code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "ibert" def __init__( self : Union[str, Any] ,A : Tuple=3_05_22 ,A : Optional[Any]=7_68 ,A : List[Any]=12 ,A : Optional[Any]=12 ,A : List[str]=30_72 ,A : Union[str, Any]="gelu" ,A : str=0.1 ,A : int=0.1 ,A : Dict=5_12 ,A : str=2 ,A : Any=0.02 ,A : str=1E-12 ,A : List[str]=1 ,A : str=0 ,A : Optional[Any]=2 ,A : Union[str, Any]="absolute" ,A : Optional[int]=False ,A : Any="none" ,**A : str ,): super().__init__(pad_token_id=A ,bos_token_id=A ,eos_token_id=A ,**A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = quant_mode __A = force_dequant class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase_ ( self : Tuple ): if self.task == "multiple-choice": __A = {0: "batch", 1: "choice", 2: "sequence"} else: __A = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
55
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = BlenderbotSmallTokenizer UpperCamelCase_ : int = False def _A ( self : Union[str, Any] ): super().setUp() SCREAMING_SNAKE_CASE : List[Any] = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] SCREAMING_SNAKE_CASE : int = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase_ ) ) def _A ( self : List[Any] , **UpperCAmelCase_ : str ): kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_ ) def _A ( self : Optional[int] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE : Tuple = "adapt act apte" SCREAMING_SNAKE_CASE : int = "adapt act apte" return input_text, output_text def _A ( self : str ): SCREAMING_SNAKE_CASE : int = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE : Tuple = "adapt act apte" SCREAMING_SNAKE_CASE : List[str] = ["adapt", "act", "ap@@", "te"] SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] SCREAMING_SNAKE_CASE : Tuple = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def _A ( self : Dict ): SCREAMING_SNAKE_CASE : Union[str, Any] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1384] SCREAMING_SNAKE_CASE : str = "I am a small frog." SCREAMING_SNAKE_CASE : List[Any] = tok([src_text] , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ )["input_ids"] SCREAMING_SNAKE_CASE : int = tok.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : List[str] = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) SCREAMING_SNAKE_CASE : Tuple = "I am a small frog ." SCREAMING_SNAKE_CASE : Optional[int] = "." SCREAMING_SNAKE_CASE : Dict = tok(UpperCAmelCase_ )["input_ids"] SCREAMING_SNAKE_CASE : Optional[Any] = tok(UpperCAmelCase_ )["input_ids"] assert encoded[-1] == encoded_dot[0]
62
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Any = ["""image_processor""", """tokenizer"""] __lowerCAmelCase : int = """Pix2StructImageProcessor""" __lowerCAmelCase : Union[str, Any] = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> int: _a : Union[str, Any] = False super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self , lowerCamelCase_=None , lowerCamelCase_ = None , lowerCamelCase_ = True , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = 2_0_4_8 , lowerCamelCase_ = 0 , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = False , lowerCamelCase_ = True , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: _a : Any = self.tokenizer _a : List[str] = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values _a : Optional[int] = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , max_patches=lowerCamelCase_ , **lowerCamelCase_ ) else: # add pixel_values and bbox _a : Dict = self.image_processor( lowerCamelCase_ , return_tensors=lowerCamelCase_ , max_patches=lowerCamelCase_ , header_text=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None and not self.image_processor.is_vqa: _a : Optional[Any] = self.tokenizer( text=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) if "attention_mask" in text_encoding: _a : Optional[int] = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: _a : int = text_encoding.pop('input_ids' ) else: _a : int = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase_ ) return encoding_image_processor def __UpperCamelCase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> Dict: return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCamelCase ( self , *lowerCamelCase_ , **lowerCamelCase_ ) -> str: return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def __UpperCamelCase ( self ) -> Any: _a : Optional[int] = self.tokenizer.model_input_names _a : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
424
'''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [ "Audio", "Array2D", "Array3D", "Array4D", "Array5D", "ClassLabel", "Features", "Sequence", "Value", "Image", "Translation", "TranslationVariableLanguages", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
424
1
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def A__ (self): '''simple docstring''' __UpperCAmelCase =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''') __UpperCAmelCase =AutoTokenizer.from_pretrained('''google/mt5-small''') __UpperCAmelCase =tokenizer('''Hello there''' , return_tensors='''np''').input_ids __UpperCAmelCase =tokenizer('''Hi I am''' , return_tensors='''np''').input_ids __UpperCAmelCase =shift_tokens_right(UpperCAmelCase , model.config.pad_token_id , model.config.decoder_start_token_id) __UpperCAmelCase =model(UpperCAmelCase , decoder_input_ids=UpperCAmelCase).logits __UpperCAmelCase =optax.softmax_cross_entropy(UpperCAmelCase , onehot(UpperCAmelCase , logits.shape[-1])).mean() __UpperCAmelCase =-(labels.shape[-1] * loss.item()) __UpperCAmelCase =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
132
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): a_ : str = '''luke''' def __init__(self , UpperCAmelCase=5_0_2_6_7 , UpperCAmelCase=5_0_0_0_0_0 , UpperCAmelCase=7_6_8 , UpperCAmelCase=2_5_6 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=2 , **UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase , bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , **UpperCAmelCase) __UpperCAmelCase =vocab_size __UpperCAmelCase =entity_vocab_size __UpperCAmelCase =hidden_size __UpperCAmelCase =entity_emb_size __UpperCAmelCase =num_hidden_layers __UpperCAmelCase =num_attention_heads __UpperCAmelCase =hidden_act __UpperCAmelCase =intermediate_size __UpperCAmelCase =hidden_dropout_prob __UpperCAmelCase =attention_probs_dropout_prob __UpperCAmelCase =max_position_embeddings __UpperCAmelCase =type_vocab_size __UpperCAmelCase =initializer_range __UpperCAmelCase =layer_norm_eps __UpperCAmelCase =use_entity_aware_attention __UpperCAmelCase =classifier_dropout
132
1
'''simple docstring''' from collections.abc import Iterable from typing import Generic, TypeVar lowerCAmelCase : Optional[Any] = TypeVar("""_T""") class _UpperCamelCase ( Generic[_T]): '''simple docstring''' def __init__( self , a_ = None ) -> None: lowercase : list[_T] = list(iterable or [] ) lowercase : list[_T] = [] def __len__( self ) -> int: return len(self._stacka ) + len(self._stacka ) def __repr__( self ) -> str: return F'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def a__ ( self , a_ ) -> None: self._stacka.append(a_ ) def a__ ( self ) -> _T: lowercase : int = self._stacka.pop lowercase : Tuple = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
425
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : Dict = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def _A ( A ,A ,A ,A ,A ) -> str: for attribute in key.split("." ): lowercase : Any = getattr(A ,A ) if weight_type is not None: lowercase : Optional[Any] = getattr(A ,A ).shape else: lowercase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowercase : Any = value elif weight_type == "weight_g": lowercase : Optional[Any] = value elif weight_type == "weight_v": lowercase : Tuple = value elif weight_type == "bias": lowercase : int = value else: lowercase : int = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( A ,A ) -> int: lowercase : List[Any] = [] lowercase : int = fairseq_model.state_dict() lowercase : Optional[Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase : List[str] = False if "conv_layers" in name: load_conv_layer( A ,A ,A ,A ,hf_model.config.feat_extract_norm == "group" ,) lowercase : Optional[int] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase : Union[str, Any] = True if "*" in mapped_key: lowercase : Dict = name.split(A )[0].split("." )[-2] lowercase : Union[str, Any] = mapped_key.replace("*" ,A ) if "weight_g" in name: lowercase : Union[str, Any] = "weight_g" elif "weight_v" in name: lowercase : Tuple = "weight_v" elif "bias" in name and "relative_attention_bias" not in name: lowercase : Union[str, Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowercase : Any = "weight" else: lowercase : Tuple = None set_recursively(A ,A ,A ,A ,A ) continue if not is_used: unused_weights.append(A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _A ( A ,A ,A ,A ,A ) -> Any: lowercase : Optional[int] = full_name.split("conv_layers." )[-1] lowercase : Any = name.split("." ) lowercase : Dict = int(items[0] ) lowercase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowercase : Tuple = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowercase : List[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowercase : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowercase : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(A ) @torch.no_grad() def _A ( A ,A ,A=None ) -> Optional[Any]: # load the pre-trained checkpoints lowercase : Union[str, Any] = torch.load(A ) lowercase : List[Any] = WavLMConfigOrig(checkpoint["cfg"] ) lowercase : Tuple = WavLMOrig(A ) model.load_state_dict(checkpoint["model"] ) model.eval() if config_path is not None: lowercase : List[str] = WavLMConfig.from_pretrained(A ) else: lowercase : Union[str, Any] = WavLMConfig() lowercase : Optional[Any] = WavLMModel(A ) recursively_load_weights(A ,A ) hf_wavlm.save_pretrained(A ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCAmelCase : int = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
425
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class a ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = parent __UpperCAmelCase: List[Any] = batch_size __UpperCAmelCase: List[Any] = num_channels __UpperCAmelCase: Tuple = image_size __UpperCAmelCase: Any = min_resolution __UpperCAmelCase: Dict = max_resolution __UpperCAmelCase: Optional[Any] = do_resize __UpperCAmelCase: Optional[int] = size if size is not None else {"""height""": 18, """width""": 20} __UpperCAmelCase: List[str] = do_thumbnail __UpperCAmelCase: Any = do_align_axis __UpperCAmelCase: int = do_pad __UpperCAmelCase: Union[str, Any] = do_normalize __UpperCAmelCase: Union[str, Any] = image_mean __UpperCAmelCase: Optional[Any] = image_std def lowercase_ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class a ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = DonutImageProcessingTester(self ) @property def lowercase_ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) self.assertTrue(hasattr(snake_case_ , """do_thumbnail""" ) ) self.assertTrue(hasattr(snake_case_ , """do_align_long_axis""" ) ) self.assertTrue(hasattr(snake_case_ , """do_pad""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) __UpperCAmelCase: str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order __UpperCAmelCase: int = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def lowercase_ ( self ): '''simple docstring''' pass @is_flaky() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCAmelCase: List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , Image.Image ) # Test not batched input __UpperCAmelCase: Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __UpperCAmelCase: str = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCAmelCase: Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , np.ndarray ) # Test not batched input __UpperCAmelCase: str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __UpperCAmelCase: Tuple = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCAmelCase: int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for image in image_inputs: self.assertIsInstance(snake_case_ , torch.Tensor ) # Test not batched input __UpperCAmelCase: str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __UpperCAmelCase: Tuple = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
523
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class a : """simple docstring""" def __init__( self , snake_case_ , ): '''simple docstring''' __UpperCAmelCase: List[Any] = parent __UpperCAmelCase: Dict = 13 __UpperCAmelCase: Optional[int] = 7 __UpperCAmelCase: List[str] = 30 __UpperCAmelCase: List[Any] = self.seq_length + self.mem_len __UpperCAmelCase: int = 15 __UpperCAmelCase: Optional[int] = True __UpperCAmelCase: List[str] = True __UpperCAmelCase: Union[str, Any] = 99 __UpperCAmelCase: Optional[int] = [10, 50, 80] __UpperCAmelCase: str = 32 __UpperCAmelCase: Optional[Any] = 32 __UpperCAmelCase: Union[str, Any] = 4 __UpperCAmelCase: int = 8 __UpperCAmelCase: str = 128 __UpperCAmelCase: str = 2 __UpperCAmelCase: Tuple = 2 __UpperCAmelCase: Union[str, Any] = None __UpperCAmelCase: str = 1 __UpperCAmelCase: Optional[Any] = 0 __UpperCAmelCase: int = 3 __UpperCAmelCase: Dict = self.vocab_size - 1 __UpperCAmelCase: int = 0.0_1 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: List[str] = None if self.use_labels: __UpperCAmelCase: int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: Optional[int] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def lowercase_ ( self ): '''simple docstring''' random.seed(self.seed ) tf.random.set_seed(self.seed ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Dict = TFTransfoXLModel(snake_case_ ) __UpperCAmelCase, __UpperCAmelCase: List[str] = model(snake_case_ ).to_tuple() __UpperCAmelCase: Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a} __UpperCAmelCase, __UpperCAmelCase: Optional[Any] = model(snake_case_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = TFTransfoXLLMHeadModel(snake_case_ ) __UpperCAmelCase, __UpperCAmelCase: Optional[int] = model(snake_case_ ).to_tuple() __UpperCAmelCase: Optional[Any] = {"""input_ids""": input_ids_a, """labels""": lm_labels} __UpperCAmelCase, __UpperCAmelCase: Tuple = model(snake_case_ ).to_tuple() __UpperCAmelCase, __UpperCAmelCase: Dict = model([input_ids_a, mems_a] ).to_tuple() __UpperCAmelCase: Union[str, Any] = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} __UpperCAmelCase, __UpperCAmelCase: List[str] = model(snake_case_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = TFTransfoXLForSequenceClassification(snake_case_ ) __UpperCAmelCase: List[Any] = model(snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.prepare_config_and_inputs() ((__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase), (__UpperCAmelCase)): Dict = config_and_inputs __UpperCAmelCase: List[str] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class a ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __lowerCAmelCase = () if is_tf_available() else () __lowerCAmelCase = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = TFTransfoXLModelTester(self ) __UpperCAmelCase: Any = ConfigTester(self , config_class=snake_case_ , d_embed=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' self.model_tester.set_seed() __UpperCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' self.model_tester.set_seed() __UpperCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*snake_case_ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase, __UpperCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase: str = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __UpperCAmelCase: int = model_class(snake_case_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __UpperCAmelCase: Any = model.get_output_embeddings() assert isinstance(snake_case_ , tf.keras.layers.Layer ) __UpperCAmelCase: int = model.get_bias() assert name is None else: __UpperCAmelCase: Optional[int] = model.get_output_embeddings() assert x is None __UpperCAmelCase: str = model.get_bias() assert name is None def lowercase_ ( self ): '''simple docstring''' pass @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase: str = TFTransfoXLModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def lowercase_ ( self ): '''simple docstring''' pass @require_tf class a ( unittest.TestCase ): """simple docstring""" @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off __UpperCAmelCase: str = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __UpperCAmelCase: Dict = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __UpperCAmelCase: Dict = model.generate(snake_case_ , max_length=200 , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].numpy().tolist() , snake_case_ )
523
1
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"""vocab_file""": """spiece.model"""} lowerCAmelCase__ = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", } } lowerCAmelCase__ = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } # Segments (not really needed) lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 3 lowerCAmelCase__ = 4 class lowercase ( _lowercase ): """simple docstring""" a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = "left" def __init__( self , __snake_case , __snake_case=False , __snake_case=True , __snake_case=False , __snake_case="<s>" , __snake_case="</s>" , __snake_case="<unk>" , __snake_case="<sep>" , __snake_case="<pad>" , __snake_case="<cls>" , __snake_case="<mask>" , __snake_case=["<eop>", "<eod>"] , __snake_case = None , **__snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case) if isinstance(__snake_case , __snake_case) else mask_token _UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) _UpperCamelCase : Any = 3 _UpperCamelCase : List[Any] = do_lower_case _UpperCamelCase : int = remove_space _UpperCamelCase : Union[str, Any] = keep_accents _UpperCamelCase : List[str] = vocab_file _UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(__snake_case) @property def A__ ( self): return len(self.sp_model) def A__ ( self): _UpperCamelCase : List[str] = {self.convert_ids_to_tokens(__snake_case): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self): _UpperCamelCase : Dict = self.__dict__.copy() _UpperCamelCase : str = None return state def __setstate__( self , __snake_case): _UpperCamelCase : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): _UpperCamelCase : Optional[Any] = {} _UpperCamelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ ( self , __snake_case): if self.remove_space: _UpperCamelCase : Any = ' '.join(inputs.strip().split()) else: _UpperCamelCase : Optional[Any] = inputs _UpperCamelCase : str = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: _UpperCamelCase : List[str] = unicodedata.normalize('NFKD' , __snake_case) _UpperCamelCase : Optional[int] = ''.join([c for c in outputs if not unicodedata.combining(__snake_case)]) if self.do_lower_case: _UpperCamelCase : Dict = outputs.lower() return outputs def A__ ( self , __snake_case): _UpperCamelCase : Any = self.preprocess_text(__snake_case) _UpperCamelCase : Dict = self.sp_model.encode(__snake_case , out_type=__snake_case) _UpperCamelCase : List[Any] = [] for piece in pieces: if len(__snake_case) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): _UpperCamelCase : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__snake_case , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: _UpperCamelCase : int = cur_pieces[1:] else: _UpperCamelCase : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(__snake_case) else: new_pieces.append(__snake_case) return new_pieces def A__ ( self , __snake_case): return self.sp_model.PieceToId(__snake_case) def A__ ( self , __snake_case): return self.sp_model.IdToPiece(__snake_case) def A__ ( self , __snake_case): _UpperCamelCase : Optional[Any] = ''.join(__snake_case).replace(__snake_case , ' ').strip() return out_string def A__ ( self , __snake_case , __snake_case = False , __snake_case = None , __snake_case = True , **__snake_case , ): _UpperCamelCase : List[Any] = kwargs.pop('use_source_tokenizer' , __snake_case) _UpperCamelCase : Union[str, Any] = self.convert_ids_to_tokens(__snake_case , skip_special_tokens=__snake_case) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Dict = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__snake_case)) _UpperCamelCase : List[Any] = [] sub_texts.append(__snake_case) else: current_sub_text.append(__snake_case) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__snake_case)) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _UpperCamelCase : Optional[Any] = ''.join(__snake_case) _UpperCamelCase : Any = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _UpperCamelCase : int = self.clean_up_tokenization(__snake_case) return clean_text else: return text def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def A__ ( self , __snake_case , __snake_case = None , __snake_case = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case) if token_ids_a is not None: return ([0] * len(__snake_case)) + [1] + ([0] * len(__snake_case)) + [1, 1] return ([0] * len(__snake_case)) + [1, 1] def A__ ( self , __snake_case , __snake_case = None): _UpperCamelCase : Optional[Any] = [self.sep_token_id] _UpperCamelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def A__ ( self , __snake_case , __snake_case = None): if not os.path.isdir(__snake_case): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''') return _UpperCamelCase : Tuple = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(__snake_case) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __snake_case) elif not os.path.isfile(self.vocab_file): with open(__snake_case , 'wb') as fi: _UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(__snake_case) return (out_vocab_file,)
648
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
1
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification a__ : List[Any] = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co a__ : List[str] = 'main' # Default branch name a__ : Dict = 'f2c752cfc5c0ab6f4bdec59acea69eefbee381c2' # One particular commit (not the top of `main`) a__ : str = 'aaaaaaa' # This commit does not exist, so we should 404. a__ : Dict = 'd9e9f15bc825e4b2c9249e9578f884bbcb5e3684' # Sha-1 of config.json on the top of `main`, for checking purposes a__ : Optional[Any] = '4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3' @contextlib.contextmanager def __snake_case ( ) -> Tuple: """simple docstring""" print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def __snake_case ( ) -> Dict: """simple docstring""" print('''Bonjour!''' ) yield print('''Au revoir!''' ) class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : str ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __snake_case ( self : Optional[Any] , a__ : Optional[int] ): with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __snake_case ( self : Tuple , a__ : List[str] ): with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __snake_case ( self : List[Any] , a__ : List[str] ): with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def __snake_case ( self : Any ): self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_tf def __snake_case ( self : str ): self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_UpperCamelCase ) , ['''start_positions''', '''end_positions'''] ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(_UpperCamelCase ) , ['''labels'''] ) @require_flax def __snake_case ( self : Union[str, Any] ): # Flax models don't have labels self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) self.assertEqual(find_labels(_UpperCamelCase ) , [] ) class lowerCAmelCase__ ( UpperCAmelCase_ ): '''simple docstring''' pass self.assertEqual(find_labels(_UpperCamelCase ) , [] )
51
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCAmelCase_ : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=2 , _UpperCamelCase=24 , _UpperCamelCase=16 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=10 , _UpperCamelCase=0.02 , _UpperCamelCase=None , _UpperCamelCase=2 , _UpperCamelCase=2 , )-> Tuple: _A = parent _A = batch_size _A = patch_size _A = max_length _A = num_mel_bins _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = scope _A = frequency_stride _A = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _A = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _A = (self.max_length - self.patch_size) // self.time_stride + 1 _A = frequency_out_dimension * time_out_dimension _A = num_patches + 2 def UpperCamelCase ( self )-> int: _A = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = self.get_config() return config, input_values, labels def UpperCamelCase ( self )-> int: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )-> Optional[Any]: _A = ASTModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _A = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self )-> Any: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_values': input_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) __UpperCAmelCase =( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False __UpperCAmelCase =False def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )-> Union[str, Any]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def UpperCamelCase ( self )-> List[str]: _A = ASTModelTester(self ) _A = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase ( self )-> int: self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def UpperCamelCase ( self )-> List[Any]: pass def UpperCamelCase ( self )-> str: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def UpperCamelCase ( self )-> List[str]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(_UpperCamelCase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['input_values'] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def UpperCamelCase ( self )-> Optional[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) @slow def UpperCamelCase ( self )-> Tuple: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = ASTModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowerCamelCase_ ( ) -> Union[str, Any]: """simple docstring""" _A = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) _A , _A = torchaudio.load(__UpperCamelCase ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def UpperCamelCase ( self )-> Dict: return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def UpperCamelCase ( self )-> Any: _A = self.default_feature_extractor _A = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(_UpperCamelCase ) _A = self.default_feature_extractor _A , _A = prepare_audio() _A = audio.squeeze().numpy() _A = feature_extractor(_UpperCamelCase , sampling_rate=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): _A = model(**_UpperCamelCase ) # verify the logits _A = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) _A = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) )
292
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class _A ( unittest.TestCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=32 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=4 , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_attention_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_choices def A__ ( self ): """simple docstring""" lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_attention_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() lowercase , lowercase , lowercase , lowercase = config_and_inputs lowercase = True lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class _A ( lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[int] = True snake_case__ : List[str] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self ): """simple docstring""" lowercase = FlaxRobertaModelTester(self ) @slow def A__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowercase = model_class_name.from_pretrained("""roberta-base""" , from_pt=__lowerCAmelCase ) lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCAmelCase )
197
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __lowerCAmelCase : List[Any] ="""\ Text data. Second line of data.""" __lowerCAmelCase : Any ="""file""" @pytest.fixture(scope="""session""" ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Union[str, Any]: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") lowercase = bytes(lowerCAmelCase__ , """utf-8""" ) with zstd.open(lowerCAmelCase__ , """wb""" ) as f: f.write(lowerCAmelCase__ ) return path @pytest.fixture def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Dict: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , lowerCAmelCase__ ) , """w""" ) as f: f.write(lowerCAmelCase__ ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :int ) -> Union[str, Any]: '''simple docstring''' lowercase = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} lowercase = input_paths[compression_format] lowercase = tmp_path / """cache""" lowercase = DownloadConfig(cache_dir=lowerCAmelCase__ , extract_compressed_file=lowerCAmelCase__ ) lowercase = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ ) with open(lowerCAmelCase__ ) as f: lowercase = f.read() with open(lowerCAmelCase__ ) as f: lowercase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] ) -> Any: '''simple docstring''' lowercase = """custom_cache""" lowercase = """custom_extracted_dir""" lowercase = tmp_path / """custom_extracted_path""" if default_extracted: lowercase = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , lowerCAmelCase__ ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(lowerCAmelCase__ ) ) lowercase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase = xz_file lowercase = ( DownloadConfig(extract_compressed_file=lowerCAmelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowerCAmelCase__ ) ) lowercase = cached_path(lowerCAmelCase__ , download_config=lowerCAmelCase__ ) assert Path(lowerCAmelCase__ ).parent.parts[-2:] == expected def UpperCAmelCase__ ( lowerCAmelCase__ :List[str] ) -> Tuple: '''simple docstring''' lowercase = str(Path(lowerCAmelCase__ ).resolve() ) assert cached_path(lowerCAmelCase__ ) == text_file # relative path lowercase = str(Path(lowerCAmelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCAmelCase__ ) == text_file def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> List[Any]: '''simple docstring''' lowercase = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(lowerCAmelCase__ ): cached_path(lowerCAmelCase__ ) # relative path lowercase = """./__missing_file__.txt""" with pytest.raises(lowerCAmelCase__ ): cached_path(lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Union[str, Any]: '''simple docstring''' lowercase = get_from_cache(f'tmp://{tmpfs_file}' ) with open(lowerCAmelCase__ ) as f: lowercase = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( ) -> str: '''simple docstring''' with pytest.raises(lowerCAmelCase__ ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Any: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowerCAmelCase__ ): http_get("""https://huggingface.co""" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :str ) -> Any: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowerCAmelCase__ ): ftp_get("""ftp://huggingface.co""" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase__ ) def UpperCAmelCase__ ( lowerCAmelCase__ :Any ) -> Dict: '''simple docstring''' lowercase = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(lowerCAmelCase__ ): fsspec_get("""s3://huggingface.co""" , temp_file=lowerCAmelCase__ ) with pytest.raises(lowerCAmelCase__ ): fsspec_head("""s3://huggingface.co""" )
197
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _UpperCAmelCase ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" A = FlaxAutoencoderKL @property def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = 4 lowerCAmelCase__ :Dict = 3 lowerCAmelCase__ :int = (32, 32) lowerCAmelCase__ :int = jax.random.PRNGKey(0 ) lowerCAmelCase__ :List[str] = jax.random.uniform(__lowerCamelCase , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } lowerCAmelCase__ :Union[str, Any] = self.dummy_input return init_dict, inputs_dict
145
def _lowercase ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Dict ,__lowerCamelCase : str ,__lowerCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: UpperCamelCase__ : Optional[Any] = mf_knapsack(i - 1 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) else: UpperCamelCase__ : Optional[int] = max( mf_knapsack(i - 1 ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) ,mf_knapsack(i - 1 ,__lowerCamelCase ,__lowerCamelCase ,j - wt[i - 1] ) + val[i - 1] ,) UpperCamelCase__ : Optional[int] = val return f[i][j] def _lowercase ( __lowerCamelCase : Optional[int] ,__lowerCamelCase : Tuple ,__lowerCamelCase : List[Any] ,__lowerCamelCase : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : Tuple = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 ,n + 1 ): for w_ in range(1 ,w + 1 ): if wt[i - 1] <= w_: UpperCamelCase__ : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] ,dp[i - 1][w_] ) else: UpperCamelCase__ : Optional[Any] = dp[i - 1][w_] return dp[n][w_], dp def _lowercase ( __lowerCamelCase : int ,__lowerCamelCase : list ,__lowerCamelCase : list ) -> List[Any]: '''simple docstring''' if not (isinstance(__lowerCamelCase ,(list, tuple) ) and isinstance(__lowerCamelCase ,(list, tuple) )): raise ValueError( '''Both the weights and values vectors must be either lists or tuples''' ) UpperCamelCase__ : int = len(__lowerCamelCase ) if num_items != len(__lowerCamelCase ): UpperCamelCase__ : int = ( '''The number of weights must be the same as the number of values.\n''' F'But got {num_items} weights and {len(__lowerCamelCase )} values' ) raise ValueError(__lowerCamelCase ) for i in range(__lowerCamelCase ): if not isinstance(wt[i] ,__lowerCamelCase ): UpperCamelCase__ : Tuple = ( '''All weights must be integers but got weight of ''' F'type {type(wt[i] )} at index {i}' ) raise TypeError(__lowerCamelCase ) UpperCamelCase__ ,UpperCamelCase__ : Tuple = knapsack(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) UpperCamelCase__ : set = set() _construct_solution(__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase ) return optimal_val, example_optional_set def _lowercase ( __lowerCamelCase : list ,__lowerCamelCase : list ,__lowerCamelCase : int ,__lowerCamelCase : int ,__lowerCamelCase : set ) -> Dict: '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(__lowerCamelCase ,__lowerCamelCase ,i - 1 ,__lowerCamelCase ,__lowerCamelCase ) else: optimal_set.add(__lowerCamelCase ) _construct_solution(__lowerCamelCase ,__lowerCamelCase ,i - 1 ,j - wt[i - 1] ,__lowerCamelCase ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = [3, 2, 4, 4] _SCREAMING_SNAKE_CASE : Any = [4, 3, 2, 3] _SCREAMING_SNAKE_CASE : int = 4 _SCREAMING_SNAKE_CASE : int = 6 _SCREAMING_SNAKE_CASE : Optional[int] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE : Dict = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE : Any = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
344
0
'''simple docstring''' def lowercase_ ( __A : str , __A : Dict ) -> int: """simple docstring""" return number | (1 << position) def lowercase_ ( __A : Union[str, Any] , __A : List[Any] ) -> int: """simple docstring""" return number & ~(1 << position) def lowercase_ ( __A : Union[str, Any] , __A : Any ) -> int: """simple docstring""" return number ^ (1 << position) def lowercase_ ( __A : List[str] , __A : Tuple ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def lowercase_ ( __A : Optional[Any] , __A : Tuple ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : List[Any] , __A : int , __A : int ) -> Optional[int]: """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowercase_ ( __A : np.ndarray , __A : Optional[str] , __A : Optional[str] ) -> Optional[Any]: """simple docstring""" lowercase : int =to_pil_image(__A ) lowercase , lowercase : Tuple =pil_image.size lowercase : Optional[Any] =pytesseract.image_to_data(__A , lang=__A , output_type='''dict''' , config=__A ) lowercase , lowercase , lowercase , lowercase , lowercase : Optional[Any] =data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates lowercase : Dict =[idx for idx, word in enumerate(__A ) if not word.strip()] lowercase : str =[word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] lowercase : Optional[int] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : List[Any] =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : str =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] lowercase : int =[coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowercase : Tuple =[] for x, y, w, h in zip(__A , __A , __A , __A ): lowercase : str =[x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes lowercase : List[str] =[] for box in actual_boxes: normalized_boxes.append(normalize_box(__A , __A , __A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class UpperCAmelCase_ ( __A ): """simple docstring""" UpperCamelCase_ = ['''pixel_values'''] def __init__( self : List[Any] , UpperCAmelCase : bool = True , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : bool = True , UpperCAmelCase : float = 1 / 255 , UpperCAmelCase : bool = True , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = "" , **UpperCAmelCase : Tuple , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase : Tuple =size if size is not None else {'''height''': 224, '''width''': 224} lowercase : Optional[Any] =get_size_dict(UpperCAmelCase ) lowercase : Optional[Any] =do_resize lowercase : List[Any] =size lowercase : List[str] =resample lowercase : Dict =do_rescale lowercase : str =rescale_value lowercase : Optional[int] =do_normalize lowercase : Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase : Union[str, Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD lowercase : List[Any] =apply_ocr lowercase : Union[str, Any] =ocr_lang lowercase : str =tesseract_config def A__ ( self : Dict , UpperCAmelCase : np.ndarray , UpperCAmelCase : Dict[str, int] , UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' lowercase : Tuple =get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) lowercase : Optional[Any] =(size['''height'''], size['''width''']) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[int, float] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Union[str, Any] , UpperCAmelCase : np.ndarray , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Union[float, Iterable[float]] , UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase : Optional[int] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def A__ ( self : Any , UpperCAmelCase : ImageInput , UpperCAmelCase : bool = None , UpperCAmelCase : Dict[str, int] = None , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : bool = None , UpperCAmelCase : float = None , UpperCAmelCase : bool = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : Union[float, Iterable[float]] = None , UpperCAmelCase : bool = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[str] = None , UpperCAmelCase : Optional[Union[str, TensorType]] = None , UpperCAmelCase : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase : List[str] , ) -> PIL.Image.Image: '''simple docstring''' lowercase : Optional[int] =do_resize if do_resize is not None else self.do_resize lowercase : Tuple =size if size is not None else self.size lowercase : Optional[int] =get_size_dict(UpperCAmelCase ) lowercase : List[str] =resample if resample is not None else self.resample lowercase : List[Any] =do_rescale if do_rescale is not None else self.do_rescale lowercase : List[Any] =rescale_factor if rescale_factor is not None else self.rescale_factor lowercase : Optional[int] =do_normalize if do_normalize is not None else self.do_normalize lowercase : List[Any] =image_mean if image_mean is not None else self.image_mean lowercase : Optional[int] =image_std if image_std is not None else self.image_std lowercase : Any =apply_ocr if apply_ocr is not None else self.apply_ocr lowercase : Any =ocr_lang if ocr_lang is not None else self.ocr_lang lowercase : Dict =tesseract_config if tesseract_config is not None else self.tesseract_config lowercase : str =make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''If do_normalize is True, image_mean and image_std must be specified.''' ) # All transformations expect numpy arrays. lowercase : Tuple =[to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , '''pytesseract''' ) lowercase : int =[] lowercase : Tuple =[] for image in images: lowercase , lowercase : Dict =apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: lowercase : int =[self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: lowercase : Tuple =[self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: lowercase : str =[self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] lowercase : Optional[Any] =[to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] lowercase : Dict =BatchFeature(data={'''pixel_values''': images} , tensor_type=UpperCAmelCase ) if apply_ocr: lowercase : int =words_batch lowercase : List[str] =boxes_batch return data
8
0
import argparse import os import re import packaging.version SCREAMING_SNAKE_CASE :Optional[Any] = """examples/""" SCREAMING_SNAKE_CASE :Dict = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } SCREAMING_SNAKE_CASE :int = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } SCREAMING_SNAKE_CASE :Optional[int] = """README.md""" def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Dict: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase_ = f.read() UpperCamelCase_ , UpperCamelCase_ = REPLACE_PATTERNS[pattern] UpperCamelCase_ = replace.replace("VERSION" , SCREAMING_SNAKE_CASE_ ) UpperCamelCase_ = re_pattern.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> Optional[int]: """simple docstring""" for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , pattern="examples" ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> Union[str, Any]: """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( )-> List[str]: """simple docstring""" UpperCamelCase_ = "🤗 Transformers currently provides the following architectures" UpperCamelCase_ = "1. Want to contribute a new model?" with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase_ = f.readlines() # Find the start of the list. UpperCamelCase_ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase_ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): UpperCamelCase_ = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( )-> Any: """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: UpperCamelCase_ = f.read() UpperCamelCase_ = REPLACE_PATTERNS["init"][0].search(SCREAMING_SNAKE_CASE_ ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( SCREAMING_SNAKE_CASE_=False )-> List[str]: """simple docstring""" UpperCamelCase_ = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: UpperCamelCase_ = default_version.base_version elif patch: UpperCamelCase_ = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: UpperCamelCase_ = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. UpperCamelCase_ = input(f"Which version are you releasing? [{default_version}]" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: UpperCamelCase_ = default_version print(f"Updating version to {version}." ) global_version_update(SCREAMING_SNAKE_CASE_ , patch=SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase( )-> Union[str, Any]: """simple docstring""" UpperCamelCase_ = get_version() UpperCamelCase_ = f"{current_version.major}.{current_version.minor + 1}.0.dev0" UpperCamelCase_ = current_version.base_version # Check with the user we got that right. UpperCamelCase_ = input(f"Which version are we developing now? [{dev_version}]" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: UpperCamelCase_ = dev_version print(f"Updating version to {version}." ) global_version_update(SCREAMING_SNAKE_CASE_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": SCREAMING_SNAKE_CASE :str = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") SCREAMING_SNAKE_CASE :Tuple = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
628
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING SCREAMING_SNAKE_CASE :Optional[Any] = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = """mask2former""" UpperCamelCase_ :Dict = ["""swin"""] UpperCamelCase_ :List[Any] = {"""hidden_size""": """hidden_dim"""} def __init__( self , _lowercase = None , _lowercase = 256 , _lowercase = 256 , _lowercase = 256 , _lowercase = 1_024 , _lowercase = "relu" , _lowercase = 6 , _lowercase = 10 , _lowercase = 8 , _lowercase = 0.0 , _lowercase = 2_048 , _lowercase = False , _lowercase = False , _lowercase = 4 , _lowercase = 255 , _lowercase = 100 , _lowercase = 0.1 , _lowercase = 2.0 , _lowercase = 5.0 , _lowercase = 5.0 , _lowercase = 12_544 , _lowercase = 3.0 , _lowercase = 0.75 , _lowercase = 0.02 , _lowercase = 1.0 , _lowercase = True , _lowercase = [4, 8, 16, 32] , _lowercase = None , **_lowercase , )-> Union[str, Any]: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) UpperCamelCase_ = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_lowercase , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_lowercase , _lowercase ): UpperCamelCase_ = backbone_config.pop("model_type" ) UpperCamelCase_ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase_ = config_class.from_dict(_lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. " F"Supported model types: {','.join(self.backbones_supported )}" ) UpperCamelCase_ = backbone_config UpperCamelCase_ = feature_size UpperCamelCase_ = mask_feature_size UpperCamelCase_ = hidden_dim UpperCamelCase_ = encoder_feedforward_dim UpperCamelCase_ = activation_function UpperCamelCase_ = encoder_layers UpperCamelCase_ = decoder_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = dropout UpperCamelCase_ = dim_feedforward UpperCamelCase_ = pre_norm UpperCamelCase_ = enforce_input_projection UpperCamelCase_ = common_stride UpperCamelCase_ = ignore_value UpperCamelCase_ = num_queries UpperCamelCase_ = no_object_weight UpperCamelCase_ = class_weight UpperCamelCase_ = mask_weight UpperCamelCase_ = dice_weight UpperCamelCase_ = train_num_points UpperCamelCase_ = oversample_ratio UpperCamelCase_ = importance_sample_ratio UpperCamelCase_ = init_std UpperCamelCase_ = init_xavier_std UpperCamelCase_ = use_auxiliary_loss UpperCamelCase_ = feature_strides UpperCamelCase_ = output_auxiliary_logits UpperCamelCase_ = decoder_layers super().__init__(**_lowercase ) @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> Optional[int]: return cls( backbone_config=_lowercase , **_lowercase , ) def UpperCAmelCase_ ( self )-> Dict[str, any]: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.backbone_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
628
1
"""simple docstring""" from __future__ import annotations def __a ( A , A , A ): '''simple docstring''' lowercase__ = list(range(len(A ) ) ) lowercase__ = [v / w for v, w in zip(A , A )] index.sort(key=lambda A : ratio[i] , reverse=A ) lowercase__ = 0 lowercase__ = [0] * len(A ) for i in index: if weight[i] <= capacity: lowercase__ = 1 max_value += value[i] capacity -= weight[i] else: lowercase__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class a__ ( unittest.TestCase ): @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase ): lowercase__ = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase, _UpperCAmelCase ) @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxBertModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() @slow def snake_case__ ( self ): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase ) lowercase__ = FlaxRobertaModel.from_pretrained(_UpperCAmelCase ) lowercase__ = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX ) @jax.jit def eval(**_UpperCAmelCase ): return model(**_UpperCAmelCase ) eval(**_UpperCAmelCase ).block_until_ready() def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "bert-base is not a local folder and is not a valid model identifier" ): lowercase__ = FlaxAutoModel.from_pretrained("bert-base" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowercase__ = FlaxAutoModel.from_pretrained(_UpperCAmelCase, revision="aaaaaa" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase, "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack", ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case__ ( self ): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase, "Use `from_pt=True` to load this model" ): lowercase__ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
668
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class A ( __SCREAMING_SNAKE_CASE ): lowerCamelCase : List[str] = "data2vec-vision" def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3_072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.0 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-12 , lowerCamelCase__=224 , lowerCamelCase__=16 , lowerCamelCase__=3 , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=True , lowerCamelCase__=[3, 5, 7, 11] , lowerCamelCase__=[1, 2, 3, 6] , lowerCamelCase__=True , lowerCamelCase__=0.4 , lowerCamelCase__=256 , lowerCamelCase__=1 , lowerCamelCase__=False , lowerCamelCase__=255 , **lowerCamelCase__ , ) -> Dict: '''simple docstring''' super().__init__(**lowerCamelCase__ ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = use_mask_token lowercase__ = use_absolute_position_embeddings lowercase__ = use_relative_position_bias lowercase__ = use_shared_relative_position_bias lowercase__ = layer_scale_init_value lowercase__ = drop_path_rate lowercase__ = use_mean_pooling # decode head attributes (semantic segmentation) lowercase__ = out_indices lowercase__ = pool_scales # auxiliary head attributes (semantic segmentation) lowercase__ = use_auxiliary_head lowercase__ = auxiliary_loss_weight lowercase__ = auxiliary_channels lowercase__ = auxiliary_num_convs lowercase__ = auxiliary_concat_input lowercase__ = semantic_loss_ignore_index class A ( __SCREAMING_SNAKE_CASE ): lowerCamelCase : Optional[Any] = version.parse("""1.11""" ) @property def A__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self ) -> float: '''simple docstring''' return 1e-4
325
def lowerCAmelCase ( UpperCAmelCase ) ->str: """simple docstring""" return " ".join( ''''''.join(word[::-1] ) if len(UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
154
0
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase__ : Dict = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase__ : Union[str, Any] = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCAmelCase__ : Optional[int] = {"""facebook/blenderbot-3B""": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _a ( ): """simple docstring""" snake_case__ : List[str] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) snake_case__ : List[Any] = bs[:] snake_case__ : List[Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCamelCase__ ) cs.append(2**8 + n ) n += 1 snake_case__ : List[str] = [chr(lowerCamelCase__ ) for n in cs] return dict(zip(lowerCamelCase__ , lowerCamelCase__ ) ) def _a ( __lowerCAmelCase : str ): """simple docstring""" snake_case__ : Any = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Optional[Any] = char return pairs class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any]="replace" , snake_case_ : List[str]="<s>" , snake_case_ : str="</s>" , snake_case_ : str="</s>" , snake_case_ : str="<s>" , snake_case_ : List[str]="<unk>" , snake_case_ : List[str]="<pad>" , snake_case_ : Optional[Any]="<mask>" , snake_case_ : str=False , **snake_case_ : Any , ): '''simple docstring''' snake_case__ : Tuple = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token snake_case__ : Any = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token snake_case__ : List[str] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token snake_case__ : Union[str, Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token snake_case__ : Dict = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token snake_case__ : Union[str, Any] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Optional[int] = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='''utf-8''' ) as vocab_handle: snake_case__ : Dict = json.load(snake_case_ ) snake_case__ : List[Any] = {v: k for k, v in self.encoder.items()} snake_case__ : List[Any] = errors # how to handle errors in decoding snake_case__ : int = bytes_to_unicode() snake_case__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='''utf-8''' ) as merges_handle: snake_case__ : Optional[int] = merges_handle.read().split('''\n''' )[1:-1] snake_case__ : Any = [tuple(merge.split() ) for merge in bpe_merges] snake_case__ : int = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) snake_case__ : Any = {} snake_case__ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case__ : List[str] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' return len(self.encoder ) def __magic_name__ ( self : str ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self : Any , snake_case_ : List[str] ): '''simple docstring''' if token in self.cache: return self.cache[token] snake_case__ : List[Any] = tuple(snake_case_ ) snake_case__ : Dict = get_pairs(snake_case_ ) if not pairs: return token while True: snake_case__ : Union[str, Any] = min(snake_case_ , key=lambda snake_case_ : self.bpe_ranks.get(snake_case_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ : Union[str, Any] = bigram snake_case__ : Union[str, Any] = [] snake_case__ : Union[str, Any] = 0 while i < len(snake_case_ ): try: snake_case__ : Union[str, Any] = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : int = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : List[Any] = tuple(snake_case_ ) snake_case__ : Union[str, Any] = new_word if len(snake_case_ ) == 1: break else: snake_case__ : Any = get_pairs(snake_case_ ) snake_case__ : Optional[Any] = ''' '''.join(snake_case_ ) snake_case__ : List[Any] = word return word def __magic_name__ ( self : List[str] , snake_case_ : Dict ): '''simple docstring''' snake_case__ : List[str] = [] for token in re.findall(self.pat , snake_case_ ): snake_case__ : Any = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(''' ''' ) ) return bpe_tokens def __magic_name__ ( self : int , snake_case_ : Any ): '''simple docstring''' return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[int] ): '''simple docstring''' return self.decoder.get(snake_case_ ) def __magic_name__ ( self : Optional[Any] , snake_case_ : Any ): '''simple docstring''' snake_case__ : Dict = ''''''.join(snake_case_ ) snake_case__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def __magic_name__ ( self : List[str] , snake_case_ : str , snake_case_ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : Any = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : int = os.path.join( snake_case_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '''\n''' ) snake_case__ : Union[str, Any] = 0 with open(snake_case_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) snake_case__ : Optional[Any] = token_index writer.write(''' '''.join(snake_case_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def __magic_name__ ( self : Optional[int] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def __magic_name__ ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): '''simple docstring''' snake_case__ : Optional[int] = [self.sep_token_id] snake_case__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : List[str]=False , **snake_case_ : Union[str, Any] ): '''simple docstring''' snake_case__ : str = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): snake_case__ : str = ''' ''' + text return (text, kwargs) def __magic_name__ ( self : Any , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def __magic_name__ ( self : Optional[Any] , snake_case_ : "Conversation" ): '''simple docstring''' snake_case__ : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(snake_case_ ) snake_case__ : List[Any] = ''' '''.join(snake_case_ ) snake_case__ : Tuple = self.encode(snake_case_ ) if len(snake_case_ ) > self.model_max_length: snake_case__ : List[str] = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
721
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] = { """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/config.json""", # See all BART models at https://huggingface.co/models?filter=bart } class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = """bart""" __UpperCAmelCase = ["""past_key_values"""] __UpperCAmelCase = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[Any] , snake_case_ : Tuple=5_0_2_6_5 , snake_case_ : Dict=1_0_2_4 , snake_case_ : int=1_2 , snake_case_ : int=4_0_9_6 , snake_case_ : str=1_6 , snake_case_ : List[Any]=1_2 , snake_case_ : List[Any]=4_0_9_6 , snake_case_ : Any=1_6 , snake_case_ : str=0.0 , snake_case_ : Optional[int]=0.0 , snake_case_ : List[Any]="gelu" , snake_case_ : List[Any]=1_0_2_4 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : int=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : Optional[Any]=0.0_2 , snake_case_ : Dict=0.0 , snake_case_ : str=False , snake_case_ : Optional[int]=True , snake_case_ : Any=3 , snake_case_ : int=1 , snake_case_ : int=0 , snake_case_ : Optional[Any]=2 , snake_case_ : str=True , snake_case_ : int=2 , snake_case_ : Union[str, Any]=2 , **snake_case_ : int , ): '''simple docstring''' snake_case__ : Union[str, Any] = vocab_size snake_case__ : int = max_position_embeddings snake_case__ : List[str] = d_model snake_case__ : Optional[int] = encoder_ffn_dim snake_case__ : Union[str, Any] = encoder_layers snake_case__ : Tuple = encoder_attention_heads snake_case__ : List[Any] = decoder_ffn_dim snake_case__ : Optional[Any] = decoder_layers snake_case__ : Tuple = decoder_attention_heads snake_case__ : Any = dropout snake_case__ : str = attention_dropout snake_case__ : Optional[int] = activation_dropout snake_case__ : Tuple = activation_function snake_case__ : Optional[int] = init_std snake_case__ : Optional[Any] = encoder_layerdrop snake_case__ : Tuple = decoder_layerdrop snake_case__ : Any = classifier_dropout snake_case__ : List[str] = use_cache snake_case__ : Tuple = encoder_layers snake_case__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , is_encoder_decoder=snake_case_ , decoder_start_token_id=snake_case_ , forced_eos_token_id=snake_case_ , **snake_case_ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , snake_case_ ): snake_case__ : Union[str, Any] = self.bos_token_id warnings.warn( F"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @property def __magic_name__ ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[int] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ : List[str] = {0: '''batch'''} snake_case__ : int = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: snake_case__ : List[Any] = {0: '''batch''', 1: '''decoder_sequence'''} snake_case__ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(snake_case_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case__ : int = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: snake_case__ , snake_case__ : Tuple = self.num_layers for i in range(snake_case_ ): snake_case__ : List[str] = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : Tuple = {0: '''batch''', 2: '''past_sequence + sequence'''} else: snake_case__ : List[str] = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def __magic_name__ ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case__ : str = super().outputs else: snake_case__ : List[Any] = super(snake_case_ , self ).outputs if self.use_past: snake_case__ , snake_case__ : Dict = self.num_layers for i in range(snake_case_ ): snake_case__ : Any = {0: '''batch''', 2: '''past_sequence + sequence'''} snake_case__ : Optional[int] = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __magic_name__ ( self : Optional[Any] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): '''simple docstring''' snake_case__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Generate decoder inputs snake_case__ : Dict = seq_length if not self.use_past else 1 snake_case__ : Optional[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) snake_case__ : List[str] = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} snake_case__ : str = dict(**snake_case_ , **snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : str = common_inputs['''input_ids'''].shape snake_case__ : Dict = common_inputs['''decoder_input_ids'''].shape[1] snake_case__ , snake_case__ : Optional[Any] = self.num_attention_heads snake_case__ : Tuple = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : Optional[Any] = decoder_seq_length + 3 snake_case__ : int = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case__ : Optional[Any] = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(snake_case_ , snake_case_ )] , dim=1 ) snake_case__ : Any = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case__ , snake_case__ : str = self.num_layers snake_case__ : Any = min(snake_case_ , snake_case_ ) snake_case__ : Union[str, Any] = max(snake_case_ , snake_case_ ) - min_num_layers snake_case__ : Optional[int] = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(snake_case_ ): common_inputs["past_key_values"].append( ( torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), torch.zeros(snake_case_ ), ) ) # TODO: test this. snake_case__ : int = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(snake_case_ , snake_case_ ): common_inputs["past_key_values"].append((torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) ) return common_inputs def __magic_name__ ( self : List[str] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): '''simple docstring''' snake_case__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch snake_case__ , snake_case__ : Dict = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values snake_case__ : str = seqlen + 2 snake_case__ , snake_case__ : Union[str, Any] = self.num_layers snake_case__ , snake_case__ : Optional[int] = self.num_attention_heads snake_case__ : str = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case__ : List[Any] = common_inputs['''attention_mask'''].dtype snake_case__ : List[Any] = torch.cat( [common_inputs['''attention_mask'''], torch.ones(snake_case_ , snake_case_ , dtype=snake_case_ )] , dim=1 ) snake_case__ : Optional[Any] = [ (torch.zeros(snake_case_ ), torch.zeros(snake_case_ )) for _ in range(snake_case_ ) ] return common_inputs def __magic_name__ ( self : int , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): '''simple docstring''' snake_case__ : str = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case__ : List[Any] = tokenizer.num_special_tokens_to_add(snake_case_ ) snake_case__ : List[str] = compute_effective_axis_dimension( snake_case_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case_ ) # Generate dummy inputs according to compute batch and sequence snake_case__ : Any = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case__ : Any = dict(tokenizer(snake_case_ , return_tensors=snake_case_ ) ) return common_inputs def __magic_name__ ( self : Optional[Any] , snake_case_ : PreTrainedTokenizer , snake_case_ : int = -1 , snake_case_ : int = -1 , snake_case_ : bool = False , snake_case_ : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case__ : int = self._generate_dummy_inputs_for_default_and_seqaseq_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) elif self.task == "causal-lm": snake_case__ : Optional[Any] = self._generate_dummy_inputs_for_causal_lm( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) else: snake_case__ : Optional[int] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) return common_inputs def __magic_name__ ( self : Tuple , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : Any ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case__ : Optional[Any] = super()._flatten_past_key_values_(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: snake_case__ : Union[str, Any] = super(snake_case_ , self )._flatten_past_key_values_( snake_case_ , snake_case_ , snake_case_ , snake_case_ )
502
0
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging SCREAMING_SNAKE_CASE :Tuple = logging.get_logger(__name__) def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" try: with open(a_ , "rb" ) as flax_state_f: __A = from_bytes(a_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(a_ ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(a_ , a_ ) def UpperCAmelCase ( a_ , a_ ) -> List[Any]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights __A = flatten_dict(jax.tree_util.tree_map(lambda a_ : x.dtype == jnp.bfloataa , a_ ) ).values() if any(a_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) __A = jax.tree_util.tree_map( lambda a_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , a_ ) __A = "" __A = flatten_dict(a_ , sep="." ) __A = pt_model.state_dict() # keep track of unexpected & missing keys __A = [] __A = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __A = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __A = flax_key_tuple_array[:-1] + ["weight"] __A = jnp.transpose(a_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __A = flax_key_tuple_array[:-1] + ["weight"] __A = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __A = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(a_ ): __A = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) __A = ".".join(a_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict __A = np.asarray(a_ ) if not isinstance(a_ , np.ndarray ) else flax_tensor __A = torch.from_numpy(a_ ) # remove from missing keys missing_keys.remove(a_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(a_ ) pt_model.load_state_dict(a_ ) # re-transform missing_keys to list __A = list(a_ ) if len(a_ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(a_ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' " use it for predictions and inference." ) return pt_model
55
import os def UpperCAmelCase ( ) -> Any: """simple docstring""" __A = os.path.dirname(os.path.realpath(a_ ) ) __A = os.path.join(a_ , "triangle.txt" ) with open(a_ ) as f: __A = f.readlines() __A = [] for line in triangle: __A = [] for number in line.strip().split(" " ): numbers_from_line.append(int(a_ ) ) a.append(a_ ) for i in range(1 , len(a_ ) ): for j in range(len(a[i] ) ): __A = a[i - 1][j] if j != len(a[i - 1] ) else 0 __A = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(a_ , a_ ) return max(a[-1] ) if __name__ == "__main__": print(solution())
55
1
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowercase__ : str = logging.get_logger(__name__) def A_ ( ) -> Dict: '''simple docstring''' __UpperCamelCase = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __UpperCamelCase = json.loads(_lowerCamelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __UpperCamelCase = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __UpperCamelCase = json.loads(_lowerCamelCase ) if not mpi_options.get('''sagemaker_mpi_enabled''' , _lowerCamelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class SCREAMING_SNAKE_CASE__ ( __lowercase ): """simple docstring""" _snake_case = field( default='' , metadata={'help': 'Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'} , ) def A__ ( self )-> Tuple: '''simple docstring''' super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , SCREAMING_SNAKE_CASE_ , ) @cached_property def A__ ( self )-> "torch.device": '''simple docstring''' logger.info('''PyTorch: setting up devices''' ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''' ) if self.no_cuda: __UpperCamelCase = torch.device('''cpu''' ) __UpperCamelCase = 0 elif is_sagemaker_model_parallel_available(): __UpperCamelCase = smp.local_rank() __UpperCamelCase = torch.device('''cuda''' , SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta ) __UpperCamelCase = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''' ) ) __UpperCamelCase = torch.device('''cuda''' , self.local_rank ) __UpperCamelCase = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __UpperCamelCase = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''' ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __UpperCamelCase = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta ) __UpperCamelCase = torch.device('''cuda''' , self.local_rank ) __UpperCamelCase = 1 if device.type == "cuda": torch.cuda.set_device(SCREAMING_SNAKE_CASE_ ) return device @property def A__ ( self )-> List[str]: '''simple docstring''' if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def A__ ( self )-> Union[str, Any]: '''simple docstring''' return not is_sagemaker_model_parallel_available() @property def A__ ( self )-> List[str]: '''simple docstring''' return False
706
from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
451
0
'''simple docstring''' import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = jnp.ones((batch_size, length) ) / length return scores def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 20 lowerCamelCase__ = self._get_uniform_logits(batch_size=2 ,length=_lowerCAmelCase ) # tweak scores to not be uniform anymore lowerCamelCase__ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowerCamelCase__ = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowerCamelCase__ = jax.nn.softmax(_lowerCAmelCase ,axis=-1 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_sharper(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) lowerCamelCase__ = jax.nn.softmax(temp_dist_warper_smoother(_lowerCAmelCase ,scores.copy() ,cur_len=_lowerCAmelCase ) ,axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_sharp[0, :] ,atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] ,warped_prob_smooth[0, :] ,atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() ,warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() ,warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() ,warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() ,warped_prob_smooth[1, :].min() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create ramp distribution lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() lowerCamelCase__ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() ,7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() ,2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowerCamelCase__ = 5 lowerCamelCase__ = FlaxTopKLogitsWarper(top_k=1 ,filter_value=0.0 ,min_tokens_to_keep=3 ) lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, length) ).copy() lowerCamelCase__ = top_k_warp_safety_check(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() ,[2, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = None lowerCamelCase__ = 10 lowerCamelCase__ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowerCamelCase__ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) lowerCamelCase__ = np.exp(top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowerCamelCase__ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # check edge cases with negative and extreme logits lowerCamelCase__ = np.broadcast_to(np.arange(_lowerCAmelCase )[None, :] ,(batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowerCamelCase__ = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept lowerCamelCase__ = FlaxTopPLogitsWarper(0.9 ,min_tokens_to_keep=2 ,filter_value=0.0 ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() ,[3, 2] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) # check that min length is applied at length 5 lowerCamelCase__ = ids_tensor((batch_size, 20) ,vocab_size=20 ) lowerCamelCase__ = 5 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() ,4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = 15 lowerCamelCase__ = min_dist_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the bos_token_id score lowerCamelCase__ = ids_tensor((batch_size, 1) ,vocab_size=20 ) lowerCamelCase__ = 1 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() ,4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 20 lowerCamelCase__ = 4 lowerCamelCase__ = 0 lowerCamelCase__ = 5 lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) # check that all scores are -inf except the eos_token_id when max_length is reached lowerCamelCase__ = ids_tensor((batch_size, 4) ,vocab_size=20 ) lowerCamelCase__ = 4 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() ,4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowerCamelCase__ = 3 lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = logits_processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) self.assertFalse(jnp.isinf(_lowerCAmelCase ).any() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # with processor list lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() ) def UpperCamelCase_ ( self ): lowerCamelCase__ = 4 lowerCamelCase__ = 10 lowerCamelCase__ = 15 lowerCamelCase__ = 2 lowerCamelCase__ = 1 lowerCamelCase__ = 15 # dummy input_ids and scores lowerCamelCase__ = ids_tensor((batch_size, sequence_length) ,_lowerCAmelCase ) lowerCamelCase__ = input_ids.copy() lowerCamelCase__ = self._get_uniform_logits(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = scores.copy() # instantiate all dist processors lowerCamelCase__ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowerCamelCase__ = FlaxTopKLogitsWarper(3 ) lowerCamelCase__ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowerCamelCase__ = FlaxMinLengthLogitsProcessor(min_length=10 ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_lowerCAmelCase ) lowerCamelCase__ = FlaxForcedEOSTokenLogitsProcessor(max_length=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ) lowerCamelCase__ = 10 # no processor list def run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = temp_dist_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_k_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = top_p_warp(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = min_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = bos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) lowerCamelCase__ = eos_dist_proc(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores # with processor list def run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): lowerCamelCase__ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowerCamelCase__ = processor(_lowerCAmelCase ,_lowerCAmelCase ,cur_len=_lowerCAmelCase ) return scores lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jax.jit(_lowerCAmelCase ) lowerCamelCase__ = jitted_run_no_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = jitted_run_processor_list(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # scores should be equal self.assertTrue(jnp.allclose(_lowerCAmelCase ,_lowerCAmelCase ,atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() ,input_ids_comp.tolist() )
50
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { """andreasmadsen/efficient_mlm_m0.40""": ( """https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json""" ), } class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : Union[str, Any] = '''roberta-prelayernorm''' def __init__( self , _lowercase=50_265 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-12 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , ): """simple docstring""" super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = position_embedding_type _lowerCAmelCase = use_cache _lowerCAmelCase = classifier_dropout class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": _lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
706
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants _lowercase = 300 # TEMPERATURE (unit = K) def A (__lowerCamelCase :float , __lowerCamelCase :float , __lowerCamelCase :float , ): if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
162
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __A : Union[str, Any] = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Optional[int] , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : int , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_5_6} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = offset _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Any , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Dict , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[Any] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , )->Optional[int]: _UpperCAmelCase = image.astype(np.floataa ) if offset: _UpperCAmelCase = image - (scale / 2) return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : int , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , )->np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = to_numpy_array(__UpperCamelCase ) if do_resize: _UpperCAmelCase = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: _UpperCAmelCase = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: _UpperCAmelCase = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase , offset=__UpperCamelCase ) if do_normalize: _UpperCAmelCase = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) _UpperCAmelCase = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : int , )->PIL.Image.Image: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = offset if offset is not None else self.offset _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _UpperCAmelCase = make_batched(__UpperCamelCase ) _UpperCAmelCase = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , offset=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] _UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
602
"""simple docstring""" from __future__ import annotations from collections import deque class _a : """simple docstring""" def __init__( self : int , __UpperCamelCase : list[str] )->Dict: _UpperCAmelCase = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(__UpperCamelCase ) self.set_fail_transitions() def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : str )->int | None: for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase__ ( self : Tuple , __UpperCamelCase : str )->None: _UpperCAmelCase = 0 for character in keyword: _UpperCAmelCase = self.find_next_state(__UpperCamelCase , __UpperCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) _UpperCAmelCase = len(self.adlist ) - 1 else: _UpperCAmelCase = next_state self.adlist[current_state]["output"].append(__UpperCamelCase ) def lowercase__ ( self : List[str] )->None: _UpperCAmelCase = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCamelCase ) _UpperCAmelCase = 0 while q: _UpperCAmelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCamelCase ) _UpperCAmelCase = self.adlist[r]['''fail_state'''] while ( self.find_next_state(__UpperCamelCase , self.adlist[child]['''value'''] ) is None and state != 0 ): _UpperCAmelCase = self.adlist[state]['''fail_state'''] _UpperCAmelCase = self.find_next_state( __UpperCamelCase , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: _UpperCAmelCase = 0 _UpperCAmelCase = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def lowercase__ ( self : Any , __UpperCamelCase : str )->dict[str, list[int]]: _UpperCAmelCase = {} # returns a dict with keywords and list of its occurrences _UpperCAmelCase = 0 for i in range(len(__UpperCamelCase ) ): while ( self.find_next_state(__UpperCamelCase , string[i] ) is None and current_state != 0 ): _UpperCAmelCase = self.adlist[current_state]['''fail_state'''] _UpperCAmelCase = self.find_next_state(__UpperCamelCase , string[i] ) if next_state is None: _UpperCAmelCase = 0 else: _UpperCAmelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: _UpperCAmelCase = [] result[key].append(i - len(__UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
602
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __snake_case :Any =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' A = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) A = DetaConfig( backbone_config=lowerCAmelCase__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCAmelCase__ , with_box_refine=lowerCAmelCase__ , two_stage=lowerCAmelCase__ , ) # set labels A = 'huggingface/label-files' if "o365" in model_name: A = 366 A = 'object365-id2label.json' else: A = 91 A = 'coco-detection-id2label.json' A = num_labels A = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) ) , 'r' ) ) A = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_ ( lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' A = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' A = dct.pop(lowerCAmelCase__ ) A = val def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] ) -> Dict: '''simple docstring''' A = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): A = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) A = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) A = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:dim, :] A = in_proj_bias[: dim] A = in_proj_weight[ dim : dim * 2, : ] A = in_proj_bias[ dim : dim * 2 ] A = in_proj_weight[ -dim :, : ] A = in_proj_bias[-dim :] # fmt: on def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ) -> int: '''simple docstring''' A = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention A = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) A = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict A = in_proj_weight[:hidden_size, :] A = in_proj_bias[:hidden_size] A = in_proj_weight[ hidden_size : hidden_size * 2, : ] A = in_proj_bias[hidden_size : hidden_size * 2] A = in_proj_weight[-hidden_size:, :] A = in_proj_bias[-hidden_size:] def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] ) -> Dict: '''simple docstring''' A = get_deta_config(lowerCAmelCase__ ) # load original state dict if model_name == "deta-swin-large": A = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": A = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) A = torch.load(lowerCAmelCase__ , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(lowerCAmelCase__ , param.shape ) # rename keys A = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: A = state_dict.pop(lowerCAmelCase__ ) A = val if "input_proj" in key: A = state_dict.pop(lowerCAmelCase__ ) A = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: A = state_dict.pop(lowerCAmelCase__ ) A = val # finally, create HuggingFace model and load state dict A = DetaForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() A = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(lowerCAmelCase__ ) # load image processor A = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image A = prepare_img() A = processor(images=lowerCAmelCase__ , return_tensors='pt' ) A = encoding['pixel_values'] A = model(pixel_values.to(lowerCAmelCase__ ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": A = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) A = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": A = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) A = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCAmelCase__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCAmelCase__ ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": __snake_case :int =argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __snake_case :Union[str, Any] =parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
701
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput __snake_case :Union[str, Any] =logging.get_logger(__name__) # pylint: disable=invalid-name def lowerCamelCase_ ( lowerCAmelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> Union[str, Any]: '''simple docstring''' warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead' , lowerCAmelCase__ , ) if isinstance(lowerCAmelCase__ , torch.Tensor ): return image elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): A = [image] if isinstance(image[0] , PIL.Image.Image ): A , A = image[0].size A , A = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 A = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] A = np.concatenate(lowerCAmelCase__ , axis=0 ) A = np.array(lowerCAmelCase__ ).astype(np.floataa ) / 255.0 A = image.transpose(0 , 3 , 1 , 2 ) A = 2.0 * image - 1.0 A = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): A = torch.cat(lowerCAmelCase__ , dim=0 ) return image def lowerCamelCase_ ( lowerCAmelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , torch.Tensor ): return mask elif isinstance(lowerCAmelCase__ , PIL.Image.Image ): A = [mask] if isinstance(mask[0] , PIL.Image.Image ): A , A = mask[0].size A , A = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 A = [np.array(m.convert('L' ).resize((w, h) , resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] A = np.concatenate(lowerCAmelCase__ , axis=0 ) A = mask.astype(np.floataa ) / 255.0 A = 0 A = 1 A = torch.from_numpy(lowerCAmelCase__ ) elif isinstance(mask[0] , torch.Tensor ): A = torch.cat(lowerCAmelCase__ , dim=0 ) return mask class lowerCAmelCase__ ( _lowerCamelCase ): A_ : UNetaDModel A_ : RePaintScheduler def __init__( self : int , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> int: super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : str , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : int = 250 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 10 , __UpperCamelCase : int = 10 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: A = image A = _preprocess_image(__UpperCamelCase ) A = original_image.to(device=self.device , dtype=self.unet.dtype ) A = _preprocess_mask(__UpperCamelCase ) A = mask_image.to(device=self.device , dtype=self.unet.dtype ) A = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) A = original_image.shape A = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.device ) A = eta A = self.scheduler.timesteps[0] + 1 A = generator[0] if isinstance(__UpperCamelCase , __UpperCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual A = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute previous image: x_t -> x_t-1 A = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t A = self.scheduler.undo_step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A = t A = (image / 2 + 0.5).clamp(0 , 1 ) A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
224
0
'''simple docstring''' def _snake_case ( A_ : int ): """simple docstring""" if number > 0: raise ValueError("""input must be a negative integer""" ) a_ : str = len(bin(_snake_case )[3:] ) a_ : str = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] a_ : str = ( ( """1""" + """0""" * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else """0""" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
577
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A : int = get_logger(__name__) A : Dict = r'\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n' class lowerCAmelCase : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self :int , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self :Optional[Any] , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray ) -> jnp.ndarray: """simple docstring""" raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCAmelCase ( snake_case__ ): '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self :List[str] , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int , **lowerCamelCase_ :Any ) -> jnp.ndarray: """simple docstring""" for processor in self: UpperCamelCase__ = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) UpperCamelCase__ = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) else: UpperCamelCase__ = processor(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Union[str, Any] , lowerCamelCase_ :float ) -> Tuple: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) UpperCamelCase__ = temperature def __call__( self :Any , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = scores / self.temperature return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :float , lowerCamelCase_ :float = -float("Inf" ) , lowerCamelCase_ :int = 1 ) -> str: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) UpperCamelCase__ = top_p UpperCamelCase__ = filter_value UpperCamelCase__ = min_tokens_to_keep def __call__( self :str , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = lax.top_k(lowerCamelCase_ , scores.shape[-1] ) UpperCamelCase__ = jnp.full_like(lowerCamelCase_ , self.filter_value ) UpperCamelCase__ = jax.nn.softmax(lowerCamelCase_ , axis=-1 ).cumsum(axis=-1 ) UpperCamelCase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well UpperCamelCase__ = jnp.roll(lowerCamelCase_ , 1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase_ ) # min tokens to keep UpperCamelCase__ = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase_ ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jax.lax.sort_key_val(lowerCamelCase_ , lowerCamelCase_ )[-1] return next_scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :float = -float("Inf" ) , lowerCamelCase_ :int = 1 ) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) UpperCamelCase__ = max(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = filter_value def __call__( self :Tuple , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ = scores.shape UpperCamelCase__ = jnp.full(batch_size * vocab_size , self.filter_value ) UpperCamelCase__ = min(self.top_k , scores.shape[-1] ) # Safety check UpperCamelCase__ , UpperCamelCase__ = lax.top_k(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.broadcast_to((jnp.arange(lowerCamelCase_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() UpperCamelCase__ = topk_scores.flatten() UpperCamelCase__ = topk_indices.flatten() + shift UpperCamelCase__ = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase_ ) UpperCamelCase__ = next_scores_flat.reshape(lowerCamelCase_ , lowerCamelCase_ ) return next_scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :str , lowerCamelCase_ :int ) -> int: """simple docstring""" UpperCamelCase__ = bos_token_id def __call__( self :Any , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCamelCase__ = 1 - jnp.bool_(cur_len - 1 ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , new_scores.at[:, self.bos_token_id].set(0 ) , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Optional[int] , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> List[str]: """simple docstring""" UpperCamelCase__ = max_length UpperCamelCase__ = eos_token_id def __call__( self :Optional[Any] , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = jnp.full(scores.shape , -float("inf" ) ) UpperCamelCase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , new_scores.at[:, self.eos_token_id].set(0 ) , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Tuple , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) UpperCamelCase__ = min_length UpperCamelCase__ = eos_token_id def __call__( self :Any , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :str , lowerCamelCase_ :List[Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ = list(lowerCamelCase_ ) UpperCamelCase__ = begin_index def __call__( self :str , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Tuple: """simple docstring""" UpperCamelCase__ = 1 - jnp.bool_(cur_len - self.begin_index ) UpperCamelCase__ = jnp.where(lowerCamelCase_ , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , lowerCamelCase_ ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :list ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = list(lowerCamelCase_ ) def __call__( self :Any , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" UpperCamelCase__ = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Dict , lowerCamelCase_ :Any ) -> str: """simple docstring""" UpperCamelCase__ = dict(lowerCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. UpperCamelCase__ = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: UpperCamelCase__ = force_token_array.at[index].set(lowerCamelCase_ ) UpperCamelCase__ = jnp.intaa(lowerCamelCase_ ) def __call__( self :List[Any] , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :jnp.ndarray , lowerCamelCase_ :int ) -> jnp.ndarray: """simple docstring""" def _force_token(lowerCamelCase_ :Any ): UpperCamelCase__ = scores.shape[0] UpperCamelCase__ = self.force_token_array[generation_idx] UpperCamelCase__ = jnp.ones_like(lowerCamelCase_ , dtype=scores.dtype ) * -float("inf" ) UpperCamelCase__ = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) UpperCamelCase__ = lax.dynamic_update_slice(lowerCamelCase_ , lowerCamelCase_ , (0, current_token) ) return new_scores UpperCamelCase__ = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(lowerCamelCase_ ) , lambda: scores , ) , ) return scores class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :Any ) -> List[str]: """simple docstring""" UpperCamelCase__ = generate_config.eos_token_id UpperCamelCase__ = generate_config.no_timestamps_token_id UpperCamelCase__ = generate_config.no_timestamps_token_id + 1 UpperCamelCase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase_ , "max_initial_timestamp_index" ): UpperCamelCase__ = generate_config.max_initial_timestamp_index else: UpperCamelCase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: UpperCamelCase__ = model_config.vocab_size def __call__( self :List[str] , lowerCamelCase_ :Dict , lowerCamelCase_ :Any , lowerCamelCase_ :int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(lowerCamelCase_ :List[str] , lowerCamelCase_ :str ): UpperCamelCase__ = jnp.where((cur_len - self.begin_index) >= 1 , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , lowerCamelCase_ , ) UpperCamelCase__ = jnp.where((cur_len - self.begin_index) < 2 , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , lowerCamelCase_ , lowerCamelCase_ , ) return jnp.where( lowerCamelCase_ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , lowerCamelCase_ , ) UpperCamelCase__ = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.where(cur_len == self.begin_index , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , lowerCamelCase_ , ) UpperCamelCase__ = self.timestamp_begin + self.max_initial_timestamp_index UpperCamelCase__ = jnp.where( lowerCamelCase_ , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , lowerCamelCase_ , ) # if sum of probability over timestamps is above any other token, sample timestamp UpperCamelCase__ = jax.nn.log_softmax(lowerCamelCase_ , axis=-1 ) def handle_cumulative_probs(lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :Any ): UpperCamelCase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) UpperCamelCase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , lowerCamelCase_ , ) UpperCamelCase__ = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ , lowerCamelCase_ ) return scores
516
0
import string from math import logaa def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> int: a__ : str = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) a__ : int = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> tuple[int, int]: a__ : int = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' a__ : Optional[Any] = corpus_without_punctuation.split("\n" ) a__ : Any = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase__ )) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> float: return round(tf * idf , 3 )
720
from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCamelCase = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class _a ( tr.AbstractTransform ): '''simple docstring''' def __init__( self , __UpperCAmelCase = " " ): """simple docstring""" a__ : List[Any] = sentence_delimiter def _A ( self , __UpperCAmelCase ): """simple docstring""" return list(__UpperCAmelCase ) def _A ( self , __UpperCAmelCase ): """simple docstring""" a__ : str = [] for sent_idx, sentence in enumerate(__UpperCAmelCase ): chars.extend(self.process_string(__UpperCAmelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__UpperCAmelCase ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCamelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCamelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCamelCase = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowerCamelCase = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowerCamelCase = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): '''simple docstring''' def _A ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", "https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates", ] , ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( __UpperCAmelCase , __UpperCAmelCase , truth_transform=__UpperCAmelCase , hypothesis_transform=__UpperCAmelCase , )["wer"] a__ : Any = 0 a__ : int = 0 for prediction, reference in zip(__UpperCAmelCase , __UpperCAmelCase ): a__ : Tuple = jiwer.compute_measures( __UpperCAmelCase , __UpperCAmelCase , truth_transform=__UpperCAmelCase , hypothesis_transform=__UpperCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
207
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } SCREAMING_SNAKE_CASE = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } SCREAMING_SNAKE_CASE = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class __a ( snake_case_ ): UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES UpperCamelCase_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : Optional[int] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Union[str, Any] = SqueezeBertTokenizer def __init__( self : Dict , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple="[UNK]" , UpperCAmelCase_ : Union[str, Any]="[SEP]" , UpperCAmelCase_ : List[str]="[PAD]" , UpperCAmelCase_ : Any="[CLS]" , UpperCAmelCase_ : Any="[MASK]" , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : Dict , )-> Dict: """simple docstring""" super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCAmelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCAmelCase__ ) != tokenize_chinese_chars ): UpperCamelCase = getattr(lowerCAmelCase__ , normalizer_state.pop("type" ) ) UpperCamelCase = do_lower_case UpperCamelCase = strip_accents UpperCamelCase = tokenize_chinese_chars UpperCamelCase = normalizer_class(**lowerCAmelCase__ ) UpperCamelCase = do_lower_case def _SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple=None )-> Union[str, Any]: """simple docstring""" UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None )-> Optional[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None )-> str: """simple docstring""" UpperCamelCase = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
554
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def UpperCAmelCase ( A : dict , A : str , A : set , A : set , A : dict , A : dict , A : PriorityQueue , A : dict , A : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue SCREAMING_SNAKE_CASE : str = cst_fwd.get(A , np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) SCREAMING_SNAKE_CASE : Tuple = new_cost_f SCREAMING_SNAKE_CASE : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: SCREAMING_SNAKE_CASE : Union[str, Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def UpperCAmelCase ( A : str , A : str , A : dict , A : dict ): SCREAMING_SNAKE_CASE : Dict = -1 SCREAMING_SNAKE_CASE : Optional[int] = set() SCREAMING_SNAKE_CASE : Optional[Any] = set() SCREAMING_SNAKE_CASE : Any = {source: 0} SCREAMING_SNAKE_CASE : Tuple = {destination: 0} SCREAMING_SNAKE_CASE : Union[str, Any] = {source: None} SCREAMING_SNAKE_CASE : Optional[int] = {destination: None} SCREAMING_SNAKE_CASE : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE : PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : str = queue_forward.get() visited_forward.add(A ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = queue_backward.get() visited_backward.add(A ) SCREAMING_SNAKE_CASE : Tuple = pass_and_relaxation( A , A , A , A , A , A , A , A , A , ) SCREAMING_SNAKE_CASE : Optional[int] = pass_and_relaxation( A , A , A , A , A , A , A , A , A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: SCREAMING_SNAKE_CASE : int = shortest_distance return shortest_path_distance lowerCAmelCase_ : int = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } lowerCAmelCase_ : str = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
527
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[Any] = ["""pixel_values"""] def __init__( self : Union[str, Any] , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : Tuple , ): super().__init__(**__lowerCamelCase ) UpperCamelCase :List[str] = size if size is not None else {"""shortest_edge""": 224} UpperCamelCase :Union[str, Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) UpperCamelCase :List[Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} UpperCamelCase :Any = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="""crop_size""" ) UpperCamelCase :Any = do_resize UpperCamelCase :Optional[int] = size UpperCamelCase :Union[str, Any] = resample UpperCamelCase :Tuple = do_center_crop UpperCamelCase :Dict = crop_size UpperCamelCase :Dict = do_rescale UpperCamelCase :str = rescale_factor UpperCamelCase :Dict = do_normalize UpperCamelCase :int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN UpperCamelCase :str = image_std if image_std is not None else OPENAI_CLIP_STD UpperCamelCase :Union[str, Any] = do_convert_rgb def _A ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ): UpperCamelCase :int = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCamelCase :int = get_resize_output_image_size(__lowerCamelCase , size=size["""shortest_edge"""] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[Any] , ): UpperCamelCase :int = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__lowerCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Optional[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : int , ): return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Optional[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : int , ): return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _A ( self : Tuple , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : Tuple , ): UpperCamelCase :Dict = do_resize if do_resize is not None else self.do_resize UpperCamelCase :Optional[Any] = size if size is not None else self.size UpperCamelCase :int = get_size_dict(__lowerCamelCase , param_name="""size""" , default_to_square=__lowerCamelCase ) UpperCamelCase :int = resample if resample is not None else self.resample UpperCamelCase :int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase :Tuple = crop_size if crop_size is not None else self.crop_size UpperCamelCase :Dict = get_size_dict(__lowerCamelCase , param_name="""crop_size""" , default_to_square=__lowerCamelCase ) UpperCamelCase :int = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase :str = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase :Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase :Any = image_mean if image_mean is not None else self.image_mean UpperCamelCase :List[Any] = image_std if image_std is not None else self.image_std UpperCamelCase :int = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb UpperCamelCase :str = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: UpperCamelCase :Union[str, Any] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. UpperCamelCase :int = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: UpperCamelCase :Dict = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: UpperCamelCase :List[Any] = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: UpperCamelCase :str = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: UpperCamelCase :Optional[Any] = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] UpperCamelCase :Dict = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] UpperCamelCase :Dict = {"""pixel_values""": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
590
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass UpperCAmelCase_ : Dict = (3, 9, -11, 0, 7, 5, 1, -1) UpperCAmelCase_ : Optional[Any] = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _SCREAMING_SNAKE_CASE : snake_case__ : int snake_case__ : Node | None class _SCREAMING_SNAKE_CASE : def __init__( self : Dict , __lowerCamelCase : Iterable[int] ): UpperCamelCase :Node | None = None for i in sorted(__lowerCamelCase , reverse=__lowerCamelCase ): UpperCamelCase :List[Any] = Node(__lowerCamelCase , self.head ) def __iter__( self : int ): UpperCamelCase :List[str] = self.head while node: yield node.data UpperCamelCase :Tuple = node.next_node def __len__( self : Tuple ): return sum(1 for _ in self ) def __str__( self : List[Any] ): return " -> ".join([str(__lowerCamelCase ) for node in self] ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : SortedLinkedList , __magic_name__ : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__magic_name__ ) + list(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ : List[Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
590
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ : Union[str, Any] = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase_ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : List[str] = KandinskyVaaPipeline UpperCAmelCase_ : List[str] = [ """image_embeds""", """negative_image_embeds""", ] UpperCAmelCase_ : Optional[Any] = ["""image_embeds""", """negative_image_embeds"""] UpperCAmelCase_ : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase_ : Tuple = False @property def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) ->str: return 32 @property def SCREAMING_SNAKE_CASE_ ( self ) ->Any: return self.time_input_dim @property def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self ) ->int: return 100 @property def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: torch.manual_seed(0 ) lowerCAmelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: torch.manual_seed(0 ) lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: lowerCAmelCase = self.dummy_unet lowerCAmelCase = self.dummy_movq lowerCAmelCase = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , steps_offset=1 , prediction_type='''epsilon''' , thresholding=__SCREAMING_SNAKE_CASE , ) lowerCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) ->Union[str, Any]: lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = { '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: lowerCAmelCase = '''cpu''' lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = output.images lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) , return_dict=__SCREAMING_SNAKE_CASE , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array( [0.6_2_3_7_9_7_6, 1.0, 0.3_6_4_4_1_3_3_2, 1.0, 0.7_0_6_3_9_6_3_4, 0.2_9_8_7_7_1_8_6, 0.8_5_6_5_2_1_2_5, 0.5_2_1_6_8_4_3, 0.5_4_4_5_4_0_4_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self ) ->Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ) ->Union[str, Any]: lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy''' ) lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = KandinskyVaaPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = '''red cat, 4k photo''' lowerCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() lowerCAmelCase = torch.Generator(device='''cuda''' ).manual_seed(0 ) lowerCAmelCase = pipeline( image_embeds=__SCREAMING_SNAKE_CASE , negative_image_embeds=__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , num_inference_steps=100 , output_type='''np''' , ) lowerCAmelCase = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
312
1
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase_ ( lowerCamelCase ): def A ( self ): """simple docstring""" __magic_name__ :List[str] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''hidden_sizes''' ) ) self.parent.assertTrue(hasattr(__lowerCAmelCase , '''num_attention_heads''' ) ) class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=6_4 , __lowerCAmelCase=3 , __lowerCAmelCase=3 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=1_6 , __lowerCAmelCase=[1_2_8, 2_5_6, 3_8_4] , __lowerCAmelCase=[4, 6, 8] , __lowerCAmelCase=[2, 3, 4] , __lowerCAmelCase=[1_6, 1_6, 1_6] , __lowerCAmelCase=0 , __lowerCAmelCase=[2, 2, 2] , __lowerCAmelCase=[2, 2, 2] , __lowerCAmelCase=0.02 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=2 , ): """simple docstring""" __magic_name__ :str = parent __magic_name__ :Optional[Any] = batch_size __magic_name__ :Union[str, Any] = image_size __magic_name__ :int = num_channels __magic_name__ :int = kernel_size __magic_name__ :List[str] = stride __magic_name__ :List[str] = padding __magic_name__ :List[str] = hidden_sizes __magic_name__ :List[Any] = num_attention_heads __magic_name__ :Tuple = depths __magic_name__ :List[str] = key_dim __magic_name__ :Optional[Any] = drop_path_rate __magic_name__ :Dict = patch_size __magic_name__ :Union[str, Any] = attention_ratio __magic_name__ :Union[str, Any] = mlp_ratio __magic_name__ :Tuple = initializer_range __magic_name__ :Optional[int] = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __magic_name__ :Optional[Any] = is_training __magic_name__ :Dict = use_labels __magic_name__ :Union[str, Any] = num_labels __magic_name__ :Union[str, Any] = initializer_range def A ( self ): """simple docstring""" __magic_name__ :Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ :int = None if self.use_labels: __magic_name__ :int = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ :Dict = self.get_config() return config, pixel_values, labels def A ( self ): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :List[Any] = LevitModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Union[str, Any] = model(__lowerCAmelCase ) __magic_name__ :List[Any] = (self.image_size, self.image_size) __magic_name__ , __magic_name__ :Union[str, Any] = image_size[0], image_size[1] for _ in range(4 ): __magic_name__ :Optional[int] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __magic_name__ :Dict = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Tuple = self.num_labels __magic_name__ :List[Any] = LevitForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :List[Any] = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self ): """simple docstring""" __magic_name__ :str = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ :Optional[Any] = config_and_inputs __magic_name__ :Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) a__ = ( { '''feature-extraction''': LevitModel, '''image-classification''': (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :List[Any] = LevitModelTester(self ) __magic_name__ :Any = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=3_7 ) def A ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self ): """simple docstring""" return @unittest.skip(reason='''Levit does not use inputs_embeds''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''Levit does not support input and output embeddings''' ) def A ( self ): """simple docstring""" pass @unittest.skip(reason='''Levit does not output attentions''' ) def A ( self ): """simple docstring""" pass def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :Any = model_class(__lowerCAmelCase ) __magic_name__ :int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ :List[str] = [*signature.parameters.keys()] __magic_name__ :int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A ( self ): """simple docstring""" def check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): __magic_name__ :Optional[int] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): __magic_name__ :Dict = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) __magic_name__ :str = outputs.hidden_states __magic_name__ :Optional[Any] = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) __magic_name__ :str = (self.model_tester.image_size, self.model_tester.image_size) __magic_name__ , __magic_name__ :Tuple = image_size[0], image_size[1] for _ in range(4 ): __magic_name__ :str = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __magic_name__ :Optional[Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __magic_name__ , __magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ :int = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ :List[Any] = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self ): """simple docstring""" pass def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" __magic_name__ :Dict = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) def A ( self ): """simple docstring""" if not self.model_tester.is_training: return __magic_name__ , __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :List[Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowerCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __magic_name__ :str = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() __magic_name__ :Optional[int] = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) __magic_name__ :Dict = model(**__lowerCAmelCase ).loss loss.backward() def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __magic_name__ :Optional[Any] = False __magic_name__ :Dict = True for model_class in self.all_model_classes: if model_class in get_values(__lowerCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __magic_name__ :List[str] = model_class(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.to(__lowerCAmelCase ) model.train() __magic_name__ :str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) __magic_name__ :int = model(**__lowerCAmelCase ).loss loss.backward() def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ :Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ :Any = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowerCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): __magic_name__ :Tuple = problem_type['''title'''] __magic_name__ :int = problem_type['''num_labels'''] __magic_name__ :Union[str, Any] = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() __magic_name__ :str = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if problem_type["num_labels"] > 1: __magic_name__ :List[str] = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type['''num_labels'''] ) __magic_name__ :Dict = inputs['''labels'''].to(problem_type['''dtype'''] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowerCAmelCase ) as warning_list: __magic_name__ :str = model(**__lowerCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def A ( self ): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ :str = LevitModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def __lowercase ( ): """simple docstring""" __magic_name__ :str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def A ( self ): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def A ( self ): """simple docstring""" __magic_name__ :int = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowerCAmelCase ) __magic_name__ :Dict = self.default_image_processor __magic_name__ :int = prepare_img() __magic_name__ :Union[str, Any] = image_processor(images=__lowerCAmelCase , return_tensors='''pt''' ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): __magic_name__ :Optional[Any] = model(**__lowerCAmelCase ) # verify the logits __magic_name__ :Optional[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) __magic_name__ :str = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
180
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCamelCase_ : a__ = 42 # setable values a__ = 42 a__ = 42 a__ = None @classmethod def A ( cls , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" return cls(common=__lowerCAmelCase , init_noise_sigma=__lowerCAmelCase , timesteps=__lowerCAmelCase ) @dataclass class lowerCamelCase_ ( lowerCamelCase ): a__ = 42 class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase ): a__ = [e.name for e in FlaxKarrasDiffusionSchedulers] a__ = 42 @property def A ( self ): """simple docstring""" return True @register_to_config def __init__( self , __lowerCAmelCase = 1_0_0_0 , __lowerCAmelCase = 0.0001 , __lowerCAmelCase = 0.02 , __lowerCAmelCase = "linear" , __lowerCAmelCase = None , __lowerCAmelCase = "fixed_small" , __lowerCAmelCase = True , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = jnp.floataa , ): """simple docstring""" __magic_name__ :Optional[int] = dtype def A ( self , __lowerCAmelCase = None ): """simple docstring""" if common is None: __magic_name__ :Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __magic_name__ :Optional[Any] = jnp.array(1.0 , dtype=self.dtype ) __magic_name__ :str = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__lowerCAmelCase , init_noise_sigma=__lowerCAmelCase , timesteps=__lowerCAmelCase , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" return sample def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = () ): """simple docstring""" __magic_name__ :int = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __magic_name__ :List[Any] = (jnp.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__lowerCAmelCase , timesteps=__lowerCAmelCase , ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ): """simple docstring""" __magic_name__ :Optional[Any] = state.common.alphas_cumprod[t] __magic_name__ :Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __magic_name__ :Tuple = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __magic_name__ :Optional[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __magic_name__ :Optional[Any] = jnp.clip(__lowerCAmelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __magic_name__ :Dict = jnp.log(jnp.clip(__lowerCAmelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": __magic_name__ :Tuple = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __magic_name__ :Optional[Any] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __magic_name__ :Union[str, Any] = variance __magic_name__ :List[str] = state.common.betas[t] __magic_name__ :Any = (predicted_variance + 1) / 2 __magic_name__ :str = frac * max_log + (1 - frac) * min_log return variance def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = True , ): """simple docstring""" __magic_name__ :List[str] = timestep if key is None: __magic_name__ :Union[str, Any] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __magic_name__ , __magic_name__ :Dict = jnp.split(__lowerCAmelCase , sample.shape[1] , axis=1 ) else: __magic_name__ :Optional[int] = None # 1. compute alphas, betas __magic_name__ :Any = state.common.alphas_cumprod[t] __magic_name__ :int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __magic_name__ :Optional[int] = 1 - alpha_prod_t __magic_name__ :Union[str, Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __magic_name__ :List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __magic_name__ :Tuple = model_output elif self.config.prediction_type == "v_prediction": __magic_name__ :Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ''' for the FlaxDDPMScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __magic_name__ :Union[str, Any] = jnp.clip(__lowerCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ :Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __magic_name__ :Union[str, Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ :Union[str, Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __magic_name__ :Tuple = jax.random.split(__lowerCAmelCase , num=1 ) __magic_name__ :Dict = jax.random.normal(__lowerCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__lowerCAmelCase , __lowerCAmelCase , predicted_variance=__lowerCAmelCase ) ** 0.5) * noise __magic_name__ :List[str] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __magic_name__ :int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__lowerCAmelCase , state=__lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" return add_noise_common(state.common , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" return get_velocity_common(state.common , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
180
1
from __future__ import annotations import os from typing import Any import requests UpperCamelCase__ ='''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user UpperCamelCase__ =BASE_URL + '''/user''' # https://github.com/settings/tokens UpperCamelCase__ =os.environ.get('USER_TOKEN', '') def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = { '''Authorization''': f"""token {auth_token}""", '''Accept''': '''application/vnd.github.v3+json''', } return requests.get(UpperCAmelCase_, headers=UpperCAmelCase_ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f"{key}: {value}") else: raise ValueError('\'USER_TOKEN\' field cannot be empty.')
249
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=4 , ): a :Optional[Any] = parent a :str = batch_size a :Tuple = seq_length a :List[Any] = is_training a :Optional[int] = use_attention_mask a :List[str] = use_token_type_ids a :str = use_labels a :Optional[Any] = vocab_size a :Optional[int] = hidden_size a :Tuple = num_hidden_layers a :Union[str, Any] = num_attention_heads a :int = intermediate_size a :int = hidden_act a :int = hidden_dropout_prob a :Union[str, Any] = attention_probs_dropout_prob a :str = max_position_embeddings a :Dict = type_vocab_size a :str = type_sequence_label_size a :List[str] = initializer_range a :Optional[Any] = num_choices def SCREAMING_SNAKE_CASE__ ( self ): a :Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a :Any = None if self.use_attention_mask: a :Any = random_attention_mask([self.batch_size, self.seq_length] ) a :Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_lowerCamelCase , ) return config, input_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = self.prepare_config_and_inputs() a , a , a :str = config_and_inputs a :List[Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _snake_case ( _snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ): a :List[Any] = FlaxDistilBertModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self ): for model_class_name in self.all_model_classes: a :int = model_class_name.from_pretrained('''distilbert-base-uncased''' ) a :List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCamelCase ) @require_flax class _snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) a :Optional[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) a :List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) a :List[str] = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] a :Union[str, Any] = (1, 11, 768) self.assertEqual(output.shape , _lowerCamelCase ) a :int = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1e-4 ) )
445
0
'''simple docstring''' import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Any = { '''vocab_file''': '''vocab.json''', '''tokenizer_config_file''': '''tokenizer_config.json''', '''merges_file''': '''merges.txt''', } lowercase : Dict = { '''vocab_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json''' ), }, '''tokenizer_config_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json''' ), }, '''merges_file''': { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt''' ), }, } lowercase : List[str] = '''</w>''' lowercase : Union[str, Any] = '''@@ ''' def lowerCAmelCase__ ( _a : Optional[Any] ): snake_case_ : List[Any] = set() snake_case_ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : Tuple = char return pairs # Speech2Text2 has no max input length lowercase : int = {'''facebook/s2t-wav2vec2-large-en-de''': 10_24} class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : str = VOCAB_FILES_NAMES A : Tuple = PRETRAINED_VOCAB_FILES_MAP A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Any = ['input_ids', 'attention_mask'] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Tuple: super().__init__( unk_token=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : Tuple = do_lower_case with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as vocab_handle: snake_case_ : Optional[int] = json.load(_SCREAMING_SNAKE_CASE ) snake_case_ : List[str] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) snake_case_ : Optional[int] = None snake_case_ : List[str] = None else: with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: snake_case_ : List[Any] = merges_handle.read().split("\n" )[:-1] snake_case_ : Tuple = [tuple(merge.split()[:2] ) for merge in merges] snake_case_ : Union[str, Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : Union[str, Any] = {} @property def _lowerCAmelCase ( self ) -> int: return len(self.decoder ) def _lowerCAmelCase ( self ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: snake_case_ : Tuple = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] snake_case_ : List[Any] = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: snake_case_ : List[Any] = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ : Tuple = bigram snake_case_ : List[Any] = [] snake_case_ : Optional[Any] = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: snake_case_ : Union[str, Any] = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : List[str] = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Optional[Any] = tuple(_SCREAMING_SNAKE_CASE ) snake_case_ : Dict = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: snake_case_ : str = get_pairs(_SCREAMING_SNAKE_CASE ) snake_case_ : int = " ".join(_SCREAMING_SNAKE_CASE ) if word == "\n " + BPE_TOKEN_MERGES: snake_case_ : Dict = "\n" + BPE_TOKEN_MERGES if word.endswith(_SCREAMING_SNAKE_CASE ): snake_case_ : Optional[int] = word.replace(_SCREAMING_SNAKE_CASE , "" ) snake_case_ : Optional[int] = word.replace(" " , _SCREAMING_SNAKE_CASE ) snake_case_ : Dict = word return word def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding." ) if self.do_lower_case: snake_case_ : List[Any] = text.lower() snake_case_ : Any = text.split() snake_case_ : Any = [] for token in text: if token: split_tokens.extend(list(self.bpe(_SCREAMING_SNAKE_CASE ).split(" " ) ) ) return split_tokens def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> int: return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ : Union[str, Any] = self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) return result def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> str: snake_case_ : List[str] = " ".join(_SCREAMING_SNAKE_CASE ) # make sure @@ tokens are concatenated snake_case_ : Tuple = "".join(string.split(_SCREAMING_SNAKE_CASE ) ) return string def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : List[str] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : List[str] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE , ensure_ascii=_SCREAMING_SNAKE_CASE ) + "\n" ) snake_case_ : int = 0 if self.bpe_ranks is None: return (vocab_file,) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case_ : List[Any] = token_index writer.write(" ".join(_SCREAMING_SNAKE_CASE ) + "\n" ) index += 1 return (vocab_file, merges_file)
721
def lowerCAmelCase__ ( _a : str , _a : int ): # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) snake_case_ : Optional[Any] = (boundary[1] - boundary[0]) / steps snake_case_ : str = boundary[0] snake_case_ : Dict = boundary[1] snake_case_ : str = make_points(_a , _a , _a ) snake_case_ : str = 0.0 y += (h / 2.0) * f(_a ) for i in x_i: # print(i) y += h * f(_a ) y += (h / 2.0) * f(_a ) return y def lowerCAmelCase__ ( _a : str , _a : Optional[Any] , _a : Tuple ): snake_case_ : Tuple = a + h while x < (b - h): yield x snake_case_ : List[str] = x + h def lowerCAmelCase__ ( _a : Tuple ): # enter your function here snake_case_ : Tuple = (x - 0) * (x - 0) return y def lowerCAmelCase__ ( ): snake_case_ : Union[str, Any] = 0.0 # Lower bound of integration snake_case_ : List[Any] = 1.0 # Upper bound of integration snake_case_ : Tuple = 10.0 # define number of steps or resolution snake_case_ : List[Any] = [a, b] # define boundary of integration snake_case_ : Any = method_a(_a , _a ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
114
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _SCREAMING_SNAKE_CASE ( __a ,__a ,unittest.TestCase ): __SCREAMING_SNAKE_CASE :Optional[Any] = IFInpaintingSuperResolutionPipeline __SCREAMING_SNAKE_CASE :str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __SCREAMING_SNAKE_CASE :Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __SCREAMING_SNAKE_CASE :Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} def snake_case__ ( self : Any ): return self._get_superresolution_dummy_components() def snake_case__ ( self : Optional[Any] , a__ : int , a__ : List[Any]=0 ): if str(a__ ).startswith('''mps''' ): __magic_name__ = torch.manual_seed(a__ ) else: __magic_name__ = torch.Generator(device=a__ ).manual_seed(a__ ) __magic_name__ = floats_tensor((1, 3, 16, 16) , rng=random.Random(a__ ) ).to(a__ ) __magic_name__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __magic_name__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(a__ ) ).to(a__ ) __magic_name__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def snake_case__ ( self : Dict ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def snake_case__ ( self : List[Any] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def snake_case__ ( self : Optional[Any] ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def snake_case__ ( self : Optional[int] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def snake_case__ ( self : Union[str, Any] ): self._test_save_load_local() def snake_case__ ( self : Optional[int] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
432
'''simple docstring''' def UpperCamelCase ( a , a ) -> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F'''{price_plus_tax(100, 0.25) = }''') print(F'''{price_plus_tax(125.50, 0.05) = }''')
432
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : Union[str, Any] = KandinskyInpaintPipeline __snake_case : Dict = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] __snake_case : Optional[Any] = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] __snake_case : int = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case : Optional[int] = False @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: int ): '''simple docstring''' return 32 @property def UpperCamelCase ( self: Tuple ): '''simple docstring''' return self.time_input_dim @property def UpperCamelCase ( self: Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCamelCase ( self: str ): '''simple docstring''' return 100 @property def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def UpperCamelCase ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) _SCREAMING_SNAKE_CASE = MultilingualCLIP(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = text_encoder.eval() return text_encoder @property def UpperCamelCase ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs ) return model def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.dummy_text_encoder _SCREAMING_SNAKE_CASE = self.dummy_tokenizer _SCREAMING_SNAKE_CASE = self.dummy_unet _SCREAMING_SNAKE_CASE = self.dummy_movq _SCREAMING_SNAKE_CASE = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , ) _SCREAMING_SNAKE_CASE = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase ( self: int , UpperCAmelCase_: Any , UpperCAmelCase_: str=0 ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ ) # create init_image _SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0] _SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ).resize((256, 256) ) # create mask _SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """horse""", """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) _SCREAMING_SNAKE_CASE = output.images _SCREAMING_SNAKE_CASE = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCamelCase ( self: str ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy""" ) _SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa ) _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = """a hat""" _SCREAMING_SNAKE_CASE = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = KandinskyInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-inpaint""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE = pipeline( UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
569
import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) -> List[str]: """simple docstring""" with open(snake_case__ ) as metadata_file: _SCREAMING_SNAKE_CASE = json.load(snake_case__ ) _SCREAMING_SNAKE_CASE = LukeConfig(use_entity_aware_attention=snake_case__ ,**metadata["""model_config"""] ) # Load in the weights from the checkpoint_path _SCREAMING_SNAKE_CASE = torch.load(snake_case__ ,map_location="""cpu""" ) # Load the entity vocab file _SCREAMING_SNAKE_CASE = load_entity_vocab(snake_case__ ) _SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks _SCREAMING_SNAKE_CASE = AddedToken("""<ent>""" ,lstrip=snake_case__ ,rstrip=snake_case__ ) _SCREAMING_SNAKE_CASE = AddedToken("""<ent2>""" ,lstrip=snake_case__ ,rstrip=snake_case__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(snake_case__ ) with open(os.path.join(snake_case__ ,LukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) ,"""w""" ) as f: json.dump(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = LukeTokenizer.from_pretrained(snake_case__ ) # Initialize the embeddings of the special tokens _SCREAMING_SNAKE_CASE = state_dict["""embeddings.word_embeddings.weight"""] _SCREAMING_SNAKE_CASE = word_emb[tokenizer.convert_tokens_to_ids(["""@"""] )[0]].unsqueeze(0 ) _SCREAMING_SNAKE_CASE = word_emb[tokenizer.convert_tokens_to_ids(["""#"""] )[0]].unsqueeze(0 ) _SCREAMING_SNAKE_CASE = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _SCREAMING_SNAKE_CASE = F'encoder.layer.{layer_index}.attention.self.' _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] _SCREAMING_SNAKE_CASE = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _SCREAMING_SNAKE_CASE = state_dict["""entity_embeddings.entity_embeddings.weight"""] _SCREAMING_SNAKE_CASE = entity_emb[entity_vocab["""[MASK]"""]] _SCREAMING_SNAKE_CASE = LukeModel(config=snake_case__ ).eval() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(snake_case__ ,strict=snake_case__ ) if not (len(snake_case__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F'Missing keys {", ".join(snake_case__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith("""entity_predictions""" ) or key.startswith("""lm_head""" ) for key in unexpected_keys )): raise ValueError( """Unexpected keys""" F' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs _SCREAMING_SNAKE_CASE = LukeTokenizer.from_pretrained(snake_case__ ,task="""entity_classification""" ) _SCREAMING_SNAKE_CASE = ( """Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the""" """ new world number one avoid a humiliating second- round exit at Wimbledon .""" ) _SCREAMING_SNAKE_CASE = (39, 42) _SCREAMING_SNAKE_CASE = tokenizer(snake_case__ ,entity_spans=[span] ,add_prefix_space=snake_case__ ,return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model(**snake_case__ ) # Verify word hidden states if model_size == "large": _SCREAMING_SNAKE_CASE = torch.Size((1, 42, 10_24) ) _SCREAMING_SNAKE_CASE = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base _SCREAMING_SNAKE_CASE = torch.Size((1, 42, 7_68) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] ,snake_case__ ,atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _SCREAMING_SNAKE_CASE = torch.Size((1, 1, 10_24) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base _SCREAMING_SNAKE_CASE = torch.Size((1, 1, 7_68) ) _SCREAMING_SNAKE_CASE = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] ,snake_case__ ,atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(snake_case__ ) ) model.save_pretrained(snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = {} with open(snake_case__ ,"""r""" ,encoding="""utf-8""" ) as f: for index, line in enumerate(snake_case__ ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = line.rstrip().split("""\t""" ) _SCREAMING_SNAKE_CASE = index return entity_vocab if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) UpperCamelCase = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
569
1
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class UpperCAmelCase__( yaml.SafeLoader ): '''simple docstring''' def UpperCAmelCase ( self : str , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" lowercase__ = [self.constructed_objects[key_node] for key_node, _ in node.value] lowercase__ = [tuple(__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else key for key in keys] lowercase__ = Counter(__UpperCAmelCase) lowercase__ = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''') def UpperCAmelCase ( self : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple=False) -> Optional[int]: """simple docstring""" lowercase__ = super().construct_mapping(__UpperCAmelCase , deep=__UpperCAmelCase) self._check_no_duplicates_on_constructed_node(__UpperCAmelCase) return mapping def _lowerCAmelCase ( A__ ): lowercase__ = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: lowercase__ = full_content[1:].index('---' ) + 1 lowercase__ = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__A ) class UpperCAmelCase__( UpperCAmelCase_ ): '''simple docstring''' A : str = {'train_eval_index'} # train-eval-index in the YAML metadata @classmethod def UpperCAmelCase ( cls : int , lowerCAmelCase : Path) -> "DatasetMetadata": """simple docstring""" with open(__UpperCAmelCase , encoding='utf-8') as readme_file: lowercase__, lowercase__ = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(__UpperCAmelCase) else: return cls() def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Path) -> List[str]: """simple docstring""" if path.exists(): with open(__UpperCAmelCase , encoding='utf-8') as readme_file: lowercase__ = readme_file.read() else: lowercase__ = None lowercase__ = self._to_readme(__UpperCAmelCase) with open(__UpperCAmelCase , 'w' , encoding='utf-8') as readme_file: readme_file.write(__UpperCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Optional[str] = None) -> str: """simple docstring""" if readme_content is not None: lowercase__, lowercase__ = _split_yaml_from_readme(__UpperCAmelCase) lowercase__ = '---\n' + self.to_yaml_string() + '---\n' + content else: lowercase__ = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def UpperCAmelCase ( cls : Optional[int] , lowerCAmelCase : str) -> "DatasetMetadata": """simple docstring""" lowercase__ = yaml.load(__UpperCAmelCase , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields lowercase__ = { (key.replace('-' , '_') if key.replace('-' , '_') in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**__UpperCAmelCase) def UpperCAmelCase ( self : Any) -> str: """simple docstring""" return yaml.safe_dump( { (key.replace('_' , '-') if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=__UpperCAmelCase , allow_unicode=__UpperCAmelCase , encoding='utf-8' , ).decode('utf-8') a__ : int = { "image-classification": [], "translation": [], "image-segmentation": [], "fill-mask": [], "automatic-speech-recognition": [], "token-classification": [], "sentence-similarity": [], "audio-classification": [], "question-answering": [], "summarization": [], "zero-shot-classification": [], "table-to-text": [], "feature-extraction": [], "other": [], "multiple-choice": [], "text-classification": [], "text-to-image": [], "text2text-generation": [], "zero-shot-image-classification": [], "tabular-classification": [], "tabular-regression": [], "image-to-image": [], "tabular-to-text": [], "unconditional-image-generation": [], "text-retrieval": [], "text-to-speech": [], "object-detection": [], "audio-to-audio": [], "text-generation": [], "conversational": [], "table-question-answering": [], "visual-question-answering": [], "image-to-text": [], "reinforcement-learning": [], "voice-activity-detection": [], "time-series-forecasting": [], "document-question-answering": [], } if __name__ == "__main__": from argparse import ArgumentParser a__ : Optional[int] = ArgumentParser(usage="Validate the yaml metadata block of a README.md file.") ap.add_argument("readme_filepath") a__ : Union[str, Any] = ap.parse_args() a__ : str = Path(args.readme_filepath) a__ : Optional[int] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
622
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
486
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Optional[Any] = { 'hustvl/yolos-small': 'https://huggingface.co/hustvl/yolos-small/resolve/main/config.json', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = """yolos""" def __init__( self : Any, lowerCamelCase : Tuple=768, lowerCamelCase : Optional[Any]=12, lowerCamelCase : Any=12, lowerCamelCase : Any=3_072, lowerCamelCase : Optional[Any]="gelu", lowerCamelCase : List[Any]=0.0, lowerCamelCase : List[str]=0.0, lowerCamelCase : List[Any]=0.02, lowerCamelCase : str=1E-12, lowerCamelCase : List[Any]=[512, 864], lowerCamelCase : Any=16, lowerCamelCase : List[str]=3, lowerCamelCase : int=True, lowerCamelCase : Optional[int]=100, lowerCamelCase : Optional[int]=True, lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[Any]=1, lowerCamelCase : List[str]=5, lowerCamelCase : List[Any]=2, lowerCamelCase : List[Any]=5, lowerCamelCase : Any=2, lowerCamelCase : Dict=0.1, **lowerCamelCase : int, ): '''simple docstring''' super().__init__(**lowerCamelCase ) lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = image_size lowercase__ = patch_size lowercase__ = num_channels lowercase__ = qkv_bias lowercase__ = num_detection_tokens lowercase__ = use_mid_position_embeddings lowercase__ = auxiliary_loss # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = version.parse("""1.11""" ) @property def lowercase__ ( self : List[Any] ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowercase__ ( self : Any ): '''simple docstring''' return 1E-4 @property def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' return 12
671
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A__ : Dict = 50_00_00 A__ , A__ : str = os.path.split(__file__) A__ : Optional[Any] = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.map(**lowerCamelCase_ ) @get_duration def a ( lowerCamelCase_ , **lowerCamelCase_ ): '''simple docstring''' lowercase__ = dataset.filter(**lowerCamelCase_ ) def a ( ): '''simple docstring''' lowercase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowercase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} ) lowercase__ = generate_example_dataset( os.path.join(lowerCamelCase_ , '''dataset.arrow''' ) , lowerCamelCase_ , num_examples=lowerCamelCase_ ) lowercase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=lowerCamelCase_ ) def tokenize(lowerCamelCase_ ): return tokenizer(examples['''text'''] ) lowercase__ = map(lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''numpy''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''pandas''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''torch''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ): lowercase__ = map(lowerCamelCase_ , function=lambda lowerCamelCase_ : None , batched=lowerCamelCase_ ) lowercase__ = map(lowerCamelCase_ , function=lowerCamelCase_ , batched=lowerCamelCase_ ) lowercase__ = filter(lowerCamelCase_ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowerCamelCase_ , '''wb''' ) as f: f.write(json.dumps(lowerCamelCase_ ).encode('''utf-8''' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
671
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a :int = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :Optional[Any] = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a :int = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys __a :Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
86
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Tuple = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
623
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = {'vocab_file': 'spiece.model'} _snake_case = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } _snake_case = {'bert_for_seq_generation': 512} class lowerCAmelCase_ ( _lowercase ): """simple docstring""" UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = [] UpperCAmelCase__ = ["input_ids", "attention_mask"] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<::::>" , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) __UpperCamelCase = vocab_file __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def __lowercase( self ) -> List[str]: return self.sp_model.get_piece_size() def __lowercase( self ) -> int: __UpperCamelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ) -> int: __UpperCamelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> List[str]: return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> Dict: return self.sp_model.piece_to_id(_SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> Dict: __UpperCamelCase = self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) return token def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __UpperCamelCase = [] __UpperCamelCase = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token __UpperCamelCase = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string.strip() def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __UpperCamelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
567
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def _a ( ) -> Tuple: """simple docstring""" __UpperCamelCase , __UpperCamelCase = 9, 14 # noqa: F841 __UpperCamelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __UpperCamelCase = defaultdict(__lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __UpperCamelCase = mst(__lowercase ) __UpperCamelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __UpperCamelCase = tuple(answer[:2] ) __UpperCamelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
567
1
from __future__ import annotations _lowerCamelCase : Any = [True] * 1_000_001 _lowerCamelCase : Any = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): _lowerCamelCase : Optional[int] = False i += 1 def __a ( __lowerCAmelCase ) -> bool: return seive[n] def __a ( __lowerCAmelCase ) -> bool: return any(digit in '02468' for digit in str(__lowerCAmelCase ) ) def __a ( __lowerCAmelCase = 100_0000 ) -> list[int]: SCREAMING_SNAKE_CASE : Optional[Any] = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(__lowerCAmelCase ) and not contains_an_even_digit(__lowerCAmelCase ): SCREAMING_SNAKE_CASE : str = str(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : str = [int(str_num[j:] + str_num[:j] ) for j in range(len(__lowerCAmelCase ) )] if all(is_prime(__lowerCAmelCase ) for i in list_nums ): result.append(__lowerCAmelCase ) return result def __a ( ) -> int: return len(find_circular_primes() ) if __name__ == "__main__": print(f"""{len(find_circular_primes()) = }""")
352
from datetime import datetime import matplotlib.pyplot as plt import torch def __a ( __lowerCAmelCase ) -> int: for param in module.parameters(): SCREAMING_SNAKE_CASE : List[Any] = False def __a ( ) -> List[str]: SCREAMING_SNAKE_CASE : List[Any] = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): SCREAMING_SNAKE_CASE : List[str] = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __a ( __lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = plt.imshow(__lowerCAmelCase ) fig.axes.get_xaxis().set_visible(__lowerCAmelCase ) fig.axes.get_yaxis().set_visible(__lowerCAmelCase ) plt.show() def __a ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE : str = datetime.now() SCREAMING_SNAKE_CASE : Optional[int] = current_time.strftime('%H:%M:%S' ) return timestamp
352
1
"""simple docstring""" from __future__ import annotations __lowerCamelCase :int = 1.6_021e-19 # units = C def snake_case ( UpperCamelCase__ : float , UpperCamelCase__ : float , UpperCamelCase__ : float , ) -> tuple[str, float]: if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif conductivity < 0: raise ValueError("""Conductivity cannot be negative""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative""" ) elif mobility < 0: raise ValueError("""mobility cannot be negative""" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
706
"""simple docstring""" import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase :str = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class A__ ( __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : List[str] =AlbertTokenizer snake_case__ : Optional[Any] =AlbertTokenizerFast snake_case__ : Optional[int] =True snake_case__ : Any =True snake_case__ : Optional[int] =True def a__ ( self: Dict )-> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase : int = AlbertTokenizer(__a ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self: Tuple , __a: Tuple )-> Union[str, Any]: lowerCamelCase : List[str] = """this is a test""" lowerCamelCase : int = """this is a test""" return input_text, output_text def a__ ( self: Any )-> List[Any]: lowerCamelCase : int = """<pad>""" lowerCamelCase : Optional[int] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a ) def a__ ( self: Tuple )-> str: lowerCamelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<pad>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """▁eloquent""" ) self.assertEqual(len(__a ) , 30_000 ) def a__ ( self: List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def a__ ( self: Optional[Any] )-> Union[str, Any]: if not self.test_rust_tokenizer: return lowerCamelCase : str = self.get_tokenizer() lowerCamelCase : Tuple = self.get_rust_tokenizer() lowerCamelCase : Union[str, Any] = """I was born in 92000, and this is falsé.""" lowerCamelCase : List[str] = tokenizer.tokenize(__a ) lowerCamelCase : Tuple = rust_tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) lowerCamelCase : Dict = tokenizer.encode(__a , add_special_tokens=__a ) lowerCamelCase : List[str] = rust_tokenizer.encode(__a , add_special_tokens=__a ) self.assertListEqual(__a , __a ) lowerCamelCase : Any = self.get_rust_tokenizer() lowerCamelCase : List[str] = tokenizer.encode(__a ) lowerCamelCase : str = rust_tokenizer.encode(__a ) self.assertListEqual(__a , __a ) def a__ ( self: Tuple )-> List[Any]: lowerCamelCase : List[str] = AlbertTokenizer(__a , keep_accents=__a ) lowerCamelCase : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁this""", """▁is""", """▁a""", """▁test"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [48, 25, 21, 1_289] ) lowerCamelCase : List[str] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """é""", """."""] ) lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual(__a , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , ["""▁i""", """▁was""", """▁born""", """▁in""", """▁9""", """2000""", """,""", """▁and""", """▁this""", """▁is""", """▁fal""", """s""", """<unk>""", """."""] , ) def a__ ( self: Tuple )-> str: lowerCamelCase : str = AlbertTokenizer(__a ) lowerCamelCase : Union[str, Any] = tokenizer.encode("""sequence builders""" ) lowerCamelCase : List[Any] = tokenizer.encode("""multi-sequence build""" ) lowerCamelCase : Any = tokenizer.build_inputs_with_special_tokens(__a ) lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def a__ ( self: Any )-> Dict: # fmt: off lowerCamelCase : Optional[Any] = {"""attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """input_ids""": [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__a , model_name="""albert-base-v2""" , revision="""6b6560eaf5ff2e250b00c50f380c5389a9c2d82e""" , )
42
0
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar lowercase_: Tuple = TypeVar('T') class lowercase__ (Generic[T] ): """simple docstring""" __UpperCamelCase : deque[T] # Cache store of keys __UpperCamelCase : set[T] # References of the keys in cache __UpperCamelCase : int = 1_0 # Maximum capacity of cache def __init__( self : Optional[int] , __a : int ): snake_case__ : List[Any] = deque() snake_case__ : int = set() if not n: snake_case__ : List[str] = sys.maxsize elif n < 0: raise ValueError("""n should be an integer greater than 0.""" ) else: snake_case__ : List[str] = n def lowercase ( self : str , __a : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case__ : Optional[int] = self.dq_store.pop() self.key_reference.remove(__a ) else: self.dq_store.remove(__a ) self.dq_store.appendleft(__a ) self.key_reference.add(__a ) def lowercase ( self : Union[str, Any] ): for k in self.dq_store: print(__a ) def __repr__( self : int ): return f'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() lowercase_: LRUCache[str | int] = LRUCache(4) lru_cache.refer('A') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('A') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
648
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase_: Tuple = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Any = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_) lowercase_: Dict = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Tuple = list(s_dict.keys()) for key in keys: snake_case__ : str = key for k, v in WHISPER_MAPPING.items(): if k in key: snake_case__ : Union[str, Any] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_) print(F'{key} -> {new_key}') snake_case__ : Dict = s_dict.pop(UpperCAmelCase_) return s_dict def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ , snake_case__ : Any = emb.weight.shape snake_case__ : List[Any] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_) snake_case__ : int = emb.weight.data return lin_layer def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) snake_case__ : Dict = os.path.basename(UpperCAmelCase_) snake_case__ : Tuple = url.split("""/""")[-2] snake_case__ : Optional[int] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) if os.path.exists(UpperCAmelCase_) and not os.path.isfile(UpperCAmelCase_): raise RuntimeError(F'{download_target} exists and is not a regular file') if os.path.isfile(UpperCAmelCase_): snake_case__ : Optional[int] = open(UpperCAmelCase_ , """rb""").read() if hashlib.shaaaa(UpperCAmelCase_).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file') with urllib.request.urlopen(UpperCAmelCase_) as source, open(UpperCAmelCase_ , """wb""") as output: with tqdm( total=int(source.info().get("""Content-Length""")) , ncols=80 , unit="""iB""" , unit_scale=UpperCAmelCase_ , unit_divisor=1_024) as loop: while True: snake_case__ : Union[str, Any] = source.read(8_192) if not buffer: break output.write(UpperCAmelCase_) loop.update(len(UpperCAmelCase_)) snake_case__ : Optional[int] = open(UpperCAmelCase_ , """rb""").read() if hashlib.shaaaa(UpperCAmelCase_).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""") return model_bytes def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" if ".pt" not in checkpoint_path: snake_case__ : List[Any] = _download(_MODELS[checkpoint_path]) else: snake_case__ : Union[str, Any] = torch.load(UpperCAmelCase_ , map_location="""cpu""") snake_case__ : Union[str, Any] = original_checkpoint["""dims"""] snake_case__ : Optional[int] = original_checkpoint["""model_state_dict"""] snake_case__ : int = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCAmelCase_) rename_keys(UpperCAmelCase_) snake_case__ : List[Any] = True snake_case__ : Dict = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] snake_case__ : List[Any] = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCAmelCase_ , decoder_ffn_dim=UpperCAmelCase_ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) snake_case__ : int = WhisperForConditionalGeneration(UpperCAmelCase_) snake_case__ , snake_case__ : Tuple = model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_) if len(UpperCAmelCase_) > 0 and not set(UpperCAmelCase_) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" F' but all the following weights are missing {missing}') if tie_embeds: snake_case__ : Dict = make_linear_from_emb(model.model.decoder.embed_tokens) else: snake_case__ : Optional[int] = proj_out_weights model.save_pretrained(UpperCAmelCase_) if __name__ == "__main__": lowercase_: int = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowercase_: int = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
648
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : List[str] =(UniPCMultistepScheduler,) lowercase : Union[str, Any] =(("""num_inference_steps""", 25),) def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :Any = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**UpperCamelCase_ ) return config def UpperCamelCase ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): lowercase_ :List[str] = dict(self.forward_default_kwargs ) lowercase_ :List[Any] = kwargs.pop('''num_inference_steps''' , UpperCamelCase_ ) lowercase_ :Optional[Any] = self.dummy_sample lowercase_ :List[str] = 0.1 * sample lowercase_ :int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ :str = self.get_scheduler_config(**UpperCamelCase_ ) lowercase_ :Tuple = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals lowercase_ :Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) lowercase_ :Optional[int] = scheduler_class.from_pretrained(UpperCamelCase_ ) new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals lowercase_ :int = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ , lowercase_ :List[Any] = sample, sample for t in range(UpperCamelCase_ , time_step + scheduler.config.solver_order + 1 ): lowercase_ :List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample lowercase_ :Dict = new_scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self , UpperCamelCase_=0 , **UpperCamelCase_ ): lowercase_ :Tuple = dict(self.forward_default_kwargs ) lowercase_ :List[Any] = kwargs.pop('''num_inference_steps''' , UpperCamelCase_ ) lowercase_ :List[Any] = self.dummy_sample lowercase_ :Union[str, Any] = 0.1 * sample lowercase_ :Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase_ :Dict = self.get_scheduler_config() lowercase_ :Optional[Any] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) lowercase_ :Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) lowercase_ :Tuple = scheduler_class.from_pretrained(UpperCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) lowercase_ :List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase_ :List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample lowercase_ :Dict = new_scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase ( self , UpperCamelCase_=None , **UpperCamelCase_ ): if scheduler is None: lowercase_ :Union[str, Any] = self.scheduler_classes[0] lowercase_ :int = self.get_scheduler_config(**UpperCamelCase_ ) lowercase_ :Tuple = scheduler_class(**UpperCamelCase_ ) lowercase_ :int = self.scheduler_classes[0] lowercase_ :int = self.get_scheduler_config(**UpperCamelCase_ ) lowercase_ :int = scheduler_class(**UpperCamelCase_ ) lowercase_ :List[Any] = 10 lowercase_ :Union[str, Any] = self.dummy_model() lowercase_ :Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :List[Any] = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Union[str, Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def UpperCamelCase ( self ): lowercase_ :Dict = dict(self.forward_default_kwargs ) lowercase_ :Optional[Any] = kwargs.pop('''num_inference_steps''' , UpperCamelCase_ ) for scheduler_class in self.scheduler_classes: lowercase_ :Union[str, Any] = self.get_scheduler_config() lowercase_ :Tuple = scheduler_class(**UpperCamelCase_ ) lowercase_ :Tuple = self.dummy_sample lowercase_ :List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , '''set_timesteps''' ): scheduler.set_timesteps(UpperCamelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , '''set_timesteps''' ): lowercase_ :Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase_ :str = [residual + 0.2, residual + 0.15, residual + 0.10] lowercase_ :str = dummy_past_residuals[: scheduler.config.solver_order] lowercase_ :int = scheduler.timesteps[5] lowercase_ :Tuple = scheduler.timesteps[6] lowercase_ :Dict = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample lowercase_ :Tuple = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase_ :str = UniPCMultistepScheduler(**self.get_scheduler_config() ) lowercase_ :Optional[int] = self.full_loop(scheduler=UpperCamelCase_ ) lowercase_ :int = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 lowercase_ :Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowercase_ :Dict = DEISMultistepScheduler.from_config(scheduler.config ) lowercase_ :Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowercase_ :Any = UniPCMultistepScheduler.from_config(scheduler.config ) lowercase_ :str = self.full_loop(scheduler=UpperCamelCase_ ) lowercase_ :Optional[Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCamelCase ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def UpperCamelCase ( self ): self.check_over_configs(thresholding=UpperCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , solver_order=UpperCamelCase_ , solver_type=UpperCamelCase_ , ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def UpperCamelCase ( self ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCamelCase_ , solver_type=UpperCamelCase_ , prediction_type=UpperCamelCase_ , ) lowercase_ :Tuple = self.full_loop( solver_order=UpperCamelCase_ , solver_type=UpperCamelCase_ , prediction_type=UpperCamelCase_ , ) assert not torch.isnan(UpperCamelCase_ ).any(), "Samples have nan numbers" def UpperCamelCase ( self ): self.check_over_configs(lower_order_final=UpperCamelCase_ ) self.check_over_configs(lower_order_final=UpperCamelCase_ ) def UpperCamelCase ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=UpperCamelCase_ , time_step=0 ) def UpperCamelCase ( self ): lowercase_ :str = self.full_loop() lowercase_ :Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 0.2464 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Tuple = self.full_loop(prediction_type='''v_prediction''' ) lowercase_ :str = torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 0.1014 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.scheduler_classes[0] lowercase_ :Optional[int] = self.get_scheduler_config(thresholding=UpperCamelCase_ , dynamic_thresholding_ratio=0 ) lowercase_ :int = scheduler_class(**UpperCamelCase_ ) lowercase_ :int = 10 lowercase_ :str = self.dummy_model() lowercase_ :List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :int = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Dict = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample assert sample.dtype == torch.floataa def UpperCamelCase ( self , **UpperCamelCase_ ): for scheduler_class in self.scheduler_classes: lowercase_ :List[str] = self.get_scheduler_config(**UpperCamelCase_ ) lowercase_ :Any = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
441
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase ( _a , _a=0.999 , _a="cosine" , ) -> Dict: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(_a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_a ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowercase_ :Any = [] for i in range(_a ): lowercase_ :List[str] = i / num_diffusion_timesteps lowercase_ :str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_a ) / alpha_bar_fn(_a ) , _a ) ) return torch.tensor(_a , dtype=torch.floataa ) class UpperCamelCase ( lowercase__ , lowercase__ ): '''simple docstring''' lowercase : Tuple =[e.name for e in KarrasDiffusionSchedulers] lowercase : Tuple =2 @register_to_config def __init__( self , UpperCamelCase_ = 1000 , UpperCamelCase_ = 0.0_0085 , UpperCamelCase_ = 0.012 , UpperCamelCase_ = "linear" , UpperCamelCase_ = None , UpperCamelCase_ = "epsilon" , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = 1.0 , UpperCamelCase_ = "linspace" , UpperCamelCase_ = 0 , ): if trained_betas is not None: lowercase_ :int = torch.tensor(UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": lowercase_ :List[str] = torch.linspace(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowercase_ :int = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCamelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowercase_ :Optional[int] = betas_for_alpha_bar(UpperCamelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": lowercase_ :Dict = betas_for_alpha_bar(UpperCamelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}" ) lowercase_ :str = 1.0 - self.betas lowercase_ :Optional[int] = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :str = use_karras_sigmas def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_=None ): if schedule_timesteps is None: lowercase_ :List[str] = self.timesteps lowercase_ :int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: lowercase_ :Dict = 1 if len(UpperCamelCase_ ) > 1 else 0 else: lowercase_ :Any = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep lowercase_ :Union[str, Any] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , ): lowercase_ :List[str] = self.index_for_timestep(UpperCamelCase_ ) lowercase_ :Optional[Any] = self.sigmas[step_index] lowercase_ :Union[str, Any] = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): lowercase_ :Optional[Any] = num_inference_steps lowercase_ :Dict = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": lowercase_ :Union[str, Any] = np.linspace(0 , num_train_timesteps - 1 , UpperCamelCase_ , dtype=UpperCamelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": lowercase_ :Any = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase_ :List[Any] = (np.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCamelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": lowercase_ :Dict = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowercase_ :Dict = (np.arange(UpperCamelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCamelCase_ ) timesteps -= 1 else: raise ValueError( f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." ) lowercase_ :Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) lowercase_ :Tuple = np.log(UpperCamelCase_ ) lowercase_ :Dict = np.interp(UpperCamelCase_ , np.arange(0 , len(UpperCamelCase_ ) ) , UpperCamelCase_ ) if self.config.use_karras_sigmas: lowercase_ :int = self._convert_to_karras(in_sigmas=UpperCamelCase_ , num_inference_steps=self.num_inference_steps ) lowercase_ :Optional[int] = np.array([self._sigma_to_t(UpperCamelCase_ , UpperCamelCase_ ) for sigma in sigmas] ) lowercase_ :Tuple = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) lowercase_ :Optional[int] = torch.from_numpy(UpperCamelCase_ ).to(device=UpperCamelCase_ ) lowercase_ :Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) lowercase_ :Any = torch.from_numpy(UpperCamelCase_ ) lowercase_ :List[str] = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCamelCase_ ).startswith('''mps''' ): # mps does not support float64 lowercase_ :int = timesteps.to(UpperCamelCase_ , dtype=torch.floataa ) else: lowercase_ :Optional[Any] = timesteps.to(device=UpperCamelCase_ ) # empty dt and derivative lowercase_ :List[str] = None lowercase_ :List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter lowercase_ :int = defaultdict(UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): # get log sigma lowercase_ :Union[str, Any] = np.log(UpperCamelCase_ ) # get distribution lowercase_ :Optional[Any] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range lowercase_ :List[Any] = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) lowercase_ :str = low_idx + 1 lowercase_ :Any = log_sigmas[low_idx] lowercase_ :int = log_sigmas[high_idx] # interpolate sigmas lowercase_ :Dict = (low - log_sigma) / (low - high) lowercase_ :str = np.clip(UpperCamelCase_ , 0 , 1 ) # transform interpolation to time range lowercase_ :Dict = (1 - w) * low_idx + w * high_idx lowercase_ :int = t.reshape(sigma.shape ) return t def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :float = in_sigmas[-1].item() lowercase_ :float = in_sigmas[0].item() lowercase_ :int = 7.0 # 7.0 is the value used in the paper lowercase_ :Optional[Any] = np.linspace(0 , 1 , UpperCamelCase_ ) lowercase_ :List[str] = sigma_min ** (1 / rho) lowercase_ :List[Any] = sigma_max ** (1 / rho) lowercase_ :Tuple = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase ( self ): return self.dt is None def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , ): lowercase_ :Any = self.index_for_timestep(UpperCamelCase_ ) # advance index counter by 1 lowercase_ :Any = timestep.cpu().item() if torch.is_tensor(UpperCamelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: lowercase_ :Optional[int] = self.sigmas[step_index] lowercase_ :List[Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method lowercase_ :Optional[int] = self.sigmas[step_index - 1] lowercase_ :Dict = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API lowercase_ :List[Any] = 0 lowercase_ :List[str] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": lowercase_ :Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next lowercase_ :List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": lowercase_ :Dict = sigma_hat if self.state_in_first_order else sigma_next lowercase_ :Optional[Any] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": lowercase_ :List[str] = model_output else: raise ValueError( f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" ) if self.config.clip_sample: lowercase_ :str = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order lowercase_ :Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep lowercase_ :Optional[int] = sigma_next - sigma_hat # store for 2nd order step lowercase_ :str = derivative lowercase_ :Union[str, Any] = dt lowercase_ :Optional[int] = sample else: # 2. 2nd order / Heun's method lowercase_ :str = (sample - pred_original_sample) / sigma_next lowercase_ :List[str] = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample lowercase_ :Union[str, Any] = self.dt lowercase_ :Any = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" lowercase_ :List[Any] = None lowercase_ :List[str] = None lowercase_ :Dict = None lowercase_ :int = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples lowercase_ :List[str] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCamelCase_ ): # mps does not support float64 lowercase_ :Optional[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) lowercase_ :Tuple = timesteps.to(original_samples.device , dtype=torch.floataa ) else: lowercase_ :Union[str, Any] = self.timesteps.to(original_samples.device ) lowercase_ :int = timesteps.to(original_samples.device ) lowercase_ :int = [self.index_for_timestep(UpperCamelCase_ , UpperCamelCase_ ) for t in timesteps] lowercase_ :Tuple = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): lowercase_ :List[str] = sigma.unsqueeze(-1 ) lowercase_ :List[str] = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
441
1
def _SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" __A = [] __A = 1 while len(UpperCamelCase__ ) < 1E6: constant.append(str(UpperCamelCase__ ) ) i += 1 __A = """""".join(UpperCamelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[9_9] ) * int(constant[9_9_9] ) * int(constant[9_9_9_9] ) * int(constant[9_9_9_9_9] ) * int(constant[9_9_9_9_9_9] ) ) if __name__ == "__main__": print(solution())
637
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=True , _lowerCamelCase=1 / 255 , _lowerCamelCase=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCAmelCase__ : List[str] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} UpperCAmelCase__ : List[Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : List[Any] = num_channels UpperCAmelCase__ : List[str] = min_resolution UpperCAmelCase__ : Optional[Any] = max_resolution UpperCAmelCase__ : List[str] = do_resize UpperCAmelCase__ : Optional[int] = size UpperCAmelCase__ : Dict = do_normalize UpperCAmelCase__ : int = image_mean UpperCAmelCase__ : Dict = image_std UpperCAmelCase__ : Any = do_rescale UpperCAmelCase__ : str = rescale_factor UpperCAmelCase__ : List[str] = do_pad def snake_case__ ( self): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase=False): if not batched: UpperCAmelCase__ : List[Any] = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image): UpperCAmelCase__ , UpperCAmelCase__ : str = image.size else: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = image.shape[1], image.shape[2] if w < h: UpperCAmelCase__ : List[Any] = int(self.size["""shortest_edge"""] * h / w) UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] elif w > h: UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] UpperCAmelCase__ : Optional[int] = int(self.size["""shortest_edge"""] * w / h) else: UpperCAmelCase__ : List[str] = self.size["""shortest_edge"""] UpperCAmelCase__ : int = self.size["""shortest_edge"""] else: UpperCAmelCase__ : str = [] for image in image_inputs: UpperCAmelCase__ , UpperCAmelCase__ : Any = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) UpperCAmelCase__ : Any = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[0])[0] UpperCAmelCase__ : List[Any] = max(_lowerCamelCase , key=lambda _lowerCamelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Union[str, Any] = DeformableDetrImageProcessor if is_vision_available() else None def snake_case__ ( self): UpperCAmelCase__ : Optional[Any] = DeformableDetrImageProcessingTester(self) @property def snake_case__ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""")) self.assertTrue(hasattr(_lowerCamelCase , """image_std""")) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""")) self.assertTrue(hasattr(_lowerCamelCase , """do_rescale""")) self.assertTrue(hasattr(_lowerCamelCase , """do_pad""")) self.assertTrue(hasattr(_lowerCamelCase , """size""")) def snake_case__ ( self): UpperCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) UpperCAmelCase__ : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCamelCase) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84}) self.assertEqual(image_processor.do_pad , _lowerCamelCase) def snake_case__ ( self): pass def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ , UpperCAmelCase__ : int = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray) # Test not batched input UpperCAmelCase__ : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : Optional[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def snake_case__ ( self): # Initialize image_processing UpperCAmelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor) # Test not batched input UpperCAmelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase__ : int = image_processing(_lowerCamelCase , return_tensors="""pt""").pixel_values UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def snake_case__ ( self): # prepare image and target UpperCAmelCase__ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""") as f: UpperCAmelCase__ : Dict = json.loads(f.read()) UpperCAmelCase__ : int = {"""image_id""": 3_9769, """annotations""": target} # encode them UpperCAmelCase__ : Dict = DeformableDetrImageProcessor() UpperCAmelCase__ : int = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : Tuple = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Any = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : List[Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : Union[str, Any] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Optional[int] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : Any = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify orig_size UpperCAmelCase__ : int = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : List[Any] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase)) @slow def snake_case__ ( self): # prepare image, target and masks_path UpperCAmelCase__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""") as f: UpperCAmelCase__ : Optional[int] = json.loads(f.read()) UpperCAmelCase__ : Optional[Any] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} UpperCAmelCase__ : Tuple = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""") # encode them UpperCAmelCase__ : List[str] = DeformableDetrImageProcessor(format="""coco_panoptic""") UpperCAmelCase__ : Tuple = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors="""pt""") # verify pixel values UpperCAmelCase__ : str = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding["""pixel_values"""].shape , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4)) # verify area UpperCAmelCase__ : str = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , _lowerCamelCase)) # verify boxes UpperCAmelCase__ : List[str] = torch.Size([6, 4]) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , _lowerCamelCase) UpperCAmelCase__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , _lowerCamelCase , atol=1e-3)) # verify image_id UpperCAmelCase__ : Tuple = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , _lowerCamelCase)) # verify is_crowd UpperCAmelCase__ : List[str] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , _lowerCamelCase)) # verify class_labels UpperCAmelCase__ : List[Any] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , _lowerCamelCase)) # verify masks UpperCAmelCase__ : Dict = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , _lowerCamelCase) # verify orig_size UpperCAmelCase__ : Any = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , _lowerCamelCase)) # verify size UpperCAmelCase__ : int = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , _lowerCamelCase))
407
0
'''simple docstring''' from functools import reduce a_ : Any = ( "73167176531330624919225119674426574742355349194934" "96983520312774506326239578318016984801869478851843" "85861560789112949495459501737958331952853208805511" "12540698747158523863050715693290963295227443043557" "66896648950445244523161731856403098711121722383113" "62229893423380308135336276614282806444486645238749" "30358907296290491560440772390713810515859307960866" "70172427121883998797908792274921901699720888093776" "65727333001053367881220235421809751254540594752243" "52584907711670556013604839586446706324415722155397" "53697817977846174064955149290862569321978468622482" "83972241375657056057490261407972968652414535100474" "82166370484403199890008895243450658541227588666881" "16427171479924442928230863465674813919123162824586" "17866458359124566529476545682848912883142607690042" "24219022671055626321111109370544217506941658960408" "07198403850962455444362981230987879927244284909188" "84580156166097919133875499200524063689912560717606" "05886116467109405077541002256983155200055935729725" "71636269561882670428252483600823257530420752963450" ) def _A (lowerCAmelCase__ :str = N ) -> int: '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : str(int(lowerCAmelCase__ ) * int(lowerCAmelCase__ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase__ ) - 12 ) ) if __name__ == "__main__": print(f'''{solution() = }''')
532
'''simple docstring''' import datasets a_ : List[Any] = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" a_ : Optional[Any] = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" a_ : Optional[Any] = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def _A (lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Tuple ) -> Dict: '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __UpperCAmelCase ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Dict: return {"accuracy": simple_accuracy(__magic_name__ , __magic_name__ )}
532
1
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = GPTSwaTokenizer UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : int) ->Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = GPTSwaTokenizer(UpperCAmelCase__ , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''') tokenizer.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : List[Any]) ->Optional[Any]: '''simple docstring''' A__ = '''This is a test''' A__ = '''This is a test''' return input_text, output_text def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = '''<s>''' A__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase__) , UpperCAmelCase__) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase__) , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Dict: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''j''') self.assertEqual(len(UpperCAmelCase__) , 2_000) def SCREAMING_SNAKE_CASE ( self : int) ->Dict: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2_000) def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' A__ = GPTSwaTokenizer(UpperCAmelCase__) A__ = tokenizer.tokenize('''This is a test''') self.assertListEqual(UpperCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__) , [465, 287, 265, 631, 842]) A__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') # fmt: off self.assertListEqual( UpperCAmelCase__ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on A__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase__) self.assertListEqual( UpperCAmelCase__ , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) A__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase__) # fmt: off self.assertListEqual( UpperCAmelCase__ , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.''']) # fmt: on def SCREAMING_SNAKE_CASE ( self : str) ->List[Any]: '''simple docstring''' A__ = GPTSwaTokenizer(UpperCAmelCase__) A__ = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] A__ = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertListEqual(tokenizer.encode_fast(UpperCAmelCase__) , UpperCAmelCase__) # Test that decode_fast returns the input text for text, token_ids in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertEqual(tokenizer.decode_fast(UpperCAmelCase__) , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Any) ->int: '''simple docstring''' A__ = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off A__ = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase__ , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=UpperCAmelCase__ , )
87
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py A__ : Optional[int] ='''.''' if __name__ == "__main__": A__ : int =os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') A__ : Optional[int] =[] A__ : Tuple =[] with open(doctest_file_path) as fp: for line in fp: A__ : Optional[Any] =line.strip() A__ : Union[str, Any] =os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: A__ : List[Any] ='''\n'''.join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
207
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _lowerCamelCase ( _a ): """simple docstring""" _lowerCamelCase = prime_factors(_a ) if is_square_free(_a ): return -1 if len(_a ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
715
from __future__ import annotations from collections.abc import MutableSequence class __magic_name__ : """simple docstring""" def __init__( self , a__ , a__ ): if len(a__ ) != degree + 1: raise ValueError( '''The number of coefficients should be equal to the degree + 1.''' ) _lowerCamelCase = list(a__ ) _lowerCamelCase = degree def __add__( self , a__ ): if self.degree > polynomial_a.degree: _lowerCamelCase = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , a__ ) else: _lowerCamelCase = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , a__ ) def __sub__( self , a__ ): return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , a__ ): _lowerCamelCase = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , a__ ) def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): _lowerCamelCase = '''''' for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(a__ ) return polynomial def __repr__( self ): return self.__str__() def _UpperCAmelCase ( self ): _lowerCamelCase = [0] * self.degree for i in range(self.degree ): _lowerCamelCase = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , a__ ) def _UpperCAmelCase ( self , a__ = 0 ): _lowerCamelCase = [0] * (self.degree + 2) _lowerCamelCase = constant for i in range(self.degree + 1 ): _lowerCamelCase = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , a__ ) def __eq__( self , a__ ): if not isinstance(a__ , a__ ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , a__ ): return not self.__eq__(a__ )
297
0
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def lowercase (_A , _A , _A ): """simple docstring""" return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def lowercase (_A , _A , _A , _A="attention" ): """simple docstring""" _lowerCAmelCase : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) _lowerCAmelCase : List[Any] = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _lowerCAmelCase : Optional[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) _lowerCAmelCase : Union[str, Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _lowerCAmelCase : List[Any] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) _lowerCAmelCase : str = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _lowerCAmelCase : List[str] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) _lowerCAmelCase : Tuple = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def lowercase (_A , _A , _A , _A=False ): """simple docstring""" if split_mlp_wi: _lowerCAmelCase : Optional[int] = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] _lowerCAmelCase : Optional[Any] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] _lowerCAmelCase : Optional[int] = (wi_a, wi_a) else: _lowerCAmelCase : Dict = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] _lowerCAmelCase : Dict = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def lowercase (_A , _A , _A , _A ): """simple docstring""" return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def lowercase (_A , *, _A , _A , _A = False ): """simple docstring""" _lowerCAmelCase : List[str] = traverse_util.flatten_dict(variables['target'] ) _lowerCAmelCase : Any = {'/'.join(_A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _lowerCAmelCase : int = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , _A ) _lowerCAmelCase : Union[str, Any] = collections.OrderedDict() # Shared embeddings. _lowerCAmelCase : Tuple = old['token_embedder/embedding'] # Encoder. for i in range(_A ): # Block i, layer 0 (Self Attention). _lowerCAmelCase : Optional[Any] = tax_layer_norm_lookup(_A , _A , 'encoder' , 'pre_attention_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = tax_attention_lookup(_A , _A , 'encoder' , 'attention' ) _lowerCAmelCase : str = layer_norm _lowerCAmelCase : Union[str, Any] = k.T _lowerCAmelCase : List[str] = o.T _lowerCAmelCase : str = q.T _lowerCAmelCase : Union[str, Any] = v.T # Block i, layer 1 (MLP). _lowerCAmelCase : Tuple = tax_layer_norm_lookup(_A , _A , 'encoder' , 'pre_mlp_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase : Dict = tax_mlp_lookup(_A , _A , 'encoder' , _A ) _lowerCAmelCase : List[str] = layer_norm if split_mlp_wi: _lowerCAmelCase : List[Any] = wi[0].T _lowerCAmelCase : List[str] = wi[1].T else: _lowerCAmelCase : Any = wi.T _lowerCAmelCase : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase : Dict = tax_relpos_bias_lookup( _A , _A , 'encoder' ).T _lowerCAmelCase : int = old['encoder/encoder_norm/scale'] if not scalable_attention: _lowerCAmelCase : List[str] = tax_relpos_bias_lookup( _A , 0 , 'encoder' ).T _lowerCAmelCase : Union[str, Any] = tax_relpos_bias_lookup( _A , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(_A ): # Block i, layer 0 (Self Attention). _lowerCAmelCase : Any = tax_layer_norm_lookup(_A , _A , 'decoder' , 'pre_self_attention_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = tax_attention_lookup(_A , _A , 'decoder' , 'self_attention' ) _lowerCAmelCase : Optional[Any] = layer_norm _lowerCAmelCase : Dict = k.T _lowerCAmelCase : str = o.T _lowerCAmelCase : Optional[int] = q.T _lowerCAmelCase : str = v.T # Block i, layer 1 (Cross Attention). _lowerCAmelCase : Tuple = tax_layer_norm_lookup(_A , _A , 'decoder' , 'pre_cross_attention_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[Any] = tax_attention_lookup(_A , _A , 'decoder' , 'encoder_decoder_attention' ) _lowerCAmelCase : str = layer_norm _lowerCAmelCase : Optional[Any] = k.T _lowerCAmelCase : str = o.T _lowerCAmelCase : Union[str, Any] = q.T _lowerCAmelCase : int = v.T # Block i, layer 2 (MLP). _lowerCAmelCase : Tuple = tax_layer_norm_lookup(_A , _A , 'decoder' , 'pre_mlp_layer_norm' ) _lowerCAmelCase , _lowerCAmelCase : Any = tax_mlp_lookup(_A , _A , 'decoder' , _A ) _lowerCAmelCase : Optional[int] = layer_norm if split_mlp_wi: _lowerCAmelCase : Union[str, Any] = wi[0].T _lowerCAmelCase : Optional[int] = wi[1].T else: _lowerCAmelCase : Optional[Any] = wi.T _lowerCAmelCase : str = wo.T if scalable_attention: # convert the rel_embedding of each layer _lowerCAmelCase : Dict = tax_relpos_bias_lookup(_A , _A , 'decoder' ).T _lowerCAmelCase : Optional[int] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _lowerCAmelCase : List[Any] = old['decoder/logits_dense/kernel'].T return new def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : int = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase : Union[str, Any] = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _lowerCAmelCase : int = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _lowerCAmelCase : Any = state_dict['shared.weight'] return state_dict def lowercase (_A , _A , _A , _A , _A ): """simple docstring""" _lowerCAmelCase : Any = checkpoints.load_tax_checkpoint(_A ) _lowerCAmelCase : Tuple = convert_tax_to_pytorch( _A , num_layers=config.num_layers , is_encoder_only=_A , scalable_attention=_A ) _lowerCAmelCase : List[Any] = make_state_dict(_A , _A ) model.load_state_dict(_A , strict=_A ) def lowercase (_A , _A , _A , _A = False , _A = False , ): """simple docstring""" _lowerCAmelCase : Tuple = MTaConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _lowerCAmelCase : Tuple = UMTaEncoderModel(_A ) else: _lowerCAmelCase : Any = UMTaForConditionalGeneration(_A ) # Load weights from tf checkpoint load_tax_weights_in_ta(_A , _A , _A , _A , _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(_A ) # Verify that we can load the checkpoint. model.from_pretrained(_A ) print('Done' ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) lowerCAmelCase : Any = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
444
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Any = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
444
1
"""simple docstring""" from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
710
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "data2vec-text" def __init__( self : Any , lowercase_ : Any=30522 , lowercase_ : Any=768 , lowercase_ : Union[str, Any]=12 , lowercase_ : Dict=12 , lowercase_ : List[Any]=3072 , lowercase_ : str="gelu" , lowercase_ : int=0.1 , lowercase_ : Dict=0.1 , lowercase_ : str=512 , lowercase_ : Optional[int]=2 , lowercase_ : int=0.02 , lowercase_ : int=1e-12 , lowercase_ : Any=1 , lowercase_ : Any=0 , lowercase_ : List[Any]=2 , lowercase_ : Tuple="absolute" , lowercase_ : Optional[int]=True , lowercase_ : int=None , **lowercase_ : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=lowercase_ , bos_token_id=lowercase_ , eos_token_id=lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Any = intermediate_size SCREAMING_SNAKE_CASE_ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Tuple = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE_ : Optional[Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : str = position_embedding_type SCREAMING_SNAKE_CASE_ : Optional[int] = use_cache SCREAMING_SNAKE_CASE_ : str = classifier_dropout class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE_ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE_ : Any = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ])
176
0
"""simple docstring""" import functools def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Validation if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError("""The parameter days should be a list of integers""" ) if len(SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError("""The parameter costs should be a list of three integers""" ) if len(SCREAMING_SNAKE_CASE ) == 0: return 0 if min(SCREAMING_SNAKE_CASE ) <= 0: raise ValueError("""All days elements should be greater than 0""" ) if max(SCREAMING_SNAKE_CASE ) >= 366: raise ValueError("""All days elements should be less than 366""" ) UpperCamelCase : Dict = set(SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(SCREAMING_SNAKE_CASE ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __UpperCamelCase ( a__ , unittest.TestCase ): _UpperCAmelCase = ShapEImgaImgPipeline _UpperCAmelCase = ["image"] _UpperCAmelCase = ["image"] _UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] _UpperCAmelCase = False @property def __lowerCamelCase ( self ): '''simple docstring''' return 32 @property def __lowerCamelCase ( self ): '''simple docstring''' return 32 @property def __lowerCamelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __lowerCamelCase ( self ): '''simple docstring''' return 8 @property def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : str = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) _lowerCAmelCase : Dict = CLIPVisionModel(_A ) return model @property def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = CLIPImageProcessor( crop_size=224 ,do_center_crop=_A ,do_normalize=_A ,do_resize=_A ,image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] ,image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] ,resample=3 ,size=224 ,) return image_processor @property def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCAmelCase : int = PriorTransformer(**_A ) return model @property def __lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase : List[str] = ShapERenderer(**_A ) return model def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : int = self.dummy_prior _lowerCAmelCase : Union[str, Any] = self.dummy_image_encoder _lowerCAmelCase : List[Any] = self.dummy_image_processor _lowerCAmelCase : List[str] = self.dummy_renderer _lowerCAmelCase : List[Any] = HeunDiscreteScheduler( beta_schedule='exp' ,num_train_timesteps=1024 ,prediction_type='sample' ,use_karras_sigmas=_A ,clip_sample=_A ,clip_sample_range=1.0 ,) _lowerCAmelCase : List[str] = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowerCamelCase ( self ,_A ,_A=0 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) ,rng=random.Random(_A ) ).to(_A ) if str(_A ).startswith('mps' ): _lowerCAmelCase : Dict = torch.manual_seed(_A ) else: _lowerCAmelCase : Union[str, Any] = torch.Generator(device=_A ).manual_seed(_A ) _lowerCAmelCase : int = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : str = 'cpu' _lowerCAmelCase : List[str] = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**_A ) _lowerCAmelCase : Tuple = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Optional[Any] = pipe(**self.get_dummy_inputs(_A ) ) _lowerCAmelCase : Optional[int] = output.images[0] _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase : Union[str, Any] = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch_device == 'cpu' _lowerCAmelCase : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=_A ,relax_max_difference=_A ,) def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = self.pipeline_class(**_A ) _lowerCAmelCase : List[Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Tuple = 1 _lowerCAmelCase : str = 2 _lowerCAmelCase : Any = self.get_dummy_inputs(_A ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase : Optional[Any] = batch_size * [inputs[key]] _lowerCAmelCase : Tuple = pipe(**_A ,num_images_per_prompt=_A )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _lowerCAmelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _lowerCAmelCase : Optional[int] = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _lowerCAmelCase : Union[str, Any] = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) _lowerCAmelCase : Union[str, Any] = torch.Generator(device=_A ).manual_seed(0 ) _lowerCAmelCase : Tuple = pipe( _A ,generator=_A ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type='np' ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_A ,_A )
259
0
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : Union[str, Any] = """EncodecFeatureExtractor""" lowerCamelCase_ : Any = ("""T5Tokenizer""", """T5TokenizerFast""") def __init__( self : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any]): super().__init__(UpperCAmelCase , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Dict = self.feature_extractor SCREAMING_SNAKE_CASE_ :Tuple = False def _snake_case ( self : List[Any] , UpperCAmelCase : List[Any]=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : Tuple=True): return self.tokenizer.get_decoder_prompt_ids(task=UpperCAmelCase , language=UpperCAmelCase , no_timestamps=UpperCAmelCase) def __call__( self : Union[str, Any] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Dict): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*UpperCAmelCase , **UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = kwargs.pop("audio" , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = kwargs.pop("sampling_rate" , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = kwargs.pop("text" , UpperCAmelCase) if len(UpperCAmelCase) > 0: SCREAMING_SNAKE_CASE_ :Dict = args[0] SCREAMING_SNAKE_CASE_ :List[str] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process.") if text is not None: SCREAMING_SNAKE_CASE_ :List[str] = self.tokenizer(UpperCAmelCase , **UpperCAmelCase) if audio is not None: SCREAMING_SNAKE_CASE_ :Dict = self.feature_extractor(UpperCAmelCase , *UpperCAmelCase , sampling_rate=UpperCAmelCase , **UpperCAmelCase) if audio is None: return inputs elif text is None: return audio_inputs else: SCREAMING_SNAKE_CASE_ :Dict = audio_inputs["input_values"] if "padding_mask" in audio_inputs: SCREAMING_SNAKE_CASE_ :Union[str, Any] = audio_inputs["padding_mask"] return inputs def _snake_case ( self : Dict , *UpperCAmelCase : Any , **UpperCAmelCase : Any): SCREAMING_SNAKE_CASE_ :Tuple = kwargs.pop("audio" , UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Optional[Any] = kwargs.pop("padding_mask" , UpperCAmelCase) if len(UpperCAmelCase) > 0: SCREAMING_SNAKE_CASE_ :List[Any] = args[0] SCREAMING_SNAKE_CASE_ :Dict = args[1:] if audio_values is not None: return self._decode_audio(UpperCAmelCase , padding_mask=UpperCAmelCase) else: return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase) def _snake_case ( self : Optional[Any] , *UpperCAmelCase : List[str] , **UpperCAmelCase : List[Any]): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase) def _snake_case ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Optional = None): SCREAMING_SNAKE_CASE_ :List[Any] = to_numpy(UpperCAmelCase) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :Any = audio_values.shape if padding_mask is None: return list(UpperCAmelCase) SCREAMING_SNAKE_CASE_ :List[Any] = to_numpy(UpperCAmelCase) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) SCREAMING_SNAKE_CASE_ :Optional[Any] = seq_len - padding_mask.shape[-1] SCREAMING_SNAKE_CASE_ :Dict = 1 - self.feature_extractor.padding_value SCREAMING_SNAKE_CASE_ :Optional[int] = np.pad(UpperCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=UpperCAmelCase) SCREAMING_SNAKE_CASE_ :Union[str, Any] = audio_values.tolist() for i in range(UpperCAmelCase): SCREAMING_SNAKE_CASE_ :Optional[Any] = np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] SCREAMING_SNAKE_CASE_ :Dict = sliced_audio.reshape(UpperCAmelCase , -1) return audio_values
140
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
140
1
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowercase_ ( unittest.TestCase , _UpperCamelCase ): """simple docstring""" def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: _A = load_tool('text-classification' ) self.tool.setup() _A = load_tool('text-classification', remote=UpperCamelCase__ ) def __UpperCAmelCase ( self : Any ) -> List[str]: _A = self.tool('That\'s quite cool', ['positive', 'negative'] ) self.assertEqual(UpperCamelCase__, 'positive' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> str: _A = self.remote_tool('That\'s quite cool', ['positive', 'negative'] ) self.assertEqual(UpperCamelCase__, 'positive' ) def __UpperCAmelCase ( self : List[Any] ) -> str: _A = self.tool(text='That\'s quite cool', labels=['positive', 'negative'] ) self.assertEqual(UpperCamelCase__, 'positive' ) def __UpperCAmelCase ( self : Any ) -> List[str]: _A = self.remote_tool(text='That\'s quite cool', labels=['positive', 'negative'] ) self.assertEqual(UpperCamelCase__, 'positive' )
107
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Tuple = logging.get_logger(__name__) class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = ['''pixel_values'''] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PIL.Image.BICUBIC , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 1 / 2_55 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: super().__init__(**__UpperCAmelCase ) A : Any = size if size is not None else {'''height''': 2_56, '''width''': 2_56} A : Any = get_size_dict(__UpperCAmelCase ) A : List[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} A : List[Any] = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' ) A : Dict = do_resize A : Tuple = size A : Union[str, Any] = resample A : Dict = do_center_crop A : int = crop_size A : Union[str, Any] = do_rescale A : str = rescale_factor A : Optional[Any] = do_normalize A : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = PIL.Image.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: A : int = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return resize( __UpperCAmelCase , size=(size['''height'''], size['''width''']) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: A : Optional[Any] = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}' ) return center_crop(__UpperCAmelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> List[str]: return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> np.ndarray: return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase=None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ) -> PIL.Image.Image: A : Optional[int] = do_resize if do_resize is not None else self.do_resize A : Optional[Any] = resample if resample is not None else self.resample A : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop A : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale A : str = rescale_factor if rescale_factor is not None else self.rescale_factor A : Tuple = do_normalize if do_normalize is not None else self.do_normalize A : Optional[int] = image_mean if image_mean is not None else self.image_mean A : Dict = image_std if image_std is not None else self.image_std A : List[Any] = size if size is not None else self.size A : List[Any] = get_size_dict(__UpperCAmelCase ) A : Dict = crop_size if crop_size is not None else self.crop_size A : Tuple = get_size_dict(__UpperCAmelCase , param_name='''crop_size''' ) A : Any = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A : List[Any] = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: A : List[str] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_center_crop: A : Dict = [self.center_crop(image=__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] if do_rescale: A : Union[str, Any] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: A : Tuple = [self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] A : Optional[Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] A : List[Any] = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
542
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer UpperCAmelCase_ : Dict = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): lowerCAmelCase_ = 'AutoTokenizer' lowerCAmelCase_ = ['tokenizer'] lowerCAmelCase_ = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : str,__A : int,__A : int=None ): super().__init__(__A ) _lowerCamelCase : Optional[Any] = speaker_embeddings @classmethod def lowerCamelCase_ ( cls : List[Any],__A : List[Any],__A : Optional[Any]="speaker_embeddings_path.json",**__A : Union[str, Any] ): if speaker_embeddings_dict_path is not None: _lowerCamelCase : int = get_file_from_repo( __A,__A,subfolder=kwargs.pop("subfolder",__A ),cache_dir=kwargs.pop("cache_dir",__A ),force_download=kwargs.pop("force_download",__A ),proxies=kwargs.pop("proxies",__A ),resume_download=kwargs.pop("resume_download",__A ),local_files_only=kwargs.pop("local_files_only",__A ),use_auth_token=kwargs.pop("use_auth_token",__A ),revision=kwargs.pop("revision",__A ),) if speaker_embeddings_path is None: logger.warning( f'`{os.path.join(__A,__A )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) _lowerCamelCase : Dict = None else: with open(__A ) as speaker_embeddings_json: _lowerCamelCase : Union[str, Any] = json.load(__A ) else: _lowerCamelCase : Optional[int] = None _lowerCamelCase : Any = AutoTokenizer.from_pretrained(__A,**__A ) return cls(tokenizer=__A,speaker_embeddings=__A ) def lowerCamelCase_ ( self : Optional[Any],__A : List[str],__A : Optional[Any]="speaker_embeddings_path.json",__A : int="speaker_embeddings",__A : bool = False,**__A : Tuple,): if self.speaker_embeddings is not None: os.makedirs(os.path.join(__A,__A,"v2" ),exist_ok=__A ) _lowerCamelCase : Dict = {} _lowerCamelCase : Any = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _lowerCamelCase : Union[str, Any] = self._load_voice_preset(__A ) _lowerCamelCase : List[str] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["repo_or_path"],__A,f'{prompt_key}_{key}' ),voice_preset[key],allow_pickle=__A,) _lowerCamelCase : List[str] = os.path.join(__A,f'{prompt_key}_{key}.npy' ) _lowerCamelCase : Any = tmp_dict with open(os.path.join(__A,__A ),"w" ) as fp: json.dump(__A,__A ) super().save_pretrained(__A,__A,**__A ) def lowerCamelCase_ ( self : Any,__A : str = None,**__A : Optional[int] ): _lowerCamelCase : Optional[int] = self.speaker_embeddings[voice_preset] _lowerCamelCase : int = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) _lowerCamelCase : List[str] = get_file_from_repo( self.speaker_embeddings.get("repo_or_path","/" ),voice_preset_paths[key],subfolder=kwargs.pop("subfolder",__A ),cache_dir=kwargs.pop("cache_dir",__A ),force_download=kwargs.pop("force_download",__A ),proxies=kwargs.pop("proxies",__A ),resume_download=kwargs.pop("resume_download",__A ),local_files_only=kwargs.pop("local_files_only",__A ),use_auth_token=kwargs.pop("use_auth_token",__A ),revision=kwargs.pop("revision",__A ),) if path is None: raise ValueError( f'`{os.path.join(self.speaker_embeddings.get("repo_or_path","/" ),voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) _lowerCamelCase : int = np.load(__A ) return voice_preset_dict def lowerCamelCase_ ( self : Any,__A : Optional[dict] = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key],np.ndarray ): raise ValueError(f'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Tuple,__A : List[Any]=None,__A : Optional[int]=None,__A : str="pt",__A : Tuple=2_5_6,__A : Dict=False,__A : List[Any]=True,__A : Dict=False,**__A : Tuple,): if voice_preset is not None and not isinstance(__A,__A ): if ( isinstance(__A,__A ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _lowerCamelCase : Optional[Any] = self._load_voice_preset(__A ) else: if isinstance(__A,__A ) and not voice_preset.endswith(".npz" ): _lowerCamelCase : List[str] = voice_preset + ".npz" _lowerCamelCase : List[Any] = np.load(__A ) if voice_preset is not None: self._validate_voice_preset_dict(__A,**__A ) _lowerCamelCase : List[str] = BatchFeature(data=__A,tensor_type=__A ) _lowerCamelCase : Dict = self.tokenizer( __A,return_tensors=__A,padding="max_length",max_length=__A,return_attention_mask=__A,return_token_type_ids=__A,add_special_tokens=__A,**__A,) if voice_preset is not None: _lowerCamelCase : Any = voice_preset return encoded_text
714
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser UpperCAmelCase_ : Any = re.compile(R'\s+') def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_lowerCAmelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [len(_lowerCAmelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCAmelCase ), "line_max": max(_lowerCAmelCase )} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def A_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict=5 ): """simple docstring""" _lowerCamelCase : Optional[int] = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : Dict = example["content"].splitlines() for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any]=5 , _lowerCAmelCase : List[Any]=0.0_5 ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ["unit tests", "test file", "configuration file"] _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : int = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCAmelCase ) , _lowerCAmelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Union[str, Any] = example["content"].count("\n" ) _lowerCamelCase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : str = ["def ", "class ", "for ", "while "] _lowerCamelCase : List[str] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def A_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : int=4 ): """simple docstring""" _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : Union[str, Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : List[Any] = tokenizer(example["content"] , truncation=_lowerCAmelCase )["input_ids"] _lowerCamelCase : str = len(example["content"] ) / len(_lowerCAmelCase ) return {"ratio": ratio} def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = {} results.update(get_hash(_lowerCAmelCase ) ) results.update(line_stats(_lowerCAmelCase ) ) results.update(alpha_stats(_lowerCAmelCase ) ) results.update(char_token_ratio(_lowerCAmelCase ) ) results.update(is_autogenerated(_lowerCAmelCase ) ) results.update(is_config_or_test(_lowerCAmelCase ) ) results.update(has_no_keywords(_lowerCAmelCase ) ) results.update(has_few_assignments(_lowerCAmelCase ) ) return results def A_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : str ): """simple docstring""" if not check_uniques(_lowerCAmelCase , _lowerCAmelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def A_ ( _lowerCAmelCase : int ): """simple docstring""" with open(_lowerCAmelCase , "rb" ) as f_in: with gzip.open(str(_lowerCAmelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCAmelCase , _lowerCAmelCase ) os.unlink(_lowerCAmelCase ) # Settings UpperCAmelCase_ : Any = HfArgumentParser(PreprocessingArguments) UpperCAmelCase_ : Optional[int] = parser.parse_args() if args.num_workers is None: UpperCAmelCase_ : str = multiprocessing.cpu_count() UpperCAmelCase_ : Tuple = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset UpperCAmelCase_ : Dict = time.time() UpperCAmelCase_ : Any = load_dataset(args.dataset_name, split='train') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes UpperCAmelCase_ : Any = set(ds.unique('hash')) UpperCAmelCase_ : Dict = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics UpperCAmelCase_ : Optional[int] = time.time() UpperCAmelCase_ : int = ds.filter(filter, fn_kwargs={'uniques': uniques, 'args': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_, UpperCAmelCase_ : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file UpperCAmelCase_ : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / 'duplicate_clusters.json', 'w') as f: json.dump(duplicate_clusters, f) UpperCAmelCase_ : List[Any] = output_dir / 'data' data_dir.mkdir(exist_ok=True) UpperCAmelCase_ : str = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): UpperCAmelCase_ : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') UpperCAmelCase_ : int = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
11
0
import requests UpperCAmelCase = '''''' # <-- Put your OpenWeatherMap appid here! UpperCAmelCase = '''https://api.openweathermap.org/data/2.5/''' def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = "Chicago" , __SCREAMING_SNAKE_CASE = APPID ): return requests.get(URL_BASE + 'weather' , params=locals() ).json() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = "Kolkata, India" , __SCREAMING_SNAKE_CASE = APPID ): return requests.get(URL_BASE + 'forecast' , params=locals() ).json() def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 55.68 , __SCREAMING_SNAKE_CASE = 12.57 , __SCREAMING_SNAKE_CASE = APPID ): return requests.get(URL_BASE + 'onecall' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: UpperCAmelCase = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
84
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class _SCREAMING_SNAKE_CASE : lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 # [batch_size x 3] lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def SCREAMING_SNAKE_CASE_( self ) -> str: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def SCREAMING_SNAKE_CASE_( self ) -> torch.Tensor: lowerCamelCase_ = torch.arange(self.height * self.width ) lowerCamelCase_ = torch.stack( [ pixel_indices % self.width, torch.div(lowercase , self.width , rounding_mode="trunc" ), ] , axis=1 , ) return coords @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ , *lowerCamelCase_ = self.shape lowerCamelCase_ = int(np.prod(lowercase ) ) lowerCamelCase_ = self.get_image_coords() lowerCamelCase_ = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) lowerCamelCase_ = self.get_camera_rays(lowercase ) lowerCamelCase_ = rays.view(lowercase , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def SCREAMING_SNAKE_CASE_( self , lowercase ) -> torch.Tensor: lowerCamelCase_ , *lowerCamelCase_ , lowerCamelCase_ = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] lowerCamelCase_ = coords.view(lowercase , -1 , 2 ) lowerCamelCase_ = self.resolution() lowerCamelCase_ = self.fov() lowerCamelCase_ = (flat.float() / (res - 1)) * 2 - 1 lowerCamelCase_ = fracs * torch.tan(fov / 2 ) lowerCamelCase_ = fracs.view(lowercase , -1 , 2 ) lowerCamelCase_ = ( self.z.view(lowercase , 1 , 3 ) + self.x.view(lowercase , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowercase , 1 , 3 ) * fracs[:, :, 1:] ) lowerCamelCase_ = directions / directions.norm(dim=-1 , keepdim=lowercase ) lowerCamelCase_ = torch.stack( [ torch.broadcast_to(self.origin.view(lowercase , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowercase , *lowercase , 2 , 3 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowercase , height=lowercase , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowerCamelCase_ ( lowerCamelCase__ ): lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): lowerCamelCase_ = np.array([np.sin(lowerCamelCase__ ), np.cos(lowerCamelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) lowerCamelCase_ = -z * 4 lowerCamelCase_ = np.array([np.cos(lowerCamelCase__ ), -np.sin(lowerCamelCase__ ), 0.0] ) lowerCamelCase_ = np.cross(lowerCamelCase__ , lowerCamelCase__ ) origins.append(lowerCamelCase__ ) xs.append(lowerCamelCase__ ) ys.append(lowerCamelCase__ ) zs.append(lowerCamelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCamelCase__ , axis=0 ) ).float() , width=lowerCamelCase__ , height=lowerCamelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCamelCase__ )) , )
463
0
class lowercase__ : def __init__( self : List[Any] , _lowercase : Dict , _lowercase : Dict , _lowercase : str ): """simple docstring""" UpperCAmelCase__ = name UpperCAmelCase__ = value UpperCAmelCase__ = weight def __repr__( self : List[str] ): """simple docstring""" return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})""" def _UpperCAmelCase ( self : Dict ): """simple docstring""" return self.value def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return self.name def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" return self.weight def _UpperCAmelCase ( self : int ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( __A , __A , __A ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = [] for i in range(len(__A ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( __A , __A , __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = sorted(__A , key=__A , reverse=__A ) UpperCAmelCase__ = [] UpperCAmelCase__ , UpperCAmelCase__ = 0.0, 0.0 for i in range(len(__A ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[int]: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
716
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A = 6378137.0 A = 6356752.314245 A = 637_8137 def __UpperCAmelCase ( __A , __A , __A , __A ) -> float: '''simple docstring''' UpperCAmelCase__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude UpperCAmelCase__ = atan((1 - flattening) * tan(radians(__A ) ) ) UpperCAmelCase__ = atan((1 - flattening) * tan(radians(__A ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius UpperCAmelCase__ = haversine_distance(__A , __A , __A , __A ) / EQUATORIAL_RADIUS # Intermediate P and Q values UpperCAmelCase__ = (b_lata + b_lata) / 2 UpperCAmelCase__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) UpperCAmelCase__ = (sin(__A ) ** 2) * (cos(__A ) ** 2) UpperCAmelCase__ = cos(sigma / 2 ) ** 2 UpperCAmelCase__ = (sigma - sin(__A )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) UpperCAmelCase__ = (cos(__A ) ** 2) * (sin(__A ) ** 2) UpperCAmelCase__ = sin(sigma / 2 ) ** 2 UpperCAmelCase__ = (sigma + sin(__A )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
277
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : str , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : str=7 , lowerCAmelCase : Dict=True , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=False , lowerCAmelCase : Dict=True , lowerCAmelCase : int=99 , lowerCAmelCase : int=32 , lowerCAmelCase : int=5 , lowerCAmelCase : str=4 , lowerCAmelCase : List[Any]=37 , lowerCAmelCase : Optional[int]="gelu" , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : int=0.1 , lowerCAmelCase : Union[str, Any]=512 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : Union[str, Any]=2 , lowerCAmelCase : int=0.02 , lowerCAmelCase : str=3 , lowerCAmelCase : List[str]=4 , lowerCAmelCase : Union[str, Any]=None , ): lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __lowercase ( self : Dict ): lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self : int ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowercase ( self : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int ): lowerCAmelCase = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase ) lowerCAmelCase = model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowercase ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , ): lowerCAmelCase = BioGptForCausalLM(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , *lowerCAmelCase : str ): lowerCAmelCase = BioGptModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # create attention mask lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) lowerCAmelCase = self.seq_length // 2 lowerCAmelCase = 0 # first forward pass lowerCAmelCase , lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids lowerCAmelCase = ids_tensor((1,) , lowerCAmelCase ).item() + 1 lowerCAmelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) lowerCAmelCase = random_other_next_tokens # append to next input_ids and attn_mask lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowerCAmelCase )] , dim=1 , ) # get two different outputs lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase )["""last_hidden_state"""] lowerCAmelCase = model(lowerCAmelCase , past_key_values=lowerCAmelCase , attention_mask=lowerCAmelCase )["""last_hidden_state"""] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -1, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) def __lowercase ( self : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : int , *lowerCAmelCase : List[str] ): lowerCAmelCase = BioGptModel(config=lowerCAmelCase ).to(lowerCAmelCase ).eval() lowerCAmelCase = torch.ones(input_ids.shape , dtype=torch.long , device=lowerCAmelCase ) # first forward pass lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase ) lowerCAmelCase , lowerCAmelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase )["""last_hidden_state"""] lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase )[ """last_hidden_state""" ] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ) ) def __lowercase ( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : Any , *lowerCAmelCase : List[Any] , lowerCAmelCase : int=False ): lowerCAmelCase = BioGptForCausalLM(lowerCAmelCase ) model.to(lowerCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() lowerCAmelCase = model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __lowercase ( self : Any , lowerCAmelCase : int , *lowerCAmelCase : Optional[int] ): lowerCAmelCase = BioGptModel(lowerCAmelCase ) lowerCAmelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __lowercase ( self : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : str , *lowerCAmelCase : Tuple ): lowerCAmelCase = self.num_labels lowerCAmelCase = BioGptForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _a , _a , _a , unittest.TestCase ): _a = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _a = (BioGptForCausalLM,) if is_torch_available() else () _a = ( { 'feature-extraction': BioGptModel, 'text-classification': BioGptForSequenceClassification, 'text-generation': BioGptForCausalLM, 'token-classification': BioGptForTokenClassification, 'zero-shot': BioGptForSequenceClassification, } if is_torch_available() else {} ) _a = False def __lowercase ( self : Any ): lowerCAmelCase = BioGptModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37 ) def __lowercase ( self : List[str] ): self.config_tester.run_common_tests() def __lowercase ( self : int ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def __lowercase ( self : List[str] ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCAmelCase = type self.model_tester.create_and_check_model(*lowerCAmelCase ) def __lowercase ( self : str ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowerCAmelCase ) def __lowercase ( self : int ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowerCAmelCase , gradient_checkpointing=lowerCAmelCase ) def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowerCAmelCase ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowerCAmelCase ) def __lowercase ( self : Tuple ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowerCAmelCase ) @slow def __lowercase ( self : List[Any] ): lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowerCAmelCase ) lowerCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase = """left""" # Define PAD Token = EOS Token = 50256 lowerCAmelCase = tokenizer.eos_token lowerCAmelCase = model.config.eos_token_id # use different length sentences to test batching lowerCAmelCase = [ """Hello, my dog is a little""", """Today, I""", ] lowerCAmelCase = tokenizer(lowerCAmelCase , return_tensors="""pt""" , padding=lowerCAmelCase ) lowerCAmelCase = inputs["""input_ids"""].to(lowerCAmelCase ) lowerCAmelCase = model.generate( input_ids=lowerCAmelCase , attention_mask=inputs["""attention_mask"""].to(lowerCAmelCase ) , ) lowerCAmelCase = tokenizer(sentences[0] , return_tensors="""pt""" ).input_ids.to(lowerCAmelCase ) lowerCAmelCase = model.generate(input_ids=lowerCAmelCase ) lowerCAmelCase = inputs_non_padded.shape[-1] - inputs["""attention_mask"""][-1].long().sum().cpu().item() lowerCAmelCase = tokenizer(sentences[1] , return_tensors="""pt""" ).input_ids.to(lowerCAmelCase ) lowerCAmelCase = model.generate(input_ids=lowerCAmelCase , max_length=model.config.max_length - num_paddings ) lowerCAmelCase = tokenizer.batch_decode(lowerCAmelCase , skip_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase ) lowerCAmelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase ) lowerCAmelCase = [ """Hello, my dog is a little bit bigger than a little bit.""", """Today, I have a good idea of how to use the information""", ] self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def __lowercase ( self : List[str] ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = BioGptModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def __lowercase ( self : Tuple ): lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict["""input_ids"""] lowerCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __lowercase ( self : Any ): lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = """multi_label_classification""" lowerCAmelCase = input_dict["""input_ids"""] lowerCAmelCase = input_ids.ne(1 ).to(lowerCAmelCase ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = BioGptForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() lowerCAmelCase = model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def __lowercase ( self : Union[str, Any] ): lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase = torch.tensor([[2, 4805, 9, 656, 21]] ) lowerCAmelCase = model(lowerCAmelCase )[0] lowerCAmelCase = 4_2384 lowerCAmelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , lowerCAmelCase ) lowerCAmelCase = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase , atol=1e-4 ) ) @slow def __lowercase ( self : Optional[Any] ): lowerCAmelCase = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase = BioGptForCausalLM.from_pretrained("""microsoft/biogpt""" ) model.to(lowerCAmelCase ) torch.manual_seed(0 ) lowerCAmelCase = tokenizer("""COVID-19 is""" , return_tensors="""pt""" ).to(lowerCAmelCase ) lowerCAmelCase = model.generate( **lowerCAmelCase , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=lowerCAmelCase , ) lowerCAmelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCAmelCase ) lowerCAmelCase = ( """COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the""" """ causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and""" """ territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),""" """ and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and""" """ more than 800,000 deaths.""" ) self.assertEqual(lowerCAmelCase , lowerCAmelCase )
169
"""simple docstring""" from math import log from scipy.constants import Boltzmann, physical_constants a = 3_0_0 # TEMPERATURE (unit = K) def lowercase (snake_case__ : float , snake_case__ : float , snake_case__ : float , ) -> float: '''simple docstring''' if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
169
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = { '''configuration_bridgetower''': [ '''BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BridgeTowerConfig''', '''BridgeTowerTextConfig''', '''BridgeTowerVisionConfig''', ], '''processing_bridgetower''': ['''BridgeTowerProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''BridgeTowerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BridgeTowerForContrastiveLearning''', '''BridgeTowerForImageAndTextRetrieval''', '''BridgeTowerForMaskedLM''', '''BridgeTowerModel''', '''BridgeTowerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
478
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
478
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_timm_backbone""": ["""TimmBackboneConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""TimmBackbone"""] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1024 ): """simple docstring""" _UpperCamelCase , _UpperCamelCase =[], [] _UpperCamelCase =list(zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) _UpperCamelCase , _UpperCamelCase =sorted_examples[0] def is_too_big(__SCREAMING_SNAKE_CASE ): return tok(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _UpperCamelCase =new_src + ''' ''' + src _UpperCamelCase =new_tgt + ''' ''' + tgt if is_too_big(__SCREAMING_SNAKE_CASE ) or is_too_big(__SCREAMING_SNAKE_CASE ): # cant fit, finalize example finished_src.append(__SCREAMING_SNAKE_CASE ) finished_tgt.append(__SCREAMING_SNAKE_CASE ) _UpperCamelCase , _UpperCamelCase =src, tgt else: # can fit, keep adding _UpperCamelCase , _UpperCamelCase =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(__SCREAMING_SNAKE_CASE ) finished_tgt.append(__SCREAMING_SNAKE_CASE ) return finished_src, finished_tgt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =Path(__SCREAMING_SNAKE_CASE ) save_path.mkdir(exist_ok=__SCREAMING_SNAKE_CASE ) for split in ["train"]: _UpperCamelCase , _UpperCamelCase =data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' _UpperCamelCase =[x.rstrip() for x in Path(__SCREAMING_SNAKE_CASE ).open().readlines()] _UpperCamelCase =[x.rstrip() for x in Path(__SCREAMING_SNAKE_CASE ).open().readlines()] _UpperCamelCase , _UpperCamelCase =pack_examples(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(f'''packed {split} split from {len(__SCREAMING_SNAKE_CASE )} examples -> {len(__SCREAMING_SNAKE_CASE )}.''' ) Path(save_path / f'''{split}.source''' ).open('''w''' ).write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) Path(save_path / f'''{split}.target''' ).open('''w''' ).write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) for split in ["val", "test"]: _UpperCamelCase , _UpperCamelCase =data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(__SCREAMING_SNAKE_CASE , save_path / f'''{split}.source''' ) shutil.copyfile(__SCREAMING_SNAKE_CASE , save_path / f'''{split}.target''' ) def _a (): """simple docstring""" _UpperCamelCase =argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=__SCREAMING_SNAKE_CASE , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=__SCREAMING_SNAKE_CASE , default=128 ) parser.add_argument('''--data_dir''' , type=__SCREAMING_SNAKE_CASE ) parser.add_argument('''--save_path''' , type=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =parser.parse_args() _UpperCamelCase =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(__SCREAMING_SNAKE_CASE , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
404
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Tuple =logging.get_logger(__name__) def a__ (__lowercase :Optional[Any] , __lowercase :Dict , __lowercase :List[Any] ) -> Tuple: _A : int = os.path.abspath(__lowercase ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model _A : Tuple = tf.train.list_variables(__lowercase ) _A : List[str] = [] _A : Union[str, Any] = [] _A : Optional[int] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _A : Tuple = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' _A : List[str] = name[1:] # figure out how many levels deep the name is _A : int = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(__lowercase ) # read data _A : Optional[Any] = tf.train.load_variable(__lowercase , __lowercase ) names.append('''/'''.join(__lowercase ) ) arrays.append(__lowercase ) logger.info(f"""Read a total of {len(__lowercase ):,} layers""" ) # Sanity check if len(set(__lowercase ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(__lowercase ) )})""" ) _A : Dict = list(set(__lowercase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(__lowercase , __lowercase ): _A : Any = full_name.split('''/''' ) _A : List[str] = model _A : List[Any] = [] for i, m_name in enumerate(__lowercase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): _A : Tuple = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) _A : Union[str, Any] = getattr(__lowercase , '''embeddings''' ) _A : Union[str, Any] = getattr(__lowercase , '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) _A : Optional[Any] = getattr(__lowercase , '''encoder''' ) _A : Dict = getattr(__lowercase , '''layer''' ) _A : str = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) _A : List[str] = getattr(__lowercase , '''pooler''' ) _A : Optional[int] = getattr(__lowercase , '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) _A : List[Any] = getattr(__lowercase , '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) _A : Any = getattr(__lowercase , '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) _A : Optional[int] = getattr(__lowercase , '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) _A : Optional[Any] = getattr(__lowercase , '''token_type_embeddings''' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) _A : Dict = getattr(__lowercase , '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) _A : List[str] = getattr(__lowercase , '''attention''' ) _A : Dict = getattr(__lowercase , '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) _A : Optional[int] = getattr(__lowercase , '''attention''' ) _A : Union[str, Any] = getattr(__lowercase , '''output''' ) _A : Dict = getattr(__lowercase , '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) _A : Optional[Any] = getattr(__lowercase , '''attention''' ) _A : Union[str, Any] = getattr(__lowercase , '''output''' ) _A : Optional[Any] = getattr(__lowercase , '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) _A : Optional[Any] = getattr(__lowercase , '''output''' ) _A : Dict = getattr(__lowercase , '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) _A : List[str] = getattr(__lowercase , '''output''' ) _A : List[Any] = getattr(__lowercase , '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) _A : Dict = getattr(__lowercase , '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) _A : str = getattr(__lowercase , '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) _A : Any = getattr(__lowercase , '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) _A : int = getattr(__lowercase , '''intermediate''' ) _A : Dict = getattr(__lowercase , '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) _A : int = getattr(__lowercase , '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) _A : Tuple = getattr(__lowercase , '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) _A : Union[str, Any] = getattr(__lowercase , '''weight''' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary _A : str = '''.'''.join(__lowercase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''' , __lowercase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''' , __lowercase ): _A : List[Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: _A : Optional[int] = array.transpose() if pointer.shape == array.shape: _A : List[str] = torch.from_numpy(__lowercase ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def a__ (__lowercase :List[Any] , __lowercase :str , __lowercase :List[Any] ) -> Any: # Instantiate model logger.info(f"""Loading model based on config from {config_path}...""" ) _A : Optional[Any] = BertConfig.from_json_file(__lowercase ) _A : Optional[int] = BertModel(__lowercase ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": _UpperCamelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) _UpperCamelCase : Dict =parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
332
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCamelCase : Union[str, Any] ='\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _UpperCamelCase : List[str] ='\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _UpperCamelCase : str ='\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def a__ (__lowercase :List[Any] , __lowercase :List[Any] ) -> Union[str, Any]: return float((preds == labels).mean() ) def a__ (__lowercase :Tuple , __lowercase :List[Any] , __lowercase :Union[str, Any]="binary" ) -> Optional[Any]: _A : Union[str, Any] = simple_accuracy(__lowercase , __lowercase ) _A : str = float(fa_score(y_true=__lowercase , y_pred=__lowercase , average=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def a__ (__lowercase :List[str] , __lowercase :Optional[Any] ) -> List[str]: _A : str = {} for id_pred, label in zip(__lowercase , __lowercase ): _A : Optional[int] = f"""{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}""" _A : Tuple = id_pred['''prediction'''] if question_id in question_map: question_map[question_id].append((pred, label) ) else: _A : Union[str, Any] = [(pred, label)] _A , _A : List[Any] = [], [] for question, preds_labels in question_map.items(): _A , _A : List[str] = zip(*__lowercase ) _A : Union[str, Any] = fa_score(y_true=__lowercase , y_pred=__lowercase , average='''macro''' ) fas.append(__lowercase ) _A : Optional[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(__lowercase ) ) ems.append(__lowercase ) _A : Optional[int] = float(sum(__lowercase ) / len(__lowercase ) ) _A : Dict = sum(__lowercase ) / len(__lowercase ) _A : List[Any] = float(fa_score(y_true=__lowercase , y_pred=[id_pred['''prediction'''] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): def A__ ( self ): if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(self._get_feature_types() ) ,codebase_urls=[] ,reference_urls=[] ,format='''numpy''' if not self.config_name == '''record''' and not self.config_name == '''multirc''' else None ,) def A__ ( self ): if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "prediction_text": datasets.Value('''string''' ), }, "references": { "idx": { "passage": datasets.Value('''int64''' ), "query": datasets.Value('''int64''' ), }, "answers": datasets.Sequence(datasets.Value('''string''' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('''int64''' ), "paragraph": datasets.Value('''int64''' ), "question": datasets.Value('''int64''' ), }, "prediction": datasets.Value('''int64''' ), }, "references": datasets.Value('''int64''' ), } else: return { "predictions": datasets.Value('''int64''' ), "references": datasets.Value('''int64''' ), } def A__ ( self ,A__ ,A__ ): if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(A__ ,A__ )} elif self.config_name == "cb": return acc_and_fa(A__ ,A__ ,fa_avg='''macro''' ) elif self.config_name == "record": _A : Any = [ { '''qas''': [ {'''id''': ref['''idx''']['''query'''], '''answers''': [{'''text''': ans} for ans in ref['''answers''']]} for ref in references ] } ] _A : int = {pred['''idx''']['''query''']: pred['''prediction_text'''] for pred in predictions} return evaluate_record(A__ ,A__ )[0] elif self.config_name == "multirc": return evaluate_multirc(A__ ,A__ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(A__ ,A__ )} else: raise KeyError( '''You should supply a configuration name selected in ''' '''["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]''' )
332
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCAmelCase : def _A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Dict = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : Any = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase__ : str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowerCAmelCase__ : List[str] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _A ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) lowerCAmelCase__ : Union[str, Any] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowerCAmelCase__ : Dict = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=_a , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) lowerCAmelCase__ : Tuple = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = self.get_dummy_components() lowerCAmelCase__ : Optional[int] = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : List[str] = self.get_dummy_inputs(_a ) lowerCAmelCase__ : Tuple = inputs['prompt'] lowerCAmelCase__ : List[Any] = inputs['generator'] lowerCAmelCase__ : str = inputs['num_inference_steps'] lowerCAmelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: lowerCAmelCase__ : int = inputs['image'] else: lowerCAmelCase__ : Union[str, Any] = None if "mask_image" in inputs: lowerCAmelCase__ : List[str] = inputs['mask_image'] else: lowerCAmelCase__ : Dict = None if "original_image" in inputs: lowerCAmelCase__ : Dict = inputs['original_image'] else: lowerCAmelCase__ : Optional[Any] = None lowerCAmelCase__ : Optional[int] = pipe.encode_prompt(_a ) # inputs with prompt converted to embeddings lowerCAmelCase__ : str = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowerCAmelCase__ : Optional[Any] = image if mask_image is not None: lowerCAmelCase__ : int = mask_image if original_image is not None: lowerCAmelCase__ : int = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_a , _a , _a ) lowerCAmelCase__ : Optional[int] = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) lowerCAmelCase__ : Optional[int] = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_a , _a ) is None , F'''`{optional_component}` did not stay set to None after loading.''' , ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(_a ) lowerCAmelCase__ : str = inputs['generator'] lowerCAmelCase__ : List[str] = inputs['num_inference_steps'] lowerCAmelCase__ : Any = inputs['output_type'] # inputs with prompt converted to embeddings lowerCAmelCase__ : Optional[int] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: lowerCAmelCase__ : List[str] = image if mask_image is not None: lowerCAmelCase__ : Optional[Any] = mask_image if original_image is not None: lowerCAmelCase__ : str = original_image lowerCAmelCase__ : Dict = pipe_loaded(**_a )[0] lowerCAmelCase__ : List[Any] = np.abs(to_np(_a ) - to_np(_a ) ).max() self.assertLess(_a , 1e-4 ) def _A ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = self.get_dummy_components() lowerCAmelCase__ : Tuple = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(_a ) lowerCAmelCase__ : Optional[int] = pipe(**_a )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_a ) lowerCAmelCase__ : Tuple = self.pipeline_class.from_pretrained(_a ) pipe_loaded.to(_a ) pipe_loaded.set_progress_bar_config(disable=_a ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowerCAmelCase__ : str = self.get_dummy_inputs(_a ) lowerCAmelCase__ : Tuple = pipe_loaded(**_a )[0] lowerCAmelCase__ : Dict = np.abs(to_np(_a ) - to_np(_a ) ).max() self.assertLess(_a , 1e-4 )
378
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase_ (__a : List[DatasetType] , __a : Optional[List[float]] = None , __a : Optional[int] = None , __a : Optional[DatasetInfo] = None , __a : Optional[NamedSplit] = None , __a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(__a )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__a ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}.""" ) if i == 0: _a, _a : Tuple = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) else: return _interleave_iterable_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) def UpperCAmelCase_ (__a : List[DatasetType] , __a : Optional[DatasetInfo] = None , __a : Optional[NamedSplit] = None , __a : int = 0 , ): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(__a )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__a ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}.""" ) if i == 0: _a, _a : Dict = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__a , info=__a , split=__a , axis=__a ) else: return _concatenate_iterable_datasets(__a , info=__a , split=__a , axis=__a )
229
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __a = get_logger(__name__) class __lowercase ( enum.Enum ): UpperCamelCase = '''all_checks''' UpperCamelCase = '''basic_checks''' UpperCamelCase = '''no_checks''' class __lowercase ( __snake_case ): pass class __lowercase ( __snake_case ): pass class __lowercase ( __snake_case ): pass class __lowercase ( __snake_case ): pass def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) ->Optional[Any]: if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) ) ) if len(set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) ) ) UpperCAmelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCAmelCase = """ for """ + verification_name if verification_name is not None else """""" if len(lowerCAmelCase_ ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class __lowercase ( __snake_case ): pass class __lowercase ( __snake_case ): pass class __lowercase ( __snake_case ): pass class __lowercase ( __snake_case ): pass def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) ->Tuple: if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) ) > 0: raise ExpectedMoreSplits(str(set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) ) ) if len(set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) ) > 0: raise UnexpectedSplits(str(set(lowerCAmelCase_ ) - set(lowerCAmelCase_ ) ) ) UpperCAmelCase = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowerCAmelCase_ ) > 0: raise NonMatchingSplitsSizesError(str(lowerCAmelCase_ ) ) logger.info("""All the splits matched successfully.""" ) def _UpperCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ = True ) ->dict: if record_checksum: UpperCAmelCase = shaaaa() with open(lowerCAmelCase_ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , b"""""" ): m.update(lowerCAmelCase_ ) UpperCAmelCase = m.hexdigest() else: UpperCAmelCase = None return {"num_bytes": os.path.getsize(lowerCAmelCase_ ), "checksum": checksum} def _UpperCamelCase ( lowerCAmelCase_ ) ->Tuple: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
627
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __lowercase ( unittest.TestCase ): def _lowercase ( self : Any ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = torch.nn.Linear(1_0 , 1_0 ) UpperCAmelCase = torch.optim.SGD(model.parameters() , 0.1 ) UpperCAmelCase = Accelerator() UpperCAmelCase = accelerator.prepare(__lowerCamelCase ) try: pickle.loads(pickle.dumps(__lowerCamelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
627
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Union[str, Any] = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } A_ : List[Any] = { "vocab_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt", }, "merges_file": { "vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes", "vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes", }, } A_ : List[str] = { "vinai/phobert-base": 256, "vinai/phobert-large": 256, } def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' snake_case__ : int = set() snake_case__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Dict = char snake_case__ : int = set(__magic_name__ ) return pairs class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , **__SCREAMING_SNAKE_CASE , ): super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : Dict = vocab_file snake_case__ : Optional[Any] = merges_file snake_case__ : Dict = {} snake_case__ : Any = 0 snake_case__ : int = 1 snake_case__ : int = 2 snake_case__ : List[Any] = 3 self.add_from_file(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as merges_handle: snake_case__ : Any = merges_handle.read().split("""\n""" )[:-1] snake_case__ : int = [tuple(merge.split()[:-1] ) for merge in merges] snake_case__ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : List[str] = {} def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : int = [self.cls_token_id] snake_case__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Any = [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCamelCase ( self ): return len(self.encoder ) def __UpperCamelCase ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if token in self.cache: return self.cache[token] snake_case__ : List[Any] = tuple(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) snake_case__ : Any = get_pairs(__SCREAMING_SNAKE_CASE ) if not pairs: return token while True: snake_case__ : Optional[Any] = min(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : self.bpe_ranks.get(__SCREAMING_SNAKE_CASE , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ : Tuple = bigram snake_case__ : Dict = [] snake_case__ : str = 0 while i < len(__SCREAMING_SNAKE_CASE ): try: snake_case__ : Tuple = word.index(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ : List[str] = j if word[i] == first and i < len(__SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ : Dict = tuple(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = new_word if len(__SCREAMING_SNAKE_CASE ) == 1: break else: snake_case__ : Union[str, Any] = get_pairs(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = """@@ """.join(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = word[:-4] snake_case__ : Dict = word return word def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = [] snake_case__ : Any = re.findall(R"""\S+\n?""" , __SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(__SCREAMING_SNAKE_CASE ).split(""" """ ) ) ) return split_tokens def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return self.encoder.get(__SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return self.decoder.get(__SCREAMING_SNAKE_CASE , self.unk_token ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = """ """.join(__SCREAMING_SNAKE_CASE ).replace("""@@ """ , """""" ).strip() return out_string def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case__ : Optional[int] = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case__ : Any = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , __SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): try: with open(__SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" ) as fd: self.add_from_file(__SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" ) return snake_case__ : Tuple = f.readlines() for lineTmp in lines: snake_case__ : Any = lineTmp.strip() snake_case__ : Optional[Any] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) snake_case__ : Optional[int] = line[:idx] snake_case__ : Union[str, Any] = len(self.encoder )
38
import math snake_case__ = 10 snake_case__ = 7 snake_case__ = BALLS_PER_COLOUR * NUM_COLOURS def lowerCamelCase__ ( a : int = 20 ) -> str: """simple docstring""" a__ :List[str] = math.comb(a , a ) a__ :Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , a ) a__ :Union[str, Any] = NUM_COLOURS * (1 - missing_colour / total) return F'''{result:.9f}''' if __name__ == "__main__": print(solution(20))
395
0
"""simple docstring""" import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden SCREAMING_SNAKE_CASE_ = deepcopy(SCREAMING_SNAKE_CASE_ ) elif os.path.exists(SCREAMING_SNAKE_CASE_ ): with io.open(SCREAMING_SNAKE_CASE_ , '''r''' , encoding='''utf-8''' ) as f: SCREAMING_SNAKE_CASE_ = json.load(SCREAMING_SNAKE_CASE_ ) else: try: SCREAMING_SNAKE_CASE_ = baseaa.urlsafe_baadecode(SCREAMING_SNAKE_CASE_ ).decode('''utf-8''' ) SCREAMING_SNAKE_CASE_ = json.loads(SCREAMING_SNAKE_CASE_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' ) SCREAMING_SNAKE_CASE_ = config self.set_stage_and_offload() def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_value('''zero_optimization.stage''' , -1 ) # offload SCREAMING_SNAKE_CASE_ = False if self.is_zeroa() or self.is_zeroa(): SCREAMING_SNAKE_CASE_ = set(['''cpu''', '''nvme'''] ) SCREAMING_SNAKE_CASE_ = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: SCREAMING_SNAKE_CASE_ = True def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE_ = ds_key_long.split('''.''' ) SCREAMING_SNAKE_CASE_ = nodes.pop() for node in nodes: SCREAMING_SNAKE_CASE_ = config.get(SCREAMING_SNAKE_CASE_ ) if config is None: return None, ds_key return config, ds_key def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = self.find_config_node(SCREAMING_SNAKE_CASE_ ) if config is None: return default return config.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE_ = ds_key_long.split('''.''' ) for node in nodes: SCREAMING_SNAKE_CASE_ = config SCREAMING_SNAKE_CASE_ = config.get(SCREAMING_SNAKE_CASE_ ) if config is None: if must_exist: raise ValueError(f'Can\'t find {ds_key_long} entry in the config: {self.config}' ) else: return # if found remove it if parent_config is not None: parent_config.pop(SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_value(SCREAMING_SNAKE_CASE_ ) return False if value is None else bool(SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.get_value(SCREAMING_SNAKE_CASE_ ) return False if value is None else not bool(SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" return self._stage == 2 def _lowercase (self ): """simple docstring""" return self._stage == 3 def _lowercase (self ): """simple docstring""" return self._offload class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = engine def _lowercase (self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" self.engine.backward(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class snake_case ( __lowercase ): def __init__(self , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ , device_placement=SCREAMING_SNAKE_CASE_ , scaler=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = hasattr(self.optimizer , '''overflow''' ) def _lowercase (self , SCREAMING_SNAKE_CASE_=None ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _lowercase (self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _lowercase (self ): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class snake_case ( __lowercase ): def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0.0_01 , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = params SCREAMING_SNAKE_CASE_ = lr SCREAMING_SNAKE_CASE_ = weight_decay SCREAMING_SNAKE_CASE_ = kwargs class snake_case : def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = optimizer SCREAMING_SNAKE_CASE_ = total_num_steps SCREAMING_SNAKE_CASE_ = warmup_num_steps SCREAMING_SNAKE_CASE_ = kwargs
708
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowerCamelCase ( __a, __a=0.9_9_9, __a="cosine", ): if alpha_transform_type == "cosine": def alpha_bar_fn(__a ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__a ): return math.exp(t * -1_2.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) SCREAMING_SNAKE_CASE_ = [] for i in range(__a ): SCREAMING_SNAKE_CASE_ = i / num_diffusion_timesteps SCREAMING_SNAKE_CASE_ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__a ) / alpha_bar_fn(__a ), __a ) ) return torch.tensor(__a, dtype=torch.floataa ) class snake_case ( __lowercase , __lowercase ): UpperCAmelCase__ = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ = 2 @register_to_config def __init__(self , SCREAMING_SNAKE_CASE_ = 10_00 , SCREAMING_SNAKE_CASE_ = 0.0_00_85 , SCREAMING_SNAKE_CASE_ = 0.0_12 , SCREAMING_SNAKE_CASE_ = "linear" , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "epsilon" , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = "linspace" , SCREAMING_SNAKE_CASE_ = 0 , ): """simple docstring""" if trained_betas is not None: SCREAMING_SNAKE_CASE_ = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) elif beta_schedule == "linear": SCREAMING_SNAKE_CASE_ = torch.linspace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. SCREAMING_SNAKE_CASE_ = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule SCREAMING_SNAKE_CASE_ = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": SCREAMING_SNAKE_CASE_ = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) SCREAMING_SNAKE_CASE_ = 1.0 - self.betas SCREAMING_SNAKE_CASE_ = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = use_karras_sigmas def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): """simple docstring""" if schedule_timesteps is None: SCREAMING_SNAKE_CASE_ = self.timesteps SCREAMING_SNAKE_CASE_ = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: SCREAMING_SNAKE_CASE_ = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: SCREAMING_SNAKE_CASE_ = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep SCREAMING_SNAKE_CASE_ = self._index_counter[timestep_int] return indices[pos].item() @property def _lowercase (self ): """simple docstring""" if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = self.sigmas[step_index] SCREAMING_SNAKE_CASE_ = sample / ((sigma**2 + 1) ** 0.5) return sample def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = num_inference_steps SCREAMING_SNAKE_CASE_ = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": SCREAMING_SNAKE_CASE_ = np.linspace(0 , num_train_timesteps - 1 , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": SCREAMING_SNAKE_CASE_ = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE_ = (np.arange(0 , SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": SCREAMING_SNAKE_CASE_ = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 SCREAMING_SNAKE_CASE_ = (np.arange(SCREAMING_SNAKE_CASE_ , 0 , -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) SCREAMING_SNAKE_CASE_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) SCREAMING_SNAKE_CASE_ = np.log(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = np.interp(SCREAMING_SNAKE_CASE_ , np.arange(0 , len(SCREAMING_SNAKE_CASE_ ) ) , SCREAMING_SNAKE_CASE_ ) if self.config.use_karras_sigmas: SCREAMING_SNAKE_CASE_ = self._convert_to_karras(in_sigmas=SCREAMING_SNAKE_CASE_ , num_inference_steps=self.num_inference_steps ) SCREAMING_SNAKE_CASE_ = np.array([self._sigma_to_t(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for sigma in sigmas] ) SCREAMING_SNAKE_CASE_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ): # mps does not support float64 SCREAMING_SNAKE_CASE_ = timesteps.to(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE_ = timesteps.to(device=SCREAMING_SNAKE_CASE_ ) # empty dt and derivative SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter SCREAMING_SNAKE_CASE_ = defaultdict(SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = np.log(SCREAMING_SNAKE_CASE_ ) # get distribution SCREAMING_SNAKE_CASE_ = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range SCREAMING_SNAKE_CASE_ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) SCREAMING_SNAKE_CASE_ = low_idx + 1 SCREAMING_SNAKE_CASE_ = log_sigmas[low_idx] SCREAMING_SNAKE_CASE_ = log_sigmas[high_idx] # interpolate sigmas SCREAMING_SNAKE_CASE_ = (low - log_sigma) / (low - high) SCREAMING_SNAKE_CASE_ = np.clip(SCREAMING_SNAKE_CASE_ , 0 , 1 ) # transform interpolation to time range SCREAMING_SNAKE_CASE_ = (1 - w) * low_idx + w * high_idx SCREAMING_SNAKE_CASE_ = t.reshape(sigma.shape ) return t def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = in_sigmas[-1].item() SCREAMING_SNAKE_CASE_ = in_sigmas[0].item() SCREAMING_SNAKE_CASE_ = 7.0 # 7.0 is the value used in the paper SCREAMING_SNAKE_CASE_ = np.linspace(0 , 1 , SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE_ = sigma_min ** (1 / rho) SCREAMING_SNAKE_CASE_ = sigma_max ** (1 / rho) SCREAMING_SNAKE_CASE_ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def _lowercase (self ): """simple docstring""" return self.dt is None def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = True , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 SCREAMING_SNAKE_CASE_ = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: SCREAMING_SNAKE_CASE_ = self.sigmas[step_index] SCREAMING_SNAKE_CASE_ = self.sigmas[step_index + 1] else: # 2nd order / Heun's method SCREAMING_SNAKE_CASE_ = self.sigmas[step_index - 1] SCREAMING_SNAKE_CASE_ = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": SCREAMING_SNAKE_CASE_ = sigma_hat if self.state_in_first_order else sigma_next SCREAMING_SNAKE_CASE_ = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": SCREAMING_SNAKE_CASE_ = sigma_hat if self.state_in_first_order else sigma_next SCREAMING_SNAKE_CASE_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": SCREAMING_SNAKE_CASE_ = model_output else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: SCREAMING_SNAKE_CASE_ = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order SCREAMING_SNAKE_CASE_ = (sample - pred_original_sample) / sigma_hat # 3. delta timestep SCREAMING_SNAKE_CASE_ = sigma_next - sigma_hat # store for 2nd order step SCREAMING_SNAKE_CASE_ = derivative SCREAMING_SNAKE_CASE_ = dt SCREAMING_SNAKE_CASE_ = sample else: # 2. 2nd order / Heun's method SCREAMING_SNAKE_CASE_ = (sample - pred_original_sample) / sigma_next SCREAMING_SNAKE_CASE_ = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample SCREAMING_SNAKE_CASE_ = self.dt SCREAMING_SNAKE_CASE_ = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def _lowercase (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 SCREAMING_SNAKE_CASE_ = self.timesteps.to(original_samples.device , dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = timesteps.to(original_samples.device , dtype=torch.floataa ) else: SCREAMING_SNAKE_CASE_ = self.timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE_ = timesteps.to(original_samples.device ) SCREAMING_SNAKE_CASE_ = [self.index_for_timestep(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for t in timesteps] SCREAMING_SNAKE_CASE_ = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): SCREAMING_SNAKE_CASE_ = sigma.unsqueeze(-1 ) SCREAMING_SNAKE_CASE_ = original_samples + noise * sigma return noisy_samples def __len__(self ): """simple docstring""" return self.config.num_train_timesteps
628
0
"""simple docstring""" from __future__ import annotations def UpperCamelCase__ ( lowercase__ : list[float] ): snake_case : Optional[Any] = 0.00 snake_case : Any = 0 for resistor in resistors: if resistor <= 0: snake_case : List[str] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(lowercase__ ) first_sum += 1 / float(lowercase__ ) index += 1 return 1 / first_sum def UpperCamelCase__ ( lowercase__ : list[float] ): snake_case : List[Any] = 0.00 snake_case : Optional[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: snake_case : Dict = F'''Resistor at index {index} has a negative value!''' raise ValueError(lowercase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
134
"""simple docstring""" import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = tempfile.mkdtemp() snake_case : List[str] = SamImageProcessor() snake_case : List[Any] = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case : Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : int = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case : List[Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = self.get_image_processor() snake_case : Tuple = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : List[str] = self.prepare_image_inputs() snake_case : Optional[int] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case : Union[str, Any] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_torch def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.get_image_processor() snake_case : int = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : Dict = [torch.ones((1, 3, 5, 5) )] snake_case : Optional[Any] = [[1_764, 2_646]] snake_case : List[Any] = [[683, 1_024]] snake_case : int = processor.post_process_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case : Tuple = processor.post_process_masks( SCREAMING_SNAKE_CASE , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np snake_case : Any = [np.ones((1, 3, 5, 5) )] snake_case : Optional[int] = processor.post_process_masks(SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(SCREAMING_SNAKE_CASE ): snake_case : Tuple = processor.post_process_masks(SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) ) @require_vision @require_tf class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[Any] = tempfile.mkdtemp() snake_case : Any = SamImageProcessor() snake_case : List[str] = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : str = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case : Tuple = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[int] = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case : List[str] = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case : Tuple = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = self.get_image_processor() snake_case : Union[str, Any] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : str = self.prepare_image_inputs() snake_case : List[Any] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="np" ) snake_case : List[str] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) @require_tf def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = self.get_image_processor() snake_case : List[str] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : Any = [tf.ones((1, 3, 5, 5) )] snake_case : Dict = [[1_764, 2_646]] snake_case : Optional[Any] = [[683, 1_024]] snake_case : int = processor.post_process_masks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case : str = processor.post_process_masks( SCREAMING_SNAKE_CASE , tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) , tf.convert_to_tensor(SCREAMING_SNAKE_CASE ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np snake_case : str = [np.ones((1, 3, 5, 5) )] snake_case : Any = processor.post_process_masks( SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) snake_case : List[str] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): snake_case : Optional[Any] = processor.post_process_masks( SCREAMING_SNAKE_CASE , np.array(SCREAMING_SNAKE_CASE ) , np.array(SCREAMING_SNAKE_CASE ) , return_tensors="tf" ) @require_vision @require_torchvision class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = tempfile.mkdtemp() snake_case : str = SamImageProcessor() snake_case : Dict = SamProcessor(SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self , **SCREAMING_SNAKE_CASE ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE ).image_processor def lowerCamelCase_ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] snake_case : Dict = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Dict = self.get_image_processor() snake_case : List[str] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) snake_case : str = [tf.convert_to_tensor(SCREAMING_SNAKE_CASE )] snake_case : str = [torch.tensor(SCREAMING_SNAKE_CASE )] snake_case : int = [[1_764, 2_646]] snake_case : List[Any] = [[683, 1_024]] snake_case : Any = processor.post_process_masks( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors="tf" ) snake_case : Optional[int] = processor.post_process_masks( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = self.get_image_processor() snake_case : Optional[int] = SamProcessor(image_processor=SCREAMING_SNAKE_CASE ) snake_case : Any = self.prepare_image_inputs() snake_case : Dict = image_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" )["pixel_values"].numpy() snake_case : Dict = processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" )["pixel_values"].numpy() snake_case : List[str] = image_processor(SCREAMING_SNAKE_CASE , return_tensors="tf" )["pixel_values"].numpy() snake_case : List[str] = processor(images=SCREAMING_SNAKE_CASE , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
134
1
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( A : Union[str, Any] , A : Any , A : Tuple ) -> Any: """simple docstring""" __snake_case : Dict = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, oder?', } # BLUE scores as follows: # "pair": [fairseq, transformers] __snake_case : int = { 'ru-en': ['[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)', '39.20'], 'en-ru': ['[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)', '33.47'], 'en-de': ['[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)', '42.83'], 'de-en': ['[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)', '41.35'], } __snake_case : int = F"""{src_lang}-{tgt_lang}""" __snake_case : List[str] = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"facebook/wmt19-{src_lang}-{tgt_lang}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR's WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) """ os.makedirs(A , exist_ok=A ) __snake_case : Union[str, Any] = os.path.join(A , 'README.md' ) print(F"""Generating {path}""" ) with open(A , 'w' , encoding='utf-8' ) as f: f.write(A ) # make sure we are under the root of the project __A = Path(__file__).resolve().parent.parent.parent __A = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __A , __A , __A = model_name.split('''-''') __A = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
61
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( A : list ) -> list: """simple docstring""" __snake_case : Tuple = False while is_sorted is False: # Until all the indices are traversed keep looping __snake_case : Optional[Any] = True for i in range(0 , len(A ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __snake_case ,__snake_case : int = input_list[i + 1], input_list[i] # swapping if elements not in order __snake_case : List[Any] = False for i in range(1 , len(A ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __snake_case ,__snake_case : Tuple = input_list[i + 1], input_list[i] # swapping if elements not in order __snake_case : Any = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') __A = [int(x) for x in input().split()] # inputing elements of the list in one line __A = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
61
1
from collections import defaultdict from math import ceil, sqrt def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 1000000 , SCREAMING_SNAKE_CASE__ = 10 ): snake_case_ = defaultdict(SCREAMING_SNAKE_CASE__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: snake_case_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: snake_case_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(SCREAMING_SNAKE_CASE__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f"""{solution() = }""")
39
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="Speech2TextFeatureExtractor" a : int ="Speech2TextTokenizer" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) lowerCAmelCase : Any = self.feature_extractor lowerCAmelCase : str = False def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCAmelCase : Any = kwargs.pop("raw_speech" ) else: lowerCAmelCase : Optional[int] = kwargs.pop("audio" , snake_case__ ) lowerCAmelCase : Union[str, Any] = kwargs.pop("sampling_rate" , snake_case__ ) lowerCAmelCase : str = kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: lowerCAmelCase : int = args[0] lowerCAmelCase : List[Any] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCAmelCase : Dict = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: lowerCAmelCase : int = self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase : Dict = encodings["input_ids"] return inputs def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def lowercase__ ( self ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCAmelCase : List[str] = True lowerCAmelCase : Any = self.tokenizer yield lowerCAmelCase : Optional[Any] = self.feature_extractor lowerCAmelCase : Dict = False
645
0
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def A ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = LxmertConfig.from_json_file(snake_case__ ) print(f"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE__ = LxmertForPreTraining(snake_case__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": A_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
719
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Tuple = "▁" A_ : int = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } A_ : Dict = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } A_ : Dict = { "facebook/m2m100_418M": 1_024, } # fmt: off A_ : Any = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class lowerCamelCase (A__ ): lowerCamelCase__ : Optional[int] = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Tuple = ['input_ids', 'attention_mask'] lowerCamelCase__ : List[int] = [] lowerCamelCase__ : List[int] = [] def __init__( self : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : int="<s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : Any="</s>" , __UpperCAmelCase : Any="<pad>" , __UpperCAmelCase : str="<unk>" , __UpperCAmelCase : Dict="m2m100" , __UpperCAmelCase : Optional[Dict[str, Any]] = None , __UpperCAmelCase : str=8 , **__UpperCAmelCase : str , ) -> None: SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE__ = language_codes SCREAMING_SNAKE_CASE__ = FAIRSEQ_LANGUAGE_CODES[language_codes] SCREAMING_SNAKE_CASE__ = {lang_code: F"""__{lang_code}__""" for lang_code in fairseq_language_code} SCREAMING_SNAKE_CASE__ = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__UpperCAmelCase ) for lang_code in fairseq_language_code if self.get_lang_token(__UpperCAmelCase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , language_codes=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__UpperCAmelCase , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = load_json(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ = spm_file SCREAMING_SNAKE_CASE__ = load_spm(__UpperCAmelCase , self.sp_model_kwargs ) SCREAMING_SNAKE_CASE__ = len(self.encoder ) SCREAMING_SNAKE_CASE__ = { self.get_lang_token(__UpperCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__UpperCAmelCase ) } SCREAMING_SNAKE_CASE__ = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__UpperCAmelCase )} SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.lang_token_to_id.items()} SCREAMING_SNAKE_CASE__ = src_lang if src_lang is not None else """en""" SCREAMING_SNAKE_CASE__ = tgt_lang SCREAMING_SNAKE_CASE__ = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) SCREAMING_SNAKE_CASE__ = num_madeup_words @property def SCREAMING_SNAKE_CASE ( self : int ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def SCREAMING_SNAKE_CASE ( self : Any ) -> str: return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : str ) -> List[str]: return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Tuple ) -> Tuple: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__UpperCAmelCase , self.encoder[self.unk_token] ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : int ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__UpperCAmelCase , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__UpperCAmelCase ) + token SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(__UpperCAmelCase ) out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None , __UpperCAmelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def SCREAMING_SNAKE_CASE ( self : List[str] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ) -> Dict: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : Union[str, Any] , __UpperCAmelCase : Dict ) -> None: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = load_spm(self.spm_file , self.sp_model_kwargs ) def SCREAMING_SNAKE_CASE ( self : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE__ = Path(__UpperCAmelCase ) if not save_dir.is_dir(): raise OSError(F"""{save_directory} should be a directory""" ) SCREAMING_SNAKE_CASE__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) SCREAMING_SNAKE_CASE__ = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCAmelCase , """wb""" ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (str(__UpperCAmelCase ), str(__UpperCAmelCase )) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str = "en" , __UpperCAmelCase : Optional[List[str]] = None , __UpperCAmelCase : str = "ro" , **__UpperCAmelCase : str , ) -> BatchEncoding: SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[str] , __UpperCAmelCase : Optional[str] , **__UpperCAmelCase : Tuple ) -> str: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.get_lang_id(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE ( self : str ) -> str: self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = self.get_lang_token(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE__ = [self.cur_lang_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE__ = self.get_lang_token(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = self.lang_token_to_id[lang_token] SCREAMING_SNAKE_CASE__ = [self.cur_lang_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id] def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : str ) -> str: return self.lang_code_to_token[lang] def SCREAMING_SNAKE_CASE ( self : int , __UpperCAmelCase : str ) -> int: SCREAMING_SNAKE_CASE__ = self.get_lang_token(__UpperCAmelCase ) return self.lang_token_to_id[lang_token] def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = sentencepiece.SentencePieceProcessor(**snake_case__ ) spm.Load(str(snake_case__ ) ) return spm def A ( snake_case__ ): '''simple docstring''' with open(snake_case__ , """r""" ) as f: return json.load(snake_case__ ) def A ( snake_case__ , snake_case__ ): '''simple docstring''' with open(snake_case__ , """w""" ) as f: json.dump(snake_case__ , snake_case__ , indent=2 )
616
0
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
693
import argparse import json from tqdm import tqdm def _A ( ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__snake_case , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__snake_case , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__snake_case , help="where to store parsed gold_data_path file" , ) __SCREAMING_SNAKE_CASE = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: __SCREAMING_SNAKE_CASE = json.load(__snake_case ) for dpr_record in tqdm(__snake_case ): __SCREAMING_SNAKE_CASE = dpr_record["question"] __SCREAMING_SNAKE_CASE = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__snake_case ) + "\n" ) if __name__ == "__main__": main()
693
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase: List[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase: Any = 250_004 UpperCAmelCase: Tuple = 250_020 @require_sentencepiece @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = MBartTokenizer SCREAMING_SNAKE_CASE_ : List[str] = MBartTokenizerFast SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : str = True def lowerCamelCase__ ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowercase : List[Any] = MBartTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase__ ( self ): _lowercase : str = MBartTokenizer(UpperCAmelCase_ ,keep_accents=UpperCAmelCase_ ) _lowercase : int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(UpperCAmelCase_ ,["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,[value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] ,) _lowercase : int = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] ,) _lowercase : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) _lowercase : str = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ ,[ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] ,) def lowerCamelCase__ ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowercase : Dict = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Optional[Any] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) _lowercase : Tuple = tempfile.mkdtemp() _lowercase : Tuple = tokenizer_r.save_pretrained(UpperCAmelCase_ ) _lowercase : int = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) _lowercase : Any = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) # Checks everything loads correctly in the same way _lowercase : int = tokenizer_r.from_pretrained(UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ ,UpperCAmelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=True _lowercase : Optional[Any] = tempfile.mkdtemp() _lowercase : List[Any] = tokenizer_r.save_pretrained(UpperCAmelCase_ ,legacy_format=UpperCAmelCase_ ) _lowercase : Optional[Any] = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it save with the same files self.assertSequenceEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) # Checks everything loads correctly in the same way _lowercase : List[str] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) _lowercase : Optional[Any] = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ ,UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) # Save tokenizer rust, legacy_format=False _lowercase : Optional[Any] = tempfile.mkdtemp() _lowercase : Any = tokenizer_r.save_pretrained(UpperCAmelCase_ ,legacy_format=UpperCAmelCase_ ) _lowercase : Dict = tokenizer_p.save_pretrained(UpperCAmelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowercase : Optional[Any] = tokenizer_r.from_pretrained(UpperCAmelCase_ ) _lowercase : Any = tokenizer_p.from_pretrained(UpperCAmelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(UpperCAmelCase_ ,UpperCAmelCase_ ) ) shutil.rmtree(UpperCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = "facebook/mbart-large-en-ro" SCREAMING_SNAKE_CASE_ : Dict = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] SCREAMING_SNAKE_CASE_ : Any = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] SCREAMING_SNAKE_CASE_ : Optional[int] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def lowerCamelCase__ ( cls ): _lowercase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name ,src_lang="""en_XX""" ,tgt_lang="""ro_RO""" ) _lowercase : List[str] = 1 return cls def lowerCamelCase__ ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] ,25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] ,25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] ,25_00_20 ) def lowerCamelCase__ ( self ): _lowercase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): self.assertIn(UpperCAmelCase_ ,self.tokenizer.all_special_ids ) _lowercase : Tuple = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] _lowercase : List[Any] = self.tokenizer.decode(UpperCAmelCase_ ,skip_special_tokens=UpperCAmelCase_ ) _lowercase : Any = self.tokenizer.decode(generated_ids[1:] ,skip_special_tokens=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : str = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] ,UpperCAmelCase_ ) _lowercase : Tuple = 10 _lowercase : Dict = self.tokenizer(UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] ,2 ) self.assertEqual(ids[-1] ,UpperCAmelCase_ ) self.assertEqual(len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) ,[25_00_26, 25_00_01] ) def lowerCamelCase__ ( self ): _lowercase : Tuple = tempfile.mkdtemp() _lowercase : Optional[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCAmelCase_ ) _lowercase : List[str] = MBartTokenizer.from_pretrained(UpperCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids ,UpperCAmelCase_ ) @require_torch def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = self.tokenizer(self.src_text ,text_target=self.tgt_text ,padding=UpperCAmelCase_ ,return_tensors="""pt""" ) _lowercase : str = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def lowerCamelCase__ ( self ): _lowercase : Dict = self.tokenizer( self.src_text ,text_target=self.tgt_text ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=len(self.expected_src_tokens ) ,return_tensors="""pt""" ,) _lowercase : List[str] = shift_tokens_right(batch["""labels"""] ,self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCAmelCase_ ,UpperCAmelCase_ ) self.assertEqual((2, 14) ,batch.input_ids.shape ) self.assertEqual((2, 14) ,batch.attention_mask.shape ) _lowercase : int = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens ,UpperCAmelCase_ ) self.assertEqual(2 ,batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens ,[] ) self.assertEqual(self.tokenizer.suffix_tokens ,[self.tokenizer.eos_token_id, EN_CODE] ) def lowerCamelCase__ ( self ): _lowercase : Any = self.tokenizer(self.src_text ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=3 ,return_tensors="""pt""" ) _lowercase : List[str] = self.tokenizer( text_target=self.tgt_text ,padding=UpperCAmelCase_ ,truncation=UpperCAmelCase_ ,max_length=10 ,return_tensors="""pt""" ) _lowercase : Any = targets["""input_ids"""] _lowercase : Dict = shift_tokens_right(UpperCAmelCase_ ,self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] ,3 ) self.assertEqual(batch.decoder_input_ids.shape[1] ,10 ) @require_torch def lowerCamelCase__ ( self ): _lowercase : List[str] = self.tokenizer._build_translation_inputs( """A test""" ,return_tensors="""pt""" ,src_lang="""en_XX""" ,tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(UpperCAmelCase_ ) ,{ # A, test, EOS, en_XX """input_ids""": [[62, 30_34, 2, 25_00_04]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } ,)
600
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if n == 1 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return 0 elif n == 2: return 1 else: _lowercase : int = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : str = 0 _lowercase : Any = 2 while digits < n: index += 1 _lowercase : Union[str, Any] = len(str(fibonacci(__UpperCAmelCase ) ) ) return index def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase = 1000 ): return fibonacci_digits_index(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
600
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[Any] = logging.get_logger() @dataclass class _a : """simple docstring""" A_ = 42 A_ = field(default_factory=UpperCAmelCase__ ) A_ = field(default_factory=UpperCAmelCase__ ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: UpperCamelCase_ = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_UpperCAmelCase ) def __call__( self , _UpperCAmelCase ) -> List[str]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_UpperCAmelCase ) [x.remove() for x in self.handles] return self @property def _UpperCAmelCase ( self ) -> List[str]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _a : """simple docstring""" A_ = 42 A_ = 42 A_ = 1 A_ = field(default_factory=UpperCAmelCase__ ) A_ = field(default_factory=UpperCAmelCase__ ) A_ = True def __call__( self , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = Tracker(self.dest )(_UpperCAmelCase ).parametrized UpperCamelCase_ = Tracker(self.src )(_UpperCAmelCase ).parametrized UpperCamelCase_ = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) ) UpperCamelCase_ = list(filter(lambda _UpperCAmelCase : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ) and self.raise_if_mismatch: raise Exception( f"""Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while""" f""" destination module has {len(_UpperCAmelCase )}.""" ) for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""" ) class _a ( nn.Module ): """simple docstring""" def __init__( self , _UpperCAmelCase ) -> Optional[Any]: super().__init__() UpperCamelCase_ = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f"""Unexpected layer name {k}""" UpperCamelCase_ = len(_UpperCAmelCase ) + 1 feature_blocks.append((f"""res{block_index}""", v) ) UpperCamelCase_ = nn.ModuleDict(_UpperCAmelCase ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: return get_trunk_forward_outputs( _UpperCAmelCase , out_feat_keys=_UpperCAmelCase , feature_blocks=self._feature_blocks , ) class _a ( UpperCAmelCase__ ): """simple docstring""" def _UpperCAmelCase ( self , _UpperCAmelCase ) -> str: UpperCamelCase_ = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , _UpperCAmelCase ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: UpperCamelCase_ = self.convert_name_to_timm(_UpperCAmelCase ) UpperCamelCase_ = partial(lambda: (timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval(), None) ) else: UpperCamelCase_ = super().__getitem__(_UpperCAmelCase ) return val class _a ( UpperCAmelCase__ ): """simple docstring""" def __getitem__( self , _UpperCAmelCase ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: UpperCamelCase_ = RegNetModel else: UpperCamelCase_ = RegNetForImageClassification return val def _snake_case (__lowercase , __lowercase , __lowercase): for from_key, to_key in keys: UpperCamelCase_ = from_state_dict[from_key].clone() print(f"""Copied key={from_key} to={to_key}""") return to_state_dict def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = True , ): print(f"""Converting {name}...""") with torch.no_grad(): UpperCamelCase_ , UpperCamelCase_ = from_model_func() UpperCamelCase_ = our_model_func(__lowercase).eval() UpperCamelCase_ = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase) UpperCamelCase_ = torch.randn((1, 3, 224, 224)) module_transfer(__lowercase) if from_state_dict is not None: UpperCamelCase_ = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCamelCase_ = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] UpperCamelCase_ = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase) our_model.load_state_dict(__lowercase) UpperCamelCase_ = our_model(__lowercase , output_hidden_states=__lowercase) UpperCamelCase_ = ( our_outputs.logits if isinstance(__lowercase , __lowercase) else our_outputs.last_hidden_state ) UpperCamelCase_ = from_model(__lowercase) UpperCamelCase_ = from_output[-1] if type(__lowercase) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCamelCase_ = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=__lowercase , ) UpperCamelCase_ = 224 if 'seer' not in name else 384 # we can use the convnext one UpperCamelCase_ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=__lowercase) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=__lowercase , ) print(f"""Pushed {name}""") def _snake_case (__lowercase , __lowercase = None , __lowercase = True): UpperCamelCase_ = 'imagenet-1k-id2label.json' UpperCamelCase_ = 1000 UpperCamelCase_ = (1, num_labels) UpperCamelCase_ = 'huggingface/label-files' UpperCamelCase_ = num_labels UpperCamelCase_ = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='dataset')) , 'r')) UpperCamelCase_ = {int(__lowercase): v for k, v in idalabel.items()} UpperCamelCase_ = idalabel UpperCamelCase_ = {v: k for k, v in idalabel.items()} UpperCamelCase_ = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase) UpperCamelCase_ = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x'), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x'), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x'), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x'), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x'), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='x'), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='x'), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='x'), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='x'), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='x'), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='x'), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='x'), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010), } UpperCamelCase_ = NameToOurModelFuncMap() UpperCamelCase_ = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowercase , __lowercase) -> Tuple[nn.Module, Dict]: UpperCamelCase_ = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase) , map_location='cpu') UpperCamelCase_ = model_func() # check if we have a head, if yes add it UpperCamelCase_ = files['classy_state_dict']['base_model']['model'] UpperCamelCase_ = model_state_dict['trunk'] model.load_state_dict(__lowercase) return model.eval(), model_state_dict["heads"] # pretrained UpperCamelCase_ = partial( __lowercase , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase_ = partial( __lowercase , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase_ = partial( __lowercase , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf()) , ) UpperCamelCase_ = partial( __lowercase , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52))) , ) # IN1K finetuned UpperCamelCase_ = partial( __lowercase , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase_ = partial( __lowercase , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase_ = partial( __lowercase , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf()) , ) UpperCamelCase_ = partial( __lowercase , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52))) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) snake_case__ : Dict = parser.parse_args() snake_case__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
23
"""simple docstring""" from collections.abc import Callable class a__ : def __init__( self :Tuple , _lowerCamelCase :Callable | None = None ): '''simple docstring''' UpperCamelCase_ : list =[] # Stores indexes of each item for supporting updates and deletion. UpperCamelCase_ : dict ={} # Stores current size of heap. UpperCamelCase_ : Any =0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCamelCase_ : List[str] =key or (lambda _lowerCamelCase : x) def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : List[str] =int(2 * i + 1 ) return left if 0 < left < self.size else None def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =int(2 * i + 2 ) return right if 0 < right < self.size else None def lowerCamelCase_ ( self :Dict , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ , UpperCamelCase_ : Optional[int] =( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] =self.arr[j], self.arr[i] def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def lowerCamelCase_ ( self :Any , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : int =self._left(_lowerCamelCase ) UpperCamelCase_ : List[Any] =self._right(_lowerCamelCase ) UpperCamelCase_ : Optional[Any] =i if left is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : Optional[int] =left if right is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ : List[Any] =right return valid_parent def lowerCamelCase_ ( self :Any , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Dict =self._parent(_lowerCamelCase ) while parent is not None and not self._cmp(_lowerCamelCase , _lowerCamelCase ): self._swap(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : Dict =parent, self._parent(_lowerCamelCase ) def lowerCamelCase_ ( self :List[str] , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =self._get_valid_parent(_lowerCamelCase ) while valid_parent != index: self._swap(_lowerCamelCase , _lowerCamelCase ) UpperCamelCase_ , UpperCamelCase_ : int =valid_parent, self._get_valid_parent(_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' if item not in self.pos_map: return UpperCamelCase_ : List[Any] =self.pos_map[item] UpperCamelCase_ : int =[item, self.key(_lowerCamelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_lowerCamelCase ) self._heapify_down(_lowerCamelCase ) def lowerCamelCase_ ( self :Tuple , _lowerCamelCase :int ): '''simple docstring''' if item not in self.pos_map: return UpperCamelCase_ : Any =self.pos_map[item] del self.pos_map[item] UpperCamelCase_ : Dict =self.arr[self.size - 1] UpperCamelCase_ : Optional[int] =index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_lowerCamelCase ) self._heapify_down(_lowerCamelCase ) def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :int , _lowerCamelCase :int ): '''simple docstring''' UpperCamelCase_ : Optional[int] =len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_lowerCamelCase )] ) else: UpperCamelCase_ : str =[item, self.key(_lowerCamelCase )] UpperCamelCase_ : Optional[int] =self.size self.size += 1 self._heapify_up(self.size - 1 ) def lowerCamelCase_ ( self :List[Any] ): '''simple docstring''' return self.arr[0] if self.size else None def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : int =self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def A_ ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
357
0
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCamelCase_ = logging.get_logger(__name__) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ = None ) -> Optional[Any]: '''simple docstring''' snake_case_ = tesseract_config if tesseract_config is not None else """""" # apply OCR snake_case_ = to_pil_image(lowercase_ ) snake_case_ , snake_case_ = pil_image.size snake_case_ = pytesseract.image_to_data(lowercase_ , lang=lowercase_ , output_type="""dict""" , config=lowercase_ ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates snake_case_ = [idx for idx, word in enumerate(lowercase_ ) if not word.strip()] snake_case_ = [word for idx, word in enumerate(lowercase_ ) if idx not in irrelevant_indices] snake_case_ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] snake_case_ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] snake_case_ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] snake_case_ = [coord for idx, coord in enumerate(lowercase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format snake_case_ = [] for x, y, w, h in zip(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): snake_case_ = [x, y, x + w, y + h] actual_boxes.append(lowercase_ ) # finally, normalize the bounding boxes snake_case_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase_ , lowercase_ , lowercase_ ) ) assert len(lowercase_ ) == len(lowercase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : str = ['pixel_values'] def __init__( self , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = "" , **lowerCamelCase , ) -> None: super().__init__(**lowerCamelCase ) snake_case_ = size if size is not None else {"""height""": 224, """width""": 224} snake_case_ = get_size_dict(lowerCamelCase ) snake_case_ = do_resize snake_case_ = size snake_case_ = resample snake_case_ = apply_ocr snake_case_ = ocr_lang snake_case_ = tesseract_config def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = PILImageResampling.BILINEAR , lowerCamelCase = None , **lowerCamelCase , ) -> np.ndarray: snake_case_ = get_size_dict(lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) snake_case_ = (size["""height"""], size["""width"""]) return resize(lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) -> PIL.Image.Image: snake_case_ = do_resize if do_resize is not None else self.do_resize snake_case_ = size if size is not None else self.size snake_case_ = get_size_dict(lowerCamelCase ) snake_case_ = resample if resample is not None else self.resample snake_case_ = apply_ocr if apply_ocr is not None else self.apply_ocr snake_case_ = ocr_lang if ocr_lang is not None else self.ocr_lang snake_case_ = tesseract_config if tesseract_config is not None else self.tesseract_config snake_case_ = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) # All transformations expect numpy arrays. snake_case_ = [to_numpy_array(lowerCamelCase ) for image in images] if apply_ocr: requires_backends(self , """pytesseract""" ) snake_case_ = [] snake_case_ = [] for image in images: snake_case_ , snake_case_ = apply_tesseract(lowerCamelCase , lowerCamelCase , lowerCamelCase ) words_batch.append(lowerCamelCase ) boxes_batch.append(lowerCamelCase ) if do_resize: snake_case_ = [self.resize(image=lowerCamelCase , size=lowerCamelCase , resample=lowerCamelCase ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) snake_case_ = [flip_channel_order(lowerCamelCase ) for image in images] snake_case_ = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] snake_case_ = BatchFeature(data={"""pixel_values""": images} , tensor_type=lowerCamelCase ) if apply_ocr: snake_case_ = words_batch snake_case_ = boxes_batch return data
161
from math import ceil def UpperCamelCase( lowercase_ , lowercase_ ) -> Any: '''simple docstring''' snake_case_ = list(range(0 , lowercase_ ) ) snake_case_ = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check snake_case_ = [] for i in device_map_blocks: if device_map_blocks.count(lowercase_ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(lowercase_ ) # Missing blocks snake_case_ = [i for i in blocks if i not in device_map_blocks] snake_case_ = [i for i in device_map_blocks if i not in blocks] if len(lowercase_ ) != 0: raise ValueError( """Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.""" """ These attention blocks were specified more than once: """ + str(lowercase_ ) ) if len(lowercase_ ) != 0: raise ValueError( """There are attention blocks for this model that are not specified in the device_map. Add these attention """ """blocks to a device on the device_map: """ + str(lowercase_ ) ) if len(lowercase_ ) != 0: raise ValueError( """The device_map contains more attention blocks than this model has. Remove these from the device_map:""" + str(lowercase_ ) ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = list(range(lowercase_ ) ) snake_case_ = int(ceil(n_layers / len(lowercase_ ) ) ) snake_case_ = [layers[i : i + n_blocks] for i in range(0 , lowercase_ , lowercase_ )] return dict(zip(lowercase_ , lowercase_ ) )
161
1
from math import ceil def __a ( A__ : str , A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = list(range(0 , A__ ) ) SCREAMING_SNAKE_CASE = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check SCREAMING_SNAKE_CASE = [] for i in device_map_blocks: if device_map_blocks.count(A__ ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(A__ ) # Missing blocks SCREAMING_SNAKE_CASE = [i for i in blocks if i not in device_map_blocks] SCREAMING_SNAKE_CASE = [i for i in device_map_blocks if i not in blocks] if len(A__ ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(A__ ) ) if len(A__ ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(A__ ) ) if len(A__ ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(A__ ) ) def __a ( A__ : Dict , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = list(range(A__ ) ) SCREAMING_SNAKE_CASE = int(ceil(n_layers / len(A__ ) ) ) SCREAMING_SNAKE_CASE = [layers[i : i + n_blocks] for i in range(0 , A__ , A__ )] return dict(zip(A__ , A__ ) )
16
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = word.split() def justify(lowercase , lowercase , lowercase ) -> str: __lowercase = max_width - width __lowercase = len(lowercase ) if len(lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __lowercase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __lowercase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __lowercase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowercase ): num_spaces_between_words_list[i] += 1 __lowercase = [] for i in range(lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowercase ) __lowercase = [] __lowercase = [] __lowercase = 0 for word in words: if width + len(lowercase ) + len(lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowercase ) width += len(lowercase ) else: # justify the line and add it to result answer.append(justify(lowercase , lowercase , lowercase ) ) # reset new line and new width __lowercase , __lowercase = [word], len(lowercase ) __lowercase = max_width - width - len(lowercase ) answer.append(''' '''.join(lowercase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
534
0
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : """simple docstring""" def __init__( self , __snake_case , __snake_case=13 , __snake_case=30 , __snake_case=2 , __snake_case=3 , __snake_case=True , __snake_case=True , __snake_case=32 , __snake_case=5 , __snake_case=4 , __snake_case=37 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=10 , __snake_case=0.0_2 , __snake_case=None , __snake_case=2 , ): _UpperCamelCase : Dict = parent _UpperCamelCase : str = batch_size _UpperCamelCase : int = image_size _UpperCamelCase : Optional[Any] = patch_size _UpperCamelCase : List[Any] = num_channels _UpperCamelCase : List[str] = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : Optional[Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[int] = intermediate_size _UpperCamelCase : Tuple = hidden_act _UpperCamelCase : Optional[Any] = hidden_dropout_prob _UpperCamelCase : Optional[int] = attention_probs_dropout_prob _UpperCamelCase : Union[str, Any] = type_sequence_label_size _UpperCamelCase : Optional[int] = initializer_range _UpperCamelCase : Dict = scope _UpperCamelCase : List[str] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase : Dict = (image_size // patch_size) ** 2 _UpperCamelCase : Dict = num_patches + 1 def A__ ( self): _UpperCamelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase : int = None if self.use_labels: _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def A__ ( self): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : List[str] = ViTModel(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : List[Any] = model(__snake_case) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Dict = ViTForMaskedImageModeling(config=__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : Optional[Any] = ViTForMaskedImageModeling(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Union[str, Any] = model(__snake_case) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def A__ ( self , __snake_case , __snake_case , __snake_case): _UpperCamelCase : Optional[Any] = self.type_sequence_label_size _UpperCamelCase : Optional[int] = ViTForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Any = model(__snake_case , labels=__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCamelCase : Dict = 1 _UpperCamelCase : List[Any] = ViTForImageClassification(__snake_case) model.to(__snake_case) model.eval() _UpperCamelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase : Union[str, Any] = model(__snake_case) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def A__ ( self): _UpperCamelCase : Any = self.prepare_config_and_inputs() ( _UpperCamelCase ) : Optional[Any] = config_and_inputs _UpperCamelCase : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) a__ = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) a__ = True a__ = False a__ = False a__ = False def A__ ( self): _UpperCamelCase : Any = ViTModelTester(self) _UpperCamelCase : Any = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37) def A__ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def A__ ( self): pass def A__ ( self): _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Any = model_class(__snake_case) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear)) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Tuple = model_class(__snake_case) _UpperCamelCase : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[str] = [*signature.parameters.keys()] _UpperCamelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __snake_case) def A__ ( self): _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__snake_case) def A__ ( self): _UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case) @slow def A__ ( self): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Any = ViTModel.from_pretrained(__snake_case) self.assertIsNotNone(__snake_case) def lowerCamelCase_ ( ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def A__ ( self): _UpperCamelCase : List[str] = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224').to(__snake_case) _UpperCamelCase : Optional[int] = self.default_image_processor _UpperCamelCase : List[str] = prepare_img() _UpperCamelCase : Optional[Any] = image_processor(images=__snake_case , return_tensors='pt').to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : List[str] = model(**__snake_case) # verify the logits _UpperCamelCase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __snake_case) _UpperCamelCase : int = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6]).to(__snake_case) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1e-4)) @slow def A__ ( self): # ViT models have an `interpolate_pos_encoding` argument in their forward method, # allowing to interpolate the pre-trained position embeddings in order to use # the model on higher resolutions. The DINO model by Facebook AI leverages this # to visualize self-attention on higher resolution images. _UpperCamelCase : Tuple = ViTModel.from_pretrained('facebook/dino-vits8').to(__snake_case) _UpperCamelCase : Optional[int] = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=4_80) _UpperCamelCase : Tuple = prepare_img() _UpperCamelCase : Union[str, Any] = image_processor(images=__snake_case , return_tensors='pt') _UpperCamelCase : str = inputs.pixel_values.to(__snake_case) # forward pass with torch.no_grad(): _UpperCamelCase : Optional[Any] = model(__snake_case , interpolate_pos_encoding=__snake_case) # verify the logits _UpperCamelCase : Dict = torch.Size((1, 36_01, 3_84)) self.assertEqual(outputs.last_hidden_state.shape , __snake_case) _UpperCamelCase : Any = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]]).to(__snake_case) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __snake_case , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def A__ ( self): _UpperCamelCase : Any = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto') _UpperCamelCase : Union[str, Any] = self.default_image_processor _UpperCamelCase : Union[str, Any] = prepare_img() _UpperCamelCase : Tuple = image_processor(images=__snake_case , return_tensors='pt') _UpperCamelCase : List[Any] = inputs.pixel_values.to(__snake_case) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase : str = model(__snake_case)
705
import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ["""attention""", """attn"""], ["""encoder_attention""", """encoder_attn"""], ["""q_lin""", """q_proj"""], ["""k_lin""", """k_proj"""], ["""v_lin""", """v_proj"""], ["""out_lin""", """out_proj"""], ["""norm_embeddings""", """layernorm_embedding"""], ["""position_embeddings""", """embed_positions"""], ["""embeddings""", """embed_tokens"""], ["""ffn.lin""", """fc"""], ] def lowerCamelCase_ ( UpperCAmelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _UpperCamelCase : List[Any] = k.replace(UpperCAmelCase_ , UpperCAmelCase_ ) if k.startswith('encoder' ): _UpperCamelCase : Optional[Any] = k.replace('.attn' , '.self_attn' ) _UpperCamelCase : Optional[int] = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): _UpperCamelCase : Any = k.replace('norm1' , 'self_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm2' , 'encoder_attn_layer_norm' ) _UpperCamelCase : Tuple = k.replace('norm3' , 'final_layer_norm' ) return k def lowerCamelCase_ ( UpperCAmelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: _UpperCamelCase : Optional[int] = sd.pop(UpperCAmelCase_ ) _UpperCamelCase : str = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd _UpperCamelCase : Tuple = v lowerCAmelCase__ = ["""START"""] @torch.no_grad() def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : int = model['model'] _UpperCamelCase : List[Any] = BlenderbotConfig.from_json_file(UpperCAmelCase_ ) _UpperCamelCase : Any = BlenderbotForConditionalGeneration(UpperCAmelCase_ ) _UpperCamelCase : int = m.model.state_dict().keys() _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : int = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _UpperCamelCase : Optional[int] = rename_state_dict_key(UpperCAmelCase_ ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _UpperCamelCase : int = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase_ ) m.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) m.half() m.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--src_path""", type=str, help="""like blenderbot-model.bin""") parser.add_argument("""--save_dir""", default="""hf_blenderbot""", type=str, help="""Where to save converted model.""") parser.add_argument( """--hf_config_json""", default="""blenderbot-3b-config.json""", type=str, help="""Path to config to use""" ) lowerCAmelCase__ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
648
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' @staticmethod @abstractmethod def UpperCamelCase_ ( UpperCamelCase : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCamelCase_ ( self : int ): '''simple docstring''' raise NotImplementedError()
411
def lowerCamelCase_ ( lowerCAmelCase: str )-> str: _snake_case : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" _snake_case : List[Any] = '' _snake_case : Dict = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCAmelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _snake_case , _snake_case : Union[str, Any] = 0, 0 # length[i] shows the length of palindromic substring with center i _snake_case : Optional[Any] = [1 for i in range(len(lowerCAmelCase ) )] # for each character in new_string find corresponding palindromic string _snake_case : Any = 0 for j in range(len(lowerCAmelCase ) ): _snake_case : Tuple = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCAmelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _snake_case : List[str] = j - k + 1 # noqa: E741 _snake_case : List[Any] = j + k - 1 # update max_length and start position if max_length < length[j]: _snake_case : List[Any] = length[j] _snake_case : Optional[Any] = j # create that string _snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
411
1
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = mock.Mock() __A = 5_00 __A = {} __A = HTTPError __A = {} # Download this model to make sure it's in the cache. __A = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''', return_value=_lowerCamelCase ) as mock_head: __A = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = mock.Mock() __A = 5_00 __A = {} __A = HTTPError __A = {} # Download this model to make sure it's in the cache. __A = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''', return_value=_lowerCamelCase ) as mock_head: __A = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 try: __A = tempfile.mktemp() with open(_lowerCamelCase, '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', _lowerCamelCase ) __A = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''', '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''', _lowerCamelCase ) __A = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size, 10_00 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class snake_case ( unittest.TestCase ): '''simple docstring''' A_ : Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _SCREAMING_SNAKE_CASE ( cls : List[str] ): '''simple docstring''' __A = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any] ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A = os.path.join(_lowerCamelCase, '''vocab.txt''' ) with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __A = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('''test-tokenizer''', use_auth_token=self._token ) __A = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase, repo_id='''test-tokenizer''', push_to_hub=_lowerCamelCase, use_auth_token=self._token ) __A = BertTokenizer.from_pretrained(f'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A = os.path.join(_lowerCamelCase, '''vocab.txt''' ) with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __A = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''', use_auth_token=self._token ) __A = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) # Reset repo delete_repo(token=self._token, repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase, repo_id='''valid_org/test-tokenizer-org''', push_to_hub=_lowerCamelCase, use_auth_token=self._token ) __A = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab, tokenizer.vocab ) @require_tokenizers def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __A = os.path.join(_lowerCamelCase, '''vocab.txt''' ) with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __A = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''', use_auth_token=self._token ) __A = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer', trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __A = os.path.join(_lowerCamelCase, '''vocab.txt''' ) with open(_lowerCamelCase, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __A = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) __A = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub('''test-dynamic-tokenizer''', use_auth_token=self._token ) __A = AutoTokenizer.from_pretrained(f'{USER}/test-dynamic-tokenizer', trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizerFast''' ) __A = AutoTokenizer.from_pretrained( f'{USER}/test-dynamic-tokenizer', use_fast=_lowerCamelCase, trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__, '''CustomTokenizer''' ) class snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data, {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data, {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ), ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ), ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ), ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ), ['''BC''', '''A'''] ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ), ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ), ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ), ['''AB''', '''C'''] ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ), ['''ABC''', '''D'''] ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = Trie() __A = trie.cut_text('''ABC''', [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase, ['''AB''', '''C'''] )
719
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class snake_case : '''simple docstring''' A_ : Tuple = PegasusConfig A_ : Optional[Any] = {} A_ : Any = "gelu" def __init__( self : Optional[int], _lowerCamelCase : Union[str, Any], _lowerCamelCase : str=13, _lowerCamelCase : Optional[Any]=7, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : int=False, _lowerCamelCase : str=99, _lowerCamelCase : Union[str, Any]=32, _lowerCamelCase : str=2, _lowerCamelCase : List[Any]=4, _lowerCamelCase : Optional[Any]=37, _lowerCamelCase : Union[str, Any]=0.1, _lowerCamelCase : Optional[int]=0.1, _lowerCamelCase : Optional[Any]=40, _lowerCamelCase : List[str]=2, _lowerCamelCase : Dict=1, _lowerCamelCase : Any=0, ): '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = eos_token_id __A = pad_token_id __A = bos_token_id def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) __A = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) __A = tf.concat([input_ids, eos_tensor], axis=1 ) __A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __A = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) __A = prepare_pegasus_inputs_dict(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) return config, inputs_dict def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : Union[str, Any], _lowerCamelCase : Tuple ): '''simple docstring''' __A = TFPegasusModel(config=_lowerCamelCase ).get_decoder() __A = inputs_dict['''input_ids'''] __A = input_ids[:1, :] __A = inputs_dict['''attention_mask'''][:1, :] __A = inputs_dict['''head_mask'''] __A = 1 # first forward pass __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, head_mask=_lowerCamelCase, use_cache=_lowerCamelCase ) __A , __A = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __A = ids_tensor((self.batch_size, 3), config.vocab_size ) __A = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and __A = tf.concat([input_ids, next_tokens], axis=-1 ) __A = tf.concat([attention_mask, next_attn_mask], axis=-1 ) __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase )[0] __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice __A = int(ids_tensor((1,), output_from_past.shape[-1] ) ) __A = output_from_no_past[:, -3:, random_slice_idx] __A = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase, _lowerCamelCase, rtol=1e-3 ) def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ): """simple docstring""" if attention_mask is None: __A = tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __A = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __A = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __A = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class snake_case ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : str = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () A_ : Optional[Any] = (TFPegasusForConditionalGeneration,) if is_tf_available() else () A_ : Optional[int] = ( { "conversational": TFPegasusForConditionalGeneration, "feature-extraction": TFPegasusModel, "summarization": TFPegasusForConditionalGeneration, "text2text-generation": TFPegasusForConditionalGeneration, "translation": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) A_ : Tuple = True A_ : Union[str, Any] = False A_ : str = False def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = TFPegasusModelTester(self ) __A = ConfigTester(self, config_class=_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class snake_case ( unittest.TestCase ): '''simple docstring''' A_ : List[str] = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] A_ : str = [ "California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to" " reduce the risk of wildfires.", "N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.", ] # differs slightly from pytorch, likely due to numerical differences in linear layers A_ : Union[str, Any] = "google/pegasus-xsum" @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _SCREAMING_SNAKE_CASE ( self : str, **_lowerCamelCase : str ): '''simple docstring''' __A = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], **_lowerCamelCase : Tuple ): '''simple docstring''' __A = self.tokenizer(self.src_text, **_lowerCamelCase, padding=_lowerCamelCase, return_tensors='''tf''' ) __A = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=_lowerCamelCase, ) __A = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' self._assert_generated_batch_equal_expected()
215
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase : int = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Tuple = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _lowercase : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
import requests _SCREAMING_SNAKE_CASE : Optional[int] = "" # <-- Put your OpenWeatherMap appid here! _SCREAMING_SNAKE_CASE : Optional[Any] = "https://api.openweathermap.org/data/2.5/" def UpperCAmelCase__ (UpperCamelCase_ = "Chicago" ,UpperCamelCase_ = APPID ): """simple docstring""" return requests.get(URL_BASE + '''weather''' ,params=locals() ).json() def UpperCAmelCase__ (UpperCamelCase_ = "Kolkata, India" ,UpperCamelCase_ = APPID ): """simple docstring""" return requests.get(URL_BASE + '''forecast''' ,params=locals() ).json() def UpperCAmelCase__ (UpperCamelCase_ = 55.68 ,UpperCamelCase_ = 12.57 ,UpperCamelCase_ = APPID ): """simple docstring""" return requests.get(URL_BASE + '''onecall''' ,params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: _SCREAMING_SNAKE_CASE : Any = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
550
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = ["""image_processor""", """tokenizer"""] UpperCAmelCase_ = """OwlViTImageProcessor""" UpperCAmelCase_ = ("""CLIPTokenizer""", """CLIPTokenizerFast""") def __init__( self :Optional[Any] , lowerCamelCase :Dict=None , lowerCamelCase :Any=None , **lowerCamelCase :Optional[Any] ) -> int: UpperCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , lowerCamelCase , ) UpperCAmelCase__ = kwargs.pop("feature_extractor" ) UpperCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(lowerCamelCase , lowerCamelCase ) def __call__( self :Tuple , lowerCamelCase :Any=None , lowerCamelCase :int=None , lowerCamelCase :List[Any]=None , lowerCamelCase :Any="max_length" , lowerCamelCase :str="np" , **lowerCamelCase :Optional[Any] ) -> Dict: if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(lowerCamelCase , lowerCamelCase ) or (isinstance(lowerCamelCase , lowerCamelCase ) and not isinstance(text[0] , lowerCamelCase )): UpperCAmelCase__ = [self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase )] elif isinstance(lowerCamelCase , lowerCamelCase ) and isinstance(text[0] , lowerCamelCase ): UpperCAmelCase__ = [] # Maximum number of queries across batch UpperCAmelCase__ = max([len(lowerCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCamelCase ) != max_num_queries: UpperCAmelCase__ = t + [" "] * (max_num_queries - len(lowerCamelCase )) UpperCAmelCase__ = self.tokenizer(lowerCamelCase , padding=lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) encodings.append(lowerCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": UpperCAmelCase__ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase__ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp UpperCAmelCase__ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase__ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch UpperCAmelCase__ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) UpperCAmelCase__ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf UpperCAmelCase__ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) UpperCAmelCase__ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) UpperCAmelCase__ = BatchEncoding() UpperCAmelCase__ = input_ids UpperCAmelCase__ = attention_mask if query_images is not None: UpperCAmelCase__ = BatchEncoding() UpperCAmelCase__ = self.image_processor( lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ).pixel_values UpperCAmelCase__ = query_pixel_values if images is not None: UpperCAmelCase__ = self.image_processor(lowerCamelCase , return_tensors=lowerCamelCase , **lowerCamelCase ) if text is not None and images is not None: UpperCAmelCase__ = image_features.pixel_values return encoding elif query_images is not None and images is not None: UpperCAmelCase__ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCamelCase ) , tensor_type=lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] , *lowerCamelCase :Tuple , **lowerCamelCase :Union[str, Any] ) -> Dict: return self.image_processor.post_process(*lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple , *lowerCamelCase :Dict , **lowerCamelCase :Any ) -> List[Any]: return self.image_processor.post_process_object_detection(*lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Union[str, Any] , *lowerCamelCase :List[Any] , **lowerCamelCase :Union[str, Any] ) -> Dict: return self.image_processor.post_process_image_guided_detection(*lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :List[Any] , *lowerCamelCase :Optional[int] , **lowerCamelCase :str ) -> Dict: return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def UpperCAmelCase_ ( self :Tuple , *lowerCamelCase :Tuple , **lowerCamelCase :List[Any] ) -> str: return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @property def UpperCAmelCase_ ( self :Any ) -> Union[str, Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , lowerCamelCase , ) return self.image_processor_class @property def UpperCAmelCase_ ( self :Union[str, Any] ) -> str: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , lowerCamelCase , ) return self.image_processor
717
import math def lowerCAmelCase ( _lowerCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_lowerCAmelCase ) def lowerCAmelCase ( _lowerCAmelCase : float = 1 / 1_2345 ): """simple docstring""" UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 UpperCAmelCase__ = 3 while True: UpperCAmelCase__ = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_lowerCAmelCase ): UpperCAmelCase__ = int(_lowerCAmelCase ) total_partitions += 1 if check_partition_perfect(_lowerCAmelCase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_lowerCAmelCase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
364
0
'''simple docstring''' from __future__ import annotations from random import random class lowerCAmelCase : def __init__( self , __SCREAMING_SNAKE_CASE = None ) -> Any: '''simple docstring''' __snake_case = value __snake_case = random() __snake_case = None __snake_case = None def __repr__( self ) -> str: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return F'''\'{self.value}: {self.prior:.5}\'''' else: return pformat( {F'''{self.value}: {self.prior:.5}''': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: '''simple docstring''' __snake_case = str(self.value ) + ''' ''' __snake_case = str(self.left or '''''' ) __snake_case = str(self.right or '''''' ) return value + left + right def _UpperCamelCase (_lowerCamelCase : Node | None , _lowerCamelCase : int )-> tuple[Node | None, Node | None]: '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: __snake_case , __snake_case = split(root.left , _lowerCamelCase ) return left, root else: __snake_case , __snake_case = split(root.right , _lowerCamelCase ) return root, right def _UpperCamelCase (_lowerCamelCase : Node | None , _lowerCamelCase : Node | None )-> Node | None: '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: __snake_case = merge(left.right , _lowerCamelCase ) return left else: __snake_case = merge(_lowerCamelCase , right.left ) return right def _UpperCamelCase (_lowerCamelCase : Node | None , _lowerCamelCase : int )-> Node | None: '''simple docstring''' __snake_case = Node(_lowerCamelCase ) __snake_case , __snake_case = split(_lowerCamelCase , _lowerCamelCase ) return merge(merge(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Node | None , _lowerCamelCase : int )-> Node | None: '''simple docstring''' __snake_case , __snake_case = split(_lowerCamelCase , value - 1 ) __snake_case , __snake_case = split(_lowerCamelCase , _lowerCamelCase ) return merge(_lowerCamelCase , _lowerCamelCase ) def _UpperCamelCase (_lowerCamelCase : Node | None )-> None: '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def _UpperCamelCase (_lowerCamelCase : Node | None , _lowerCamelCase : str )-> Node | None: '''simple docstring''' for arg in args.split(): if arg[0] == "+": __snake_case = insert(_lowerCamelCase , int(arg[1:] ) ) elif arg[0] == "-": __snake_case = erase(_lowerCamelCase , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def _UpperCamelCase ()-> None: '''simple docstring''' __snake_case = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) __snake_case = input() while args != "q": __snake_case = interact_treap(_lowerCamelCase , _lowerCamelCase ) print(_lowerCamelCase ) __snake_case = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
24
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowerCAmelCase : '''simple docstring''' def __init__( self : List[str] , __a : Optional[int] , __a : List[str]=14 , __a : Optional[Any]=7 , __a : List[Any]=True , __a : Tuple=True , __a : Union[str, Any]=True , __a : Any=True , __a : Any=True , __a : Dict=99 , __a : List[Any]=32 , __a : Union[str, Any]=5 , __a : List[Any]=4 , __a : Tuple=37 , __a : Dict="gelu" , __a : Tuple=0.1 , __a : str=0.1 , __a : Optional[int]=512 , __a : Union[str, Any]=16 , __a : Tuple=2 , __a : Tuple=0.02 , __a : List[str]=3 , __a : Tuple=4 , __a : int=None , ) -> int: """simple docstring""" __lowercase : Tuple = parent __lowercase : Optional[int] = batch_size __lowercase : int = seq_length __lowercase : Any = is_training __lowercase : str = use_token_type_ids __lowercase : Dict = use_input_mask __lowercase : Tuple = use_labels __lowercase : Optional[Any] = use_mc_token_ids __lowercase : int = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : int = num_hidden_layers __lowercase : Tuple = num_attention_heads __lowercase : Any = intermediate_size __lowercase : Any = hidden_act __lowercase : Optional[Any] = hidden_dropout_prob __lowercase : Dict = attention_probs_dropout_prob __lowercase : str = max_position_embeddings __lowercase : List[Any] = type_vocab_size __lowercase : List[str] = type_sequence_label_size __lowercase : Optional[Any] = initializer_range __lowercase : List[Any] = num_labels __lowercase : str = num_choices __lowercase : List[str] = scope __lowercase : Optional[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : int = None if self.use_input_mask: __lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : Tuple = None if self.use_token_type_ids: __lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : Dict = None if self.use_mc_token_ids: __lowercase : int = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __lowercase : Tuple = None __lowercase : int = None __lowercase : Any = None if self.use_labels: __lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : int = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Dict = self.get_config() __lowercase : Union[str, Any] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : List[str] , __a : Tuple , __a : str , __a : Optional[int] , __a : Any , __a : Union[str, Any] , *__a : List[str] ) -> Tuple: """simple docstring""" __lowercase : int = CTRLModel(config=__a ) model.to(__a ) model.eval() model(__a , token_type_ids=__a , head_mask=__a ) model(__a , token_type_ids=__a ) __lowercase : int = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase ( self : Any , __a : Union[str, Any] , __a : str , __a : List[Any] , __a : Union[str, Any] , __a : Optional[Any] , *__a : List[Any] ) -> Tuple: """simple docstring""" __lowercase : str = CTRLLMHeadModel(__a ) model.to(__a ) model.eval() __lowercase : Any = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : List[str] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : int = config_and_inputs __lowercase : Optional[int] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def lowerCAmelCase ( self : int , __a : int , __a : Dict , __a : str , __a : List[str] , *__a : str ) -> int: """simple docstring""" __lowercase : List[str] = self.num_labels __lowercase : Optional[Any] = CTRLForSequenceClassification(__a ) model.to(__a ) model.eval() __lowercase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : List[str] = model(__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () _A : Any = (CTRLLMHeadModel,) if is_torch_available() else () _A : Dict = ( { '''feature-extraction''': CTRLModel, '''text-classification''': CTRLForSequenceClassification, '''text-generation''': CTRLLMHeadModel, '''zero-shot''': CTRLForSequenceClassification, } if is_torch_available() else {} ) _A : str = True _A : List[Any] = False _A : List[Any] = False def lowerCAmelCase ( self : int , __a : Tuple , __a : int , __a : str , __a : int , __a : Dict ) -> Dict: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase : Tuple = CTRLModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=__a , n_embd=37 ) def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__a ) def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__a ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" pass @slow def lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = CTRLModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @require_torch class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" __lowercase : int = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__a ) __lowercase : str = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__a ) # Legal the president is __lowercase : Union[str, Any] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __lowercase : List[Any] = model.generate(__a , do_sample=__a ) self.assertListEqual(output_ids[0].tolist() , __a )
149
0
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore snake_case : Tuple = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" snake_case : Optional[int] = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print('''\n'''.join(upper_files) + '''\n''') snake_case : int = [file for file in filepaths if ''' ''' in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print('''\n'''.join(space_files) + '''\n''') snake_case : int = [file for file in filepaths if '''-''' in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print('''\n'''.join(hyphen_files) + '''\n''') snake_case : Dict = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print('''\n'''.join(nodir_files) + '''\n''') snake_case : List[Any] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() snake_case : Dict = logging.get_logger(__name__) snake_case : Any = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __lowercase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.' ) if tokenizer_name is None: a__ = TOKENIZER_CLASSES else: a__ = {tokenizer_name: getattr(__lowerCAmelCase , tokenizer_name + 'Fast' )} logger.info(F'Loading tokenizer classes: {tokenizer_names}' ) for tokenizer_name in tokenizer_names: a__ = TOKENIZER_CLASSES[tokenizer_name] a__ = True if checkpoint_name is None: a__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: a__ = [checkpoint_name] logger.info(F'For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}' ) for checkpoint in checkpoint_names: logger.info(F'Loading {tokenizer_class.__class__.__name__} {checkpoint}' ) # Load tokenizer a__ = tokenizer_class.from_pretrained(__lowerCAmelCase , force_download=__lowerCAmelCase ) # Save fast tokenizer logger.info(F'Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}' ) # For organization names we create sub-directories if "/" in checkpoint: a__ , a__ = checkpoint.split('/' ) a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) elif add_prefix: a__ = checkpoint a__ = dump_path else: a__ = None a__ = dump_path logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: a__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] a__ = file_path.split(__lowerCAmelCase )[-1][0] if next_char == "/": a__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) a__ = None logger.info(F'=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}' ) a__ = tokenizer.save_pretrained( __lowerCAmelCase , legacy_format=__lowerCAmelCase , filename_prefix=__lowerCAmelCase ) logger.info(F'=> File names {file_names}' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCAmelCase ) logger.info(F'=> removing {file_name}' ) if __name__ == "__main__": snake_case : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( f"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) snake_case : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
657
0
"""simple docstring""" from __future__ import annotations A : str = 'Muhammad Umer Farooq' A : Dict = 'MIT' A : Optional[Any] = '1.0.0' A : Optional[int] = 'Muhammad Umer Farooq' A : Tuple = '[email protected]' A : Optional[int] = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :str ) -> None: """simple docstring""" super().__init__() UpperCamelCase__ = [] UpperCamelCase__ = domain def lowerCamelCase__ ( self :int , lowerCamelCase_ :str , lowerCamelCase_ :list[tuple[str, str | None]] ) -> None: """simple docstring""" if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: UpperCamelCase__ = parse.urljoin(self.domain , lowerCamelCase_ ) self.urls.append(lowerCamelCase_ ) def snake_case__ ( _snake_case : str ): """simple docstring""" return ".".join(get_sub_domain_name(_snake_case ).split("." )[-2:] ) def snake_case__ ( _snake_case : str ): """simple docstring""" return parse.urlparse(_snake_case ).netloc def snake_case__ ( _snake_case : str = "https://github.com" ): """simple docstring""" UpperCamelCase__ = get_domain_name(_snake_case ) # Initialize the parser UpperCamelCase__ = Parser(_snake_case ) try: # Open URL UpperCamelCase__ = requests.get(_snake_case ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through UpperCamelCase__ = set() for link in parser.urls: # open URL. # read = requests.get(link) try: UpperCamelCase__ = requests.get(_snake_case ) # Get the valid email. UpperCamelCase__ = re.findall("[a-zA-Z0-9]+@" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_snake_case ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_snake_case ) if __name__ == "__main__": A : Optional[int] = emails_from_url('https://github.com') print(F"{len(emails)} emails found:") print('\n'.join(sorted(emails)))
516
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. A : Tuple = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def snake_case__ ( _snake_case : Dict ): """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_snake_case ) def snake_case__ ( _snake_case : List[str] ): """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase__ = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_snake_case , id=_snake_case )
516
1
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, ClassLabel, Features from .base import TaskTemplate @dataclass(frozen=UpperCamelCase ) class UpperCAmelCase__ ( UpperCamelCase ): lowerCAmelCase_ : str = field(default="""audio-classification""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase_ : ClassVar[Features] = Features({"""audio""": Audio()} ) lowerCAmelCase_ : ClassVar[Features] = Features({"""labels""": ClassLabel} ) lowerCAmelCase_ : str = "audio" lowerCAmelCase_ : str = "labels" def A_ ( self : int , snake_case : List[Any] ) -> List[str]: '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , snake_case ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) A = copy.deepcopy(self ) A = self.label_schema.copy() A = features[self.label_column] A = label_schema return task_template @property def A_ ( self : Tuple ) -> Dict[str, str]: '''simple docstring''' return { self.audio_column: "audio", self.label_column: "labels", }
109
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowerCAmelCase__ ( ) -> Optional[Any]: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join A = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowerCAmelCase__ ( ) -> str: assert _test_patching.open is open A = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , lowerCamelCase__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowerCAmelCase__ ( ) -> List[Any]: # pandas.read_csv is not present in _test_patching A = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , lowerCamelCase__ ): pass def lowerCAmelCase__ ( ) -> Union[str, Any]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point A = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , lowerCamelCase__ ) is None with patch_submodule(_test_patching , 'len' , lowerCamelCase__ ): assert _test_patching.len is mock assert _test_patching.len is len def lowerCAmelCase__ ( ) -> Union[str, Any]: A = '__test_patch_submodule_start_and_stop_mock__' A = patch_submodule(_test_patching , 'open' , lowerCamelCase__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowerCAmelCase__ ( ) -> int: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join A = '__test_patch_submodule_successive_join__' A = '__test_patch_submodule_successive_dirname__' A = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.rename' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.dirname' , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.join' , lowerCamelCase__ ): with patch_submodule(_test_patching , 'os.path.dirname' , lowerCamelCase__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowerCAmelCase__ ( ) -> Optional[Any]: A = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , lowerCamelCase__ ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , lowerCamelCase__ ): pass
109
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int ) -> str: '''simple docstring''' if isinstance(__lowercase , __lowercase ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(__lowercase , __lowercase ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" _UpperCAmelCase = False if num < 0: _UpperCAmelCase = True _UpperCAmelCase = -num _UpperCAmelCase = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(__lowercase ) for e in binary ) return "0b" + "".join(str(__lowercase ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
236
'''simple docstring''' import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( lowerCAmelCase_ , unittest.TestCase ): _lowerCamelCase : str = LxmertTokenizer _lowerCamelCase : Optional[int] = LxmertTokenizerFast _lowerCamelCase : List[Any] = True _lowerCamelCase : List[Any] = True def lowercase ( self : Optional[Any] ): super().setUp() _UpperCAmelCase = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowercase ( self : Dict , snake_case_ : List[Any] ): _UpperCAmelCase = "UNwant\u00E9d,running" _UpperCAmelCase = "unwanted, running" return input_text, output_text def lowercase ( self : int ): _UpperCAmelCase = self.tokenizer_class(self.vocab_file ) _UpperCAmelCase = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [7, 4, 5, 1_0, 8, 9] ) def lowercase ( self : Optional[int] ): if not self.test_rust_tokenizer: return _UpperCAmelCase = self.get_tokenizer() _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = "I was born in 92000, and this is falsé." _UpperCAmelCase = tokenizer.tokenize(snake_case_ ) _UpperCAmelCase = rust_tokenizer.tokenize(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _UpperCAmelCase = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) _UpperCAmelCase = rust_tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) _UpperCAmelCase = self.get_rust_tokenizer() _UpperCAmelCase = tokenizer.encode(snake_case_ ) _UpperCAmelCase = rust_tokenizer.encode(snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ )
236
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : str , lowercase : int , lowercase : Any , lowercase : Any ) -> Any: # Initialise PyTorch model _a = FunnelConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) _a = FunnelBaseModel(lowercase ) if base_model else FunnelModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
521
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( lowercase : str , lowercase : int , lowercase : Any , lowercase : Any ) -> Any: # Initialise PyTorch model _a = FunnelConfig.from_json_file(lowercase ) print(F'Building PyTorch model from configuration: {config}' ) _a = FunnelBaseModel(lowercase ) if base_model else FunnelModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowercase , lowercase , lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , lowercase ) if __name__ == "__main__": lowerCAmelCase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
521
1
from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) def snake_case__ ( *UpperCAmelCase : Dict , **UpperCAmelCase : List[str] ): requires_backends(UpperCAmelCase , ["torch"] ) def snake_case__ ( *UpperCAmelCase : int , **UpperCAmelCase : List[Any] ): requires_backends(UpperCAmelCase , ["torch"] ) def snake_case__ ( *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): requires_backends(UpperCAmelCase , ["torch"] ) def snake_case__ ( *UpperCAmelCase : Tuple , **UpperCAmelCase : Union[str, Any] ): requires_backends(UpperCAmelCase , ["torch"] ) def snake_case__ ( *UpperCAmelCase : str , **UpperCAmelCase : Union[str, Any] ): requires_backends(UpperCAmelCase , ["torch"] ) def snake_case__ ( *UpperCAmelCase : Optional[int] , **UpperCAmelCase : List[str] ): requires_backends(UpperCAmelCase , ["torch"] ) def snake_case__ ( *UpperCAmelCase : str , **UpperCAmelCase : str ): requires_backends(UpperCAmelCase , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) class _UpperCAmelCase ( metaclass=_A ): """simple docstring""" A = ['''torch'''] def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(self , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] ) @classmethod def snake_case_ ( cls , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' requires_backends(cls , ["torch"] )
145
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _A ): """simple docstring""" A = '''EncodecFeatureExtractor''' A = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = self.feature_extractor lowerCAmelCase__ :Tuple = False def snake_case_ ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=_lowerCAmelCase , language=_lowerCAmelCase , no_timestamps=_lowerCAmelCase ) def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase__ :Optional[Any] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("sampling_rate" , _lowerCAmelCase ) lowerCAmelCase__ :Dict = kwargs.pop("text" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :Optional[int] = args[0] lowerCAmelCase__ :Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCAmelCase__ :Any = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if audio is not None: lowerCAmelCase__ :Tuple = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase__ :List[str] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCAmelCase__ :int = audio_inputs["padding_mask"] return inputs def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("padding_mask" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :int = args[0] lowerCAmelCase__ :List[str] = args[1:] if audio_values is not None: return self._decode_audio(_lowerCAmelCase , padding_mask=_lowerCAmelCase ) else: return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = to_numpy(_lowerCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :Optional[Any] = audio_values.shape if padding_mask is None: return list(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = to_numpy(_lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase__ :str = seq_len - padding_mask.shape[-1] lowerCAmelCase__ :Union[str, Any] = 1 - self.feature_extractor.padding_value lowerCAmelCase__ :Optional[Any] = np.pad(_lowerCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audio_values.tolist() for i in range(_lowerCAmelCase ): lowerCAmelCase__ :str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase__ :List[Any] = sliced_audio.reshape(_lowerCAmelCase , -1 ) return audio_values
145
1
def lowerCamelCase__ ( _lowercase = 1000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
300
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : Dict = parent UpperCAmelCase_ : Optional[Any] = 13 UpperCAmelCase_ : Optional[Any] = 7 UpperCAmelCase_ : Union[str, Any] = True UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : str = True UpperCAmelCase_ : Tuple = True UpperCAmelCase_ : str = True UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : Dict = False UpperCAmelCase_ : Tuple = False UpperCAmelCase_ : Dict = 2 UpperCAmelCase_ : Tuple = 99 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[int] = 32 UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Tuple = 4 UpperCAmelCase_ : List[Any] = 0.1 UpperCAmelCase_ : int = 0.1 UpperCAmelCase_ : List[str] = 512 UpperCAmelCase_ : Any = 16 UpperCAmelCase_ : Union[str, Any] = 2 UpperCAmelCase_ : Any = 0.02 UpperCAmelCase_ : Tuple = 3 UpperCAmelCase_ : List[Any] = 4 UpperCAmelCase_ : Dict = '''last''' UpperCAmelCase_ : Dict = True UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Union[str, Any] = 0 def a__ ( self ) -> List[str]: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) UpperCAmelCase_ : Optional[Any] = None if self.use_input_lengths: UpperCAmelCase_ : Optional[int] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase_ : List[str] = None if self.use_token_type_ids: UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) UpperCAmelCase_ : str = None UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : Any = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : int = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Any: UpperCAmelCase_ : Tuple = TFFlaubertModel(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : List[Any] = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = [input_ids, input_mask] UpperCAmelCase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : int = TFFlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} UpperCAmelCase_ : Optional[Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Tuple: UpperCAmelCase_ : List[Any] = TFFlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> int: UpperCAmelCase_ : List[Any] = TFFlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = {'''input_ids''': input_ids, '''lengths''': input_lengths} UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : List[str] = TFFlaubertForTokenClassification(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,) -> str: UpperCAmelCase_ : List[Any] = self.num_choices UpperCAmelCase_ : Any = TFFlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : Union[str, Any] = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : str = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE ,1 ) ,(1, self.num_choices, 1) ) UpperCAmelCase_ : Dict = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def a__ ( self ) -> List[Any]: UpperCAmelCase_ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ) : Any = config_and_inputs UpperCAmelCase_ : Tuple = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class __a( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowerCAmelCase = ( { '''feature-extraction''': TFFlaubertModel, '''fill-mask''': TFFlaubertWithLMHeadModel, '''question-answering''': TFFlaubertForQuestionAnsweringSimple, '''text-classification''': TFFlaubertForSequenceClassification, '''token-classification''': TFFlaubertForTokenClassification, '''zero-shot''': TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self ) -> Any: UpperCAmelCase_ : Optional[int] = TFFlaubertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,emb_dim=37 ) def a__ ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> str: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*_SCREAMING_SNAKE_CASE ) @slow def a__ ( self ) -> Any: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : Any = TFFlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_tf @require_sentencepiece @require_tokenizers class __a( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> int: UpperCAmelCase_ : Optional[Any] = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) UpperCAmelCase_ : Dict = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" UpperCAmelCase_ : str = model(_SCREAMING_SNAKE_CASE )[0] UpperCAmelCase_ : Optional[int] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,_SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. UpperCAmelCase_ : List[Any] = tf.convert_to_tensor( [ [ [-1.8_76_87_73, -1.56_65_55, 0.27_07_24_18], [-1.6_92_00_38, -0.5_87_35_05, 1.9_32_95_99], [-2.9_56_39_85, -1.6_99_38_35, 1.7_97_20_52], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
300
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[32, 64, 1_28] , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1e-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , __a=["stage1", "stage2"] , __a=[1, 2] , ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = patch_norm _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = is_training _UpperCamelCase = scope _UpperCamelCase = use_labels _UpperCamelCase = type_sequence_label_size _UpperCamelCase = encoder_stride _UpperCamelCase = out_features _UpperCamelCase = out_indices def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = FocalNetModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) _UpperCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _UpperCamelCase = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def UpperCAmelCase ( self , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = FocalNetBackbone(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None _UpperCamelCase = None _UpperCamelCase = FocalNetBackbone(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def UpperCAmelCase ( self , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = FocalNetForMaskedImageModeling(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = FocalNetForMaskedImageModeling(__a) model.to(__a) model.eval() _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase = model(__a) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def UpperCAmelCase ( self , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.type_sequence_label_size _UpperCamelCase = FocalNetForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _UpperCamelCase = 1 _UpperCamelCase = FocalNetForImageClassification(__a) model.to(__a) model.eval() _UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _UpperCamelCase = model(__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = FocalNetModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , embed_dim=37 , has_text_modality=__a) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) @unittest.skip(reason='''FocalNet does not use inputs_embeds''') def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''FocalNet does not use feedforward chunking''') def UpperCAmelCase ( self) -> str: '''simple docstring''' pass def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCamelCase = model_class(__a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear)) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _UpperCamelCase = model_class(__a) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a) def UpperCAmelCase ( self , __a , __a , __a , __a) -> int: '''simple docstring''' _UpperCamelCase = model_class(__a) model.to(__a) model.eval() with torch.no_grad(): _UpperCamelCase = model(**self._prepare_for_class(__a , __a)) _UpperCamelCase = outputs.hidden_states _UpperCamelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths) + 1) self.assertEqual(len(__a) , __a) # FocalNet has a different seq_length _UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _UpperCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(__a) , __a) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = reshaped_hidden_states[0].shape _UpperCamelCase = ( reshaped_hidden_states[0].view(__a , __a , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , __a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , __a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = 3 _UpperCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _UpperCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _UpperCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _UpperCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width)) @slow def UpperCAmelCase ( self) -> Dict: '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = FocalNetModel.from_pretrained(__a) self.assertIsNotNone(__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = _config_zero_init(__a) for model_class in self.all_model_classes: _UpperCamelCase = model_class(config=__a) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class _UpperCAmelCase( unittest.TestCase ): @cached_property def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' # TODO update organization return AutoImageProcessor.from_pretrained('''microsoft/focalnet-tiny''') if is_vision_available() else None @slow def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = FocalNetForImageClassification.from_pretrained('''microsoft/focalnet-tiny''').to(__a) _UpperCamelCase = self.default_image_processor _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') _UpperCamelCase = image_processor(images=__a , return_tensors='''pt''').to(__a) # forward pass with torch.no_grad(): _UpperCamelCase = model(**__a) # verify the logits _UpperCamelCase = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , __a) _UpperCamelCase = torch.tensor([0.2166, -0.4368, 0.2191]).to(__a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1e-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 2_81) @require_torch class _UpperCAmelCase( lowerCamelCase , unittest.TestCase ): lowercase__ = (FocalNetBackbone,) if is_torch_available() else () lowercase__ = FocalNetConfig lowercase__ = False def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = FocalNetModelTester(self)
19
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : def __init__( self , a , a=1_3 , a=3_0 , a=2 , a=3 , a=True , a=True , a=3_2 , a=2 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=1_0 , a=0.02 , a=3 , a=None , ) -> Dict: lowercase__ : str = parent lowercase__ : str = batch_size lowercase__ : Any = image_size lowercase__ : Dict = patch_size lowercase__ : Dict = num_channels lowercase__ : List[str] = is_training lowercase__ : str = use_labels lowercase__ : Optional[Any] = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : Tuple = intermediate_size lowercase__ : int = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : Dict = attention_probs_dropout_prob lowercase__ : Optional[int] = type_sequence_label_size lowercase__ : List[str] = initializer_range lowercase__ : Any = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase__ : List[str] = (image_size // patch_size) ** 2 lowercase__ : List[str] = num_patches + 1 def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ : str = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self ) -> List[Any]: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , a , a , a ) -> Optional[int]: lowercase__ : str = TFViTModel(config=a ) lowercase__ : Dict = model(a , training=a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. lowercase__ : Optional[Any] = self.image_size // 2 lowercase__ : Optional[Any] = pixel_values[:, :, :image_size, :image_size] lowercase__ : Optional[Any] = model(a , interpolate_pos_encoding=a , training=a ) lowercase__ : Dict = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , a , a , a ) -> int: lowercase__ : List[Any] = self.type_sequence_label_size lowercase__ : Optional[int] = TFViTForImageClassification(a ) lowercase__ : Any = model(a , labels=a , training=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. lowercase__ : Optional[int] = self.image_size // 2 lowercase__ : Any = pixel_values[:, :, :image_size, :image_size] lowercase__ : Optional[int] = model(a , interpolate_pos_encoding=a , training=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase__ : Dict = 1 lowercase__ : Any = TFViTForImageClassification(a ) lowercase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase__ : str = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : Tuple = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : List[str] = config_and_inputs lowercase__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase_ ( _a , _a , unittest.TestCase): lowerCamelCase__ : Any = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () lowerCamelCase__ : int = ( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) lowerCamelCase__ : Dict = False lowerCamelCase__ : int = False lowerCamelCase__ : Any = False def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : int = TFViTModelTester(self ) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _UpperCAmelCase ( self ) -> str: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def _UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ , lowercase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , tf.keras.layers.Layer ) ) def _UpperCAmelCase ( self ) -> str: lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(a ) lowercase__ : str = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Optional[int] = [*signature.parameters.keys()] lowercase__ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a ) def _UpperCAmelCase ( self ) -> Optional[int]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @slow def _UpperCAmelCase ( self ) -> Optional[Any]: lowercase__ : List[Any] = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(a ) def a_ ( ): '''simple docstring''' lowercase__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCAmelCase_ ( unittest.TestCase): @cached_property def _UpperCAmelCase ( self ) -> List[str]: return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def _UpperCAmelCase ( self ) -> List[str]: lowercase__ : List[str] = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) lowercase__ : Optional[Any] = self.default_image_processor lowercase__ : Any = prepare_img() lowercase__ : Optional[Any] = image_processor(images=a , return_tensors='tf' ) # forward pass lowercase__ : Union[str, Any] = model(**a ) # verify the logits lowercase__ : Tuple = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) lowercase__ : Union[str, Any] = tf.constant([-0.2_744, 0.8_215, -0.0_836] ) tf.debugging.assert_near(outputs.logits[0, :3] , a , atol=1e-4 )
599
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Dict = logging.get_logger(__name__) snake_case_ : List[Any] = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = '''sew''' def __init__( self : Dict , lowercase : List[Any]=32 , lowercase : Tuple=7_68 , lowercase : str=12 , lowercase : List[str]=12 , lowercase : str=30_72 , lowercase : int=2 , lowercase : str="gelu" , lowercase : str=0.1 , lowercase : Union[str, Any]=0.1 , lowercase : Optional[int]=0.1 , lowercase : Dict=0.0 , lowercase : List[Any]=0.1 , lowercase : Optional[int]=0.1 , lowercase : Union[str, Any]=0.0_2 , lowercase : Tuple=1E-5 , lowercase : int="group" , lowercase : str="gelu" , lowercase : List[Any]=(64, 1_28, 1_28, 1_28, 1_28, 2_56, 2_56, 2_56, 2_56, 5_12, 5_12, 5_12, 5_12) , lowercase : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase : Optional[int]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase : Optional[Any]=False , lowercase : int=1_28 , lowercase : Union[str, Any]=16 , lowercase : Any=True , lowercase : int=0.0_5 , lowercase : Any=10 , lowercase : Dict=2 , lowercase : Optional[int]=0.0 , lowercase : Optional[Any]=10 , lowercase : Any=0 , lowercase : int="mean" , lowercase : List[Any]=False , lowercase : Optional[Any]=False , lowercase : List[str]=2_56 , lowercase : List[Any]=0 , lowercase : Optional[int]=1 , lowercase : Any=2 , **lowercase : Optional[int] , ): '''simple docstring''' super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = feat_extract_norm UpperCAmelCase : List[str] = feat_extract_activation UpperCAmelCase : int = list(lowercase ) UpperCAmelCase : List[Any] = list(lowercase ) UpperCAmelCase : Optional[Any] = list(lowercase ) UpperCAmelCase : Union[str, Any] = conv_bias UpperCAmelCase : List[Any] = num_conv_pos_embeddings UpperCAmelCase : Union[str, Any] = num_conv_pos_embedding_groups UpperCAmelCase : Tuple = len(self.conv_dim ) UpperCAmelCase : str = num_hidden_layers UpperCAmelCase : str = intermediate_size UpperCAmelCase : Union[str, Any] = squeeze_factor UpperCAmelCase : int = hidden_act UpperCAmelCase : int = num_attention_heads UpperCAmelCase : List[str] = hidden_dropout UpperCAmelCase : str = attention_dropout UpperCAmelCase : Union[str, Any] = activation_dropout UpperCAmelCase : List[str] = feat_proj_dropout UpperCAmelCase : Optional[Any] = final_dropout UpperCAmelCase : List[str] = layerdrop UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase : List[str] = apply_spec_augment UpperCAmelCase : List[str] = mask_time_prob UpperCAmelCase : Optional[Any] = mask_time_length UpperCAmelCase : List[Any] = mask_time_min_masks UpperCAmelCase : Union[str, Any] = mask_feature_prob UpperCAmelCase : Dict = mask_feature_length UpperCAmelCase : Dict = mask_feature_min_masks # ctc loss UpperCAmelCase : Tuple = ctc_loss_reduction UpperCAmelCase : Optional[Any] = ctc_zero_infinity # sequence classification UpperCAmelCase : Any = use_weighted_layer_sum UpperCAmelCase : Tuple = classifier_proj_size @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
292
"""simple docstring""" def lowercase_ ( _lowercase : int , _lowercase : int ): '''simple docstring''' return int(input_a == input_a == 0 ) def lowercase_ ( ): '''simple docstring''' print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"""| 0 | 0 | {nor_gate(0 , 0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 , 1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 , 0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 , 1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
292
1
'''simple docstring''' from itertools import product def lowerCamelCase ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Any = sides_number __magic_name__ : List[str] = max_face_number * dice_number __magic_name__ : Dict = [0] * (max_total + 1) __magic_name__ : Dict = 1 __magic_name__ : Dict = range(lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase , repeat=lowerCAmelCase ): __magic_name__ : List[Any] = sum(lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def lowerCamelCase ( ): """simple docstring""" __magic_name__ : int = total_frequency_distribution( sides_number=4 , dice_number=9 ) __magic_name__ : Optional[int] = total_frequency_distribution( sides_number=6 , dice_number=6 ) __magic_name__ : List[str] = 0 __magic_name__ : List[str] = 9 __magic_name__ : List[Any] = 4 * 9 __magic_name__ : Any = 6 for peter_total in range(lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __magic_name__ : List[str] = (4**9) * (6**6) __magic_name__ : Optional[int] = peter_wins_count / total_games_number __magic_name__ : Tuple = round(lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'{solution() = }')
561
'''simple docstring''' import os lowerCAmelCase :Dict = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0} def lowerCamelCase ( lowerCAmelCase : str ): """simple docstring""" __magic_name__ : str = 0 __magic_name__ : Optional[Any] = 0 while index < len(lowerCAmelCase ) - 1: __magic_name__ : Any = SYMBOLS[numerals[index]] __magic_name__ : Optional[int] = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def lowerCamelCase ( lowerCAmelCase : int ): """simple docstring""" __magic_name__ : Tuple = '' __magic_name__ : Dict = num // 1000 numerals += m_count * "M" num %= 1000 __magic_name__ : int = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 __magic_name__ : List[str] = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def lowerCamelCase ( lowerCAmelCase : str = "/p089_roman.txt" ): """simple docstring""" __magic_name__ : int = 0 with open(os.path.dirname(lowerCAmelCase ) + roman_numerals_filename ) as filea: __magic_name__ : str = filea.readlines() for line in lines: __magic_name__ : Dict = line.strip() __magic_name__ : List[Any] = parse_roman_numerals(lowerCAmelCase ) __magic_name__ : Union[str, Any] = generate_roman_numerals(lowerCAmelCase ) savings += len(lowerCAmelCase ) - len(lowerCAmelCase ) return savings if __name__ == "__main__": print(F'{solution() = }')
561
1
"""simple docstring""" import operator def lowerCAmelCase ( UpperCamelCase_: list , UpperCamelCase_: bool = False , UpperCamelCase_: list | None = None ) -> list: '''simple docstring''' _a = operator.lt if reverse else operator.gt _a = solution or [] if not arr: return solution _a = [arr.pop(0 )] for i, item in enumerate(UpperCamelCase_ ): if _operator(UpperCamelCase_ , sublist[-1] ): sublist.append(UpperCamelCase_ ) arr.pop(UpperCamelCase_ ) # merging sublist into solution list if not solution: solution.extend(UpperCamelCase_ ) else: while sublist: _a = sublist.pop(0 ) for i, xx in enumerate(UpperCamelCase_ ): if not _operator(UpperCamelCase_ , UpperCamelCase_ ): solution.insert(UpperCamelCase_ , UpperCamelCase_ ) break else: solution.append(UpperCamelCase_ ) strand_sort(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
719
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowerCAmelCase ( UpperCamelCase_: ndarray ) -> float: '''simple docstring''' return np.dot(UpperCamelCase_ , UpperCamelCase_ ) class lowercase_ : def __init__( self , *, a_ = np.inf , a_ = "linear" , a_ = 0.0 , ) ->None: '''simple docstring''' _a = regularization _a = gamma if kernel == "linear": _a = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) _a = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _a = f'''Unknown kernel: {kernel}''' raise ValueError(a_ ) def lowerCamelCase__ ( self , a_ , a_ ) ->float: '''simple docstring''' return np.dot(a_ , a_ ) def lowerCamelCase__ ( self , a_ , a_ ) ->float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCamelCase__ ( self , a_ , a_ ) ->None: '''simple docstring''' _a = observations _a = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_a) , ) = np.shape(a_ ) def to_minimize(a_ ) -> float: _a = 0 ((_a) , ) = np.shape(a_ ) for i in range(a_ ): for j in range(a_ ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(a_ ) _a = LinearConstraint(a_ , 0 , 0 ) _a = Bounds(0 , self.regularization ) _a = minimize( a_ , np.ones(a_ ) , bounds=a_ , constraints=[ly_contraint] ).x _a = l_star # calculating mean offset of separation plane to points _a = 0 for i in range(a_ ): for j in range(a_ ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _a = s / n def lowerCamelCase__ ( self , a_ ) ->int: '''simple docstring''' _a = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , a_ ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
612
0
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowercase_ ( __A ): def __init__( self , lowercase_ = "▁" , lowercase_ = True , lowercase_ = "<unk>" , lowercase_ = "</s>" , lowercase_ = "<pad>" , ): _snake_case : Any = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } _snake_case : Optional[int] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _snake_case : Any = token_dict["token"] _snake_case : Any = Tokenizer(Unigram() ) _snake_case : Optional[Any] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) _snake_case : List[str] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ), pre_tokenizers.Digits(individual_digits=lowerCAmelCase_ ), pre_tokenizers.Punctuation(), ] ) _snake_case : Dict = decoders.Metaspace(replacement=lowerCAmelCase_ , add_prefix_space=lowerCAmelCase_ ) _snake_case : Union[str, Any] = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) _snake_case : int = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCamelCase ( self , lowercase_ , lowercase_ = 8_000 , lowercase_ = True , ): _snake_case : List[Any] = trainers.UnigramTrainer( vocab_size=lowerCAmelCase_ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase_ , ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case : List[Any] = [files] self._tokenizer.train(lowerCAmelCase_ , trainer=lowerCAmelCase_ ) self.add_unk_id() def UpperCamelCase ( self , lowercase_ , lowercase_ = 8_000 , lowercase_ = True , ): _snake_case : Any = trainers.UnigramTrainer( vocab_size=lowerCAmelCase_ , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase_ , ) self._tokenizer.train_from_iterator(lowerCAmelCase_ , trainer=lowerCAmelCase_ ) self.add_unk_id() def UpperCamelCase ( self ): _snake_case : Tuple = json.loads(self._tokenizer.to_str() ) _snake_case : Union[str, Any] = self.special_tokens["unk"]["id"] _snake_case : Tuple = Tokenizer.from_str(json.dumps(lowerCAmelCase_ ) )
670
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def snake_case ( A__ ): UpperCAmelCase_ : int = int(number**0.5 ) return number == sq * sq def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): UpperCAmelCase_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase_ : int = x_den * y_den * z_den UpperCAmelCase_ : int = gcd(A__ ,A__ ) top //= hcf bottom //= hcf return top, bottom def snake_case ( A__ = 35 ): UpperCAmelCase_ : set = set() UpperCAmelCase_ : int UpperCAmelCase_ : Fraction = Fraction(0 ) UpperCAmelCase_ : tuple[int, int] for x_num in range(1 ,order + 1 ): for x_den in range(x_num + 1 ,order + 1 ): for y_num in range(1 ,order + 1 ): for y_den in range(y_num + 1 ,order + 1 ): # n=1 UpperCAmelCase_ : Optional[int] = x_num * y_den + x_den * y_num UpperCAmelCase_ : List[Any] = x_den * y_den UpperCAmelCase_ : Tuple = gcd(A__ ,A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : int = add_three( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) unique_s.add(A__ ) # n=2 UpperCAmelCase_ : Optional[Any] = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase_ : Dict = x_den * x_den * y_den * y_den if is_sq(A__ ) and is_sq(A__ ): UpperCAmelCase_ : int = int(sqrt(A__ ) ) UpperCAmelCase_ : Any = int(sqrt(A__ ) ) UpperCAmelCase_ : str = gcd(A__ ,A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Tuple = add_three( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) unique_s.add(A__ ) # n=-1 UpperCAmelCase_ : Optional[int] = x_num * y_num UpperCAmelCase_ : Dict = x_den * y_num + x_num * y_den UpperCAmelCase_ : Union[str, Any] = gcd(A__ ,A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : List[Any] = add_three( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) unique_s.add(A__ ) # n=2 UpperCAmelCase_ : Optional[Any] = x_num * x_num * y_num * y_num UpperCAmelCase_ : Dict = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(A__ ) and is_sq(A__ ): UpperCAmelCase_ : str = int(sqrt(A__ ) ) UpperCAmelCase_ : int = int(sqrt(A__ ) ) UpperCAmelCase_ : Optional[Any] = gcd(A__ ,A__ ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase_ : Optional[int] = add_three( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ) unique_s.add(A__ ) for num, den in unique_s: total += Fraction(A__ ,A__ ) return total.denominator + total.numerator if __name__ == "__main__": print(f'{solution() = }')
95
0
from collections.abc import Callable class lowerCamelCase__ : def __init__(self : Tuple , _snake_case : Callable | None = None ) -> None: """simple docstring""" lowerCamelCase_ : list = [] # Stores indexes of each item for supporting updates and deletion. lowerCamelCase_ : dict = {} # Stores current size of heap. lowerCamelCase_ : List[str] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. lowerCamelCase_ : Union[str, Any] = key or (lambda _snake_case : x) def UpperCAmelCase_ (self : str , _snake_case : int ) -> int | None: """simple docstring""" return int((i - 1) / 2 ) if i > 0 else None def UpperCAmelCase_ (self : Optional[Any] , _snake_case : int ) -> int | None: """simple docstring""" lowerCamelCase_ : Dict = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCAmelCase_ (self : Dict , _snake_case : int ) -> int | None: """simple docstring""" lowerCamelCase_ : Optional[int] = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCAmelCase_ (self : List[str] , _snake_case : int , _snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ : Optional[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. lowerCamelCase_ : Optional[Any] = self.arr[j], self.arr[i] def UpperCAmelCase_ (self : Optional[Any] , _snake_case : int , _snake_case : int ) -> bool: """simple docstring""" return self.arr[i][1] < self.arr[j][1] def UpperCAmelCase_ (self : Dict , _snake_case : int ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = self._left(_snake_case ) lowerCamelCase_ : List[str] = self._right(_snake_case ) lowerCamelCase_ : Any = i if left is not None and not self._cmp(_snake_case , _snake_case ): lowerCamelCase_ : Dict = left if right is not None and not self._cmp(_snake_case , _snake_case ): lowerCamelCase_ : str = right return valid_parent def UpperCAmelCase_ (self : Tuple , _snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ : List[str] = self._parent(_snake_case ) while parent is not None and not self._cmp(_snake_case , _snake_case ): self._swap(_snake_case , _snake_case ) lowerCamelCase_ : str = parent, self._parent(_snake_case ) def UpperCAmelCase_ (self : Tuple , _snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self._get_valid_parent(_snake_case ) while valid_parent != index: self._swap(_snake_case , _snake_case ) lowerCamelCase_ : List[str] = valid_parent, self._get_valid_parent(_snake_case ) def UpperCAmelCase_ (self : List[Any] , _snake_case : int , _snake_case : int ) -> None: """simple docstring""" if item not in self.pos_map: return lowerCamelCase_ : List[Any] = self.pos_map[item] lowerCamelCase_ : Tuple = [item, self.key(_snake_case )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_snake_case ) self._heapify_down(_snake_case ) def UpperCAmelCase_ (self : Optional[int] , _snake_case : int ) -> None: """simple docstring""" if item not in self.pos_map: return lowerCamelCase_ : str = self.pos_map[item] del self.pos_map[item] lowerCamelCase_ : Optional[int] = self.arr[self.size - 1] lowerCamelCase_ : Any = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_snake_case ) self._heapify_down(_snake_case ) def UpperCAmelCase_ (self : Optional[Any] , _snake_case : int , _snake_case : int ) -> None: """simple docstring""" lowerCamelCase_ : Union[str, Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_snake_case )] ) else: lowerCamelCase_ : Dict = [item, self.key(_snake_case )] lowerCamelCase_ : Dict = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCAmelCase_ (self : int ) -> tuple | None: """simple docstring""" return self.arr[0] if self.size else None def UpperCAmelCase_ (self : Union[str, Any] ) -> tuple | None: """simple docstring""" lowerCamelCase_ : Union[str, Any] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def _a ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
702
import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) UpperCamelCase = None def _a ( ) -> Tuple: lowerCamelCase_ : Optional[int] = argparse.ArgumentParser('Official evaluation script for SQuAD version 2.0.' ) parser.add_argument('data_file' , metavar='data.json' , help='Input data JSON file.' ) parser.add_argument('pred_file' , metavar='pred.json' , help='Model predictions.' ) parser.add_argument( '--out-file' , '-o' , metavar='eval.json' , help='Write accuracy metrics to file (default is stdout).' ) parser.add_argument( '--na-prob-file' , '-n' , metavar='na_prob.json' , help='Model estimates of probability of no answer.' ) parser.add_argument( '--na-prob-thresh' , '-t' , type=lowerCamelCase__ , default=1.0 , help='Predict "" if no-answer probability exceeds this (default = 1.0).' , ) parser.add_argument( '--out-image-dir' , '-p' , metavar='out_images' , default=lowerCamelCase__ , help='Save precision-recall curves to directory.' ) parser.add_argument('--verbose' , '-v' , action='store_true' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def _a ( lowerCamelCase__ ) -> Union[str, Any]: lowerCamelCase_ : Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCamelCase_ : Optional[int] = bool(qa['answers']['text'] ) return qid_to_has_ans def _a ( lowerCamelCase__ ) -> Any: def remove_articles(lowerCamelCase__ ): return ARTICLES_REGEX.sub(' ' , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): lowerCamelCase_ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def _a ( lowerCamelCase__ ) -> Optional[Any]: if not s: return [] return normalize_answer(lowerCamelCase__ ).split() def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: return int(normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) ) def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: lowerCamelCase_ : Dict = get_tokens(lowerCamelCase__ ) lowerCamelCase_ : Any = get_tokens(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] = collections.Counter(lowerCamelCase__ ) & collections.Counter(lowerCamelCase__ ) lowerCamelCase_ : Any = sum(common.values() ) if len(lowerCamelCase__ ) == 0 or len(lowerCamelCase__ ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCamelCase_ : Optional[Any] = 1.0 * num_same / len(lowerCamelCase__ ) lowerCamelCase_ : Any = 1.0 * num_same / len(lowerCamelCase__ ) lowerCamelCase_ : List[str] = (2 * precision * recall) / (precision + recall) return fa def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> int: lowerCamelCase_ : List[Any] = {} lowerCamelCase_ : Tuple = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCamelCase_ : Optional[Any] = qa['id'] lowerCamelCase_ : List[str] = [t for t in qa['answers']['text'] if normalize_answer(lowerCamelCase__ )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCamelCase_ : List[Any] = [''] if qid not in preds: print(F'Missing prediction for {qid}' ) continue lowerCamelCase_ : Tuple = preds[qid] # Take max over all gold answers lowerCamelCase_ : Tuple = max(compute_exact(lowerCamelCase__ , lowerCamelCase__ ) for a in gold_answers ) lowerCamelCase_ : str = max(compute_fa(lowerCamelCase__ , lowerCamelCase__ ) for a in gold_answers ) return exact_scores, fa_scores def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: lowerCamelCase_ : Union[str, Any] = {} for qid, s in scores.items(): lowerCamelCase_ : str = na_probs[qid] > na_prob_thresh if pred_na: lowerCamelCase_ : str = float(not qid_to_has_ans[qid] ) else: lowerCamelCase_ : List[Any] = s return new_scores def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ) -> Optional[Any]: if not qid_list: lowerCamelCase_ : int = len(lowerCamelCase__ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores.values() ) / total), ('f1', 100.0 * sum(fa_scores.values() ) / total), ('total', total), ] ) else: lowerCamelCase_ : Tuple = len(lowerCamelCase__ ) return collections.OrderedDict( [ ('exact', 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ('f1', 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ('total', total), ] ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: for k in new_eval: lowerCamelCase_ : str = new_eval[k] def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: plt.step(lowerCamelCase__ , lowerCamelCase__ , color='b' , alpha=0.2 , where='post' ) plt.fill_between(lowerCamelCase__ , lowerCamelCase__ , step='post' , alpha=0.2 , color='b' ) plt.xlabel('Recall' ) plt.ylabel('Precision' ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(lowerCamelCase__ ) plt.savefig(lowerCamelCase__ ) plt.clf() def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None ) -> Dict: lowerCamelCase_ : str = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : na_probs[k] ) lowerCamelCase_ : List[str] = 0.0 lowerCamelCase_ : str = 1.0 lowerCamelCase_ : Union[str, Any] = 0.0 lowerCamelCase_ : str = [1.0] lowerCamelCase_ : Any = [0.0] lowerCamelCase_ : Optional[int] = 0.0 for i, qid in enumerate(lowerCamelCase__ ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCamelCase_ : List[Any] = true_pos / float(i + 1 ) lowerCamelCase_ : str = true_pos / float(lowerCamelCase__ ) if i == len(lowerCamelCase__ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(lowerCamelCase__ ) recalls.append(lowerCamelCase__ ) if out_image: plot_pr_curve(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return {"ap": 100.0 * avg_prec} def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: if out_image_dir and not os.path.exists(lowerCamelCase__ ): os.makedirs(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCamelCase_ : Dict = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , 'pr_exact.png' ) , title='Precision-Recall curve for Exact Match score' , ) lowerCamelCase_ : Optional[Any] = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , 'pr_f1.png' ) , title='Precision-Recall curve for F1 score' , ) lowerCamelCase_ : List[Any] = {k: float(lowerCamelCase__ ) for k, v in qid_to_has_ans.items()} lowerCamelCase_ : str = make_precision_recall_eval( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , out_image=os.path.join(lowerCamelCase__ , 'pr_oracle.png' ) , title='Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)' , ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'pr_exact' ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'pr_f1' ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'pr_oracle' ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: if not qid_list: return lowerCamelCase_ : int = [na_probs[k] for k in qid_list] lowerCamelCase_ : Dict = np.ones_like(lowerCamelCase__ ) / float(len(lowerCamelCase__ ) ) plt.hist(lowerCamelCase__ , weights=lowerCamelCase__ , bins=20 , range=(0.0, 1.0) ) plt.xlabel('Model probability of no-answer' ) plt.ylabel('Proportion of dataset' ) plt.title(F'Histogram of no-answer probability: {name}' ) plt.savefig(os.path.join(lowerCamelCase__ , F'na_prob_hist_{name}.png' ) ) plt.clf() def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: lowerCamelCase_ : List[Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCamelCase_ : Tuple = num_no_ans lowerCamelCase_ : Dict = cur_score lowerCamelCase_ : int = 0.0 lowerCamelCase_ : int = sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : na_probs[k] ) for i, qid in enumerate(lowerCamelCase__ ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCamelCase_ : List[str] = scores[qid] else: if preds[qid]: lowerCamelCase_ : int = -1 else: lowerCamelCase_ : Any = 0 cur_score += diff if cur_score > best_score: lowerCamelCase_ : List[str] = cur_score lowerCamelCase_ : Dict = na_probs[qid] return 100.0 * best_score / len(lowerCamelCase__ ), best_thresh def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: lowerCamelCase_ , lowerCamelCase_ : Any = find_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] = find_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Optional[int] = best_exact lowerCamelCase_ : List[str] = exact_thresh lowerCamelCase_ : str = best_fa lowerCamelCase_ : Optional[int] = fa_thresh def _a ( ) -> Optional[Any]: with open(OPTS.data_file ) as f: lowerCamelCase_ : List[str] = json.load(lowerCamelCase__ ) lowerCamelCase_ : Optional[int] = dataset_json['data'] with open(OPTS.pred_file ) as f: lowerCamelCase_ : List[str] = json.load(lowerCamelCase__ ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCamelCase_ : int = json.load(lowerCamelCase__ ) else: lowerCamelCase_ : Dict = {k: 0.0 for k in preds} lowerCamelCase_ : List[Any] = make_qid_to_has_ans(lowerCamelCase__ ) # maps qid to True/False lowerCamelCase_ : Optional[Any] = [k for k, v in qid_to_has_ans.items() if v] lowerCamelCase_ : Any = [k for k, v in qid_to_has_ans.items() if not v] lowerCamelCase_ , lowerCamelCase_ : Tuple = get_raw_scores(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Any = apply_no_ans_threshold(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.na_prob_thresh ) lowerCamelCase_ : Dict = apply_no_ans_threshold(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.na_prob_thresh ) lowerCamelCase_ : Tuple = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ ) if has_ans_qids: lowerCamelCase_ : List[str] = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ , qid_list=lowerCamelCase__ ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'HasAns' ) if no_ans_qids: lowerCamelCase_ : Optional[Any] = make_eval_dict(lowerCamelCase__ , lowerCamelCase__ , qid_list=lowerCamelCase__ ) merge_eval(lowerCamelCase__ , lowerCamelCase__ , 'NoAns' ) if OPTS.na_prob_file: find_all_best_thresh(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir ) histogram_na_prob(lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir , 'hasAns' ) histogram_na_prob(lowerCamelCase__ , lowerCamelCase__ , OPTS.out_image_dir , 'noAns' ) if OPTS.out_file: with open(OPTS.out_file , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) else: print(json.dumps(lowerCamelCase__ , indent=2 ) ) if __name__ == "__main__": UpperCamelCase = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
144
0
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = inspect.getfile(accelerate.test_utils ) __a : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __a : Optional[Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() __a : int = [sys.executable] + distributed_args execute_subprocess_async(__a , env=os.environ.copy() )
476
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCamelCase (_SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : set , _SCREAMING_SNAKE_CASE : set , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : PriorityQueue , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : float | int , ): for nxt, d in graph[v]: if nxt in visited_forward: continue __a : Any = cst_fwd.get(_SCREAMING_SNAKE_CASE , np.inf ) __a : Dict = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __a : Union[str, Any] = new_cost_f __a : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __a : Tuple = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCamelCase (_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict ): __a : Union[str, Any] = -1 __a : str = set() __a : str = set() __a : List[str] = {source: 0} __a : Dict = {destination: 0} __a : Optional[int] = {source: None} __a : Union[str, Any] = {destination: None} __a : PriorityQueue[Any] = PriorityQueue() __a : PriorityQueue[Any] = PriorityQueue() __a : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __a , __a : List[str] = queue_forward.get() visited_forward.add(_SCREAMING_SNAKE_CASE ) __a , __a : Tuple = queue_backward.get() visited_backward.add(_SCREAMING_SNAKE_CASE ) __a : List[str] = pass_and_relaxation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) __a : Optional[Any] = pass_and_relaxation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __a : int = shortest_distance return shortest_path_distance __lowercase : List[str] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __lowercase : Any = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
476
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def lowerCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] )-> List[Any]: """simple docstring""" if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer a =flax_key_tuple[:-1] + ("""weight""",) a =torch.permute(UpperCAmelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(UpperCAmelCase_ ): # linear layer a =flax_key_tuple[:-1] + ("""weight""",) a =flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: a =flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int )-> List[str]: """simple docstring""" if "metadata" in layer: a =layer.split("""metadata""" ) a ="""""".join(split_layer[0] )[:-1] a =[tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: a =layer.split("""kvstore""" ) a ="""""".join(split_layer[0] )[:-1] a =[tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: a =layer.split("""/""" ) a ="""/""".join(split_layer[:-1] ) a =(split_layer[-1],) if "kvstore/path" in layer: a =F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: a ="""file""" else: a =checkpoint_info[layer] return curr_real_layer_name, split_layer, content def lowerCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : int )-> str: """simple docstring""" a =rename_keys(UpperCAmelCase_ ) a ={} for k, v in current_block.items(): a =v a =new_current_block torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str = WEIGHTS_NAME )-> Dict: """simple docstring""" a =convert_file_size_to_int(UpperCAmelCase_ ) a =[] a ={} a =0 a =0 os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: a =serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] a =flatten_dict(UpperCAmelCase_ , sep="""/""" ) a ={} for layer in checkpoint_info.keys(): a , a , a =get_key_and_tensorstore_dict( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if curr_real_layer_name in all_layers: a =content else: a ={split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file a =ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() a =torch.tensor(UpperCAmelCase_ ) a =raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts a , a =rename_base_flax_keys(tuple(key.split("""/""" ) ) , UpperCAmelCase_ ) a ="""/""".join(UpperCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: a =os.path.join( UpperCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(UpperCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(UpperCAmelCase_ , UpperCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block a ={} a =0 a =raw_weights.to(getattr(UpperCAmelCase_ , UpperCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block a =os.path.join(UpperCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(UpperCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(UpperCAmelCase_ , UpperCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(UpperCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index a ={} a ={} for idx, shard in enumerate(UpperCAmelCase_ ): a =weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(UpperCAmelCase_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} a =os.path.join(UpperCAmelCase_ , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) a =shard for key in shard: a =shard_file # Add the metadata a ={"""total_size""": total_size} a ={"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , """w""" , encoding="""utf-8""" ) as f: a =json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + """\n""" f.write(UpperCAmelCase_ ) return metadata, index if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) _lowerCamelCase = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def lowerCamelCase ( )-> Tuple: """simple docstring""" from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer a =SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) a =SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) a =TaTokenizer.from_pretrained("""t5-small""" ) a ="""A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" a =tokenizer(UpperCAmelCase_ , return_tensors="""pt""" ).input_ids a =model.generate(UpperCAmelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
321
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCAmelCase__ ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = MvpTokenizer _SCREAMING_SNAKE_CASE : Union[str, Any] = MvpTokenizerFast _SCREAMING_SNAKE_CASE : Optional[int] = True _SCREAMING_SNAKE_CASE : Any = filter_roberta_detectors def lowerCAmelCase__ ( self ): super().setUp() a =[ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] a =dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) a =["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] a ={"""unk_token""": """<unk>"""} a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) def lowerCAmelCase__ ( self , **_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self , **_lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def lowerCAmelCase__ ( self , _lowerCAmelCase ): return "lower newer", "lower newer" @cached_property def lowerCAmelCase__ ( self ): return MvpTokenizer.from_pretrained("""RUCAIBox/mvp""" ) @cached_property def lowerCAmelCase__ ( self ): return MvpTokenizerFast.from_pretrained("""RUCAIBox/mvp""" ) @require_torch def lowerCAmelCase__ ( self ): a =["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a =[0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer(_lowerCAmelCase , max_length=len(_lowerCAmelCase ) , padding=_lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) a =batch.input_ids.tolist()[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) # Test that special tokens are reset @require_torch def lowerCAmelCase__ ( self ): a =["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="""pt""" ) # check if input_ids are returned and no labels self.assertIn("""input_ids""" , _lowerCAmelCase ) self.assertIn("""attention_mask""" , _lowerCAmelCase ) self.assertNotIn("""labels""" , _lowerCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , _lowerCAmelCase ) @require_torch def lowerCAmelCase__ ( self ): a =[ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer(text_target=_lowerCAmelCase , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def lowerCAmelCase__ ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer( ["""I am a small frog""" * 1_024, """I am a small frog"""] , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def lowerCAmelCase__ ( self ): a =["""A long paragraph for summarization."""] a =[ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: a =tokenizer(_lowerCAmelCase , text_target=_lowerCAmelCase , return_tensors="""pt""" ) a =inputs["""input_ids"""] a =inputs["""labels"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a =self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) a =self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) a ="""A, <mask> AllenNLP sentence.""" a =tokenizer_r.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) a =tokenizer_p.encode_plus(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase , return_token_type_ids=_lowerCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) a =tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) a =tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( _lowerCAmelCase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
321
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __UpperCAmelCase = None __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = "▁" __UpperCAmelCase = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __UpperCAmelCase = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } __UpperCAmelCase = { "google/pegasus-xsum": 512, } class lowercase_ ( a_ ): __magic_name__ : str = VOCAB_FILES_NAMES __magic_name__ : int = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Any = PegasusTokenizer __magic_name__ : Optional[Any] = ["input_ids", "attention_mask"] def __init__( self : Union[str, Any] , _lowercase : List[str]=None , _lowercase : int=None , _lowercase : str="<pad>" , _lowercase : Dict="</s>" , _lowercase : int="<unk>" , _lowercase : str="<mask_2>" , _lowercase : Tuple="<mask_1>" , _lowercase : List[str]=None , _lowercase : List[Any]=1_0_3 , **_lowercase : Tuple , ): lowerCAmelCase__ : List[Any] = offset if additional_special_tokens is not None: if not isinstance(_lowercase , _lowercase ): raise TypeError( f"additional_special_tokens should be of type {type(_lowercase )}, but is" f" {type(_lowercase )}" ) lowerCAmelCase__ : List[str] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"<unk_{i}>" for i in range(len(_lowercase ) , self.offset - 1 ) ] if len(set(_lowercase ) ) != len(_lowercase ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) lowerCAmelCase__ : int = additional_special_tokens_extended else: lowerCAmelCase__ : Any = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"<unk_{i}>" for i in range(2 , self.offset )] super().__init__( _lowercase , tokenizer_file=_lowercase , pad_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , mask_token=_lowercase , mask_token_sent=_lowercase , offset=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) lowerCAmelCase__ : List[str] = vocab_file lowerCAmelCase__ : Any = False if not self.vocab_file else True def _lowerCAmelCase ( self : Tuple , _lowercase : List[Any] ): lowerCAmelCase__ : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}" ) return [1 if x in all_special_ids else 0 for x in seq] def _lowerCAmelCase ( self : List[str] , _lowercase : Tuple , _lowercase : List[Any] = None , _lowercase : Any = False ): if already_has_special_tokens: return self._special_token_mask(_lowercase ) elif token_ids_a is None: return self._special_token_mask(_lowercase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowerCAmelCase ( self : List[str] , _lowercase : Dict , _lowercase : List[Any]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self : Any , _lowercase : Dict , _lowercase : Any = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowercase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ : Union[str, Any] = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
308
import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[Any] = ReformerTokenizer UpperCamelCase : Optional[int] = ReformerTokenizerFast UpperCamelCase : Union[str, Any] = True UpperCamelCase : Dict = False UpperCamelCase : Dict = True def __A ( self ) -> str: '''simple docstring''' super().setUp() lowerCamelCase = ReformerTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = """<s>""" lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(A ) , 10_00 ) def __A ( self ) -> int: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def __A ( self ) -> Tuple: '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = """I was born in 92000, and this is falsé.""" lowerCamelCase = tokenizer.tokenize(A ) lowerCamelCase = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) lowerCamelCase = tokenizer.encode(A , add_special_tokens=A ) lowerCamelCase = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = tokenizer.encode(A ) lowerCamelCase = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) def __A ( self , A=15 ) -> Tuple: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase = self.rust_tokenizer_class.from_pretrained(A , **A ) # Simple input lowerCamelCase = """This is a simple input""" lowerCamelCase = ["""This is a simple input 1""", """This is a simple input 2"""] lowerCamelCase = ("""This is a simple input""", """This is a pair""") lowerCamelCase = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding="""max_length""" ) # Simple input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding="""max_length""" ) # Simple input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding="""max_length""" , ) # Pair input self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding="""max_length""" ) # Pair input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding="""max_length""" ) # Pair input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding="""max_length""" , ) def __A ( self ) -> List[Any]: '''simple docstring''' pass def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = ReformerTokenizer(A , keep_accents=A ) lowerCamelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [2_85, 46, 10, 1_70, 3_82] , ) lowerCamelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __A ( self ) -> List[Any]: '''simple docstring''' return ReformerTokenizer.from_pretrained("""google/reformer-crime-and-punishment""" ) @slow def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = """Hello World!""" lowerCamelCase = [1_26, 32, 2_62, 1_52, 38, 72, 2_87] self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @slow def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase = [ 1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 35, 28, 2_75, 3, 2_59, 2_97, 2_60, 84, 4, 35, 1_10, 44, 8, 2_59, 91, 2_68, 21, 11, 2_09, 2_74, 1_09, 2_66, 2_77, 1_17, 86, 93, 3_15, 2_58, 2_78, 2_58, 2_77, 2_58, 0, 2_58, 2_88, 2_58, 3_19, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 0, 2_58, 2_87, 2_58, 3_15, 2_58, 2_89, 2_58, 2_78, 99, 2_69, 2_66, 2_62, 8, 2_59, 2_41, 4, 2_17, 2_30, 2_68, 2_66, 55, 1_68, 1_06, 75, 1_93, 2_66, 2_23, 27, 49, 26, 2_82, 25, 2_64, 2_99, 19, 26, 0, 2_58, 2_77, 1_17, 86, 93, 1_76, 1_83, 2_70, 11, 2_62, 42, 61, 2_65, ] self.assertListEqual(A , self.big_tokenizer.encode(A ) ) @require_torch @slow def __A ( self ) -> Tuple: '''simple docstring''' import torch from transformers import ReformerConfig, ReformerModel # Build sequence lowerCamelCase = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase = """ """.join(A ) lowerCamelCase = self.big_tokenizer.encode_plus(A , return_tensors="""pt""" ) lowerCamelCase = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="""pt""" ) lowerCamelCase = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) lowerCamelCase = encoded_sequence["""input_ids"""].shape lowerCamelCase = ReformerModel(A ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**A ) model(**A ) @slow def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = {"""input_ids""": [[1_08, 2_65, 24, 1_11, 4, 2_58, 1_56, 7, 51, 2_79, 58, 7, 76, 25, 69, 2_78], [1_40, 2_43, 2_64, 1_34, 17, 2_67, 77, 2_63, 22, 2_62, 2_97, 2_58, 3_04, 1_77, 2_79, 2_66, 14, 89, 13, 35, 2_61, 2_99, 2_72, 1_37, 2_75, 2_78]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 lowerCamelCase = [ """This is a very simple sentence.""", """The quick brown fox jumps over the lazy dog.""", ] self.tokenizer_integration_test_util( expected_encoding=A , model_name="""google/reformer-crime-and-punishment""" , revision="""0e6c3decb8211d49bf881013425dc8b0448b3f5a""" , padding=A , sequences=A , )
457
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowercase( __lowercase ): '''simple docstring''' __a : Any = (DEISMultistepScheduler,) __a : Tuple = (('num_inference_steps', 25),) def snake_case_ ( self , **__a ): __lowerCamelCase : Optional[Any] = { 'num_train_timesteps': 1000, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**_A ) return config def snake_case_ ( self , __a=0 , **__a ): __lowerCamelCase : str = dict(self.forward_default_kwargs ) __lowerCamelCase : List[Any] = kwargs.pop('num_inference_steps' , _A ) __lowerCamelCase : List[str] = self.dummy_sample __lowerCamelCase : Any = 0.1 * sample __lowerCamelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCamelCase : Optional[int] = self.get_scheduler_config(**_A ) __lowerCamelCase : Any = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals __lowerCamelCase : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __lowerCamelCase : Dict = scheduler_class.from_pretrained(_A ) new_scheduler.set_timesteps(_A ) # copy over dummy past residuals __lowerCamelCase : int = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCamelCase , __lowerCamelCase : Union[str, Any] = sample, sample for t in range(_A , time_step + scheduler.config.solver_order + 1 ): __lowerCamelCase : Optional[Any] = scheduler.step(_A , _A , _A , **_A ).prev_sample __lowerCamelCase : str = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case_ ( self ): pass def snake_case_ ( self , __a=0 , **__a ): __lowerCamelCase : Optional[Any] = dict(self.forward_default_kwargs ) __lowerCamelCase : List[Any] = kwargs.pop('num_inference_steps' , _A ) __lowerCamelCase : Optional[Any] = self.dummy_sample __lowerCamelCase : Tuple = 0.1 * sample __lowerCamelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCamelCase : List[str] = self.get_scheduler_config() __lowerCamelCase : List[Any] = scheduler_class(**_A ) scheduler.set_timesteps(_A ) # copy over dummy past residuals (must be after setting timesteps) __lowerCamelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_A ) __lowerCamelCase : Union[str, Any] = scheduler_class.from_pretrained(_A ) # copy over dummy past residuals new_scheduler.set_timesteps(_A ) # copy over dummy past residual (must be after setting timesteps) __lowerCamelCase : Tuple = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCamelCase : Union[str, Any] = scheduler.step(_A , _A , _A , **_A ).prev_sample __lowerCamelCase : List[Any] = new_scheduler.step(_A , _A , _A , **_A ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def snake_case_ ( self , __a=None , **__a ): if scheduler is None: __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : int = self.get_scheduler_config(**_A ) __lowerCamelCase : str = scheduler_class(**_A ) __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : Optional[int] = self.get_scheduler_config(**_A ) __lowerCamelCase : int = scheduler_class(**_A ) __lowerCamelCase : List[Any] = 10 __lowerCamelCase : Union[str, Any] = self.dummy_model() __lowerCamelCase : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase : Dict = model(_A , _A ) __lowerCamelCase : Tuple = scheduler.step(_A , _A , _A ).prev_sample return sample def snake_case_ ( self ): __lowerCamelCase : Dict = dict(self.forward_default_kwargs ) __lowerCamelCase : Dict = kwargs.pop('num_inference_steps' , _A ) for scheduler_class in self.scheduler_classes: __lowerCamelCase : Union[str, Any] = self.get_scheduler_config() __lowerCamelCase : Any = scheduler_class(**_A ) __lowerCamelCase : Optional[int] = self.dummy_sample __lowerCamelCase : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(_A , 'set_timesteps' ): scheduler.set_timesteps(_A ) elif num_inference_steps is not None and not hasattr(_A , 'set_timesteps' ): __lowerCamelCase : List[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowerCamelCase : Any = [residual + 0.2, residual + 0.15, residual + 0.10] __lowerCamelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] __lowerCamelCase : Optional[int] = scheduler.timesteps[5] __lowerCamelCase : Any = scheduler.timesteps[6] __lowerCamelCase : str = scheduler.step(_A , _A , _A , **_A ).prev_sample __lowerCamelCase : str = scheduler.step(_A , _A , _A , **_A ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults __lowerCamelCase : Dict = DEISMultistepScheduler(**self.get_scheduler_config() ) __lowerCamelCase : List[str] = self.full_loop(scheduler=_A ) __lowerCamelCase : Optional[int] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 __lowerCamelCase : Dict = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCamelCase : Optional[Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCamelCase : Dict = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCamelCase : List[Any] = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCamelCase : Tuple = self.full_loop(scheduler=_A ) __lowerCamelCase : Any = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def snake_case_ ( self ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_A ) def snake_case_ ( self ): self.check_over_configs(thresholding=_A ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_A , prediction_type=_A , sample_max_value=_A , algorithm_type='deis' , solver_order=_A , solver_type=_A , ) def snake_case_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def snake_case_ ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_A , solver_type=_A , prediction_type=_A , algorithm_type=_A , ) __lowerCamelCase : Tuple = self.full_loop( solver_order=_A , solver_type=_A , prediction_type=_A , algorithm_type=_A , ) assert not torch.isnan(_A ).any(), "Samples have nan numbers" def snake_case_ ( self ): self.check_over_configs(lower_order_final=_A ) self.check_over_configs(lower_order_final=_A ) def snake_case_ ( self ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_A , time_step=0 ) def snake_case_ ( self ): __lowerCamelCase : List[str] = self.full_loop() __lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.23_916 ) < 1E-3 def snake_case_ ( self ): __lowerCamelCase : Tuple = self.full_loop(prediction_type='v_prediction' ) __lowerCamelCase : Any = torch.mean(torch.abs(_A ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def snake_case_ ( self ): __lowerCamelCase : Tuple = self.scheduler_classes[0] __lowerCamelCase : Union[str, Any] = self.get_scheduler_config(thresholding=_A , dynamic_thresholding_ratio=0 ) __lowerCamelCase : List[str] = scheduler_class(**_A ) __lowerCamelCase : List[Any] = 10 __lowerCamelCase : Optional[Any] = self.dummy_model() __lowerCamelCase : Tuple = self.dummy_sample_deter.half() scheduler.set_timesteps(_A ) for i, t in enumerate(scheduler.timesteps ): __lowerCamelCase : Dict = model(_A , _A ) __lowerCamelCase : int = scheduler.step(_A , _A , _A ).prev_sample assert sample.dtype == torch.floataa
705
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def UpperCAmelCase ( A__: Tuple ) -> Union[str, Any]: # getting number of pixels in the image __lowerCamelCase , __lowerCamelCase : Optional[Any] = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A__ ): for j in range(A__ ): __lowerCamelCase : Optional[Any] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image a_ : Dict = imread('''image_data/lena.jpg''', 1) # convert to its negative a_ : str = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
263
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel a_ : Union[str, Any] = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class UpperCamelCase ( unittest.TestCase ): @classmethod def UpperCamelCase ( cls : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def UpperCamelCase ( cls : Optional[int] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-model-flax' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-model-flax-org' ) except HTTPError: pass def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) SCREAMING_SNAKE_CASE = FlaxBertModel(snake_case__ ) model.push_to_hub('test-model-flax' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='test-model-flax' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(snake_case__ , repo_id='test-model-flax' , push_to_hub=snake_case__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F"""{key} not identical""" ) def UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) SCREAMING_SNAKE_CASE = FlaxBertModel(snake_case__ ) model.push_to_hub('valid_org/test-model-flax-org' , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-model-flax-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( snake_case__ , repo_id='valid_org/test-model-flax-org' , push_to_hub=snake_case__ , use_auth_token=self._token ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained('valid_org/test-model-flax-org' ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(model.params ) ) SCREAMING_SNAKE_CASE = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): SCREAMING_SNAKE_CASE = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(snake_case__ , 1E-3 , msg=F"""{key} not identical""" ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) SCREAMING_SNAKE_CASE = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: SCREAMING_SNAKE_CASE = False return models_are_equal @require_flax class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) SCREAMING_SNAKE_CASE = FlaxBertModel(snake_case__ ) SCREAMING_SNAKE_CASE = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case__ , snake_case__ ) ) with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertTrue(check_models_equal(snake_case__ , snake_case__ ) ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = BertConfig.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) SCREAMING_SNAKE_CASE = FlaxBertModel(snake_case__ ) SCREAMING_SNAKE_CASE = 'bert' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(snake_case__ , snake_case__ ) , max_shard_size='10KB' ) with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertTrue(check_models_equal(snake_case__ , snake_case__ ) ) def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'bert' SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert-subfolder' with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = 'bert' SCREAMING_SNAKE_CASE = 'hf-internal-testing/tiny-random-bert-sharded-subfolder' with self.assertRaises(snake_case__ ): SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE = FlaxBertModel.from_pretrained(snake_case__ , subfolder=snake_case__ ) self.assertIsNotNone(snake_case__ )
439
import re from filelock import FileLock try: import nltk a_ : Optional[Any] = True except (ImportError, ModuleNotFoundError): a_ : Union[str, Any] = False if NLTK_AVAILABLE: with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) def __lowerCAmelCase ( _UpperCamelCase : str ) -> str: '''simple docstring''' re.sub('<n>' , '' , _UpperCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_UpperCamelCase ) )
439
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class a ( snake_case__ ): '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: super().__init__() self.register_modules(unet=lowerCamelCase_ , scheduler=lowerCamelCase_ ) def __call__( self ) -> Optional[Any]: _a : str = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _a : str = 1 _a : str = self.unet(lowerCamelCase_ , lowerCamelCase_ ).sample _a : Tuple = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample _a : Dict = scheduler_output - scheduler_output + torch.ones_like(lowerCamelCase_ ) return result
701
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Union[str, Any] = """megatron-bert""" def __init__( self , lowerCamelCase_=2_9_0_5_6 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=2_4 , lowerCamelCase_=1_6 , lowerCamelCase_=4_0_9_6 , lowerCamelCase_="gelu" , lowerCamelCase_=0.1 , lowerCamelCase_=0.1 , lowerCamelCase_=5_1_2 , lowerCamelCase_=2 , lowerCamelCase_=0.02 , lowerCamelCase_=1e-12 , lowerCamelCase_=0 , lowerCamelCase_="absolute" , lowerCamelCase_=True , **lowerCamelCase_ , ) -> List[str]: super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) _a : Union[str, Any] = vocab_size _a : Any = hidden_size _a : Tuple = num_hidden_layers _a : Dict = num_attention_heads _a : str = hidden_act _a : Dict = intermediate_size _a : Any = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : str = max_position_embeddings _a : int = type_vocab_size _a : Tuple = initializer_range _a : Optional[Any] = layer_norm_eps _a : str = position_embedding_type _a : str = use_cache
424
0
from ...processing_utils import ProcessorMixin class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] ="SpeechT5FeatureExtractor" SCREAMING_SNAKE_CASE_ : Optional[Any] ="SpeechT5Tokenizer" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def __call__( self : Optional[int] , *SCREAMING_SNAKE_CASE__ : List[str] , **SCREAMING_SNAKE_CASE__ : Tuple ): """simple docstring""" UpperCamelCase = kwargs.pop('audio' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = kwargs.pop('text' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = kwargs.pop('text_target' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = kwargs.pop('audio_target' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = kwargs.pop('sampling_rate' , SCREAMING_SNAKE_CASE__ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: UpperCamelCase = self.feature_extractor(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif text is not None: UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = None if audio_target is not None: UpperCamelCase = self.feature_extractor(audio_target=SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , sampling_rate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) UpperCamelCase = targets['input_values'] elif text_target is not None: UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) UpperCamelCase = targets['input_ids'] else: UpperCamelCase = None if inputs is None: return targets if targets is not None: UpperCamelCase = labels UpperCamelCase = targets.get('attention_mask' ) if decoder_attention_mask is not None: UpperCamelCase = decoder_attention_mask return inputs def __lowerCAmelCase ( self : List[str] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" UpperCamelCase = kwargs.pop('input_values' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = kwargs.pop('input_ids' , SCREAMING_SNAKE_CASE__ ) UpperCamelCase = kwargs.pop('labels' , SCREAMING_SNAKE_CASE__ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: UpperCamelCase = self.feature_extractor.pad(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) elif input_ids is not None: UpperCamelCase = self.tokenizer.pad(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = None if labels is not None: if "input_ids" in labels or (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and "input_ids" in labels[0]): UpperCamelCase = self.tokenizer.pad(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) UpperCamelCase = targets['input_ids'] else: UpperCamelCase = self.feature_extractor.feature_size UpperCamelCase = self.feature_extractor.num_mel_bins UpperCamelCase = self.feature_extractor.pad(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) UpperCamelCase = feature_size_hack UpperCamelCase = targets['input_values'] else: UpperCamelCase = None if inputs is None: return targets if targets is not None: UpperCamelCase = labels UpperCamelCase = targets.get('attention_mask' ) if decoder_attention_mask is not None: UpperCamelCase = decoder_attention_mask return inputs def __lowerCAmelCase ( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Any ): """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : List[str] , *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
282
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() _snake_case = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCamelCase ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=False , _lowercase=True ) -> List[Any]: if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: UpperCamelCase = cached_file(_lowercase , _lowercase , force_download=not use_cached_models ) UpperCamelCase = config_class.from_json_file(_lowercase ) UpperCamelCase = True UpperCamelCase = True print(F'Building TensorFlow model from configuration: {config}' ) UpperCamelCase = model_class(_lowercase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): UpperCamelCase = cached_file( _lowercase , _lowercase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: UpperCamelCase = load_pytorch_checkpoint_in_tfa_model(_lowercase , _lowercase ) if compare_with_pt_model: UpperCamelCase = tf_model(tf_model.dummy_inputs , training=_lowercase ) # build the network UpperCamelCase = torch.load(_lowercase , map_location='cpu' ) UpperCamelCase = pt_model_class.from_pretrained( pretrained_model_name_or_path=_lowercase , config=_lowercase , state_dict=_lowercase ) with torch.no_grad(): UpperCamelCase = pt_model(**pt_model.dummy_inputs ) UpperCamelCase = pto[0].numpy() UpperCamelCase = tfo[0].numpy() UpperCamelCase = np.amax(np.abs(np_pt - np_tf ) ) print(F'Max absolute difference between models outputs {diff}' ) assert diff <= 2e-2, F'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(F'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(_lowercase , save_format='h5' ) def __lowerCamelCase ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=False , _lowercase=False , _lowercase=False , ) -> int: if args_model_type is None: UpperCamelCase = list(MODEL_CLASSES.keys() ) else: UpperCamelCase = [args_model_type] for j, model_type in enumerate(_lowercase , start=1 ): print('=' * 100 ) print(F' Converting model type {j}/{len(_lowercase )}: {model_type}' ) print('=' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: UpperCamelCase = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: UpperCamelCase = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(_lowercase , _lowercase ) , start=1 ): print('-' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F' Skipping finetuned checkpoint {model_shortcut_name}' ) continue UpperCamelCase = model_shortcut_name elif only_convert_finetuned_models: print(F' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( F' Converting checkpoint {i}/{len(_lowercase )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 100 ) if config_shortcut_name in aws_config_map: UpperCamelCase = cached_file(_lowercase , _lowercase , force_download=not use_cached_models ) else: UpperCamelCase = config_shortcut_name if model_shortcut_name in aws_model_maps: UpperCamelCase = cached_file(_lowercase , _lowercase , force_download=not use_cached_models ) else: UpperCamelCase = model_shortcut_name if os.path.isfile(_lowercase ): UpperCamelCase = 'converted_model' convert_pt_checkpoint_to_tf( model_type=_lowercase , pytorch_checkpoint_path=_lowercase , config_file=_lowercase , tf_dump_path=os.path.join(_lowercase , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=_lowercase , ) if remove_cached_files: os.remove(_lowercase ) os.remove(_lowercase ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') _snake_case = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
282
1
"""simple docstring""" def __lowercase ( a : int ) -> bool: if not isinstance(a , a ): raise ValueError('''check_bouncy() accepts only integer arguments''' ) __snake_case : List[str] =str(a ) __snake_case : Optional[int] =''''''.join(sorted(a ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowercase ( a : float = 99 ) -> int: if not 0 < percent < 100: raise ValueError('''solution() only accepts values from 0 to 100''' ) __snake_case : Any =0 __snake_case : Dict =1 while True: if check_bouncy(a ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
497
"""simple docstring""" def __lowercase ( a : str , a : str ) -> str: __snake_case : int =len(a ) __snake_case : int =len(a ) __snake_case : int =( first_str_length if first_str_length > second_str_length else second_str_length ) __snake_case : list =[] for char_count in range(a ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
497
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=0.0 , _UpperCamelCase = None , _UpperCamelCase = "geglu" , _UpperCamelCase = None , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = False , _UpperCamelCase = True , _UpperCamelCase = "layer_norm" , _UpperCamelCase = False , ) -> str: """simple docstring""" super().__init__() __snake_case = only_cross_attention __snake_case = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" __snake_case = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __snake_case = AdaLayerNorm(_UpperCamelCase , _UpperCamelCase ) elif self.use_ada_layer_norm_zero: __snake_case = AdaLayerNormZero(_UpperCamelCase , _UpperCamelCase ) else: __snake_case = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase ) __snake_case = Attention( query_dim=_UpperCamelCase , heads=_UpperCamelCase , dim_head=_UpperCamelCase , dropout=_UpperCamelCase , bias=_UpperCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_UpperCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __snake_case = ( AdaLayerNorm(_UpperCamelCase , _UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase ) ) __snake_case = Attention( query_dim=_UpperCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_UpperCamelCase , dim_head=_UpperCamelCase , dropout=_UpperCamelCase , bias=_UpperCamelCase , upcast_attention=_UpperCamelCase , ) # is self-attn if encoder_hidden_states is none else: __snake_case = None __snake_case = None # 3. Feed-forward __snake_case = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase ) __snake_case = FeedForward(_UpperCamelCase , dropout=_UpperCamelCase , activation_fn=_UpperCamelCase , final_dropout=_UpperCamelCase ) # let chunk size default to None __snake_case = None __snake_case = 0 def a ( self , _UpperCamelCase , _UpperCamelCase ) -> Tuple: """simple docstring""" __snake_case = chunk_size __snake_case = dim def a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , ) -> str: """simple docstring""" if self.use_ada_layer_norm: __snake_case = self.norma(_UpperCamelCase , _UpperCamelCase ) elif self.use_ada_layer_norm_zero: __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = self.norma( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hidden_dtype=hidden_states.dtype ) else: __snake_case = self.norma(_UpperCamelCase ) __snake_case = cross_attention_kwargs if cross_attention_kwargs is not None else {} __snake_case = self.attna( _UpperCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_UpperCamelCase , **_UpperCamelCase , ) if self.use_ada_layer_norm_zero: __snake_case = gate_msa.unsqueeze(1 ) * attn_output __snake_case = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __snake_case = ( self.norma(_UpperCamelCase , _UpperCamelCase ) if self.use_ada_layer_norm else self.norma(_UpperCamelCase ) ) __snake_case = self.attna( _UpperCamelCase , encoder_hidden_states=_UpperCamelCase , attention_mask=_UpperCamelCase , **_UpperCamelCase , ) __snake_case = attn_output + hidden_states # 3. Feed-forward __snake_case = self.norma(_UpperCamelCase ) if self.use_ada_layer_norm_zero: __snake_case = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) __snake_case = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __snake_case = torch.cat( [self.ff(_UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(_UpperCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __snake_case = self.ff(_UpperCamelCase ) if self.use_ada_layer_norm_zero: __snake_case = gate_mlp.unsqueeze(1 ) * ff_output __snake_case = ff_output + hidden_states return hidden_states class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = 4 , _UpperCamelCase = 0.0 , _UpperCamelCase = "geglu" , _UpperCamelCase = False , ) -> int: """simple docstring""" super().__init__() __snake_case = int(dim * mult ) __snake_case = dim_out if dim_out is not None else dim if activation_fn == "gelu": __snake_case = GELU(_UpperCamelCase , _UpperCamelCase ) if activation_fn == "gelu-approximate": __snake_case = GELU(_UpperCamelCase , _UpperCamelCase , approximate="""tanh""" ) elif activation_fn == "geglu": __snake_case = GEGLU(_UpperCamelCase , _UpperCamelCase ) elif activation_fn == "geglu-approximate": __snake_case = ApproximateGELU(_UpperCamelCase , _UpperCamelCase ) __snake_case = nn.ModuleList([] ) # project in self.net.append(_UpperCamelCase ) # project dropout self.net.append(nn.Dropout(_UpperCamelCase ) ) # project out self.net.append(nn.Linear(_UpperCamelCase , _UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_UpperCamelCase ) ) def a ( self , _UpperCamelCase ) -> Any: """simple docstring""" for module in self.net: __snake_case = module(_UpperCamelCase ) return hidden_states class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = "none" ) -> Dict: """simple docstring""" super().__init__() __snake_case = nn.Linear(_UpperCamelCase , _UpperCamelCase ) __snake_case = approximate def a ( self , _UpperCamelCase ) -> Any: """simple docstring""" if gate.device.type != "mps": return F.gelu(_UpperCamelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def a ( self , _UpperCamelCase ) -> Dict: """simple docstring""" __snake_case = self.proj(_UpperCamelCase ) __snake_case = self.gelu(_UpperCamelCase ) return hidden_states class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: """simple docstring""" super().__init__() __snake_case = nn.Linear(_UpperCamelCase , dim_out * 2 ) def a ( self , _UpperCamelCase ) -> str: """simple docstring""" if gate.device.type != "mps": return F.gelu(_UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a ( self , _UpperCamelCase ) -> int: """simple docstring""" __snake_case , __snake_case = self.proj(_UpperCamelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_UpperCamelCase ) class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> int: """simple docstring""" super().__init__() __snake_case = nn.Linear(_UpperCamelCase , _UpperCamelCase ) def a ( self , _UpperCamelCase ) -> List[Any]: """simple docstring""" __snake_case = self.proj(_UpperCamelCase ) return x * torch.sigmoid(1.702 * x ) class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: """simple docstring""" super().__init__() __snake_case = nn.Embedding(_UpperCamelCase , _UpperCamelCase ) __snake_case = nn.SiLU() __snake_case = nn.Linear(_UpperCamelCase , embedding_dim * 2 ) __snake_case = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase ) def a ( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[int]: """simple docstring""" __snake_case = self.linear(self.silu(self.emb(_UpperCamelCase ) ) ) __snake_case , __snake_case = torch.chunk(_UpperCamelCase , 2 ) __snake_case = self.norm(_UpperCamelCase ) * (1 + scale) + shift return x class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase ) -> List[str]: """simple docstring""" super().__init__() __snake_case = CombinedTimestepLabelEmbeddings(_UpperCamelCase , _UpperCamelCase ) __snake_case = nn.SiLU() __snake_case = nn.Linear(_UpperCamelCase , 6 * embedding_dim , bias=_UpperCamelCase ) __snake_case = nn.LayerNorm(_UpperCamelCase , elementwise_affine=_UpperCamelCase , eps=1E-6 ) def a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: """simple docstring""" __snake_case = self.linear(self.silu(self.emb(_UpperCamelCase , _UpperCamelCase , hidden_dtype=_UpperCamelCase ) ) ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = emb.chunk(6 , dim=1 ) __snake_case = self.norm(_UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __snake_case ( nn.Module ): """simple docstring""" def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = 1E-5 ) -> List[str]: """simple docstring""" super().__init__() __snake_case = num_groups __snake_case = eps if act_fn is None: __snake_case = None else: __snake_case = get_activation(_UpperCamelCase ) __snake_case = nn.Linear(_UpperCamelCase , out_dim * 2 ) def a ( self , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: """simple docstring""" if self.act: __snake_case = self.act(_UpperCamelCase ) __snake_case = self.linear(_UpperCamelCase ) __snake_case = emb[:, :, None, None] __snake_case , __snake_case = emb.chunk(2 , dim=1 ) __snake_case = F.group_norm(_UpperCamelCase , self.num_groups , eps=self.eps ) __snake_case = x * (1 + scale) + shift return x
268
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCamelCase__ = '''Create a default config file for Accelerate with only a few flags set.''' def lowerCamelCase__ ( __A :List[Any]="no" ,__A :str = default_json_config_file ,__A :bool = False ): """simple docstring""" __snake_case = Path(__A ) path.parent.mkdir(parents=__A ,exist_ok=__A ) if path.exists(): print( F'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False __snake_case = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) __snake_case = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): __snake_case = torch.cuda.device_count() __snake_case = num_gpus __snake_case = False if num_gpus > 1: __snake_case = """MULTI_GPU""" else: __snake_case = """NO""" elif is_xpu_available() and use_xpu: __snake_case = torch.xpu.device_count() __snake_case = num_xpus __snake_case = False if num_xpus > 1: __snake_case = """MULTI_XPU""" else: __snake_case = """NO""" elif is_npu_available(): __snake_case = torch.npu.device_count() __snake_case = num_npus __snake_case = False if num_npus > 1: __snake_case = """MULTI_NPU""" else: __snake_case = """NO""" else: __snake_case = 0 __snake_case = True __snake_case = 1 __snake_case = """NO""" __snake_case = ClusterConfig(**__A ) config.to_json_file(__A ) return path def lowerCamelCase__ ( __A :Dict ,__A :List[Any] ): """simple docstring""" __snake_case = parser.add_parser("""default""" ,parents=__A ,help=__A ,formatter_class=__A ) parser.add_argument( """--config_file""" ,default=__A ,help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) ,dest="""save_location""" ,) parser.add_argument( """--mixed_precision""" ,choices=["""no""", """fp16""", """bf16"""] ,type=__A ,help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" ,default="""no""" ,) parser.set_defaults(func=__A ) return parser def lowerCamelCase__ ( __A :Optional[Any] ): """simple docstring""" __snake_case = write_basic_config(args.mixed_precision ,args.save_location ) if config_file: print(F'accelerate configuration saved at {config_file}' )
268
1
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCamelCase( SCREAMING_SNAKE_CASE ): def __init__( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=13 , _lowerCamelCase : List[str]=7 , _lowerCamelCase : Tuple=True , _lowerCamelCase : Dict=True , _lowerCamelCase : List[str]=False , _lowerCamelCase : Tuple=True , _lowerCamelCase : Optional[int]=99 , _lowerCamelCase : Optional[Any]=32 , _lowerCamelCase : Optional[Any]=5 , _lowerCamelCase : int=4 , _lowerCamelCase : Tuple=37 , _lowerCamelCase : Dict="gelu" , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : str=5_12 , _lowerCamelCase : Optional[int]=16 , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : List[Any]=0.02 , _lowerCamelCase : Dict=3 , _lowerCamelCase : Optional[Any]=4 , _lowerCamelCase : int=None , ): _UpperCAmelCase : List[str] = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Tuple = seq_length _UpperCAmelCase : Dict = is_training _UpperCAmelCase : Any = use_input_mask _UpperCAmelCase : Optional[Any] = use_token_type_ids _UpperCAmelCase : str = use_labels _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : List[Any] = hidden_act _UpperCAmelCase : List[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Dict = type_vocab_size _UpperCAmelCase : str = type_sequence_label_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Optional[int] = num_labels _UpperCAmelCase : str = num_choices _UpperCAmelCase : List[Any] = scope def a__ ( self : str ): _UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Tuple = None if self.use_input_mask: _UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : str = None _UpperCAmelCase : Dict = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : str ): return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def a__ ( self : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : int ): _UpperCAmelCase : List[Any] = DistilBertModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] , _lowerCamelCase : str ): _UpperCAmelCase : Optional[Any] = DistilBertForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Optional[Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int] ): _UpperCAmelCase : Optional[int] = DistilBertForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : List[Any] = model( _lowerCamelCase , attention_mask=_lowerCamelCase , start_positions=_lowerCamelCase , end_positions=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any ): _UpperCAmelCase : List[str] = self.num_labels _UpperCAmelCase : Dict = DistilBertForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Any , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : str , _lowerCamelCase : Tuple ): _UpperCAmelCase : Optional[int] = self.num_labels _UpperCAmelCase : Tuple = DistilBertForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Dict = model(_lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Optional[int] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] ): _UpperCAmelCase : Union[str, Any] = self.num_choices _UpperCAmelCase : Union[str, Any] = DistilBertForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = model( _lowerCamelCase , attention_mask=_lowerCamelCase , labels=_lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Optional[Any] ): _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ((_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase)) : List[Any] = config_and_inputs _UpperCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _UpperCamelCase( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __A: Optional[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __A: Optional[int] = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __A: Union[str, Any] = True __A: Optional[Any] = True __A: str = True __A: Optional[int] = True def a__ ( self : int ): _UpperCAmelCase : int = DistilBertModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=_lowerCamelCase , dim=37 ) def a__ ( self : int ): self.config_tester.run_common_tests() def a__ ( self : Tuple ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowerCamelCase ) def a__ ( self : int ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowerCamelCase ) def a__ ( self : Optional[int] ): _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowerCamelCase ) def a__ ( self : Tuple ): _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowerCamelCase ) def a__ ( self : Any ): _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowerCamelCase ) def a__ ( self : Any ): _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowerCamelCase ) @slow def a__ ( self : List[Any] ): for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : List[str] = DistilBertModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @slow @require_torch_gpu def a__ ( self : List[Any] ): _UpperCAmelCase ,_UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _UpperCAmelCase : Tuple = True _UpperCAmelCase : Optional[Any] = model_class(config=_lowerCamelCase ) _UpperCAmelCase : List[str] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) _UpperCAmelCase : List[Any] = torch.jit.trace( _lowerCamelCase , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_lowerCamelCase , os.path.join(_lowerCamelCase , "traced_model.pt" ) ) _UpperCAmelCase : List[Any] = torch.jit.load(os.path.join(_lowerCamelCase , "traced_model.pt" ) , map_location=_lowerCamelCase ) loaded(inputs_dict["input_ids"].to(_lowerCamelCase ) , inputs_dict["attention_mask"].to(_lowerCamelCase ) ) @require_torch class _UpperCamelCase( unittest.TestCase ): @slow def a__ ( self : Union[str, Any] ): _UpperCAmelCase : List[str] = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _UpperCAmelCase : str = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) _UpperCAmelCase : Optional[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _UpperCAmelCase : Tuple = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] _UpperCAmelCase : int = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _lowerCamelCase ) _UpperCAmelCase : List[str] = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _lowerCamelCase , atol=1E-4 ) )
328
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCamelCase = logging.get_logger(__name__) class _UpperCamelCase( SCREAMING_SNAKE_CASE ): __A: List[str] = ["""input_features""", """attention_mask"""] def __init__( self : Optional[int] , _lowerCamelCase : int=80 , _lowerCamelCase : int=1_60_00 , _lowerCamelCase : Optional[Any]=0.0 , _lowerCamelCase : Optional[Any]=10 , _lowerCamelCase : Union[str, Any]=25 , _lowerCamelCase : int="hamming_window" , _lowerCamelCase : List[Any]=3_27_68.0 , _lowerCamelCase : List[Any]=0.97 , _lowerCamelCase : Optional[Any]=1.0 , _lowerCamelCase : Dict=True , _lowerCamelCase : Optional[Any]=True , _lowerCamelCase : Union[str, Any]=False , **_lowerCamelCase : Optional[Any] , ): super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase ) _UpperCAmelCase : Tuple = feature_size _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : Tuple = padding_value _UpperCAmelCase : List[Any] = hop_length _UpperCAmelCase : Union[str, Any] = win_length _UpperCAmelCase : str = frame_signal_scale _UpperCAmelCase : Optional[Any] = preemphasis_coeff _UpperCAmelCase : Optional[Any] = mel_floor _UpperCAmelCase : Optional[Any] = normalize_means _UpperCAmelCase : Optional[int] = normalize_vars _UpperCAmelCase : Dict = win_function _UpperCAmelCase : List[str] = return_attention_mask _UpperCAmelCase : Tuple = win_length * sampling_rate // 10_00 _UpperCAmelCase : Union[str, Any] = hop_length * sampling_rate // 10_00 _UpperCAmelCase : Union[str, Any] = optimal_fft_length(self.sample_size ) _UpperCAmelCase : Optional[Any] = (self.n_fft // 2) + 1 def a__ ( self : Any , _lowerCamelCase : np.array ): if self.win_function == "hamming_window": _UpperCAmelCase : int = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCamelCase ) else: _UpperCAmelCase : str = window_function(window_length=self.sample_size , name=self.win_function ) _UpperCAmelCase : List[str] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _UpperCAmelCase : Dict = spectrogram( one_waveform * self.frame_signal_scale , window=_lowerCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_lowerCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=_lowerCamelCase , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def a__ ( self : Tuple , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] ): # make sure we normalize float32 arrays if self.normalize_means: _UpperCAmelCase : Union[str, Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : List[Any] = np.subtract(_lowerCamelCase , _lowerCamelCase ) if self.normalize_vars: _UpperCAmelCase : Optional[int] = x[:input_length].std(axis=0 ) _UpperCAmelCase : Any = np.divide(_lowerCamelCase , _lowerCamelCase ) if input_length < x.shape[0]: _UpperCAmelCase : Tuple = padding_value # make sure array is in float32 _UpperCAmelCase : int = x.astype(np.floataa ) return x def a__ ( self : Any , _lowerCamelCase : List[np.ndarray] , _lowerCamelCase : Optional[np.ndarray] = None ): _UpperCAmelCase : List[str] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_lowerCamelCase , _lowerCamelCase , self.padding_value ) for x, n in zip(_lowerCamelCase , _lowerCamelCase )] def __call__( self : List[Any] , _lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _lowerCamelCase : Union[bool, str, PaddingStrategy] = False , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : bool = False , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : Optional[bool] = None , _lowerCamelCase : Optional[Union[str, TensorType]] = None , _lowerCamelCase : Optional[int] = None , **_lowerCamelCase : str , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" f""" {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _UpperCAmelCase : Optional[Any] = isinstance(_lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) _UpperCAmelCase : int = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : List[str] = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): _UpperCAmelCase : int = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : List[Any] = [raw_speech] # extract fbank features _UpperCAmelCase : Dict = [self._extract_mfsc_features(_lowerCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : List[str] = BatchFeature({"input_features": features} ) _UpperCAmelCase : Tuple = self.pad( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) # make sure list is in array format _UpperCAmelCase : Dict = padded_inputs.get("input_features" ) if isinstance(input_features[0] , _lowerCamelCase ): _UpperCAmelCase : Tuple = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: _UpperCAmelCase : Optional[Any] = [np.asarray(_lowerCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _UpperCAmelCase : Union[str, Any] = ( np.array(_lowerCamelCase , dtype=np.intaa ) if self._get_padding_strategies(_lowerCamelCase , max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _UpperCAmelCase : int = self.normalize( padded_inputs["input_features"] , attention_mask=_lowerCamelCase ) if return_tensors is not None: _UpperCAmelCase : Optional[int] = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs
328
1
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A = logging.get_logger(__name__) class UpperCAmelCase (a__ ): """simple docstring""" _UpperCAmelCase :Optional[int] = ["input_ids", "attention_mask"] def __init__( self , _UpperCAmelCase="</s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase=125 , _UpperCAmelCase=None , **_UpperCAmelCase , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase__: List[Any] = [F"""<extra_id_{i}>""" for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase__: Tuple = len(set(filter(lambda _UpperCAmelCase : bool('''extra_id''' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the''' ''' extra_ids tokens''' ) lowercase__: Optional[int] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token lowercase__: Union[str, Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token lowercase__: Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__: Tuple = extra_ids lowercase__: int = 2**8 # utf is 8 bits # define special tokens dict lowercase__: Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } lowercase__: str = len(self.special_tokens_encoder ) lowercase__: Union[str, Any] = len(_UpperCAmelCase ) for i, token in enumerate(_UpperCAmelCase ): lowercase__: List[str] = self.vocab_size + i - n lowercase__: Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def _snake_case ( self ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCAmelCase )) + [1] return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def _snake_case ( self , _UpperCAmelCase ): if len(_UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: int = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: int = self._add_eos_if_not_present(_UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: lowercase__: Tuple = self._add_eos_if_not_present(_UpperCAmelCase ) return token_ids_a + token_ids_a def _snake_case ( self , _UpperCAmelCase ): lowercase__: int = [chr(_UpperCAmelCase ) for i in text.encode('''utf-8''' )] return tokens def _snake_case ( self , _UpperCAmelCase ): if token in self.special_tokens_encoder: lowercase__: Tuple = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: lowercase__: Any = self.added_tokens_encoder[token] elif len(_UpperCAmelCase ) != 1: lowercase__: List[Any] = self.unk_token_id else: lowercase__: str = ord(_UpperCAmelCase ) + self._num_special_tokens return token_id def _snake_case ( self , _UpperCAmelCase ): if index in self.special_tokens_decoder: lowercase__: Tuple = self.special_tokens_decoder[index] else: lowercase__: Any = chr(index - self._num_special_tokens ) return token def _snake_case ( self , _UpperCAmelCase ): lowercase__: int = b"" for token in tokens: if token in self.special_tokens_decoder: lowercase__: str = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.added_tokens_decoder: lowercase__: Optional[int] = self.special_tokens_decoder[token].encode('''utf-8''' ) elif token in self.special_tokens_encoder: lowercase__: int = token.encode('''utf-8''' ) elif token in self.added_tokens_encoder: lowercase__: Dict = token.encode('''utf-8''' ) else: lowercase__: str = bytes([ord(_UpperCAmelCase )] ) bstring += tok_string lowercase__: Tuple = bstring.decode('''utf-8''' , errors='''ignore''' ) return string def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): return ()
586
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _snake_case : def __init__( self : Any , UpperCAmelCase : str , UpperCAmelCase : int=13 , UpperCAmelCase : List[Any]=32 , UpperCAmelCase : List[Any]=3 , UpperCAmelCase : str=4 , UpperCAmelCase : str=[10, 20, 30, 40] , UpperCAmelCase : str=[2, 2, 3, 2] , UpperCAmelCase : Any=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=37 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Any=10 , UpperCAmelCase : Dict=0.0_2 , UpperCAmelCase : Dict=["stage2", "stage3", "stage4"] , UpperCAmelCase : List[str]=[2, 3, 4] , UpperCAmelCase : int=None , ): __lowerCamelCase : Dict = parent __lowerCamelCase : Tuple = batch_size __lowerCamelCase : int = image_size __lowerCamelCase : List[Any] = num_channels __lowerCamelCase : Any = num_stages __lowerCamelCase : List[str] = hidden_sizes __lowerCamelCase : int = depths __lowerCamelCase : Tuple = is_training __lowerCamelCase : Optional[int] = use_labels __lowerCamelCase : List[str] = intermediate_size __lowerCamelCase : Tuple = hidden_act __lowerCamelCase : Any = num_labels __lowerCamelCase : List[Any] = initializer_range __lowerCamelCase : Any = out_features __lowerCamelCase : Union[str, Any] = out_indices __lowerCamelCase : Dict = scope def lowerCamelCase__ ( self : Optional[int] ): __lowerCamelCase : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCamelCase : Optional[Any] = None if self.use_labels: __lowerCamelCase : List[str] = ids_tensor([self.batch_size] , self.num_labels ) __lowerCamelCase : str = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : Union[str, Any] ): return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=UpperCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any ): __lowerCamelCase : Any = ConvNextModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Dict = model(UpperCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ ( self : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): __lowerCamelCase : List[Any] = ConvNextForImageClassification(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Tuple = model(UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : Any ): __lowerCamelCase : Any = ConvNextBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Union[str, Any] = model(UpperCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowerCamelCase : str = None __lowerCamelCase : int = ConvNextBackbone(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() __lowerCamelCase : Any = model(UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Dict = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = config_and_inputs __lowerCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _snake_case ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) snake_case__ = ( {"feature-extraction": ConvNextModel, "image-classification": ConvNextForImageClassification} if is_torch_available() else {} ) snake_case__ = True snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def lowerCamelCase__ ( self : List[Any] ): __lowerCamelCase : Optional[Any] = ConvNextModelTester(self ) __lowerCamelCase : Any = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : Optional[int] ): return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def lowerCamelCase__ ( self : Union[str, Any] ): pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def lowerCamelCase__ ( self : Optional[int] ): pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def lowerCamelCase__ ( self : Union[str, Any] ): pass def lowerCamelCase__ ( self : Any ): __lowerCamelCase , __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : List[Any] = model_class(UpperCAmelCase ) __lowerCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCamelCase : Any = [*signature.parameters.keys()] __lowerCamelCase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase ) def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCAmelCase ) def lowerCamelCase__ ( self : str ): def check_hidden_states_output(UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): __lowerCamelCase : int = model_class(UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() with torch.no_grad(): __lowerCamelCase : Tuple = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) ) __lowerCamelCase : int = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCamelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowerCamelCase , __lowerCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCamelCase : Optional[Any] = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCamelCase : str = True check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple ): __lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase ) @slow def lowerCamelCase__ ( self : List[Any] ): for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Tuple = ConvNextModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _snake_case ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : Dict ): return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : List[str] ): __lowerCamelCase : str = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(UpperCAmelCase ) __lowerCamelCase : Dict = self.default_image_processor __lowerCamelCase : str = prepare_img() __lowerCamelCase : List[str] = image_processor(images=UpperCAmelCase , return_tensors="pt" ).to(UpperCAmelCase ) # forward pass with torch.no_grad(): __lowerCamelCase : Union[str, Any] = model(**UpperCAmelCase ) # verify the logits __lowerCamelCase : Tuple = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase ) __lowerCamelCase : Tuple = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase , atol=1E-4 ) ) @require_torch class _snake_case ( unittest.TestCase , a__ ): snake_case__ = (ConvNextBackbone,) if is_torch_available() else () snake_case__ = ConvNextConfig snake_case__ = False def lowerCamelCase__ ( self : Union[str, Any] ): __lowerCamelCase : int = ConvNextModelTester(self )
646
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor __lowercase = logging.get_logger(__name__) class _lowercase ( _A ): """simple docstring""" def __init__( self : List[str] , *UpperCamelCase__ : Tuple , **UpperCamelCase__ : List[str] ) -> None: '''simple docstring''' warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
717
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _lowercase : """simple docstring""" lowercase__ = LEDConfig lowercase__ = {} lowercase__ = '''gelu''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any]=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : int=37 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[int]=20 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : Tuple=4 , ) -> str: '''simple docstring''' __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =eos_token_id __UpperCamelCase =pad_token_id __UpperCamelCase =bos_token_id __UpperCamelCase =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __UpperCamelCase =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __UpperCamelCase =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase =tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __UpperCamelCase =prepare_led_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tf.concat( [tf.zeros_like(UpperCamelCase__ )[:, :-1], tf.ones_like(UpperCamelCase__ )[:, -1:]] , axis=-1 , ) __UpperCamelCase =global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ) -> Any: '''simple docstring''' __UpperCamelCase =TFLEDModel(config=UpperCamelCase__ ).get_decoder() __UpperCamelCase =inputs_dict['''input_ids'''] __UpperCamelCase =input_ids[:1, :] __UpperCamelCase =inputs_dict['''attention_mask'''][:1, :] __UpperCamelCase =1 # first forward pass __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) __UpperCamelCase , __UpperCamelCase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase =tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-3 ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Any=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , ): """simple docstring""" if attention_mask is None: __UpperCamelCase =tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCamelCase =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCamelCase =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _lowercase ( __a , __a , unittest.TestCase ): """simple docstring""" lowercase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =TFLEDModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =tf.zeros_like(inputs_dict['''attention_mask'''] ) __UpperCamelCase =2 __UpperCamelCase =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) __UpperCamelCase =True __UpperCamelCase =self.model_tester.seq_length __UpperCamelCase =self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCamelCase__ : Tuple ): __UpperCamelCase =outputs.decoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCamelCase__ : Dict ): __UpperCamelCase =[t.numpy() for t in outputs.encoder_attentions] __UpperCamelCase =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCamelCase =len(UpperCamelCase__ ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) if self.is_encoder_decoder: __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_decoder_attentions_output(UpperCamelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCamelCase =True __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) # Check attention is always last and order is fine __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCamelCase__ ) ) self.assertEqual(model.config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" return tf.constant(__UpperCamelCase , dtype=tf.intaa ) __lowercase = 1e-4 @slow @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : str ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here __UpperCamelCase =_long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __UpperCamelCase =_long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __UpperCamelCase =prepare_led_inputs_dict(model.config , UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =model(**UpperCamelCase__ )[0] __UpperCamelCase =(1, 1024, 768) self.assertEqual(output.shape , UpperCamelCase__ ) # change to expected output here __UpperCamelCase =tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1E-3 ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here __UpperCamelCase =_long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __UpperCamelCase =_long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __UpperCamelCase =prepare_led_inputs_dict(model.config , UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =model(**UpperCamelCase__ )[0] __UpperCamelCase =(1, 1024, model.config.vocab_size) self.assertEqual(output.shape , UpperCamelCase__ ) # change to expected output here __UpperCamelCase =tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1E-3 , rtol=1E-3 )
296
0
'''simple docstring''' import math from datetime import datetime, timedelta def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = year % 19 lowerCAmelCase__ : Tuple = year % 4 lowerCAmelCase__ : Tuple = year % 7 lowerCAmelCase__ : Optional[Any] = math.floor(year / 100 ) lowerCAmelCase__ : Optional[Any] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowerCAmelCase__ : str = leap_day_inhibits / 4 lowerCAmelCase__ : Tuple = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowerCAmelCase__ : Optional[Any] = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase__ : Optional[Any] = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowerCAmelCase__ : Dict = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(lowerCAmelCase_ , 4 , 18 ) else: return datetime(lowerCAmelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): _lowerCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
565
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch SCREAMING_SNAKE_CASE :Optional[int] = random.Random() def _lowerCAmelCase ( lowerCAmelCase_ :List[str] , lowerCAmelCase_ :Tuple=1.0 , lowerCAmelCase_ :Optional[int]=None , lowerCAmelCase_ :List[Any]=None )->Dict: '''simple docstring''' if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str]=7 , _lowerCAmelCase : List[Any]=4_0_0 , _lowerCAmelCase : Optional[Any]=2_0_0_0 , _lowerCAmelCase : Tuple=1_0 , _lowerCAmelCase : Optional[int]=1_6_0 , _lowerCAmelCase : List[Any]=8 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : Dict=4_0_0_0 , _lowerCAmelCase : str=False , _lowerCAmelCase : List[str]=True , ) -> str: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = return_attention_mask snake_case_ = do_normalize snake_case_ = feature_size snake_case_ = chunk_length snake_case_ = hop_length def lowerCAmelCase__ ( self : int ) -> str: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase__ ( self : int , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : List[Any]=False ) -> int: """simple docstring""" def _flatten(_lowerCAmelCase : Union[str, Any] ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: snake_case_ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = WhisperFeatureExtractor if is_speech_available() else None def lowerCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" snake_case_ = WhisperFeatureExtractionTester(self ) def lowerCAmelCase__ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = feat_extract_first.save_pretrained(_lowerCAmelCase )[0] check_json_file_has_correct_format(_lowerCAmelCase ) snake_case_ = self.feature_extraction_class.from_pretrained(_lowerCAmelCase ) snake_case_ = feat_extract_first.to_dict() snake_case_ = feat_extract_second.to_dict() snake_case_ = feat_extract_first.mel_filters snake_case_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(_lowerCAmelCase , "feat_extract.json" ) feat_extract_first.to_json_file(_lowerCAmelCase ) snake_case_ = self.feature_extraction_class.from_json_file(_lowerCAmelCase ) snake_case_ = feat_extract_first.to_dict() snake_case_ = feat_extract_second.to_dict() snake_case_ = feat_extract_first.mel_filters snake_case_ = feat_extract_second.mel_filters self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] snake_case_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test feature size snake_case_ = feature_extractor(_lowerCAmelCase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input snake_case_ = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features snake_case_ = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test batched snake_case_ = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features snake_case_ = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] snake_case_ = np.asarray(_lowerCAmelCase ) snake_case_ = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features snake_case_ = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) # Test truncation required snake_case_ = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] snake_case_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] snake_case_ = [x[: feature_extractor.n_samples] for x in speech_inputs] snake_case_ = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs_truncated] snake_case_ = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features snake_case_ = feature_extractor(_lowerCAmelCase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1e-3 ) ) def lowerCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" import torch snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowerCAmelCase__ ( self : List[Any] , _lowerCAmelCase : Dict ) -> int: """simple docstring""" snake_case_ = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech snake_case_ = ds.sort("id" ).select(range(_lowerCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" # fmt: off snake_case_ = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = WhisperFeatureExtractor() snake_case_ = feature_extractor(_lowerCAmelCase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , _lowerCAmelCase , atol=1e-4 ) ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = self._load_datasamples(1 )[0] snake_case_ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue snake_case_ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_lowerCAmelCase )[0] self.assertTrue(np.all(np.mean(_lowerCAmelCase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_lowerCAmelCase ) - 1 ) < 1e-3 ) )
283
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _lowerCamelCase ( lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : str = 11 UpperCAmelCase_ : Optional[Any] = int('1' + '0' * digit_len ) for num in range(lowerCamelCase_ , lowerCamelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(lowerCamelCase_ , lowerCamelCase_ ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 UpperCAmelCase_ : str = 10 return solutions def _lowerCamelCase ( lowerCamelCase_ : int = 2 ): """simple docstring""" UpperCAmelCase_ : Optional[int] = 1.0 for fraction in fraction_list(lowerCamelCase_ ): UpperCAmelCase_ : List[str] = Fraction(lowerCamelCase_ ) result *= frac.denominator / frac.numerator return int(lowerCamelCase_ ) if __name__ == "__main__": print(solution())
701
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :List[str] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ :Optional[int] = '''BlipImageProcessor''' lowerCamelCase_ :Union[str, Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = False super().__init__(snake_case_ , snake_case_ ) UpperCAmelCase_ : Union[str, Any] = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: UpperCAmelCase_ : str = self.tokenizer UpperCAmelCase_ : Optional[int] = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values UpperCAmelCase_ : Optional[int] = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: UpperCAmelCase_ : Optional[Any] = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: UpperCAmelCase_ : Optional[int] = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def _UpperCamelCase ( self , *snake_case_ , **snake_case_ ): '''simple docstring''' return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.tokenizer.model_input_names UpperCAmelCase_ : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
389
0