedError, msg, clf.transform, X) def test_lda_explained_variance_ratio(): # Test if the sum of the normalized eigen vectors values equals 1, # Also tests whether the explained_variance_ratio_ formed by the # eigen solver is the same as the explained_variance_ratio_ formed # by the svd solver state = np.random.RandomState(0) X = state.normal(loc=0, scale=100, size=(40, 20)) y = state.randint(0, 3, size=(40,)) clf_lda_eigen = LinearDiscriminantAnalysis(solver="eigen") clf_lda_eigen.fit(X, y) assert_almost_equal(clf_lda_eigen.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_eigen.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") clf_lda_svd = LinearDiscriminantAnalysis(solver="svd") clf_lda_svd.fit(X, y) assert_almost_equal(clf_lda_svd.explained_variance_ratio_.sum(), 1.0, 3) assert_equal(clf_lda_svd.explained_variance_ratio_.shape, (2,), "Unexpected length for explained_variance_ratio_") assert_array_almost_equal(clf_lda_svd.explained_variance_ratio_, clf_lda_eigen.explained_variance_ratio_) def test_lda_orthogonality(): # arrange four classes with their means in a kite-shaped pattern # the longer distance should be transformed to the first component, and # the shorter distance to the second component. means = np.array([[0, 0, -1], [0, 2, 0], [0, -2, 0], [0, 0, 5]]) # We construct perfectly symmetric distributions, so the LDA can estimate # precise means. scatter = np.array([[0.1, 0, 0], [-0.1, 0, 0], [0, 0.1, 0], [0, -0.1, 0], [0, 0, 0.1], [0, 0, -0.1]]) X = (means[:, np.newaxis, :] + scatter[np.newaxis, :, :]).reshape((-1, 3)) y = np.repeat(np.arange(means.shape[0]), scatter.shape[0]) # Fit LDA and transform the means clf = LinearDiscriminantAnalysis(solver="svd").fit(X, y) means_transformed = clf.transform(means) d1 = means_transformed[3] - means_transformed[0] d2 = means_transformed[2] - means_transformed[1] d1 /= np.sqrt(np.sum(d1 ** 2)) d2 /= np.sqrt(np.sum(d2 ** 2)) # the transformed within-class covariance should be the identity matrix assert_almost_equal(np.cov(clf.transform(scatter).T), np.eye(2)) # the means of classes 0 and 3 should lie on the first component assert_almost_equal(np.abs(np.dot(d1[:2], [1, 0])), 1.0) # the means of classes 1 and 2 should lie on the second component assert_almost_equal(np.abs(np.dot(d2[:2], [0, 1])), 1.0) def test_lda_scaling(): # Test if classification works correctly with differently scaled features. n = 100 rng = np.random.RandomState(1234) # use uniform distribution of features to make sure there is absolutely no # overlap between classes. x1 = rng.uniform(-1, 1, (n, 3)) + [-10, 0, 0] x2 = rng.uniform(-1, 1, (n, 3)) + [10, 0, 0] x = np.vstack((x1, x2)) * [1, 100, 10000] y = [-1] * n + [1] * n for solver in ('svd', 'lsqr', 'eigen'): clf = LinearDiscriminantAnalysis(solver=solver) # should be able to separate the data perfectly assert_equal(clf.fit(x, y).score(x, y), 1.0, 'using covariance: %s' % solver) def test_qda(): # QDA classification. # This checks that QDA implements fit and predict and returns # correct values for a simple toy dataset. clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) assert_array_equal(y_pred, y6) # Assure that it works with 1D data y_pred1 = clf.fit(X7, y6).predict(X7) assert_array_equal(y_pred1, y6) # Test probas estimates y_proba_pred1 = clf.predict_proba(X7) assert_array_equal((y_proba_pred1[:, 1] > 0.5) + 1, y6) y_log_proba_pred1 = clf.predict_log_proba(X7) assert_array_almost_equal(np.exp(y_log_proba_pred1), y_proba_pred1, 8) y_pred3 = clf.fit(X6, y7).predict(X6) # QDA shouldn't be able to separate those assert_true(np.any(y_pred3 != y7)) # Classes should have at least 2 elements assert_raises(ValueError, clf.fit, X6, y4) def test_qda_priors(): clf = QuadraticDiscriminantAnalysis() y_pred = clf.fit(X6, y6).predict(X6) n_pos = np.sum(y_pred == 2) neg = 1e-10 clf = QuadraticDiscriminantAnalysis(priors=np.array([neg, 1 - neg])) y_pred = clf.fit(X6, y6).predict(X6) n_pos2 = np.sum(y_pred == 2) assert_greater(n_pos2, n_pos) def test_qda_store_covariances(): # The default is to not set the covariances_ attribute clf = QuadraticDiscriminantAnalysis().fit(X6, y6) assert_true(not hasattr(clf, 'covariances_')) # Test the actual attribute: clf = QuadraticDiscriminantAnalysis(store_covariances=True).fit(X6, y6) assert_true(hasattr(clf, 'covariances_')) assert_array_almost_equal( clf.covariances_[0], np.array([[0.7, 0.45], [0.45, 0.7]]) ) assert_array_almost_equal( clf.covariances_[1], np.array([[0.33333333, -0.33333333], [-0.33333333, 0.66666667]]) ) def test_qda_regularization(): # the default is reg_param=0. and will cause issues # when there is a constant variable clf = QuadraticDiscriminantAnalysis() with ignore_warnings(): y_pred = clf.fit(X2, y6).predict(X2) assert_true(np.any(y_pred != y6)) # adding a little regularization fixes the problem clf = QuadraticDiscriminantAnalysis(reg_param=0.01) with ignore_warnings(): clf.fit(X2, y6) y_pred = clf.predict(X2) assert_array_equal(y_pred, y6) # Case n_samples_in_a_class < n_features clf = QuadraticDiscriminantAnalysis(reg_param=0.1) with ignore_warnings(): clf.fit(X5, y5) y_pred5 = clf.predict(X5) assert_array_equal(y_pred5, y5) def test_deprecated_lda_qda_deprecation(): if reload is None: raise SkipTest("Can't reload module on Python3.3") def import_lda_module(): import sklearn.lda # ensure that we trigger DeprecationWarning even if the sklearn.lda # was loaded previously by another test. reload(sklearn.lda) return sklearn.lda lda = assert_warns(DeprecationWarning, import_lda_module) assert isinstance(lda.LDA(), LinearDiscriminantAnalysis) def import_qda_module(): import sklearn.qda # ensure that we trigger DeprecationWarning even if the sklearn.qda # was loaded previously by another test. reload(sklearn.qda) return sklearn.qda qda = assert_warns(DeprecationWarning, import_qda_module) assert isinstance(qda.QDA(), QuadraticDiscriminantAnalysis) def test_covariance(): x, y = make_blobs(n_samples=100, n_features=5, centers=1, random_state=42) # make features correlated x = np.dot(x, np.arange(x.shape[1] ** 2).reshape(x.shape[1], x.shape[1])) c_e = _cov(x, 'empirical') assert_almost_equal(c_e, c_e.T) c_s = _cov(x, 'auto') assert_almost_equal(c_s, c_s.T)
bsd-3-clause
Garrett-R/scikit-learn
examples/applications/face_recognition.py
42
5390
""" =================================================== Faces recognition example using eigenfaces and SVMs =================================================== The dataset used in this example is a preprocessed excerpt of the "Labeled Faces in the Wild", aka LFW_: http://vis-www.cs.umass.edu/lfw/lfw-funneled.tgz (233MB) .. _LFW: http://vis-www.cs.umass.edu/lfw/ Expected results for the top 5 most represented people in the dataset:: precision recall f1-score support Gerhard_Schroeder 0.91 0.75 0.82 28 Donald_Rumsfeld 0.84 0.82 0.83 33 Tony_Blair 0.65 0.82 0.73 34 Colin_Powell 0.78 0.88 0.83 58 George_W_Bush 0.93 0.86 0.90 129 avg / total 0.86 0.84 0.85 282 """ from __future__ import print_function from time import time import logging import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from sklearn.datasets import fetch_lfw_people from sklearn.grid_search import GridSearchCV from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.decomposition import RandomizedPCA from sklearn.svm import SVC print(__doc__) # Display progress logs on stdout logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s') ############################################################################### # Download the data, if not already on disk and load it as numpy arrays lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) # introspect the images arrays to find the shapes (for plotting) n_samples, h, w = lfw_people.images.shape # for machine learning we use the 2 data directly (as relative pixel # positions info is ignored by this model) X = lfw_people.data n_features = X.shape[1] # the label to predict is the id of the person y = lfw_people.target target_names = lfw_people.target_names n_classes = target_names.shape[0] print("Total dataset size:") print("n_samples: %d" % n_samples) print("n_features: %d" % n_features) print("n_classes: %d" % n_classes) ############################################################################### # Split into a training set and a test set using a stratified k fold # split into a training and testing set X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25) ############################################################################### # Compute a PCA (eigenfaces) on the face dataset (treated as unlabeled # dataset): unsupervised feature extraction / dimensionality reduction n_components = 150 print("Extracting the top %d eigenfaces from %d faces" % (n_components, X_train.shape[0])) t0 = time() pca = RandomizedPCA(n_components=n_components, whiten=True).fit(X_train) print("done in %0.3fs" % (time() - t0)) eigenfaces = pca.components_.reshape((n_components, h, w)) print("Projecting the input data on the eigenfaces orthonormal basis") t0 = time() X_train_pca = pca.transform(X_train) X_test_pca = pca.transform(X_test) print("done in %0.3fs" % (time() - t0)) ############################################################################### # Train a SVM classification model print("Fitting the classifier to the training set") t0 = time() param_grid = {'C': [1e3, 5e3, 1e4, 5e4, 1e5], 'gamma': [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1], } clf = GridSearchCV(SVC(kernel='rbf', class_weight='auto'), param_grid) clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print("Best estimator found by grid search:") print(clf.best_estimator_) ############################################################################### # Quantitative evaluation of the model quality on the test set print("Predicting people's names on the test set") t0 = time() y_pred = clf.predict(X_test_pca) print("done in %0.3fs" % (time() - t0)) print(classification_report(y_test, y_pred, target_names=target_names)) print(confusion_matrix(y_test, y_pred, labels=range(n_classes))) ############################################################################### # Qualitative evaluation of the predictions using matplotlib def plot_gallery(images, titles, h, w, n_row=3, n_col=4): """Helper function to plot a gallery of portraits""" plt.figure(figsize=(1.8 * n_col, 2.4 * n_row)) plt.subplots_adjust(bottom=0, left=.01, right=.99, top=.90, hspace=.35) for i in range(n_row * n_col): plt.subplot(n_row, n_col, i + 1) plt.imshow(images[i].reshape((h, w)), cmap=plt.cm.gray) plt.title(titles[i], size=12) plt.xticks(()) plt.yticks(()) # plot the result of the prediction on a portion of the test set def title(y_pred, y_test, target_names, i): pred_name = target_names[y_pred[i]].rsplit(' ', 1)[-1] true_name = target_names[y_test[i]].rsplit(' ', 1)[-1] return 'predicted: %s\ntrue: %s' % (pred_name, true_name) prediction_titles = [title(y_pred, y_test, target_names, i) for i in range(y_pred.shape[0])] plot_gallery(X_test, prediction_titles, h, w) # plot the gallery of the most significative eigenfaces eigenface_titles = ["eigenface %d" % i for i in range(eigenfaces.shape[0])] plot_gallery(eigenfaces, eigenface_titles, h, w) plt.show()
bsd-3-clause
Smerity/keras
examples/kaggle_otto_nn.py
7
3642
from __future__ import absolute_import from __future__ import print_function import numpy as np import pandas as pd np.random.seed(1337) # for reproducibility from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.layers.normalization import BatchNormalization from keras.layers.advanced_activations import PReLU from keras.utils import np_utils, generic_utils from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler ''' This demonstrates how to reach a score of 0.4890 (local validation) on the Kaggle Otto challenge, with a deep net using Keras. Compatible Python 2.7-3.4. Requires Scikit-Learn and Pandas. Recommended to run on GPU: Command: THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32 python kaggle_otto_nn.py On EC2 g2.2xlarge instance: 19s/epoch. 6-7 minutes total training time. Best validation score at epoch 21: 0.4881 Try it at home: - with/without BatchNormalization (BatchNormalization helps!) - with ReLU or with PReLU (PReLU helps!) - with smaller layers, largers layers - with more layers, less layers - with different optimizers (SGD+momentum+decay is probably better than Adam!) Get the data from Kaggle: https://www.kaggle.com/c/otto-group-product-classification-challenge/data ''' def load_data(path, train=True): df = pd.read_csv(path) X = df.values.copy() if train: np.random.shuffle(X) # https://youtu.be/uyUXoap67N8 X, labels = X[:, 1:-1].astype(np.float32), X[:, -1] return X, labels else: X, ids = X[:, 1:].astype(np.float32), X[:, 0].astype(str) return X, ids def preprocess_data(X, scaler=None): if not scaler: scaler = StandardScaler() scaler.fit(X) X = scaler.transform(X) return X, scaler def preprocess_labels(labels, encoder=None, categorical=True): if not encoder: encoder = LabelEncoder() encoder.fit(labels) y = encoder.transform(labels).astype(np.int32) if categorical: y = np_utils.to_categorical(y) return y, encoder def make_submission(y_prob, ids, encoder, fname): with open(fname, 'w') as f: f.write('id,') f.write(','.join([str(i) for i in encoder.classes_])) f.write('\n') for i, probs in zip(ids, y_prob): probas = ','.join([i] + [str(p) for p in probs.tolist()]) f.write(probas) f.write('\n') print("Wrote submission to file {}.".format(fname)) print("Loading data...") X, labels = load_data('train.csv', train=True) X, scaler = preprocess_data(X) y, encoder = preprocess_labels(labels) X_test, ids = load_data('test.csv', train=False) X_test, _ = preprocess_data(X_test, scaler) nb_classes = y.shape[1] print(nb_classes, 'classes') dims = X.shape[1] print(dims, 'dims') print("Building model...") model = Sequential() model.add(Dense(512, input_shape=(dims,))) model.add(PReLU()) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(512)) model.add(PReLU()) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(512)) model.add(PReLU()) model.add(BatchNormalization()) model.add(Dropout(0.5)) model.add(Dense(nb_classes)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer="adam") print("Training model...") model.fit(X, y, nb_epoch=20, batch_size=128, validation_split=0.15) print("Generating submission...") proba = model.predict_proba(X_test) make_submission(proba, ids, encoder, fname='keras-otto.csv')
mit
maximus009/kaggle-galaxies
try_convnet_cc_multirotflip_3x69r45_8433n_maxout2048.py
7
17257
import numpy as np # import pandas as pd import theano import theano.tensor as T import layers import cc_layers import custom import load_data import realtime_augmentation as ra import time import csv import os import cPickle as pickle from datetime import datetime, timedelta # import matplotlib.pyplot as plt # plt.ion() # import utils BATCH_SIZE = 16 NUM_INPUT_FEATURES = 3 LEARNING_RATE_SCHEDULE = { 0: 0.04, 1800: 0.004, 2300: 0.0004, } MOMENTUM = 0.9 WEIGHT_DECAY = 0.0 CHUNK_SIZE = 10000 # 30000 # this should be a multiple of the batch size, ideally. NUM_CHUNKS = 2500 # 3000 # 1500 # 600 # 600 # 600 # 500 VALIDATE_EVERY = 20 # 12 # 6 # 6 # 6 # 5 # validate only every 5 chunks. MUST BE A DIVISOR OF NUM_CHUNKS!!! # else computing the analysis data does not work correctly, since it assumes that the validation set is still loaded. NUM_CHUNKS_NONORM = 1 # train without normalisation for this many chunks, to get the weights in the right 'zone'. # this should be only a few, just 1 hopefully suffices. GEN_BUFFER_SIZE = 1 # # need to load the full training data anyway to extract the validation set from it. # # alternatively we could create separate validation set files. # DATA_TRAIN_PATH = "data/images_train_color_cropped33_singletf.npy.gz" # DATA2_TRAIN_PATH = "data/images_train_color_8x_singletf.npy.gz" # DATA_VALIDONLY_PATH = "data/images_validonly_color_cropped33_singletf.npy.gz" # DATA2_VALIDONLY_PATH = "data/images_validonly_color_8x_singletf.npy.gz" # DATA_TEST_PATH = "data/images_test_color_cropped33_singletf.npy.gz" # DATA2_TEST_PATH = "data/images_test_color_8x_singletf.npy.gz" TARGET_PATH = "predictions/final/try_convnet_cc_multirotflip_3x69r45_8433n_maxout2048.csv" ANALYSIS_PATH = "analysis/final/try_convnet_cc_multirotflip_3x69r45_8433n_maxout2048.pkl" # FEATURES_PATTERN = "features/try_convnet_chunked_ra_b3sched.%s.npy" print "Set up data loading" # TODO: adapt this so it loads the validation data from JPEGs and does the processing realtime input_sizes = [(69, 69), (69, 69)] ds_transforms = [ ra.build_ds_transform(3.0, target_size=input_sizes[0]), ra.build_ds_transform(3.0, target_size=input_sizes[1]) + ra.build_augmentation_transform(rotation=45) ] num_input_representations = len(ds_transforms) augmentation_params = { 'zoom_range': (1.0 / 1.3, 1.3), 'rotation_range': (0, 360), 'shear_range': (0, 0), 'translation_range': (-4, 4), 'do_flip': True, } augmented_data_gen = ra.realtime_augmented_data_gen(num_chunks=NUM_CHUNKS, chunk_size=CHUNK_SIZE, augmentation_params=augmentation_params, ds_transforms=ds_transforms, target_sizes=input_sizes) post_augmented_data_gen = ra.post_augment_brightness_gen(augmented_data_gen, std=0.5) train_gen = load_data.buffered_gen_mp(post_augmented_data_gen, buffer_size=GEN_BUFFER_SIZE) y_train = np.load("data/solutions_train.npy") train_ids = load_data.train_ids test_ids = load_data.test_ids # split training data into training + a small validation set num_train = len(train_ids) num_test = len(test_ids) num_valid = num_train // 10 # integer division num_train -= num_valid y_valid = y_train[num_train:] y_train = y_train[:num_train] valid_ids = train_ids[num_train:] train_ids = train_ids[:num_train] train_indices = np.arange(num_train) valid_indices = np.arange(num_train, num_train + num_valid) test_indices = np.arange(num_test) def create_train_gen(): """ this generates the training data in order, for postprocessing. Do not use this for actual training. """ data_gen_train = ra.realtime_fixed_augmented_data_gen(train_indices, 'train', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_train, buffer_size=GEN_BUFFER_SIZE) def create_valid_gen(): data_gen_valid = ra.realtime_fixed_augmented_data_gen(valid_indices, 'train', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_valid, buffer_size=GEN_BUFFER_SIZE) def create_test_gen(): data_gen_test = ra.realtime_fixed_augmented_data_gen(test_indices, 'test', ds_transforms=ds_transforms, chunk_size=CHUNK_SIZE, target_sizes=input_sizes) return load_data.buffered_gen_mp(data_gen_test, buffer_size=GEN_BUFFER_SIZE) print "Preprocess validation data upfront" start_time = time.time() xs_valid = [[] for _ in xrange(num_input_representations)] for data, length in create_valid_gen(): for x_valid_list, x_chunk in zip(xs_valid, data): x_valid_list.append(x_chunk[:length]) xs_valid = [np.vstack(x_valid) for x_valid in xs_valid] xs_valid = [x_valid.transpose(0, 3, 1, 2) for x_valid in xs_valid] # move the colour dimension up print " took %.2f seconds" % (time.time() - start_time) print "Build model" l0 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[0][0], input_sizes[0][1]) l0_45 = layers.Input2DLayer(BATCH_SIZE, NUM_INPUT_FEATURES, input_sizes[1][0], input_sizes[1][1]) l0r = layers.MultiRotSliceLayer([l0, l0_45], part_size=45, include_flip=True) l0s = cc_layers.ShuffleBC01ToC01BLayer(l0r) l1a = cc_layers.CudaConvnetConv2DLayer(l0s, n_filters=32, filter_size=8, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l1 = cc_layers.CudaConvnetPooling2DLayer(l1a, pool_size=2) l2a = cc_layers.CudaConvnetConv2DLayer(l1, n_filters=64, filter_size=4, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l2 = cc_layers.CudaConvnetPooling2DLayer(l2a, pool_size=2) l3a = cc_layers.CudaConvnetConv2DLayer(l2, n_filters=128, filter_size=3, weights_std=0.01, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3b = cc_layers.CudaConvnetConv2DLayer(l3a, n_filters=128, filter_size=3, pad=0, weights_std=0.1, init_bias_value=0.1, dropout=0.0, partial_sum=1, untie_biases=True) l3 = cc_layers.CudaConvnetPooling2DLayer(l3b, pool_size=2) l3s = cc_layers.ShuffleC01BToBC01Layer(l3) j3 = layers.MultiRotMergeLayer(l3s, num_views=4) # 2) # merge convolutional parts # l4 = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5) l4a = layers.DenseLayer(j3, n_outputs=4096, weights_std=0.001, init_bias_value=0.01, dropout=0.5, nonlinearity=layers.identity) l4 = layers.FeatureMaxPoolingLayer(l4a, pool_size=2, feature_dim=1, implementation='reshape') # l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.0, dropout=0.5, nonlinearity=custom.clip_01) # nonlinearity=layers.identity) l5 = layers.DenseLayer(l4, n_outputs=37, weights_std=0.01, init_bias_value=0.1, dropout=0.5, nonlinearity=layers.identity) # l6 = layers.OutputLayer(l5, error_measure='mse') l6 = custom.OptimisedDivGalaxyOutputLayer(l5) # this incorporates the constraints on the output (probabilities sum to one, weighting, etc.) train_loss_nonorm = l6.error(normalisation=False) train_loss = l6.error() # but compute and print this! valid_loss = l6.error(dropout_active=False) all_parameters = layers.all_parameters(l6) all_bias_parameters = layers.all_bias_parameters(l6) xs_shared = [theano.shared(np.zeros((1,1,1,1), dtype=theano.config.floatX)) for _ in xrange(num_input_representations)] y_shared = theano.shared(np.zeros((1,1), dtype=theano.config.floatX)) learning_rate = theano.shared(np.array(LEARNING_RATE_SCHEDULE[0], dtype=theano.config.floatX)) idx = T.lscalar('idx') givens = { l0.input_var: xs_shared[0][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l0_45.input_var: xs_shared[1][idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], l6.target_var: y_shared[idx*BATCH_SIZE:(idx+1)*BATCH_SIZE], } # updates = layers.gen_updates(train_loss, all_parameters, learning_rate=LEARNING_RATE, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) updates_nonorm = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss_nonorm, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) updates = layers.gen_updates_nesterov_momentum_no_bias_decay(train_loss, all_parameters, all_bias_parameters, learning_rate=learning_rate, momentum=MOMENTUM, weight_decay=WEIGHT_DECAY) train_nonorm = theano.function([idx], train_loss_nonorm, givens=givens, updates=updates_nonorm) train_norm = theano.function([idx], train_loss, givens=givens, updates=updates) compute_loss = theano.function([idx], valid_loss, givens=givens) # dropout_active=False compute_output = theano.function([idx], l6.predictions(dropout_active=False), givens=givens, on_unused_input='ignore') # not using the labels, so theano complains compute_features = theano.function([idx], l4.output(dropout_active=False), givens=givens, on_unused_input='ignore') print "Train model" start_time = time.time() prev_time = start_time num_batches_valid = x_valid.shape[0] // BATCH_SIZE losses_train = [] losses_valid = [] param_stds = [] for e in xrange(NUM_CHUNKS): print "Chunk %d/%d" % (e + 1, NUM_CHUNKS) chunk_data, chunk_length = train_gen.next() y_chunk = chunk_data.pop() # last element is labels. xs_chunk = chunk_data # need to transpose the chunks to move the 'channels' dimension up xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] if e in LEARNING_RATE_SCHEDULE: current_lr = LEARNING_RATE_SCHEDULE[e] learning_rate.set_value(LEARNING_RATE_SCHEDULE[e]) print " setting learning rate to %.6f" % current_lr # train without normalisation for the first # chunks. if e >= NUM_CHUNKS_NONORM: train = train_norm else: train = train_nonorm print " load training data onto GPU" for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) y_shared.set_value(y_chunk) num_batches_chunk = x_chunk.shape[0] // BATCH_SIZE # import pdb; pdb.set_trace() print " batch SGD" losses = [] for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) loss = train(b) losses.append(loss) # print " loss: %.6f" % loss mean_train_loss = np.sqrt(np.mean(losses)) print " mean training loss (RMSE):\t\t%.6f" % mean_train_loss losses_train.append(mean_train_loss) # store param stds during training param_stds.append([p.std() for p in layers.get_param_values(l6)]) if ((e + 1) % VALIDATE_EVERY) == 0: print print "VALIDATING" print " load validation data onto GPU" for x_shared, x_valid in zip(xs_shared, xs_valid): x_shared.set_value(x_valid) y_shared.set_value(y_valid) print " compute losses" losses = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) loss = compute_loss(b) losses.append(loss) mean_valid_loss = np.sqrt(np.mean(losses)) print " mean validation loss (RMSE):\t\t%.6f" % mean_valid_loss losses_valid.append(mean_valid_loss) now = time.time() time_since_start = now - start_time time_since_prev = now - prev_time prev_time = now est_time_left = time_since_start * (float(NUM_CHUNKS - (e + 1)) / float(e + 1)) eta = datetime.now() + timedelta(seconds=est_time_left) eta_str = eta.strftime("%c") print " %s since start (%.2f s)" % (load_data.hms(time_since_start), time_since_prev) print " estimated %s to go (ETA: %s)" % (load_data.hms(est_time_left), eta_str) print del chunk_data, xs_chunk, x_chunk, y_chunk, xs_valid, x_valid # memory cleanup print "Compute predictions on validation set for analysis in batches" predictions_list = [] for b in xrange(num_batches_valid): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_valid) predictions = compute_output(b) predictions_list.append(predictions) all_predictions = np.vstack(predictions_list) # postprocessing: clip all predictions to 0-1 all_predictions[all_predictions > 1] = 1.0 all_predictions[all_predictions < 0] = 0.0 print "Write validation set predictions to %s" % ANALYSIS_PATH with open(ANALYSIS_PATH, 'w') as f: pickle.dump({ 'ids': valid_ids[:num_batches_valid * BATCH_SIZE], # note that we need to truncate the ids to a multiple of the batch size. 'predictions': all_predictions, 'targets': y_valid, 'mean_train_loss': mean_train_loss, 'mean_valid_loss': mean_valid_loss, 'time_since_start': time_since_start, 'losses_train': losses_train, 'losses_valid': losses_valid, 'param_values': layers.get_param_values(l6), 'param_stds': param_stds, }, f, pickle.HIGHEST_PROTOCOL) del predictions_list, all_predictions # memory cleanup # print "Loading test data" # x_test = load_data.load_gz(DATA_TEST_PATH) # x2_test = load_data.load_gz(DATA2_TEST_PATH) # test_ids = np.load("data/test_ids.npy") # num_test = x_test.shape[0] # x_test = x_test.transpose(0, 3, 1, 2) # move the colour dimension up. # x2_test = x2_test.transpose(0, 3, 1, 2) # create_test_gen = lambda: load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) print "Computing predictions on test data" predictions_list = [] for e, (xs_chunk, chunk_length) in enumerate(create_test_gen()): print "Chunk %d" % (e + 1) xs_chunk = [x_chunk.transpose(0, 3, 1, 2) for x_chunk in xs_chunk] # move the colour dimension up. for x_shared, x_chunk in zip(xs_shared, xs_chunk): x_shared.set_value(x_chunk) num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data # make predictions for testset, don't forget to cute off the zeros at the end for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) predictions = compute_output(b) predictions_list.append(predictions) all_predictions = np.vstack(predictions_list) all_predictions = all_predictions[:num_test] # truncate back to the correct length # postprocessing: clip all predictions to 0-1 all_predictions[all_predictions > 1] = 1.0 all_predictions[all_predictions < 0] = 0.0 print "Write predictions to %s" % TARGET_PATH # test_ids = np.load("data/test_ids.npy") with open(TARGET_PATH, 'wb') as csvfile: writer = csv.writer(csvfile) # , delimiter=',', quoting=csv.QUOTE_MINIMAL) # write header writer.writerow(['GalaxyID', 'Class1.1', 'Class1.2', 'Class1.3', 'Class2.1', 'Class2.2', 'Class3.1', 'Class3.2', 'Class4.1', 'Class4.2', 'Class5.1', 'Class5.2', 'Class5.3', 'Class5.4', 'Class6.1', 'Class6.2', 'Class7.1', 'Class7.2', 'Class7.3', 'Class8.1', 'Class8.2', 'Class8.3', 'Class8.4', 'Class8.5', 'Class8.6', 'Class8.7', 'Class9.1', 'Class9.2', 'Class9.3', 'Class10.1', 'Class10.2', 'Class10.3', 'Class11.1', 'Class11.2', 'Class11.3', 'Class11.4', 'Class11.5', 'Class11.6']) # write data for k in xrange(test_ids.shape[0]): row = [test_ids[k]] + all_predictions[k].tolist() writer.writerow(row) print "Gzipping..." os.system("gzip -c %s > %s.gz" % (TARGET_PATH, TARGET_PATH)) del all_predictions, predictions_list, xs_chunk, x_chunk # memory cleanup # # need to reload training data because it has been split and shuffled. # # don't need to reload test data # x_train = load_data.load_gz(DATA_TRAIN_PATH) # x2_train = load_data.load_gz(DATA2_TRAIN_PATH) # x_train = x_train.transpose(0, 3, 1, 2) # move the colour dimension up # x2_train = x2_train.transpose(0, 3, 1, 2) # train_gen_features = load_data.array_chunker_gen([x_train, x2_train], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) # test_gen_features = load_data.array_chunker_gen([x_test, x2_test], chunk_size=CHUNK_SIZE, loop=False, truncate=False, shuffle=False) # for name, gen, num in zip(['train', 'test'], [train_gen_features, test_gen_features], [x_train.shape[0], x_test.shape[0]]): # print "Extracting feature representations for all galaxies: %s" % name # features_list = [] # for e, (xs_chunk, chunk_length) in enumerate(gen): # print "Chunk %d" % (e + 1) # x_chunk, x2_chunk = xs_chunk # x_shared.set_value(x_chunk) # x2_shared.set_value(x2_chunk) # num_batches_chunk = int(np.ceil(chunk_length / float(BATCH_SIZE))) # need to round UP this time to account for all data # # compute features for set, don't forget to cute off the zeros at the end # for b in xrange(num_batches_chunk): # if b % 1000 == 0: # print " batch %d/%d" % (b + 1, num_batches_chunk) # features = compute_features(b) # features_list.append(features) # all_features = np.vstack(features_list) # all_features = all_features[:num] # truncate back to the correct length # features_path = FEATURES_PATTERN % name # print " write features to %s" % features_path # np.save(features_path, all_features) print "Done!"
bsd-3-clause
gtesei/fast-furious
competitions/cdiscount-image-classification-challenge/mynet_reload.py
1
13669
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from subprocess import check_output import io import bson # this is installed with the pymongo package import matplotlib.pyplot as plt from skimage.data import imread # or, whatever image library you prefer import multiprocessing as mp # will come in handy due to the size of the data import os from tqdm import * import struct from collections import defaultdict import cv2 from keras import backend as K import threading from keras.preprocessing.image import load_img, img_to_array import tensorflow as tf from keras.layers import Input, Dense from keras.models import Model from keras.preprocessing.image import Iterator from keras.preprocessing.image import ImageDataGenerator from keras import backend as K from keras.models import Sequential from keras.layers import Dropout, Flatten, Dense from keras.layers.convolutional import Conv2D from keras.layers.pooling import MaxPooling2D, GlobalAveragePooling2D from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.layers.normalization import BatchNormalization from keras.layers.merge import concatenate from skimage.color import rgb2yuv ############################################################################ __GLOBAL_PARAMS__ = { 'MODEL' : "mynet" , 'DEBUG' : False, 'NORMALIZATION' : True, 'YUV' : True , 'MULTI_SCALE' : False } ######## if __GLOBAL_PARAMS__['MULTI_SCALE']: raise Exception("MULTI_SCALE not supported yet!") __MODEL__KEY__ = "" for k in sorted(__GLOBAL_PARAMS__.keys()): if not k.startswith("_"): __MODEL__KEY__ += "__" + str(k) + "_" + str(__GLOBAL_PARAMS__[k]) if (__GLOBAL_PARAMS__['DEBUG']): LOG_FILE = "simple.log" else: LOG_FILE = "log" + __MODEL__KEY__ + ".log" SUB_FILE = "sub_reloaded_" + __MODEL__KEY__ + ".csv.gz" import logging logging.basicConfig(format='%(asctime)s %(message)s', filename=LOG_FILE,level=logging.DEBUG) #logging.debug('This message should go to the log file') if (__GLOBAL_PARAMS__['DEBUG']): logging.info('** DEBUG: '+__MODEL__KEY__+' ****************************************************************') else: logging.info('** PRODUCTION:'+__MODEL__KEY__+' ****************************************************************') #logging.warning('And this, too') ########### -------------> FUNC def preprocess_image(x): if __GLOBAL_PARAMS__['NORMALIZATION']: x = (x - 128.0) / 128.0 if __GLOBAL_PARAMS__['YUV']: x = np.array([rgb2yuv(x.reshape((1,180,180,3)))]) x = x.reshape((180,180,3)) return x class BSONIterator(Iterator): def __init__(self, bson_file, images_df, offsets_df, num_class, image_data_generator, lock, target_size=(180, 180), with_labels=True, batch_size=32, shuffle=False, seed=None): self.file = bson_file self.images_df = images_df self.offsets_df = offsets_df self.with_labels = with_labels self.samples = len(images_df) self.num_class = num_class self.image_data_generator = image_data_generator self.target_size = tuple(target_size) self.image_shape = self.target_size + (3,) print("Found %d images belonging to %d classes." % (self.samples, self.num_class)) super(BSONIterator, self).__init__(self.samples, batch_size, shuffle, seed) self.lock = lock def _get_batches_of_transformed_samples(self, index_array): batch_x = np.zeros((len(index_array),) + self.image_shape, dtype=K.floatx()) if self.with_labels: batch_y = np.zeros((len(batch_x), self.num_class), dtype=K.floatx()) for i, j in enumerate(index_array): # Protect file and dataframe access with a lock. with self.lock: image_row = self.images_df.iloc[j] product_id = image_row["product_id"] offset_row = self.offsets_df.loc[product_id] # Read this product's data from the BSON file. self.file.seek(offset_row["offset"]) item_data = self.file.read(offset_row["length"]) # Grab the image from the product. item = bson.BSON.decode(item_data) img_idx = image_row["img_idx"] bson_img = item["imgs"][img_idx]["picture"] # Load the image. img = load_img(io.BytesIO(bson_img), target_size=self.target_size) # Preprocess the image. x = img_to_array(img) x = preprocess_image(x) #x = self.image_data_generator.random_transform(x) #x = self.image_data_generator.standardize(x) # Add the image and the label to the batch (one-hot encoded). batch_x[i] = x if self.with_labels: batch_y[i, image_row["category_idx"]] = 1 if self.with_labels: return batch_x, batch_y else: return batch_x def next(self): with self.lock: index_array = next(self.index_generator) return self._get_batches_of_transformed_samples(index_array[0]) def make_category_tables(): cat2idx = {} idx2cat = {} for ir in categories_df.itertuples(): category_id = ir[0] category_idx = ir[4] cat2idx[category_id] = category_idx idx2cat[category_idx] = category_id return cat2idx, idx2cat def read_bson(bson_path, num_records, with_categories): rows = {} with open(bson_path, "rb") as f, tqdm(total=num_records) as pbar: offset = 0 while True: item_length_bytes = f.read(4) if len(item_length_bytes) == 0: break length = struct.unpack("<i", item_length_bytes)[0] f.seek(offset) item_data = f.read(length) assert len(item_data) == length item = bson.BSON.decode(item_data) product_id = item["_id"] num_imgs = len(item["imgs"]) row = [num_imgs, offset, length] if with_categories: row += [item["category_id"]] rows[product_id] = row offset += length f.seek(offset) pbar.update() columns = ["num_imgs", "offset", "length"] if with_categories: columns += ["category_id"] df = pd.DataFrame.from_dict(rows, orient="index") df.index.name = "product_id" df.columns = columns df.sort_index(inplace=True) return df def make_val_set(df, split_percentage=0.2, drop_percentage=0.): # Find the product_ids for each category. category_dict = defaultdict(list) for ir in tqdm(df.itertuples()): category_dict[ir[4]].append(ir[0]) train_list = [] val_list = [] with tqdm(total=len(df)) as pbar: for category_id, product_ids in category_dict.items(): category_idx = cat2idx[category_id] # Randomly remove products to make the dataset smaller. keep_size = int(len(product_ids) * (1. - drop_percentage)) if keep_size < len(product_ids): product_ids = np.random.choice(product_ids, keep_size, replace=False) # Randomly choose the products that become part of the validation set. val_size = int(len(product_ids) * split_percentage) if val_size > 0: val_ids = np.random.choice(product_ids, val_size, replace=False) else: val_ids = [] # Create a new row for each image. for product_id in product_ids: row = [product_id, category_idx] for img_idx in range(df.loc[product_id, "num_imgs"]): if product_id in val_ids: val_list.append(row + [img_idx]) else: train_list.append(row + [img_idx]) pbar.update() columns = ["product_id", "category_idx", "img_idx"] train_df = pd.DataFrame(train_list, columns=columns) val_df = pd.DataFrame(val_list, columns=columns) return train_df, val_df ########### -------------> MAIN categories_path = os.path.join("data", "category_names.csv") categories_df = pd.read_csv(categories_path, index_col="category_id") # Maps the category_id to an integer index. This is what we'll use to # one-hot encode the labels. print(">>> Mapping category_id to an integer index ... ") categories_df["category_idx"] = pd.Series(range(len(categories_df)), index=categories_df.index) print(categories_df.head()) cat2idx, idx2cat = make_category_tables() # Test if it works: print(cat2idx[1000012755], idx2cat[4] , len(cat2idx)) print(">>> Train set ... ") data_dir = "data" if (__GLOBAL_PARAMS__['DEBUG']): print(">>> DEBUG mode ... ") train_bson_path = os.path.join(data_dir, "train_example.bson") num_train_products = 82 else: print(">>> PRODUCTION mode ... ") train_bson_path = os.path.join(data_dir, "train.bson") num_train_products = 7069896 test_bson_path = os.path.join(data_dir, "test.bson") num_test_products = 1768182 print(train_bson_path,num_train_products) if (not __GLOBAL_PARAMS__['DEBUG']): if os.path.isfile("train_offsets.csv"): print(">> reading from file train_offsets ... ") train_offsets_df = pd.read_csv("train_offsets.csv") train_offsets_df.set_index( "product_id" , inplace= True) train_offsets_df.sort_index(inplace=True) else: train_offsets_df = read_bson(train_bson_path, num_records=num_train_products, with_categories=True) train_offsets_df.to_csv("train_offsets.csv") print(train_offsets_df.head()) if os.path.isfile("train_images.csv"): print(">> reading from file train_images / val_images ... ") train_images_df = pd.read_csv("train_images.csv") train_images_df = train_images_df[['product_id','category_idx','img_idx']] val_images_df = pd.read_csv("val_images.csv") val_images_df = val_images_df[['product_id', 'category_idx', 'img_idx']] else: train_images_df, val_images_df = make_val_set(train_offsets_df, split_percentage=0.2, drop_percentage=0) train_images_df.to_csv("train_images.csv") val_images_df.to_csv("val_images.csv") print(train_images_df.head()) print(val_images_df.head()) categories_df.to_csv("categories.csv") else: train_offsets_df = read_bson(train_bson_path, num_records=num_train_products, with_categories=True) train_images_df, val_images_df = make_val_set(train_offsets_df, split_percentage=0.2, drop_percentage=0) print(train_images_df.head()) print(val_images_df.head()) ## Generator print(">>> Generator ... ") # Tip: use ImageDataGenerator for data augmentation and preprocessing ?? train_bson_file = open(train_bson_path, "rb") lock = threading.Lock() num_classes = len(cat2idx) num_train_images = len(train_images_df) num_val_images = len(val_images_df) batch_size = 128 train_datagen = ImageDataGenerator() train_gen = BSONIterator(train_bson_file, train_images_df, train_offsets_df, num_classes, train_datagen, lock, batch_size=batch_size, shuffle=True) val_datagen = ImageDataGenerator() val_gen = BSONIterator(train_bson_file, val_images_df, train_offsets_df, num_classes, val_datagen, lock, batch_size=batch_size, shuffle=True) ## Model print(">>> reloading last model ... ") print("mod" + __MODEL__KEY__ + '.h5') from keras.models import load_model inputs = Input(shape=(180, 180, 3)) x = Conv2D(32, 5, padding="valid", activation="relu")(inputs) x = BatchNormalization()(x) # hope similar to local response normalization x = MaxPooling2D(pool_size=(3, 3))(x) #fl1 = Flatten()(x) x2 = Conv2D(64, 5, padding="valid", activation="relu")(x) x2 = BatchNormalization()(x2) # hope similar to local response normalization x2 = MaxPooling2D(pool_size=(3, 3))(x2) fl2 = Flatten()(x2) #merged = concatenate([fl1, fl2]) # multi scale features merged = Dropout(0.5)(fl2) merged = BatchNormalization()(merged) merged = Dense(2*num_classes, activation='relu')(merged) merged = Dropout(0.5)(merged) merged = BatchNormalization()(merged) predictions = Dense(num_classes, activation='softmax')(merged) model = Model(inputs=inputs, outputs=predictions) model.load_weights("mod" + __MODEL__KEY__ + '.h5') model.summary() ## Predict on Test-set print(">>> Predicting on test-set ... ") submission_df = pd.read_csv("data/sample_submission.csv") print(submission_df.head()) test_datagen = ImageDataGenerator() data = bson.decode_file_iter(open(test_bson_path, "rb")) with tqdm(total=num_test_products) as pbar: for c, d in enumerate(data): product_id = d["_id"] num_imgs = len(d["imgs"]) batch_x = np.zeros((num_imgs, 180, 180, 3), dtype=K.floatx()) for i in range(num_imgs): bson_img = d["imgs"][i]["picture"] # Load and preprocess the image. img = load_img(io.BytesIO(bson_img), target_size=(180, 180)) x = img_to_array(img) x = preprocess_image(x) # = test_datagen.random_transform(x) # = test_datagen.standardize(x) # Add the image to the batch. batch_x[i] = x prediction = model.predict(batch_x, batch_size=num_imgs) avg_pred = prediction.mean(axis=0) cat_idx = np.argmax(avg_pred) submission_df.iloc[c]["category_id"] = idx2cat[cat_idx] pbar.update() submission_df.to_csv(SUB_FILE, compression="gzip", index=False)
mit
mdasifhasan/Experiments_HTN_Planner
PyHop/util_plot.py
1
4996
from bokeh.plotting import figure, output_file, show, ColumnDataSource, vplot, hplot, gridplot from bokeh.layouts import column from bokeh.charts import Step, Line from bokeh.models import HoverTool import numpy as np def test(): x = range(1, 6) y = [10, 5, 7, 1, 6] plot = figure(title='Line example', x_axis_label='x', y_axis_label='y') plot.line(x, y, legend='Test', line_width=4) output_file("plots_html/plots.html") show(plot) #result format: ('print_a_concept_1', 'Concept B'), ('print_a_concept_2', 'Concept A'), def plot_plan(plan, state_data, varaible_names = []): plot_plan = plot_plan_steps(plan) plot_plan_p = plot_plan_steps_with_params(plan) (plot_s, plot_l )= plot_state(state_data, varaible_names) output_file("plots_html/plots.html") show(gridplot( children=[plot_plan, plot_plan_p, plot_s, plot_l], toolbar_location='above', sizing_mode = 'scale_width', toolbar_options = dict(logo='grey'), ncols=2 )) # show(gridplot( # children=[plot_plan, plot_plan_p, plot_s, plot_l], toolbar_location='right', sizing_mode='scale_width',toolbar_options=dict(logo='grey'), # ncols=2 # )) # show(column(children=[plot_plan, plot_plan_p, plot_s, plot_l], sizing_mode='stretch_both', responsive=False)) # show(column(children=[plot_plan, plot_plan_p, plot_s, plot_l], sizing_mode='stretch_both', responsive=False)) # show(vplot(plot_plan_p, plot_s,plot_plan, plot_l)) def plot_plan_steps_with_params(plan): x = [] y = [] ys = [] i = 0 for (o, v) in plan: s = str(o) + " - " + str(v) if s not in ys: ys.append(s) for (o, v) in plan: x.append(i) i += 1 s = str(o) + " - " + str(v) y.append((ys.index(s) + 1)) plot = figure(title='plan operators with params', y_range=ys) # plot.line(x, y, legend='plan', line_width=4, source=source) plot.line(x, y, line_width=4) plot.circle(x, y, size=15, fill_color="orange", line_color="green", line_width=3) return plot def plot_plan_steps(plan): x = [] y = [] ys = [] i = 0 for (o, v) in plan: s = str(o) if s not in ys: ys.append(s) for (o, v) in plan: x.append(i) i += 1 s = str(o) y.append((ys.index(s)+1)) # p = figure() plot = figure(title='plan operators', y_range=ys) plot.line(x, y, line_width=4) plot.circle(x, y, size=15, fill_color="orange", line_color="green", line_width=3) # s = str(ys) # d = dict(s = y) # plot = Step(y, title="plan", legend="top_left", ylabel='operator', palette=["red", "green", "blue", "navy"]) return plot def plot_state(state_data, varaible_names = []): # plot = figure(title='State Variables', x_axis_label='step', y_axis_label='level') # data = [] data = dict() for v in varaible_names: data[v] = state_data[v] # plot.line(range(len(data[v])), data[v], legend=v) # xyvalues = np.array([[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]]) # xyvalues = np.array(data) plot = Step(data, title="state variables - step graph", legend="top_left", ylabel='', palette=["red", "green", "blue", "orange"]) plot_line = Line(data, title="state variables - line graph", legend="top_left", ylabel='', palette=["red", "green", "blue", "orange"]) # output_file('line.html') # show(plot) return (plot, plot_line) def plot_plan_bokeh_2(plan): x = [] y = [] ys = [] i = 0 for (o, v) in plan: # s = str(o) + " - " + str(v) s = str(o) if s not in ys: ys.append(s) for (o, v) in plan: i += 1 x.append(i) # s = str(o) + " - " + str(v) s = str(o) y.append(ys.index(s)) # xyvalues = np.array([[2, 3, 7, 5, 26], [12, 33, 47, 15, 126], [22, 43, 10, 25, 26]]) xyvalues = np.array(y) line = Line(xyvalues, title="plan", legend="top_left", ylabel='operator') output_file('plots_html/line.html') show(line) def plot_plan_sns(plan): import pandas as pd import seaborn as sns import matplotlib.pyplot as plt fake = pd.DataFrame({'cat': ['red', 'green', 'blue'], 'val': [1, 2, 3]}) ax = sns.barplot(x='val', y='cat', data=fake, color='black') ax.set(xlabel='common xlabel', ylabel='common ylabel') plt.show() def plot_plan_sns(plan): import matplotlib.pyplot as plt import seaborn as sns x = [] y = [] ys = [] i = 0 for (o, v) in plan: s = str(o) + " - " + str(v) # s = str(o) if s not in ys: ys.append(s) for (o, v) in plan: x.append(i) i += 1 s = str(o) + " - " + str(v) # s = str(o) y.append(ys.index(s)) sns.set_style("darkgrid") labels = ys plt.yticks(y, labels) plt.plot(x, y) plt.show()
gpl-3.0
villalonreina/dipy
doc/examples/reconst_dsi.py
3
3360
""" =========================================== Reconstruct with Diffusion Spectrum Imaging =========================================== We show how to apply Diffusion Spectrum Imaging [Wedeen08]_ to diffusion MRI datasets of Cartesian keyhole diffusion gradients. First import the necessary modules: """ from dipy.data import fetch_taiwan_ntu_dsi, read_taiwan_ntu_dsi, get_sphere from dipy.reconst.dsi import DiffusionSpectrumModel """ Download and read the data for this tutorial. """ fetch_taiwan_ntu_dsi() img, gtab = read_taiwan_ntu_dsi() """ img contains a nibabel Nifti1Image object (data) and gtab contains a GradientTable object (gradient information e.g. b-values). For example to read the b-values it is possible to write print(gtab.bvals). Load the raw diffusion data and the affine. """ data = img.get_data() print('data.shape (%d, %d, %d, %d)' % data.shape) """ data.shape ``(96, 96, 60, 203)`` This dataset has anisotropic voxel sizes, therefore reslicing is necessary. """ affine = img.affine """ Read the voxel size from the image header. """ voxel_size = img.header.get_zooms()[:3] """ Instantiate the Model and apply it to the data. """ dsmodel = DiffusionSpectrumModel(gtab) """ Lets just use one slice only from the data. """ dataslice = data[:, :, data.shape[2] / 2] dsfit = dsmodel.fit(dataslice) """ Load an odf reconstruction sphere """ sphere = get_sphere('symmetric724') """ Calculate the ODFs with this specific sphere """ ODF = dsfit.odf(sphere) print('ODF.shape (%d, %d, %d)' % ODF.shape) """ ODF.shape ``(96, 96, 724)`` In a similar fashion it is possible to calculate the PDFs of all voxels in one call with the following way """ PDF = dsfit.pdf() print('PDF.shape (%d, %d, %d, %d, %d)' % PDF.shape) """ PDF.shape ``(96, 96, 17, 17, 17)`` We see that even for a single slice this PDF array is close to 345 MBytes so we really have to be careful with memory usage when use this function with a full dataset. The simple solution is to generate/analyze the ODFs/PDFs by iterating through each voxel and not store them in memory if that is not necessary. """ from dipy.core.ndindex import ndindex for index in ndindex(dataslice.shape[:2]): pdf = dsmodel.fit(dataslice[index]).pdf() """ If you really want to save the PDFs of a full dataset on the disc we recommend using memory maps (``numpy.memmap``) but still have in mind that even if you do that for example for a dataset of volume size ``(96, 96, 60)`` you will need about 2.5 GBytes which can take less space when reasonable spheres (with < 1000 vertices) are used. Let's now calculate a map of Generalized Fractional Anisotropy (GFA) [Tuch04]_ using the DSI ODFs. """ from dipy.reconst.odf import gfa GFA = gfa(ODF) import matplotlib.pyplot as plt fig_hist, ax = plt.subplots(1) ax.set_axis_off() plt.imshow(GFA.T) plt.savefig('dsi_gfa.png', bbox_inches='tight', origin='lower', cmap='gray') """ .. figure:: dsi_gfa.png :align: center See also :ref:`example_reconst_dsi_metrics` for calculating different types of DSI maps. .. [Wedeen08] Wedeen et al., Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers, Neuroimage, vol 41, no 4, 1267-1277, 2008. .. [Tuch04] Tuch, D.S, Q-ball imaging, MRM, vol 52, no 6, 1358-1372, 2004. .. include:: ../links_names.inc """
bsd-3-clause
aerler/GeoPy
src/plotting/figure.py
1
25914
''' Created on Dec 11, 2014 A custom Figure class that provides some specialized functions and uses a custom Axes class. @author: Andre R. Erler, GPL v3 ''' # external imports from warnings import warn from matplotlib.figure import Figure, SubplotBase, subplot_class_factory import numpy as np # internal imports from geodata.misc import isInt , ArgumentError from plotting.axes import MyAxes, MyLocatableAxes, Axes, MyPolarAxes, TaylorAxes from plotting.misc import loadStyleSheet, toGGcolors import matplotlib as mpl # just for convenience from matplotlib.pyplot import show, figure ## my new figure class class MyFigure(Figure): ''' A custom Figure class that provides some specialized functions and uses a custom Axes class. This is achieved by overloading add_axes and add_subplot. (This class does not support built-in projections; use the Basemap functionality instead.) ''' # some default parameters axes_list = None # list of current subplot axes title_height = 0.05 title_size = 'x-large' print_settings = None shared_legend = None legend_axes = None shared_colorbar = None colorbar_axes = None def __init__(self, *args, **kwargs): ''' constructor that accepts custom axes_class as keyword argument ''' # parse arguments if 'axes_class' in kwargs: axes_class = kwargs.pop('axes_class') if not issubclass(axes_class, Axes): raise TypeError(axes_class) else: axes_class = MyAxes # default if 'axes_args' in kwargs: axes_args = kwargs.pop('axes_args') if axes_args is not None and not isinstance(axes_args, dict): raise TypeError else: axes_args = None # default if 'print_settings' in kwargs: print_settings = kwargs.pop('print_settings') else: print_settings = None # call parent constructor super(MyFigure,self).__init__(*args, **kwargs) # save axes class for later self.axes_class = axes_class self.axes_args = axes_args self.axes_list = [] # list of actual subplots # print options self.print_settings = dict(dpi=300, transparent=False) # defaults if print_settings: self.print_settings.update(print_settings) # N.B.: using the built-in mechanism to choose Axes seems to cause more problems # from matplotlib.projections import register_projection # # register custom class with mpl # register_projection(axes_class) # def add_axes(self, *args, **kwargs): # ''' overloading original add_subplot in order to use custom Axes (adapted from parent) ''' # if 'projection' not in kwargs: # kwargs['projection'] = 'my' # super(MyFigure,self).__init__(*args, **kwargs) def add_axes(self, *args, **kwargs): ''' overloading original add_axes in order to use custom Axes (adapted from parent) ''' if not len(args): return # shortcut the projection "key" modifications later on, if an axes # with the exact args/kwargs exists, return it immediately. key = self._make_key(*args, **kwargs) ax = self._axstack.get(key) if ax is not None: self.sca(ax) return ax if isinstance(args[0], Axes): # allow all Axes, if passed explicitly a = args[0] assert(a.get_figure() is self) else: rect = args[0] # by registering the new Axes class as a projection, it may be possible # to use the old axes creation mechanism, but it doesn't work this way... # from matplotlib.figure import process_projection_requirements # if 'projection' not in kwargs: kwargs['projection'] = 'my' # axes_class, kwargs, key = process_projection_requirements( # self, *args, **kwargs) axes_class = kwargs.pop('axes_class',None) if axes_class is None: axes_class = self.axes_class # defaults to my new custom axes (MyAxes) key = self._make_key(*args, **kwargs) # check that an axes of this type doesn't already exist, if it # does, set it as active and return it ax = self._axstack.get(key) if ax is not None and isinstance(ax, axes_class): self.sca(ax) return ax # create the new axes using the axes class given # add default axes arguments if self.axes_args is not None: axes_args = self.axes_args.copy() axes_args.update(kwargs) else: axes_args = kwargs a = axes_class(self, rect, **axes_args) self._axstack.add(key, a) self.sca(a) # attach link to figure (self) a.figure = self return a def add_subplot(self, *args, **kwargs): ''' overloading original add_subplot in order to use custom Axes (adapted from parent) ''' if not len(args): return if len(args) == 1 and isinstance(args[0], int): args = tuple([int(c) for c in str(args[0])]) if isinstance(args[0], SubplotBase): # I'm not sure what this does... a = args[0] assert(a.get_figure() is self) # make a key for the subplot (which includes the axes object id # in the hash) key = self._make_key(*args, **kwargs) else: # if 'projection' not in kwargs: kwargs['projection'] = 'my' # axes_class, kwargs, key = process_projection_requirements( # self, *args, **kwargs) axes_class = kwargs.pop('axes_class',None) if axes_class is None: axes_class = self.axes_class # defaults to my new custom axes (MyAxes) key = self._make_key(*args, **kwargs) # try to find the axes with this key in the stack ax = self._axstack.get(key) if ax is not None: if isinstance(ax, axes_class): # the axes already existed, so set it as active & return self.sca(ax) return ax else: # Undocumented convenience behavior: # subplot(111); subplot(111, projection='polar') # will replace the first with the second. # Without this, add_subplot would be simpler and # more similar to add_axes. self._axstack.remove(ax) # add default axes arguments if self.axes_args is not None: axes_args = self.axes_args.copy() axes_args.update(kwargs) else: axes_args = kwargs # generate subplot class and create axes instance a = subplot_class_factory(axes_class)(self, *args, **axes_args) self._axstack.add(key, a) self.sca(a) # add to list of current subplots self.axes_list.append(a) # return axes return a # function to adjust subplot parameters def updateSubplots(self, mode='shift', **kwargs): ''' simple helper function to move (relocate), shift, or scale subplot margins ''' pos = self.subplotpars margins = dict() # original plot margins margins['left'] = pos.left; margins['right'] = pos.right margins['top'] = pos.top; margins['bottom'] = pos.bottom margins['wspace'] = pos.wspace; margins['hspace'] = pos.hspace # update subplot margins if mode.lower() in ('set','move','adjust'): margins.update(kwargs) else: for key,val in kwargs.items(): if key in margins: if mode.lower() == 'shift': margins[key] += val elif mode.lower() == 'scale': margins[key] *= val # finally, actually update figure self.subplots_adjust(**margins) # and now repair damage: restore axes for ax in self.axes: # Adjusting subplots does not work with LocatableAxes, but that is depricated... ax.updateAxes(mode='adjust') # add common/shared legend to a multi-panel plot def addSharedLegend(self, plots=None, labels=None, fontsize=None, hscl=1., hpad=0.015, location='bottom', loc=None, ncols=None, **kwargs): ''' add a common/shared legend to a multi-panel plot ''' # complete input if labels is None: labels = [None if plt is None else plt.get_label() for plt in plots ] elif not isinstance(labels, (list,tuple)): raise TypeError if plots is None: plots = self.axes[0].plots elif plots is not None and not isinstance(plots, (list,tuple)): raise TypeError # figure out fontsize and row numbers fontsize = fontsize or self.axes[0].get_yaxis().get_label().get_fontsize() # or fig._suptitle.get_fontsize() nlen = len(plots) if plots else len(labels) if ncols is None: if fontsize > 11: ncols = 2 if nlen == 4 else 3 else: ncols = 3 if nlen == 6 else 4 # make room for legend if location.lower() == 'bottom': leghgt = ( np.ceil(float(nlen)/float(ncols)) * fontsize/250.) * hscl self.updateSubplots(mode='shift', bottom=leghgt) # shift bottom upwards (add height pad) ax = self.add_axes([0, hpad, 1,leghgt], axes_class=MyAxes) # new axes to hold legend, with some attributes if loc is None: loc = 9 elif location.lower() == 'right': leghgt = ( ncols * fontsize/40.) * hscl self.updateSubplots(mode='shift', right=-leghgt-hpad) # shift bottom upwards (add height pad) ax = self.add_axes([0.99-leghgt-hpad, 0, leghgt+hpad,1-self.title_height-hpad], axes_class=MyAxes) # new axes to hold legend, with some attributes if loc is None: loc = 2 # upper left ax.set_frame_on(False); ax.axes.get_yaxis().set_visible(False); ax.axes.get_xaxis().set_visible(False) # define legend parameters legargs = dict(loc=loc, ncol=ncols, borderaxespad=0., fontsize=fontsize, frameon=True, labelspacing=0.1, handlelength=1.3, handletextpad=0.3, fancybox=True) legargs.update(kwargs) # create legend and return handle if plots: legend = ax.legend(plots, labels, **legargs) else: legend = ax.legend(labels, **legargs) # store axes handle and legend self.legend_axes = ax self.shared_legend = legend return legend # add common/shared legend to a multi-panel plot def addSharedColorbar(self, ax=None, mappable=None, size=None, ipad=None, opad=None, clevs=None, fmt='{:3.2f}', title=None, scale=1., length=1., lunits=False, location='bottom', orientation=None, extend='both', **kwargs): ''' add a common/shared colorbar to a multi-panel plot ''' gca = self.gca() if ax is None else ax if mappable is None: mappable = gca.color_plot # use color plot on current axes # axes title (defaults to units for vertical axis) units = gca.cunits if lunits and hasattr(gca,'cunits') else None # make room for colorbar if location.lower() == 'bottom': orientation = orientation or 'horizontal' if clevs is None: clevs = 5 if ipad is None: ipad = 0.01 * scale if size is None: size = 0.04 * scale if opad is None: opad = 0.07 * scale self.updateSubplots(mode='shift', bottom=ipad+size+opad) # shift bottom upwards (add height pad) ax = self.add_axes([(1.-length)/2., opad, length,size], axes_class=MyAxes) # new axes to hold legend, with some attributes elif location.lower() == 'right': orientation = orientation or 'vertical' if units and orientation.lower() == 'vertical' and title is None: title = ' [{UNITS}]' if clevs is None: clevs = 9 if ipad is None: ipad = 0.005 * scale if size is None: size = 0.03 * scale if opad is None: opad = 0.075 * scale self.updateSubplots(mode='shift', right=-(ipad+size+opad)) # shift bottom upwards (add height pad) height = 1 - self.title_height # effective available height length = height * length ax = self.add_axes([1-size-opad, (height-length)/2., size,length], axes_class=MyAxes) # new axes to hold legend, with some attributes ax.set_frame_on(False); #ax.axes.get_yaxis().set_visible(False); ax.axes.get_xaxis().set_visible(False) # set title if title: ax.set_title(title.format(UNITS=units)) # define colorbar parameters cbargs = dict(orientation=orientation, extend=extend,) cbargs.update(kwargs) # create legend and return handle # cbargs['ticks'] = clevs cbar = self.colorbar(cax=ax, mappable=mappable, **cbargs) # add tick labels if clevs: cmin,cmax = mappable.get_clim() if isinstance(clevs, (np.integer,int)): clevs = np.linspace(cmin,cmax,clevs) elif isinstance(clevs, tuple) and len(clevs) == 3: clevs = np.linspace(*clevs) elif not isinstance(clevs, (list,tuple,np.ndarray)): raise TypeError(clevs) cbar.set_ticks(clevs) if fmt: cbar.ax.xaxis.set_tick_params(pad=2) cbar.ax.yaxis.set_tick_params(pad=4) if units and 'UNITS' in fmt: clev_lbls = [fmt.format(clev, UNITS=units) for clev in clevs] else: clev_lbls = [fmt.format(clev) for clev in clevs] cbar.set_ticklabels(clev_lbls) # store axes handle and legend self.colorbar_axes = ax self.shared_colorbar = cbar return cbar # add subplot/axes labels def addLabels(self, labels=None, loc=1, lstroke=False, lalphabet=True, size=None, prop=None, **kwargs): # expand list axes = self.axes n = len(axes) if not isinstance(labels,(list,tuple)): labels = [labels]*n if not isinstance(loc,(list,tuple)): loc = [loc]*n if not isinstance(lstroke,(list,tuple)): lstroke = [lstroke]*n # settings if prop is None: prop = dict() if not size: prop['size'] = 'large' args = dict(pad=0., borderpad=1.5, frameon=False) args.update(kwargs) # cycle over axes ats = [] # list of texts for i,ax in enumerate(axes): # skip shared legend or colorbar if ax is not self.legend_axes and ax is not self.colorbar_axes: # default label label = labels[i] if label is None: label = i if not lalphabet: label += 1 # create label artist ats.append(ax.addLabel(label, loc=loc[i], lstroke=lstroke[i], lalphabet=lalphabet, prop=prop.copy(), **args)) return ats # save figure def save(self, *args, **kwargs): ''' save figure with some sensible default settings ''' if len(args) == 0: raise ArgumentError # get option folder = kwargs.pop('folder', None) lfeedback = kwargs.pop('lfeedback', None) or kwargs.pop('feedback', None) lreplaceSpace = kwargs.pop('lreplaceSpace', True) and kwargs.pop('lreplaceSpace', True) filetype = kwargs.pop('filetype', 'pdf') lword = kwargs.pop('lword', True) # also produce M$ Word compatible filetype (mainly EPS version of PDFs) # construct filename basename = '' for arg in args: if arg is not None: if isinstance(arg, (list,tuple)): for a in arg: basename += str(a) else: basename += str(arg) basename += '_' basename = basename[:-1] # remove last underscore # replace spaces, if desired if lreplaceSpace: basename = basename.replace(' ', '_') # add filename extension filename = '{}.{}'.format(basename,filetype) # update print settings sf = self.print_settings.copy() # print properties sf.update(kwargs) # update with kwargs # save file if lfeedback: print(("Saving figure as '{:s}'".format(filename))) if folder: filename = '{:s}/{:s}'.format(folder,filename) if lfeedback: print(("('{:s}')".format(folder))) self.savefig(filename, **sf) # save figure to pdf # save M$ Word compatible file version if lword: # determine alternative filetype alttype = None if filetype.lower() in ('pdf','eps','svg'): alttype = 'png' # save alternative format if alttype: altname = '{}.{}'.format(basename,alttype) if lfeedback: print(("(Saving alternate format as '{:s}')".format(altname))) if folder: altname = '{:s}/{:s}'.format(folder,altname) self.savefig(altname, **sf) # save figure to pdf ## convenience function to return a figure and an array of ImageGrid axes def getFigAx(subplot, name=None, title=None, title_font='x-large', title_height=None, figsize=None, variable_plotargs=None, dataset_plotargs=None, plot_labels=None, yright=False, xtop=False, sharex=None, sharey=None, lAxesGrid=False, ngrids=None, direction='row', lPolarAxes=False, lTaylor = False, ledge_ticks=False, axes_pad = None, add_all=True, share_all=None, aspect=False, margins=None, label_mode='L', cbar_mode=None, cbar_location='right', lreduce=True, cbar_pad=None, cbar_size='5%', axes_class=None, axes_args=None, stylesheet=None, lpresentation=False, lpublication=False, figure_class=None, **figure_args): # load stylesheet if stylesheet is not None: loadStyleSheet(stylesheet, lpresentation=lpresentation, lpublication=lpublication) if stylesheet in ('myggplot','ggplot'): warn("Rewriting built-in color definitions to GG-plot defaults.") if dataset_plotargs is not None: dataset_plotargs = toGGcolors(dataset_plotargs) # modifies in-place! # default figure class if figure_class is None: figure_class = MyFigure elif not issubclass(figure_class, Figure): raise TypeError # figure out subplots if isinstance(subplot,(np.integer,int)): if subplot == 1: subplot = (1,1) elif subplot == 2: subplot = (1,2) elif subplot == 3: subplot = (1,3) elif subplot == 4: subplot = (2,2) elif subplot == 6: subplot = (2,3) elif subplot == 9: subplot = (3,3) else: raise NotImplementedError elif not (isinstance(subplot,(tuple,list)) and len(subplot) == 2) and all(isInt(subplot)): raise TypeError # create figure if figsize is None: if lpublication: if subplot == (1,1): figsize = (3.75,3.75) elif subplot == (1,2) or subplot == (1,3): figsize = (6.25,3.75) elif subplot == (2,1) or subplot == (3,1): figsize = (3.75,7) else: figsize = (6.25,6.25) elif lpresentation: if subplot == (1,2) or subplot == (1,3): figsize = (5,3) elif subplot == (2,1) or subplot == (3,1): figsize = (3,5) else: figsize = (5,5) else: if subplot == (1,1): figsize = (5,5) elif subplot == (1,2) or subplot == (1,3): figsize = (9,5) elif subplot == (2,1) or subplot == (3,1): figsize = (5,9) else: figsize = (9,9) # figure out margins if margins is None: # N.B.: the rectangle definition is presumably left, bottom, width, height if subplot == (1,1): margins = (0.1,0.1,0.85,0.85) elif subplot == (1,2) or subplot == (1,3): margins = (0.06,0.1,0.92,0.87) elif subplot == (2,1) or subplot == (3,1): margins = (0.09,0.11,0.88,0.82) elif subplot == (2,2) or subplot == (3,3): margins = (0.09,0.1,0.9,0.88) else: margins = (0.09,0.11,0.88,0.82) if title_height is None: title_height = getattr(figure_class, 'title_height', 0.05) # use default from figure if title is not None: margins = margins[:3]+(margins[3]-title_height,) # make room for title # # some style sheets have different label sizes # if stylesheet.lower() in ('myggplot','ggplot'): # margins = list(margins) # margins[0] += 0.015; margins[1] -= 0.01 # left, bottom # margins[2] += 0.02; margins[3] += 0.02 # width, height # handle special TaylorPlot axes if lTaylor: if not lPolarAxes: lPolarAxes = True if not axes_class: axes_class = TaylorAxes # handle mixed Polar/Axes if isinstance(axes_class, (list,tuple,np.ndarray)): for i,axcls in enumerate(axes_class): if axcls is None: if lTaylor: axes_class[i] = TaylorAxes elif lPolarAxes: axes_class[i] = MyPolarAxes else: axes_class[i] = MyAxes elif axcls.lower() == 'taylor': axes_class[i] = TaylorAxes elif axcls.lower() == 'polar': axes_class[i] = MyPolarAxes elif axcls.lower() in ('regular','default'): axes_class[i] = MyAxes if not issubclass(axcls, Axes): raise TypeError(axcls) # create axes if lAxesGrid: if share_all is None: share_all = True if axes_pad is None: axes_pad = 0.05 # adjust margins for ignored label pads margins = list(margins) margins[0] += 0.005; margins[1] -= 0.02 # left, bottom margins[2] -= 0.005; margins[3] -= 0.00 # width, height # create axes using the Axes Grid package if axes_class is None: axes_class=MyLocatableAxes fig = mpl.pylab.figure(facecolor='white', figsize=figsize, axes_class=axes_class, FigureClass=figure_class, **figure_args) if axes_args is None: axes_class = (axes_class,{}) elif isinstance(axes_args,dict): axes_class = (axes_class,axes_args) else: raise TypeError from mpl_toolkits.axes_grid1 import ImageGrid # AxesGrid: http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html grid = ImageGrid(fig, margins, nrows_ncols = subplot, ngrids=ngrids, direction=direction, axes_pad=axes_pad, add_all=add_all, share_all=share_all, aspect=aspect, label_mode=label_mode, cbar_mode=cbar_mode, cbar_location=cbar_location, cbar_pad=cbar_pad, cbar_size=cbar_size, axes_class=axes_class) # return figure and axes axes = np.asarray(grid).reshape(subplot) # don't want flattened array #axes = tuple([ax for ax in grid]) # this is already flattened elif isinstance(axes_class, (list,tuple,np.ndarray)): # PolarAxes can't share axes and by default don't have labels if figure_args is None: figure_args = dict() fig = figure(facecolor='white', figsize=figsize, FigureClass=figure_class, **figure_args) # now create list of axes if axes_args is None: axes_args = dict() axes = np.empty(subplot, dtype=object); n = 0 for i in range(subplot[0]): for j in range(subplot[1]): n += 1 axes[i,j] = fig.add_subplot(subplot[0], subplot[1], n, axes_class=axes_class[n-1], aspect=aspect, **axes_args) # just adjust margins if axes_pad is None: axes_pad = 0.03 wspace = hspace = 0.1 margin_dict = dict(left=margins[0], bottom=margins[1], right=margins[0]+margins[2], top=margins[1]+margins[3], wspace=wspace, hspace=hspace) fig.subplots_adjust(**margin_dict) else: # select default axes based on other arguments if axes_class is None: if lPolarAxes: axes_class = MyPolarAxes share_all = sharex = sharey = False # N.B.: PolarAxes does not support sharing of axes, and # default behavior is to hide labels else: axes_class = MyAxes # create axes using normal subplot routine if axes_pad is None: axes_pad = 0.03 wspace = hspace = axes_pad if share_all: sharex='all'; sharey='all' if sharex is True or sharex is None: sharex = 'col' # default if sharey is True or sharey is None: sharey = 'row' if sharex: hspace -= 0.015 if sharey: wspace -= 0.015 # other axes arguments if axes_args is not None and not isinstance(axes_args,dict): raise TypeError # create figure from matplotlib.pyplot import subplots # GridSpec: http://matplotlib.org/users/gridspec.html fig, axes = subplots(subplot[0], subplot[1], sharex=sharex, sharey=sharey,squeeze=lreduce, facecolor='white', figsize=figsize, FigureClass=figure_class, subplot_kw=axes_args, axes_class=axes_class, **figure_args) # there is also a subplot_kw=dict() and fig_kw=dict() # just adjust margins margin_dict = dict(left=margins[0], bottom=margins[1], right=margins[0]+margins[2], top=margins[1]+margins[3], wspace=wspace, hspace=hspace) fig.subplots_adjust(**margin_dict) # apply reduction if lreduce: if isinstance(axes,np.ndarray): axes = axes.squeeze() # remove singleton dimensions if axes.ndim == 0: axes = axes.item() if isinstance(axes,(list,tuple)) and len(axes) == 1: axes = axes[0] # return a bare axes instance, if there is only one axes ## set label positions if not lPolarAxes: # X-/Y-labels and -ticks yright = not sharey and subplot[0]==2 if yright is None else yright xtop = not sharex and subplot[1]==2 if xtop is None else xtop if isinstance(axes, Axes): axes.yright = yright axes.xtop = xtop else: if axes.ndim == 1: if subplot[1] == 2: axes[-1].yright = yright # right panel if subplot[0] == 2: axes[0].xtop = xtop # top panel elif axes.ndim == 2: for ax in axes[:,-1]: ax.yright = yright # right column for ax in axes[0,:]: ax.xtop = xtop # top row else: raise ValueError # add figure title if name is None: name = title if name is not None: fig.canvas.set_window_title(name) # window title if title is not None: y = 1. - ( title_height / ( 5. if 'x' in title_font else 8. ) ) # smaller title closer to the top if isinstance(title_font,str): title_font = dict(fontsize=title_font, y=y) fig.suptitle(title, **title_font) # title on figure (printable) fig.title_height = title_height # save value # add default line styles for variables and datasets to axes (figure doesn't need to know) if isinstance(axes, np.ndarray): for ax in axes.ravel(): ax.variable_plotargs = variable_plotargs ax.dataset_plotargs = dataset_plotargs ax.plot_labels = plot_labels ax.edge_ticks = ledge_ticks else: axes.variable_plotargs = variable_plotargs axes.dataset_plotargs = dataset_plotargs axes.plot_labels = plot_labels # return Figure/ImageGrid and tuple of axes #if AxesGrid: fig = grid # return ImageGrid instead of figure return fig, axes if __name__ == '__main__': pass
gpl-3.0
gdementen/xlwings
xlwings/tests/udfs/udf_tests.py
1
16102
from datetime import datetime, date import sys if sys.version_info >= (2, 7): from nose.tools import assert_dict_equal import xlwings as xw try: import numpy as np from numpy.testing import assert_array_equal def nparray_equal(a, b): try: assert_array_equal(a, b) except AssertionError: return False return True except ImportError: np = None try: import pandas as pd from pandas import DataFrame, Series from pandas.util.testing import assert_frame_equal, assert_series_equal def frame_equal(a, b): try: assert_frame_equal(a, b) except AssertionError: return False return True def series_equal(a, b): try: assert_series_equal(a, b) except AssertionError: return False return True except ImportError: pd = None def dict_equal(a, b): try: assert_dict_equal(a, b) except AssertionError: return False return True # Defaults @xw.func def read_float(x): return x == 2. @xw.func def write_float(): return 2. @xw.func def read_string(x): return x == 'xlwings' @xw.func def write_string(): return 'xlwings' @xw.func def read_empty(x): return x is None @xw.func def read_date(x): return x == datetime(2015, 1, 15) @xw.func def write_date(): return datetime(1969, 12, 31) @xw.func def read_datetime(x): return x == datetime(1976, 2, 15, 13, 6, 22) @xw.func def write_datetime(): return datetime(1976, 2, 15, 13, 6, 23) @xw.func def read_horizontal_list(x): return x == [1., 2.] @xw.func def write_horizontal_list(): return [1., 2.] @xw.func def read_vertical_list(x): return x == [1., 2.] @xw.func def write_vertical_list(): return [[1.], [2.]] @xw.func def read_2dlist(x): return x == [[1., 2.], [3., 4.]] @xw.func def write_2dlist(): return [[1., 2.], [3., 4.]] # Keyword args on default converters @xw.func @xw.arg('x', ndim=1) def read_ndim1(x): return x == [2.] @xw.func @xw.arg('x', ndim=2) def read_ndim2(x): return x == [[2.]] @xw.func @xw.arg('x', transpose=True) def read_transpose(x): return x == [[1., 3.], [2., 4.]] @xw.func @xw.ret(transpose=True) def write_transpose(): return [[1., 2.], [3., 4.]] @xw.func @xw.arg('x', dates=date) def read_dates_as1(x): return x == [[1., date(2015, 1, 13)], [date(2000, 12, 1), 4.]] @xw.func @xw.arg('x', dates=date) def read_dates_as2(x): return x == date(2005, 1, 15) @xw.func @xw.arg('x', dates=datetime) def read_dates_as3(x): return x == [[1., datetime(2015, 1, 13)], [datetime(2000, 12, 1), 4.]] @xw.func @xw.arg('x', empty='empty') def read_empty_as(x): return x == [[1., 'empty'], ['empty', 4.]] if sys.version_info >= (2, 7): # assert_dict_equal isn't available on nose for PY 2.6 # Dicts @xw.func @xw.arg('x', dict) def read_dict(x): return dict_equal(x, {'a': 1., 'b': 'c'}) @xw.func @xw.arg('x', dict, transpose=True) def read_dict_transpose(x): return dict_equal(x, {1.0: 'c', 'a': 'b'}) @xw.func def write_dict(): return {'a': 1., 'b': 'c'} # Numpy Array if np: @xw.func @xw.arg('x', np.array) def read_scalar_nparray(x): return nparray_equal(x, np.array(1.)) @xw.func @xw.arg('x', np.array) def read_empty_nparray(x): return nparray_equal(x, np.array(np.nan)) @xw.func @xw.arg('x', np.array) def read_horizontal_nparray(x): return nparray_equal(x, np.array([1., 2.])) @xw.func @xw.arg('x', np.array) def read_vertical_nparray(x): return nparray_equal(x, np.array([1., 2.])) @xw.func @xw.arg('x', np.array) def read_date_nparray(x): return nparray_equal(x, np.array(datetime(2000, 12, 20))) # Keyword args on Numpy arrays @xw.func @xw.arg('x', np.array, ndim=1) def read_ndim1_nparray(x): return nparray_equal(x, np.array([2.])) @xw.func @xw.arg('x', np.array, ndim=2) def read_ndim2_nparray(x): return nparray_equal(x, np.array([[2.]])) @xw.func @xw.arg('x', np.array, transpose=True) def read_transpose_nparray(x): return nparray_equal(x, np.array([[1., 3.], [2., 4.]])) @xw.func @xw.ret(transpose=True) def write_transpose_nparray(): return np.array([[1., 2.], [3., 4.]]) @xw.func @xw.arg('x', np.array, dates=date) def read_dates_as_nparray(x): return nparray_equal(x, np.array(date(2000, 12, 20))) @xw.func @xw.arg('x', np.array, empty='empty') def read_empty_as_nparray(x): return nparray_equal(x, np.array('empty')) @xw.func def write_np_scalar(): return np.float64(2) # Pandas Series if pd: @xw.func @xw.arg('x', pd.Series, header=False, index=False) def read_series_noheader_noindex(x): return series_equal(x, pd.Series([1., 2.])) @xw.func @xw.arg('x', pd.Series, header=False, index=True) def read_series_noheader_index(x): return series_equal(x, pd.Series([1., 2.], index=[10., 20.])) @xw.func @xw.arg('x', pd.Series, header=True, index=False) def read_series_header_noindex(x): return series_equal(x, pd.Series([1., 2.], name='name')) @xw.func @xw.arg('x', pd.Series, header=True, index=True) def read_series_header_named_index(x): return series_equal(x, pd.Series([1., 2.], name='name', index=pd.Index([10., 20.], name='ix'))) @xw.func @xw.arg('x', pd.Series, header=True, index=True) def read_series_header_nameless_index(x): return series_equal(x, pd.Series([1., 2.], name='name', index=[10., 20.])) @xw.func @xw.arg('x', pd.Series, header=True, index=2) def read_series_header_nameless_2index(x): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]]) return series_equal(x, pd.Series([1., 2.], name='name', index=ix)) @xw.func @xw.arg('x', pd.Series, header=True, index=2) def read_series_header_named_2index(x): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]], names=['ix1', 'ix2']) return series_equal(x, pd.Series([1., 2.], name='name', index=ix)) @xw.func @xw.arg('x', pd.Series, header=False, index=2) def read_series_noheader_2index(x): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]]) return series_equal(x, pd.Series([1., 2.], index=ix)) @xw.func @xw.ret(pd.Series, index=False) def write_series_noheader_noindex(): return pd.Series([1., 2.]) @xw.func @xw.ret(pd.Series, index=True) def write_series_noheader_index(): return pd.Series([1., 2.], index=[10., 20.]) @xw.func @xw.ret(pd.Series, index=False) def write_series_header_noindex(): return pd.Series([1., 2.], name='name') @xw.func def write_series_header_named_index(): return pd.Series([1., 2.], name='name', index=pd.Index([10., 20.], name='ix')) @xw.func @xw.ret(pd.Series, index=True, header=True) def write_series_header_nameless_index(): return pd.Series([1., 2.], name='name', index=[10., 20.]) @xw.func @xw.ret(pd.Series, header=True, index=2) def write_series_header_nameless_2index(): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]]) return pd.Series([1., 2.], name='name', index=ix) @xw.func @xw.ret(pd.Series, header=True, index=2) def write_series_header_named_2index(): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]], names=['ix1', 'ix2']) return pd.Series([1., 2.], name='name', index=ix) @xw.func @xw.ret(pd.Series, header=False, index=2) def write_series_noheader_2index(): ix = pd.MultiIndex.from_arrays([['a', 'a'], [10., 20.]]) return pd.Series([1., 2.], index=ix) @xw.func @xw.arg('x', pd.Series) def read_timeseries(x): return series_equal(x, pd.Series([1.5, 2.5], name='ts', index=[datetime(2000, 12, 20), datetime(2000, 12, 21)])) @xw.func @xw.ret(pd.Series) def write_timeseries(): return pd.Series([1.5, 2.5], name='ts', index=[datetime(2000, 12, 20), datetime(2000, 12, 21)]) @xw.func @xw.ret(pd.Series, index=False) def write_series_nan(): return pd.Series([1, np.nan, 3]) # Pandas DataFrame if pd: @xw.func @xw.arg('x', pd.DataFrame, index=False, header=False) def read_df_0header_0index(x): return frame_equal(x, pd.DataFrame([[1., 2.], [3., 4.]])) @xw.func @xw.ret(pd.DataFrame, index=False, header=False) def write_df_0header_0index(): return pd.DataFrame([[1., 2.], [3., 4.]]) @xw.func @xw.arg('x', pd.DataFrame, index=False, header=True) def read_df_1header_0index(x): return frame_equal(x, pd.DataFrame([[1., 2.], [3., 4.]], columns=['a', 'b'])) @xw.func @xw.ret(pd.DataFrame, index=False, header=True) def write_df_1header_0index(): return pd.DataFrame([[1., 2.], [3., 4.]], columns=['a', 'b']) @xw.func @xw.arg('x', pd.DataFrame, index=True, header=False) def read_df_0header_1index(x): return frame_equal(x, pd.DataFrame([[1., 2.], [3., 4.]], index=[10., 20.])) @xw.func @xw.ret(pd.DataFrame, index=True, header=False) def write_df_0header_1index(): return pd.DataFrame([[1., 2.], [3., 4.]], index=[10, 20]) @xw.func @xw.arg('x', pd.DataFrame, index=2, header=False) def read_df_0header_2index(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], index=pd.MultiIndex.from_arrays([['a', 'a', 'b'], [1., 2., 1.]])) return frame_equal(x, df) @xw.func @xw.ret(pd.DataFrame, index=2, header=False) def write_df_0header_2index(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], index=pd.MultiIndex.from_arrays([['a', 'a', 'b'], [1., 2., 1.]])) return df @xw.func @xw.arg('x', pd.DataFrame, index=1, header=1) def read_df_1header_1namedindex(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[1., 2.], columns=['c', 'd', 'c']) df.index.name = 'ix1' return frame_equal(x, df) @xw.func def write_df_1header_1namedindex(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[1., 2.], columns=['c', 'd', 'c']) df.index.name = 'ix1' return df @xw.func @xw.arg('x', pd.DataFrame, index=1, header=1) def read_df_1header_1unnamedindex(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[1., 2.], columns=['c', 'd', 'c']) return frame_equal(x, df) @xw.func def write_df_1header_1unnamedindex(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[1., 2.], columns=['c', 'd', 'c']) return df @xw.func @xw.arg('x', pd.DataFrame, index=False, header=2) def read_df_2header_0index(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) return frame_equal(x, df) @xw.func @xw.ret(pd.DataFrame, index=False, header=2) def write_df_2header_0index(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) return df @xw.func @xw.arg('x', pd.DataFrame, index=1, header=2) def read_df_2header_1namedindex(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[1., 2.], columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) df.index.name = 'ix1' return frame_equal(x, df) @xw.func def write_df_2header_1namedindex(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[1., 2.], columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) df.index.name = 'ix1' return df @xw.func @xw.arg('x', pd.DataFrame, index=1, header=2) def read_df_2header_1unnamedindex(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[1., 2.], columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) return frame_equal(x, df) @xw.func def write_df_2header_1unnamedindex(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[1., 2.], columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) return df @xw.func @xw.arg('x', pd.DataFrame, index=2, header=2) def read_df_2header_2namedindex(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], index=pd.MultiIndex.from_arrays([['a', 'a', 'b'], [1., 2., 1.]], names=['x1', 'x2']), columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) return frame_equal(x, df) @xw.func def write_df_2header_2namedindex(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], index=pd.MultiIndex.from_arrays([['a', 'a', 'b'], [1., 2., 1.]], names=['x1', 'x2']), columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) return df @xw.func @xw.arg('x', pd.DataFrame, index=2, header=2) def read_df_2header_2unnamedindex(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], index=pd.MultiIndex.from_arrays([['a', 'a', 'b'], [1., 2., 1.]]), columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) return frame_equal(x, df) @xw.func def write_df_2header_2unnamedindex(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], index=pd.MultiIndex.from_arrays([['a', 'a', 'b'], [1., 2., 1.]]), columns=pd.MultiIndex.from_arrays([['a', 'a', 'b'], ['c', 'd', 'c']])) return df @xw.func @xw.arg('x', pd.DataFrame, index=2, header=1) def read_df_1header_2namedindex(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], index=pd.MultiIndex.from_arrays([['a', 'a', 'b'], [1., 2., 1.]], names=['x1', 'x2']), columns=['a', 'd', 'c']) return frame_equal(x, df) @xw.func def write_df_1header_2namedindex(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]], index=pd.MultiIndex.from_arrays([['a', 'a', 'b'], [1., 2., 1.]], names=['x1', 'x2']), columns=['a', 'd', 'c']) return df @xw.func @xw.arg('x', pd.DataFrame) def read_df_date_index(x): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[datetime(1999,12,13), datetime(1999,12,14)], columns=['c', 'd', 'c']) return frame_equal(x, df) @xw.func def write_df_date_index(): df = pd.DataFrame([[1., 2., 3.], [4., 5., 6.]], index=[datetime(1999,12,13), datetime(1999,12,14)], columns=['c', 'd', 'c']) return df @xw.func def read_workbook_caller(): wb = xw.Book.caller() return xw.Range('E277').value == 1. @xw.func def default_args(x, y="hello", z=20): return 2 * x + 3 * len(y) + 7 * z @xw.func def variable_args(x, *z): return 2 * x + 3 * len(z) + 7 * z[0] @xw.func def optional_args(x, y=None): if y is None: y = 10 return x * y @xw.func def write_none(): return None if __name__ == "__main__": xw.serve()
bsd-3-clause
balazssimon/ml-playground
udemy/lazyprogrammer/deep-reinforcement-learning-python/mountaincar/pg_tf_random.py
1
6813
import gym import os import sys import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from gym import wrappers from datetime import datetime from q_learning import plot_running_avg, FeatureTransformer # so you can test different architectures class HiddenLayer: def __init__(self, M1, M2, f=tf.nn.tanh, use_bias=True, zeros=False): if zeros: W = np.zeros((M1, M2)).astype(np.float32) self.W = tf.Variable(W) else: self.W = tf.Variable(tf.random_normal(shape=(M1, M2))) self.params = [self.W] self.use_bias = use_bias if use_bias: self.b = tf.Variable(np.zeros(M2).astype(np.float32)) self.params.append(self.b) self.f = f def forward(self, X): if self.use_bias: a = tf.matmul(X, self.W) + self.b else: a = tf.matmul(X, self.W) return self.f(a) # approximates pi(a | s) class PolicyModel: def __init__(self, ft, D, hidden_layer_sizes_mean=[], hidden_layer_sizes_var=[]): # save inputs for copy self.ft = ft self.D = D self.hidden_layer_sizes_mean = hidden_layer_sizes_mean self.hidden_layer_sizes_var = hidden_layer_sizes_var ##### model the mean ##### self.mean_layers = [] M1 = D for M2 in hidden_layer_sizes_mean: layer = HiddenLayer(M1, M2) self.mean_layers.append(layer) M1 = M2 # final layer layer = HiddenLayer(M1, 1, lambda x: x, use_bias=False, zeros=True) self.mean_layers.append(layer) ##### model the variance ##### self.var_layers = [] M1 = D for M2 in hidden_layer_sizes_var: layer = HiddenLayer(M1, M2) self.var_layers.append(layer) M1 = M2 # final layer layer = HiddenLayer(M1, 1, tf.nn.softplus, use_bias=False, zeros=False) self.var_layers.append(layer) # gather params self.params = [] for layer in (self.mean_layers + self.var_layers): self.params += layer.params # inputs and targets self.X = tf.placeholder(tf.float32, shape=(None, D), name='X') self.actions = tf.placeholder(tf.float32, shape=(None,), name='actions') self.advantages = tf.placeholder(tf.float32, shape=(None,), name='advantages') def get_output(layers): Z = self.X for layer in layers: Z = layer.forward(Z) return tf.reshape(Z, [-1]) # calculate output and cost mean = get_output(self.mean_layers) std = get_output(self.var_layers) + 1e-4 # smoothing # note: the 'variance' is actually standard deviation norm = tf.contrib.distributions.Normal(mean, std) self.predict_op = tf.clip_by_value(norm.sample(), -1, 1) def set_session(self, session): self.session = session def init_vars(self): init_op = tf.variables_initializer(self.params) self.session.run(init_op) # def partial_fit(self, X, actions, advantages): # X = np.atleast_2d(X) # X = self.ft.transform(X) # actions = np.atleast_1d(actions) # advantages = np.atleast_1d(advantages) # self.session.run( # self.train_op, # feed_dict={ # self.X: X, # self.actions: actions, # self.advantages: advantages, # } # ) def predict(self, X): X = np.atleast_2d(X) X = self.ft.transform(X) return self.session.run(self.predict_op, feed_dict={self.X: X}) def sample_action(self, X): p = self.predict(X)[0] # print("action:", p) return p def copy(self): clone = PolicyModel(self.ft, self.D, self.hidden_layer_sizes_mean, self.hidden_layer_sizes_mean) clone.set_session(self.session) clone.init_vars() # tf will complain if we don't do this clone.copy_from(self) return clone def copy_from(self, other): # collect all the ops ops = [] my_params = self.params other_params = other.params for p, q in zip(my_params, other_params): actual = self.session.run(q) op = p.assign(actual) ops.append(op) # now run them all self.session.run(ops) def perturb_params(self): ops = [] for p in self.params: v = self.session.run(p) noise = np.random.randn(*v.shape) / np.sqrt(v.shape[0]) * 5.0 if np.random.random() < 0.1: # with probability 0.1 start completely from scratch op = p.assign(noise) else: op = p.assign(v + noise) ops.append(op) self.session.run(ops) def play_one(env, pmodel, gamma): observation = env.reset() done = False totalreward = 0 iters = 0 while not done and iters < 2000: # if we reach 2000, just quit, don't want this going forever # the 200 limit seems a bit early action = pmodel.sample_action(observation) # oddly, the mountain car environment requires the action to be in # an object where the actual action is stored in object[0] observation, reward, done, info = env.step([action]) totalreward += reward iters += 1 return totalreward def play_multiple_episodes(env, T, pmodel, gamma, print_iters=False): totalrewards = np.empty(T) for i in range(T): totalrewards[i] = play_one(env, pmodel, gamma) if print_iters: print(i, "avg so far:", totalrewards[:(i+1)].mean()) avg_totalrewards = totalrewards.mean() print("avg totalrewards:", avg_totalrewards) return avg_totalrewards def random_search(env, pmodel, gamma): totalrewards = [] best_avg_totalreward = float('-inf') best_pmodel = pmodel num_episodes_per_param_test = 3 for t in range(100): tmp_pmodel = best_pmodel.copy() tmp_pmodel.perturb_params() avg_totalrewards = play_multiple_episodes( env, num_episodes_per_param_test, tmp_pmodel, gamma ) totalrewards.append(avg_totalrewards) if avg_totalrewards > best_avg_totalreward: best_pmodel = tmp_pmodel best_avg_totalreward = avg_totalrewards return totalrewards, best_pmodel def main(): env = gym.make('MountainCarContinuous-v0') ft = FeatureTransformer(env, n_components=100) D = ft.dimensions pmodel = PolicyModel(ft, D, [], []) # init = tf.global_variables_initializer() session = tf.InteractiveSession() # session.run(init) pmodel.set_session(session) pmodel.init_vars() gamma = 0.99 if 'monitor' in sys.argv: filename = os.path.basename(__file__).split('.')[0] monitor_dir = './' + filename + '_' + str(datetime.now()) env = wrappers.Monitor(env, monitor_dir) totalrewards, pmodel = random_search(env, pmodel, gamma) print("max reward:", np.max(totalrewards)) # play 100 episodes and check the average avg_totalrewards = play_multiple_episodes(env, 100, pmodel, gamma, print_iters=True) print("avg reward over 100 episodes with best models:", avg_totalrewards) plt.plot(totalrewards) plt.title("Rewards") plt.show() if __name__ == '__main__': main()
apache-2.0
ClimbsRocks/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
110
3768
# Authors: Lars Buitinck # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
Macemann/Georgetown-Capstone
app/Graph_stats.py
1
5030
''' Script to create Graph Statistics Statistics are dumped to disk for app ease __author__ = Ryan Stephany __purpose__ Georgetown Data Analytics ''' import os import pickle import networkx as nx import community import matplotlib.pyplot as plt from operator import itemgetter MODELS_PATH = os.path.join(os.path.abspath(os.path.dirname(os.path.abspath(__file__))),'models') with open(os.path.join(MODELS_PATH,'hidden_names.pkl'),'rb') as handler: HIDDEN = pickle.load(handler) NICKNAMES = [v[1] for v in HIDDEN['HIDDEN'].values()] # Taken from Benjamin Bengfort and modified def nbest_centrality(graph, metric, n=10, attribute="centrality", **kwargs): centrality = metric(graph, **kwargs) nx.set_node_attributes(graph, attribute, centrality) degrees = sorted(centrality.items(), key=itemgetter(1), reverse=True) output = [] for idx, item in enumerate(degrees[0:n]): item = list(item) if graph.has_node(item[0]): node = graph.node[item[0]] try: item[0] = node['screen_name'] except: pass item = tuple(item) item = (idx+1,) + item print "%i. %s: %0.4f" % item output.append(item) return output def gen_graph_stats (graph): G = nx.read_graphml(graph) stats = {} edges, nodes = 0,0 for e in G.edges_iter(): edges += 1 for n in G.nodes_iter(): nodes += 1 stats['Edges'] = (edges,'The number of edges within the Graph') stats['Nodes'] = (nodes, 'The number of nodes within the Graph') print "%i edges, %i nodes" % (edges, nodes) # Accessing the highest degree node center, degree = sorted(G.degree().items(), key=itemgetter(1), reverse=True)[0] stats['Center Node'] = ('%s: %0.5f' % (center,degree),'The center most node in the graph. Which has the highest degree') hairball = nx.subgraph(G, [x for x in nx.connected_components(G)][0]) print "Average shortest path: %0.4f" % nx.average_shortest_path_length(hairball) stats['Average Shortest Path Length'] = (nx.average_shortest_path_length(hairball), '') # print "Center: %s" % G[center] # print "Shortest Path to Center: %s" % p print "Degree: %0.5f" % degree stats['Degree'] = (degree,'The node degree is the number of edges adjacent to that node.') print "Order: %i" % G.number_of_nodes() stats['Order'] = (G.number_of_nodes(),'The number of nodes in the graph.') print "Size: %i" % G.number_of_edges() stats['Size'] = (G.number_of_edges(),'The number of edges in the graph.') print "Clustering: %0.5f" % nx.average_clustering(G) stats['Average Clustering'] = (nx.average_clustering(G),'The average clustering coefficient for the graph.') print "Transitivity: %0.5f" % nx.transitivity(G) stats['Transitivity'] = (nx.transitivity(G),'The fraction of all possible triangles present in the graph.') part = community.best_partition(G) # values = [part.get(node) for node in G.nodes()] # nx.draw_spring(G, cmap = plt.get_cmap('jet'), node_color = values, node_size=30, with_labels=False) # plt.show() mod = community.modularity(part,G) print "modularity: %0.5f" % mod stats['Modularity'] = (mod,'The modularity of a partition of a graph.') knn = nx.k_nearest_neighbors(G) print knn stats['K Nearest Neighbors'] = (knn,'the average degree connectivity of graph.\nThe average degree connectivity is the average nearest neighbor degree of nodes with degree k. For weighted graphs, an analogous measure can be computed using the weighted average neighbors degre') return G, stats if __name__ == '__main__': graphs = {} for nn in NICKNAMES: G, g_stats = gen_graph_stats(os.path.join(MODELS_PATH,'%s.graphml' % nn)) graphs[nn] = {} graphs[nn]['stats'] = g_stats dc = nbest_centrality(G, nx.degree_centrality, n=15) graphs[nn]['degree_centrality'] = dc bc = nbest_centrality(G, nx.betweenness_centrality, n=15) graphs[nn]['betweenness_centrality'] = bc cc = nbest_centrality(G, nx.closeness_centrality, n=15) graphs[nn]['closeness_centrality'] = cc ec = nbest_centrality(G, nx.eigenvector_centrality_numpy, n=15) graphs[nn]['eigenvector_centrality'] = ec G, g_stats = gen_graph_stats(os.path.join(MODELS_PATH,'all.graphml')) graphs['all'] = {} graphs['all']['stats'] = g_stats dc = nbest_centrality(G, nx.degree_centrality, n=15) graphs['all']['degree_centrality'] = dc bc = nbest_centrality(G, nx.betweenness_centrality, n=15) graphs['all']['betweenness_centrality'] = bc cc = nbest_centrality(G, nx.closeness_centrality, n=15) graphs['all']['closeness_centrality'] = cc ec = nbest_centrality(G, nx.eigenvector_centrality_numpy, n=15) graphs['all']['eigenvector_centrality'] = ec kc = nbest_centrality(G, nx.katz_centrality_numpy,n=15) graphs['all']['katz_centrality'] = kc partition = community.best_partition(G) size = float(len(set(partition.values()))) count = 0 for com in set(partition.values()): count+=1 graphs['all']['Communities'] = count with open(os.path.join(MODELS_PATH,'graph_measures.pkl'),'wb') as handler: pickle.dump(graphs,handler)
mit
aflaxman/pymc-cod-correct
src/tests.py
1
3462
""" Tests """ # matplotlib will open windows during testing unless you do the following import matplotlib matplotlib.use("AGG") import pylab as pl import pymc as mc import models reload(models) import data reload(data) import graphics reload(graphics) class TestClass: def setUp(self): self.X = data.sim_data(10) def test_sim_data(self): sim_data = data.sim_data(10) assert sim_data.shape == (10,2,3), 'Should be 10x2x3 matrix of data (%s found)' % str(sim_data.shape) sim_data = data.sim_data(10, [[.1, .4, .5]], [.1, .1, .1]) assert sim_data.shape == (10,1,3), 'Should be 10x1x3 matrix of data (%s found)' % str(sim_data.shape) def test_sim_data_2(self): sims = 10000 return # skip for now test1 = pl.zeros(3, dtype='f').view(pl.recarray) for i in range(sims): temp = data.sim_data(1, [0.1,0.1,0.8], [0.01,0.01,0.01]) test1 = pl.vstack((test1, temp)) test1 = test1[1:,] test2 = data.sim_data(sims, [0.1,0.1,0.8], [0.01, 0.01, 0.01]) diff = (test1.mean(0) - test2.mean(0))/test1.mean(0) assert pl.allclose(diff, 0, atol=0.01), 'should be close to zero, (%s found)' % str(diff) def test_get_cod_data(self): return # skip for now cf = data.get_cod_data(level=1) assert len(cf.cause) == 3 and cf.cause.dtype == 'S1' assert len(cf.est) == 3 and cf.est.dtype == 'float32' assert len(cf.lower) == 3 and cf.lower.dtype == 'float32' assert len(cf.upper) == 3 and cf.upper.dtype == 'float32' # this only tests that level 1 causes work; the function takes awhile to run at higher levels, so it may not be feasible to repeatedly test this at higher levels. def test_sim_cod_data(self): return # skip for now cf = data.get_cod_data(level=1) X = data.sim_cod_data(10, cf) assert pl.shape(X) == (10, 3) def test_sim_data_for_validation(self): return # skip for now sim_data = data.sim_data_for_validation(10, [0.5, 0.5], [0.1, 0.1]) assert sim_data.shape == (10,2), 'Should be 10x2 matrix of data (%s found)' % str(sim_data.shape) sim_data = data.sim_data_for_validation(10, [.1, .4, .5], [.1, .1, .1]) assert sim_data.shape == (10,3), 'Should be 10x3 matrix of data (%s found)' % str(sim_data.shape) def test_plot_sim_data(self): return # skip for now X = data.sim_data(10, [.1, .4, .5], [.1, .1, .1]) graphics.plot_sim_data(X) assert list(pl.axis()) == [0., 1., 0., 1.], 'plot limits should be unit square, (%s found)' % str(pl.axis()) graphics.plot_all_sim_data(X) def test_bad_model(self): X = data.sim_data(10) Y = models.bad_model(X) assert pl.allclose(Y.sum(axis=2), 1), 'should be all ones, (%s found)' % str(Y.sum(axis=2)) # test again for 10x2x3 dataset X = data.sim_data(10, [[.1, .4, .5]], [.1, .1, .1]) Y = models.bad_model(X) assert pl.allclose(Y.sum(axis=2), 1), 'should be all ones, (%s found)' % str(Y.sum(axis=2)) def test_good_model(self): vars = models.latent_simplex(self.X) assert pl.all(pl.sum(vars['pi'].value, 1) <= 1.0), 'pi values should sum to at most 1, (%s found)' % pl.sum(vars['pi'].value, 1) m = mc.MCMC(vars) m.sample(10) if __name__ == '__main__': import nose nose.run()
gpl-3.0
bmazin/ARCONS-pipeline
examples/Pal2012-sdss/ConvolutionWithTemp.py
1
3536
import numpy as np import matplotlib.pyplot as plt from util import utils import mpfit import scipy.optimize as optimize #This program slides a template across the data to try to improve the data quality. This convultion was not very successful. The program bins the data if neccessary so the template and data have the same point/time ratio. "Trunc" means the template does not cover the entire period, just the area around the eclipse. The number in the template filenames indicate the number of bins per period. dataTemplate.py makes a template by binning and averaging the data. fitTemplate.py makes a template by fitting a skewed gaussian to the "data template" that results from templateMaker.py FileName = '/Scratch/dataProcessing/SDSS_J0926/AllData/Dec8fitpsfBlueUpdated.npz' NumFrames = 1700 IntTime = 3 TimeCutOff = 1300 template = np.load('/Scratch/dataProcessing/SDSS_J0926/AllData/Dec8BlueTruncTemplateFitted560.npz') template3 = np.load('/Scratch/dataProcessing/SDSS_J0926/AllData/Dec8BlueTruncTemplateUpdated560.npz') tempValues = template['template'] tempjd = template['jd'] tempValues2 = template2['template'] tempjd2 = template2['jd'] tempValues3 = template3['template'] tempjd3 = template3['jd'] t = np.load(FileName) params = t['params'] jd = t['jd'] period = 0.01966127 amps = params[:,1] widths = params[:,4] xpos = params[:,2] ypos = params[:,3] NumFrames = TimeCutOff jd = jd[:TimeCutOff] amps = amps[:TimeCutOff] widths = widths[:TimeCutOff] xpos = xpos[:TimeCutOff] ypos = ypos[:TimeCutOff] fig = plt.figure() ax = fig.add_subplot(311) curve1 = amps*widths**2 curve = curve/(np.average(curve)) #curve = np.append(curve1[0:411]/np.average(curve1[0:411]), curve1[411:971]/np.average(curve1[411:971])) #curve = np.append(curve, curve1[971:]/np.average(curve1[971:])) numbins = 155 #per eclipse period! jdbin = period/float(numbins) Totalnumbins = int((jd[NumFrames-1]-jd[0])/jdbin) #to bin the DATA average_array = [] for i in range(Totalnumbins): out_values = np.where(np.logical_and(jd >= i*jdbin+jd[0],jd < (i+1)*jdbin+jd[0]))[0] iCurve = curve[out_values] iCurve = iCurve[iCurve != 0] # iCurve = iCurve[iCurve < 700] bin_average = np.mean(iCurve) average_array.append(bin_average) #jd=np.arange(0,1,binwidth)*period jd3 = np.arange(jd[0]+jdbin/2.,jd[NumFrames-1]-jdbin/2.,jdbin) print len(average_array),len(jd3),Totalnumbins ax.plot(jd,curve,'g') #ax.plot(jd3,average_array,'r') ax.set_title(FileName) #plt.show() ax2 = fig.add_subplot(312) MinIndex= np.argmin(tempValues) tempValues4 = tempValues3[MinIndex-20:MinIndex+20] tempjd4 = tempjd3[MinIndex-20:MinIndex+20] filtered = np.correlate(tempValues,curve,mode='same')[::-1] filtered2 = np.correlate(tempValues2,curve,mode='same')[::-1] filtered3 = np.correlate(tempValues3,curve,mode='same')[::-1] filtered4 = np.correlate(tempValues4,curve,mode='same')[::-1] ax.plot(jd,filtered/np.average(filtered),'r') ax.plot(jd,filtered4/np.average(filtered4),'k') ax.plot(jd,filtered3/np.average(filtered3),'b') #ax2.plot(tempjd2,tempValues2,'.r') ax2.plot(jd,filtered/np.average(filtered),'r') ax2.plot(jd,filtered4/np.average(filtered4)+.1,'k') ax2.plot(jd,filtered3/np.average(filtered3)+.2,'b') ax3 = fig.add_subplot(313) ax3.plot(tempjd,tempValues,'.r',label="skew-gauss fitted") ax3.plot(tempjd4,tempValues4,'ko', label="short not fitted") ax3.plot(tempjd3,tempValues3,'.b', label="not fitted") #ax.plot(jd[0]+tempjd2,tempValues2,'.k') #ax.plot(jd[0]+.01+tempjd,tempValues,'.r') plt.legend(loc=4) plt.show()
gpl-2.0
yzl0083/orange
Orange/OrangeWidgets/OWDlgs.py
6
13862
import os from OWBaseWidget import * import OWGUI _have_qwt = True try: from PyQt4.Qwt5 import * except ImportError: _have_qwt = False _have_gl = True try: from PyQt4.QtOpenGL import QGLWidget except ImportError: _have_gl = False from PyQt4.QtGui import QGraphicsScene, QGraphicsView from PyQt4.QtSvg import * from ColorPalette import * import OWQCanvasFuncts class OWChooseImageSizeDlg(OWBaseWidget): settingsList = ["selectedSize", "customX", "customY", "lastSaveDirName", "penWidthFactor"] def __init__(self, graph, extraButtons = [], defaultName="graph", parent=None, saveMatplotlib=None): OWBaseWidget.__init__(self, parent, None, "Image settings", modal = TRUE, resizingEnabled = 0) self.graph = graph self.selectedSize = 0 self.customX = 400 self.customY = 400 self.saveAllSizes = 0 self.penWidthFactor = 1 self.lastSaveDirName = "./" self.defaultName = defaultName self.loadSettings() self.setLayout(QVBoxLayout(self)) self.space = OWGUI.widgetBox(self) self.layout().setMargin(8) #self.layout().addWidget(self.space) box = OWGUI.widgetBox(self.space, "Image Size") global _have_qwt if _have_qwt and isinstance(graph, QwtPlot): size = OWGUI.radioButtonsInBox(box, self, "selectedSize", ["Current size", "400 x 400", "600 x 600", "800 x 800", "Custom:"], callback = self.updateGUI) self.customXEdit = OWGUI.lineEdit(OWGUI.indentedBox(box), self, "customX", "Width: ", orientation = "horizontal", valueType = int) self.customYEdit = OWGUI.lineEdit(OWGUI.indentedBox(box), self, "customY", "Height:", orientation = "horizontal", valueType = int) OWGUI.comboBoxWithCaption(self.space, self, "penWidthFactor", label = 'Factor: ', box = " Pen width multiplication factor ", tooltip = "Set the pen width factor for all curves in the plot\n(Useful for example when the lines in the plot look to thin)\nDefault: 1", sendSelectedValue = 1, valueType = int, items = range(1,20)) elif isinstance(graph, QGraphicsScene) or isinstance(graph, QGraphicsView) or (_have_gl and isinstance(graph, QGLWidget)): OWGUI.widgetLabel(box, "Image size will be set automatically.") box = OWGUI.widgetBox(self.space, 1) #self.printButton = OWGUI.button(self.space, self, "Print", callback = self.printPic) self.saveImageButton = OWGUI.button(box, self, "Save Image", callback = self.saveImage) # If None we try to determine if save can succeed automatically if saveMatplotlib is None: saveMatplotlib = self.canSaveToMatplotlib(graph) if saveMatplotlib and not (_have_gl and isinstance(graph, QGLWidget)): self.saveMatplotlibButton = OWGUI.button(box, self, "Save Graph as matplotlib Script", callback = self.saveToMatplotlib) for (text, funct) in extraButtons: butt = OWGUI.button(box, self, text, callback = funct) self.connect(butt, SIGNAL("clicked()"), self.accept) # also connect the button to accept so that we close the dialog OWGUI.button(box, self, "Cancel", callback = self.reject) self.resize(250,300) self.updateGUI() def saveImage(self, filename = None, size = None, closeDialog = 1): if not filename: filename = self.getFileName(self.defaultName, "Portable Network Graphics (*.PNG);;Windows Bitmap (*.BMP);;Graphics Interchange Format (*.GIF);;Scalable Vector Graphics (*.SVG)", ".png") if not filename: return (fil,ext) = os.path.splitext(filename) if ext.lower() not in [".bmp", ".gif", ".png", ".svg"] : ext = ".png" # if no format was specified, we choose png filename = fil + ext if _have_gl and isinstance(self.graph, QGLWidget): img = self.graph.grabFrameBuffer() if size != None: img = img.scaled(size) img.save(filename) if closeDialog: QDialog.accept(self) return real_graph = self.graph if isinstance(self.graph, QGraphicsView) else None if real_graph: self.graph = self.graph.scene() if isinstance(self.graph, QGraphicsScene): source = self.getSceneBoundingRect().adjusted(-15, -15, 15, 15) size = source.size() elif isinstance(self.graph, QGraphicsView): source = self.graph.sceneRect() size = source.size() elif not size: size = self.getSize() painter = QPainter() if filename.lower().endswith(".svg"): buffer = QSvgGenerator() buffer.setFileName(filename) buffer.setSize(QSize(int(size.width()), int(size.height()))) else: buffer = QPixmap(int(size.width()), int(size.height())) painter.begin(buffer) painter.setRenderHint(QPainter.Antialiasing) if not filename.lower().endswith(".svg"): if isinstance(self.graph, QGraphicsScene) or isinstance(self.graph, QGraphicsView): # make background same color as the widget's background brush = self.graph.backgroundBrush() if brush.style() == Qt.NoBrush: brush = QBrush(self.graph.palette().color(QPalette.Base)) painter.fillRect(buffer.rect(), brush) else: painter.fillRect(buffer.rect(), QBrush(Qt.white)) # qwt plot global _have_qwt if _have_qwt and isinstance(self.graph, QwtPlot): if self.penWidthFactor != 1: for curve in self.graph.itemList(): pen = curve.pen(); pen.setWidth(self.penWidthFactor*pen.width()); curve.setPen(pen) self.graph.print_(painter, QRect(0,0,size.width(), size.height())) if self.penWidthFactor != 1: for curve in self.graph.itemList(): pen = curve.pen(); pen.setWidth(pen.width()/self.penWidthFactor); curve.setPen(pen) # QGraphicsScene elif isinstance(self.graph, QGraphicsScene) or isinstance(self.graph, QGraphicsView): target = QRectF(0,0, source.width(), source.height()) self.graph.render(painter, target, source) if not filename.lower().endswith(".svg"): buffer.save(filename) if closeDialog: QDialog.accept(self) def getSceneBoundingRect(self): source = QRectF() for item in self.graph.items(): if item.isVisible(): source = source.united(item.boundingRect().translated(item.pos())) return source def saveToMatplotlib(self): filename = self.getFileName(self.defaultName, "Python Script (*.py)", ".py") if filename: global _have_qwt if _have_qwt and isinstance(self.graph, QwtPlot): self.graph.saveToMatplotlib(filename, self.getSize()) else: rect = self.getSceneBoundingRect() minx, maxx, miny, maxy = rect.x(), rect.x()+rect.width(), rect.y(), rect.y()+rect.height() f = open(filename, "wt") f.write("# This Python file uses the following encoding: utf-8\n") f.write("from pylab import *\nfrom matplotlib.patches import Rectangle\n\n#constants\nx1 = %f; x2 = %f\ny1 = 0.0; y2 = %f\ndpi = 80\nxsize = %d\nysize = %d\nedgeOffset = 0.01\n\nfigure(facecolor = 'w', figsize = (xsize/float(dpi), ysize/float(dpi)), dpi = dpi)\na = gca()\nhold(True)\n" % (minx, maxx, maxy, maxx-minx, maxy-miny)) if isinstance(self.graph, QGraphicsView): scene = self.graph.scene() else: scene = self.graph sortedList = [(item.zValue(), item) for item in scene.items()] sortedList.sort() # sort items by z value for (z, item) in sortedList: # a little compatibility for QT 3.3 (on Mac at least) if hasattr(item, "isVisible"): if not item.isVisible(): continue elif not item.visible(): continue if item.__class__ in [QGraphicsRectItem, QGraphicsLineItem]: penc, penAlpha = self._getColorFromObject(item.pen()) penWidth = item.pen().width() if isinstance(item, QGraphicsRectItem): x,y,w,h = item.rect().x(), maxy-item.rect().y()-item.rect().height(), item.rect().width(), item.rect().height() brushc, brushAlpha = self._getColorFromObject(item.brush()) f.write("a.add_patch(Rectangle((%d, %d), %d, %d, edgecolor=%s, facecolor = %s, linewidth = %d, fill = %d))\n" % (x,y,w,h, penc, brushc, penWidth, type(brushc) == tuple)) elif isinstance(item, QGraphicsLineItem): x1,y1, x2,y2 = item.line().x1(), maxy-item.line().y1(), item.line().x2(), maxy-item.line().y2() f.write("plot(%s, %s, marker = 'None', linestyle = '-', color = %s, linewidth = %d, alpha = %.3f)\n" % ([x1,x2], [y1,y2], penc, penWidth, penAlpha)) elif item.__class__ in [QGraphicsTextItem, OWQCanvasFuncts.OWCanvasText]: if item.__class__ == QGraphicsTextItem: xalign, yalign = "left", "top" x, y = item.x(), item.y() else: align = item.alignment #xalign = (align & Qt.AlignLeft and "right") or (align & Qt.AlignRight and "left") or (align & Qt.AlignHCenter and "center") #yalign = (align & Qt.AlignBottom and "top") or (align & Qt.AlignTop and "bottom") or (align & Qt.AlignVCenter and "center") xalign = (align & Qt.AlignLeft and "left") or (align & Qt.AlignRight and "right") or (align & Qt.AlignHCenter and "center") yalign = (align & Qt.AlignBottom and "bottom") or (align & Qt.AlignTop and "top") or (align & Qt.AlignVCenter and "center") x, y = item.x, item.y vertAlign = (yalign and ", verticalalignment = '%s'" % yalign) or "" horAlign = (xalign and ", horizontalalignment = '%s'" % xalign) or "" color = tuple([item.defaultTextColor().red()/255., item.defaultTextColor().green()/255., item.defaultTextColor().blue()/255.]) weight = item.font().bold() and "bold" or "normal" f.write("text(%f, %f, '%s'%s%s, color = %s, name = '%s', weight = '%s', alpha = %.3f)\n" % (item.x, maxy-item.y, unicode(item.toPlainText()).encode("utf-8"), vertAlign, horAlign, color, str(item.font().family()), weight, item.defaultTextColor().alpha()/float(255))) f.write("# disable grid\ngrid(False)\n\n") f.write("#hide axis\naxis('off')\naxis([x1, x2, y1, y2])\ngca().set_position([edgeOffset, edgeOffset, 1 - 2*edgeOffset, 1 - 2*edgeOffset])\n") f.write("show()") f.close() try: import matplotlib except: QMessageBox.information(self,'Matplotlib missing',"File was saved, but you will not be able to run it because you don't have matplotlib installed.\nYou can download matplotlib for free at matplotlib.sourceforge.net.", QMessageBox.Ok) QDialog.accept(self) def canSaveToMatplotlib(self, graph): if _have_qwt and isinstance(graph, QwtPlot): # TODO: check all curve items. return True elif isinstance(graph, QGraphicsScene): items = graph.items() supported = set([QGraphicsRectItem, QGraphicsLineItem, QGraphicsTextItem, OWQCanvasFuncts.OWCanvasText]) return all(type(item) in supported for item in items) else: return False # ############################################################ # EXTRA FUNCTIONS ############################################ def getFileName(self, defaultName, mask, extension): fileName = unicode(QFileDialog.getSaveFileName(self, "Save to..", os.path.join(self.lastSaveDirName, defaultName), mask)) if not fileName: return None if not os.path.splitext(fileName)[1][1:]: fileName = fileName + extension self.lastSaveDirName = os.path.split(fileName)[0] + "/" self.saveSettings() return fileName def getSize(self): if isinstance(self.graph, QGraphicsScene): size = self.getSceneBoundingRect().size() elif self.selectedSize == 0: size = self.graph.size() elif self.selectedSize == 4: size = QSize(self.customX, self.customY) else: size = QSize(200 + self.selectedSize*200, 200 + self.selectedSize*200) return size def updateGUI(self): global _have_qwt if _have_qwt and isinstance(self.graph, QwtPlot): self.customXEdit.setEnabled(self.selectedSize == 4) self.customYEdit.setEnabled(self.selectedSize == 4) def _getColorFromObject(self, obj): if isinstance(obj, QBrush) and obj.style() == Qt.NoBrush: return "'none'", 1 if isinstance(obj, QPen) and obj.style() == Qt.NoPen: return "'none'", 1 col = [obj.color().red(), obj.color().green(), obj.color().blue()]; col = tuple([v/float(255) for v in col]) return col, obj.color().alpha()/float(255)
gpl-3.0
spallavolu/scikit-learn
examples/cluster/plot_dict_face_patches.py
337
2747
""" Online learning of a dictionary of parts of faces ================================================== This example uses a large dataset of faces to learn a set of 20 x 20 images patches that constitute faces. From the programming standpoint, it is interesting because it shows how to use the online API of the scikit-learn to process a very large dataset by chunks. The way we proceed is that we load an image at a time and extract randomly 50 patches from this image. Once we have accumulated 500 of these patches (using 10 images), we run the `partial_fit` method of the online KMeans object, MiniBatchKMeans. The verbose setting on the MiniBatchKMeans enables us to see that some clusters are reassigned during the successive calls to partial-fit. This is because the number of patches that they represent has become too low, and it is better to choose a random new cluster. """ print(__doc__) import time import matplotlib.pyplot as plt import numpy as np from sklearn import datasets from sklearn.cluster import MiniBatchKMeans from sklearn.feature_extraction.image import extract_patches_2d faces = datasets.fetch_olivetti_faces() ############################################################################### # Learn the dictionary of images print('Learning the dictionary... ') rng = np.random.RandomState(0) kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True) patch_size = (20, 20) buffer = [] index = 1 t0 = time.time() # The online learning part: cycle over the whole dataset 6 times index = 0 for _ in range(6): for img in faces.images: data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng) data = np.reshape(data, (len(data), -1)) buffer.append(data) index += 1 if index % 10 == 0: data = np.concatenate(buffer, axis=0) data -= np.mean(data, axis=0) data /= np.std(data, axis=0) kmeans.partial_fit(data) buffer = [] if index % 100 == 0: print('Partial fit of %4i out of %i' % (index, 6 * len(faces.images))) dt = time.time() - t0 print('done in %.2fs.' % dt) ############################################################################### # Plot the results plt.figure(figsize=(4.2, 4)) for i, patch in enumerate(kmeans.cluster_centers_): plt.subplot(9, 9, i + 1) plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('Patches of faces\nTrain time %.1fs on %d patches' % (dt, 8 * len(faces.images)), fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
moonbury/pythonanywhere
MasteringMLWithScikit-learn/8365OS_07_Codes/adult-data-plot.py
3
1277
import matplotlib matplotlib.use('Qt4Agg') import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn import datasets import pandas as pd from sklearn.feature_extraction import DictVectorizer df = pd.read_csv('data/adult.data', header=None) y = df[14] X = df[range(0, 14)] def one_hot_dataframe(data, cols, replace=False): """ Takes a dataframe and a list of columns that need to be encoded. Returns a 3-tuple comprising the data, the vectorized data, and the fitted vectorizor. """ vec = DictVectorizer() mkdict = lambda row: dict((col, row[col]) for col in cols) vecData = pd.DataFrame(vec.fit_transform(data[cols].to_dict(outtype='records')).toarray()) vecData.columns = vec.get_feature_names() vecData.index = data.index if replace is True: data = data.drop(cols, axis=1) data = data.join(vecData) return data, vecData, vec X, _, _ = one_hot_dataframe(X, range(0, 14), replace=True) X.fillna(-1, inplace=True) labels = [] for i in y: if i == ' <=50K': labels.append(0) else: labels.append(1) pca = PCA(n_components=2) print 'fitting pca' X = pca.fit_transform(X) print 'plotting' plt.scatter(X[:, 0], X[:, 1], c=labels) plt.show()
gpl-3.0
yyjiang/scikit-learn
sklearn/neighbors/graph.py
208
7031
"""Nearest Neighbors graph functions""" # Author: Jake Vanderplas <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from .base import KNeighborsMixin, RadiusNeighborsMixin from .unsupervised import NearestNeighbors def _check_params(X, metric, p, metric_params): """Check the validity of the input parameters""" params = zip(['metric', 'p', 'metric_params'], [metric, p, metric_params]) est_params = X.get_params() for param_name, func_param in params: if func_param != est_params[param_name]: raise ValueError( "Got %s for %s, while the estimator has %s for " "the same parameter." % ( func_param, param_name, est_params[param_name])) def _query_include_self(X, include_self, mode): """Return the query based on include_self param""" # Done to preserve backward compatibility. if include_self is None: if mode == "connectivity": warnings.warn( "The behavior of 'kneighbors_graph' when mode='connectivity' " "will change in version 0.18. Presently, the nearest neighbor " "of each sample is the sample itself. Beginning in version " "0.18, the default behavior will be to exclude each sample " "from being its own nearest neighbor. To maintain the current " "behavior, set include_self=True.", DeprecationWarning) include_self = True else: include_self = False if include_self: query = X._fit_X else: query = None return query def kneighbors_graph(X, n_neighbors, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of k-Neighbors for points in X Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. n_neighbors : int Number of neighbors for each sample. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the k-Neighbors for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the p param equal to 2.) include_self: bool, default backward-compatible. Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import kneighbors_graph >>> A = kneighbors_graph(X, 2) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- radius_neighbors_graph """ if not isinstance(X, KNeighborsMixin): X = NearestNeighbors(n_neighbors, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode) def radius_neighbors_graph(X, radius, mode='connectivity', metric='minkowski', p=2, metric_params=None, include_self=None): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Read more in the :ref:`User Guide <unsupervised_neighbors>`. Parameters ---------- X : array-like or BallTree, shape = [n_samples, n_features] Sample data, in the form of a numpy array or a precomputed :class:`BallTree`. radius : float Radius of neighborhoods. mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. metric : string, default 'minkowski' The distance metric used to calculate the neighbors within a given radius for each sample point. The DistanceMetric class gives a list of available metrics. The default distance is 'euclidean' ('minkowski' metric with the param equal to 2.) include_self: bool, default None Whether or not to mark each sample as the first nearest neighbor to itself. If `None`, then True is used for mode='connectivity' and False for mode='distance' as this will preserve backwards compatibilty. From version 0.18, the default value will be False, irrespective of the value of `mode`. p : int, default 2 Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used. metric_params: dict, optional additional keyword arguments for the metric function. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import radius_neighbors_graph >>> A = radius_neighbors_graph(X, 1.5) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if not isinstance(X, RadiusNeighborsMixin): X = NearestNeighbors(radius=radius, metric=metric, p=p, metric_params=metric_params).fit(X) else: _check_params(X, metric, p, metric_params) query = _query_include_self(X, include_self, mode) return X.radius_neighbors_graph(query, radius, mode)
bsd-3-clause
xzh86/scikit-learn
examples/manifold/plot_swissroll.py
330
1446
""" =================================== Swiss Roll reduction with LLE =================================== An illustration of Swiss Roll reduction with locally linear embedding """ # Author: Fabian Pedregosa -- <[email protected]> # License: BSD 3 clause (C) INRIA 2011 print(__doc__) import matplotlib.pyplot as plt # This import is needed to modify the way figure behaves from mpl_toolkits.mplot3d import Axes3D Axes3D #---------------------------------------------------------------------- # Locally linear embedding of the swiss roll from sklearn import manifold, datasets X, color = datasets.samples_generator.make_swiss_roll(n_samples=1500) print("Computing LLE embedding") X_r, err = manifold.locally_linear_embedding(X, n_neighbors=12, n_components=2) print("Done. Reconstruction error: %g" % err) #---------------------------------------------------------------------- # Plot result fig = plt.figure() try: # compatibility matplotlib < 1.0 ax = fig.add_subplot(211, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=color, cmap=plt.cm.Spectral) except: ax = fig.add_subplot(211) ax.scatter(X[:, 0], X[:, 2], c=color, cmap=plt.cm.Spectral) ax.set_title("Original data") ax = fig.add_subplot(212) ax.scatter(X_r[:, 0], X_r[:, 1], c=color, cmap=plt.cm.Spectral) plt.axis('tight') plt.xticks([]), plt.yticks([]) plt.title('Projected data') plt.show()
bsd-3-clause
victorbergelin/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
221
5517
""" Testing for the gradient boosting loss functions and initial estimators. """ import numpy as np from numpy.testing import assert_array_equal from numpy.testing import assert_almost_equal from numpy.testing import assert_equal from nose.tools import assert_raises from sklearn.utils import check_random_state from sklearn.ensemble.gradient_boosting import BinomialDeviance from sklearn.ensemble.gradient_boosting import LogOddsEstimator from sklearn.ensemble.gradient_boosting import LeastSquaresError from sklearn.ensemble.gradient_boosting import RegressionLossFunction from sklearn.ensemble.gradient_boosting import LOSS_FUNCTIONS from sklearn.ensemble.gradient_boosting import _weighted_percentile def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert_equal(bd(np.array([0.0]), np.array([0.0])), bd(np.array([1.0]), np.array([0.0]))) assert_almost_equal(bd(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), 0.0) assert_almost_equal(bd(np.array([1.0, 0.0, 0.0]), np.array([100.0, -100.0, -100.0])), 0) # check if same results as alternative definition of deviance (from ESLII) alt_dev = lambda y, pred: np.mean(np.logaddexp(0.0, -2.0 * (2.0 * y - 1) * pred)) test_data = [(np.array([1.0, 1.0, 1.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([100.0, 100.0, 100.0])), (np.array([0.0, 0.0, 0.0]), np.array([-100.0, -100.0, -100.0])), (np.array([1.0, 1.0, 1.0]), np.array([-100.0, -100.0, -100.0]))] for datum in test_data: assert_almost_equal(bd(*datum), alt_dev(*datum)) # check the gradient against the alt_ng = lambda y, pred: (2 * y - 1) / (1 + np.exp(2 * (2 * y - 1) * pred)) for datum in test_data: assert_almost_equal(bd.negative_gradient(*datum), alt_ng(*datum)) def test_log_odds_estimator(): # Check log odds estimator. est = LogOddsEstimator() assert_raises(ValueError, est.fit, None, np.array([1])) est.fit(None, np.array([1.0, 0.0])) assert_equal(est.prior, 0.0) assert_array_equal(est.predict(np.array([[1.0], [1.0]])), np.array([[0.0], [0.0]])) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError(1) loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert_almost_equal(loss_wo_sw, loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = init_est.predict(X) assert_equal(out.shape, (y.shape[0], 1)) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = init_est.predict(X) assert_equal(sw_out.shape, (y.shape[0], 1)) # check if predictions match assert_array_equal(out, sw_out) def test_weighted_percentile(): y = np.empty(102, dtype=np.float) y[:50] = 0 y[-51:] = 2 y[-1] = 100000 y[50] = 1 sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 1 def test_weighted_percentile_equal(): y = np.empty(102, dtype=np.float) y.fill(0.0) sw = np.ones(102, dtype=np.float) sw[-1] = 0.0 score = _weighted_percentile(y, sw, 50) assert score == 0 def test_weighted_percentile_zero_weight(): y = np.empty(102, dtype=np.float) y.fill(1.0) sw = np.ones(102, dtype=np.float) sw.fill(0.0) score = _weighted_percentile(y, sw, 50) assert score == 1.0 def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): k = 1 y = reg_y p = reg_y else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert deviance_wo_w == deviance_w_w
bsd-3-clause
poryfly/scikit-learn
examples/ensemble/plot_gradient_boosting_regularization.py
355
2843
""" ================================ Gradient Boosting regularization ================================ Illustration of the effect of different regularization strategies for Gradient Boosting. The example is taken from Hastie et al 2009. The loss function used is binomial deviance. Regularization via shrinkage (``learning_rate < 1.0``) improves performance considerably. In combination with shrinkage, stochastic gradient boosting (``subsample < 1.0``) can produce more accurate models by reducing the variance via bagging. Subsampling without shrinkage usually does poorly. Another strategy to reduce the variance is by subsampling the features analogous to the random splits in Random Forests (via the ``max_features`` parameter). .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import ensemble from sklearn import datasets X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X = X.astype(np.float32) # map labels from {-1, 1} to {0, 1} labels, y = np.unique(y, return_inverse=True) X_train, X_test = X[:2000], X[2000:] y_train, y_test = y[:2000], y[2000:] original_params = {'n_estimators': 1000, 'max_leaf_nodes': 4, 'max_depth': None, 'random_state': 2, 'min_samples_split': 5} plt.figure() for label, color, setting in [('No shrinkage', 'orange', {'learning_rate': 1.0, 'subsample': 1.0}), ('learning_rate=0.1', 'turquoise', {'learning_rate': 0.1, 'subsample': 1.0}), ('subsample=0.5', 'blue', {'learning_rate': 1.0, 'subsample': 0.5}), ('learning_rate=0.1, subsample=0.5', 'gray', {'learning_rate': 0.1, 'subsample': 0.5}), ('learning_rate=0.1, max_features=2', 'magenta', {'learning_rate': 0.1, 'max_features': 2})]: params = dict(original_params) params.update(setting) clf = ensemble.GradientBoostingClassifier(**params) clf.fit(X_train, y_train) # compute test set deviance test_deviance = np.zeros((params['n_estimators'],), dtype=np.float64) for i, y_pred in enumerate(clf.staged_decision_function(X_test)): # clf.loss_ assumes that y_test[i] in {0, 1} test_deviance[i] = clf.loss_(y_test, y_pred) plt.plot((np.arange(test_deviance.shape[0]) + 1)[::5], test_deviance[::5], '-', color=color, label=label) plt.legend(loc='upper left') plt.xlabel('Boosting Iterations') plt.ylabel('Test Set Deviance') plt.show()
bsd-3-clause
HazyResearch/metal
metal/contrib/visualization/analysis.py
1
4929
import matplotlib.pyplot as plt import numpy as np import scipy.sparse as sparse from metal.utils import convert_labels ############################################################ # Label Matrix Plotting ############################################################ def view_label_matrix(L, colorbar=True): """Display an [n, m] matrix of labels""" L = L.todense() if sparse.issparse(L) else L plt.imshow(L, aspect="auto") plt.title("Label Matrix") if colorbar: labels = sorted(np.unique(np.asarray(L).reshape(-1, 1).squeeze())) boundaries = np.array(labels + [max(labels) + 1]) - 0.5 plt.colorbar(boundaries=boundaries, ticks=labels) plt.show() def view_overlaps(L, self_overlaps=False, normalize=True, colorbar=True): """Display an [m, m] matrix of overlaps""" L = L.todense() if sparse.issparse(L) else L G = _get_overlaps_matrix(L, normalize=normalize) if not self_overlaps: np.fill_diagonal(G, 0) # Zero out self-overlaps plt.imshow(G, aspect="auto") plt.title("Overlaps") if colorbar: plt.colorbar() plt.show() def view_conflicts(L, normalize=True, colorbar=True): """Display an [m, m] matrix of conflicts""" L = L.todense() if sparse.issparse(L) else L C = _get_conflicts_matrix(L, normalize=normalize) plt.imshow(C, aspect="auto") plt.title("Conflicts") if colorbar: plt.colorbar() plt.show() def _get_overlaps_matrix(L, normalize=True): n, m = L.shape X = np.where(L != 0, 1, 0).T G = X @ X.T if normalize: G = G / n return G def _get_conflicts_matrix(L, normalize=True): n, m = L.shape C = np.zeros((m, m)) # Iterate over the pairs of LFs for i in range(m): for j in range(m): # Get the overlapping non-zero indices overlaps = list( set(np.where(L[:, i] != 0)[0]).intersection(np.where(L[:, j] != 0)[0]) ) C[i, j] = np.where(L[overlaps, i] != L[overlaps, j], 1, 0).sum() if normalize: C = C / n return C ############################################################ # Classifier Diagnostics ############################################################ def plot_probabilities_histogram(Y_probs, title=None): """Plot a histogram from a numpy array of probabilities Args: Y_probs: An [n] or [n, 1] np.ndarray of probabilities (floats in [0,1]) """ if Y_probs.ndim > 1: print("Plotting probabilities from the first column of Y_probs") Y_probs = Y_probs[:, 0] plt.hist(Y_probs, bins=20) plt.xlim((0, 1.025)) plt.xlabel("Probability") plt.ylabel("# Predictions") if isinstance(title, str): plt.title(title) plt.show() def plot_predictions_histogram(Y_preds, Y_gold, title=None): """Plot a histogram comparing int predictions vs true labels by class Args: Y_gold: An [n] or [n, 1] np.ndarray of gold labels Y_preds: An [n] or [n, 1] np.ndarray of predicted int labels """ labels = list(set(Y_gold).union(set(Y_preds))) edges = [x - 0.5 for x in range(min(labels), max(labels) + 2)] plt.hist([Y_preds, Y_gold], bins=edges, label=["Predicted", "Gold"]) ax = plt.gca() ax.set_xticks(labels) plt.xlabel("Label") plt.ylabel("# Predictions") plt.legend(loc="upper right") if isinstance(title, str): plt.title(title) plt.show() def plot_calibration_plot(Y_probs, Y_gold, bins=20, title=None): """Plot a histogram of the accuracy for predictions with varying confidences Args: Y_probs: An [n] or [n, 1] np.ndarray of probabilities (floats in [0,1]) Y_gold: An [n] or [n, 1] np.ndarray of gold labels For a well-behaved classifier, the plot should be a U-shape. """ # For now, we only tackle binary classification with categorical labels assert all(Y_gold > 0) assert all(Y_gold <= 2) if Y_probs.ndim > 1: print("Plotting probabilities from the first column of Y_probs") Y_probs = Y_probs[:, 0] Y_preds = convert_labels((Y_probs > 0.5).astype(np.int64), "onezero", "categorical") correct_idxs = Y_preds == Y_gold centers = [] accuracies = [] interval = 1 / bins for i in range(bins + 1): if i == bins: bin_idxs = (interval * i <= Y_probs) * (Y_probs <= 1) else: bin_idxs = (interval * i <= Y_probs) * (Y_probs < interval * (i + 1)) bin_accuracy = sum(bin_idxs * correct_idxs) / sum(bin_idxs) centers.append(interval * (i + 0.5)) accuracies.append(bin_accuracy) # print("Accuracy: ", len(correct_idx) / (1.0 * len(Y_probs))) # Y_p_correct = Y_probs[correct_idx] plt.plot(centers, accuracies) plt.xlim((0, 1.025)) plt.xlabel("Probability") plt.ylabel("Accuracy") if isinstance(title, str): plt.title(title)
apache-2.0
geoscixyz/em_examples
em_examples/LinearInversion.py
1
17361
import numpy as np from SimPEG import Mesh from SimPEG import Problem from SimPEG import Survey from SimPEG import DataMisfit from SimPEG import Directives from SimPEG import Optimization from SimPEG import Regularization from SimPEG import InvProblem from SimPEG import Inversion import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # from pymatsolver import Pardiso import matplotlib from ipywidgets import ( interact, FloatSlider, ToggleButtons, IntSlider, FloatText, IntText, SelectMultiple ) import ipywidgets as widgets class LinearInversionApp(object): """docstring for LinearInversionApp""" # Parameters for sensitivity matrix, G N=None M=None j_start=None j_end=None p=None q=None seed=None # Parameters for Model m_background= None m1=None m2=None m1_center=None dm1 =None m2_center=None dm2 =None sigma =None m_min =None m_max =None data=None save=None def __init__(self): super(LinearInversionApp, self).__init__() @property def G(self): return self._G @property def jk(self): return self._jk @property def mesh(self): return self._mesh def set_G( self, N=20, M=100, p=-0.25, q=0.25, j1=1, jn=60, ): """ Parameters ---------- N: # of data M: # of model parameters ... """ self.N=N self.M=M self._mesh=Mesh.TensorMesh([M]) jk=np.linspace(j1, jn, N) self._G=np.zeros((N, self.mesh.nC), dtype=float, order='C') def g(k): return ( np.exp(p*jk[k]*self.mesh.vectorCCx) * np.cos(np.pi*q*jk[k]*self.mesh.vectorCCx) ) for i in range(N): self._G[i, :] = g(i) * self.mesh.hx self._jk = jk def plot_G( self, N=20, M=100, p=-0.25, q=0.25, j1=1, jn=60, scale='log', fixed=False, ymin=-0.001, ymax=0.011 ): self.set_G( N=N, M=M, p=p, q=q, j1=j1, jn=jn, ) _, s, _ = np.linalg.svd(self.G, full_matrices=False) matplotlib.rcParams['font.size']=14 fig=plt.figure(figsize=(10, 4)) gs1 = gridspec.GridSpec(1, 4) ax1 = plt.subplot(gs1[0, :3]) ax2 = plt.subplot(gs1[0, 3:]) ax1.plot(self.mesh.vectorCCx, self.G.T) if fixed: ax1.set_ylim(ymin, ymax) ax1.set_xlabel("x") ax1.set_ylabel("g(x)") ax2.plot(np.arange(self.N)+1, s, 'ro') ax2.set_xlabel("") ax2.set_title("singular values", fontsize=12) ax2.set_xscale(scale) ax2.set_yscale(scale) ax2.xaxis.set_major_locator(plt.NullLocator()) ax2.xaxis.set_minor_locator(plt.NullLocator()) ax2.xaxis.set_major_formatter(plt.NullFormatter()) ax2.xaxis.set_minor_formatter(plt.NullFormatter()) plt.tight_layout() plt.show() def set_model( self, m_background=0., m1=1., m2=-1., m1_center=0.2, dm1=0.2, m2_center=0.5, sigma_2=1., ): m=np.zeros(self.mesh.nC) + m_background m1_inds=np.logical_and(self.mesh.vectorCCx > m1_center-dm1/2., self.mesh.vectorCCx < m1_center+dm1/2.) m[m1_inds]=m1 def gaussian(x,x0,sigma): return np.exp(-np.power((x - x0)/sigma, 2.)/2.) m += gaussian(self.mesh.vectorCCx, m2_center, sigma_2) * m2 return m def plot_model( self, m_background=0., m1=1., m1_center=0.2, dm1=0.2, m2=-1., m2_center=0.5, sigma_2=1., option="model", add_noise=True, percentage =10, floor=1e-1, ): m=self.set_model( m_background=m_background, m1=m1, m2=m2, m1_center=m1_center, dm1=dm1, m2_center=m2_center, sigma_2=sigma_2, ) np.random.seed(1) if add_noise: survey, _=self.get_problem_survey() data=survey.dpred(m) noise=abs(data)*percentage * 0.01 *np.random.randn(self.N) + np.random.randn(self.N)*floor else: survey, _=self.get_problem_survey() data=survey.dpred(m) noise=np.zeros(self.N, float) data += noise self.data=data.copy() self.m=m.copy() self.uncertainty=abs(self.data) * percentage* 0.01 + floor self.percentage = percentage self.floor = floor option_bools = [False, False, False] for item in option: if item == 'kernel': option_bools[0] = True elif item == 'model': option_bools[1] = True elif item == 'data': option_bools[2] = True fig, axes = plt.subplots(1, 3, figsize=(12*1.2, 3*1.2)) for i, ax in enumerate(axes): if option_bools[i]: if i == 0: ax.plot(self.mesh.vectorCCx, self.G.T) ax.set_title('Rows of matrix G') ax.set_xlabel("x") ax.set_ylabel("g(x)") elif i == 1: ax.plot(self.mesh.vectorCCx, m) ax.set_ylim([-2.5, 2.5]) ax.set_title('Model') ax.set_xlabel("x") ax.set_ylabel("m(x)") ax.set_ylabel("$d_j$") elif i == 2: if add_noise: # this is just for visualization of uncertainty ax.errorbar( x=self.jk, y=self.data, yerr=self.uncertainty, color='k', lw=1 ) ax.plot(self.jk, self.data, 'ko') else: ax.plot(self.jk, self.data, 'ko-') ax.set_title('Data') ax.set_xlabel("$k_j$") for i, ax in enumerate(axes): if not option_bools[i]: ax.axis('off') # ax.xaxis.set_minor_locator(plt.NullLocator()) # ax.xaxis.set_major_formatter(plt.NullFormatter()) # ax.xaxis.set_minor_formatter(plt.NullFormatter()) # ax.yaxis.set_major_locator(plt.NullLocator()) # ax.yaxis.set_minor_locator(plt.NullLocator()) # ax.yaxis.set_major_formatter(plt.NullFormatter()) # ax.yaxis.set_minor_formatter(plt.NullFormatter()) plt.tight_layout() def get_problem_survey(self): prob=Problem.LinearProblem(self.mesh, G=self.G) survey=Survey.LinearSurvey() survey.pair(prob) return survey, prob def run_inversion( self, maxIter=60, m0=0., mref=0., percentage=5, floor=0.1, chifact=1, beta0_ratio=1., coolingFactor=1, coolingRate=1, alpha_s=1., alpha_x=1., use_target=False ): survey, prob=self.get_problem_survey() survey.eps=percentage survey.std=floor survey.dobs=self.data.copy() self.uncertainty = percentage*abs(survey.dobs)*0.01 + floor m0=np.ones(self.M) * m0 mref=np.ones(self.M) * mref reg=Regularization.Tikhonov( self.mesh, alpha_s=alpha_s, alpha_x=alpha_x, mref=mref ) dmis=DataMisfit.l2_DataMisfit(survey) dmis.W=1./self.uncertainty opt=Optimization.InexactGaussNewton( maxIter=maxIter, maxIterCG=20 ) opt.remember('xc') opt.tolG=1e-10 opt.eps=1e-10 invProb=InvProblem.BaseInvProblem(dmis, reg, opt) save=Directives.SaveOutputEveryIteration() beta_schedule=Directives.BetaSchedule( coolingFactor=coolingFactor, coolingRate=coolingRate ) target=Directives.TargetMisfit(chifact=chifact) if use_target: directives=[ Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio), beta_schedule, target, save ] else: directives=[ Directives.BetaEstimate_ByEig(beta0_ratio=beta0_ratio), beta_schedule, save ] inv=Inversion.BaseInversion(invProb, directiveList=directives) mopt=inv.run(m0) model = opt.recall('xc') model.append(mopt) pred = [] for m in model: pred.append(survey.dpred(m)) return model, pred, save def plot_inversion( self, maxIter=60, m0=0., mref=0., percentage=5, floor=0.1, chifact=1, beta0_ratio=1., coolingFactor=1, coolingRate=1, alpha_s=1., alpha_x=1., use_target=False, run=True, option ='model', i_iteration=1, ): if run: self.model, self.pred, self.save=self.run_inversion( maxIter=maxIter, m0=m0, mref=mref, percentage=percentage, floor=floor, chifact=chifact, beta0_ratio=beta0_ratio, coolingFactor=coolingFactor, coolingRate=coolingRate, alpha_s=alpha_s, alpha_x=alpha_x, use_target=use_target, ) if len(self.model) == 2: fig, axes=plt.subplots(1, 2, figsize=(14*1.2 *2/3, 3*1.2)) i_plot = -1 else: self.save.load_results() if self.save.i_target is None: i_plot = -1 else: i_plot = self.save.i_target + 1 fig, axes=plt.subplots(1, 3, figsize=(14*1.2, 3*1.2)) axes[0].plot(self.mesh.vectorCCx, self.m) if run: axes[0].plot(self.mesh.vectorCCx, self.model[i_plot]) axes[0].set_ylim([-2.5, 2.5]) axes[1].errorbar( x=self.jk, y=self.data, yerr=self.uncertainty, color='k', lw=1 ) axes[1].plot(self.jk, self.data, 'ko') if run: axes[1].plot(self.jk, self.pred[i_plot], 'bx') axes[1].legend(("Observed", "Predicted")) axes[0].legend(("True", "Pred")) axes[0].set_title('Model') axes[0].set_xlabel("x") axes[0].set_ylabel("m(x)") axes[1].set_title('Data') axes[1].set_xlabel("$k_j$") axes[1].set_ylabel("$d_j$") if len(self.model) > 2: max_iteration = len(self.model)-1 if i_iteration > max_iteration: print ((">> Warning: input iteration (%i) is greater than maximum iteration (%i)") % (i_iteration, len(self.model)-1)) i_iteration = max_iteration if option == 'misfit': if not run: axes[0].plot(self.mesh.vectorCCx, self.model[i_iteration]) axes[1].plot(self.jk, self.pred[i_iteration], 'bx') # axes[0].legend(("True", "Pred", ("%ith")%(i_iteration))) # axes[1].legend(("Observed", "Predicted", ("%ith")%(i_iteration))) axes[1].legend(("Observed", "Predicted")) if i_iteration == 0: i_iteration = 1 axes[2].plot(np.arange(len(self.save.phi_d))[i_iteration-1]+1, self.save.phi_d[i_iteration-1]*2, 'go', ms=10) ax_1 = axes[2].twinx() axes[2].semilogy(np.arange(len(self.save.phi_d))+1, self.save.phi_d*2, 'k-', lw=2) if self.save.i_target is not None: axes[2].plot(np.arange(len(self.save.phi_d))[self.save.i_target]+1, self.save.phi_d[self.save.i_target]*2, 'k*', ms=10) axes[2].plot(np.r_[axes[2].get_xlim()[0], axes[2].get_xlim()[1]], np.ones(2)*self.save.target_misfit*2, 'k:') ax_1.semilogy(np.arange(len(self.save.phi_d))+1, self.save.phi_m, 'r', lw=2) axes[2].set_xlabel("Iteration") axes[2].set_ylabel("$\phi_d$") ax_1.set_ylabel("$\phi_m$", color='r') for tl in ax_1.get_yticklabels(): tl.set_color('r') axes[2].set_title('Misfit curves') elif option == 'tikhonov': if not run: axes[0].plot(self.mesh.vectorCCx, self.model[i_iteration]) axes[1].plot(self.jk, self.pred[i_iteration], 'bx') # axes[0].legend(("True", "Pred", ("%ith")%(i_iteration))) # axes[1].legend(("Observed", "Predicted", ("%ith")%(i_iteration))) axes[0].legend(("True", "Pred")) axes[1].legend(("Observed", "Predicted")) if i_iteration == 0: i_iteration = 1 axes[2].plot(self.save.phi_m[i_iteration-1], self.save.phi_d[i_iteration-1]*2, 'go', ms=10) axes[2].plot(self.save.phi_m, self.save.phi_d*2, 'k-', lw=2) axes[2].set_xlim(np.hstack(self.save.phi_m).min(), np.hstack(self.save.phi_m).max()) axes[2].set_xlabel("$\phi_m$", fontsize=14) axes[2].set_ylabel("$\phi_d$", fontsize=14) if self.save.i_target is not None: axes[2].plot(self.save.phi_m[self.save.i_target], self.save.phi_d[self.save.i_target]*2., 'k*', ms=10) axes[2].set_title('Tikhonov curve') plt.tight_layout() def interact_plot_G(self): Q=interact( self.plot_G, N=IntSlider(min=1, max=100, step=1, value=20, continuous_update=False), M=IntSlider(min=1, max=100, step=1, value=100, continuous_update=False), p =FloatSlider(min=-1, max=0, step=0.05, value=-0.15, continuous_update=False), q=FloatSlider(min=0, max=1, step=0.05, value=0.25, continuous_update=False), j1 =FloatText(value=1.), jn=FloatText(value=19.), scale=ToggleButtons( options=["linear", "log"], value="log" ), fixed=False, ymin=FloatText(value=-0.005), ymax=FloatText(value=0.011), ) return Q def interact_plot_model(self): Q=interact( self.plot_model, m_background=FloatSlider( min=-2, max=2, step=0.05, value=0., continuous_update=False, description="m$_{background}$", ), m1=FloatSlider( min=-2, max=2, step=0.05, value=1., continuous_update=False, description="m1", ), m2=FloatSlider( min=-2, max=2, step=0.05, value=2., continuous_update=False, description="m2", ), m1_center=FloatSlider( min=-2, max=2, step=0.05, value=0.2, continuous_update=False, description="m1$_{center}$", ), dm1 =FloatSlider( min=0, max=0.5, step=0.05, value=0.2, continuous_update=False, description="m1$_{width}$", ), m2_center=FloatSlider( min=-2, max=2, step=0.05, value=0.75, continuous_update=False, description="m2$_{center}$", ), sigma_2=FloatSlider( min=0.01, max=0.1, step=0.01, value=0.07, continuous_update=False, description="m2$_{sigma}$", ), option=SelectMultiple( options=["kernel", "model", "data"], value=["model"], description='option' ), percentage=FloatText(value=5), floor=FloatText(value=0.02), ) return Q def interact_plot_inversion(self, maxIter=30): Q = interact( self.plot_inversion, maxIter=IntText(value=maxIter), m0=FloatSlider(min=-2, max=2, step=0.05, value=0., continuous_update=False), mref=FloatSlider(min=-2, max=2, step=0.05, value=0., continuous_update=False), percentage=FloatText(value=self.percentage), floor=FloatText(value=self.floor), chifact=FloatText(value=1.), beta0_ratio=FloatText(value=100), coolingFactor=FloatSlider(min=0.1, max=10, step=1, value=2, continuous_update=False), coolingRate=IntSlider(min=1, max=10, step=1, value=1, continuous_update=False), alpha_s=FloatText(value=1e-10), alpha_x=FloatText(value=0), run = True, target = False, option=ToggleButtons( options=["misfit", "tikhonov"], value="misfit" ), i_iteration=IntSlider(min=0, max=maxIter, step=1, value=0, continuous_update=False) )
mit
ryfeus/lambda-packs
LightGBM_sklearn_scipy_numpy/source/sklearn/neighbors/base.py
19
30908
"""Base and mixin classes for nearest neighbors""" # Authors: Jake Vanderplas <[email protected]> # Fabian Pedregosa <[email protected]> # Alexandre Gramfort <[email protected]> # Sparseness support by Lars Buitinck # Multi-output support by Arnaud Joly <[email protected]> # # License: BSD 3 clause (C) INRIA, University of Amsterdam import warnings from abc import ABCMeta, abstractmethod import numpy as np from scipy.sparse import csr_matrix, issparse from .ball_tree import BallTree from .kd_tree import KDTree from ..base import BaseEstimator from ..metrics import pairwise_distances from ..metrics.pairwise import PAIRWISE_DISTANCE_FUNCTIONS from ..utils import check_X_y, check_array, _get_n_jobs, gen_even_slices from ..utils.multiclass import check_classification_targets from ..externals import six from ..externals.joblib import Parallel, delayed from ..exceptions import NotFittedError from ..exceptions import DataConversionWarning VALID_METRICS = dict(ball_tree=BallTree.valid_metrics, kd_tree=KDTree.valid_metrics, # The following list comes from the # sklearn.metrics.pairwise doc string brute=(list(PAIRWISE_DISTANCE_FUNCTIONS.keys()) + ['braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski'])) VALID_METRICS_SPARSE = dict(ball_tree=[], kd_tree=[], brute=PAIRWISE_DISTANCE_FUNCTIONS.keys()) def _check_weights(weights): """Check to make sure weights are valid""" if weights in (None, 'uniform', 'distance'): return weights elif callable(weights): return weights else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") def _get_weights(dist, weights): """Get the weights from an array of distances and a parameter ``weights`` Parameters =========== dist : ndarray The input distances weights : {'uniform', 'distance' or a callable} The kind of weighting used Returns ======== weights_arr : array of the same shape as ``dist`` if ``weights == 'uniform'``, then returns None """ if weights in (None, 'uniform'): return None elif weights == 'distance': # if user attempts to classify a point that was zero distance from one # or more training points, those training points are weighted as 1.0 # and the other points as 0.0 if dist.dtype is np.dtype(object): for point_dist_i, point_dist in enumerate(dist): # check if point_dist is iterable # (ex: RadiusNeighborClassifier.predict may set an element of # dist to 1e-6 to represent an 'outlier') if hasattr(point_dist, '__contains__') and 0. in point_dist: dist[point_dist_i] = point_dist == 0. else: dist[point_dist_i] = 1. / point_dist else: with np.errstate(divide='ignore'): dist = 1. / dist inf_mask = np.isinf(dist) inf_row = np.any(inf_mask, axis=1) dist[inf_row] = inf_mask[inf_row] return dist elif callable(weights): return weights(dist) else: raise ValueError("weights not recognized: should be 'uniform', " "'distance', or a callable function") class NeighborsBase(six.with_metaclass(ABCMeta, BaseEstimator)): """Base class for nearest neighbors estimators.""" @abstractmethod def __init__(self): pass def _init_params(self, n_neighbors=None, radius=None, algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=1): self.n_neighbors = n_neighbors self.radius = radius self.algorithm = algorithm self.leaf_size = leaf_size self.metric = metric self.metric_params = metric_params self.p = p self.n_jobs = n_jobs if algorithm not in ['auto', 'brute', 'kd_tree', 'ball_tree']: raise ValueError("unrecognized algorithm: '%s'" % algorithm) if algorithm == 'auto': if metric == 'precomputed': alg_check = 'brute' elif callable(metric) or metric in VALID_METRICS['ball_tree']: alg_check = 'ball_tree' else: alg_check = 'brute' else: alg_check = algorithm if callable(metric): if algorithm == 'kd_tree': # callable metric is only valid for brute force and ball_tree raise ValueError( "kd_tree algorithm does not support callable metric '%s'" % metric) elif metric not in VALID_METRICS[alg_check]: raise ValueError("Metric '%s' not valid for algorithm '%s'" % (metric, algorithm)) if self.metric_params is not None and 'p' in self.metric_params: warnings.warn("Parameter p is found in metric_params. " "The corresponding parameter from __init__ " "is ignored.", SyntaxWarning, stacklevel=3) effective_p = metric_params['p'] else: effective_p = self.p if self.metric in ['wminkowski', 'minkowski'] and effective_p < 1: raise ValueError("p must be greater than one for minkowski metric") self._fit_X = None self._tree = None self._fit_method = None def _fit(self, X): if self.metric_params is None: self.effective_metric_params_ = {} else: self.effective_metric_params_ = self.metric_params.copy() effective_p = self.effective_metric_params_.get('p', self.p) if self.metric in ['wminkowski', 'minkowski']: self.effective_metric_params_['p'] = effective_p self.effective_metric_ = self.metric # For minkowski distance, use more efficient methods where available if self.metric == 'minkowski': p = self.effective_metric_params_.pop('p', 2) if p < 1: raise ValueError("p must be greater than one " "for minkowski metric") elif p == 1: self.effective_metric_ = 'manhattan' elif p == 2: self.effective_metric_ = 'euclidean' elif p == np.inf: self.effective_metric_ = 'chebyshev' else: self.effective_metric_params_['p'] = p if isinstance(X, NeighborsBase): self._fit_X = X._fit_X self._tree = X._tree self._fit_method = X._fit_method return self elif isinstance(X, BallTree): self._fit_X = X.data self._tree = X self._fit_method = 'ball_tree' return self elif isinstance(X, KDTree): self._fit_X = X.data self._tree = X self._fit_method = 'kd_tree' return self X = check_array(X, accept_sparse='csr') n_samples = X.shape[0] if n_samples == 0: raise ValueError("n_samples must be greater than 0") if issparse(X): if self.algorithm not in ('auto', 'brute'): warnings.warn("cannot use tree with sparse input: " "using brute force") if self.effective_metric_ not in VALID_METRICS_SPARSE['brute']: raise ValueError("metric '%s' not valid for sparse input" % self.effective_metric_) self._fit_X = X.copy() self._tree = None self._fit_method = 'brute' return self self._fit_method = self.algorithm self._fit_X = X if self._fit_method == 'auto': # A tree approach is better for small number of neighbors, # and KDTree is generally faster when available if ((self.n_neighbors is None or self.n_neighbors < self._fit_X.shape[0] // 2) and self.metric != 'precomputed'): if self.effective_metric_ in VALID_METRICS['kd_tree']: self._fit_method = 'kd_tree' elif (callable(self.effective_metric_) or self.effective_metric_ in VALID_METRICS['ball_tree']): self._fit_method = 'ball_tree' else: self._fit_method = 'brute' else: self._fit_method = 'brute' if self._fit_method == 'ball_tree': self._tree = BallTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'kd_tree': self._tree = KDTree(X, self.leaf_size, metric=self.effective_metric_, **self.effective_metric_params_) elif self._fit_method == 'brute': self._tree = None else: raise ValueError("algorithm = '%s' not recognized" % self.algorithm) if self.n_neighbors is not None: if self.n_neighbors <= 0: raise ValueError( "Expected n_neighbors > 0. Got %d" % self.n_neighbors ) return self @property def _pairwise(self): # For cross-validation routines to split data correctly return self.metric == 'precomputed' class KNeighborsMixin(object): """Mixin for k-neighbors searches""" def kneighbors(self, X=None, n_neighbors=None, return_distance=True): """Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point. Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors to get (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array Array representing the lengths to points, only present if return_distance=True ind : array Indices of the nearest points in the population matrix. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1,1,1] >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> print(neigh.kneighbors([[1., 1., 1.]])) # doctest: +ELLIPSIS (array([[ 0.5]]), array([[2]]...)) As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points: >>> X = [[0., 1., 0.], [1., 0., 1.]] >>> neigh.kneighbors(X, return_distance=False) # doctest: +ELLIPSIS array([[1], [2]]...) """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if n_neighbors is None: n_neighbors = self.n_neighbors if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X # Include an extra neighbor to account for the sample itself being # returned, which is removed later n_neighbors += 1 train_size = self._fit_X.shape[0] if n_neighbors > train_size: raise ValueError( "Expected n_neighbors <= n_samples, " " but n_samples = %d, n_neighbors = %d" % (train_size, n_neighbors) ) n_samples, _ = X.shape sample_range = np.arange(n_samples)[:, None] n_jobs = _get_n_jobs(self.n_jobs) if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', n_jobs=n_jobs, squared=True) else: dist = pairwise_distances( X, self._fit_X, self.effective_metric_, n_jobs=n_jobs, **self.effective_metric_params_) neigh_ind = np.argpartition(dist, n_neighbors - 1, axis=1) neigh_ind = neigh_ind[:, :n_neighbors] # argpartition doesn't guarantee sorted order, so we sort again neigh_ind = neigh_ind[ sample_range, np.argsort(dist[sample_range, neigh_ind])] if return_distance: if self.effective_metric_ == 'euclidean': result = np.sqrt(dist[sample_range, neigh_ind]), neigh_ind else: result = dist[sample_range, neigh_ind], neigh_ind else: result = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) result = Parallel(n_jobs, backend='threading')( delayed(self._tree.query, check_pickle=False)( X[s], n_neighbors, return_distance) for s in gen_even_slices(X.shape[0], n_jobs) ) if return_distance: dist, neigh_ind = tuple(zip(*result)) result = np.vstack(dist), np.vstack(neigh_ind) else: result = np.vstack(result) else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return result else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = result else: neigh_ind = result sample_mask = neigh_ind != sample_range # Corner case: When the number of duplicates are more # than the number of neighbors, the first NN will not # be the sample, but a duplicate. # In that case mask the first duplicate. dup_gr_nbrs = np.all(sample_mask, axis=1) sample_mask[:, 0][dup_gr_nbrs] = False neigh_ind = np.reshape( neigh_ind[sample_mask], (n_samples, n_neighbors - 1)) if return_distance: dist = np.reshape( dist[sample_mask], (n_samples, n_neighbors - 1)) return dist, neigh_ind return neigh_ind def kneighbors_graph(self, X=None, n_neighbors=None, mode='connectivity'): """Computes the (weighted) graph of k-Neighbors for points in X Parameters ---------- X : array-like, shape (n_query, n_features), \ or (n_query, n_indexed) if metric == 'precomputed' The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples_fit] n_samples_fit is the number of samples in the fitted data A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 1.], [ 1., 0., 1.]]) See also -------- NearestNeighbors.radius_neighbors_graph """ if n_neighbors is None: n_neighbors = self.n_neighbors # kneighbors does the None handling. if X is not None: X = check_array(X, accept_sparse='csr') n_samples1 = X.shape[0] else: n_samples1 = self._fit_X.shape[0] n_samples2 = self._fit_X.shape[0] n_nonzero = n_samples1 * n_neighbors A_indptr = np.arange(0, n_nonzero + 1, n_neighbors) # construct CSR matrix representation of the k-NN graph if mode == 'connectivity': A_data = np.ones(n_samples1 * n_neighbors) A_ind = self.kneighbors(X, n_neighbors, return_distance=False) elif mode == 'distance': A_data, A_ind = self.kneighbors( X, n_neighbors, return_distance=True) A_data = np.ravel(A_data) else: raise ValueError( 'Unsupported mode, must be one of "connectivity" ' 'or "distance" but got "%s" instead' % mode) kneighbors_graph = csr_matrix((A_data, A_ind.ravel(), A_indptr), shape=(n_samples1, n_samples2)) return kneighbors_graph class RadiusNeighborsMixin(object): """Mixin for radius-based neighbors searches""" def radius_neighbors(self, X=None, radius=None, return_distance=True): """Finds the neighbors within a given radius of a point or points. Return the indices and distances of each point from the dataset lying in a ball with size ``radius`` around the points of the query array. Points lying on the boundary are included in the results. The result points are *not* necessarily sorted by distance to their query point. Parameters ---------- X : array-like, (n_samples, n_features), optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Limiting distance of neighbors to return. (default is the value passed to the constructor). return_distance : boolean, optional. Defaults to True. If False, distances will not be returned Returns ------- dist : array, shape (n_samples,) of arrays Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the ``metric`` constructor parameter. ind : array, shape (n_samples,) of arrays An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size ``radius`` around the query points. Examples -------- In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who's the closest point to [1, 1, 1]: >>> import numpy as np >>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.6) >>> neigh.fit(samples) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> rng = neigh.radius_neighbors([[1., 1., 1.]]) >>> print(np.asarray(rng[0][0])) # doctest: +ELLIPSIS [ 1.5 0.5] >>> print(np.asarray(rng[1][0])) # doctest: +ELLIPSIS [1 2] The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time. Notes ----- Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, `radius_neighbors` returns arrays of objects, where each object is a 1D array of indices or distances. """ if self._fit_method is None: raise NotFittedError("Must fit neighbors before querying.") if X is not None: query_is_train = False X = check_array(X, accept_sparse='csr') else: query_is_train = True X = self._fit_X if radius is None: radius = self.radius n_samples = X.shape[0] if self._fit_method == 'brute': # for efficiency, use squared euclidean distances if self.effective_metric_ == 'euclidean': dist = pairwise_distances(X, self._fit_X, 'euclidean', n_jobs=self.n_jobs, squared=True) radius *= radius else: dist = pairwise_distances(X, self._fit_X, self.effective_metric_, n_jobs=self.n_jobs, **self.effective_metric_params_) neigh_ind_list = [np.where(d <= radius)[0] for d in dist] # See https://github.com/numpy/numpy/issues/5456 # if you want to understand why this is initialized this way. neigh_ind = np.empty(n_samples, dtype='object') neigh_ind[:] = neigh_ind_list if return_distance: dist_array = np.empty(n_samples, dtype='object') if self.effective_metric_ == 'euclidean': dist_list = [np.sqrt(d[neigh_ind[i]]) for i, d in enumerate(dist)] else: dist_list = [d[neigh_ind[i]] for i, d in enumerate(dist)] dist_array[:] = dist_list results = dist_array, neigh_ind else: results = neigh_ind elif self._fit_method in ['ball_tree', 'kd_tree']: if issparse(X): raise ValueError( "%s does not work with sparse matrices. Densify the data, " "or set algorithm='brute'" % self._fit_method) results = self._tree.query_radius(X, radius, return_distance=return_distance) if return_distance: results = results[::-1] else: raise ValueError("internal: _fit_method not recognized") if not query_is_train: return results else: # If the query data is the same as the indexed data, we would like # to ignore the first nearest neighbor of every sample, i.e # the sample itself. if return_distance: dist, neigh_ind = results else: neigh_ind = results for ind, ind_neighbor in enumerate(neigh_ind): mask = ind_neighbor != ind neigh_ind[ind] = ind_neighbor[mask] if return_distance: dist[ind] = dist[ind][mask] if return_distance: return dist, neigh_ind return neigh_ind def radius_neighbors_graph(self, X=None, radius=None, mode='connectivity'): """Computes the (weighted) graph of Neighbors for points in X Neighborhoods are restricted the points at a distance lower than radius. Parameters ---------- X : array-like, shape = [n_samples, n_features], optional The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor. radius : float Radius of neighborhoods. (default is the value passed to the constructor). mode : {'connectivity', 'distance'}, optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points. Returns ------- A : sparse matrix in CSR format, shape = [n_samples, n_samples] A[i, j] is assigned the weight of edge that connects i to j. Examples -------- >>> X = [[0], [3], [1]] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(radius=1.5) >>> neigh.fit(X) # doctest: +ELLIPSIS NearestNeighbors(algorithm='auto', leaf_size=30, ...) >>> A = neigh.radius_neighbors_graph(X) >>> A.toarray() array([[ 1., 0., 1.], [ 0., 1., 0.], [ 1., 0., 1.]]) See also -------- kneighbors_graph """ if X is not None: X = check_array(X, accept_sparse=['csr', 'csc', 'coo']) n_samples2 = self._fit_X.shape[0] if radius is None: radius = self.radius # construct CSR matrix representation of the NN graph if mode == 'connectivity': A_ind = self.radius_neighbors(X, radius, return_distance=False) A_data = None elif mode == 'distance': dist, A_ind = self.radius_neighbors(X, radius, return_distance=True) A_data = np.concatenate(list(dist)) else: raise ValueError( 'Unsupported mode, must be one of "connectivity", ' 'or "distance" but got %s instead' % mode) n_samples1 = A_ind.shape[0] n_neighbors = np.array([len(a) for a in A_ind]) A_ind = np.concatenate(list(A_ind)) if A_data is None: A_data = np.ones(len(A_ind)) A_indptr = np.concatenate((np.zeros(1, dtype=int), np.cumsum(n_neighbors))) return csr_matrix((A_data, A_ind, A_indptr), shape=(n_samples1, n_samples2)) class SupervisedFloatMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. y : {array-like, sparse matrix} Target values, array of float values, shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) self._y = y return self._fit(X) class SupervisedIntegerMixin(object): def fit(self, X, y): """Fit the model using X as training data and y as target values Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. y : {array-like, sparse matrix} Target values of shape = [n_samples] or [n_samples, n_outputs] """ if not isinstance(X, (KDTree, BallTree)): X, y = check_X_y(X, y, "csr", multi_output=True) if y.ndim == 1 or y.ndim == 2 and y.shape[1] == 1: if y.ndim != 1: warnings.warn("A column-vector y was passed when a 1d array " "was expected. Please change the shape of y to " "(n_samples, ), for example using ravel().", DataConversionWarning, stacklevel=2) self.outputs_2d_ = False y = y.reshape((-1, 1)) else: self.outputs_2d_ = True check_classification_targets(y) self.classes_ = [] self._y = np.empty(y.shape, dtype=np.int) for k in range(self._y.shape[1]): classes, self._y[:, k] = np.unique(y[:, k], return_inverse=True) self.classes_.append(classes) if not self.outputs_2d_: self.classes_ = self.classes_[0] self._y = self._y.ravel() return self._fit(X) class UnsupervisedMixin(object): def fit(self, X, y=None): """Fit the model using X as training data Parameters ---------- X : {array-like, sparse matrix, BallTree, KDTree} Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric='precomputed'. """ return self._fit(X)
mit
AlanZatarain/pysal
pysal/contrib/viz/mapping.py
5
24991
""" Choropleth mapping using PySAL and Matplotlib """ __author__ = "Sergio Rey <[email protected]>", "Dani Arribas-Bel <[email protected]" import pysal as ps import numpy as np import matplotlib.pyplot as plt from matplotlib import colors as clrs import matplotlib as mpl from matplotlib.pyplot import fill, text from matplotlib import cm from matplotlib.patches import Polygon from matplotlib.collections import PolyCollection, PathCollection, PatchCollection from mpl_toolkits.basemap import Basemap from ogr import osr def transCRS(xy, src_prj, trt_prj): ''' Re-project a 2D array of xy coordinates from one prj file to another ... Arguments --------- xy : ndarray nx2 array with coordinates to be reprojected. First column is X axis, second is Y axis src_prj : str Path to .prj file of the source Coordinate Reference System (CRS) of `xy` trt_prj : str Path to .prj file of the target Coordinate Reference System (CRS) to reproject `xy` Returns ------- xyp : ndarray nx2 array with reprojected coordinates. First column is X axis, second is Y axis ''' orig = osr.SpatialReference() orig.ImportFromWkt(open(src_prj).read()) target = osr.SpatialReference() target.ImportFromWkt(open(trt_prj).read()) trCRS = osr.CoordinateTransformation(orig, target) return np.array(trCRS.TransformPoints(xy))[:, :2] def map_poly_shp(shp_link, which='all'): ''' Create a map object from a shapefile ... Arguments --------- shp_link : str Path to shapefile which : str/list Returns ------- map : PatchCollection Map object with the polygons from the shapefile ''' shp = ps.open(shp_link) if which == 'all': db = ps.open(shp_link.replace('.shp', '.dbf')) n = len(db.by_col(db.header[0])) db.close() which = [True] * n patches = [] for inwhich, shape in zip(which, shp): if inwhich: for ring in shape.parts: xy = np.array(ring) patches.append(xy) return PolyCollection(patches) def map_poly_shp_lonlat(shp_link, projection='merc'): ''' Create a map object from a shapefile in lon/lat CRS using Basemap ... Arguments --------- shp_link : str Path to shapefile projection : str Basemap projection. See [1]_ for a list. Defaults to 'merc' Returns ------- map : PatchCollection Map object with the polygons from the shapefile Links ----- .. [1] <http://matplotlib.org/basemap/api/basemap_api.html#module-mpl_toolkits.basemap> ''' shp = ps.open(shp_link) shps = list(shp) left, bottom, right, top = shp.bbox m = Basemap(resolution = 'i', projection=projection, llcrnrlat=bottom, urcrnrlat=top, llcrnrlon=left, urcrnrlon=right, lat_ts=(bottom+top)/2, lon_0=(right-left)/2, lat_0=(top-bottom)/2) bounding_box = [m.llcrnrx, m.llcrnry,m.urcrnrx,m.urcrnry] patches = [] for shape in shps: parts = [] for ring in shape.parts: xy = np.array(ring) x,y = m(xy[:,0], xy[:,1]) x = x / bounding_box[2] y = y / bounding_box[3] n = len(x) x.shape = (n,1) y.shape = (n,1) xy = np.hstack((x,y)) polygon = Polygon(xy, True) patches.append(polygon) return PatchCollection(patches) def setup_ax(polyCos_list, ax=None): ''' Generate an Axes object for a list of collections ... Arguments --------- polyCos_list: list List of Matplotlib collections (e.g. an object from map_poly_shp) ax : AxesSubplot (Optional) Pre-existing axes to which append the collections and setup Returns ------- ax : AxesSubplot Rescaled axes object with the collection and without frame or X/Yaxis ''' if not ax: ax = plt.axes() for polyCo in polyCos_list: ax.add_collection(polyCo) ax.autoscale_view() ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) return ax def plot_poly_lines(shp_link, projection='merc', savein=None, poly_col='none'): ''' Quick plotting of shapefiles ... Arguments --------- shp_link : str Path to shapefile projection : str Basemap projection. See [1]_ for a list. Defaults to 'merc' savein : str Path to png file where to dump the plot. Optional, defaults to None poly_col : str Face color of polygons ''' fig = plt.figure() ax = fig.add_subplot(111) patchco = map_poly_shp_lonlat(shp_link, projection=projection) patchco.set_facecolor('none') ax.add_collection(patchco) ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) if savein: plt.savefig(savein) else: plt.show() return None def plot_choropleth(shp_link, values, type, k=5, cmap='hot_r', \ projection='merc', sample_fisher=True, title='', \ savein=None, figsize=None): ''' Wrapper to quickly create and plot from a lat/lon shapefile ... Arguments --------- shp_link : str Path to shapefile values : array Numpy array with values to map type : str Type of choropleth. Supported methods: * 'classless' * 'unique_values' * 'quantiles' (default) * 'fisher_jenks' * 'equal_interval' k : int Number of bins to classify values in and assign a color to cmap : str Matplotlib coloring scheme projection : str Basemap projection. See [1]_ for a list. Defaults to 'merc' sample_fisher : Boolean Defaults to True, controls whether Fisher-Jenks classification uses a sample (faster) or the entire array of values. Ignored if 'classification'!='fisher_jenks' title : str Optional string for the title savein : str Path to png file where to dump the plot. Optional, defaults to None figsize : tuple Figure dimensions Returns ------- map : PatchCollection Map object with the polygons from the shapefile and unique value coloring Links ----- .. [1] <http://matplotlib.org/basemap/api/basemap_api.html#module-mpl_toolkits.basemap> ''' if type == 'classless': map_obj = base_choropleth_classless(shp_link, values, cmap=cmap, \ projection=projection) if type == 'unique_values': map_obj = base_choropleth_unique(shp_link, values, cmap=cmap, \ projection=projection) if type == 'quantiles': map_obj = base_choropleth_classif(shp_link, values, \ classification='quantiles', cmap=cmap, projection=projection) if type == 'fisher_jenks': map_obj = base_choropleth_classif(shp_link, values, \ classification='fisher_jenks', cmap=cmap, \ projection=projection, sample_fisher=sample_fisher) if type == 'equal_interval': map_obj = base_choropleth_classif(shp_link, values, \ classification='equal_interval', cmap=cmap, projection=projection) fig = plt.figure(figsize=figsize) ax = fig.add_subplot(111) ax.add_collection(map_obj) ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) if title: ax.set_title(title) if type=='quantiles' or type=='fisher_jenks' or type=='equal_interval': cmap = map_obj.get_cmap() norm = map_obj.norm boundaries = np.round(map_obj.norm.boundaries, decimals=3) plt.colorbar(map_obj, cmap=cmap, norm=norm, boundaries=boundaries, \ ticks=boundaries, orientation='horizontal') if savein: plt.savefig(savein) else: plt.show() return None def base_choropleth_classless(shp_link, values, cmap='hot_r', projection='merc'): ''' Create a map object with classless coloring from a shapefile in lon/lat CRS ... Arguments --------- shp_link : str Path to shapefile values : array Numpy array with values to map cmap : str Matplotlib coloring scheme projection : str Basemap projection. See [1]_ for a list. Defaults to 'merc' Returns ------- map : PatchCollection Map object with the polygons from the shapefile and classless coloring Links ----- .. [1] <http://matplotlib.org/basemap/api/basemap_api.html#module-mpl_toolkits.basemap> ''' cmap = cm.get_cmap(cmap) map_obj = map_poly_shp_lonlat(shp_link, projection=projection) map_obj.set_cmap(cmap) map_obj.set_array(values) return map_obj def base_choropleth_unique(shp_link, values, cmap='hot_r', projection='merc'): ''' Create a map object with coloring based on unique values from a shapefile in lon/lat CRS ... Arguments --------- shp_link : str Path to shapefile values : array Numpy array with values to map cmap : str Matplotlib coloring scheme projection : str Basemap projection. See [1]_ for a list. Defaults to 'merc' Returns ------- map : PatchCollection Map object with the polygons from the shapefile and unique value coloring Links ----- .. [1] <http://matplotlib.org/basemap/api/basemap_api.html#module-mpl_toolkits.basemap> ''' uvals = np.unique(values) colormap = plt.cm.Set1 colors = [colormap(i) for i in np.linspace(0, 0.9, len(uvals))] colors = np.random.permutation(colors) colormatch = {val: col for val, col in zip(uvals, colors)} map_obj = map_poly_shp_lonlat(shp_link, projection=projection) map_obj.set_color([colormatch[i] for i in values]) map_obj.set_edgecolor('k') return map_obj def base_choropleth_classif(shp_link, values, classification='quantiles', \ k=5, cmap='hot_r', projection='merc', sample_fisher=True): ''' Create a map object with coloring based on different classification methods, from a shapefile in lon/lat CRS ... Arguments --------- shp_link : str Path to shapefile values : array Numpy array with values to map classification : str Classificatio method to use. Options supported: * 'quantiles' (default) * 'fisher_jenks' * 'equal_interval' k : int Number of bins to classify values in and assign a color to cmap : str Matplotlib coloring scheme projection : str Basemap projection. See [1]_ for a list. Defaults to 'merc' sample_fisher : Boolean Defaults to True, controls whether Fisher-Jenks classification uses a sample (faster) or the entire array of values. Ignored if 'classification'!='fisher_jenks' Returns ------- map : PatchCollection Map object with the polygons from the shapefile and unique value coloring Links ----- .. [1] <http://matplotlib.org/basemap/api/basemap_api.html#module-mpl_toolkits.basemap> ''' if classification == 'quantiles': classification = ps.Quantiles(values, k) boundaries = classification.bins.tolist() if classification == 'equal_interval': classification = ps.Equal_Interval(values, k) boundaries = classification.bins.tolist() if classification == 'fisher_jenks': if sample_fisher: classification = ps.esda.mapclassify.Fisher_Jenks_Sampled(values,k) else: classification = ps.Fisher_Jenks(values,k) boundaries = classification.bins[:] map_obj = map_poly_shp_lonlat(shp_link, projection=projection) map_obj.set_alpha(0.4) cmap = cm.get_cmap(cmap, k+1) map_obj.set_cmap(cmap) boundaries.insert(0,0) norm = clrs.BoundaryNorm(boundaries, cmap.N) map_obj.set_norm(norm) map_obj.set_array(values) return map_obj ############################# ### Serge's original code ### ############################# class Map_Projection(object): """Map_Projection Parameters ========== shapefile: name of shapefile with .shp extension projection: proj4 projection string Returns ======= projected: list of lists projected coordinates for each shape in the shapefile. Each sublist contains projected coordinates for parts of a shape """ def __init__(self, shapefile, projection='merc'): super(Map_Projection, self).__init__() self.projection = projection shp_reader = ps.open(shapefile) shps = [] for shp in shp_reader: shps.append(shp) left = shp_reader.header['BBOX Xmin'] right = shp_reader.header['BBOX Xmax'] bottom = shp_reader.header['BBOX Ymin'] top = shp_reader.header['BBOX Ymax'] m = Basemap(resolution = 'i', projection='merc', llcrnrlat=bottom, urcrnrlat=top, llcrnrlon=left, urcrnrlon=right, lat_ts=(bottom+top)/2) projected = [] for shp in shps: parts = [] for ring in shp.parts: xy = np.array(ring) x,y = m(xy[:,0], xy[:,1]) parts.append([x,y]) projected.append(parts) results = {} self.projected = projected self.bounding_box = [m.llcrnrx, m.llcrnry,m.urcrnrx,m.urcrnry] self.shapefile = shapefile def equal_interval_map(coords, y, k, title='Equal Interval'): """ coords: Map_Projection instance y: array variable to map k: int number of classes title: string map title """ classification = ps.Equal_Interval(y,k) fig = plt.figure() ax = fig.add_subplot(111) patches = [] colors = [] i = 0 shape_colors = classification.bins[classification.yb] shape_colors = y #classification.bins[classification.yb] for shp in coords.projected: for ring in shp: x,y = ring x = x / coords.bounding_box[2] y = y / coords.bounding_box[3] n = len(x) x.shape = (n,1) y.shape = (n,1) xy = np.hstack((x,y)) polygon = Polygon(xy, True) patches.append(polygon) colors.append(shape_colors[i]) i += 1 cmap = cm.get_cmap('hot_r', k+1) boundaries = classification.bins.tolist() boundaries.insert(0,0) norm = clrs.BoundaryNorm(boundaries, cmap.N) p = PatchCollection(patches, cmap=cmap, alpha=0.4, norm=norm) colors = np.array(colors) p.set_array(colors) ax.add_collection(p) ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) ax.set_title(title) plt.colorbar(p, cmap=cmap, norm = norm, boundaries = boundaries, ticks= boundaries) plt.show() return classification def fisher_jenks_map(coords, y, k, title='Fisher-Jenks', sampled=False): """ coords: Map_Projection instance y: array variable to map k: int number of classes title: string map title sampled: binary if True classification bins obtained on a sample of y and then applied. Useful for large n arrays """ if sampled: classification = ps.esda.mapclassify.Fisher_Jenks_Sampled(y,k) else: classification = ps.Fisher_Jenks(y,k) fig = plt.figure() ax = fig.add_subplot(111) patches = [] colors = [] i = 0 shape_colors = y #classification.bins[classification.yb] for shp in coords.projected: for ring in shp: x,y = ring x = x / coords.bounding_box[2] y = y / coords.bounding_box[3] n = len(x) x.shape = (n,1) y.shape = (n,1) xy = np.hstack((x,y)) polygon = Polygon(xy, True) patches.append(polygon) colors.append(shape_colors[i]) i += 1 cmap = cm.get_cmap('hot_r', k+1) boundaries = classification.bins[:] #print boundaries #print min(shape_colors) > 0.0 if min(shape_colors) > 0.0: boundaries.insert(0,0) else: boundaries.insert(0, boundaries[0] - boundaries[1]) #print boundaries norm = clrs.BoundaryNorm(boundaries, cmap.N) p = PatchCollection(patches, cmap=cmap, alpha=0.4, norm=norm) colors = np.array(colors) p.set_array(colors) ax.add_collection(p) ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) ax.set_title(title) plt.colorbar(p, cmap=cmap, norm = norm, boundaries = boundaries, ticks= boundaries) plt.show() return classification def quantile_map(coords,y,k, title='Quantile'): """ Quantile choropleth map Arguments ========= coords: Map_Projection instance y: array variable to map k: int number of classes title: string map title """ classification = ps.Quantiles(y,k) fig = plt.figure() ax = fig.add_subplot(111) patches = [] colors = [] i = 0 shape_colors = classification.bins[classification.yb] shape_colors = y #classification.bins[classification.yb] for shp in coords.projected: for ring in shp: x,y = ring x = x / coords.bounding_box[2] y = y / coords.bounding_box[3] n = len(x) x.shape = (n,1) y.shape = (n,1) xy = np.hstack((x,y)) polygon = Polygon(xy, True) patches.append(polygon) colors.append(shape_colors[i]) i += 1 cmap = cm.get_cmap('hot_r', k+1) boundaries = classification.bins.tolist() boundaries.insert(0,0) norm = clrs.BoundaryNorm(boundaries, cmap.N) p = PatchCollection(patches, cmap=cmap, alpha=0.4, norm=norm) colors = np.array(colors) p.set_array(colors) ax.add_collection(p) ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) ax.set_title(title) plt.colorbar(p, cmap=cmap, norm = norm, boundaries = boundaries, ticks= boundaries) plt.show() return classification def classless_map(coords,y, title='Classless'): """ Classless choropleth map Arguments ========= coords: Map_Projection instance y: array variable to map title: string map title """ fig = plt.figure() ax = fig.add_subplot(111) patches = [] colors = [] i = 0 shape_colors = y for shp in coords.projected: for ring in shp: x,y = ring x = x / coords.bounding_box[2] y = y / coords.bounding_box[3] n = len(x) x.shape = (n,1) y.shape = (n,1) xy = np.hstack((x,y)) polygon = Polygon(xy, True) patches.append(polygon) colors.append(shape_colors[i]) i += 1 cmap = cm.get_cmap('hot_r') p = PatchCollection(patches, cmap=cmap, alpha=0.4) colors = np.array(colors) p.set_array(colors) ax.add_collection(p) ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) ax.set_title(title) plt.colorbar(p) plt.show() def lisa_cluster_map(coords, lisa, title='LISA Cluster Map', p = 0.05): """ LISA Cluster Map Arguments ========= coords: Map_Projection instance lisa: Moran_Local instance title: string map title p: float p-value to define clusters """ # pysal: 1 HH, 2 LH, 3 LL, 4 HL c ={} c[0] = 'white' # non-significant c[1] = 'darkred' c[2] = 'lightsalmon' c[3] = 'darkblue' c[4] = 'lightblue' q = lisa.q.copy() yp = lisa.p_sim.copy() nsig = yp > p q[nsig] = 0 fig = plt.figure() ax = fig.add_subplot(111) i = 0 for shp in coords.projected: for ring in shp: x,y = ring x = x / coords.bounding_box[2] y = y / coords.bounding_box[3] n = len(x) x.shape = (n,1) y.shape = (n,1) ax.fill(x,y,c[q[i]]) i += 1 ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) ax.set_title(title) plt.show() def unique_values_map(coords,y, title='Unique Value'): """ Unique value choropleth Arguments ========= coords: Map_Projection instance y: array zeros for elements that should not be mapped, 1-4 for elements to highlight title: string map title Notes ===== Allows for an unlimited number of categories, but if there are many categories the colors may be difficult to distinguish. [Currently designed for use with a Moran_Local Instance for mapping a subset of the significant LISAs.] """ yu = np.unique(y) colormap = plt.cm.Set1 colors = [colormap(i) for i in np.linspace(0, 0.9, len(yu))] colors = np.random.permutation(colors) colormatch = zip(yu, colors) c = {} for i in colormatch: c[i[0]] = i[1] ''' # pysal: 1 HH, 2 LH, 3 LL, 4 HL c ={} c[0] = 'white' # non-significant c[1] = 'darkred' c[2] = 'lightsalmon' c[3] = 'darkblue' c[4] = 'lightblue' ''' fig = plt.figure() ax = fig.add_subplot(111) i = 0 for shp in coords.projected: for ring in shp: x,yc = ring x = x / coords.bounding_box[2] yc = yc / coords.bounding_box[3] n = len(x) x.shape = (n,1) yc.shape = (n,1) ax.fill(x,yc,color=c[y[i]], edgecolor='black') #ax.fill(x,yc,c[y[i]]) i += 1 ax.set_frame_on(False) ax.axes.get_yaxis().set_visible(False) ax.axes.get_xaxis().set_visible(False) ax.set_title(title) plt.show() if __name__ == '__main__': shp_link = ps.examples.get_path("sids2.shp") dbf = ps.open(shp_link.replace('.shp', '.dbf')) values = np.array(dbf.by_col("SIDR74")) #values[: values.shape[0]/2] = 1 #values[values.shape[0]/2: ] = 0 #shp_link0 = '/home/dani/Desktop/world/TM_WORLD_BORDERS-0.3.shp' #shp_link1 = '/home/dani/Desktop/world/world.shp' ''' which = values > 1. for shp_link in [shp_link]: fig = plt.figure() patchco = map_poly_shp(shp_link) patchcoB = map_poly_shp(shp_link, which=which) patchco.set_facecolor('none') ax = setup_ax([patchco, patchcoB]) fig.add_axes(ax) plt.show() break ''' patchco = map_poly_shp(shp_link) patchco.set_facecolor('none') fig = plt.figure() ax = fig.add_subplot(121) ax = setup_ax([patchco], ax) plt.show()
bsd-3-clause
amozie/amozie
testzie/table_test.py
1
3048
import numpy as np import pandas as pd lt = 'f:/lt/' region = pd.read_csv(lt + 'region.csv',sep='\t', index_col=0) # 排除内蒙古和西藏 # prvs = ['北京', '天津', '河北', '山东', '辽宁', '江苏', '上海', '浙江', '福建', '广东', '海南', '吉林', # '黑龙江', '山西', '河南', '安徽', '江西', '湖北', '湖南', '广西', '重庆', '四川', '贵州', '云南', # '陕西', '甘肃', '青海', '宁夏', '新疆'] prvs = ['北京', '天津', '河北', '山东', '辽宁', '江苏', '上海', '浙江', '福建', '广东', '广西', '海南', '吉林', '黑龙江', '山西', '河南', '安徽', '江西', '湖北', '湖南', '重庆', '四川', '贵州', '云南', '陕西', '甘肃', '青海', '宁夏', '新疆', '内蒙古'] years = ['2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012'] worker = pd.read_csv(lt + 'worker.csv', sep='\t', index_col=0).join(region) capital = pd.read_csv(lt + 'capital.csv', sep='\t', index_col=0).join(region) energy = pd.read_csv(lt + 'energy.csv', sep='\t', index_col=0).join(region) gdp = pd.read_csv(lt + 'gdp.csv', sep='\t', index_col=0).join(region) co2 = pd.read_csv(lt + 'co2.csv', sep='\t', index_col=0).join(region) table = {'劳动力': worker, '资本': capital, '能源': energy, 'GDP': gdp, 'CO2': co2} ll = [] ll_indexs = ['劳动力', '资本', '能源', 'GDP', 'CO2'] # ll_columns = ['整体均值', '整体标准差', '东部均值', '东部标准差', '中部均值', '中部标准差', '西部均值', '西部标准差'] ll_columns = ['均值', '标准差', '最小值', '最大值'] for k, v in table.items(): print(k) df = v.loc[prvs, :] # 整体 val = df.loc[:, years].values.ravel() avg = val.mean() std = np.std(val, ddof=1) mini = val.min() maxi = val.max() # 东部 val1 = df[df.rgn==1].loc[:, years].values.ravel() avg1 = val1.mean() std1 = np.std(val1, ddof=1) # 中部 val2 = df[df.rgn==2].loc[:, years].values.ravel() avg2 = val2.mean() std2 = np.std(val2, ddof=1) # 西部 val3 = df[df.rgn==3].loc[:, years].values.ravel() avg3 = val3.mean() std3 = np.std(val3, ddof=1) print(f'整体\n平均数{avg:.2f}\n标准差{std:.2f}') print(f'东部\n平均数{avg1:.2f}\n标准差{std1:.2f}') print(f'中部\n平均数{avg2:.2f}\n标准差{std2:.2f}') print(f'西部\n平均数{avg3:.2f}\n标准差{std3:.2f}') # ll.append([avg, std, avg1, std1, avg2, std2, avg3, std3]) ll.append([avg, std, mini, maxi]) arr = np.array(ll) df = pd.DataFrame(arr, ll_indexs, ll_columns) df.to_csv(lt + 'table2_300.csv') df.to_csv(lt + 'table6_290.csv') df.to_csv(lt + 'table6_300.csv') # eviews eviews = pd.read_csv(lt + 'eviews.csv', sep='\t') # 排除内蒙古 eviews = eviews[eviews.prv_id!=5] # 整体 eviews.shape des = eviews.describe() des.to_csv(lt + 'des.csv') # 东部 eviews = eviews[eviews.rgn=='东部'] eviews.shape des = eviews.describe() des.to_csv(lt + 'des.csv') pd.Series.rank()
apache-2.0
lorenzo-desantis/mne-python
mne/viz/montage.py
13
1786
"""Functions to plot EEG sensor montages or digitizer montages """ import numpy as np def plot_montage(montage, scale_factor=1.5, show_names=False, show=True): """Plot a montage Parameters ---------- montage : instance of Montage The montage to visualize. scale_factor : float Determines the size of the points. Defaults to 1.5. show_names : bool Whether to show the channel names. Defaults to False. show : bool Show figure if True. Returns ------- fig : Instance of matplotlib.figure.Figure The figure object. """ from ..channels.montage import Montage, DigMontage import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # noqa fig = plt.figure() ax = fig.add_subplot(111, projection='3d') if isinstance(montage, Montage): pos = montage.pos ax.scatter(pos[:, 0], pos[:, 1], pos[:, 2]) if show_names: ch_names = montage.ch_names for ch_name, x, y, z in zip(ch_names, pos[:, 0], pos[:, 1], pos[:, 2]): ax.text(x, y, z, ch_name) elif isinstance(montage, DigMontage): pos = np.vstack((montage.hsp, montage.elp)) ax.scatter(pos[:, 0], pos[:, 1], pos[:, 2]) if show_names: if montage.point_names: hpi_names = montage.point_names for hpi_name, x, y, z in zip(hpi_names, montage.elp[:, 0], montage.elp[:, 1], montage.elp[:, 2]): ax.text(x, y, z, hpi_name) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') if show: plt.show() return fig
bsd-3-clause
rxa254/VibrationsAndWaves
Simulations/TravelingWave-Detail.py
1
2009
#!/usr/bin/env python from __future__ import division import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt plt.style.use('seaborn-paper') #plt.style.use('fivethirtyeight') import numpy as np mpl.rcParams.update({'text.usetex': True, 'lines.linewidth': 2.5, 'font.size': 16, 'xtick.labelsize': 'small', 'ytick.labelsize': 'small', 'axes.grid': True, 'axes.labelsize': 'medium', 'grid.alpha': 0.73, 'lines.markersize': 12, 'legend.borderpad': 0.2, 'legend.fancybox': True, 'legend.fontsize': 13, 'legend.framealpha': 0.7, 'legend.handletextpad': 0.1, 'legend.labelspacing': 0.2, 'legend.loc': 'best', 'savefig.dpi': 100, 'pdf.compression': 9}) x = np.arange(0.0, 1.0, 0.001) A = 1 phi0 = 0 f = 9 omega = 2*np.pi*f tau = 0.5 L = 1 #s = A * np.sin(2*np.pi*f*t + phi0) #dy = np.exp(-t/tau) #s *= dy fig = plt.figure(11122, figsize=(8,4)) ax = fig.add_subplot(111) n = 4 t = 0 s = A * np.sin(n*np.pi * x / L - omega*t) ax.plot(x, s, alpha=0.85, rasterized = True, label = "t = 0") t = 0.01 s = A * np.sin(n*np.pi * x / L - omega*t) ax.plot(x, s, alpha=0.7, rasterized = True, label = "t = " + str(t)) ax.annotate( r'$y(x,t) = y(x + \Delta x, t + \frac{\Delta x}{v})$', fontsize='x-small', xy=(-0.031, -0.97), xycoords='data', xytext=(0.5, -0.6), textcoords='offset points') ax.set_xlabel('Displacement [L]') ax.set_ylabel('Amplitude [mm]') ax.set_title(r'$y = sin(\frac{2 \pi}{\lambda} (x - v t))$', fontsize=19) ax.grid(True) #ax.yaxis.set_ticks(np.arange(-1, 1.1, 0.5)) ax.legend() plt.savefig("detail-trav.pdf", bbox_inches='tight')
mit
daniorerio/trackpy
doc/sphinxext/plot_generator.py
9
10081
""" Sphinx plugin to run example scripts and create a gallery page. Taken from seaborn project, which is turn was lightly modified from the mpld3 project. """ from __future__ import division import os import os.path as op import re import glob import token import tokenize import shutil import json import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import image RST_TEMPLATE = """ .. _{sphinx_tag}: {docstring} .. image:: {img_file} **Python source code:** :download:`[download source: {fname}]<{fname}>` .. literalinclude:: {fname} :lines: {end_line}- """ INDEX_TEMPLATE = """ .. raw:: html <style type="text/css"> .figure {{ position: relative; float: left; margin: 10px; width: 180px; height: 200px; }} .figure img {{ position: absolute; display: inline; left: 0; width: 170px; height: 170px; opacity:1.0; filter:alpha(opacity=100); /* For IE8 and earlier */ }} .figure:hover img {{ -webkit-filter: blur(3px); -moz-filter: blur(3px); -o-filter: blur(3px); -ms-filter: blur(3px); filter: blur(3px); opacity:1.0; filter:alpha(opacity=100); /* For IE8 and earlier */ }} .figure span {{ position: absolute; display: inline; left: 0; width: 170px; height: 170px; background: #000; color: #fff; visibility: hidden; opacity: 0; z-index: 100; }} .figure p {{ position: absolute; top: 45%; width: 170px; font-size: 110%; }} .figure:hover span {{ visibility: visible; opacity: .4; }} .caption {{ position: absolue; width: 180px; top: 170px; text-align: center !important; }} </style> .. _{sphinx_tag}: Example gallery =============== {toctree} {contents} .. raw:: html <div style="clear: both"></div> """ def create_thumbnail(infile, thumbfile, width=300, height=300, cx=0.5, cy=0.5, border=4): baseout, extout = op.splitext(thumbfile) im = image.imread(infile) rows, cols = im.shape[:2] x0 = int(cx * cols - .5 * width) y0 = int(cy * rows - .5 * height) xslice = slice(x0, x0 + width) yslice = slice(y0, y0 + height) thumb = im[yslice, xslice] thumb[:border, :, :3] = thumb[-border:, :, :3] = 0 thumb[:, :border, :3] = thumb[:, -border:, :3] = 0 dpi = 100 fig = plt.figure(figsize=(width / dpi, height / dpi), dpi=dpi) ax = fig.add_axes([0, 0, 1, 1], aspect='auto', frameon=False, xticks=[], yticks=[]) ax.imshow(thumb, aspect='auto', resample=True, interpolation='bilinear') fig.savefig(thumbfile, dpi=dpi) return fig def indent(s, N=4): """indent a string""" return s.replace('\n', '\n' + N * ' ') class ExampleGenerator(object): """Tools for generating an example page from a file""" def __init__(self, filename, target_dir): self.filename = filename self.target_dir = target_dir self.thumbloc = .5, .5 self.extract_docstring() with open(filename, "r") as fid: self.filetext = fid.read() outfilename = op.join(target_dir, self.rstfilename) # Only actually run it if the output RST file doesn't # exist or it was modified less recently than the example if (not op.exists(outfilename) or (op.getmtime(outfilename) < op.getmtime(filename))): self.exec_file() else: print("skipping {0}".format(self.filename)) @property def dirname(self): return op.split(self.filename)[0] @property def fname(self): return op.split(self.filename)[1] @property def modulename(self): return op.splitext(self.fname)[0] @property def pyfilename(self): return self.modulename + '.py' @property def rstfilename(self): return self.modulename + ".rst" @property def htmlfilename(self): return self.modulename + '.html' @property def pngfilename(self): pngfile = self.modulename + '.png' return "_images/" + pngfile @property def thumbfilename(self): pngfile = self.modulename + '_thumb.png' return pngfile @property def sphinxtag(self): return self.modulename @property def pagetitle(self): return self.docstring.strip().split('\n')[0].strip() @property def plotfunc(self): match = re.search(r"sns\.(.+plot)\(", self.filetext) if match: return match.group(1) match = re.search(r"sns\.(.+map)\(", self.filetext) if match: return match.group(1) match = re.search(r"sns\.(.+Grid)\(", self.filetext) if match: return match.group(1) return "" def extract_docstring(self): """ Extract a module-level docstring """ lines = open(self.filename).readlines() start_row = 0 if lines[0].startswith('#!'): lines.pop(0) start_row = 1 docstring = '' first_par = '' tokens = tokenize.generate_tokens(lines.__iter__().next) for tok_type, tok_content, _, (erow, _), _ in tokens: tok_type = token.tok_name[tok_type] if tok_type in ('NEWLINE', 'COMMENT', 'NL', 'INDENT', 'DEDENT'): continue elif tok_type == 'STRING': docstring = eval(tok_content) # If the docstring is formatted with several paragraphs, # extract the first one: paragraphs = '\n'.join(line.rstrip() for line in docstring.split('\n') ).split('\n\n') if len(paragraphs) > 0: first_par = paragraphs[0] break thumbloc = None for i, line in enumerate(docstring.split("\n")): m = re.match(r"^_thumb: (\.\d+),\s*(\.\d+)", line) if m: thumbloc = float(m.group(1)), float(m.group(2)) break if thumbloc is not None: self.thumbloc = thumbloc docstring = "\n".join([l for l in docstring.split("\n") if not l.startswith("_thumb")]) self.docstring = docstring self.short_desc = first_par self.end_line = erow + 1 + start_row def exec_file(self): print("running {0}".format(self.filename)) plt.close('all') my_globals = {'pl': plt, 'plt': plt} execfile(self.filename, my_globals) fig = plt.gcf() fig.canvas.draw() pngfile = op.join(self.target_dir, self.pngfilename) thumbfile = op.join("example_thumbs", self.thumbfilename) self.html = "<img src=../%s>" % self.pngfilename fig.savefig(pngfile, dpi=75, bbox_inches="tight") cx, cy = self.thumbloc create_thumbnail(pngfile, thumbfile, cx=cx, cy=cy) def toctree_entry(self): return " ./%s\n\n" % op.splitext(self.htmlfilename)[0] def contents_entry(self): return (".. raw:: html\n\n" " <div class='figure align-center'>\n" " <a href=./{0}>\n" " <img src=../_static/{1}>\n" " <span class='figure-label'>\n" " <p>{2}</p>\n" " </span>\n" " </a>\n" " </div>\n\n" "\n\n" "".format(self.htmlfilename, self.thumbfilename, self.plotfunc)) def main(app): static_dir = op.join(app.builder.srcdir, '_static') target_dir = op.join(app.builder.srcdir, 'examples') image_dir = op.join(app.builder.srcdir, 'examples/_images') thumb_dir = op.join(app.builder.srcdir, "example_thumbs") source_dir = op.abspath(op.join(app.builder.srcdir, '..', 'examples')) if not op.exists(static_dir): os.makedirs(static_dir) if not op.exists(target_dir): os.makedirs(target_dir) if not op.exists(image_dir): os.makedirs(image_dir) if not op.exists(thumb_dir): os.makedirs(thumb_dir) if not op.exists(source_dir): os.makedirs(source_dir) banner_data = [] toctree = ("\n\n" ".. toctree::\n" " :hidden:\n\n") contents = "\n\n" # Write individual example files for filename in glob.glob(op.join(source_dir, "*.py")): ex = ExampleGenerator(filename, target_dir) banner_data.append({"title": ex.pagetitle, "url": op.join('examples', ex.htmlfilename), "thumb": op.join(ex.thumbfilename)}) shutil.copyfile(filename, op.join(target_dir, ex.pyfilename)) output = RST_TEMPLATE.format(sphinx_tag=ex.sphinxtag, docstring=ex.docstring, end_line=ex.end_line, fname=ex.pyfilename, img_file=ex.pngfilename) with open(op.join(target_dir, ex.rstfilename), 'w') as f: f.write(output) toctree += ex.toctree_entry() contents += ex.contents_entry() if len(banner_data) < 10: banner_data = (4 * banner_data)[:10] # write index file index_file = op.join(target_dir, 'index.rst') with open(index_file, 'w') as index: index.write(INDEX_TEMPLATE.format(sphinx_tag="example_gallery", toctree=toctree, contents=contents)) def setup(app): app.connect('builder-inited', main)
bsd-3-clause
elkingtonmcb/scikit-learn
examples/linear_model/plot_logistic.py
312
1426
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Logit function ========================================================= Show in the plot is how the logistic regression would, in this synthetic dataset, classify values as either 0 or 1, i.e. class one or two, using the logit-curve. """ print(__doc__) # Code source: Gael Varoquaux # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model # this is our test set, it's just a straight line with some # Gaussian noise xmin, xmax = -5, 5 n_samples = 100 np.random.seed(0) X = np.random.normal(size=n_samples) y = (X > 0).astype(np.float) X[X > 0] *= 4 X += .3 * np.random.normal(size=n_samples) X = X[:, np.newaxis] # run the classifier clf = linear_model.LogisticRegression(C=1e5) clf.fit(X, y) # and plot the result plt.figure(1, figsize=(4, 3)) plt.clf() plt.scatter(X.ravel(), y, color='black', zorder=20) X_test = np.linspace(-5, 10, 300) def model(x): return 1 / (1 + np.exp(-x)) loss = model(X_test * clf.coef_ + clf.intercept_).ravel() plt.plot(X_test, loss, color='blue', linewidth=3) ols = linear_model.LinearRegression() ols.fit(X, y) plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1) plt.axhline(.5, color='.5') plt.ylabel('y') plt.xlabel('X') plt.xticks(()) plt.yticks(()) plt.ylim(-.25, 1.25) plt.xlim(-4, 10) plt.show()
bsd-3-clause
astroswego/plotypus
src/plotypus/plotypus.py
1
17301
import numpy from numpy import std from sys import exit, stdin, stdout, stderr from os import path, listdir from argparse import ArgumentError, ArgumentParser, SUPPRESS from pandas import read_table from sklearn.linear_model import (LassoCV, LassoLarsCV, LassoLarsIC, LinearRegression, RidgeCV, ElasticNetCV) from sklearn.grid_search import GridSearchCV from matplotlib import rc_params_from_file from functools import partial from itertools import chain, repeat import plotypus.lightcurve from plotypus.lightcurve import (make_predictor, get_lightcurve_from_file, plot_lightcurve) from plotypus.periodogram import Lomb_Scargle, conditional_entropy import plotypus from plotypus.preprocessing import Fourier from plotypus.utils import mad, pmap, verbose_print from plotypus.resources import matplotlibrc import pkg_resources # part of setuptools __version__ = pkg_resources.require("plotypus")[0].version def get_args(): parser = ArgumentParser() general_group = parser.add_argument_group('General') param_group = parser.add_argument_group('Star Parameters') parallel_group = parser.add_argument_group('Parallel') period_group = parser.add_argument_group('Periodogram') fourier_group = parser.add_argument_group('Fourier') outlier_group = parser.add_argument_group('Outlier Detection') # regression_group = parser.add_argument_group('Regression') parser.add_argument('--version', action='version', version='%(prog)s {version}'.format(version=__version__)) general_group.add_argument('-i', '--input', type=str, default=None, help='location of stellar observations ' '(default = stdin)') general_group.add_argument('-o', '--output', type=str, default=None, help='location of plots, or nothing if no plots are to be generated ' '(default = None)') general_group.add_argument('-n', '--star-name', type=str, default=None, help='name of star ' '(default = name of input file)') general_group.add_argument('-f', '--format', type=str, default='%.5f', help='format specifier for output table') general_group.add_argument('--output-sep', type=str, default='\t', help='column separator string in output table ' '(default = TAB)') general_group.add_argument('--no-header', action='store_true', help='suppress header row in table output') general_group.add_argument('--sanitize-latex', action='store_true', help='enable to sanitize star names for LaTeX formatting') general_group.add_argument('--legend', action='store_true', help='whether legends should be put on the output plots ' '(default = False)') general_group.add_argument('--extension', type=str, default='.dat', metavar='EXT', help='extension which follows a star\'s name in data filenames ' '(default = ".dat")') general_group.add_argument('--skiprows', type=int, default=0, help='number of rows at the head of each file to skip') general_group.add_argument('--use-cols', type=int, nargs='+', default=SUPPRESS, help='columns to use from data file ' '(default = 0 1 2)') general_group.add_argument('-s', '--scoring', type=str, choices=['MSE', 'R2'], default=SUPPRESS, help='scoring metric to use ' '(default = "R2")') general_group.add_argument('--scoring-cv', type=int, default=SUPPRESS, metavar='N', help='number of folds in the scoring regularization_cv validation ' '(default = 3)') general_group.add_argument('--shift', type=float, default=None, help='phase shift to apply to each light curve, or shift to max ' 'light if None given ' '(default = None)') general_group.add_argument('--phase-points', type=int, default=100, metavar='N', help='number of phase points to output ' '(default = 100)') general_group.add_argument('--min-phase-cover', type=float, default=SUPPRESS, metavar='COVER', help='minimum fraction of phases that must have points ' '(default = 0)') general_group.add_argument('--min-observations', type=int, default=1, metavar='N', help='minimum number of observation needed to avoid skipping a star ' '(default = 1)') general_group.add_argument('--matplotlibrc', type=str, default=matplotlibrc, metavar='RC', help='matplotlibrc file to use for formatting plots ' '(default file is in plotypus.resources.matplotlibrc)') general_group.add_argument('-v', '--verbosity', type=str, action='append', default=None, choices=['all', 'coverage', 'outlier', 'period'], metavar='OPERATION', help='specifies an operation to print verbose output for, or ' '"all" to print all verbose output ' '(default = None)') param_group.add_argument('--parameters', type=str, default=None, metavar='FILE', help='file containing table of parameters such as period and shift ' '(default = None)') param_group.add_argument('--param-sep', type=str, default="\\s+", help='string or regex to use as column separator when reading ' 'parameters file ' '(default = any whitespace)') param_group.add_argument('--period-label', type=str, default='Period', metavar='LABEL', help='title of period column in parameters file ' '(default = Period)') param_group.add_argument('--shift-label', type=str, default='Shift', metavar='LABEL', help='title of shift column in parameters file ' '(default = Shift)') parallel_group.add_argument('--star-processes', type=int, default=1, metavar='N', help='number of stars to process in parallel ' '(default = 1)') parallel_group.add_argument('--selector-processes', type=int, default=SUPPRESS, metavar='N', help='number of processes to use for each selector ' '(default depends on selector used)') parallel_group.add_argument('--scoring-processes', type=int, default=SUPPRESS, metavar='N', help='number of processes to use for scoring, if not done by selector ' '(default = 1)') parallel_group.add_argument('--period-processes', type=int, default=1, metavar='N', help='number of periods to process in parallel ' '(default = 1)') period_group.add_argument('--period', type=float, default=None, help='period to use for all stars ' '(default = None)') period_group.add_argument('--min-period', type=float, default=SUPPRESS, metavar='P', help='minimum period of each star ' '(default = 0.2)') period_group.add_argument('--max-period', type=float, default=SUPPRESS, metavar='P', help='maximum period of each star ' '(default = 32.0)') period_group.add_argument('--coarse-precision', type=float, default=SUPPRESS, help='level of granularity on first pass ' '(default = 0.00001)') period_group.add_argument('--fine-precision', type=float, default=SUPPRESS, help='level of granularity on second pass ' '(default = 0.000000001)') period_group.add_argument('--periodogram', type=str, choices=["Lomb_Scargle", "conditional_entropy"], default="Lomb_Scargle", help='method for determining period ' '(default = Lomb_Scargle)') fourier_group.add_argument('-d', '--fourier-degree', type=int, nargs=2, default=(2, 20), metavar=('MIN', 'MAX'), help='range of degrees of fourier fits to use ' '(default = 2 20)') fourier_group.add_argument('-r', '--regressor', choices=['LassoCV', 'LassoLarsCV', 'LassoLarsIC', 'OLS', 'RidgeCV', 'ElasticNetCV'], default='LassoLarsIC', help='type of regressor to use ' '(default = "Lasso")') fourier_group.add_argument('--selector', choices=['Baart', 'GridSearch'], default='GridSearch', help='type of model selector to use ' '(default = "GridSearch")') fourier_group.add_argument('--series-form', type=str, default='cos', choices=['sin', 'cos'], help='form of Fourier series to use in coefficient output, ' 'does not affect the fit ' '(default = "cos")') fourier_group.add_argument('--max-iter', type=int, default=1000, metavar='N', help='maximum number of iterations in the regularization path ' '(default = 1000)') fourier_group.add_argument('--regularization-cv', type=int, default=None, metavar='N', help='number of folds used in regularization regularization_cv validation ' '(default = 3)') outlier_group.add_argument('--sigma', type=float, default=SUPPRESS, help='rejection criterion for outliers ' '(default = 20)') outlier_group.add_argument('--sigma-clipping', type=str, choices=["std", "mad"], default="mad", help='sigma clipping metric to use ' '(default = "mad")') args = parser.parse_args() if args.output is not None: rcParams = rc_params_from_file(fname=args.matplotlibrc, fail_on_error=args.output) plotypus.lightcurve.matplotlib.rcParams = rcParams regressor_choices = { "LassoCV" : LassoCV(max_iter=args.max_iter, cv=args.regularization_cv, fit_intercept=False), "LassoLarsCV" : LassoLarsCV(max_iter=args.max_iter, cv=args.regularization_cv, fit_intercept=False), "LassoLarsIC" : LassoLarsIC(max_iter=args.max_iter, fit_intercept=False), "OLS" : LinearRegression(fit_intercept=False), "RidgeCV" : RidgeCV(cv=args.regularization_cv, fit_intercept=False), "ElasticNetCV" : ElasticNetCV(max_iter=args.max_iter, cv=args.regularization_cv, fit_intercept=False) } selector_choices = { "Baart" : None, "GridSearch" : GridSearchCV } periodogram_choices = { "Lomb_Scargle" : Lomb_Scargle, "conditional_entropy" : conditional_entropy } sigma_clipping_choices = { "std" : std, "mad" : mad } if hasattr(args, 'scoring'): scoring_choices = { 'R2' : 'r2', 'MSE' : 'mean_squared_error' } args.scoring = scoring_choices[args.scoring] args.regressor = regressor_choices[args.regressor] Selector = selector_choices[args.selector] or GridSearchCV args.periodogram = periodogram_choices[args.periodogram] args.sigma_clipping = sigma_clipping_choices[args.sigma_clipping] args.predictor = make_predictor(Selector=Selector, use_baart=(args.selector == 'Baart'), **vars(args)) args.phases = numpy.arange(0, 1, 1/args.phase_points) if args.parameters is not None: args.parameters = read_table(args.parameters, args.param_sep, index_col=0, engine='python') return args def main(): args = get_args() min_degree, max_degree = args.fourier_degree filenames = list(map(lambda x: x.strip(), _get_files(args.input))) filepaths = map(lambda filename: filename if path.isfile(filename) else path.join(args.input, filename), filenames) # a dict containing all options which can be pickled, because # all parameters to pmap must be picklable picklable_args = {k: vars(args)[k] for k in vars(args) if k not in {'input'}} sep = args.output_sep if not args.no_header: # print file header print(*['Name', 'Period', 'Shift', 'Coverage', 'Inliers', 'Outliers', 'R^2', 'MSE', 'MaxDegree', 'Params', 'A_0', 'dA_0', sep.join(map(('A_{0}' + sep + 'Phi_{0}').format, range(1, max_degree+1))), sep.join(map(('R_{0}1' + sep + 'phi_{0}1').format, range(2, max_degree+1))), sep.join(map('Phase{}'.format, range(args.phase_points)))], sep=sep) printer = lambda result: _print_star(result, max_degree, args.series_form, args.format, sep) \ if result is not None else None pmap(process_star, filepaths, callback=printer, processes=args.star_processes, **picklable_args) def process_star(filename, output, *, extension, star_name, period, shift, parameters, period_label, shift_label, **kwargs): """Processes a star's lightcurve, prints its coefficients, and saves its plotted lightcurve to a file. Returns the result of get_lightcurve. """ if star_name is None: basename = path.basename(filename) if basename.endswith(extension): star_name = basename[:-len(extension)] else: # file has wrong extension return if parameters is not None: if period is None: try: period = parameters[period_label][star_name] except KeyError: pass if shift is None: try: shift = parameters.loc[shift_label][star_name] except KeyError: pass result = get_lightcurve_from_file(filename, name=star_name, period=period, shift=shift, **kwargs) if result is None: return if output is not None: plot_lightcurve(star_name, result['lightcurve'], result['period'], result['phased_data'], output=output, **kwargs) return result def _print_star(result, max_degree, form, fmt, sep): if result is None: return # function which formats every number in a sequence according to fmt format_all = partial(map, lambda x: fmt % x) # count inliers and outliers points = result['phased_data'][:,0].size outliers = numpy.ma.count_masked(result['phased_data'][:, 0]) inliers = points - outliers # get fourier coefficients and compute ratios coefs = Fourier.phase_shifted_coefficients(result['coefficients'], shift=result['shift'], form=form) _coefs = numpy.concatenate(([coefs[0]], [result['dA_0']], coefs[1:])) fourier_ratios = Fourier.fourier_ratios(coefs) # create the vectors of zeroes coef_zeros = repeat('0', times=(2*max_degree + 1 - len(coefs))) ratio_zeros = repeat('0', times=(2*(max_degree - 1) - len(fourier_ratios))) max_degree = numpy.trim_zeros(coefs[1::2], 'b').size n_params = numpy.count_nonzero(coefs[1::2]) # print the entry for the star with tabs as separators # and itertools.chain to separate the different results into a # continuous list which is then unpacked print(*chain(*[[result['name']], map(str, [result['period'], result['shift'], result['coverage'], inliers, outliers, result['R2'], result['MSE'], max_degree, n_params]), # coefficients and fourier ratios with trailing zeros # formatted defined by the user-provided fmt string format_all(_coefs), coef_zeros, format_all(fourier_ratios), ratio_zeros, format_all(result['lightcurve'])]), sep=sep) def _get_files(input): if input is None: return stdin elif input[0] == "@": with open(input[1:], 'r') as f: return map(lambda x: x.strip(), f.readlines()) elif path.isfile(input): return [input] elif path.isdir(input): return sorted(listdir(input)) else: raise FileNotFoundError('file {} not found'.format(input)) if __name__ == "__main__": exit(main())
gpl-3.0
tallakahath/pymatgen
pymatgen/electronic_structure/tests/test_plotter.py
2
4571
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals """ Created on May 1, 2012 """ __author__ = "Shyue Ping Ong" __copyright__ = "Copyright 2012, The Materials Project" __version__ = "0.1" __maintainer__ = "Shyue Ping Ong" __email__ = "[email protected]" __date__ = "May 1, 2012" import unittest import os import json from io import open try: import matplotlib matplotlib.use("pdf") # Use non-graphical display backend during test. have_matplotlib = "DISPLAY" in os.environ except ImportError: have_matplotlib = False from pymatgen.electronic_structure.dos import CompleteDos from pymatgen.electronic_structure.plotter import DosPlotter, BSPlotter, plot_ellipsoid, fold_point, plot_brillouin_zone from pymatgen.electronic_structure.bandstructure import BandStructureSymmLine from pymatgen.core.structure import Structure test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", 'test_files') import scipy class DosPlotterTest(unittest.TestCase): def setUp(self): with open(os.path.join(test_dir, "complete_dos.json"), "r", encoding='utf-8') as f: self.dos = CompleteDos.from_dict(json.load(f)) self.plotter = DosPlotter(sigma=0.2, stack=True) def test_add_dos_dict(self): d = self.plotter.get_dos_dict() self.assertEqual(len(d), 0) self.plotter.add_dos_dict(self.dos.get_element_dos(), key_sort_func=lambda x: x.X) d = self.plotter.get_dos_dict() self.assertEqual(len(d), 4) def test_get_dos_dict(self): self.plotter.add_dos_dict(self.dos.get_element_dos(), key_sort_func=lambda x: x.X) d = self.plotter.get_dos_dict() for el in ["Li", "Fe", "P", "O"]: self.assertIn(el, d) class BSPlotterTest(unittest.TestCase): def setUp(self): with open(os.path.join(test_dir, "CaO_2605_bandstructure.json"), "r", encoding='utf-8') as f: d = json.loads(f.read()) self.bs = BandStructureSymmLine.from_dict(d) self.plotter = BSPlotter(self.bs) def test_bs_plot_data(self): self.assertEqual(len(self.plotter.bs_plot_data()['distances'][0]), 16, "wrong number of distances in the first branch") self.assertEqual(len(self.plotter.bs_plot_data()['distances']), 10, "wrong number of branches") self.assertEqual( sum([len(e) for e in self.plotter.bs_plot_data()['distances']]), 160, "wrong number of distances") self.assertEqual(self.plotter.bs_plot_data()['ticks']['label'][5], "K", "wrong tick label") self.assertEqual(len(self.plotter.bs_plot_data()['ticks']['label']), 19, "wrong number of tick labels") class PlotBZTest(unittest.TestCase): def setUp(self): if not have_matplotlib: raise unittest.SkipTest("matplotlib not available") self.rec_latt = Structure.from_file(os.path.join(test_dir, "Si.cssr")).lattice.reciprocal_lattice self.kpath = [[[0., 0., 0.], [0.5, 0., 0.5], [0.5, 0.25, 0.75], [0.375, 0.375, 0.75]]] self.labels = {'\\Gamma': [0., 0., 0.], 'K': [0.375, 0.375, 0.75], u'L': [0.5, 0.5, 0.5], 'U': [0.625, 0.25, 0.625], 'W': [0.5, 0.25, 0.75], 'X': [0.5, 0., 0.5]} self.hessian = [[17.64757034, 3.90159625, -4.77845607], [3.90159625, 14.88874142, 6.75776076], [-4.77845607, 6.75776076, 12.12987493]] self.center = [0.41, 0., 0.41] self.points = [[0., 0., 0.], [0.5, 0.5, 0.5]] def test_bz_plot(self): fig, ax = plot_ellipsoid(self.hessian, self.center, lattice=self.rec_latt) plot_brillouin_zone(self.rec_latt, lines=self.kpath, labels=self.labels, kpoints=self.points, ax=ax, show=False) def test_fold_point(self): self.assertTrue(scipy.allclose(fold_point([0., -0.5, 0.5], lattice=self.rec_latt), self.rec_latt.get_cartesian_coords([0., 0.5, 0.5]))) self.assertTrue(scipy.allclose(fold_point([0.1, -0.6, 0.2], lattice=self.rec_latt), self.rec_latt.get_cartesian_coords([0.1, 0.4, 0.2]))) if __name__ == "__main__": #import sys;sys.argv = ['', 'Test.testName'] unittest.main()
mit
IBM/differential-privacy-library
tests/models/test_incremental_mean_and_var.py
1
3983
from unittest.case import TestCase import numpy as np from sklearn.utils.extmath import _incremental_mean_and_var as sk_incremental_mean_and_var from diffprivlib.models.standard_scaler import _incremental_mean_and_var from diffprivlib.utils import PrivacyLeakWarning class TestIncrementalMeanAndVar(TestCase): def test_no_range(self): X = np.random.rand(5, 10) with self.assertWarns(PrivacyLeakWarning): _incremental_mean_and_var(X, epsilon=float("inf"), bounds=None, last_mean=0., last_variance=None, last_sample_count=0) def test_inf_epsilon(self): X = np.random.rand(5, 10) dp_mean, dp_var, dp_count = _incremental_mean_and_var(X, epsilon=float("inf"), bounds=(0, 1), last_mean=0., last_variance=None, last_sample_count=np.zeros(X.shape[1], dtype=np.int64)) sk_mean, sk_var, sk_count = sk_incremental_mean_and_var(X, last_mean=0., last_variance=None, last_sample_count=np.zeros(X.shape[1], dtype=np.int64)) self.assertTrue(np.allclose(dp_mean, sk_mean)) self.assertIsNone(dp_var) self.assertIsNone(sk_var) self.assertTrue((dp_count == sk_count).all()) dp_mean, dp_var, dp_count = _incremental_mean_and_var(X, epsilon=float("inf"), bounds=(0, 1), last_mean=0., last_variance=0., last_sample_count=np.zeros(X.shape[1], dtype=np.int64)) sk_mean, sk_var, sk_count = sk_incremental_mean_and_var(X, last_mean=0., last_variance=0., last_sample_count=np.zeros(X.shape[1], dtype=np.int64)) self.assertTrue(np.allclose(dp_mean, sk_mean)) self.assertTrue(np.allclose(dp_var, sk_var)) self.assertTrue((dp_count == sk_count).all()) def test_increment_inf_epsilon(self): X = np.ones((5, 1)) dp_mean, dp_var, dp_count = _incremental_mean_and_var(X, epsilon=float("inf"), bounds=(0, 1), last_mean=0., last_variance=None, last_sample_count=5) self.assertAlmostEqual(dp_mean, 0.5, places=5) self.assertEqual(dp_count, 10) def test_duplicate_dataset(self): X = np.random.rand(10, 5) mean1, var1, count1 = _incremental_mean_and_var(X, epsilon=float("inf"), bounds=(0, 1), last_mean=0., last_variance=0., last_sample_count=0) mean2, var2, count2 = _incremental_mean_and_var(X, epsilon=float("inf"), bounds=(0, 1), last_mean=mean1, last_variance=var1, last_sample_count=count1) self.assertTrue(np.allclose(mean1, mean2)) self.assertTrue(np.allclose(var1, var2)) self.assertTrue(np.all(count1 == 10), "Counts should be 10, got %s" % count1) self.assertTrue(np.all(count2 == 20), "Counts should be 20, got %s" % count2) def test_different_results(self): X = np.random.rand(10, 5) mean1, var1, count1 = _incremental_mean_and_var(X, epsilon=1, bounds=(0, 1), last_mean=0., last_variance=0., last_sample_count=0) mean2, var2, count2 = _incremental_mean_and_var(X, epsilon=1, bounds=(0, 1), last_mean=0, last_variance=0, last_sample_count=0) self.assertFalse(np.allclose(mean1, mean2, atol=1e-2)) self.assertFalse(np.allclose(var1, var2, atol=1e-2)) self.assertTrue(np.all(count1 == 10), "Counts should be 10, got %s" % count1) self.assertTrue(np.all(count2 == 10), "Counts should be 10, got %s" % count2)
mit
gclenaghan/scikit-learn
examples/ensemble/plot_forest_importances.py
168
1793
""" ========================================= Feature importances with forests of trees ========================================= This examples shows the use of forests of trees to evaluate the importance of features on an artificial classification task. The red bars are the feature importances of the forest, along with their inter-trees variability. As expected, the plot suggests that 3 features are informative, while the remaining are not. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_classification from sklearn.ensemble import ExtraTreesClassifier # Build a classification task using 3 informative features X, y = make_classification(n_samples=1000, n_features=10, n_informative=3, n_redundant=0, n_repeated=0, n_classes=2, random_state=0, shuffle=False) # Build a forest and compute the feature importances forest = ExtraTreesClassifier(n_estimators=250, random_state=0) forest.fit(X, y) importances = forest.feature_importances_ std = np.std([tree.feature_importances_ for tree in forest.estimators_], axis=0) indices = np.argsort(importances)[::-1] # Print the feature ranking print("Feature ranking:") for f in range(X.shape[1]): print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]])) # Plot the feature importances of the forest plt.figure() plt.title("Feature importances") plt.bar(range(X.shape[1]), importances[indices], color="r", yerr=std[indices], align="center") plt.xticks(range(X.shape[1]), indices) plt.xlim([-1, X.shape[1]]) plt.show()
bsd-3-clause
hugobowne/scikit-learn
sklearn/metrics/base.py
46
4627
""" Common code for all metrics """ # Authors: Alexandre Gramfort <[email protected]> # Mathieu Blondel <[email protected]> # Olivier Grisel <[email protected]> # Arnaud Joly <[email protected]> # Jochen Wersdorfer <[email protected]> # Lars Buitinck # Joel Nothman <[email protected]> # Noel Dawe <[email protected]> # License: BSD 3 clause from __future__ import division import numpy as np from ..utils import check_array, check_consistent_length from ..utils.multiclass import type_of_target from ..exceptions import UndefinedMetricWarning as _UndefinedMetricWarning from ..utils import deprecated @deprecated("UndefinedMetricWarning has been moved into the sklearn.exceptions" " module. It will not be available here from version 0.19") class UndefinedMetricWarning(_UndefinedMetricWarning): pass def _average_binary_score(binary_metric, y_true, y_score, average, sample_weight=None): """Average a binary metric for multilabel classification Parameters ---------- y_true : array, shape = [n_samples] or [n_samples, n_classes] True binary labels in binary label indicators. y_score : array, shape = [n_samples] or [n_samples, n_classes] Target scores, can either be probability estimates of the positive class, confidence values, or binary decisions. average : string, [None, 'micro', 'macro' (default), 'samples', 'weighted'] If ``None``, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data: ``'micro'``: Calculate metrics globally by considering each element of the label indicator matrix as a label. ``'macro'``: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. ``'weighted'``: Calculate metrics for each label, and find their average, weighted by support (the number of true instances for each label). ``'samples'``: Calculate metrics for each instance, and find their average. sample_weight : array-like of shape = [n_samples], optional Sample weights. binary_metric : callable, returns shape [n_classes] The binary metric function to use. Returns ------- score : float or array of shape [n_classes] If not ``None``, average the score, else return the score for each classes. """ average_options = (None, 'micro', 'macro', 'weighted', 'samples') if average not in average_options: raise ValueError('average has to be one of {0}' ''.format(average_options)) y_type = type_of_target(y_true) if y_type not in ("binary", "multilabel-indicator"): raise ValueError("{0} format is not supported".format(y_type)) if y_type == "binary": return binary_metric(y_true, y_score, sample_weight=sample_weight) check_consistent_length(y_true, y_score, sample_weight) y_true = check_array(y_true) y_score = check_array(y_score) not_average_axis = 1 score_weight = sample_weight average_weight = None if average == "micro": if score_weight is not None: score_weight = np.repeat(score_weight, y_true.shape[1]) y_true = y_true.ravel() y_score = y_score.ravel() elif average == 'weighted': if score_weight is not None: average_weight = np.sum(np.multiply( y_true, np.reshape(score_weight, (-1, 1))), axis=0) else: average_weight = np.sum(y_true, axis=0) if average_weight.sum() == 0: return 0 elif average == 'samples': # swap average_weight <-> score_weight average_weight = score_weight score_weight = None not_average_axis = 0 if y_true.ndim == 1: y_true = y_true.reshape((-1, 1)) if y_score.ndim == 1: y_score = y_score.reshape((-1, 1)) n_classes = y_score.shape[not_average_axis] score = np.zeros((n_classes,)) for c in range(n_classes): y_true_c = y_true.take([c], axis=not_average_axis).ravel() y_score_c = y_score.take([c], axis=not_average_axis).ravel() score[c] = binary_metric(y_true_c, y_score_c, sample_weight=score_weight) # Average the results if average is not None: return np.average(score, weights=average_weight) else: return score
bsd-3-clause
why11002526/keras
tests/manual/check_callbacks.py
82
7540
import numpy as np import random import theano from keras.models import Sequential from keras.callbacks import Callback from keras.layers.core import Dense, Dropout, Activation, Flatten from keras.regularizers import l2 from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.utils import np_utils from keras.datasets import mnist import keras.callbacks as cbks from matplotlib import pyplot as plt from matplotlib import animation ############################## # model DrawActivations test # ############################## print('Running DrawActivations test') nb_classes = 10 batch_size = 128 nb_epoch = 10 max_train_samples = 512 max_test_samples = 1 np.random.seed(1337) # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(-1,1,28,28)[:max_train_samples] X_train = X_train.astype("float32") X_train /= 255 X_test = X_test.reshape(-1,1,28,28)[:max_test_samples] X_test = X_test.astype("float32") X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes)[:max_train_samples] class Frames(object): def __init__(self, n_plots=16): self._n_frames = 0 self._framedata = [] self._titles = [] for i in range(n_plots): self._framedata.append([]) def add_frame(self, i, frame): self._framedata[i].append(frame) def set_title(self, title): self._titles.append(title) class SubplotTimedAnimation(animation.TimedAnimation): def __init__(self, fig, frames, grid=(4, 4), interval=10, blit=False, **kwargs): self.n_plots = grid[0] * grid[1] self.axes = [fig.add_subplot(grid[0], grid[1], i + 1) for i in range(self.n_plots)] for axis in self.axes: axis.get_xaxis().set_ticks([]) axis.get_yaxis().set_ticks([]) self.frames = frames self.imgs = [self.axes[i].imshow(frames._framedata[i][0], interpolation='nearest', cmap='bone') for i in range(self.n_plots)] self.title = fig.suptitle('') super(SubplotTimedAnimation, self).__init__(fig, interval=interval, blit=blit, **kwargs) def _draw_frame(self, j): for i in range(self.n_plots): self.imgs[i].set_data(self.frames._framedata[i][j]) if len(self.frames._titles) > j: self.title.set_text(self.frames._titles[j]) self._drawn_artists = self.imgs def new_frame_seq(self): return iter(range(len(self.frames._framedata[0]))) def _init_draw(self): for img in self.imgs: img.set_data([[]]) def combine_imgs(imgs, grid=(1,1)): n_imgs, img_h, img_w = imgs.shape if n_imgs != grid[0] * grid[1]: raise ValueError() combined = np.zeros((grid[0] * img_h, grid[1] * img_w)) for i in range(grid[0]): for j in range(grid[1]): combined[img_h*i:img_h*(i+1),img_w*j:img_w*(j+1)] = imgs[grid[0] * i + j] return combined class DrawActivations(Callback): def __init__(self, figsize): self.fig = plt.figure(figsize=figsize) def on_train_begin(self, logs={}): self.imgs = Frames(n_plots=5) layers_0_ids = np.random.choice(32, 16, replace=False) self.test_layer0 = theano.function([self.model.get_input()], self.model.layers[1].get_output(train=False)[0, layers_0_ids]) layers_1_ids = np.random.choice(64, 36, replace=False) self.test_layer1 = theano.function([self.model.get_input()], self.model.layers[5].get_output(train=False)[0, layers_1_ids]) self.test_layer2 = theano.function([self.model.get_input()], self.model.layers[10].get_output(train=False)[0]) def on_epoch_begin(self, epoch, logs={}): self.epoch = epoch def on_batch_end(self, batch, logs={}): if batch % 5 == 0: self.imgs.add_frame(0, X_test[0,0]) self.imgs.add_frame(1, combine_imgs(self.test_layer0(X_test), grid=(4, 4))) self.imgs.add_frame(2, combine_imgs(self.test_layer1(X_test), grid=(6, 6))) self.imgs.add_frame(3, self.test_layer2(X_test).reshape((16,16))) self.imgs.add_frame(4, self.model._predict(X_test)[0].reshape((1,10))) self.imgs.set_title('Epoch #%d - Batch #%d' % (self.epoch, batch)) def on_train_end(self, logs={}): anim = SubplotTimedAnimation(self.fig, self.imgs, grid=(1,5), interval=10, blit=False, repeat_delay=1000) # anim.save('test_gif.gif', fps=15, writer='imagemagick') plt.show() # model = Sequential() # model.add(Dense(784, 50)) # model.add(Activation('relu')) # model.add(Dense(50, 10)) # model.add(Activation('softmax')) model = Sequential() model.add(Convolution2D(32, 1, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Convolution2D(64, 32, 3, 3, border_mode='full')) model.add(Activation('relu')) model.add(MaxPooling2D(poolsize=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(64*8*8, 256)) model.add(Activation('relu')) model.add(Dropout(0.5)) model.add(Dense(256, 10, W_regularizer = l2(0.1))) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # Fit the model draw_weights = DrawActivations(figsize=(5.4, 1.35)) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, verbose=1, callbacks=[draw_weights]) ########################## # model checkpoint tests # ########################## print('Running ModelCheckpoint test') nb_classes = 10 batch_size = 128 nb_epoch = 20 # small sample size to overfit on training data max_train_samples = 50 max_test_samples = 1000 np.random.seed(1337) # for reproducibility # the data, shuffled and split between tran and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000,784)[:max_train_samples] X_test = X_test.reshape(10000,784)[:max_test_samples] X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 # convert class vectors to binary class matrices Y_train = np_utils.to_categorical(y_train, nb_classes)[:max_train_samples] Y_test = np_utils.to_categorical(y_test, nb_classes)[:max_test_samples] # Create a slightly larger network than required to test best validation save only model = Sequential() model.add(Dense(784, 500)) model.add(Activation('relu')) model.add(Dense(500, 10)) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') # test file location path = "/tmp" filename = "model_weights.hdf5" import os f = os.path.join(path, filename) print("Test model checkpointer") # only store best validation model in checkpointer checkpointer = cbks.ModelCheckpoint(filepath=f, verbose=1, save_best_only=True) model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, validation_data=(X_test, Y_test), callbacks =[checkpointer]) if not os.path.isfile(f): raise Exception("Model weights were not saved to %s" % (f)) print("Test model checkpointer without validation data") import warnings warnings.filterwarnings('error') try: # this should issue a warning model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch, show_accuracy=True, verbose=0, callbacks =[checkpointer]) except: print("Tests passed") import sys sys.exit(0) raise Exception("Modelcheckpoint tests did not pass")
mit
PredictiveScienceLab/py-mcmc
demos/demo2.py
2
4227
""" This demo demonstrates how to construct a GPy model with a mean function and train it using the pymcmc module. This model is equivalent to Bayesian linear regression. Author: Ilias Bilionis Date: 3/20/2014 """ import numpy as np import GPy import pymcmc as pm import matplotlib.pyplot as plt # Write a class that represents the mean you wish to use: class PolynomialBasis(object): """ A simple set of polynomials. :param degree: The degree of the polynomials. :type degree: int """ def __init__(self, degree): """ The constructor can do anything you want. The object should be constructed before doing anything with pymcmc in any case. Just make sure that inside the constructor you define the ``num_output`` attribute whose value should be equal to the number of basis functions. """ self.degree = degree self.num_output = degree + 1 # YOU HAVE TO DEFINE THIS ATTRIBUTE! def __call__(self, X): """ Evaluate the basis functions at ``X``. Now, you should assume that ``X`` is a 2D numpy array of size ``num_points x input_dim``. If ``input_dim`` is 1, then you still need to consider it as a 2D array because this is the kind of data that GPy requires. If you want to make the function work also with 1D arrays if ``input_dim`` is one the use the trick below. The output of this function should be the design matrix. That is, it should be the matrix ``phi`` of dimensions ``num_points x num_output``. In otherwors, ``phi[i, j]`` should be the value of basis function ``phi_j`` at ``X[i, :]``. """ if X.ndim == 1: X = X[:, None] # Trick for 1D arrays return np.hstack([X ** i for i in range(self.degree + 1)]) # Pick your degree degree = 10 # Construct your basis poly_basis = PolynomialBasis(degree) # Let us generate some random data to play with # The number of input dimensions input_dim = 1 # The number of observations num_points = 20 # The noise level we are going to add to the observations noise = 0.1 # Observed inputs X = np.random.rand(num_points, 1) # We are going to generate the outputs from the space that is spanned by # our basis functions and add some noise # The weights of the basis functions: weights = np.random.randn(poly_basis.num_output) weights[2] = 0. # The observations we make Y = np.dot(poly_basis(X), weights) + noise * np.random.randn(num_points) # The output need also be a 2D numpy array Y = Y[:, None] # Let's construct a GP model with just a mean and a diagonal covariance # This is the mean (and at the same time the kernel) mean = pm.MeanFunction(input_dim, poly_basis, ARD=True) # Now, let's construct the model model = GPy.models.GPRegression(X, Y, kernel=mean) print 'Model before training:' print str(model) # You may just train the model by maximizing the likelihood: model.optimize(messages=True) print 'Trained model:' print str(model) # And just plot the predictions model.plot(plot_limits=(0, 1)) # Let us also plot the full function x = np.linspace(0, 1, 50)[:, None] y = np.dot(poly_basis(x), weights) plt.plot(x, y, 'r', linewidth=2) plt.legend(['Mean of GP', '5\% percentile of GP', '95\% percentile of GP', 'Observations', 'Real Underlying Function'], loc='best') plt.title('Model trained by maximizing the likelihood') plt.show() a = raw_input('press enter to continue...') # Or you might want to do it using MCMC: new_model = GPy.models.GPRegression(X, Y, kernel=mean) proposal = pm.MALAProposal(dt=1.) mcmc = pm.MetropolisHastings(new_model, proposal=proposal) mcmc.sample(30000, num_thin=100, num_burn=1000, verbose=True) print 'Model trained with MCMC:' print str(new_model) # Plot everything for this too: new_model.plot(plot_limits=(0, 1)) # Let us also plot the full function x = np.linspace(0, 1, 50)[:, None] y = np.dot(poly_basis(x), weights) plt.plot(x, y, 'r', linewidth=2) plt.legend(['Mean of GP', '5% percentile of GP', '95% percentile of GP', 'Observations', 'Real Underlying Function'], loc='best') plt.title('Model trained by MCMC') plt.show() a = raw_input('press enter to continue...')
lgpl-3.0
albertoferna/compmech
doc/source/conf.cython.py
3
14087
# -*- coding: utf-8 -*- # # CompMech documentation build configuration file, created by # sphinx-quickstart on Sun Jun 29 13:36:38 2014. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os, os.path, re import itertools import datetime import compmech YEAR = datetime.date.today().strftime('%Y') # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) sys.path.append(os.path.abspath('sphinxext')) # Import support for ipython console session syntax highlighting (lives # in the sphinxext directory defined above) import ipython_console_highlighting # -- General configuration ----------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.viewcode', 'sphinx.ext.autosummary', 'numpydoc', 'sphinx.ext.graphviz', 'matplotlib.sphinxext.plot_directive', 'ipython_console_highlighting', 'cython_highlighting', 'sphinx.ext.pngmath', 'sphinx.ext.todo', 'sphinx.ext.intersphinx' ] try: import rst2pdf except ImportError: pass else: extensions.append('rst2pdf.pdfbuilder') # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' exclude_patterns = ['py*', 'build'] # General information about the project. project = 'CompMech' authors = 'Saullo G. P. Castro' copyright = '%s, %s' % (YEAR, authors) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The full version, including alpha/beta/rc tags. # The short X.Y version. version = compmech.__version__ # The full version, including alpha/beta/rc tags. release = version try: _match_version = re.compile(r'^\s*_*version\s*_*\s*=\s*["\']([^"\']+)["\'].*').match with open(os.path.join(os.path.dirname(__file__), '..', 'Cython', 'Shadow.py')) as _f: for line in itertools.islice(_f, 5): # assume version comes early enough _m = _match_version(line) if _m: release = _m.group(1) break else: print("FAILED TO PARSE PROJECT VERSION !") except: pass # The short X.Y version. version = re.sub('^([0-9]+[.][0-9]+).*', '\g<1>', release) # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. default_role = 'math' # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # todo todo_include_todos = True # intersphinx for standard :keyword:s (def, for, etc.) intersphinx_mapping = {'python': ('http://docs.python.org/3/', None)} # If true, keep warnings as "system message" paragraphs in the built documents. #keep_warnings = False # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'nature' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. html_logo = '../logo/logo.png' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = '../logo/logo.png' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. html_domain_indices = False # If false, no index is generated. html_use_index = False # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'CompMechdoc' # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). _stdauthor = r'Stefan Behnel, Robert Bradshaw, William Stein\\ Gary Furnish, Dag Seljebotn, Greg Ewing\\ Gabriel Gellner, editor' latex_documents = [ ('src/reference/index', 'reference.tex', 'Cython Reference Guide', _stdauthor, 'manual'), ('src/tutorial/index', 'tutorial.tex', 'Cython Tutorial', _stdauthor, 'manual') ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. latex_show_pagerefs = True # We use False otherwise the module index gets generated twice. latex_use_modindex = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'CompMech', u'CompMech Documentation', [authors], 1) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'CompMech', u'CompMech Documentation', authors, 'CompMech', 'Computational Mechanics in Python', 'Scientific Computation'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote' # If true, do not generate a @detailmenu in the "Top" node's menu. #texinfo_no_detailmenu = False # -- Options for Epub output --------------------------------------------------- # Bibliographic Dublin Core info. epub_title = u'CompMech' epub_author = authors epub_publisher = u'' epub_copyright = copyright # The language of the text. It defaults to the language option # or en if the language is not set. #epub_language = '' # The scheme of the identifier. Typical schemes are ISBN or URL. #epub_scheme = '' # The unique identifier of the text. This can be a ISBN number # or the project homepage. #epub_identifier = '' # A unique identification for the text. #epub_uid = '' # A tuple containing the cover image and cover page html template filenames. #epub_cover = () # A sequence of (type, uri, title) tuples for the guide element of content.opf. #epub_guide = () # HTML files that should be inserted before the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_pre_files = [] # HTML files shat should be inserted after the pages created by sphinx. # The format is a list of tuples containing the path and title. #epub_post_files = [] # A list of files that should not be packed into the epub file. #epub_exclude_files = [] # The depth of the table of contents in toc.ncx. #epub_tocdepth = 3 # Allow duplicate toc entries. #epub_tocdup = True # Fix unsupported image types using the PIL. #epub_fix_images = False # Scale large images. #epub_max_image_width = 0 # If 'no', URL addresses will not be shown. #epub_show_urls = 'inline' # If false, no index is generated. #epub_use_index = True # -- Options for PDF output -------------------------------------------------- # Grouping the document tree into PDF files. List of tuples # (source start file, target name, title, author, options). # # If there is more than one author, separate them with \\. # For example: r'Guido van Rossum\\Fred L. Drake, Jr., editor' # # The options element is a dictionary that lets you override # this config per-document. # For example, # ('index', u'MyProject', u'My Project', u'Author Name', # dict(pdf_compressed = True)) # would mean that specific document would be compressed # regardless of the global pdf_compressed setting. pdf_documents = [ ('index', project, project, authors.replace(', ', '\\\\')), ] # A comma-separated list of custom stylesheets. Example: pdf_stylesheets = ['sphinx','kerning','a4'] # A list of folders to search for stylesheets. Example: pdf_style_path = ['.', '_styles'] # Create a compressed PDF # Use True/False or 1/0 # Example: compressed=True pdf_compressed = True # A colon-separated list of folders to search for fonts. Example: # pdf_font_path = ['/usr/share/fonts', '/usr/share/texmf-dist/fonts/'] # Language to be used for hyphenation support #pdf_language = "en_US" # Mode for literal blocks wider than the frame. Can be # overflow, shrink or truncate pdf_fit_mode = "shrink" # Section level that forces a break page. # For example: 1 means top-level sections start in a new page # 0 means disabled #pdf_break_level = 0 # When a section starts in a new page, force it to be 'even', 'odd', # or just use 'any' #pdf_breakside = 'any' # Insert footnotes where they are defined instead of # at the end. #pdf_inline_footnotes = True # verbosity level. 0 1 or 2 #pdf_verbosity = 0 # If false, no index is generated. pdf_use_index = False # If false, no modindex is generated. pdf_use_modindex = False # If false, no coverpage is generated. #pdf_use_coverpage = True # Name of the cover page template to use #pdf_cover_template = 'sphinxcover.tmpl' # Documents to append as an appendix to all manuals. #pdf_appendices = [] # Enable experimental feature to split table cells. Use it # if you get "DelayedTable too big" errors #pdf_splittables = False # Set the default DPI for images #pdf_default_dpi = 72 # Enable rst2pdf extension modules (default is only vectorpdf) # you need vectorpdf if you want to use sphinx's graphviz support #pdf_extensions = ['vectorpdf'] # Page template name for "regular" pages #pdf_page_template = 'cutePage' # Show Table Of Contents at the beginning? pdf_use_toc = False # How many levels deep should the table of contents be? pdf_toc_depth = 9999 # Add section number to section references pdf_use_numbered_links = False # Background images fitting mode pdf_fit_background_mode = 'scale'
bsd-3-clause
jeffery-do/Vizdoombot
doom/lib/python3.5/site-packages/matplotlib/__init__.py
4
63770
""" This is an object-oriented plotting library. A procedural interface is provided by the companion pyplot module, which may be imported directly, e.g.:: import matplotlib.pyplot as plt or using ipython:: ipython at your terminal, followed by:: In [1]: %matplotlib In [2]: import matplotlib.pyplot as plt at the ipython shell prompt. For the most part, direct use of the object-oriented library is encouraged when programming; pyplot is primarily for working interactively. The exceptions are the pyplot commands :func:`~matplotlib.pyplot.figure`, :func:`~matplotlib.pyplot.subplot`, :func:`~matplotlib.pyplot.subplots`, and :func:`~pyplot.savefig`, which can greatly simplify scripting. Modules include: :mod:`matplotlib.axes` defines the :class:`~matplotlib.axes.Axes` class. Most pylab commands are wrappers for :class:`~matplotlib.axes.Axes` methods. The axes module is the highest level of OO access to the library. :mod:`matplotlib.figure` defines the :class:`~matplotlib.figure.Figure` class. :mod:`matplotlib.artist` defines the :class:`~matplotlib.artist.Artist` base class for all classes that draw things. :mod:`matplotlib.lines` defines the :class:`~matplotlib.lines.Line2D` class for drawing lines and markers :mod:`matplotlib.patches` defines classes for drawing polygons :mod:`matplotlib.text` defines the :class:`~matplotlib.text.Text`, :class:`~matplotlib.text.TextWithDash`, and :class:`~matplotlib.text.Annotate` classes :mod:`matplotlib.image` defines the :class:`~matplotlib.image.AxesImage` and :class:`~matplotlib.image.FigureImage` classes :mod:`matplotlib.collections` classes for efficient drawing of groups of lines or polygons :mod:`matplotlib.colors` classes for interpreting color specifications and for making colormaps :mod:`matplotlib.cm` colormaps and the :class:`~matplotlib.image.ScalarMappable` mixin class for providing color mapping functionality to other classes :mod:`matplotlib.ticker` classes for calculating tick mark locations and for formatting tick labels :mod:`matplotlib.backends` a subpackage with modules for various gui libraries and output formats The base matplotlib namespace includes: :data:`~matplotlib.rcParams` a global dictionary of default configuration settings. It is initialized by code which may be overridded by a matplotlibrc file. :func:`~matplotlib.rc` a function for setting groups of rcParams values :func:`~matplotlib.use` a function for setting the matplotlib backend. If used, this function must be called immediately after importing matplotlib for the first time. In particular, it must be called **before** importing pylab (if pylab is imported). matplotlib was initially written by John D. Hunter (1968-2012) and is now developed and maintained by a host of others. Occasionally the internal documentation (python docstrings) will refer to MATLAB&reg;, a registered trademark of The MathWorks, Inc. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six import sys import distutils.version from itertools import chain import io import inspect import locale import os import re import tempfile import warnings import contextlib import distutils.sysconfig import functools # cbook must import matplotlib only within function # definitions, so it is safe to import from it here. from matplotlib.cbook import is_string_like, mplDeprecation, dedent, get_label from matplotlib.compat import subprocess from matplotlib.rcsetup import (defaultParams, validate_backend, cycler) import numpy from matplotlib.externals.six.moves.urllib.request import urlopen from matplotlib.externals.six.moves import reload_module as reload # Get the version from the _version.py versioneer file. For a git checkout, # this is computed based on the number of commits since the last tag. from ._version import get_versions __version__ = str(get_versions()['version']) del get_versions __version__numpy__ = str('1.6') # minimum required numpy version try: import dateutil except ImportError: raise ImportError("matplotlib requires dateutil") def compare_versions(a, b): "return True if a is greater than or equal to b" if a: if six.PY3: if isinstance(a, bytes): a = a.decode('ascii') if isinstance(b, bytes): b = b.decode('ascii') a = distutils.version.LooseVersion(a) b = distutils.version.LooseVersion(b) return a >= b else: return False if not compare_versions(six.__version__, '1.3'): raise ImportError( 'six 1.3 or later is required; you have %s' % ( six.__version__)) try: import pyparsing except ImportError: raise ImportError("matplotlib requires pyparsing") else: if not compare_versions(pyparsing.__version__, '1.5.6'): raise ImportError( "matplotlib requires pyparsing >= 1.5.6") # pyparsing 2.0.0 bug, but it may be patched in distributions try: f = pyparsing.Forward() f <<= pyparsing.Literal('a') bad_pyparsing = f is None except TypeError: bad_pyparsing = True # pyparsing 1.5.6 does not have <<= on the Forward class, but # pyparsing 2.0.0 and later will spew deprecation warnings if # using << instead. Additionally, the <<= in pyparsing 1.5.7 is # broken, since it doesn't return self. In order to support # pyparsing 1.5.6 and above with a common code base, this small # monkey patch is applied. if bad_pyparsing: def _forward_ilshift(self, other): self.__lshift__(other) return self pyparsing.Forward.__ilshift__ = _forward_ilshift if not hasattr(sys, 'argv'): # for modpython sys.argv = [str('modpython')] major, minor1, minor2, s, tmp = sys.version_info _python26 = (major == 2 and minor1 >= 6) or major >= 3 if not _python26: raise ImportError('matplotlib requires Python 2.6 or later') if not compare_versions(numpy.__version__, __version__numpy__): raise ImportError( 'numpy %s or later is required; you have %s' % ( __version__numpy__, numpy.__version__)) def _is_writable_dir(p): """ p is a string pointing to a putative writable dir -- return True p is such a string, else False """ try: p + '' # test is string like except TypeError: return False # Test whether the operating system thinks it's a writable directory. # Note that this check is necessary on Google App Engine, because the # subsequent check will succeed even though p may not be writable. if not os.access(p, os.W_OK) or not os.path.isdir(p): return False # Also test that it is actually possible to write to a file here. try: t = tempfile.TemporaryFile(dir=p) try: t.write(b'1') finally: t.close() except: return False return True class Verbose(object): """ A class to handle reporting. Set the fileo attribute to any file instance to handle the output. Default is sys.stdout """ levels = ('silent', 'helpful', 'debug', 'debug-annoying') vald = dict([(level, i) for i, level in enumerate(levels)]) # parse the verbosity from the command line; flags look like # --verbose-silent or --verbose-helpful _commandLineVerbose = None for arg in sys.argv[1:]: # cast to str because we are using unicode_literals, # and argv is always str if not arg.startswith(str('--verbose-')): continue level_str = arg[10:] # If it doesn't match one of ours, then don't even # bother noting it, we are just a 3rd-party library # to somebody else's script. if level_str in levels: _commandLineVerbose = level_str def __init__(self): self.set_level('silent') self.fileo = sys.stdout def set_level(self, level): 'set the verbosity to one of the Verbose.levels strings' if self._commandLineVerbose is not None: level = self._commandLineVerbose if level not in self.levels: warnings.warn('matplotlib: unrecognized --verbose-* string "%s".' ' Legal values are %s' % (level, self.levels)) else: self.level = level def set_fileo(self, fname): std = { 'sys.stdout': sys.stdout, 'sys.stderr': sys.stderr, } if fname in std: self.fileo = std[fname] else: try: fileo = open(fname, 'w') except IOError: raise ValueError('Verbose object could not open log file "{0}"' ' for writing.\nCheck your matplotlibrc ' 'verbose.fileo setting'.format(fname)) else: self.fileo = fileo def report(self, s, level='helpful'): """ print message s to self.fileo if self.level>=level. Return value indicates whether a message was issued """ if self.ge(level): print(s, file=self.fileo) return True return False def wrap(self, fmt, func, level='helpful', always=True): """ return a callable function that wraps func and reports it output through the verbose handler if current verbosity level is higher than level if always is True, the report will occur on every function call; otherwise only on the first time the function is called """ assert six.callable(func) def wrapper(*args, **kwargs): ret = func(*args, **kwargs) if (always or not wrapper._spoke): spoke = self.report(fmt % ret, level) if not wrapper._spoke: wrapper._spoke = spoke return ret wrapper._spoke = False wrapper.__doc__ = func.__doc__ return wrapper def ge(self, level): 'return true if self.level is >= level' return self.vald[self.level] >= self.vald[level] verbose = Verbose() def checkdep_dvipng(): try: s = subprocess.Popen(['dvipng', '-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() line = stdout.decode('ascii').split('\n')[1] v = line.split()[-1] return v except (IndexError, ValueError, OSError): return None def checkdep_ghostscript(): if sys.platform == 'win32': gs_execs = ['gswin32c', 'gswin64c', 'gs'] else: gs_execs = ['gs'] for gs_exec in gs_execs: try: s = subprocess.Popen( [gs_exec, '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() if s.returncode == 0: v = stdout[:-1].decode('ascii') return gs_exec, v except (IndexError, ValueError, OSError): pass return None, None def checkdep_tex(): try: s = subprocess.Popen(['tex', '-version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() line = stdout.decode('ascii').split('\n')[0] pattern = '3\.1\d+' match = re.search(pattern, line) v = match.group(0) return v except (IndexError, ValueError, AttributeError, OSError): return None def checkdep_pdftops(): try: s = subprocess.Popen(['pdftops', '-v'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() lines = stderr.decode('ascii').split('\n') for line in lines: if 'version' in line: v = line.split()[-1] return v except (IndexError, ValueError, UnboundLocalError, OSError): return None def checkdep_inkscape(): try: s = subprocess.Popen(['inkscape', '-V'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() lines = stdout.decode('ascii').split('\n') for line in lines: if 'Inkscape' in line: v = line.split()[1] break return v except (IndexError, ValueError, UnboundLocalError, OSError): return None def checkdep_xmllint(): try: s = subprocess.Popen(['xmllint', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = s.communicate() lines = stderr.decode('ascii').split('\n') for line in lines: if 'version' in line: v = line.split()[-1] break return v except (IndexError, ValueError, UnboundLocalError, OSError): return None def checkdep_ps_distiller(s): if not s: return False flag = True gs_req = '7.07' gs_sugg = '7.07' gs_exec, gs_v = checkdep_ghostscript() if compare_versions(gs_v, gs_sugg): pass elif compare_versions(gs_v, gs_req): verbose.report(('ghostscript-%s found. ghostscript-%s or later ' 'is recommended to use the ps.usedistiller option.') % (gs_v, gs_sugg)) else: flag = False warnings.warn(('matplotlibrc ps.usedistiller option can not be used ' 'unless ghostscript-%s or later is installed on your ' 'system') % gs_req) if s == 'xpdf': pdftops_req = '3.0' pdftops_req_alt = '0.9' # poppler version numbers, ugh pdftops_v = checkdep_pdftops() if compare_versions(pdftops_v, pdftops_req): pass elif (compare_versions(pdftops_v, pdftops_req_alt) and not compare_versions(pdftops_v, '1.0')): pass else: flag = False warnings.warn(('matplotlibrc ps.usedistiller can not be set to ' 'xpdf unless xpdf-%s or later is installed on ' 'your system') % pdftops_req) if flag: return s else: return False def checkdep_usetex(s): if not s: return False tex_req = '3.1415' gs_req = '7.07' gs_sugg = '7.07' dvipng_req = '1.5' flag = True tex_v = checkdep_tex() if compare_versions(tex_v, tex_req): pass else: flag = False warnings.warn(('matplotlibrc text.usetex option can not be used ' 'unless TeX-%s or later is ' 'installed on your system') % tex_req) dvipng_v = checkdep_dvipng() if compare_versions(dvipng_v, dvipng_req): pass else: flag = False warnings.warn('matplotlibrc text.usetex can not be used with *Agg ' 'backend unless dvipng-1.5 or later is ' 'installed on your system') gs_exec, gs_v = checkdep_ghostscript() if compare_versions(gs_v, gs_sugg): pass elif compare_versions(gs_v, gs_req): verbose.report(('ghostscript-%s found. ghostscript-%s or later is ' 'recommended for use with the text.usetex ' 'option.') % (gs_v, gs_sugg)) else: flag = False warnings.warn(('matplotlibrc text.usetex can not be used ' 'unless ghostscript-%s or later is ' 'installed on your system') % gs_req) return flag def _get_home(): """Find user's home directory if possible. Otherwise, returns None. :see: http://mail.python.org/pipermail/python-list/2005-February/325395.html """ try: if six.PY2 and sys.platform == 'win32': path = os.path.expanduser(b"~").decode(sys.getfilesystemencoding()) else: path = os.path.expanduser("~") except ImportError: # This happens on Google App Engine (pwd module is not present). pass else: if os.path.isdir(path): return path for evar in ('HOME', 'USERPROFILE', 'TMP'): path = os.environ.get(evar) if path is not None and os.path.isdir(path): return path return None def _create_tmp_config_dir(): """ If the config directory can not be created, create a temporary directory. Returns None if a writable temporary directory could not be created. """ import getpass import tempfile from matplotlib.cbook import mkdirs try: tempdir = tempfile.gettempdir() except NotImplementedError: # Some restricted platforms (such as Google App Engine) do not provide # gettempdir. return None try: username = getpass.getuser() except KeyError: username = str(os.getuid()) tempdir = os.path.join(tempdir, 'matplotlib-%s' % username) os.environ['MPLCONFIGDIR'] = tempdir mkdirs(tempdir) return tempdir get_home = verbose.wrap('$HOME=%s', _get_home, always=False) def _get_xdg_config_dir(): """ Returns the XDG configuration directory, according to the `XDG base directory spec <http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html>`_. """ path = os.environ.get('XDG_CONFIG_HOME') if path is None: path = get_home() if path is not None: path = os.path.join(path, '.config') return path def _get_xdg_cache_dir(): """ Returns the XDG cache directory, according to the `XDG base directory spec <http://standards.freedesktop.org/basedir-spec/basedir-spec-latest.html>`_. """ path = os.environ.get('XDG_CACHE_HOME') if path is None: path = get_home() if path is not None: path = os.path.join(path, '.cache') return path def _get_config_or_cache_dir(xdg_base): from matplotlib.cbook import mkdirs configdir = os.environ.get('MPLCONFIGDIR') if configdir is not None: configdir = os.path.abspath(configdir) if not os.path.exists(configdir): mkdirs(configdir) if not _is_writable_dir(configdir): return _create_tmp_config_dir() return configdir p = None h = get_home() if h is not None: p = os.path.join(h, '.matplotlib') if (sys.platform.startswith('linux') and xdg_base): p = os.path.join(xdg_base, 'matplotlib') if p is not None: if os.path.exists(p): if _is_writable_dir(p): return p else: try: mkdirs(p) except OSError: pass else: return p return _create_tmp_config_dir() def _get_configdir(): """ Return the string representing the configuration directory. The directory is chosen as follows: 1. If the MPLCONFIGDIR environment variable is supplied, choose that. 2a. On Linux, if `$HOME/.matplotlib` exists, choose that, but warn that that is the old location. Barring that, follow the XDG specification and look first in `$XDG_CONFIG_HOME`, if defined, or `$HOME/.config`. 2b. On other platforms, choose `$HOME/.matplotlib`. 3. If the chosen directory exists and is writable, use that as the configuration directory. 4. If possible, create a temporary directory, and use it as the configuration directory. 5. A writable directory could not be found or created; return None. """ return _get_config_or_cache_dir(_get_xdg_config_dir()) get_configdir = verbose.wrap('CONFIGDIR=%s', _get_configdir, always=False) def _get_cachedir(): """ Return the location of the cache directory. The procedure used to find the directory is the same as for _get_config_dir, except using `$XDG_CACHE_HOME`/`~/.cache` instead. """ return _get_config_or_cache_dir(_get_xdg_cache_dir()) get_cachedir = verbose.wrap('CACHEDIR=%s', _get_cachedir, always=False) def _decode_filesystem_path(path): if isinstance(path, bytes): return path.decode(sys.getfilesystemencoding()) else: return path def _get_data_path(): 'get the path to matplotlib data' if 'MATPLOTLIBDATA' in os.environ: path = os.environ['MATPLOTLIBDATA'] if not os.path.isdir(path): raise RuntimeError('Path in environment MATPLOTLIBDATA not a ' 'directory') return path _file = _decode_filesystem_path(__file__) path = os.sep.join([os.path.dirname(_file), 'mpl-data']) if os.path.isdir(path): return path # setuptools' namespace_packages may highjack this init file # so need to try something known to be in matplotlib, not basemap import matplotlib.afm _file = _decode_filesystem_path(matplotlib.afm.__file__) path = os.sep.join([os.path.dirname(_file), 'mpl-data']) if os.path.isdir(path): return path # py2exe zips pure python, so still need special check if getattr(sys, 'frozen', None): exe_path = os.path.dirname(_decode_filesystem_path(sys.executable)) path = os.path.join(exe_path, 'mpl-data') if os.path.isdir(path): return path # Try again assuming we need to step up one more directory path = os.path.join(os.path.split(exe_path)[0], 'mpl-data') if os.path.isdir(path): return path # Try again assuming sys.path[0] is a dir not a exe path = os.path.join(sys.path[0], 'mpl-data') if os.path.isdir(path): return path raise RuntimeError('Could not find the matplotlib data files') def _get_data_path_cached(): if defaultParams['datapath'][0] is None: defaultParams['datapath'][0] = _get_data_path() return defaultParams['datapath'][0] get_data_path = verbose.wrap('matplotlib data path %s', _get_data_path_cached, always=False) def get_example_data(fname): """ get_example_data is deprecated -- use matplotlib.cbook.get_sample_data instead """ raise NotImplementedError('get_example_data is deprecated -- use ' 'matplotlib.cbook.get_sample_data instead') def get_py2exe_datafiles(): datapath = get_data_path() _, tail = os.path.split(datapath) d = {} for root, _, files in os.walk(datapath): # Need to explicitly remove cocoa_agg files or py2exe complains # NOTE I dont know why, but do as previous version if 'Matplotlib.nib' in files: files.remove('Matplotlib.nib') files = [os.path.join(root, filename) for filename in files] root = root.replace(tail, 'mpl-data') root = root[root.index('mpl-data'):] d[root] = files return list(d.items()) def matplotlib_fname(): """ Get the location of the config file. The file location is determined in the following order - `$PWD/matplotlibrc` - `$MATPLOTLIBRC/matplotlibrc` - `$MPLCONFIGDIR/matplotlibrc` - On Linux, - `$HOME/.matplotlib/matplotlibrc`, if it exists - or `$XDG_CONFIG_HOME/matplotlib/matplotlibrc` (if $XDG_CONFIG_HOME is defined) - or `$HOME/.config/matplotlib/matplotlibrc` (if $XDG_CONFIG_HOME is not defined) - On other platforms, - `$HOME/.matplotlib/matplotlibrc` if `$HOME` is defined. - Lastly, it looks in `$MATPLOTLIBDATA/matplotlibrc` for a system-defined copy. """ if six.PY2: cwd = os.getcwdu() else: cwd = os.getcwd() fname = os.path.join(cwd, 'matplotlibrc') if os.path.exists(fname): return fname if 'MATPLOTLIBRC' in os.environ: path = os.environ['MATPLOTLIBRC'] if os.path.exists(path): fname = os.path.join(path, 'matplotlibrc') if os.path.exists(fname): return fname configdir = _get_configdir() if configdir is not None: fname = os.path.join(configdir, 'matplotlibrc') if os.path.exists(fname): home = get_home() if (sys.platform.startswith('linux') and home is not None and os.path.exists(os.path.join( home, '.matplotlib', 'matplotlibrc'))): warnings.warn( "Found matplotlib configuration in ~/.matplotlib/. " "To conform with the XDG base directory standard, " "this configuration location has been deprecated " "on Linux, and the new location is now %s/matplotlib/. " "Please move your configuration there to ensure that " "matplotlib will continue to find it in the future." % _get_xdg_config_dir()) return os.path.join( home, '.matplotlib', 'matplotlibrc') return fname path = get_data_path() # guaranteed to exist or raise fname = os.path.join(path, 'matplotlibrc') if not os.path.exists(fname): warnings.warn('Could not find matplotlibrc; using defaults') return fname # names of keys to deprecate # the values are a tuple of (new_name, f_old_2_new, f_new_2_old) # the inverse function may be `None` _deprecated_map = { 'text.fontstyle': ('font.style', lambda x: x, None), 'text.fontangle': ('font.style', lambda x: x, None), 'text.fontvariant': ('font.variant', lambda x: x, None), 'text.fontweight': ('font.weight', lambda x: x, None), 'text.fontsize': ('font.size', lambda x: x, None), 'tick.size': ('tick.major.size', lambda x: x, None), 'svg.embed_char_paths': ('svg.fonttype', lambda x: "path" if x else "none", None), 'savefig.extension': ('savefig.format', lambda x: x, None), 'axes.color_cycle': ('axes.prop_cycle', lambda x: cycler('color', x), lambda x: [c.get('color', None) for c in x]), } _deprecated_ignore_map = { } _obsolete_set = set(['tk.pythoninspect', ]) _all_deprecated = set(chain(_deprecated_ignore_map, _deprecated_map, _obsolete_set)) class RcParams(dict): """ A dictionary object including validation validating functions are defined and associated with rc parameters in :mod:`matplotlib.rcsetup` """ validate = dict((key, converter) for key, (default, converter) in six.iteritems(defaultParams) if key not in _all_deprecated) msg_depr = "%s is deprecated and replaced with %s; please use the latter." msg_depr_ignore = "%s is deprecated and ignored. Use %s" # validate values on the way in def __init__(self, *args, **kwargs): for k, v in six.iteritems(dict(*args, **kwargs)): self[k] = v def __setitem__(self, key, val): try: if key in _deprecated_map: alt_key, alt_val, inverse_alt = _deprecated_map[key] warnings.warn(self.msg_depr % (key, alt_key)) key = alt_key val = alt_val(val) elif key in _deprecated_ignore_map: alt = _deprecated_ignore_map[key] warnings.warn(self.msg_depr_ignore % (key, alt)) return try: cval = self.validate[key](val) except ValueError as ve: raise ValueError("Key %s: %s" % (key, str(ve))) dict.__setitem__(self, key, cval) except KeyError: raise KeyError('%s is not a valid rc parameter.\ See rcParams.keys() for a list of valid parameters.' % (key,)) def __getitem__(self, key): inverse_alt = None if key in _deprecated_map: alt_key, alt_val, inverse_alt = _deprecated_map[key] warnings.warn(self.msg_depr % (key, alt_key)) key = alt_key elif key in _deprecated_ignore_map: alt = _deprecated_ignore_map[key] warnings.warn(self.msg_depr_ignore % (key, alt)) key = alt val = dict.__getitem__(self, key) if inverse_alt is not None: return inverse_alt(val) else: return val # http://stackoverflow.com/questions/2390827 # (how-to-properly-subclass-dict-and-override-get-set) # the default dict `update` does not use __setitem__ # so rcParams.update(...) (such as in seaborn) side-steps # all of the validation over-ride update to force # through __setitem__ def update(self, *args, **kwargs): for k, v in six.iteritems(dict(*args, **kwargs)): self[k] = v def __repr__(self): import pprint class_name = self.__class__.__name__ indent = len(class_name) + 1 repr_split = pprint.pformat(dict(self), indent=1, width=80 - indent).split('\n') repr_indented = ('\n' + ' ' * indent).join(repr_split) return '{0}({1})'.format(class_name, repr_indented) def __str__(self): return '\n'.join('{0}: {1}'.format(k, v) for k, v in sorted(self.items())) def keys(self): """ Return sorted list of keys. """ k = list(dict.keys(self)) k.sort() return k def values(self): """ Return values in order of sorted keys. """ return [self[k] for k in self.keys()] def find_all(self, pattern): """ Return the subset of this RcParams dictionary whose keys match, using :func:`re.search`, the given ``pattern``. .. note:: Changes to the returned dictionary are *not* propagated to the parent RcParams dictionary. """ import re pattern_re = re.compile(pattern) return RcParams((key, value) for key, value in self.items() if pattern_re.search(key)) def rc_params(fail_on_error=False): """Return a :class:`matplotlib.RcParams` instance from the default matplotlib rc file. """ fname = matplotlib_fname() if not os.path.exists(fname): # this should never happen, default in mpl-data should always be found message = 'could not find rc file; returning defaults' ret = RcParams([(key, default) for key, (default, _) in six.iteritems(defaultParams) if key not in _all_deprecated]) warnings.warn(message) return ret return rc_params_from_file(fname, fail_on_error) URL_REGEX = re.compile(r'http://|https://|ftp://|file://|file:\\') def is_url(filename): """Return True if string is an http, ftp, or file URL path.""" return URL_REGEX.match(filename) is not None def _url_lines(f): # Compatibility for urlopen in python 3, which yields bytes. for line in f: yield line.decode('utf8') @contextlib.contextmanager def _open_file_or_url(fname): if is_url(fname): f = urlopen(fname) yield _url_lines(f) f.close() else: fname = os.path.expanduser(fname) encoding = locale.getpreferredencoding(do_setlocale=False) if encoding is None: encoding = "utf-8" with io.open(fname, encoding=encoding) as f: yield f _error_details_fmt = 'line #%d\n\t"%s"\n\tin file "%s"' def _rc_params_in_file(fname, fail_on_error=False): """Return :class:`matplotlib.RcParams` from the contents of the given file. Unlike `rc_params_from_file`, the configuration class only contains the parameters specified in the file (i.e. default values are not filled in). """ cnt = 0 rc_temp = {} with _open_file_or_url(fname) as fd: try: for line in fd: cnt += 1 strippedline = line.split('#', 1)[0].strip() if not strippedline: continue tup = strippedline.split(':', 1) if len(tup) != 2: error_details = _error_details_fmt % (cnt, line, fname) warnings.warn('Illegal %s' % error_details) continue key, val = tup key = key.strip() val = val.strip() if key in rc_temp: warnings.warn('Duplicate key in file "%s", line #%d' % (fname, cnt)) rc_temp[key] = (val, line, cnt) except UnicodeDecodeError: warnings.warn( ('Cannot decode configuration file %s with ' 'encoding %s, check LANG and LC_* variables') % (fname, locale.getpreferredencoding(do_setlocale=False) or 'utf-8 (default)')) raise config = RcParams() for key in ('verbose.level', 'verbose.fileo'): if key in rc_temp: val, line, cnt = rc_temp.pop(key) if fail_on_error: config[key] = val # try to convert to proper type or raise else: try: config[key] = val # try to convert to proper type or skip except Exception as msg: error_details = _error_details_fmt % (cnt, line, fname) warnings.warn('Bad val "%s" on %s\n\t%s' % (val, error_details, msg)) for key, (val, line, cnt) in six.iteritems(rc_temp): if key in defaultParams: if fail_on_error: config[key] = val # try to convert to proper type or raise else: try: config[key] = val # try to convert to proper type or skip except Exception as msg: error_details = _error_details_fmt % (cnt, line, fname) warnings.warn('Bad val "%s" on %s\n\t%s' % (val, error_details, msg)) elif key in _deprecated_ignore_map: warnings.warn('%s is deprecated. Update your matplotlibrc to use ' '%s instead.' % (key, _deprecated_ignore_map[key])) else: print(""" Bad key "%s" on line %d in %s. You probably need to get an updated matplotlibrc file from http://github.com/matplotlib/matplotlib/blob/master/matplotlibrc.template or from the matplotlib source distribution""" % (key, cnt, fname), file=sys.stderr) return config def rc_params_from_file(fname, fail_on_error=False, use_default_template=True): """Return :class:`matplotlib.RcParams` from the contents of the given file. Parameters ---------- fname : str Name of file parsed for matplotlib settings. fail_on_error : bool If True, raise an error when the parser fails to convert a parameter. use_default_template : bool If True, initialize with default parameters before updating with those in the given file. If False, the configuration class only contains the parameters specified in the file. (Useful for updating dicts.) """ config_from_file = _rc_params_in_file(fname, fail_on_error) if not use_default_template: return config_from_file iter_params = six.iteritems(defaultParams) config = RcParams([(key, default) for key, (default, _) in iter_params if key not in _all_deprecated]) config.update(config_from_file) verbose.set_level(config['verbose.level']) verbose.set_fileo(config['verbose.fileo']) if config['datapath'] is None: config['datapath'] = get_data_path() if not config['text.latex.preamble'] == ['']: verbose.report(""" ***************************************************************** You have the following UNSUPPORTED LaTeX preamble customizations: %s Please do not ask for support with these customizations active. ***************************************************************** """ % '\n'.join(config['text.latex.preamble']), 'helpful') verbose.report('loaded rc file %s' % fname) return config # this is the instance used by the matplotlib classes rcParams = rc_params() if rcParams['examples.directory']: # paths that are intended to be relative to matplotlib_fname() # are allowed for the examples.directory parameter. # However, we will need to fully qualify the path because # Sphinx requires absolute paths. if not os.path.isabs(rcParams['examples.directory']): _basedir, _fname = os.path.split(matplotlib_fname()) # Sometimes matplotlib_fname() can return relative paths, # Also, using realpath() guarentees that Sphinx will use # the same path that matplotlib sees (in case of weird symlinks). _basedir = os.path.realpath(_basedir) _fullpath = os.path.join(_basedir, rcParams['examples.directory']) rcParams['examples.directory'] = _fullpath rcParamsOrig = rcParams.copy() rcParamsDefault = RcParams([(key, default) for key, (default, converter) in six.iteritems(defaultParams) if key not in _all_deprecated]) rcParams['ps.usedistiller'] = checkdep_ps_distiller( rcParams['ps.usedistiller']) rcParams['text.usetex'] = checkdep_usetex(rcParams['text.usetex']) if rcParams['axes.formatter.use_locale']: locale.setlocale(locale.LC_ALL, '') def rc(group, **kwargs): """ Set the current rc params. Group is the grouping for the rc, e.g., for ``lines.linewidth`` the group is ``lines``, for ``axes.facecolor``, the group is ``axes``, and so on. Group may also be a list or tuple of group names, e.g., (*xtick*, *ytick*). *kwargs* is a dictionary attribute name/value pairs, e.g.,:: rc('lines', linewidth=2, color='r') sets the current rc params and is equivalent to:: rcParams['lines.linewidth'] = 2 rcParams['lines.color'] = 'r' The following aliases are available to save typing for interactive users: ===== ================= Alias Property ===== ================= 'lw' 'linewidth' 'ls' 'linestyle' 'c' 'color' 'fc' 'facecolor' 'ec' 'edgecolor' 'mew' 'markeredgewidth' 'aa' 'antialiased' ===== ================= Thus you could abbreviate the above rc command as:: rc('lines', lw=2, c='r') Note you can use python's kwargs dictionary facility to store dictionaries of default parameters. e.g., you can customize the font rc as follows:: font = {'family' : 'monospace', 'weight' : 'bold', 'size' : 'larger'} rc('font', **font) # pass in the font dict as kwargs This enables you to easily switch between several configurations. Use :func:`~matplotlib.pyplot.rcdefaults` to restore the default rc params after changes. """ aliases = { 'lw': 'linewidth', 'ls': 'linestyle', 'c': 'color', 'fc': 'facecolor', 'ec': 'edgecolor', 'mew': 'markeredgewidth', 'aa': 'antialiased', } if is_string_like(group): group = (group,) for g in group: for k, v in six.iteritems(kwargs): name = aliases.get(k) or k key = '%s.%s' % (g, name) try: rcParams[key] = v except KeyError: raise KeyError(('Unrecognized key "%s" for group "%s" and ' 'name "%s"') % (key, g, name)) def rcdefaults(): """ Restore the default rc params. These are not the params loaded by the rc file, but mpl's internal params. See rc_file_defaults for reloading the default params from the rc file """ rcParams.clear() rcParams.update(rcParamsDefault) def rc_file(fname): """ Update rc params from file. """ rcParams.update(rc_params_from_file(fname)) class rc_context(object): """ Return a context manager for managing rc settings. This allows one to do:: with mpl.rc_context(fname='screen.rc'): plt.plot(x, a) with mpl.rc_context(fname='print.rc'): plt.plot(x, b) plt.plot(x, c) The 'a' vs 'x' and 'c' vs 'x' plots would have settings from 'screen.rc', while the 'b' vs 'x' plot would have settings from 'print.rc'. A dictionary can also be passed to the context manager:: with mpl.rc_context(rc={'text.usetex': True}, fname='screen.rc'): plt.plot(x, a) The 'rc' dictionary takes precedence over the settings loaded from 'fname'. Passing a dictionary only is also valid. """ def __init__(self, rc=None, fname=None): self.rcdict = rc self.fname = fname self._rcparams = rcParams.copy() try: if self.fname: rc_file(self.fname) if self.rcdict: rcParams.update(self.rcdict) except: # if anything goes wrong, revert rc parameters and re-raise rcParams.clear() rcParams.update(self._rcparams) raise def __enter__(self): return self def __exit__(self, type, value, tb): rcParams.update(self._rcparams) def rc_file_defaults(): """ Restore the default rc params from the original matplotlib rc that was loaded """ rcParams.update(rcParamsOrig) _use_error_msg = """ This call to matplotlib.use() has no effect because the backend has already been chosen; matplotlib.use() must be called *before* pylab, matplotlib.pyplot, or matplotlib.backends is imported for the first time. """ def use(arg, warn=True, force=False): """ Set the matplotlib backend to one of the known backends. The argument is case-insensitive. *warn* specifies whether a warning should be issued if a backend has already been set up. *force* is an **experimental** flag that tells matplotlib to attempt to initialize a new backend by reloading the backend module. .. note:: This function must be called *before* importing pyplot for the first time; or, if you are not using pyplot, it must be called before importing matplotlib.backends. If warn is True, a warning is issued if you try and call this after pylab or pyplot have been loaded. In certain black magic use cases, e.g. :func:`pyplot.switch_backend`, we are doing the reloading necessary to make the backend switch work (in some cases, e.g., pure image backends) so one can set warn=False to suppress the warnings. To find out which backend is currently set, see :func:`matplotlib.get_backend`. """ # Lets determine the proper backend name first if arg.startswith('module://'): name = arg else: # Lowercase only non-module backend names (modules are case-sensitive) arg = arg.lower() name = validate_backend(arg) # Check if we've already set up a backend if 'matplotlib.backends' in sys.modules: # Warn only if called with a different name if (rcParams['backend'] != name) and warn: warnings.warn(_use_error_msg) # Unless we've been told to force it, just return if not force: return need_reload = True else: need_reload = False # Store the backend name rcParams['backend'] = name # If needed we reload here because a lot of setup code is triggered on # module import. See backends/__init__.py for more detail. if need_reload: reload(sys.modules['matplotlib.backends']) def get_backend(): """Return the name of the current backend.""" return rcParams['backend'] def interactive(b): """ Set interactive mode to boolean b. If b is True, then draw after every plotting command, e.g., after xlabel """ rcParams['interactive'] = b def is_interactive(): 'Return true if plot mode is interactive' return rcParams['interactive'] def tk_window_focus(): """Return true if focus maintenance under TkAgg on win32 is on. This currently works only for python.exe and IPython.exe. Both IDLE and Pythonwin.exe fail badly when tk_window_focus is on.""" if rcParams['backend'] != 'TkAgg': return False return rcParams['tk.window_focus'] # Now allow command line to override # Allow command line access to the backend with -d (MATLAB compatible # flag) for s in sys.argv[1:]: # cast to str because we are using unicode_literals, # and argv is always str if s.startswith(str('-d')) and len(s) > 2: # look for a -d flag try: use(s[2:]) warnings.warn("Using the -d command line argument to select a " "matplotlib backend is deprecated. Please use the " "MPLBACKEND environment variable instead.", mplDeprecation) break except (KeyError, ValueError): pass # we don't want to assume all -d flags are backends, e.g., -debug else: # no backend selected from the command line, so we check the environment # variable MPLBACKEND try: use(os.environ['MPLBACKEND']) except (KeyError, ValueError): pass default_test_modules = [ 'matplotlib.tests.test_agg', 'matplotlib.tests.test_animation', 'matplotlib.tests.test_arrow_patches', 'matplotlib.tests.test_artist', 'matplotlib.tests.test_axes', 'matplotlib.tests.test_backend_bases', 'matplotlib.tests.test_backend_pdf', 'matplotlib.tests.test_backend_pgf', 'matplotlib.tests.test_backend_ps', 'matplotlib.tests.test_backend_qt4', 'matplotlib.tests.test_backend_qt5', 'matplotlib.tests.test_backend_svg', 'matplotlib.tests.test_basic', 'matplotlib.tests.test_bbox_tight', 'matplotlib.tests.test_cbook', 'matplotlib.tests.test_coding_standards', 'matplotlib.tests.test_collections', 'matplotlib.tests.test_colorbar', 'matplotlib.tests.test_colors', 'matplotlib.tests.test_compare_images', 'matplotlib.tests.test_container', 'matplotlib.tests.test_contour', 'matplotlib.tests.test_dates', 'matplotlib.tests.test_delaunay', 'matplotlib.tests.test_figure', 'matplotlib.tests.test_font_manager', 'matplotlib.tests.test_gridspec', 'matplotlib.tests.test_image', 'matplotlib.tests.test_legend', 'matplotlib.tests.test_lines', 'matplotlib.tests.test_mathtext', 'matplotlib.tests.test_mlab', 'matplotlib.tests.test_offsetbox', 'matplotlib.tests.test_patches', 'matplotlib.tests.test_path', 'matplotlib.tests.test_patheffects', 'matplotlib.tests.test_pickle', 'matplotlib.tests.test_png', 'matplotlib.tests.test_quiver', 'matplotlib.tests.test_rcparams', 'matplotlib.tests.test_scale', 'matplotlib.tests.test_simplification', 'matplotlib.tests.test_spines', 'matplotlib.tests.test_streamplot', 'matplotlib.tests.test_style', 'matplotlib.tests.test_subplots', 'matplotlib.tests.test_table', 'matplotlib.tests.test_text', 'matplotlib.tests.test_texmanager', 'matplotlib.tests.test_ticker', 'matplotlib.tests.test_tightlayout', 'matplotlib.tests.test_transforms', 'matplotlib.tests.test_triangulation', 'matplotlib.tests.test_units', 'matplotlib.tests.test_widgets', 'matplotlib.tests.test_cycles', 'matplotlib.tests.test_labeled_data_unpacking', 'matplotlib.sphinxext.tests.test_tinypages', 'mpl_toolkits.tests.test_mplot3d', 'mpl_toolkits.tests.test_axes_grid1', 'mpl_toolkits.tests.test_axes_grid', ] def verify_test_dependencies(): if not os.path.isdir(os.path.join(os.path.dirname(__file__), 'tests')): raise ImportError("matplotlib test data is not installed") try: import nose try: from unittest import mock except: import mock except ImportError: print("matplotlib.test requires nose and mock to run.") raise def test(verbosity=1): """run the matplotlib test suite""" verify_test_dependencies() try: import faulthandler except ImportError: pass else: faulthandler.enable() old_backend = rcParams['backend'] try: use('agg') import nose import nose.plugins.builtin from .testing.noseclasses import KnownFailure from nose.plugins.manager import PluginManager from nose.plugins import multiprocess # store the old values before overriding plugins = [] plugins.append(KnownFailure()) plugins.extend([plugin() for plugin in nose.plugins.builtin.plugins]) manager = PluginManager(plugins=plugins) config = nose.config.Config(verbosity=verbosity, plugins=manager) # Nose doesn't automatically instantiate all of the plugins in the # child processes, so we have to provide the multiprocess plugin with # a list. multiprocess._instantiate_plugins = [KnownFailure] success = nose.run( defaultTest=default_test_modules, config=config, ) finally: if old_backend.lower() != 'agg': use(old_backend) return success test.__test__ = False # nose: this function is not a test def _replacer(data, key): # if key isn't a string don't bother if not isinstance(key, six.string_types): return key # try to use __getitem__ try: return data[key] # key does not exist, silently fall back to key except KeyError: return key _DATA_DOC_APPENDIX = """ Notes ----- In addition to the above described arguments, this function can take a **data** keyword argument. If such a **data** argument is given, the following arguments are replaced by **data[<arg>]**: {replaced} """ def unpack_labeled_data(replace_names=None, replace_all_args=False, label_namer=None, positional_parameter_names=None): """ A decorator to add a 'data' kwarg to any a function. The signature of the input function must include the ax argument at the first position :: def foo(ax, *args, **kwargs) so this is suitable for use with Axes methods. Parameters ---------- replace_names : list of strings, optional, default: None The list of parameter names which arguments should be replaced by `data[name]`. If None, all arguments are replaced if they are included in `data`. replace_all_args : bool, default: False If True, all arguments in *args get replaced, even if they are not in replace_names. label_namer : string, optional, default: None The name of the parameter which argument should be used as label, if label is not set. If None, the label keyword argument is not set. positional_parameter_names : list of strings or callable, optional The full list of positional parameter names (excluding an explicit `ax`/'self' argument at the first place and including all possible positional parameter in `*args`), in the right order. Can also include all other keyword parameter. Only needed if the wrapped function does contain `*args` and (replace_names is not None or replace_all_args is False). If it is a callable, it will be called with the actual tuple of *args and the data and should return a list like above. NOTE: callables should only be used when the names and order of *args can only be determined at runtime. Please use list of names when the order and names of *args is clear before runtime! """ if replace_names is not None: replace_names = set(replace_names) def param(func): new_sig = None python_has_signature = major >= 3 and minor1 >= 3 python_has_wrapped = major >= 3 and minor1 >= 2 # if in a legacy version of python and IPython is already imported # try to use their back-ported signature if not python_has_signature and 'IPython' in sys.modules: try: import IPython.utils.signatures signature = IPython.utils.signatures.signature Parameter = IPython.utils.signatures.Parameter except ImportError: pass else: python_has_signature = True else: if python_has_signature: signature = inspect.signature Parameter = inspect.Parameter if not python_has_signature: arg_spec = inspect.getargspec(func) _arg_names = arg_spec.args _has_varargs = arg_spec.varargs is not None _has_varkwargs = arg_spec.keywords is not None else: sig = signature(func) _has_varargs = False _has_varkwargs = False _arg_names = [] params = list(sig.parameters.values()) for p in params: if p.kind is Parameter.VAR_POSITIONAL: _has_varargs = True elif p.kind is Parameter.VAR_KEYWORD: _has_varkwargs = True else: _arg_names.append(p.name) data_param = Parameter('data', Parameter.KEYWORD_ONLY, default=None) if _has_varkwargs: params.insert(-1, data_param) else: params.append(data_param) new_sig = sig.replace(parameters=params) # Import-time check: do we have enough information to replace *args? arg_names_at_runtime = False # there can't be any positional arguments behind *args and no # positional args can end up in **kwargs, so only *varargs make # problems. # http://stupidpythonideas.blogspot.de/2013/08/arguments-and-parameters.html if not _has_varargs: # all args are "named", so no problem # remove the first "ax" / self arg arg_names = _arg_names[1:] else: # Here we have "unnamed" variables and we need a way to determine # whether to replace a arg or not if replace_names is None: # all argnames should be replaced arg_names = None elif len(replace_names) == 0: # No argnames should be replaced arg_names = [] elif len(_arg_names) > 1 and (positional_parameter_names is None): # we got no manual parameter names but more than an 'ax' ... if len(set(replace_names) - set(_arg_names[1:])) == 0: # all to be replaced arguments are in the list arg_names = _arg_names[1:] else: msg = ("Got unknown 'replace_names' and wrapped function " "'%s' uses '*args', need " "'positional_parameter_names'!") raise AssertionError(msg % func.__name__) else: if positional_parameter_names is not None: if callable(positional_parameter_names): # determined by the function at runtime arg_names_at_runtime = True # so that we don't compute the label_pos at import time arg_names = [] else: arg_names = positional_parameter_names else: if replace_all_args: arg_names = [] else: msg = ("Got 'replace_names' and wrapped function " "'%s' uses *args, need " "'positional_parameter_names' or " "'replace_all_args'!") raise AssertionError(msg % func.__name__) # compute the possible label_namer and label position in positional # arguments label_pos = 9999 # bigger than all "possible" argument lists label_namer_pos = 9999 # bigger than all "possible" argument lists if (label_namer and # we actually want a label here ... arg_names and # and we can determine a label in *args ... (label_namer in arg_names)): # and it is in *args label_namer_pos = arg_names.index(label_namer) if "label" in arg_names: label_pos = arg_names.index("label") # Check the case we know a label_namer but we can't find it the # arg_names... Unfortunately the label_namer can be in **kwargs, # which we can't detect here and which results in a non-set label # which might surprise the user :-( if label_namer and not arg_names_at_runtime and not _has_varkwargs: if not arg_names: msg = ("label_namer '%s' can't be found as the parameter " "without 'positional_parameter_names'.") raise AssertionError(msg % label_namer) elif label_namer not in arg_names: msg = ("label_namer '%s' can't be found in the parameter " "names (known argnames: %s).") raise AssertionError(msg % (label_namer, arg_names)) else: # this is the case when the name is in arg_names pass @functools.wraps(func) def inner(ax, *args, **kwargs): # this is needed because we want to change these values if # arg_names_at_runtime==True, but python does not allow assigning # to a variable in a outer scope. So use some new local ones and # set them to the already computed values. _label_pos = label_pos _label_namer_pos = label_namer_pos _arg_names = arg_names label = None data = kwargs.pop('data', None) if data is not None: if arg_names_at_runtime: # update the information about replace names and # label position _arg_names = positional_parameter_names(args, data) if (label_namer and # we actually want a label here ... _arg_names and # and we can find a label in *args (label_namer in _arg_names)): # and it is in *args _label_namer_pos = _arg_names.index(label_namer) if "label" in _arg_names: _label_pos = arg_names.index("label") # save the current label_namer value so that it can be used as # a label if _label_namer_pos < len(args): label = args[_label_namer_pos] else: label = kwargs.get(label_namer, None) # ensure a string, as label can't be anything else if not isinstance(label, six.string_types): label = None if (replace_names is None) or (replace_all_args is True): # all should be replaced args = tuple(_replacer(data, a) for j, a in enumerate(args)) else: # An arg is replaced if the arg_name of that position is # in replace_names ... if len(_arg_names) < len(args): raise RuntimeError( "Got more args than function expects") args = tuple(_replacer(data, a) if _arg_names[j] in replace_names else a for j, a in enumerate(args)) if replace_names is None: # replace all kwargs ... kwargs = dict((k, _replacer(data, v)) for k, v in six.iteritems(kwargs)) else: # ... or only if a kwarg of that name is in replace_names kwargs = dict((k, _replacer(data, v) if k in replace_names else v) for k, v in six.iteritems(kwargs)) # replace the label if this func "wants" a label arg and the user # didn't set one. Note: if the user puts in "label=None", it does # *NOT* get replaced! user_supplied_label = ( (len(args) >= _label_pos) or # label is included in args ('label' in kwargs) # ... or in kwargs ) if (label_namer and not user_supplied_label): if _label_namer_pos < len(args): kwargs['label'] = get_label(args[_label_namer_pos], label) elif label_namer in kwargs: kwargs['label'] = get_label(kwargs[label_namer], label) else: import warnings msg = ("Tried to set a label via parameter '%s' in " "func '%s' but couldn't find such an argument. \n" "(This is a programming error, please report to " "the matplotlib list!)") warnings.warn(msg % (label_namer, func.__name__), RuntimeWarning, stacklevel=2) return func(ax, *args, **kwargs) pre_doc = inner.__doc__ if pre_doc is None: pre_doc = '' else: pre_doc = dedent(pre_doc) _repl = "" if replace_names is None: _repl = "* All positional and all keyword arguments." else: if len(replace_names) != 0: _repl = "* All arguments with the following names: '{names}'." if replace_all_args: _repl += "\n* All positional arguments." _repl = _repl.format(names="', '".join(replace_names)) inner.__doc__ = (pre_doc + _DATA_DOC_APPENDIX.format(replaced=_repl)) if not python_has_wrapped: inner.__wrapped__ = func if new_sig is not None: inner.__signature__ = new_sig return inner return param verbose.report('matplotlib version %s' % __version__) verbose.report('verbose.level %s' % verbose.level) verbose.report('interactive is %s' % is_interactive()) verbose.report('platform is %s' % sys.platform) verbose.report('loaded modules: %s' % six.iterkeys(sys.modules), 'debug')
mit
clairetang6/bokeh
bokeh/sampledata/gapminder.py
8
2810
''' Provide a pandas DataFrame instance of four of the datasets from gapminder.org. These are read in from csv filess that have been downloaded from Bokeh's sample data on S3. But the original code that generated the csvs from the raw gapminder data is available at the bottom of this file. ''' from __future__ import absolute_import from bokeh.util.dependencies import import_required pd = import_required('pandas', 'gapminder sample data requires Pandas (http://pandas.pydata.org) to be installed') from os.path import join import sys from . import _data_dir data_dir = _data_dir() datasets = [ 'fertility', 'life_expectancy', 'population', 'regions', ] for dataset in datasets: filename = join(data_dir, 'gapminder_%s.csv' % dataset) try: setattr( sys.modules[__name__], dataset, pd.read_csv(filename, index_col='Country') ) except (IOError, OSError): raise RuntimeError('Could not load gapminder data file "%s". Please execute bokeh.sampledata.download()' % filename) __all__ = datasets # ==================================================== # Original data is from Gapminder - www.gapminder.org. # The google docs links are maintained by gapminder # The following script was used to get the data from gapminder # and process it into the csvs stored in bokeh's sampledata. """ population_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0XOoBL_n5tAQ&output=xls" fertility_url = "http://spreadsheets.google.com/pub?key=phAwcNAVuyj0TAlJeCEzcGQ&output=xls" life_expectancy_url = "http://spreadsheets.google.com/pub?key=tiAiXcrneZrUnnJ9dBU-PAw&output=xls" regions_url = "https://docs.google.com/spreadsheets/d/1OxmGUNWeADbPJkQxVPupSOK5MbAECdqThnvyPrwG5Os/pub?gid=1&output=xls" def _get_data(url): # Get the data from the url and return only 1962 - 2013 df = pd.read_excel(url, index_col=0) df = df.unstack().unstack() df = df[(df.index >= 1964) & (df.index <= 2013)] df = df.unstack().unstack() return df fertility_df = _get_data(fertility_url) life_expectancy_df = _get_data(life_expectancy_url) population_df = _get_data(population_url) regions_df = pd.read_excel(regions_url, index_col=0) # have common countries across all data fertility_df = fertility_df.drop(fertility_df.index.difference(life_expectancy_df.index)) population_df = population_df.drop(population_df.index.difference(life_expectancy_df.index)) regions_df = regions_df.drop(regions_df.index.difference(life_expectancy_df.index)) fertility_df.to_csv('gapminder_fertility.csv') population_df.to_csv('gapminder_population.csv') life_expectancy_df.to_csv('gapminder_life_expectancy.csv') regions_df.to_csv('gapminder_regions.csv') """ # ======================================================
bsd-3-clause
RomainBrault/scikit-learn
examples/decomposition/plot_pca_3d.py
354
2432
#!/usr/bin/python # -*- coding: utf-8 -*- """ ========================================================= Principal components analysis (PCA) ========================================================= These figures aid in illustrating how a point cloud can be very flat in one direction--which is where PCA comes in to choose a direction that is not flat. """ print(__doc__) # Authors: Gael Varoquaux # Jaques Grobler # Kevin Hughes # License: BSD 3 clause from sklearn.decomposition import PCA from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from scipy import stats ############################################################################### # Create the data e = np.exp(1) np.random.seed(4) def pdf(x): return 0.5 * (stats.norm(scale=0.25 / e).pdf(x) + stats.norm(scale=4 / e).pdf(x)) y = np.random.normal(scale=0.5, size=(30000)) x = np.random.normal(scale=0.5, size=(30000)) z = np.random.normal(scale=0.1, size=len(x)) density = pdf(x) * pdf(y) pdf_z = pdf(5 * z) density *= pdf_z a = x + y b = 2 * y c = a - b + z norm = np.sqrt(a.var() + b.var()) a /= norm b /= norm ############################################################################### # Plot the figures def plot_figs(fig_num, elev, azim): fig = plt.figure(fig_num, figsize=(4, 3)) plt.clf() ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim) ax.scatter(a[::10], b[::10], c[::10], c=density[::10], marker='+', alpha=.4) Y = np.c_[a, b, c] # Using SciPy's SVD, this would be: # _, pca_score, V = scipy.linalg.svd(Y, full_matrices=False) pca = PCA(n_components=3) pca.fit(Y) pca_score = pca.explained_variance_ratio_ V = pca.components_ x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min() x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]] y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]] z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]] x_pca_plane.shape = (2, 2) y_pca_plane.shape = (2, 2) z_pca_plane.shape = (2, 2) ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane) ax.w_xaxis.set_ticklabels([]) ax.w_yaxis.set_ticklabels([]) ax.w_zaxis.set_ticklabels([]) elev = -40 azim = -80 plot_figs(1, elev, azim) elev = 30 azim = 20 plot_figs(2, elev, azim) plt.show()
bsd-3-clause
danielrd6/pyslight
pyslight/starlight.py
1
8113
#!/usr/bin/env python import numpy as np from ifscube.spectools import get_wl import pyfits as pf from scipy.interpolate import interp1d # import matplotlib as mpl import matplotlib.pyplot as plt # import scipy.ndimage as ndim from scipy.ndimage import gaussian_filter as gf import subprocess def perturbation(infile, niterate=3, slexec='/datassd/starlight/StarlightChains_v04.exe'): """ Function to perturb the spectrum and check the stability of the Starlight solution. """ with open(infile, 'r') as f: a = f.readlines() specfile = a[-1].split()[0] outsl = a[-1].split()[-1] spec = np.loadtxt(specfile, unpack=True) noise = np.average(spec[2]) c = 0 while c < niterate: pspec = 'tempspec.txt' np.savetxt( pspec, np.column_stack([ spec[0], np.random.normal(spec[1], noise), spec[2], spec[3]])) with open('temp.in', 'w') as tempin: for line in a[:-1]: tempin.write(line) tempin.write( a[-1].replace(outsl, 'outsl_{:04d}.txt'.format(c)). replace(specfile, 'tempspec.txt')) subprocess.call('{:s} < temp.in'.format(slexec), shell=True) c += 1 return def fits2sl(spec, mask=None, dwl=1, integerwl=True, writetxt=False, errfraction=None, normspec=False, normwl=[6100, 6200], gauss_convolve=0): """ Converts a 1D FITS spectrum to the format accepted by Starlight. Parameters ---------- spec : string Name of the FITS spectrum. mask : None or string Name of the ASCII file containing the regions to be masked, as a sequence of initial and final wavelength coordinates, one pair per line. dwl : number The step in wavelength of the resampled spectrum. We recommend using the standard 1 angstrom. integerwl : boolean True if the wavelength coordinates can be written as integers. writetxt : boolean True if the function should write an output ASCII file. errfraction : number Fraction of the signal to be used in case the uncertainties are unknown. gauss_convolve : number Sigma of the gaussian kernel to convolve with the spectrum. Returns ------- slspec : numpy.ndarray 2D array with 4 columns, containing wavelength, flux density, uncertainty and flags respectively. """ # Loading spectrum from FITS file. a = pf.getdata(spec) wl = get_wl(spec) print('Average dispersion: ', np.average(np.diff(wl))) # Linear interpolation of the spectrum and resampling of # the spectrum. f = interp1d(wl, gf(a, gauss_convolve), kind='linear') if integerwl: wlrebin = np.arange(int(wl[0]) + 1, int(wl[-1]) - 1) frebin = f(wlrebin) mcol = np.ones(len(wlrebin)) if mask is not None: masktab = np.loadtxt(mask) for i in range(len(masktab)): mcol[(wlrebin >= masktab[i, 0]) & (wlrebin <= masktab[i, 1])] = 99 if normspec: normfactor = 1. / np.median(frebin[(wlrebin > normwl[0]) & (wlrebin < normwl[1])]) else: normfactor = 1.0 frebin *= normfactor if (errfraction is not None) and (mask is not None): vectors = [wlrebin, frebin, frebin * errfraction, mcol] txt_format = ['%d', '%.6e', '%.6e', '%d'] elif (errfraction is not None) and (mask is None): vectors = [wlrebin, frebin, frebin * errfraction] txt_format = ['%d', '%.6e', '%.6e'] elif (errfraction is None) and (mask is not None): vectors = [wlrebin, frebin, mcol] txt_format = ['%d', '%.6e', '%d'] elif (errfraction is None) and (mask is None): vectors = [wlrebin, frebin] txt_format = ['%d', '%.6e'] slspec = np.column_stack(vectors) if writetxt: np.savetxt(spec.strip('fits') + 'txt', slspec, fmt=txt_format) return slspec def readsl(synthfile, full_output=False): f = open(synthfile, 'r') a = f.readlines() f.close() skpr = [i for i in np.arange(len(a)) if '## Synthetic spectrum' in a[i]][0] b = np.loadtxt(synthfile, skiprows=skpr + 2) fobs_norm = float([i.split()[0] for i in a if '[fobs_norm (in input units)]' in i][0]) b[:, [1, 2]] *= fobs_norm return b def plotsl(synthfile, masked=False, overplot=False): """ Plots the observed spectrum and overlays the resulting SSP synthesis. Parameters ---------- synthfile : string Name of the ASCII file containing the output of Starlight. masked : boolean Ommit the masked regions from the observed spectrum. Returns ------- Nothing. """ b = readsl(synthfile) if not overplot: fig = plt.figure() ax = fig.add_subplot(111) if masked: m = b[:, 3] > 0 ax.plot(b[m, 0], b[m, 1], lw=2) ax.plot(b[:, 0], b[:, 1]) ax.plot(b[:, 0], b[:, 2]) plt.show() return def subtractmodel(synthfile, fitsfile=None, writefits=False): a = readsl(synthfile) if fitsfile is None: b = np.column_stack([a[:, 0], a[:, 1] - a[:, 2]]) else: wl = get_wl(fitsfile) f = interp1d(wl, pf.getdata(fitsfile)) m = interp1d(a[:, 0], a[:, 2], bounds_error=False, fill_value=0) b = np.column_stack([wl, f(wl) - m(wl)]) if writefits: if fitsfile is None: print('ERROR! No FITS file given.') return pf.writeto(fitsfile[:-4] + 'sp.fits', f(wl) - m(wl), header=pf.getheader(fitsfile)) return b def powerlaw_flux(synthfile, wl=5100, alpha=0.5): with open(synthfile, 'r') as f: synth = f.readlines() wln = float(synth[22].split()[0]) fnorm = float(synth[25].split()[0]) xpl = float(synth[108].split()[1]) def powerlaw(wl, wlnorm=4620, alpha=0.5): return (wl / float(wlnorm)) ** (-1 - alpha) print(wln, fnorm, xpl) f_lambda = fnorm * xpl / 100. * powerlaw(wl) return f_lambda def sdss2sl(infile, mask=None, dopcor=False, writetxt=False, outfile='lixo.txt', gauss_convolve=0, normspec=False, wlnorm=[6000, 6100], dwl=1, integerwl=True): """ Creates an ASCII file from the sdss spectrum file. Parameters ---------- infile : string Name of the original SDSS file. mask : string Name of the ASCII maks definition file. dopcor : bool Apply doppler correction based on the redshift from the infile header. write """ hdul = pf.open(infile) wl0 = hdul[0].header['crval1'] npoints = np.shape(hdul[0].data)[1] dwl = hdul[0].header['cd1_1'] wl = 10 ** (wl0 + np.linspace(0, npoints * dwl, npoints)) if dopcor: wl = wl / (1. + hdul[0].header['z']) spectrum = hdul[0].data[0, :] * 1e-17 # in ergs/s/cm^2/A error = hdul[0].data[2, :] * 1e-17 # in ergs/s/cm^2/A origmask = hdul[0].data[3, :] print('Average dispersion: ', np.average(np.diff(wl))) # Linear interpolation of the spectrum and resampling of # the spectrum. f = interp1d(wl, gf(spectrum, gauss_convolve), kind='linear') err = interp1d(wl, gf(error, gauss_convolve), kind='linear') om = interp1d(wl, gf(origmask, gauss_convolve), kind='linear') if integerwl: wlrebin = np.arange(int(wl[0]) + 1, int(wl[-1]) - 1) frebin = f(wlrebin) erebin = err(wlrebin) mrebin = om(wlrebin) mcol = np.ones(len(wlrebin)) if mask is not None: masktab = np.loadtxt(mask) for i in range(len(masktab)): mcol[(wlrebin >= masktab[i, 0]) & (wlrebin <= masktab[i, 1])] = 99 else: mcol = mrebin mcol[mcol > 3] = 99 vectors = [wlrebin, frebin, erebin, mcol] txt_format = ['%d', '%.6e', '%.6e', '%d'] slspec = np.column_stack(vectors) if writetxt: np.savetxt(outfile, slspec, fmt=txt_format) return slspec
gpl-3.0