chunk_id
stringlengths 5
8
| chunk
stringlengths 1
1k
|
---|---|
1369_12 | As of 2020 evidence for magnetic sphincter augmentation is poor.
Prognosis
The prognosis for a person with esophagitis depends on the underlying causes and conditions. If a patient has a more serious underlying cause such as a digestive system or immune system issue, it may be more difficult to treat. Normally, the prognosis would be good with no serious illnesses. If there are more causes than one, the prognosis could move to fair.
Terminology
The term is from Greek οἰσοφάγος "gullet" and -itis "inflammation".
References
External links
Inflammations
Esophagus disorders
Acute pain |
1370_0 | In radio and telecommunications a dipole antenna or doublet is the simplest and most widely used class of antenna. The dipole is any one of a class of antennas producing a radiation pattern approximating that of an elementary electric dipole with a radiating structure supporting a line current so energized that the current has only one node at each end. A dipole antenna commonly consists of two identical conductive elements such as metal wires or rods. The driving current from the transmitter is applied, or for receiving antennas the output signal to the receiver is taken, between the two halves of the antenna. Each side of the feedline to the transmitter or receiver is connected to one of the conductors. This contrasts with a monopole antenna, which consists of a single rod or conductor with one side of the feedline connected to it, and the other side connected to some type of ground. A common example of a dipole is the "rabbit ears" television antenna found on broadcast television |
1370_1 | sets. |
1370_2 | The dipole is the simplest type of antenna from a theoretical point of view. Most commonly it consists of two conductors of equal length oriented end-to-end with the feedline connected between them. Dipoles are frequently used as resonant antennas. If the feedpoint of such an antenna is shorted, then it will be able to resonate at a particular frequency, just like a guitar string that is plucked. Using the antenna at around that frequency is advantageous in terms of feedpoint impedance (and thus standing wave ratio), so its length is determined by the intended wavelength (or frequency) of operation. The most commonly used is the center-fed half-wave dipole which is just under a half-wavelength long. The radiation pattern of the half-wave dipole is maximum perpendicular to the conductor, falling to zero in the axial direction, thus implementing an omnidirectional antenna if installed vertically, or (more commonly) a weakly directional antenna if horizontal. |
1370_3 | Although they may be used as standalone low-gain antennas, dipoles are also employed as driven elements in more complex antenna designs such as the Yagi antenna and driven arrays. Dipole antennas (or such designs derived from them, including the monopole) are used to feed more elaborate directional antennas such as a horn antenna, parabolic reflector, or corner reflector. Engineers analyze vertical (or other monopole) antennas on the basis of dipole antennas of which they are one half. |
1370_4 | History
German physicist Heinrich Hertz first demonstrated the existence of radio waves in 1887 using what we now know as a dipole antenna (with capacitative end-loading). On the other hand, Guglielmo Marconi empirically found that he could just ground the transmitter (or one side of a transmission line, if used) dispensing with one half of the antenna, thus realizing the vertical or monopole antenna. For the low frequencies Marconi employed to achieve long-distance communications, this form was more practical; when radio moved to higher frequencies (especially VHF transmissions for FM radio and TV) it was advantageous for these much smaller antennas to be entirely atop a tower thus requiring a dipole antenna or one of its variations.
In the early days of radio, the thus-named Marconi antenna (monopole) and the doublet (dipole) were seen as distinct inventions. Now, however, the "monopole" antenna is understood as a special case of a dipole which has a virtual element "underground". |
1370_5 | Dipole variations
Short dipole
A short dipole is a dipole formed by two conductors with a total length L substantially less than a half wavelength (½λ). Short dipoles are sometimes used in applications where a full half-wave dipole would be too large. They can be analyzed easily using the results obtained below for the Hertzian dipole, a fictitious entity. Being shorter than a resonant antenna (half wavelength long) its feedpoint impedance includes a large capacitive reactance requiring a loading coil or other matching network in order to be practical, especially as a transmitting antenna.
To find the far-field electric and magnetic fields generated by a short dipole we use the result shown below for the Hertzian dipole (an infinitesimal current element) at a distance r from the current and at an angle θ to the direction of the current, as being: |
1370_6 | where the radiator consists of a current of over a short length L. ω is the radian frequency (ω = 2πf) and k is the wavenumber (). ζ0 is the impedance of free space (), which is the ratio of a free space plane wave's electric to magnetic field strength.
The feedpoint is usually at the center of the dipole as shown in the diagram. The current along dipole arms are approximately described as proportional to sin(kz) where z is the distance to the end of the arm. In the case of a short dipole, that is essentially a linear drop from at the feedpoint to zero at the end. Therefore, this is comparable to a Hertzian dipole with an effective current Ih equal to the average current over the conductor, so . With that substitution, the above equations closely approximate the fields generated by a short dipole fed by current . |
1370_7 | From the fields calculated above, one can find the radiated flux (power per unit area) at any point as the magnitude of the real part of the Poynting vector which is given by . With E and H being at right angles and in phase, there is no imaginary part and is simply equal to with the phase factors (the exponentials) cancelling out leaving:
We have now expressed the flux in terms of the feedpoint current I0 and the ratio of the short dipole's length L to the wavelength of radiation λ. The radiation pattern given by sin2(θ) is seen to be similar to and only slightly less directional than that of the half-wave dipole.
Using the above expression for the radiation in the far field for a given feedpoint current, we can integrate over all solid angle to obtain the total radiated power.
. |
1370_8 | From that, it is possible to infer the radiation resistance, equal to the resistive (real) part of the feedpoint impedance, neglecting a component due to ohmic losses. By setting Ptotal to the power supplied at the feedpoint we find:
Again, these become exact for L ≪ ½λ. Setting L = ½λ regardless, this formula would predict a radiation resistance of 49Ω, rather than the actual value of 73 Ω applying to the half-wave dipole.
Dipole antennas of various lengths
The fundamental resonance of a thin linear conductor occurs at a frequency whose free-space wavelength is twice the wire's length, i.e. where the conductor is 1/2 wavelength long. Dipole antennas are frequently used at around that frequency and thus termed half-wave dipole antennas. This important case is dealt with in the next section.
Thin linear conductors of length l are in fact resonant at any integer multiple of a half-wavelength: |
1370_9 | where λ = c/f is the wavelength and n is an integer. For a center-fed dipole, however, there is a great dissimilarity between n being odd or being even. Dipoles which are an odd number of half-wavelengths in length have reasonably low driving point impedances (which are purely resistive at that resonant frequency). However ones which are an even number of half-wavelengths in length, that is, an integer number of wavelengths in length, have a high driving point impedance (albeit purely resistive at that resonant frequency).
For instance, a full-wave dipole antenna can be made with two half-wavelength conductors placed end to end for a total length of approximately L = λ. This results in an additional gain over a half-wave dipole of about 2 dB. Full wave dipoles can be used in short wave broadcasting only by making the effective diameter very large and feeding from a high impedance balanced line. Cage dipoles are often used to get the large diameter. |
1370_10 | A 5/4-wave dipole antenna has a much lower but not purely resistive feedpoint impedance, which requires a matching network to the impedance of the transmission line. Its gain is about 3 dB greater than a half-wave dipole, the highest gain of any dipole of any similar length.
Other reasonable lengths of dipole do not offer advantages and are seldom used. However the overtone resonances of a half-wave dipole antenna at odd multiples of its fundamental frequency are sometimes exploited. For instance, amateur radio antennas designed as half-wave dipoles at 7 MHz can also be used as 3/2-wave dipoles at 21 MHz; likewise VHF television antennas resonant at the low VHF television band (centered around 65 MHz) are also resonant at the high VHF television band (around 195 MHz).
Half-wave dipole |
1370_11 | A half-wave dipole antenna consists of two quarter-wavelength conductors placed end to end for a total length of approximately L = λ/2. The current distribution is that of a standing wave, approximately sinusoidal along the length of the dipole, with a node at each end and an antinode (peak current) at the center (feedpoint):
where k = 2π/λ and z runs from −L/2 to L/2.
In the far field, this produces a radiation pattern whose electric field is given by
The directional factor cos[(π/2)cos θ]/sin θ is barely different from sin θ applying to the short dipole, resulting in a very similar radiation pattern as noted above. |
1370_12 | A numerical integration of the radiated power over all solid angle, as we did for the short dipole, obtains a value for the total power Ptotal radiated by the dipole with a current having a peak value of I0 as in the form specified above. Dividing Ptotal by 4πR2 supplies the flux at a distance R averaged over all directions. Dividing the flux in the direction (where it is at its peak) at distance R by that average flux, we find the directive gain to be 1.64. This can also be directly computed using the cosine integral:
(2.15 dBi)
(Note that the cosine integral Cin(x) is not the same as the cosine integral Ci(x). Both MATLAB and Mathematica have inbuilt functions which compute Ci(x), but not Cin(x). See the Wikipedia page on cosine integral for the relationship between these functions.)
We can now also find the radiation resistance as we did for the short dipole by solving:
to obtain: |
1370_13 | Using the induced EMF method, the real part of the driving point impedance can also be written in terms of the cosine integral, obtaining the same result:
If a half-wave dipole is driven at a point other the center, then the feed point resistance will be higher. The radiation resistance is usually expressed relative to the maximum current present along an antenna element, which for the half-wave dipole (and most other antennas) is also the current at the feedpoint. However, if the dipole is fed at a different point at a distance x from a current maximum (the center in the case of a half-wave dipole), then the current there is not I0 but only I0 cos(kx). In order to supply the same power, the voltage at the feedpoint has to be similarly increased by the factor 1/cos(kx). Consequently, the resistive part of the feedpoint impedance Re(V/I) is increased by the factor 1/cos2(kx): |
1370_14 | This equation can also be used for dipole antennas of other lengths, provided that Rradiation has been computed relative to the current maximum, which is not generally the same as the feedpoint current for dipoles longer than half-wave. Note that this equation breaks down when feeding an antenna near a current node, where cos(kx) approaches zero. Indeed, the driving point impedance rises greatly, but is nevertheless limited due to quadrature components of the elements' current which is ignored in the above model for the current distribution.
Folded dipole |
1370_15 | A folded dipole is a half-wave dipole with an additional parallel wire connecting its two ends. If the additional wire has the same diameter and cross-section as the dipole, two nearly identical radiating currents are generated. The resulting far-field emission pattern is nearly identical to the one for the single-wire dipole described above, but at resonance its feedpoint impedance is four times the radiation resistance of a single-wire dipole. |
1370_16 | A folded "dipole" is, technically, a folded full-wave loop antenna, where the loop has been bent at opposing ends and squashed into two parallel wires in a flat line. Although the broad bandwidth, high feedpoint impedance, and high efficiency are characteristics more similar to a full loop antenna, the folded dipole's radiation pattern is more like an ordinary dipole. Since the operation of a single halfwave dipole is easier to understand, both full loops and folded dipoles are often described as two halfwave dipoles in parallel, connected at the ends. |
1370_17 | The high feedpoint impedance at resonance is because for a fixed amount of power, the total radiating current is equal to twice the current in each wire separately and thus equal to twice the current at the feed point. We equate the average radiated power to the average power delivered at the feedpoint, we may write
,
where is the lower feedpoint impedance of the resonant halfwave dipole. It follows that |
1370_18 | The folded dipole is therefore well matched to 300 Ohm balanced transmission lines, such as twin-feed ribbon cable. The folded dipole has a wider bandwidth than a single dipole. They can be used for transforming the value of input impedance of the dipole over a broad range of step-up ratios by changing the thicknesses of the wire conductors for the fed- and folded-sides. Instead of altering thickness or spacing, one can add a third parallel wire to increase the antenna impedance to 9 times that of a single-wire dipole, raising the impedance to 658 Ω, making a good match for open wire feed cable, and further broadening the resonant frequency band of the antenna.
Half-wave folded dipoles are often used for FM radio antennas; versions made with twin lead which can be hung on an inside wall often come with FM tuners. The T2FD antenna is a folded dipole. They are also widely used as driven elements for rooftop Yagi television antennas. |
1370_19 | Other variants
There are numerous modifications to the shape of a dipole antenna which are useful in one way or another but result in similar radiation characteristics (low gain). This is not to mention the many directional antennas which include one or more dipole elements in their design as driven elements, many of which are linked to in the information box at the bottom of this page.
The bow-tie antenna is a dipole with flaring, triangular shaped arms. The shape gives it a much wider bandwidth than an ordinary dipole. It is widely used in UHF television antennas. |
1370_20 | The cage dipole is a similar modification in which the bandwidth is increased by using fat cylindrical dipole elements made of a "cage" of wires (see photo). These are used in a few broadband array antennas in the medium wave and shortwave bands for applications such as over-the-horizon radar and radio telescopes.
A halo antenna is a half-wave dipole bent into a circle for a nearly uniform radiation pattern in the plane of the circle. When the halo's circle is horizontal, it produces horizontally polarized radiation in a nearly omnidirectional pattern with little power wasted toward the sky, compared to a straight horizontal dipole. In practice, it is categorized both as a bent dipole and as a loop antenna, depending on author preference. |
1370_21 | A turnstile antenna comprises two dipoles crossed at a right angle and feed system which introduces a quarter-wave phase difference between the currents along the two. With that geometry, the two dipoles do not interact electrically but their fields add in the far-field producing a net radiation pattern which is rather close to isotropic, with horizontal polarization in the plane of the elements and circular or elliptical polarization at other angles. Turnstile antennas can be stacked and fed in phase to realize an omnidirectional broadside array or phased for an end-fire array with circular polarization. |
1370_22 | The batwing antenna is a turnstile antenna with its linear elements widened as in a bow-tie antenna, again for the purpose of widening its resonant frequency and thus usable over a larger bandwidth, without re-tuning. When stacked to form an array the radiation is omnidirectional, horizontally polarized, and with increased gain at low elevations, making it ideal for television broadcasting.
A ‘V’ (or "Vee") antenna is a dipole with a bend in the middle so its arms are at an angle instead of co-linear. |
1370_23 | A Quadrant antenna is a ‘V’ antenna with an unusual overall length of a full wavelength, with two half-wave horizontal elements meeting at a right angle where it is fed. Quadrant antennas produce mostly horizontal polarization at low to intermediate elevation angles and have nearly omnidirectional radiation patterns. One implementation uses "cage" elements (see above); the thickness of the resulting elements lowers the high driving point impedance of a full-wave dipole to a value that accommodates a reasonable match to open wire lines and increases the bandwidth (in terms of SWR) to a full octave. They are used for HF band transmissions.
The G5RV Antenna is a dipole antenna fed indirectly, through a carefully chosen length of 300 Ω or 450 Ω twin lead, which acts as an impedance matching network to connect (through a balun) to a standard 50Ω coaxial transmission line. |
1370_24 | The sloper antenna is a slanted vertical dipole antenna attached to the top of a single tower. The element can be center-fed or can be end-fed as an unbalanced monopole antenna from a transmission line at the top of the tower, in which case the monopole's "ground" connection can better be viewed as a second element comprising the tower and/or transmission line shield.
The inverted "V" antenna is likewise supported using a single tower but is a balanced antenna with two symmetric elements angled toward the ground. It is thus a half-wave dipole with a bend in the middle. Like the sloper, this has the practical advantage of elevating the antenna but requiring only a single tower.
The AS-2259 Antenna is an inverted-‘V’ dipole antenna used for local communications via Near Vertical Incidence Skywave (NVIS). |
1370_25 | Vertical (monopole) antennas
The "vertical", "Marconi", or monopole antenna is a single-element antenna usually fed at the bottom (with the shield side of its unbalanced transmission line connected to ground). It behaves essentially as a dipole antenna. The ground (or ground plane) is considered to be a conductive surface which works as a reflector (see effect of ground). Vertical currents in the reflected image have the same direction (thus are not reflected about the ground) and phase as the current in the real antenna. The conductor and its image together act as a dipole in the upper half of space. Like a dipole, in order to achieve resonance (resistive feedpoint impedance) the conductor must be close to a quarter wavelength in height (like each conductor in a half-wave dipole). |
1370_26 | In this upper side of space, the emitted field has the same amplitude of the field radiated by a similar dipole fed with the same current. Therefore, the total emitted power is half the emitted power of a dipole fed with the same current. As the current is the same, the radiation resistance (real part of series impedance) will be half of the series impedance of the comparable dipole. A quarter-wave monopole, then, has an impedance of Ω. Another way of seeing this, is that a true dipole receiving a current I has voltages on its terminals of +V and -V, for an impedance across the terminals of 2V/I, whereas the comparable vertical antenna has the current I but an applied voltage of only V. |
1370_27 | Since the fields above ground are the same as for the dipole, but only half the power is applied, the gain is doubled to 5.14 dBi. This is not an actual performance advantage per se, since in practice a dipole also reflects half of its power off the ground which (depending on the antenna height and sky angle) can augment (or cancel!) the direct signal. The vertical polarization of the monopole (as for a vertically oriented dipole) is advantageous at low elevation angles where the ground reflection combines with the direct wave approximately in phase. |
1370_28 | The earth acts as a ground plane, but it can be a poor conductor leading to losses. Its conductivity can be improved (at cost) by laying a copper mesh. When an actual ground is not available (such as in a vehicle) other metallic surfaces can serve as a ground plane (typically the vehicle's roof). Alternatively, radial wires placed at the base of the antenna can form a ground plane. For VHF and UHF bands, the radiating and ground plane elements can be constructed from rigid rods or tubes. Using such an artificial ground plane allows for the entire antenna and "ground" to be mounted at an arbitrary height. One common modification has the radials forming the ground plane sloped down, which has the effect of raising the feedpoint impedance to around 50 Ω, matching common coaxial cable. No longer being a true ground, a balun (such as a simple choke balun) is then recommended.
Dipole characteristics
Impedance of dipoles of various lengths |
1370_29 | The feedpoint impedance of a dipole antenna is sensitive to its electrical length and feedpoint position. Therefore, a dipole will generally only perform optimally over a rather narrow bandwidth, beyond which its impedance will become a poor match for the transmitter or receiver (and transmission line). The real (resistive) and imaginary (reactive) components of that impedance, as a function of electrical length, are shown in the accompanying graph. The detailed calculation of these numbers are described below. Note that the value of the reactance is highly dependent on the diameter of the conductors; this plot is for conductors with a diameter of 0.001 wavelengths. |
1370_30 | Dipoles that are much smaller than one half the wavelength of the signal are called short dipoles. These have a very low radiation resistance (and a high capacitive reactance) making them inefficient antennas. More of a transmitter's current is dissipated as heat due to the finite resistance of the conductors which is greater than the radiation resistance. However they can nevertheless be practical receiving antennas for longer wavelengths.
Dipoles whose length is approximately half the wavelength of the signal are called half-wave dipoles and are widely used as such or as the basis for derivative antenna designs. These have a radiation resistance which is much greater, closer to the characteristic impedances of available transmission lines, and normally much larger than the resistance of the conductors, so that their efficiency approaches 100%. In general radio engineering, the term dipole, if not further qualified, is taken to mean a center-fed half-wave dipole. |
1370_31 | A true half-wave dipole is one half of the wavelength λ in length, where in free space. Such a dipole has a feedpoint impedance consisting of 73Ω resistance and +43Ω reactance, thus presenting a slightly inductive reactance. To cancel that reactance, and present a pure resistance to the feedline, the element is shortened by the factor k for a net length of: |
1370_32 | where λ is the free-space wavelength, c is the speed of light in free space, and f is the frequency. The adjustment factor k which causes feedpoint reactance to be eliminated, depends on the diameter of the conductor, as is plotted in the accompanying graph. k ranges from about .98 for thin wires (diameter, 0.00001 wavelengths) to about .94 for thick conductors (diameter, 0.008 wavelengths). This is because the effect of antenna length on reactance (upper graph) is much greater for thinner conductors, so that a smaller deviation from the exact half wavelength is required in order to cancel the 43 Ω inductive reactance it has when exactly λ/2. For the same reason, antennas with thicker conductors have a wider operating bandwidth over which they attain a practical standing wave ratio which is degraded by any remaining reactance. |
1370_33 | For a typical k of about 0.95, the above formula for the corrected antenna length is often written, for a length in metres as 143/f, or a length in feet as 468/f where f is the frequency in megahertz.
Dipole antennas of lengths approximately equal to any odd multiple of λ are also resonant, presenting a small reactance (which can be cancelled by a small length adjustment). However these are rarely used. One size that is more practical though is a dipole with a length of wavelengths. Not being close to wavelengths, this antenna's impedance has a large (negative) reactance and can only be used with an impedance matching network (or "antenna tuner"). It is a desirable length because such an antenna has the highest gain for any dipole which isn't a great deal longer.
Radiation pattern and gain |
1370_34 | A dipole is omnidirectional in the plane perpendicular to the wire axis, with the radiation falling to zero on the axis (off the ends of the antenna). In a half-wave dipole the radiation is maximum perpendicular to the antenna, declining as to zero on the axis. Its radiation pattern in three dimensions (see figure) would be plotted approximately as a toroid (doughnut shape) symmetric about the conductor. When mounted vertically this results in maximum radiation in horizontal directions. When mounted horizontally, the radiation peaks at right angles (90°) to the conductor, with nulls in the direction of the dipole. |
1370_35 | Neglecting electrical inefficiency, the antenna gain is equal to the directive gain, which is 1.5 (1.76 dBi) for a short dipole, increasing to 1.64 (2.15 dBi) for a half-wave dipole. For a 5/4 wave dipole the gain further increases to about 5.2 dBi, making this length desirable for that reason even though the antenna is then off-resonance. Longer dipoles than that have radiation patterns that are multi-lobed, with poorer gain (unless they are much longer) even along the strongest lobe. Other enhancements to the dipole (such as including a corner reflector or an array of dipoles) can be considered when more substantial directivity is desired. Such antenna designs, although based on the half-wave dipole, generally acquire their own names. |
1370_36 | Feeding a dipole antenna
Ideally, a half-wave dipole should be fed using a balanced transmission line matching its typical 65–70 Ω input impedance. Twin lead with a similar impedance is available but seldom used and does not match the balanced antenna terminals of most radio and television receivers. Much more common is the use of common 300 Ω twin lead in conjunction with a folded dipole. The driving point impedance of a half-wave folded dipole is 4 times that of a simple half-wave dipole, thus closely matching that 300 Ω characteristic impedance. Most FM broadcast band tuners and older analog televisions include balanced 300 Ω antenna input terminals. However twin lead has the drawback that it is electrically disturbed by any other nearby conductor (including earth); when used for transmitting, care must be taken not to place it near other conductors. |
1370_37 | Many types of coaxial cable (or "coax") have a characteristic impedance of 75 Ω, which would otherwise be a good match for a half-wave dipole. However coax is a single-ended line whereas a center-fed dipole expects a balanced line (such as twin lead). By symmetry, one can see that the dipole's terminals have an equal but opposite voltage, whereas coax has one conductor grounded. Using coax regardless results in an unbalanced line, in which the currents along the two conductors of the transmission line are no longer equal and opposite. Since you then have a net current along the transmission line, the transmission line becomes an antenna itself, with unpredictable results (since it depends on the path of the transmission line). This will generally alter the antenna's intended radiation pattern, and change the impedance seen at the transmitter or receiver. |
1370_38 | A balun is required to use coaxial cable with a dipole antenna. The balun transfers power between the single-ended coax and the balanced antenna, sometimes with an additional change in impedance. A balun can be implemented as a transformer which also allows for an impedance transformation. This is usually wound on a ferrite toroidal core. The toroid core material must be suitable for the frequency of use, and in a transmitting antenna it must be of sufficient size to avoid saturation. Other balun designs are mentioned below.
Current balun
A so-called current balun uses a transformer wound on a toroid or rod of magnetic material such as ferrite. All of the current seen at the input goes into one terminal of the balanced antenna. It forms a balun by choking common-mode current. The material isn't critical for 1:1 because there is no transformer action applied to the desired differential current. A related design involves two transformers and includes a 1:4 impedance transformation. |
1370_39 | Coax balun
A coax balun is a cost-effective method of eliminating feeder radiation, but is limited to a narrow set of operating frequencies.
One easy way to make a balun is to use a length of coaxial cable equal to half a wavelength. The inner core of the cable is linked at each end to one of the balanced connections for a feeder or dipole. One of these terminals should be connected to the inner core of the coaxial feeder. All three braids should be connected together. This then forms a 4:1 balun, which works correctly at only a narrow band of frequencies.
Sleeve balun
At VHF frequencies, a sleeve balun can also be built to remove feeder radiation. |
1370_40 | Another narrow-band design is to use a λ/4 length of metal pipe. The coaxial cable is placed inside the pipe; at one end the braid is wired to the pipe while at the other end no connection is made to the pipe. The balanced end of this balun is at the end where no connection is made to the pipe. The λ/4 conductor acts as a transformer, converting the zero impedance at the short to the braid into an infinite impedance at the open end. This infinite impedance at the open end of the pipe prevents current flowing into the outer coax formed by the outside of the inner coax shield and the pipe, forcing the current to remain in the inside coax. This balun design is impractical for low frequencies because of the long length of pipe that will be needed.
Common applications
"Rabbit ears" TV antenna |
1370_41 | One of the most common applications of the dipole antenna is the rabbit ears or bunny ears television antenna, found atop broadcast television receivers. It is used to receive the VHF terrestrial television bands, consisting in the US of 54 to 88 MHz (band I) and 174 to 216 MHz (band III), with wavelengths of 5.5 to 1.4 m. Since this frequency range is much wider than a single fixed dipole antenna can cover, it is made with several degrees of adjustment. It is constructed of two telescoping rods that can each be extended out to about 1 m length (one quarter wavelength at 75 MHz). With control over the segments' length, angle with respect to vertical, and compass angle, one has much more flexibility in optimizing reception than available with a rooftop antenna even if equipped with an antenna rotor. |
1370_42 | FM-broadcast-receiving antennas
In contrast to the wide television frequency bands, the FM broadcast band (88-108 MHz) is narrow enough that a dipole antenna can cover it. For fixed use in homes, hi-fi tuners are typically supplied with simple folded dipoles resonant near the center of that band. The feedpoint impedance of a folded dipole, which is quadruple the impedance of a simple dipole, is a good match for 300Ω twin lead, so that is usually used for the transmission line to the tuner. A common construction is to make the arms of the folded dipole out of twin lead also, shorted at their ends. This flexible antenna can be conveniently taped or nailed to walls, following the contours of mouldings. |
1370_43 | Shortwave antenna
Horizontal wire dipole antennas are popular for use on the HF shortwave bands, both for transmitting and shortwave listening. They are usually constructed of two lengths of wire joined by a strain insulator in the center, which is the feedpoint. The ends can be attached to existing buildings, structures, or trees, taking advantage of their heights. If used for transmitting, it is essential that the ends of the antenna be attached to supports through strain insulators with a sufficiently high flashover voltage, since the antenna's high-voltage antinodes occur there. Being a balanced antenna, they are best fed with a balun between the (coax) transmission line and the feedpoint. |
1370_44 | These are simple to put up for temporary or field use. But they are also widely used by radio amateurs and short wave listeners in fixed locations due to their simple (and inexpensive) construction, while still realizing a resonant antenna at frequencies where resonant antenna elements need to be of quite some size. They are an attractive solution for these frequencies when significant directionality is not desired, and the cost of several such resonant antennas for different frequency bands, built at home, may still be much less than a single commercially produced antenna.
Dipole towers
Antennas for MF and LF radio stations are usually constructed as mast radiators, in which the vertical mast itself forms the antenna. Although mast radiators are most commonly monopoles, some are dipoles. The metal structure of the mast is divided at its midpoint into two insulated sections to make a vertical dipole, which is driven at the midpoint.
Dipole arrays |
1370_45 | Many types of array antennas are constructed using multiple dipoles, usually half-wave dipoles. The purpose of using multiple dipoles is to increase the directional gain of the antenna over the gain of a single dipole; the radiation of the separate dipoles interferes to enhance power radiated in desired directions. In arrays with multiple dipole driven elements, the feedline is split using an electrical network in order to provide power to the elements, with careful attention paid to the relative phase delays due to transmission between the common point and each element. |
1370_46 | In order to increase antenna gain in horizontal directions (at the expense of radiation towards the sky or towards the ground) one can stack antennas in the vertical direction in a broadside array where the antennas are fed in phase. Doing so with horizontal dipole antennas retains those dipoles' directionality and null in the direction of their elements. However if each dipole is vertically oriented, in a so-called collinear antenna array (see graphic), that null direction becomes vertical and the array acquires an omnidirectional radiation pattern (in the horizontal plane) as is typically desired. Vertical collinear arrays are used in the VHF and UHF frequency bands at which wavelengths the size of the elements are small enough to practically stack several on a mast. They are a higher-gain alternative to quarter-wave ground plane antennas used in fixed base stations for mobile two-way radios, such as police, fire, and taxi dispatchers. |
1370_47 | On the other hand, for a rotating antenna (or one used only towards a particular direction) one may desire increased gain and directivity in a particular horizontal direction. If the broadside array discussed above (whether collinear or not) is turned horizontal, then the one obtains a greater gain in the horizontal direction perpendicular to the antennas, at the expense of most other directions. Unfortunately that also means that the direction opposite the desired direction also has a high gain, whereas high gain is usually desired in one single direction. The power which is wasted in the reverse direction, however, can be redirected, for instance by using a large planar reflector, as is accomplished in the reflective array antenna, increasing the gain in the desired direction by another 3 dB |
1370_48 | An alternative realization of a uni-directional antenna is the end-fire array. In this case the dipoles are again side by side (but not collinear), but fed in progressing phases, arranged so that their waves add coherently in one direction but cancel in the opposite direction. So now, rather than being perpendicular to the array direction as in a broadside array, the directivity is in the array direction (i.e. the direction of the line connecting their feedpoints) but with one of the opposite directions suppressed.
Yagi antennas |
1370_49 | The above described antennas with multiple driven elements require a complex feed system of signal splitting, phasing, distribution to the elements, and impedance matching. A different sort of end-fire array which is much more often used is based on the use of so-called parasitic elements. In the popular high-gain Yagi antenna, only one of the dipoles is actually connected electrically, but the others receive and reradiate power supplied by the driven element. This time, the phasing is accomplished by careful choice of the lengths as well as positions of the parasitic elements, in order to concentrate gain in one direction and largely cancel radiation in the opposite direction (as well as all other directions). Although the realized gain is less than a driven array with the same number of elements, the simplicity of the electrical connections makes the Yagi more practical for consumer applications. |
1370_50 | Dipole as a reference standard
Antenna gain is frequently measured as decibels relative to a half-wave dipole. One reason is that practical antenna measurements need a reference strength to compare the field strength of an antenna under test at a particular distance to. Of course there is no such thing as an isotropic radiator, but the half-wave dipole is well understood and behaved, and can be constructed to be nearly 100% efficient. It is also a fairer comparison, since the gain obtained by the dipole itself is essentially "free," given that almost no antenna design has a smaller directive gain.
For a gain measured relative to a dipole, one says the antenna has a gain of "x dBd" (see decibel). More often, gains are expressed relative to an isotropic radiator, often for advertising reasons as this makes the gain appear higher. In consideration of the known gain of a half-wave dipole, 0 dBd is defined as 2.15 dBi; all gains in dBi are 2.15 higher than gains in dBd.
Hertzian dipole |
1370_51 | The Hertzian dipole or elementary doublet refers to a theoretical construction, rather than a physical antenna design: It is an idealized tiny segment of conductor carrying a RF current with constant amplitude and direction along its entire (short) length; a real antenna can be modeled as the combination of many Hertzian dipoles laid end-to-end. |
1370_52 | The Hertzian dipole may be defined as a finite oscillating current (in a specified direction) of over a tiny or infinitesimal length at a specified position. The solution of the fields from a Hertzian dipole can be used as the basis for analytical or numerical calculation of the radiation from more complex antenna geometries (such as practical dipoles) by forming the superposition of fields from a large number of Hertzian dipoles comprising the current pattern of the actual antenna. As a function of position, taking the elementary current elements multiplied by infinitesimal lengths , the resulting field pattern then reduces to an integral over the path of an antenna conductor (modeled as a thin wire). |
1370_53 | For the following derivation we shall take the current to be in the direction centered at the origin where , with the sinusoidal time dependence for all quantities being understood. The simplest approach is to use the calculation of the vector potential using the formula for the retarded potential. Although the value of is not unique, we shall constrain it according to the Lorenz gauge, and assuming sinusoidal current at radian frequency the retardation of the field is converted just into a phase factor , where the wavenumber in free space and is the distance between the point being considered to the origin (where we assumed the current source to be), thus . This results in a vector potential at position due to that current element only, which we find is purely in the direction (the direction of the current):
where is the permeability of free space. Then using |
1370_54 | we can solve for the magnetic field , and from that (dependent on us having chosen the Lorenz gauge) the electric field using
In spherical coordinates we find that the magnetic field has only a component in the direction:
while the electric field has components both in the and directions:
where is the impedance of free space.
This solution includes near field terms which are very strong near the source but which are not radiated. As seen in the accompanying animation, the and fields very close to the source are almost 90° out of phase, thus contributing very little to the Poynting vector by which radiated flux is computed. The near field solution for an antenna element (from the integral using this formula over the length of that element) is the field that can be used to compute the mutual impedance between it and another nearby element.
For computation of the far field radiation pattern, the above equations are simplified as only the terms remain significant:
. |
1370_55 | The far field pattern is thus seen to consist of a transverse electromagnetic (TEM) wave, with electric and magnetic fields at right angles to each other and at right angles to the direction of propagation (the direction of , as we assumed the source to be at the origin). The electric polarization, in the direction, is coplanar with the source current (in the direction), while the magnetic field is at right angles to that, in the direction. It can be seen from these equations, and also in the animation, that the fields at these distances are exactly in phase. Both fields fall according to , with the power thus falling according to as dictated by the inverse square law. |
1370_56 | Radiation resistance
If one knows the far field radiation pattern due to a given antenna current, then it is possible to compute the radiation resistance directly. For the above fields due to the Hertzian dipole, we can compute the power flux according to the Poynting vector, resulting in a power (as averaged over one cycle) of:
Although not required, it is simplest to do the following exercise at a large where the far field expressions for and apply. Consider a large sphere surrounding the source with a radius . We find the power per unit area crossing the surface of that sphere to be in the direction according to:
Integration of this flux over the complete sphere results in:
where is the free space wavelength corresponding to the radian frequency . By definition, the radiation resistance times the average of the square of the current is the net power radiated due to that current, so equating the above to we find: |
1370_57 | This method can be used to compute the radiation resistance for any antenna whose far field radiation pattern has been found in terms of a specific antenna current. If ohmic losses in the conductors are neglected, the radiation resistance (considered relative to the feedpoint) is identical to the resistive (real) component of the feedpoint impedance. Unfortunately this exercise tells us nothing about the reactive (imaginary) component of feedpoint impedance, whose calculation is considered below.
Directive gain
Using the above expression for the radiated flux given by the Poynting vector, it is also possible to compute the directive gain of the Hertzian dipole. Dividing the total power computed above by we can find the flux averaged over all directions as
.
Dividing the flux radiated in a particular direction by we obtain the directive gain : |
1370_58 | The commonly quoted antenna "gain", meaning the peak value of the gain pattern (radiation pattern), is found to be 1.5 to 1.76 dBi, lower than practically any other antenna configuration.
Comparison with the short dipole
The Hertzian dipole is similar to but differs from the short dipole, discussed above. In both cases the conductor is very short compared to a wavelength, so the standing wave pattern present on a half-wave dipole (for instance) is absent. However, with the Hertzian dipole we specified that the current along that conductor is constant over its short length. This makes the Hertzian dipole useful for analysis of more complex antenna configurations, where every infinitesimal section of that real antenna's conductor can be modelled as a Hertzian dipole with the current found to be flowing in that real antenna. |
1370_59 | However a short conductor fed with a RF voltage will not have a uniform current even along that short range. Rather, a short dipole in real life has a current equal to the feedpoint current at the feedpoint but falling linearly to zero over the length of that short conductor. By placing a capacitive hat, such as a metallic ball, at the end of the conductor, it is possible for its self capacitance to absorb the current from the conductor and better approximate the constant current assumed for the Hertzian dipole. But again, the Hertzian dipole is meant only as a theoretical construct for antenna analysis. |
1370_60 | The short dipole, with a feedpoint current of , has an average current over each conductor of only . The above field equations for the Hertzian dipole of length would then predict the actual fields for a short dipole using that effective current . This would result in a power measured in the far field of one quarter that given by the above equation for the Poynting vector if we had assumed an element current of . Consequently, it can be seen that the radiation resistance computed for the short dipole is one quarter of that computed above for the Hertzian dipole. But their radiation patterns (and gains) are identical. |
1370_61 | Detailed calculation of dipole feedpoint impedance
The impedance seen at the feedpoint of a dipole of various lengths has been plotted above, in terms of the real (resistive) component Rdipole and the imaginary (reactive) component jXdipole of that impedance. For the case of an antenna with perfect conductors (no ohmic loss), Rdipole is identical to the radiation resistance, which can more easily be computed from the total power in the far-field radiation pattern for a given applied current as we showed for the short dipole. The calculation of Xdipole is more difficult.
Induced EMF method |
1370_62 | Using the induced EMF method closed form expressions are obtained for both components of the feedpoint impedance; such results are plotted above. The solution depends on an assumption for the form of the current distribution along the antenna conductors. For wavelength to element diameter ratios greater than about 60, the current distribution along each antenna element of length L/2 is very well approximated as having the form of the sine function at points along the antenna z, with the current reaching zero at the elements' ends, where z=±L/2, as follows:
where k is the wavenumber given by 2π/λ = 2πf/c and the amplitude A is set to match a specified driving point current at z = 0. |
1370_63 | In cases where an approximately sinusoidal current distribution can be assumed, this method solves for the driving point impedance in closed form using the cosine and sine integral functions Si(x) and Ci(x). For a dipole of total length L, the resistive and reactive components of the driving point impedance can be expressed as:
where a is the radius of the conductors, k is again the wavenumber as defined above, η0 denotes the impedance of free space: η0≈377Ω, and is the Euler constant. |
1370_64 | Integral methods
The induced EMF method is dependent on the assumption of a sinusoidal current distribution, delivering an accuracy better than about 10% as long as the wavelength to element diameter ratio is greater than about 60. However, for yet larger conductors numerical solutions are required which solve for the conductor's current distribution (rather than assuming a sinusoidal pattern). This can be based on approximating solutions for either Pocklington's integrodifferential equation or the Hallén integral equation. These approaches also have greater generality, not being limited to linear conductors. |
1370_65 | Numerical solution of either is performed using the moment method solution which requires expansion of that current into a set of basis functions; one simple (but not the best) choice, for instance, is to break up the conductor into N segments with a constant current assumed along each. After setting an appropriate weighting function the cost may be minimized through the inversion of a NxN matrix. Determination of each matrix element requires at least one double integration involving the weighting functions, which may become computationally intensive. These are simplified if the weighting functions are simply delta functions, which corresponds to fitting the boundary conditions for the current along the conductor at only N discrete points. Then the N×N matrix must be inverted, which is also computationally intensive as N increases. In one simple example, Balanis (2011) performs this computation to find the antenna impedance with different N using Pocklington's method, and finds that |
1370_66 | with N > 60 the solutions approach their limiting values to within a few percent. |
1370_67 | See also
AM broadcasting
Amateur radio
Balun
Coaxial antenna
Dipole field strength in free space
Driven element
Electronic symbol
FM broadcasting
Isotropic antenna
Omnidirectional antenna
Shortwave listening
T-antenna
Whip antenna
Notes
References
Elementary, short, and half-wave dipoles
http://www.ece.rutgers.edu/~orfanidi/ewa/ Electromagnetic Waves and Antennas, Sophocles J. Orfanidis.
Wire Antenna Resources for Ham Radio Wire Antenna Resources including off center fed dipole (OCFD), dipole calculators and construction sites
https://web.archive.org/web/20060907074441/http://stewks.ece.stevens-tech.edu/sktpersonal.dir/sktwireless/lin-ant.pdf
https://web.archive.org/web/20070926195106/http://www.nt.hs-bremen.de/peik/asc/asc_antenna_slides.pdf
The Hertzian dipole
Reflections on Hertz and the Hertzian Dipole Jed Z. Buchwald, MIT and the Dibner Institute for the History of Science and Technology (link inactive February 2, 2007; archive accessed from Wayback, March 13, 2011) |
1370_68 | External links
AC6V's Homebrew Antennas Links
Your First HF Dipole - simple yet complete tutorial from eham.net
Dipole articles - s series of pages about the dipole in its various forms
Antennas (radio)
Heinrich Hertz
Radio frequency antenna types
Radio technology
Articles containing video clips |
1371_0 | Soham ( ) is a town and civil parish in east Cambridgeshire, England, just off the A142 between Ely and Newmarket. Its population was 10,860 at the 2011 census.
History
Archaeology
The region between Devil's Dyke and the line between Littleport and Shippea Hill shows a remarkable amount of archaeological findings of the Stone Age, the Bronze Age and the Iron Age. A couple of hoards of bronze objects are found in the area of Soham, including one with swords and spearheads of the later Bronze Age as well as a gold torc, retrieved in 1938.
An extensive ditch system, not visible on aerial photographs, has been identified, as well as a wooden trackway in length between Fordey Farm (Barway) and Little Thetford, with associated shards of later Bronze Age pottery (1935).
Name and early geography
According to an article published in Fenland Notes & Queries in 1899:
The author quoted an 1813 agricultural study which described the area: |
1371_1 | Soham Mere finds mention in Liber Eliensis relating King Cnut's winter visit to the monks of Ely for the Feast of the Purification. This tale was elaborated as an 'Old English Novelet' in 1844 describing how King Cnut's nobles were concerned for his safety in crossing the Soham Mere ice. If the ice broke this would drown the king in the Fen waters. Cnut insisted on travelling (in a sledge) should there be a fenner to lead him across. One Brethner - an Ely fenner, named Budde or Pudding on account of his large size - elected to lead the king. Cnut replied if the ice could hold Brethner's weight it would surely hold his. Thus the king and his retinue followed over the "bending and cracking ice" to Ely. Brethner, a serf, was set free by the king with some free lands for his good deed.
Felix of Burgundy 'Apostle of the East Angles' |
1371_2 | St Felix of Burgundy founded Soham Abbey in Soham around 630 AD but it was destroyed by the Danes in 870 AD. Luttingus, an Anglo-Saxon nobleman, built a cathedral and palace at Soham around 900 AD, on the site of the present-day Church of St Andrew's and adjacent land.
St. Andrew's Church dates from the 12th century. Traces of the Saxon cathedral are said to still exist within the church. In 1102 Hubert de Burgh, Chief Justice of England, granted 'Ranulph' certain lands in trust for the Church of St. Andrew's. Ranulph is recorded as the first Vicar of Soham and had a hand in designing the 'new' Norman church. The current church is mainly later, the tower being the latest addition in the 15th century. This tower was built to replace a fallen crossing tower and now contains ten bells. The back six were cast in 1788, with two new trebles and two bells being recast in 1808. There are some pictures and a description of the church at the Cambridgeshire Churches website. |
1371_3 | Olaudah Equiano or Gustavus Vassa 'The African'
The first black British author and anti-slave activist, Olaudah Equiano, also known as Gustavus Vassa, married a local girl, Susannah Cullen, at St. Andrew's Church, on 7 April 1792 and the couple lived in the town for several years.
They had two daughters. Anna Maria was born on 16 October 1793 and baptised in St. Andrew's on 30 January 1794. Their second child, Joanna Vassa, was born on 11 April 1795 and was baptised in the parish church on 29 April 1795.
William Case Morris |
1371_4 | William Case Morris (1864 – 1932) was born in Soham on 16 February 1864. He and his father left the town in search of a new life in 1872 after the death of his mother in 1868, finally settling in Argentina in 1874. Morris was horrified by the poverty of the street children, which led him to found several children's homes in Buenos Aires. Morris returned to Soham shortly before his death on 15 September 1932, and was buried in the Fordham Road cemetery. He is commemorated with a statue in Palermo, Buenos Aires as well as railway stations, football stadia and a town, William C. Morris, Buenos Aires, named after him. His legacy lives on with the Biblioteca Popular William C. Morris and 'Hogar el Alba' children's homes located in Buenos Aires which help impoverished children.
Soham rail disaster |
1371_5 | The town narrowly escaped destruction on 2 June 1944, during the Second World War, when a fire developed on the leading wagon of a heavy ammunition train travelling slowly through the town. The town was saved by the bravery of four railway staff, Benjamin Gimbert (driver), James Nightall (fireman), Frank Bridges (signalman) and Herbert Clarke (guard), who uncoupled the rest of the train and drove the engine and lead wagon clear of the town, where it exploded, killing Jim Nightall and Frank Bridges but causing no further deaths. Ben Gimbert survived and spent seven weeks in hospital. Although small in comparison to what would have happened if the entire train had blown up, the explosion caused substantial property damage. Gimbert and Nightall were both awarded the George Cross (Nightall posthumously). |
1371_6 | A permanent memorial was unveiled on 2 June 2007 by Prince Richard, Duke of Gloucester followed by a service in St Andrew's Church. The memorial is constructed of Portland stone with a bronze inlay depicting interpretive artwork of the damaged train and text detailing the incident. |
1371_7 | Soham murders
In August 2002, Soham became the centre of national media attention following the disappearance and murder of two 10-year-old girls, Holly Wells and Jessica Chapman, who both lived in Soham. They disappeared from the family home of Holly Wells in Redhouse Gardens on the evening of 4 August. Both were found dead some 10 miles away, near RAF Lakenheath, on 17 August.
In December 2003, Ian Huntley, who had been employed as the caretaker at the local secondary school, Soham Village College, was convicted of their murders and sentenced to life in prison. He had given a number of police and television interviews while the girls were missing, claiming to have seen them on the evening of their disappearance, and was finally arrested several hours before their bodies were found, following the recovery of clothing belonging to the girls on the school site. |
1371_8 | The caretaker's house in College Close where Huntley lived and, as admitted at his trial, where the girls died, was demolished in 2004.
Schools in Soham
Soham Village College
St. Andrew's Primary School
The Weatheralls Primary School
The Shade Primary School
Transport
The A142 road from Ely to Newmarket runs past Soham, and formerly ran through the town. Soham is served by an hourly bus service Monday to Friday (on a route linking Cambridge, Newmarket and Ely) and a reduced service on Saturday. |
1371_9 | Soham railway station closed to passengers in 1965, and reopened in December 2021. The line through Soham remained open for passenger and goods services between the Midlands and Ipswich/Harwich/Felixstowe. After local campaigns for its reopening, it was announced in June 2020 that a new station would be built on the old site. Initial works on the station started in autumn 2020, followed by the main construction during 2021. The first timetabled passenger train to stop at Soham Station for 56 years was the 6.49am towards Ely and Peterborough on Monday 13 December 2021.
Sport and leisure
The Ross Peers Sports Centre is run by the Soham & District Sports Association Committee and is home to the Soham Indoor Bowls Club and Rink Hockey Team
Soham has a non-league football club, Soham Town Rangers F.C., who play at Julius Martin Lane.
There are currently five public houses: The Carpenters Arms, Cherry Tree, The Ship,
The Red Lion
The Fountain Inn |
1371_10 | See also
List of places in Cambridgeshire
Soham murders
References
External links
Soham On-Line
Soham Town Council
Soham Staploe Medical Centre
Staploe Education Trust
Soham Village College
The Shade Primary School
The Weatheralls Primary School
St. Andrew's Primary School
St. Andrew's Church, Soham
Viva Arts & Community Group
Soham Museum
Soham Community Archive Network
Soham Heritage and Tourism
"Remembering Equiano in Soham"
Soham Train Station (SOJ)
Soham Post Office
Soham Library
Soham Town Rangers Football Club
The Ross Peers Sports Centre
Soham Carnival & Heavy Horse Show
Soham Pumpkin Fair
Soham from old Norse Sø Hamn = lake harbour or haven
Towns in Cambridgeshire
Civil parishes in Cambridgeshire
East Cambridgeshire District |
1372_0 | The Battle of Tarawa was fought on 20–23 November 1943 between the United States and Japan at the Tarawa Atoll in the Gilbert Islands, and was part of Operation Galvanic, the U.S. invasion of the Gilberts. Nearly 6,400 Japanese, Koreans, and Americans died in the fighting, mostly on and around the small island of Betio, in the extreme southwest of Tarawa Atoll.
The Battle of Tarawa was the first American offensive in the critical central Pacific region. It was also the first time in the Pacific War that the United States had faced serious Japanese opposition to an amphibious landing. Previous landings met little or no initial resistance, but on Tarawa the 4,500 Japanese defenders were well-supplied and well-prepared, and they fought almost to the last man, exacting a heavy toll on the United States Marine Corps. The losses on Tarawa were incurred within 76 hours.
Background |
1372_1 | American strategic decisions
To set up forward air bases capable of supporting operations across the mid-Pacific, to the Philippines, and into Japan, the U.S. planned to take the Mariana Islands. The Marianas were heavily defended. Naval doctrine of the time held that in order for attacks to succeed, land-based aircraft would be required to weaken the defenses and protect the invasion forces. The nearest islands capable of supporting such an effort were the Marshall Islands. Taking the Marshalls would provide the base needed to launch an offensive on the Marianas, but the Marshalls were cut off from direct communications with Hawaii by a Japanese garrison and air base on the small island of Betio, on the western side of Tarawa Atoll in the Gilbert Islands. Thus, eventually to launch an invasion of the Marianas, the battle had to start far to the east, at Tarawa. |
1372_2 | Following the completion of the Guadalcanal campaign, the 2nd Marine Division had been withdrawn to New Zealand for rest and recuperation. Losses were replaced and the men given a chance to recover from the malaria and other illnesses that had weakened them through the fighting in the Solomons. On 20 July 1943, the Joint Chiefs directed Admiral Chester Nimitz to prepare plans for an offensive operation in the Gilbert Islands. In August, Admiral Raymond Spruance was flown down to New Zealand to meet with the new commander of the 2nd Marine Division, General Julian Smith, and initiate the planning of the invasion with the division's commanders. |
1372_3 | Japanese preparations
Located about southwest of Pearl Harbor, Betio is the largest island in the Tarawa Atoll. The small, flat island lies at the southernmost reach of the lagoon, and was the base of the majority of the Japanese troops. Shaped roughly like a long, thin triangle, the tiny island is approximately long. It is narrow, being only wide at its widest point. A long pier was constructed jutting out from the north shore onto which cargo ships could unload cargo while anchored beyond the -wide shallow reef which surrounded the island. The northern coast of the island faces into the lagoon, while the southern and western sides face the deep waters of the open ocean. |
1372_4 | Following Colonel Evans Carlson's diversionary Makin Island raid of August 1942, the Japanese command was made aware of the vulnerability and strategic significance of the Gilbert Islands. The 6th Yokosuka Special Naval Landing Force reinforced the island in February 1943. In command was Rear Admiral Tomonari Saichirō (友成 佐市郎), an experienced engineer who directed the construction of the sophisticated defensive structures on Betio. Upon their arrival, the 6th Yokosuka became a garrison force, and the unit's identification was changed to the 3rd Special Base Defense Force. Tomonari's primary goal in the Japanese defensive scheme was to stop the attackers in the water or pin them on the beaches. A tremendous number of pill boxes and firing pits were constructed, with excellent fields of fire over the water and sandy shore. In the interior of the island was the command post and a number of large shelters designed to protect defenders from air attack and bombardment. The island's defenses |
1372_5 | were not set up for a battle in depth across the interior. The interior structures were large and vented, but did not have firing ports. Defenders were limited to firing from the doorways. |
1372_6 | The Japanese worked intensely for nearly a year to fortify the island. To aid the garrison in the construction of the defenses, the 1,247 men of the 111th Pioneers, similar to the Seabees of the U.S. Navy, along with the 970 men of the Fourth Fleet's construction battalion, were brought in. Approximately 1,200 of the men in these two groups were Korean laborers. The garrison itself was made up of forces of the Imperial Japanese Navy. The Special Naval Landing Force was the marine component of the IJN, and were known by U.S. intelligence to be more highly trained, better disciplined, more tenacious and to have better small unit leadership than comparable units of the Imperial Japanese Army. The 3rd Special Base Defense Force assigned to Tarawa had a strength of 1,112 men. They were reinforced by the 7th Sasebo Special Naval Landing Force, with a strength of 1,497 men. It was commanded by Commander Takeo Sugai. This unit was bolstered by 14 Type 95 light tanks under the command of |
1372_7 | Ensign Ohtani. |
1372_8 | A series of fourteen coastal defense guns, including four large Vickers 8-inch guns purchased during the Russo-Japanese War from the British, were secured in concrete bunkers around the island to guard the open water approaches. It was thought these big guns would make it very difficult for a landing force to enter the lagoon and attack the island from the north side. The island had a total of 500 pillboxes or "stockades" built from logs and sand, many of which were reinforced with cement. Forty artillery pieces were scattered around the island in various reinforced firing pits. An airfield was cut into the bush straight down the center of the island. Trenches connected all points of the island, allowing troops to move under cover when necessary to where they were needed. As the command believed their coastal guns would protect the approaches into the lagoon, an attack on the island was anticipated to come from the open waters of the western or southern beaches. Rear Admiral Keiji |
1372_9 | Shibazaki, an experienced combat officer from the campaigns in China, relieved Tomonari on 20 July 1943, in anticipation of the coming fight. Shibazaki continued the defensive preparations right up to the day of the invasion. He encouraged his troops, saying "it would take one million men one hundred years" to conquer Tarawa. |
1372_10 | Opposing forces
American
Naval forces
United States Fifth Fleet
Admiral Raymond A. Spruance in heavy cruiser
Fifth Amphibious Force ("V 'Phib")
Rear Admiral Richmond Kelly Turner in battleship
Northern Attack Force (Task Force 52 – Makin)
Vice Admiral Turner
embarking 27th Infantry Division (Army) (Major General Ralph C. Smith)
Southern Attack Force (Task Force 53 – Tarawa)
Vice Admiral Harry W. Hill in battleship
embarking 2nd Marine Division (Major General Julian C. Smith)
Ground forces
V Amphibious Corps
Major General Holland M. "Howlin' Mad" Smith, USMC
Tarawa:
2nd Marine Division
Major General Julian C. Smith
2nd Marine Regiment (Col. David M. Shoup)
6th Marine Regiment (Col. Maurice G. Holmes)
8th Marine Regiment (Col. Elmer E. Hall)
10th Marine Regiment (Artillery) (Col. Thomas E. Bourke)
18th Marine Regiment (Engineer) (Col. Cyril W. Martyr) |
1372_11 | Makin:
27th Infantry Division (Army)
Major General Ralph C. Smith, USA
165th Regimental Combat Team
3rd Battalion / 105th Infantry Regiment ("Appleknockers")
Japanese
Gilbert Islands defense forces
Rear Adm. Keiji Shibasaki (KIA 20 Nov)
Approx. 5,000 total men under arms
3rd Special Base Force
7th Sasebo SNLF
111th Construction Unit
4th Fleet Construction Dept. (detachment)
Battle
20 November
The American invasion force to the Gilberts was the largest yet assembled for a single operation in the Pacific, consisting of 17 aircraft carriers (6 CVs, 5 CVLs, and 6 CVEs), 12 battleships, 8 heavy cruisers, 4 light cruisers, 66 destroyers, and 36 transport ships. On board the transports was the 2nd Marine Division and the Army's 27th Infantry Division, for a total of about 35,000 troops. |
1372_12 | As the invasion flotilla hove to in the predawn hours, the island's four 8-inch guns opened fire. A gunnery duel soon developed as the main batteries on the battleships Colorado and Maryland commenced counter-battery fire. This proved accurate, with several of the 16-inch shells finding their marks. One shell penetrated the ammunition storage for one of the guns, setting off a huge explosion as the ordnance went up in a massive fireball. Three of the four guns were knocked out in short order. One continued its intermittent, though inaccurate, fire through the second day. The damage to the big guns left the approach to the lagoon open. |
1372_13 | Following the gunnery duel and an air attack of the island at 06:10, the naval bombardment of the island began in earnest and was sustained for the next three hours. Two minesweepers, with two destroyers to provide covering fire, entered the lagoon in the pre-dawn hours and cleared the shallows of mines. A guide light from one of the minesweepers then guided the landing craft into the lagoon, where they awaited the end of the bombardment. The plan was to land marines on the north beaches, divided into three sections: Red Beach 1 on the far west of the island, Red Beach 2 in the center just west of the pier, and Red Beach 3 to the east of the pier. Green Beach was a contingency landing beach on the western shoreline and was used for the D+1 landings. Black Beaches 1 and 2 made up the southern shore of the island and were not used. The airstrip, running roughly east–west, divided the island into north and south. |
1372_14 | Marine Corps battle planners had expected the normal rising tide to provide a water depth of 5 feet over the reef, allowing their four-foot draft Higgins boats room to spare. However, on this day and the next, the ocean experienced a neap tide, and failed to rise. In the words of some observers, "the ocean just sat there", leaving a mean depth of three feet over the reef.
A New Zealand liaison officer, Major Frank Holland, had 15 years experience of Tarawa and warned that there would be at most 3 feet depth due to the tides. Shoup warned his troops that there would be a 50–50 chance that they would need to wade ashore, but the attack was not delayed until more favorable spring tides. |
1372_15 | The supporting naval bombardment lifted and the marines started their attack from the lagoon at 09:00, thirty minutes later than expected, but found the tide had not risen enough to allow their shallow draft Higgins boats to clear the reef. Only the tracked LVT "Alligators" were able to get across. With the pause in the naval bombardment, those Japanese who had survived the shelling were again able to man their firing pits. Japanese troops from the southern beaches were shifted up to the northern beaches. As the LVTs made their way over the reef and into the shallows, the number of Japanese troops in the firing pits slowly began to increase, and the volume of combined arms fire the LVTs faced gradually intensified. The LVTs had a myriad of holes punched through their non-armored hulls, and many were knocked out of the battle. Those 'Alligators' that did make it in proved unable to clear the sea wall, leaving the men in the first assault waves pinned down against the log wall along the |
1372_16 | beach. A number of 'Alligators' went back out to the reef in an attempt to carry in the men who were stuck there, but most of these LVTs were too badly holed to remain seaworthy, leaving the marines stuck on the reef some off shore. Half of the LVTs were knocked out of action by the end of the first day. |
1372_17 | Colonel David Shoup was the senior officer of the landed forces, and he assumed command of all landed marines upon his arrival on shore. Although wounded by an exploding shell soon after landing at the pier, Shoup had the pier cleared of Japanese snipers and rallied the first wave of marines who had become pinned down behind the limited protection of the sea wall. Over the next two days, working without rest and under constant withering enemy fire, he directed attacks against strongly defended Japanese positions, pushing forward despite daunting defensive obstructions and heavy fire. Throughout, Colonel Shoup was repeatedly exposed to Japanese small arms and artillery fire, inspiring the forces under his command. For his actions on Betio, he was awarded the Medal of Honor. |
1372_18 | Early attempts to land tanks for close support and to get past the sea wall failed when the LCM landing craft carrying them hung up behind the reef. Some of these craft were hit out in the lagoon while they waited to move in to the beach and either sank outright or had to withdraw while taking on water. Two Stuart tanks were landed on the east end of the beach but were knocked out of action fairly quickly. The battalion commander of 3rd Battalion, 2nd Regiment found several LCMs near the reef and ordered them to land their Sherman tanks and head to Red Beach 2. The LCMs dropped ramps and the six tanks came down, climbed over the reef and dropped into the surf beyond. They were guided in to shore by marines on foot, but several of these tanks fell into holes caused by the naval gunfire bombardment and sank. The surviving Shermans on the western end of the island proved considerably more effective than the lighter Stuarts. They helped push the line in to about from shore. One became |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.