code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) __lowerCAmelCase : Dict ={ "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] =["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys __lowerCAmelCase : str =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
440
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = ["""image_processor""", """tokenizer"""] __lowerCAmelCase = """LayoutLMv3ImageProcessor""" __lowerCAmelCase = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : Dict , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCamelCase_ , ) UpperCamelCase = kwargs.pop("""feature_extractor""" ) UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(lowerCamelCase_ , lowerCamelCase_ ) def __call__( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCamelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCamelCase_ : Optional[Union[List[int], List[List[int]]]] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase_ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 0 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , **lowerCamelCase_ : Optional[int] , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) # first, apply the image processor UpperCamelCase = self.image_processor(images=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase = features["""words"""] UpperCamelCase = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=lowerCamelCase_ , stride=lowerCamelCase_ , pad_to_multiple_of=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , return_special_tokens_mask=lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , return_length=lowerCamelCase_ , verbose=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ , ) # add pixel values UpperCamelCase = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: UpperCamelCase = self.get_overflowing_images(lowerCamelCase_ , encoded_inputs["""overflow_to_sample_mapping"""] ) UpperCamelCase = images return encoded_inputs def lowerCamelCase_ ( self : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict ): """simple docstring""" UpperCamelCase = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f""" {len(lowerCamelCase_ )} and {len(lowerCamelCase_ )}""" ) return images_with_overflow def lowerCamelCase_ ( self : Union[str, Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : str ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @property def lowerCamelCase_ ( self : int ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCamelCase_ , ) return self.image_processor_class @property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCamelCase_ , ) return self.image_processor
537
0
import warnings from .generation import TFGenerationMixin class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , UpperCAmelCase__ , )
433
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Optional[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __snake_case : int = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } __snake_case : Tuple = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } __snake_case : Optional[int] = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class UpperCamelCase__ ( UpperCAmelCase__): '''simple docstring''' __a : Dict = VOCAB_FILES_NAMES __a : List[Any] = PRETRAINED_VOCAB_FILES_MAP __a : Tuple = PRETRAINED_INIT_CONFIGURATION __a : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Union[str, Any] = BertTokenizer def __init__( self , A=None , A=None , A=True , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , A=True , A=None , **A , ) ->Tuple: super().__init__( A , tokenizer_file=A , do_lower_case=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , tokenize_chinese_chars=A , strip_accents=A , **A , ) UpperCAmelCase__ :Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A ) != do_lower_case or normalizer_state.get('strip_accents' , A ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A ) != tokenize_chinese_chars ): UpperCAmelCase__ :Any = getattr(A , normalizer_state.pop('type' ) ) UpperCAmelCase__ :Any = do_lower_case UpperCAmelCase__ :Tuple = strip_accents UpperCAmelCase__ :List[Any] = tokenize_chinese_chars UpperCAmelCase__ :Dict = normalizer_class(**A ) UpperCAmelCase__ :Dict = do_lower_case def A__ ( self , A , A=None ) ->Optional[int]: UpperCAmelCase__ :str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def A__ ( self , A , A = None ) ->List[int]: UpperCAmelCase__ :int = [self.sep_token_id] UpperCAmelCase__ :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def A__ ( self , A , A = None ) ->Tuple[str]: UpperCAmelCase__ :str = self._tokenizer.model.save(A , name=A ) return tuple(A )
433
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__snake_case ) def __A ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = "sgugger/tiny-distilbert-classification" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , only_pretrain_model=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : Dict ) -> str: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , torchscript=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def __A ( self : Tuple ) -> int: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , fpaa=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" lowerCAmelCase = AutoConfig.from_pretrained(__snake_case ) # set architectures equal to `None` lowerCAmelCase = None lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : int ) -> Any: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can\'t do half precision" ) def __A ( self : List[Any] ) -> Any: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__snake_case , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __A ( self : int ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" lowerCAmelCase = AutoConfig.from_pretrained(__snake_case ) lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : str ) -> str: """simple docstring""" lowerCAmelCase = "sshleifer/tinier_bart" lowerCAmelCase = AutoConfig.from_pretrained(__snake_case ) lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __A ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" lowerCAmelCase = AutoConfig.from_pretrained(__snake_case ) lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __A ( self : Tuple ) -> Dict: """simple docstring""" lowerCAmelCase = "sshleifer/tinier_bart" lowerCAmelCase = AutoConfig.from_pretrained(__snake_case ) lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case , configs=[config] ) lowerCAmelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __A ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , save_to_csv=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__snake_case , "inf_time.csv" ) , train_memory_csv_file=os.path.join(__snake_case , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(__snake_case , "inf_mem.csv" ) , train_time_csv_file=os.path.join(__snake_case , "train_time.csv" ) , env_info_csv_file=os.path.join(__snake_case , "env.csv" ) , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case ) benchmark.run() self.assertTrue(Path(os.path.join(__snake_case , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__snake_case , "env.csv" ) ).exists() ) def __A ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(SCREAMING_SNAKE_CASE : str ): self.assertTrue(hasattr(__snake_case , "sequential" ) ) self.assertTrue(hasattr(__snake_case , "cumulative" ) ) self.assertTrue(hasattr(__snake_case , "current" ) ) self.assertTrue(hasattr(__snake_case , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__snake_case , inference=__snake_case , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__snake_case , "log.txt" ) , log_print=__snake_case , trace_memory_line_by_line=__snake_case , multi_process=__snake_case , ) lowerCAmelCase = PyTorchBenchmark(__snake_case ) lowerCAmelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__snake_case , "log.txt" ) ).exists() )
649
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :int ) -> Dict: a__ = [] a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=__snake_case ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(__snake_case ) a__ = resnets a__ = attentions if self.add_downsample: a__ = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :Dict ,__snake_case :str ,__snake_case :Optional[Any] ,__snake_case :Optional[int] ,__snake_case :Tuple=True ) -> Tuple: a__ = () for resnet, attn in zip(self.resnets ,self.attentions ): a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) a__ = attn(__snake_case ,__snake_case ,deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: a__ = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :Optional[Any] ) -> Dict: a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=__snake_case ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = resnets if self.add_downsample: a__ = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :Optional[Any] ,__snake_case :str ,__snake_case :Dict ,__snake_case :Any=True ) -> List[Any]: a__ = () for resnet in self.resnets: a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) output_states += (hidden_states,) if self.add_downsample: a__ = self.downsamplers_a(__snake_case ) output_states += (hidden_states,) return hidden_states, output_states class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :Tuple ) -> List[str]: a__ = [] a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a__ = self.prev_output_channel if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(__snake_case ) a__ = resnets a__ = attentions if self.add_upsample: a__ = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :List[str] ,__snake_case :int ,__snake_case :List[Any] ,__snake_case :Union[str, Any] ,__snake_case :Union[str, Any] ,__snake_case :Dict=True ) -> int: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states a__ = res_hidden_states_tuple[-1] a__ = res_hidden_states_tuple[:-1] a__ = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) a__ = attn(__snake_case ,__snake_case ,deterministic=__snake_case ) if self.add_upsample: a__ = self.upsamplers_a(__snake_case ) return hidden_states class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :Union[str, Any] ) -> Any: a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a__ = self.prev_output_channel if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = resnets if self.add_upsample: a__ = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self :Optional[int] ,__snake_case :List[Any] ,__snake_case :int ,__snake_case :Optional[Any] ,__snake_case :Optional[Any]=True ) -> List[str]: for resnet in self.resnets: # pop res hidden states a__ = res_hidden_states_tuple[-1] a__ = res_hidden_states_tuple[:-1] a__ = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) if self.add_upsample: a__ = self.upsamplers_a(__snake_case ) return hidden_states class snake_case_ (nn.Module ): UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCamelCase__( self :Tuple ) -> List[Any]: # there is always at least one resnet a__ = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] a__ = [] for _ in range(self.num_layers ): a__ = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(__snake_case ) a__ = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(__snake_case ) a__ = resnets a__ = attentions def __call__( self :Optional[Any] ,__snake_case :Union[str, Any] ,__snake_case :List[str] ,__snake_case :int ,__snake_case :int=True ) -> str: a__ = self.resnets[0](__snake_case ,__snake_case ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): a__ = attn(__snake_case ,__snake_case ,deterministic=__snake_case ) a__ = resnet(__snake_case ,__snake_case ,deterministic=__snake_case ) return hidden_states
335
0
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): _A = "maskformer" _A = {"hidden_size": "mask_feature_size"} _A = ["resnet", "swin"] _A = ["detr"] def __init__( self , lowercase__ = 256 , lowercase__ = 256 , lowercase__ = 0.1 , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = 0.02 , lowercase__ = 1.0 , lowercase__ = 1.0 , lowercase__ = 1.0 , lowercase__ = 20.0 , lowercase__ = None , **lowercase__ , ): """simple docstring""" if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k SCREAMING_SNAKE_CASE_ : List[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = backbone_config.pop("model_type" ) SCREAMING_SNAKE_CASE_ : Any = CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE_ : Optional[int] = config_class.from_dict(lowercase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F"Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. " F"Supported model types: {','.join(self.backbones_supported )}" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 SCREAMING_SNAKE_CASE_ : Tuple = DetrConfig() else: # verify that the decoder is supported SCREAMING_SNAKE_CASE_ : Optional[Any] = ( decoder_config.pop("model_type" ) if isinstance(lowercase__ , lowercase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( F"Transformer Decoder {decoder_type} not supported, please use one of" F" {','.join(self.decoders_supported )}" ) if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = CONFIG_MAPPING[decoder_type] SCREAMING_SNAKE_CASE_ : Tuple = config_class.from_dict(lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = backbone_config SCREAMING_SNAKE_CASE_ : int = decoder_config # main feature dimension for the model SCREAMING_SNAKE_CASE_ : Union[str, Any] = fpn_feature_size SCREAMING_SNAKE_CASE_ : Optional[Any] = mask_feature_size # initializer SCREAMING_SNAKE_CASE_ : Optional[int] = init_std SCREAMING_SNAKE_CASE_ : int = init_xavier_std # Hungarian matcher && loss SCREAMING_SNAKE_CASE_ : str = cross_entropy_weight SCREAMING_SNAKE_CASE_ : List[Any] = dice_weight SCREAMING_SNAKE_CASE_ : Any = mask_weight SCREAMING_SNAKE_CASE_ : Dict = use_auxiliary_loss SCREAMING_SNAKE_CASE_ : Dict = no_object_weight SCREAMING_SNAKE_CASE_ : Optional[int] = output_auxiliary_logits SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.decoder_config.encoder_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = self.decoder_config.num_hidden_layers super().__init__(**lowercase__ ) @classmethod def __lowerCamelCase ( cls , lowercase__ , lowercase__ , **lowercase__ ): """simple docstring""" return cls( backbone_config=lowercase__ , decoder_config=lowercase__ , **lowercase__ , ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ : List[Any] = self.backbone_config.to_dict() SCREAMING_SNAKE_CASE_ : Dict = self.decoder_config.to_dict() SCREAMING_SNAKE_CASE_ : int = self.__class__.model_type return output
718
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("All input parameters must be positive" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("Relative densities cannot be greater than one" ) else: SCREAMING_SNAKE_CASE_ : int = 1 - (matter_density + radiation_density + dark_energy) SCREAMING_SNAKE_CASE_ : List[Any] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) SCREAMING_SNAKE_CASE_ : Dict = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation snake_case_ = 0.3 print( hubble_parameter( hubble_constant=6_8.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
68
0
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): __lowerCamelCase : Union[str, Any] = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING __lowerCamelCase : Union[str, Any] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = AudioClassificationPipeline(model=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ ) # test with a raw waveform _lowerCAmelCase = np.zeros((34000,) ) _lowerCAmelCase = np.zeros((14000,) ) return audio_classifier, [audioa, audio] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase , _lowerCAmelCase = examples _lowerCAmelCase = audio_classifier(UpperCAmelCase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( UpperCAmelCase__ , [ {"score": ANY(UpperCAmelCase__ ), "label": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "label": ANY(UpperCAmelCase__ )}, ] , ) _lowerCAmelCase = audio_classifier(UpperCAmelCase__ , top_k=1 ) self.assertEqual( UpperCAmelCase__ , [ {"score": ANY(UpperCAmelCase__ ), "label": ANY(UpperCAmelCase__ )}, ] , ) self.run_torchaudio(UpperCAmelCase__ ) @require_torchaudio def _snake_case ( self , _lowerCAmelCase ) -> Optional[int]: import datasets # test with a local file _lowerCAmelCase = datasets.load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) _lowerCAmelCase = dataset[0]["audio"]["array"] _lowerCAmelCase = audio_classifier(UpperCAmelCase__ ) self.assertEqual( UpperCAmelCase__ , [ {"score": ANY(UpperCAmelCase__ ), "label": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "label": ANY(UpperCAmelCase__ )}, ] , ) @require_torch def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = "anton-l/wav2vec2-random-tiny-classifier" _lowerCAmelCase = pipeline("audio-classification" , model=UpperCAmelCase__ ) _lowerCAmelCase = np.ones((8000,) ) _lowerCAmelCase = audio_classifier(UpperCAmelCase__ , top_k=4 ) _lowerCAmelCase = [ {"score": 0.0842, "label": "no"}, {"score": 0.0838, "label": "up"}, {"score": 0.0837, "label": "go"}, {"score": 0.0834, "label": "right"}, ] _lowerCAmelCase = [ {"score": 0.0845, "label": "stop"}, {"score": 0.0844, "label": "on"}, {"score": 0.0841, "label": "right"}, {"score": 0.0834, "label": "left"}, ] self.assertIn(nested_simplify(UpperCAmelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) _lowerCAmelCase = {"array": np.ones((8000,) ), "sampling_rate": audio_classifier.feature_extractor.sampling_rate} _lowerCAmelCase = audio_classifier(UpperCAmelCase__ , top_k=4 ) self.assertIn(nested_simplify(UpperCAmelCase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _snake_case ( self ) -> List[Any]: import datasets _lowerCAmelCase = "superb/wav2vec2-base-superb-ks" _lowerCAmelCase = pipeline("audio-classification" , model=UpperCAmelCase__ ) _lowerCAmelCase = datasets.load_dataset("anton-l/superb_dummy" , "ks" , split="test" ) _lowerCAmelCase = np.array(dataset[3]["speech"] , dtype=np.floataa ) _lowerCAmelCase = audio_classifier(UpperCAmelCase__ , top_k=4 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=3 ) , [ {"score": 0.981, "label": "go"}, {"score": 0.007, "label": "up"}, {"score": 0.006, "label": "_unknown_"}, {"score": 0.001, "label": "down"}, ] , ) @require_tf @unittest.skip("Audio classification is not implemented for TF" ) def _snake_case ( self ) -> Union[str, Any]: pass
18
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCAmelCase_ : Any = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCAmelCase_ : Union[str, Any] = subprocess.check_output(F'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCAmelCase_ : Optional[int] = "|".join(sys.argv[1:]) UpperCAmelCase_ : List[Any] = re.compile(RF'''^({joined_dirs}).*?\.py$''') UpperCAmelCase_ : List[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
491
0
'''simple docstring''' import random def _lowerCamelCase ( __A : Optional[Any] , __A : Optional[int] , __A : Dict ) -> Optional[int]: _UpperCAmelCase : Dict = a[left_index] _UpperCAmelCase : Tuple = left_index + 1 for j in range(left_index + 1 , __A ): if a[j] < pivot: _UpperCAmelCase , _UpperCAmelCase : str = a[i], a[j] i += 1 _UpperCAmelCase , _UpperCAmelCase : Dict = a[i - 1], a[left_index] return i - 1 def _lowerCamelCase ( __A : str , __A : str , __A : Optional[int] ) -> int: if left < right: _UpperCAmelCase : Union[str, Any] = random.randint(__A , right - 1 ) _UpperCAmelCase , _UpperCAmelCase : Any = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCAmelCase : Optional[int] = partition(__A , __A , __A ) quick_sort_random( __A , __A , __A ) # recursive quicksort to the left of the pivot point quick_sort_random( __A , pivot_index + 1 , __A ) # recursive quicksort to the right of the pivot point def _lowerCamelCase ( ) -> Tuple: _UpperCAmelCase : Dict = input('''Enter numbers separated by a comma:\n''' ).strip() _UpperCAmelCase : Dict = [int(__A ) for item in user_input.split(''',''' )] quick_sort_random(__A , 0 , len(__A ) ) print(__A ) if __name__ == "__main__": main()
710
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline SCREAMING_SNAKE_CASE = logging.get_logger(__name__) @add_end_docstrings(__lowercase ) class A_ ( __lowercase ): '''simple docstring''' def __init__( self , **_A) -> int: """simple docstring""" super().__init__(**_A) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''') # No specific FOR_XXX available yet def __call__( self , _A , **_A) -> List[str]: """simple docstring""" return super().__call__(_A , **_A) def snake_case__ ( self , **_A) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = {} if "candidate_labels" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _UpperCAmelCase : Dict = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def snake_case__ ( self , _A , _A=None , _A="This is a sound of {}.") -> Tuple: """simple docstring""" if isinstance(_A , _A): if audio.startswith('''http://''') or audio.startswith('''https://'''): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _UpperCAmelCase : List[Any] = requests.get(_A).content else: with open(_A , '''rb''') as f: _UpperCAmelCase : List[str] = f.read() if isinstance(_A , _A): _UpperCAmelCase : List[Any] = ffmpeg_read(_A , self.feature_extractor.sampling_rate) if not isinstance(_A , np.ndarray): raise ValueError('''We expect a numpy ndarray as input''') if len(audio.shape) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''') _UpperCAmelCase : Optional[Any] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''') _UpperCAmelCase : Dict = candidate_labels _UpperCAmelCase : List[str] = [hypothesis_template.format(_A) for x in candidate_labels] _UpperCAmelCase : Optional[Any] = self.tokenizer(_A , return_tensors=self.framework , padding=_A) _UpperCAmelCase : str = [text_inputs] return inputs def snake_case__ ( self , _A) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[int] = model_inputs.pop('''candidate_labels''') _UpperCAmelCase : Union[str, Any] = model_inputs.pop('''text_inputs''') if isinstance(text_inputs[0] , _A): _UpperCAmelCase : int = text_inputs[0] else: # Batching case. _UpperCAmelCase : Dict = text_inputs[0][0] _UpperCAmelCase : str = self.model(**_A , **_A) _UpperCAmelCase : str = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def snake_case__ ( self , _A) -> List[Any]: """simple docstring""" _UpperCAmelCase : str = model_outputs.pop('''candidate_labels''') _UpperCAmelCase : str = model_outputs['''logits'''][0] if self.framework == "pt": _UpperCAmelCase : int = logits.softmax(dim=0) _UpperCAmelCase : Optional[Any] = probs.tolist() else: raise ValueError('''`tf` framework not supported.''') _UpperCAmelCase : List[str] = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_A , _A) , key=lambda _A: -x[0]) ] return result
186
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def lowerCAmelCase__ ( a__: Optional[int] , a__: List[Any] , a__: Any ) -> int: '''simple docstring''' _UpperCAmelCase = AlbertConfig.from_json_file(a__ ) print(F'''Building PyTorch model from configuration: {config}''' ) _UpperCAmelCase = AlbertForPreTraining(a__ ) # Load weights from tf checkpoint load_tf_weights_in_albert(a__ , a__ , a__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": lowerCAmelCase__ :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--albert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained ALBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ :str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
618
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
618
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ ='''encodec''' def __init__( self , __SCREAMING_SNAKE_CASE=[1.5, 3.0, 6.0, 12.0, 24.0] , __SCREAMING_SNAKE_CASE=2_4000 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=128 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=[8, 5, 4, 2] , __SCREAMING_SNAKE_CASE="weight_norm" , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="reflect" , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=1.0 , __SCREAMING_SNAKE_CASE=1024 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" snake_case__ : Tuple =target_bandwidths snake_case__ : List[Any] =sampling_rate snake_case__ : str =audio_channels snake_case__ : Tuple =normalize snake_case__ : List[str] =chunk_length_s snake_case__ : List[Any] =overlap snake_case__ : str =hidden_size snake_case__ : List[str] =num_filters snake_case__ : Union[str, Any] =num_residual_layers snake_case__ : str =upsampling_ratios snake_case__ : Union[str, Any] =norm_type snake_case__ : Optional[int] =kernel_size snake_case__ : int =last_kernel_size snake_case__ : List[str] =residual_kernel_size snake_case__ : Optional[Any] =dilation_growth_rate snake_case__ : Optional[Any] =use_causal_conv snake_case__ : Union[str, Any] =pad_mode snake_case__ : List[str] =compress snake_case__ : List[str] =num_lstm_layers snake_case__ : int =trim_right_ratio snake_case__ : str =codebook_size snake_case__ : List[Any] =codebook_dim if codebook_dim is not None else hidden_size snake_case__ : Any =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**__SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def UpperCAmelCase ( self ) -> int: """simple docstring""" snake_case__ : str =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def UpperCAmelCase ( self ) -> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
408
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase__ = logging.get_logger(__name__) class _lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" lowerCAmelCase__ =['''input_features''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=1_6000 , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ) -> List[str]: """simple docstring""" super().__init__(feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] =num_mel_bins snake_case__ : int =do_ceptral_normalize snake_case__ : Dict =normalize_means snake_case__ : str =normalize_vars snake_case__ : Optional[Any] =True def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" snake_case__ : List[str] =waveform * (2**15) # Kaldi compliance: 16-bit signed integers snake_case__ : int =torch.from_numpy(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) snake_case__ : Optional[int] =ta_kaldi.fbank(__SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: snake_case__ : Any =x[:input_length].mean(axis=0 ) snake_case__ : Optional[Any] =np.subtract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if normalize_vars: snake_case__ : int =x[:input_length].std(axis=0 ) snake_case__ : Optional[Any] =np.divide(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: snake_case__ : Tuple =padding_value # make sure array is in float32 snake_case__ : Tuple =x.astype(np.floataa ) return x def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]: """simple docstring""" snake_case__ : Union[str, Any] =attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ] def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) snake_case__ : List[Any] =isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case__ : Optional[int] =is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case__ : str =[np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): snake_case__ : Any =np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case__ : Optional[Any] =raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case__ : Optional[Any] =[raw_speech] # extract fbank features snake_case__ : List[Any] =[self._extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in raw_speech] # convert into correct format for padding snake_case__ : Optional[int] =BatchFeature({'''input_features''': features} ) snake_case__ : List[Any] =self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # make sure list is in array format snake_case__ : int =padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict =[np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] snake_case__ : Tuple =padded_inputs.get('''attention_mask''' ) if attention_mask is not None: snake_case__ : Dict =[np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: snake_case__ : List[str] =( np.array(__SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) snake_case__ : Union[str, Any] =self.normalize( padded_inputs['''input_features'''] , attention_mask=__SCREAMING_SNAKE_CASE ) if return_tensors is not None: snake_case__ : Optional[int] =padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs
408
1
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase_ : Dict = { 'cola': 2, 'mnli': 3, 'mrpc': 2, 'sst-2': 2, 'sts-b': 1, 'qqp': 2, 'qnli': 2, 'rte': 2, 'wnli': 2, } logging.set_verbosity_info() def _lowerCamelCase ( lowercase : Union[str, Any] , lowercase : List[str] , lowercase : Dict , lowercase : int=None ) -> Dict: # Initialise PyTorch model _a = XLNetConfig.from_json_file(lowercase ) _a = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' ) _a = finetuning_task _a = GLUE_TASKS_NUM_LABELS[finetuning_task] _a = XLNetForSequenceClassification(lowercase ) elif "squad" in finetuning_task: _a = finetuning_task _a = XLNetForQuestionAnswering(lowercase ) else: _a = XLNetLMHeadModel(lowercase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(lowercase , lowercase , lowercase ) # Save pytorch-model _a = os.path.join(lowercase , lowercase ) _a = os.path.join(lowercase , lowercase ) print(F'Save PyTorch model to {os.path.abspath(lowercase )}' ) torch.save(model.state_dict() , lowercase ) print(F'Save configuration file to {os.path.abspath(lowercase )}' ) with open(lowercase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) lowerCAmelCase_ : Any = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
692
'''simple docstring''' def _lowerCamelCase ( lowercase : str , lowercase : list[str] ) -> str: _a = "" for word_or_phrase in separated: if not isinstance(lowercase , lowercase ): raise Exception("join() accepts only strings to be joined" ) joined += word_or_phrase + separator return joined.strip(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
692
1
"""simple docstring""" import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class __A (unittest.TestCase): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=18 , UpperCAmelCase_ : Optional[Any]=30 , UpperCAmelCase_ : str=400 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=True , ) ->Optional[Any]: """simple docstring""" snake_case_ = size if size is not None else {"""height""": 18, """width""": 18} snake_case_ = parent snake_case_ = batch_size snake_case_ = num_channels snake_case_ = image_size snake_case_ = min_resolution snake_case_ = max_resolution snake_case_ = do_resize snake_case_ = size snake_case_ = do_normalize def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8_866_443_634_033_203, 0.6_618_829_369_544_983, 0.3_891_746_401_786_804], [-0.6_042_559_146_881_104, -0.02_295_008_860_528_469, 0.5_423_797_369_003_296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class __A (snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: List[Any] = ImageGPTImageProcessor if is_vision_available() else None def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]: """simple docstring""" snake_case_ = ImageGPTImageProcessingTester(self ) @property def lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self : Optional[Any] ) ->List[str]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , """clusters""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """size""" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , """do_normalize""" ) ) def lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) snake_case_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def lowerCAmelCase ( self : Any ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) snake_case_ = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , obj[key] ) ) else: self.assertEqual(obj[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] ) ->Dict: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case_ = os.path.join(UpperCAmelCase_ , """image_processor.json""" ) image_processor_first.to_json_file(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_json_file(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" snake_case_ = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(UpperCAmelCase_ ) snake_case_ = self.image_processing_class.from_pretrained(UpperCAmelCase_ ).to_dict() snake_case_ = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(UpperCAmelCase_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , UpperCAmelCase_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" pass def _a ( ) -> str: snake_case_ = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) snake_case_ = Image.open(dataset[4]["""file"""] ) snake_case_ = Image.open(dataset[5]["""file"""] ) snake_case_ = [imagea, imagea] return images @require_vision @require_torch class __A (unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) snake_case_ = prepare_images() # test non-batched snake_case_ = image_processing(images[0] , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) snake_case_ = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , UpperCAmelCase_ ) # test batched snake_case_ = image_processing(UpperCAmelCase_ , return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) snake_case_ = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , UpperCAmelCase_ )
2
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __SCREAMING_SNAKE_CASE : Optional[Any] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , ): '''simple docstring''' __A : List[Any] = size if size is not None else {'height': 18, 'width': 18} __A : Tuple = parent __A : str = batch_size __A : Optional[int] = num_channels __A : str = image_size __A : List[str] = min_resolution __A : Optional[Any] = max_resolution __A : str = do_resize __A : Dict = size __A : Optional[Any] = apply_ocr def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = LayoutLMvaImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize')) self.assertTrue(hasattr(_UpperCAmelCase , 'size')) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 18}) __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : int = image_processing(image_inputs[0] , return_tensors='pt') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase) self.assertIsInstance(encoding.boxes , _UpperCAmelCase) # Test batched __A : str = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) # Test not batched input __A : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __A : Any = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __A : int = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset __A : str = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test') __A : List[Any] = Image.open(ds[0]['file']).convert('RGB') __A : Optional[int] = image_processing(_UpperCAmelCase , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A : str = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __A : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase) self.assertListEqual(encoding.boxes , _UpperCAmelCase) # with apply_OCR = False __A : str = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase) __A : List[str] = image_processing(_UpperCAmelCase , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
8
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def __lowercase (_SCREAMING_SNAKE_CASE :str = "laptop" ): SCREAMING_SNAKE_CASE : str = F'''https://www.amazon.in/laptop/s?k={product}''' SCREAMING_SNAKE_CASE : int = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } SCREAMING_SNAKE_CASE : Dict = BeautifulSoup(requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).text ) # Initialize a Pandas dataframe with the column titles SCREAMING_SNAKE_CASE : str = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: SCREAMING_SNAKE_CASE : Optional[int] = item.ha.text SCREAMING_SNAKE_CASE : Tuple = '''https://www.amazon.in/''' + item.ha.a['''href'''] SCREAMING_SNAKE_CASE : Any = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: SCREAMING_SNAKE_CASE : Optional[int] = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: SCREAMING_SNAKE_CASE : Any = '''Not available''' try: SCREAMING_SNAKE_CASE : Union[str, Any] = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: SCREAMING_SNAKE_CASE : List[str] = '''''' try: SCREAMING_SNAKE_CASE : Optional[Any] = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 1_00 ) except ValueError: SCREAMING_SNAKE_CASE : Optional[Any] = float('''nan''' ) except AttributeError: pass SCREAMING_SNAKE_CASE : int = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] SCREAMING_SNAKE_CASE : int = ''' ''' SCREAMING_SNAKE_CASE : List[str] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": snake_case_ = """headphones""" get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
507
0
from ....configuration_utils import PretrainedConfig from ....utils import logging a__: Any = logging.get_logger(__name__) a__: Optional[int] = { 'speechbrain/m-ctc-t-large': 'https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json', # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''mctct''' def __init__( self,__lowerCamelCase=8065,__lowerCamelCase=1536,__lowerCamelCase=36,__lowerCamelCase=6144,__lowerCamelCase=4,__lowerCamelCase=384,__lowerCamelCase=920,__lowerCamelCase=1E-5,__lowerCamelCase=0.3,__lowerCamelCase="relu",__lowerCamelCase=0.02,__lowerCamelCase=0.3,__lowerCamelCase=0.3,__lowerCamelCase=1,__lowerCamelCase=0,__lowerCamelCase=2,__lowerCamelCase=1,__lowerCamelCase=0.3,__lowerCamelCase=1,__lowerCamelCase=(7,),__lowerCamelCase=(3,),__lowerCamelCase=80,__lowerCamelCase=1,__lowerCamelCase=None,__lowerCamelCase="sum",__lowerCamelCase=False,**__lowerCamelCase,): super().__init__(**__lowerCamelCase,pad_token_id=__lowerCamelCase,bos_token_id=__lowerCamelCase,eos_token_id=__lowerCamelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = intermediate_size A__ = num_attention_heads A__ = attention_head_dim A__ = max_position_embeddings A__ = layer_norm_eps A__ = layerdrop A__ = hidden_act A__ = initializer_range A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = pad_token_id A__ = bos_token_id A__ = eos_token_id A__ = conv_glu_dim A__ = conv_dropout A__ = num_conv_layers A__ = input_feat_per_channel A__ = input_channels A__ = conv_channels A__ = ctc_loss_reduction A__ = ctc_zero_infinity # prevents config testing fail with exporting to json A__ = list(__lowerCamelCase ) A__ = list(__lowerCamelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ''' f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
212
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig a__: List[Any] = logging.get_logger(__name__) a__: Union[str, Any] = 'T5Config' class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''mt5''' __SCREAMING_SNAKE_CASE = MTaConfig class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''mt5''' __SCREAMING_SNAKE_CASE = MTaConfig class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = '''mt5''' __SCREAMING_SNAKE_CASE = MTaConfig
212
1
def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] ) -> Optional[int]: # Return True if there is node that has not iterated. __UpperCamelCase : Any = [False] * len(__A ) __UpperCamelCase : Union[str, Any] = [] queue.append(__A ) __UpperCamelCase : Optional[int] = True while queue: __UpperCamelCase : Optional[Any] = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__A ) __UpperCamelCase : List[str] = True __UpperCamelCase : Any = u return visited[t] def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] ) -> Tuple: # This array is filled by BFS and to store path __UpperCamelCase : Dict = [-1] * (len(__A )) __UpperCamelCase : Optional[int] = 0 while bfs(__A , __A , __A , __A ): __UpperCamelCase : Optional[int] = float("""Inf""" ) __UpperCamelCase : List[Any] = sink while s != source: # Find the minimum value in select path __UpperCamelCase : str = min(__A , graph[parent[s]][s] ) __UpperCamelCase : str = parent[s] max_flow += path_flow __UpperCamelCase : Dict = sink while v != source: __UpperCamelCase : List[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase : Dict = parent[v] return max_flow UpperCamelCase = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] UpperCamelCase = 0, 5 print(ford_fulkerson(graph, source, sink))
269
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowercase : Tuple = get_tests_dir("fixtures/test_sentencepiece.model") lowercase : Optional[int] = {"target_lang": "fi", "source_lang": "en"} lowercase : Any = ">>zh<<" lowercase : Optional[int] = "Helsinki-NLP/" if is_torch_available(): lowercase : Optional[int] = "pt" elif is_tf_available(): lowercase : Tuple = "tf" else: lowercase : Any = "jax" @require_sentencepiece class __UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): __lowercase = MarianTokenizer __lowercase = False __lowercase = True def lowerCamelCase ( self ): """simple docstring""" super().setUp() _snake_case = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] _snake_case = dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) _snake_case = Path(self.tmpdirname ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['vocab'] ) save_json(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['tokenizer_config_file'] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['source_spm'] ) copyfile(lowerCAmelCase_ , save_dir / VOCAB_FILES_NAMES['target_spm'] ) _snake_case = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase ( self , **lowerCAmelCase_ ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = '</s>' _snake_case = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(lowerCAmelCase_ ) , 9 ) def lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = MarianTokenizer.from_pretrained(F'{ORG_NAME}opus-mt-en-de' ) _snake_case = en_de_tokenizer(['I am a small frog'] , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = [38, 1_21, 14, 6_97, 3_88_48, 0] self.assertListEqual(lowerCAmelCase_ , batch.input_ids[0] ) _snake_case = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(lowerCAmelCase_ ) _snake_case = [x.name for x in Path(lowerCAmelCase_ ).glob('*' )] self.assertIn('source.spm' , lowerCAmelCase_ ) MarianTokenizer.from_pretrained(lowerCAmelCase_ ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizer() _snake_case = tok( ['I am a small frog' * 10_00, 'I am a small frog'] , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch.input_ids.shape , (2, 5_12) ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = self.get_tokenizer() _snake_case = tok(['I am a tiny frog', 'I am a small frog'] , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = {'input_ids': [[4_34_95, 4_62, 20, 4_21_64, 13_69, 52, 4_64, 1_32, 17_03, 4_92, 13, 74_91, 3_89_99, 6, 8, 4_64, 1_32, 17_03, 4_92, 13, 46_69, 3_78_67, 13, 75_25, 27, 15_93, 9_88, 13, 3_39_72, 70_29, 6, 20, 82_51, 3_83, 2, 2_70, 58_66, 37_88, 2, 23_53, 82_51, 1_23_38, 2, 1_39_58, 3_87, 2, 36_29, 69_53, 1_88, 29_00, 2, 1_39_58, 80_11, 1_15_01, 23, 84_60, 40_73, 3_40_09, 20, 4_35, 1_14_39, 27, 8, 84_60, 40_73, 60_04, 20, 99_88, 3_75, 27, 33, 2_66, 19_45, 10_76, 13_50, 3_78_67, 32_88, 5, 5_77, 10_76, 43_74, 8, 50_82, 5, 2_64_53, 2_57, 5_56, 4_03, 2, 2_42, 1_32, 3_83, 3_16, 4_92, 8, 1_07_67, 6, 3_16, 3_04, 42_39, 3, 0], [1_48, 1_57_22, 19, 18_39, 12, 13_50, 13, 2_23_27, 50_82, 54_18, 4_75_67, 3_59_38, 59, 3_18, 1_95_52, 1_08, 21_83, 54, 1_49_76, 48_35, 32, 5_47, 11_14, 8, 3_15, 24_17, 5, 92, 1_90_88, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00], [36, 63_95, 1_25_70, 3_91_47, 1_15_97, 6, 2_66, 4, 4_54_05, 72_96, 3, 0, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00, 5_81_00]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='Helsinki-NLP/opus-mt-en-de' , revision='1a8c2263da11e68e50938f97e10cd57820bd504c' , decode_kwargs={'use_source_tokenizer': True} , ) def lowerCamelCase ( self ): """simple docstring""" _snake_case = MarianTokenizer.from_pretrained('hf-internal-testing/test-marian-two-vocabs' ) _snake_case = 'Tämä on testi' _snake_case = 'This is a test' _snake_case = [76, 7, 20_47, 2] _snake_case = [69, 12, 11, 9_40, 2] _snake_case = tokenizer(lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer(text_target=lowerCAmelCase_ ).input_ids self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case = tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
495
0
"""simple docstring""" import numpy # List of input, output pairs UpperCamelCase = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase = (((515, 22, 13), 555), ((61, 35, 49), 150)) UpperCamelCase = [2, 4, 1, 5] UpperCamelCase = len(train_data) UpperCamelCase = 0.009 def lowerCAmelCase ( UpperCamelCase_: Optional[Any] , UpperCamelCase_: Any="train" ) -> List[str]: '''simple docstring''' return calculate_hypothesis_value(UpperCamelCase_ , UpperCamelCase_ ) - output( UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase ( UpperCamelCase_: Dict ) -> Optional[Any]: '''simple docstring''' _a = 0 for i in range(len(UpperCamelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def lowerCAmelCase ( UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] ) -> Optional[int]: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def lowerCAmelCase ( UpperCamelCase_: Dict , UpperCamelCase_: Tuple ) -> List[Any]: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def lowerCAmelCase ( UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=m ) -> Optional[Any]: '''simple docstring''' _a = 0 for i in range(UpperCamelCase_ ): if index == -1: summation_value += _error(UpperCamelCase_ ) else: summation_value += _error(UpperCamelCase_ ) * train_data[i][0][index] return summation_value def lowerCAmelCase ( UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _a = summation_of_cost_derivative(UpperCamelCase_ , UpperCamelCase_ ) / m return cost_derivative_value def lowerCAmelCase ( ) -> List[str]: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output _a = 0.00_0002 _a = 0 _a = 0 while True: j += 1 _a = [0, 0, 0, 0] for i in range(0 , len(UpperCamelCase_ ) ): _a = get_cost_derivative(i - 1 ) _a = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCamelCase_ , UpperCamelCase_ , atol=UpperCamelCase_ , rtol=UpperCamelCase_ , ): break _a = temp_parameter_vector print(("Number of iterations:", j) ) def lowerCAmelCase ( ) -> Any: '''simple docstring''' for i in range(len(UpperCamelCase_ ) ): print(("Actual output value:", output(UpperCamelCase_ , "test" )) ) print(("Hypothesis output:", calculate_hypothesis_value(UpperCamelCase_ , "test" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
612
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowercase_ (_UpperCAmelCase ): A__ : str = '''Salesforce/blip-image-captioning-base''' A__ : Optional[int] = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) A__ : str = '''image_captioner''' A__ : Tuple = AutoModelForVisionaSeq A__ : Tuple = ['''image'''] A__ : List[Any] = ['''text'''] def __init__( self , *a_ , **a_ ) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["vision"] ) super().__init__(*a_ , **a_ ) def lowerCamelCase__ ( self , a_ ) ->Union[str, Any]: '''simple docstring''' return self.pre_processor(images=a_ , return_tensors="pt" ) def lowerCamelCase__ ( self , a_ ) ->List[Any]: '''simple docstring''' return self.model.generate(**a_ ) def lowerCamelCase__ ( self , a_ ) ->Tuple: '''simple docstring''' return self.pre_processor.batch_decode(a_ , skip_special_tokens=a_ )[0].strip()
612
1
"""simple docstring""" # flake8: noqa # Lint as: python3 a_ = [ 'VerificationMode', 'Version', 'disable_progress_bar', 'enable_progress_bar', 'is_progress_bar_enabled', 'experimental', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
76
def __lowerCamelCase ( _lowerCAmelCase ) -> str: _UpperCAmelCase = [] _UpperCAmelCase = set({"(", "[", "{"} ) _UpperCAmelCase = set({")", "]", "}"} ) _UpperCAmelCase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowerCAmelCase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowerCAmelCase ) == 0 or (len(_lowerCAmelCase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowerCAmelCase ) == 0 def __lowerCamelCase ( ) -> str: _UpperCAmelCase = input("Enter sequence of brackets: " ) if is_balanced(_lowerCAmelCase ): print(_lowerCAmelCase , "is balanced" ) else: print(_lowerCAmelCase , "is not balanced" ) if __name__ == "__main__": main()
684
0
"""simple docstring""" import math import unittest def __lowerCAmelCase (_UpperCamelCase ): assert isinstance(_UpperCamelCase , _UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A__ ( unittest.TestCase): def __lowerCamelCase ( self ): self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __lowerCamelCase ( self ): with self.assertRaises(_SCREAMING_SNAKE_CASE ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
549
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : Union[str, Any] = image_size __lowerCAmelCase : Optional[Any] = num_channels __lowerCAmelCase : List[Any] = embeddings_size __lowerCAmelCase : Dict = hidden_sizes __lowerCAmelCase : Optional[int] = depths __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : int = use_labels __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : List[str] = scope __lowerCAmelCase : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : List[str] = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : int = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = RegNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : str = RegNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[str] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () A_ : List[Any] = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) A_ : Dict = False A_ : str = False A_ : int = False A_ : Union[str, Any] = False def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = RegNetModelTester(self ) __lowerCAmelCase : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Tuple = [*signature.parameters.keys()] __lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def __lowerCamelCase ( self ): def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase : List[str] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : List[Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase : List[Any] = layer_type __lowerCAmelCase : Tuple = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Dict = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = RegNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (): __lowerCAmelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase): @cached_property def __lowerCamelCase ( self ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = self.default_image_processor __lowerCAmelCase : Any = prepare_img() __lowerCAmelCase : Any = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __lowerCAmelCase : List[str] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits __lowerCAmelCase : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
549
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Tuple: _lowercase = 384 _lowercase = 7 if "tiny" in model_name: _lowercase = 96 _lowercase = (2, 2, 6, 2) _lowercase = (3, 6, 12, 24) elif "small" in model_name: _lowercase = 96 _lowercase = (2, 2, 18, 2) _lowercase = (3, 6, 12, 24) elif "base" in model_name: _lowercase = 128 _lowercase = (2, 2, 18, 2) _lowercase = (4, 8, 16, 32) _lowercase = 12 _lowercase = 512 elif "large" in model_name: _lowercase = 192 _lowercase = (2, 2, 18, 2) _lowercase = (6, 12, 24, 48) _lowercase = 12 _lowercase = 768 # set label information _lowercase = 150 _lowercase = 'huggingface/label-files' _lowercase = 'ade20k-id2label.json' _lowercase = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) _lowercase = {int(snake_case__ ): v for k, v in idalabel.items()} _lowercase = {v: k for k, v in idalabel.items()} _lowercase = SwinConfig( embed_dim=snake_case__ , depths=snake_case__ , num_heads=snake_case__ , window_size=snake_case__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) _lowercase = UperNetConfig( backbone_config=snake_case__ , auxiliary_in_channels=snake_case__ , num_labels=snake_case__ , idalabel=snake_case__ , labelaid=snake_case__ , ) return config def SCREAMING_SNAKE_CASE__ ( snake_case__ :Union[str, Any] ) -> List[Any]: _lowercase = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.norm2.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias""", F"""backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.stages.{i}.downsample.reduction.weight""", F"""backbone.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.weight""", F"""backbone.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.downsample.norm.bias""", F"""backbone.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any , snake_case__ :List[Any] , snake_case__ :List[str] ) -> Any: _lowercase = dct.pop(snake_case__ ) _lowercase = val def SCREAMING_SNAKE_CASE__ ( snake_case__ :str , snake_case__ :Tuple ) -> Union[str, Any]: _lowercase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowercase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowercase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight""" ) _lowercase = state_dict.pop(F"""backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowercase = in_proj_weight[:dim, :] _lowercase = in_proj_bias[: dim] _lowercase = in_proj_weight[ dim : dim * 2, : ] _lowercase = in_proj_bias[ dim : dim * 2 ] _lowercase = in_proj_weight[ -dim :, : ] _lowercase = in_proj_bias[-dim :] # fmt: on def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Optional[Any]: _lowercase , _lowercase = x.shape _lowercase = x.reshape(snake_case__ , 4 , in_channel // 4 ) _lowercase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(snake_case__ , snake_case__ ) return x def SCREAMING_SNAKE_CASE__ ( snake_case__ :int ) -> List[Any]: _lowercase , _lowercase = x.shape _lowercase = x.reshape(snake_case__ , in_channel // 4 , 4 ) _lowercase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(snake_case__ , snake_case__ ) return x def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Tuple: _lowercase = x.shape[0] _lowercase = x.reshape(4 , in_channel // 4 ) _lowercase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(snake_case__ ) return x def SCREAMING_SNAKE_CASE__ ( snake_case__ :List[Any] ) -> Any: _lowercase = x.shape[0] _lowercase = x.reshape(in_channel // 4 , 4 ) _lowercase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(snake_case__ ) return x def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] , snake_case__ :str , snake_case__ :Optional[Any] ) -> Optional[Any]: _lowercase = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } _lowercase = model_name_to_url[model_name] _lowercase = torch.hub.load_state_dict_from_url(snake_case__ , map_location='cpu' , file_name=snake_case__ )[ 'state_dict' ] for name, param in state_dict.items(): print(snake_case__ , param.shape ) _lowercase = get_upernet_config(snake_case__ ) _lowercase = UperNetForSemanticSegmentation(snake_case__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowercase = state_dict.pop(snake_case__ ) if "bn" in key: _lowercase = key.replace('bn' , 'batch_norm' ) _lowercase = val # rename keys _lowercase = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) read_in_q_k_v(snake_case__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _lowercase = reverse_correct_unfold_reduction_order(snake_case__ ) if "norm" in key: _lowercase = reverse_correct_unfold_norm_order(snake_case__ ) model.load_state_dict(snake_case__ ) # verify on image _lowercase = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' _lowercase = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert('RGB' ) _lowercase = SegformerImageProcessor() _lowercase = processor(snake_case__ , return_tensors='pt' ).pixel_values with torch.no_grad(): _lowercase = model(snake_case__ ) _lowercase = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _lowercase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": _lowercase = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": _lowercase = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": _lowercase = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , snake_case__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(snake_case__ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F"""upernet-swin-{size}""" for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
67
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class A_ : """simple docstring""" def __init__( self : Dict ,__A : Any ,__A : Tuple=None ,__A : Optional[int]=None ,__A : Optional[int]=None ,__A : int="resnet50" ,__A : int=3 ,__A : List[Any]=32 ,__A : Tuple=3 ,__A : List[Any]=True ,__A : Tuple=True ,) -> Any: _lowercase = parent _lowercase = out_indices if out_indices is not None else [4] _lowercase = stage_names _lowercase = out_features _lowercase = backbone _lowercase = batch_size _lowercase = image_size _lowercase = num_channels _lowercase = use_pretrained_backbone _lowercase = is_training def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase = self.get_config() return config, pixel_values def __UpperCAmelCase ( self : Tuple ) -> Tuple: return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def __UpperCAmelCase ( self : Any ,__A : Any ,__A : Dict ) -> Union[str, Any]: _lowercase = TimmBackbone(config=__A ) model.to(__A ) model.eval() with torch.no_grad(): _lowercase = model(__A ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: _lowercase = self.prepare_config_and_inputs() _lowercase , _lowercase = config_and_inputs _lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class A_ ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : List[Any] = False SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Any = False def __UpperCAmelCase ( self : str ) -> Optional[int]: _lowercase = TimmBackboneModelTester(self ) _lowercase = ConfigTester(self ,config_class=__A ,has_text_modality=__A ) def __UpperCAmelCase ( self : int ) -> Tuple: self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self : List[Any] ) -> List[str]: _lowercase = 'resnet18' _lowercase = 'microsoft/resnet-18' _lowercase = AutoBackbone.from_pretrained(__A ,use_timm_backbone=__A ) _lowercase = AutoBackbone.from_pretrained(__A ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) _lowercase = AutoBackbone.from_pretrained(__A ,use_timm_backbone=__A ,out_indices=[1, 2, 3] ) _lowercase = AutoBackbone.from_pretrained(__A ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking' ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute' ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: pass @unittest.skip('TimmBackbone initialization is managed on the timm side' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __UpperCAmelCase ( self : Dict ) -> List[str]: pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds' ) def __UpperCAmelCase ( self : Optional[int] ) -> Dict: pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint' ) def __UpperCAmelCase ( self : Dict ) -> List[str]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: pass @unittest.skip('model weights aren\'t tied in TimmBackbone.' ) def __UpperCAmelCase ( self : Any ) -> List[Any]: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __UpperCAmelCase ( self : int ) -> Any: pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone' ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.' ) def __UpperCAmelCase ( self : Any ) -> Optional[Any]: pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.' ) def __UpperCAmelCase ( self : Any ) -> Any: pass @unittest.skip('Safetensors is not supported by timm.' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : int ) -> Optional[Any]: pass def __UpperCAmelCase ( self : Dict ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) _lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase = [*signature.parameters.keys()] _lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] ,__A ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() _lowercase = True _lowercase = self.has_attentions # no need to test all models as different heads yield the same functionality _lowercase = self.all_model_classes[0] _lowercase = model_class(__A ) model.to(__A ) _lowercase = self._prepare_for_class(__A ,__A ) _lowercase = model(**__A ) _lowercase = outputs[0][-1] # Encoder-/Decoder-only models _lowercase = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _lowercase = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=__A ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def __UpperCAmelCase ( self : List[str] ) -> int: _lowercase , _lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase = model_class(__A ) model.to(__A ) model.eval() _lowercase = model(**__A ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None _lowercase = copy.deepcopy(__A ) _lowercase = None _lowercase = model_class(__A ) model.to(__A ) model.eval() _lowercase = model(**__A ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights _lowercase = copy.deepcopy(__A ) _lowercase = False _lowercase = model_class(__A ) model.to(__A ) model.eval() _lowercase = model(**__A )
67
1
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase =random.Random() def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__=1.0 , UpperCamelCase__=None , UpperCamelCase__=None ): if rng is None: UpperCamelCase__ : Optional[Any] = global_rng UpperCamelCase__ : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=2_0_0_0 , __SCREAMING_SNAKE_CASE=2_0_4_8 , __SCREAMING_SNAKE_CASE=1_2_8 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_4_1_0_0 , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : List[Any] = parent UpperCamelCase__ : Union[str, Any] = batch_size UpperCamelCase__ : Optional[int] = min_seq_length UpperCamelCase__ : Optional[Any] = max_seq_length UpperCamelCase__ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ : Optional[Any] = spectrogram_length UpperCamelCase__ : Dict = feature_size UpperCamelCase__ : Optional[Any] = num_audio_channels UpperCamelCase__ : Union[str, Any] = hop_length UpperCamelCase__ : str = chunk_length UpperCamelCase__ : str = sampling_rate def __SCREAMING_SNAKE_CASE ( self ) -> int: """simple docstring""" return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False ) -> Optional[int]: """simple docstring""" def _flatten(__SCREAMING_SNAKE_CASE ): return list(itertools.chain(*__SCREAMING_SNAKE_CASE ) ) if equal_length: UpperCamelCase__ : Union[str, Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size UpperCamelCase__ : Optional[Any] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase__ : Dict = [np.asarray(__SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = TvltFeatureExtractor def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Any = TvltFeatureExtractionTester(self ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''spectrogram_length''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''feature_size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''num_audio_channels''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''hop_length''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''chunk_length''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''sampling_rate''' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[Any] = feat_extract_first.save_pretrained(__SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = self.feature_extraction_class.from_pretrained(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = feat_extract_first.to_dict() UpperCamelCase__ : List[str] = feat_extract_second.to_dict() UpperCamelCase__ : Optional[int] = dict_first.pop('''mel_filters''' ) UpperCamelCase__ : List[Any] = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: """simple docstring""" UpperCamelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : Optional[int] = os.path.join(__SCREAMING_SNAKE_CASE , '''feat_extract.json''' ) feat_extract_first.to_json_file(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.feature_extraction_class.from_json_file(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : str = feat_extract_first.to_dict() UpperCamelCase__ : Optional[int] = feat_extract_second.to_dict() UpperCamelCase__ : Optional[int] = dict_first.pop('''mel_filters''' ) UpperCamelCase__ : Dict = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ : Optional[Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] UpperCamelCase__ : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase__ : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched UpperCamelCase__ : Union[str, Any] = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking UpperCamelCase__ : List[Any] = feature_extractor( __SCREAMING_SNAKE_CASE , return_tensors='''np''' , sampling_rate=4_4_1_0_0 , mask_audio=__SCREAMING_SNAKE_CASE ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. UpperCamelCase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] UpperCamelCase__ : Optional[Any] = np.asarray(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : int = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors='''np''' , sampling_rate=4_4_1_0_0 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" UpperCamelCase__ : int = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech UpperCamelCase__ : int = ds.sort('''id''' ).select(range(__SCREAMING_SNAKE_CASE ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __SCREAMING_SNAKE_CASE ( self ) -> str: """simple docstring""" UpperCamelCase__ : List[Any] = self._load_datasamples(1 ) UpperCamelCase__ : Optional[int] = TvltFeatureExtractor() UpperCamelCase__ : Any = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_9_2, 1_2_8) ) UpperCamelCase__ : Tuple = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
462
lowerCamelCase ={"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} lowerCamelCase =["a", "b", "c", "d", "e"] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : str = start # add current to visited visited.append(UpperCamelCase__ ) UpperCamelCase__ : int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCamelCase__ : int = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): for vertice in vertices: if vertice not in visited: UpperCamelCase__ : Optional[int] = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # return sort return sort if __name__ == "__main__": lowerCamelCase =topological_sort("a", [], []) print(sort)
462
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case :Dict ={'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __snake_case :Union[str, Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): A_ : Dict = GPTSanJapaneseTokenizer A_ : Optional[int] = False A_ : List[str] = {'do_clean_text': False, 'add_prefix_space': False} def __UpperCamelCase ( self : Tuple ) -> Any: super().setUp() # fmt: off A = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on A = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 A = {'unk_token': '<unk>'} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(__UpperCamelCase ) ) def __UpperCamelCase ( self : Any , **__UpperCamelCase : Any ) -> Tuple: kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCamelCase ( self : str , __UpperCamelCase : Dict ) -> List[str]: A = 'こんにちは、世界。 \nこんばんは、㔺界。😀' A = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def __UpperCamelCase ( self : str , __UpperCamelCase : Optional[Any] ) -> List[str]: A , A = self.get_input_output_texts(__UpperCamelCase ) A = tokenizer.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase ) return text, ids def __UpperCamelCase ( self : Any ) -> int: pass # TODO add if relevant def __UpperCamelCase ( self : List[str] ) -> Tuple: pass # TODO add if relevant def __UpperCamelCase ( self : List[str] ) -> List[Any]: pass # TODO add if relevant def __UpperCamelCase ( self : List[str] ) -> int: A = self.get_tokenizer() # Testing tokenization A = 'こんにちは、世界。 こんばんは、㔺界。' A = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] A = tokenizer.tokenize(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing conversion to ids without special tokens A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] A = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) # Testing conversion to ids with special tokens A = tokens + [tokenizer.unk_token] A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] A = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : Union[str, Any] ) -> List[str]: A = self.get_tokenizer() # Testing tokenization A = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' A = 'こんにちは、、、、世界。こんばんは、、、、世界。' A = tokenizer.encode(__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> str: A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization A = 'こんにちは、世界。' A = 'こんばんは、㔺界。😀' A = 'こんにちは、世界。こんばんは、世界。😀' A = tokenizer.encode(prefix_text + input_text ) A = tokenizer.encode('' , prefix_text=prefix_text + input_text ) A = tokenizer.encode(__UpperCamelCase , prefix_text=__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase ) A = tokenizer.decode(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization A = 'こんにちは、世界。' A = 'こんばんは、㔺界。😀' A = len(tokenizer.encode(__UpperCamelCase ) ) - 2 A = len(tokenizer.encode(__UpperCamelCase ) ) - 2 A = [1] + [0] * (len_prefix + len_text + 1) A = [1] * (len_prefix + len_text + 1) + [0] A = [1] + [1] * (len_prefix) + [0] * (len_text + 1) A = tokenizer(prefix_text + input_text ).token_type_ids A = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids A = tokenizer(__UpperCamelCase , prefix_text=__UpperCamelCase ).token_type_ids self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) @slow def __UpperCamelCase ( self : Any ) -> str: A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) A = tokenizer.encode('あンいワ' ) A = tokenizer.encode('' , prefix_text='あンいワ' ) A = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(__UpperCamelCase ) , tokenizer.decode(__UpperCamelCase ) ) self.assertEqual(tokenizer.decode(__UpperCamelCase ) , tokenizer.decode(__UpperCamelCase ) ) self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotEqual(__UpperCamelCase , __UpperCamelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def __UpperCamelCase ( self : Any ) -> List[Any]: A = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) A = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] A = tokenizer(__UpperCamelCase , padding=__UpperCamelCase ) A = tokenizer.batch_encode_plus(__UpperCamelCase , padding=__UpperCamelCase ) # fmt: off A = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] A = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] A = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __UpperCamelCase ) self.assertListEqual(x_token.token_type_ids , __UpperCamelCase ) self.assertListEqual(x_token.attention_mask , __UpperCamelCase ) self.assertListEqual(x_token_a.input_ids , __UpperCamelCase ) self.assertListEqual(x_token_a.token_type_ids , __UpperCamelCase ) self.assertListEqual(x_token_a.attention_mask , __UpperCamelCase ) def __UpperCamelCase ( self : Tuple ) -> str: # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __UpperCamelCase ( self : Dict ) -> int: # tokenizer has no padding token pass
106
1
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> None: lowerCamelCase_ = len(__UpperCamelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__UpperCamelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] ,[*diagonal_right_collisions, row - col] ,[*diagonal_left_collisions, row + col] ,__UpperCamelCase ,__UpperCamelCase ,) def _UpperCamelCase ( __UpperCamelCase ) -> None: lowerCamelCase_ = [] depth_first_search([] ,[] ,[] ,__UpperCamelCase ,__UpperCamelCase ) # Print all the boards for board in boards: for column in board: print(__UpperCamelCase ) print('' ) print(len(__UpperCamelCase ) ,'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
384
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' pass def _UpperCamelCase ( __UpperCamelCase ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _UpperCamelCase ( __UpperCamelCase ) -> Dict: lowerCamelCase_ = np.array(__UpperCamelCase ) lowerCamelCase_ = npimg.shape return {"hash": hashimage(__UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCamelCase( self ) -> int: '''simple docstring''' pass @slow @require_torch def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) lowerCamelCase_ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_871} ] , ) # fmt: on @require_torch @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'facebook/sam-vit-huge' lowerCamelCase_ = pipeline('mask-generation' , model=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_210}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, ] , )
384
1
"""simple docstring""" import torch from transformers import AutoModel class __UpperCAmelCase( torch.nn.Module ): """simple docstring""" def __init__( self , snake_case__="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(snake_case__ , self ).__init__() lowercase__ : Tuple= AutoModel.from_pretrained(snake_case__ , return_dict=snake_case__ ) lowercase__ : Dict= torch.nn.CosineSimilarity(3 , 1e-08 ) lowercase__ : Any= torch.nn.Softmax(dim=1 ) def UpperCAmelCase_ ( self , **snake_case__ ): '''simple docstring''' return self.bert(**snake_case__ ).last_hidden_state def UpperCAmelCase_ ( self , snake_case__ ): '''simple docstring''' return token_embeddings.sum(2 , keepdim=snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__=1 ): '''simple docstring''' return self.softmax(T * self.cos(snake_case__ , snake_case__ ) ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : List[str]= W_supports["sizes"].tolist() lowercase__ : int= W_supports["start_token_id"].item() lowercase__ : List[Any]= W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase__ : Union[str, Any]= self.BERT(**snake_case__ ) lowercase__ : int= self.BERT(**snake_case__ ) lowercase__ : Tuple= None lowercase__ : Tuple= None lowercase__ : Dict= W_supports["input_ids"] == start_token_id lowercase__ : Tuple= W_supports["input_ids"] == end_token_id for i, size in enumerate(snake_case__ ): if i == 0: lowercase__ : Optional[int]= 0 else: lowercase__ : Optional[Any]= support_sizes[i - 1] lowercase__ : Any= S[s : s + size][start_token_masks[s : s + size]] lowercase__ : Any= S[s : s + size][end_token_masks[s : s + size]] lowercase__ : str= torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase__ : str= torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase__ : Any= torch.vstack((p_starts, p_start) ) lowercase__ : Any= torch.vstack((p_ends, p_end) ) else: lowercase__ : Any= p_start lowercase__ : List[Any]= p_end return p_starts, p_ends
218
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore a : List[str] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" a : Optional[int] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print("""\n""".join(upper_files) + """\n""") a : List[Any] = [file for file in filepaths if """ """ in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print("""\n""".join(space_files) + """\n""") a : Optional[int] = [file for file in filepaths if """-""" in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print("""\n""".join(hyphen_files) + """\n""") a : List[str] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print("""\n""".join(nodir_files) + """\n""") a : Tuple = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
218
1
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
275
"""simple docstring""" import torch from torch import nn class a ( nn.Module ): def __init__( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any]=1 , __lowerCAmelCase : Tuple=False ): super().__init__() _UpperCAmelCase = n_token _UpperCAmelCase = d_embed _UpperCAmelCase = d_proj _UpperCAmelCase = cutoffs + [n_token] _UpperCAmelCase = [0] + self.cutoffs _UpperCAmelCase = div_val _UpperCAmelCase = self.cutoffs[0] _UpperCAmelCase = len(self.cutoffs ) - 1 _UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) else: self.out_projs.append(__lowerCAmelCase ) self.out_layers.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCAmelCase , r_idx - l_idx ) ) _UpperCAmelCase = keep_order def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): if proj is None: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , proj.t().contiguous() ) _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Union[str, Any]=False ): if labels is not None: # Shift so that tokens < n predict n _UpperCAmelCase = hidden[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) _UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _UpperCAmelCase = labels != -100 _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = ( -nn.functional.log_softmax(__lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) if labels is None: _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = 0 _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) _UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCAmelCase = labels.index_select(0 , __lowerCAmelCase ) - l_idx _UpperCAmelCase = head_logprob.index_select(0 , __lowerCAmelCase ) _UpperCAmelCase = hidden.index_select(0 , __lowerCAmelCase ) else: _UpperCAmelCase = hidden if i == 0: if labels is not None: _UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] ): if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i _UpperCAmelCase = logprob_i return out
275
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCAmelCase (metaclass=__UpperCAmelCase ): """simple docstring""" _UpperCAmelCase :str = ["torch", "torchsde"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['''torch''', '''torchsde'''] ) @classmethod def _snake_case ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['''torch''', '''torchsde'''] ) @classmethod def _snake_case ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['''torch''', '''torchsde'''] )
586
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __magic_name__ ( __UpperCAmelCase ): @staticmethod @abstractmethod def __snake_case ( snake_case__ : ArgumentParser ): '''simple docstring''' raise NotImplementedError() @abstractmethod def __snake_case ( self : Optional[Any] ): '''simple docstring''' raise NotImplementedError()
677
0
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ = IFInpaintingPipeline lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowercase_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS lowercase_ = PipelineTesterMixin.required_optional_params - {'latents'} def _UpperCamelCase ( self ) -> str: return self._get_dummy_components() def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ) -> Optional[int]: if str(UpperCAmelCase_ ).startswith('mps' ): lowerCamelCase : Optional[int] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase : str = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _UpperCamelCase ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _UpperCamelCase ( self ) -> Optional[Any]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def _UpperCamelCase ( self ) -> Dict: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _UpperCamelCase ( self ) -> Optional[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _UpperCamelCase ( self ) -> List[Any]: self._test_save_load_local() def _UpperCamelCase ( self ) -> Any: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
133
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( __UpperCAmelCase , unittest.TestCase ): lowercase_ = KandinskyInpaintPipeline lowercase_ = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] lowercase_ = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] lowercase_ = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowercase_ = False @property def _UpperCamelCase ( self ) -> List[str]: return 32 @property def _UpperCamelCase ( self ) -> Any: return 32 @property def _UpperCamelCase ( self ) -> Any: return self.time_input_dim @property def _UpperCamelCase ( self ) -> List[Any]: return self.time_input_dim * 4 @property def _UpperCamelCase ( self ) -> str: return 100 @property def _UpperCamelCase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def _UpperCamelCase ( self ) -> Any: torch.manual_seed(0 ) lowerCamelCase : str = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) lowerCamelCase : List[Any] = MultilingualCLIP(UpperCAmelCase_ ) lowerCamelCase : List[Any] = text_encoder.eval() return text_encoder @property def _UpperCamelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCamelCase : List[Any] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCamelCase : Tuple = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def _UpperCamelCase ( self ) -> List[str]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCamelCase : Any = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ) -> Union[str, Any]: lowerCamelCase : Any = self.dummy_text_encoder lowerCamelCase : List[str] = self.dummy_tokenizer lowerCamelCase : int = self.dummy_unet lowerCamelCase : Union[str, Any] = self.dummy_movq lowerCamelCase : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type='epsilon' , thresholding=UpperCAmelCase_ , ) lowerCamelCase : List[Any] = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCamelCase ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ) -> Tuple: lowerCamelCase : Optional[Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ ) # create init_image lowerCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase : Dict = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert('RGB' ).resize((256, 256) ) # create mask lowerCamelCase : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) lowerCamelCase : Union[str, Any] = 0 if str(UpperCAmelCase_ ).startswith('mps' ): lowerCamelCase : Optional[int] = torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase : Dict = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase : List[str] = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : Any = 'cpu' lowerCamelCase : List[Any] = self.get_dummy_components() lowerCamelCase : List[str] = self.pipeline_class(**UpperCAmelCase_ ) lowerCamelCase : Tuple = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : int = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) lowerCamelCase : int = output.images lowerCamelCase : Union[str, Any] = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] lowerCamelCase : Any = image[0, -3:, -3:, -1] lowerCamelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCamelCase : Dict = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def _UpperCamelCase ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> List[str]: lowerCamelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy' ) lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCamelCase : Union[str, Any] = np.ones((768, 768) , dtype=np.floataa ) lowerCamelCase : Optional[Any] = 0 lowerCamelCase : Optional[int] = 'a hat' lowerCamelCase : Dict = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) lowerCamelCase : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-inpaint' , torch_dtype=torch.floataa ) lowerCamelCase : Optional[int] = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) lowerCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCamelCase , lowerCamelCase : Tuple = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() lowerCamelCase : Optional[Any] = pipeline( UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) lowerCamelCase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
133
1
"""simple docstring""" def _snake_case ( __snake_case : float , __snake_case : float , __snake_case : int ): """simple docstring""" if principal <= 0: raise Exception("""Principal borrowed must be > 0""" ) if rate_per_annum < 0: raise Exception("""Rate of interest must be >= 0""" ) if years_to_repay <= 0 or not isinstance(__snake_case , __snake_case ): raise Exception("""Years to repay must be an integer > 0""" ) # Yearly rate is divided by 12 to get monthly rate _lowerCamelCase : Tuple = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly _lowerCamelCase : str = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
88
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a__ ( __SCREAMING_SNAKE_CASE ): _A = "Wav2Vec2FeatureExtractor" _A = "AutoTokenizer" def __init__( self : Any , A_ : Union[str, Any] , A_ : List[str] ) -> Tuple: """simple docstring""" super().__init__(A_ , A_ ) lowerCamelCase_: str = self.feature_extractor lowerCamelCase_: Optional[int] = False @classmethod def lowerCAmelCase ( cls : int , A_ : Dict , **A_ : List[Any] ) -> Union[str, Any]: """simple docstring""" try: return super().from_pretrained(A_ , **A_ ) except OSError: warnings.warn( f"""Loading a tokenizer inside {cls.__name__} from a config that does not""" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , A_ , ) lowerCamelCase_: Tuple = WavaVecaFeatureExtractor.from_pretrained(A_ , **A_ ) lowerCamelCase_: List[str] = WavaVecaCTCTokenizer.from_pretrained(A_ , **A_ ) return cls(feature_extractor=A_ , tokenizer=A_ ) def __call__( self : List[str] , *A_ : Tuple , **A_ : Optional[Any] ) -> List[str]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_ , **A_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) lowerCamelCase_: List[str] = kwargs.pop("""raw_speech""" ) else: lowerCamelCase_: str = kwargs.pop("""audio""" , A_ ) lowerCamelCase_: str = kwargs.pop("""sampling_rate""" , A_ ) lowerCamelCase_: List[Any] = kwargs.pop("""text""" , A_ ) if len(A_ ) > 0: lowerCamelCase_: List[str] = args[0] lowerCamelCase_: Tuple = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: lowerCamelCase_: Dict = self.feature_extractor(A_ , *A_ , sampling_rate=A_ , **A_ ) if text is not None: lowerCamelCase_: Tuple = self.tokenizer(A_ , **A_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase_: Any = encodings["""input_ids"""] return inputs def lowerCAmelCase ( self : Optional[Any] , *A_ : Optional[int] , **A_ : Tuple ) -> str: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*A_ , **A_ ) lowerCamelCase_: str = kwargs.pop("""input_features""" , A_ ) lowerCamelCase_: Optional[Any] = kwargs.pop("""labels""" , A_ ) if len(A_ ) > 0: lowerCamelCase_: Tuple = args[0] lowerCamelCase_: int = args[1:] if input_features is not None: lowerCamelCase_: Tuple = self.feature_extractor.pad(A_ , *A_ , **A_ ) if labels is not None: lowerCamelCase_: Optional[int] = self.tokenizer.pad(A_ , **A_ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase_: List[str] = labels["""input_ids"""] return input_features def lowerCAmelCase ( self : str , *A_ : int , **A_ : List[str] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*A_ , **A_ ) def lowerCAmelCase ( self : Any , *A_ : Union[str, Any] , **A_ : str ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*A_ , **A_ ) @contextmanager def lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) lowerCamelCase_: Union[str, Any] = True lowerCamelCase_: int = self.tokenizer yield lowerCamelCase_: int = self.feature_extractor lowerCamelCase_: Optional[Any] = False
423
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __magic_name__ : def __init__( self : List[str] , snake_case__ : Tuple , snake_case__ : List[str]=1_3 , snake_case__ : Optional[Any]=7 , snake_case__ : Tuple=True , snake_case__ : Any=True , snake_case__ : Optional[int]=True , snake_case__ : Dict=True , snake_case__ : Optional[int]=9_9 , snake_case__ : Optional[Any]=2_4 , snake_case__ : Dict=2 , snake_case__ : List[str]=6 , snake_case__ : Optional[Any]=3_7 , snake_case__ : str="gelu" , snake_case__ : Tuple=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : List[str]=1_6 , snake_case__ : Optional[int]=2 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : List[str]=3 , snake_case__ : Optional[Any]=None , snake_case__ : Optional[int]=1_0_0_0 , ): '''simple docstring''' lowercase :Tuple = parent lowercase :Optional[int] = batch_size lowercase :Union[str, Any] = seq_length lowercase :List[str] = is_training lowercase :int = use_input_mask lowercase :List[str] = use_token_type_ids lowercase :Dict = use_labels lowercase :Optional[int] = vocab_size lowercase :Union[str, Any] = hidden_size lowercase :Union[str, Any] = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[int] = intermediate_size lowercase :Optional[int] = hidden_act lowercase :Optional[int] = hidden_dropout_prob lowercase :Any = attention_probs_dropout_prob lowercase :Union[str, Any] = max_position_embeddings lowercase :str = type_vocab_size lowercase :Optional[Any] = type_sequence_label_size lowercase :Tuple = initializer_range lowercase :List[str] = num_labels lowercase :Union[str, Any] = scope lowercase :Dict = range_bbox def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase :Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase :Optional[int] = bbox[i, j, 3] lowercase :Any = bbox[i, j, 1] lowercase :Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: lowercase :Optional[Any] = bbox[i, j, 2] lowercase :Dict = bbox[i, j, 0] lowercase :Any = t lowercase :Dict = None if self.use_input_mask: lowercase :Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) lowercase :List[str] = None if self.use_token_type_ids: lowercase :int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase :List[str] = None lowercase :Dict = None if self.use_labels: lowercase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase :Optional[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __snake_case ( self : Union[str, Any] ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __snake_case ( self : Optional[int] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Any , snake_case__ : Optional[Any] , ): '''simple docstring''' lowercase :List[str] = LiltModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Dict = model(snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowercase :int = model(snake_case__ , bbox=snake_case__ , token_type_ids=snake_case__ ) lowercase :int = model(snake_case__ , bbox=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self : Dict , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Dict , ): '''simple docstring''' lowercase :int = self.num_labels lowercase :List[str] = LiltForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Optional[int] = model( snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : int , snake_case__ : str , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[int] , ): '''simple docstring''' lowercase :Tuple = LiltForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :str = model( snake_case__ , bbox=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self : str ): '''simple docstring''' lowercase :Tuple = self.prepare_config_and_inputs() ( lowercase ) :Optional[Any] = config_and_inputs lowercase :Dict = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __A : Tuple = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) __A : Optional[Any] = False __A : List[str] = False def __snake_case ( self : List[Any] , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] ): '''simple docstring''' return True def __snake_case ( self : str ): '''simple docstring''' lowercase :str = LiltModelTester(self ) lowercase :List[Any] = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : str ): '''simple docstring''' lowercase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __snake_case ( self : int ): '''simple docstring''' lowercase :Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase :Optional[Any] = type self.model_tester.create_and_check_model(*snake_case__ ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def __snake_case ( self : Optional[Any] ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :Optional[int] = LiltModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch @slow class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :List[Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(snake_case__ ) lowercase :List[Any] = torch.tensor([[1, 2]] , device=snake_case__ ) lowercase :Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case__ ) # forward pass with torch.no_grad(): lowercase :Optional[Any] = model(input_ids=snake_case__ , bbox=snake_case__ ) lowercase :Tuple = torch.Size([1, 2, 7_6_8] ) lowercase :Any = torch.tensor( [[-0.06_53, 0.09_50, -0.00_61], [-0.05_45, 0.09_26, -0.03_24]] , device=snake_case__ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case__ , atol=1e-3 ) )
715
"""simple docstring""" import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json UpperCAmelCase = '''sshleifer/mar_enro_6_3_student''' class __magic_name__ ( __UpperCAmelCase ): def __snake_case ( self : int ): '''simple docstring''' super().setUp() lowercase :Union[str, Any] = cached_path( '''https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz''' , extract_compressed_file=snake_case__ , ) lowercase :int = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def __snake_case ( self : Any ): '''simple docstring''' MarianMTModel.from_pretrained(snake_case__ ) @slow @require_torch_gpu def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :str = { '''$MAX_LEN''': 6_4, '''$BS''': 6_4, '''$GAS''': 1, '''$ENRO_DIR''': self.data_dir, '''facebook/mbart-large-cc25''': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '''--learning_rate=3e-5''': '''--learning_rate 3e-4''', '''--num_train_epochs 6''': '''--num_train_epochs 1''', } # Clean up bash script lowercase :str = (self.test_file_dir / '''train_mbart_cc25_enro.sh''').open().read().split('''finetune.py''' )[1].strip() lowercase :Any = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) for k, v in env_vars_to_replace.items(): lowercase :Dict = bash_script.replace(snake_case__ , str(snake_case__ ) ) lowercase :Any = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase :Optional[Any] = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase :str = ['''finetune.py'''] + bash_script.split() + args with patch.object(snake_case__ , '''argv''' , snake_case__ ): lowercase :Optional[int] = argparse.ArgumentParser() lowercase :List[Any] = pl.Trainer.add_argparse_args(snake_case__ ) lowercase :Union[str, Any] = SummarizationModule.add_model_specific_args(snake_case__ , os.getcwd() ) lowercase :int = parser.parse_args() lowercase :int = main(snake_case__ ) # Check metrics lowercase :int = load_json(model.metrics_save_path ) lowercase :Tuple = metrics['''val'''][0] lowercase :Any = metrics['''val'''][-1] self.assertEqual(len(metrics['''val'''] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , snake_case__ ) self.assertGreater(last_step_stats['''val_avg_gen_time'''] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['''val_avg_gen_time'''] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['''val_avg_bleu'''] - first_step_stats['''val_avg_bleu'''] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['''val_avg_bleu'''] , 1_7 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['''val'''][-1]['''val_avg_bleu'''] - metrics['''test'''][-1]['''test_avg_bleu'''] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase :Any = os.listdir(snake_case__ ) lowercase :int = [x for x in contents if x.endswith('''.ckpt''' )][0] lowercase :Any = os.path.join(args.output_dir , snake_case__ ) lowercase :int = torch.load(snake_case__ , map_location='''cpu''' ) lowercase :Any = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase :Optional[Any] = {os.path.basename(snake_case__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1 class __magic_name__ ( __UpperCAmelCase ): @timeout_decorator.timeout(6_0_0 ) @slow @require_torch_gpu def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Union[str, Any] = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" lowercase :List[Any] = { '''--fp16_opt_level=O1''': '''''', '''$MAX_LEN''': 1_2_8, '''$BS''': 1_6, '''$GAS''': 1, '''$ENRO_DIR''': data_dir, '''$m''': '''sshleifer/student_marian_en_ro_6_1''', '''val_check_interval=0.25''': '''val_check_interval=1.0''', } # Clean up bash script lowercase :Dict = ( (self.test_file_dir / '''distil_marian_no_teacher.sh''').open().read().split('''distillation.py''' )[1].strip() ) lowercase :Union[str, Any] = bash_script.replace('''\\\n''' , '''''' ).strip().replace('''"$@"''' , '''''' ) lowercase :Dict = bash_script.replace('''--fp16 ''' , ''' ''' ) for k, v in env_vars_to_replace.items(): lowercase :str = bash_script.replace(snake_case__ , str(snake_case__ ) ) lowercase :Union[str, Any] = self.get_auto_remove_tmp_dir() lowercase :str = bash_script.replace('''--fp16''' , '''''' ) lowercase :Union[str, Any] = 6 lowercase :str = ( ['''distillation.py'''] + bash_script.split() + [ f"""--output_dir={output_dir}""", '''--gpus=1''', '''--learning_rate=1e-3''', f"""--num_train_epochs={epochs}""", '''--warmup_steps=10''', '''--val_check_interval=1.0''', '''--do_predict''', ] ) with patch.object(snake_case__ , '''argv''' , snake_case__ ): lowercase :Optional[int] = argparse.ArgumentParser() lowercase :Tuple = pl.Trainer.add_argparse_args(snake_case__ ) lowercase :Optional[Any] = SummarizationDistiller.add_model_specific_args(snake_case__ , os.getcwd() ) lowercase :Optional[int] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase :Tuple = distill_main(snake_case__ ) # Check metrics lowercase :Tuple = load_json(model.metrics_save_path ) lowercase :int = metrics['''val'''][0] lowercase :List[str] = metrics['''val'''][-1] assert len(metrics['''val'''] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , snake_case__ ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase :Union[str, Any] = os.listdir(snake_case__ ) lowercase :List[str] = [x for x in contents if x.endswith('''.ckpt''' )][0] lowercase :Dict = os.path.join(args.output_dir , snake_case__ ) lowercase :Optional[int] = torch.load(snake_case__ , map_location='''cpu''' ) lowercase :str = '''model.model.decoder.layers.0.encoder_attn_layer_norm.weight''' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase :int = {os.path.basename(snake_case__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['''test'''] ) == 1
475
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer SCREAMING_SNAKE_CASE_: List[str] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Optional[int] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp SCREAMING_SNAKE_CASE_: Any ={ 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE_: int ={ 'RUCAIBox/mvp': 10_24, } class __A ( UpperCamelCase__ ): a__ : Optional[int] = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Any = ["""input_ids""", """attention_mask"""] a__ : List[Any] = MvpTokenizer def __init__(self : Dict , __a : List[Any]=None , __a : List[Any]=None , __a : Optional[int]=None , __a : Any="replace" , __a : Optional[Any]="<s>" , __a : List[str]="</s>" , __a : int="</s>" , __a : Optional[int]="<s>" , __a : str="<unk>" , __a : str="<pad>" , __a : List[Any]="<mask>" , __a : Tuple=False , __a : str=True , **__a : Optional[int] , ): super().__init__( __a , __a , tokenizer_file=__a , errors=__a , bos_token=__a , eos_token=__a , sep_token=__a , cls_token=__a , unk_token=__a , pad_token=__a , mask_token=__a , add_prefix_space=__a , trim_offsets=__a , **__a , ) UpperCAmelCase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __a ) != add_prefix_space: UpperCAmelCase_ = getattr(__a , pre_tok_state.pop("type" ) ) UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = pre_tok_class(**__a ) UpperCAmelCase_ = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase_ = "post_processor" UpperCAmelCase_ = getattr(self.backend_tokenizer , __a , __a ) if tokenizer_component_instance: UpperCAmelCase_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase_ = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase_ = tuple(state["cls"] ) UpperCAmelCase_ = False if state.get("add_prefix_space" , __a ) != add_prefix_space: UpperCAmelCase_ = add_prefix_space UpperCAmelCase_ = True if state.get("trim_offsets" , __a ) != trim_offsets: UpperCAmelCase_ = trim_offsets UpperCAmelCase_ = True if changes_to_apply: UpperCAmelCase_ = getattr(__a , state.pop("type" ) ) UpperCAmelCase_ = component_class(**__a ) setattr(self.backend_tokenizer , __a , __a ) @property def _lowercase (self : List[str] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _lowercase (self : str , __a : str ): UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else value UpperCAmelCase_ = value def _lowercase (self : str , *__a : Dict , **__a : Optional[Any] ): UpperCAmelCase_ = kwargs.get("is_split_into_words" , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__a , **__a ) def _lowercase (self : Optional[int] , *__a : Optional[int] , **__a : int ): UpperCAmelCase_ = kwargs.get("is_split_into_words" , __a ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__a , **__a ) def _lowercase (self : List[str] , __a : str , __a : Optional[str] = None ): UpperCAmelCase_ = self._tokenizer.model.save(__a , name=__a ) return tuple(__a ) def _lowercase (self : Tuple , __a : Any , __a : List[str]=None ): UpperCAmelCase_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowercase (self : Tuple , __a : List[int] , __a : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
78
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { "google/efficientnet-b7": "https://huggingface.co/google/efficientnet-b7/resolve/main/config.json", } class UpperCAmelCase ( __snake_case ): lowercase = """efficientnet""" def __init__( self : List[str] , __magic_name__ : int = 3 , __magic_name__ : int = 6_0_0 , __magic_name__ : float = 2.0 , __magic_name__ : float = 3.1 , __magic_name__ : int = 8 , __magic_name__ : List[int] = [3, 3, 5, 3, 5, 5, 3] , __magic_name__ : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __magic_name__ : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __magic_name__ : List[int] = [] , __magic_name__ : List[int] = [1, 2, 2, 2, 1, 2, 1] , __magic_name__ : List[int] = [1, 2, 2, 3, 3, 4, 1] , __magic_name__ : List[int] = [1, 6, 6, 6, 6, 6, 6] , __magic_name__ : float = 0.25 , __magic_name__ : str = "swish" , __magic_name__ : int = 2_5_6_0 , __magic_name__ : str = "mean" , __magic_name__ : float = 0.02 , __magic_name__ : float = 0.001 , __magic_name__ : float = 0.99 , __magic_name__ : float = 0.5 , __magic_name__ : float = 0.2 , **__magic_name__ : Any , ): """simple docstring""" super().__init__(**__magic_name__ ) UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = width_coefficient UpperCamelCase = depth_coefficient UpperCamelCase = depth_divisor UpperCamelCase = kernel_sizes UpperCamelCase = in_channels UpperCamelCase = out_channels UpperCamelCase = depthwise_padding UpperCamelCase = strides UpperCamelCase = num_block_repeats UpperCamelCase = expand_ratios UpperCamelCase = squeeze_expansion_ratio UpperCamelCase = hidden_act UpperCamelCase = hidden_dim UpperCamelCase = pooling_type UpperCamelCase = initializer_range UpperCamelCase = batch_norm_eps UpperCamelCase = batch_norm_momentum UpperCamelCase = dropout_rate UpperCamelCase = drop_connect_rate UpperCamelCase = sum(__magic_name__ ) * 4 class UpperCAmelCase ( __snake_case ): lowercase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : Any ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return 1e-5
386
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def _a (self ): '''simple docstring''' lowerCamelCase = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowerCamelCase = AutoTokenizer.from_pretrained("google/mt5-small" ) lowerCamelCase = tokenizer("Hello there" , return_tensors="np" ).input_ids lowerCamelCase = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowerCamelCase = shift_tokens_right(_a , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCamelCase = model(_a , decoder_input_ids=_a ).logits lowerCamelCase = optax.softmax_cross_entropy(_a , onehot(_a , logits.shape[-1] ) ).mean() lowerCamelCase = -(labels.shape[-1] * loss.item()) lowerCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
712
def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowerCamelCase = len(UpperCAmelCase__ ) if (len(UpperCAmelCase__ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(UpperCAmelCase__ ) , "Postfix".center(UpperCAmelCase__ ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCAmelCase__ ) == 0: stack.append(UpperCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCAmelCase__ ) # push x to stack print( x.center(8 ) , ("".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=" | " , ) # Output in tabular format while len(UpperCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=" | " , ) # Output in tabular format return "".join(UpperCAmelCase__ ) # return Postfix as str def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCAmelCase__ ) ): if infix[i] == "(": lowerCamelCase = ")" # change "(" to ")" elif infix[i] == ")": lowerCamelCase = "(" # change ")" to "(" return (infix_2_postfix("".join(UpperCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a_ : str = input('\nEnter an Infix Equation = ') # Input an Infix equation a_ : List[Any] = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
484
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_electra": ["ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "ElectraConfig", "ElectraOnnxConfig"], "tokenization_electra": ["ElectraTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["ElectraTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "ElectraForCausalLM", "ElectraForMaskedLM", "ElectraForMultipleChoice", "ElectraForPreTraining", "ElectraForQuestionAnswering", "ElectraForSequenceClassification", "ElectraForTokenClassification", "ElectraModel", "ElectraPreTrainedModel", "load_tf_weights_in_electra", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFElectraForMaskedLM", "TFElectraForMultipleChoice", "TFElectraForPreTraining", "TFElectraForQuestionAnswering", "TFElectraForSequenceClassification", "TFElectraForTokenClassification", "TFElectraModel", "TFElectraPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FlaxElectraForCausalLM", "FlaxElectraForMaskedLM", "FlaxElectraForMultipleChoice", "FlaxElectraForPreTraining", "FlaxElectraForQuestionAnswering", "FlaxElectraForSequenceClassification", "FlaxElectraForTokenClassification", "FlaxElectraModel", "FlaxElectraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
532
"""simple docstring""" class lowercase : def __init__( self ) -> Any: lowerCAmelCase = """""" lowerCAmelCase = """""" lowerCAmelCase = [] def _snake_case ( self , lowercase , lowercase ) -> int: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: lowerCAmelCase = self.__min_dist_top_down_dp(lowercase , n - 1 ) lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , lowercase ) lowerCAmelCase = self.__min_dist_top_down_dp(m - 1 , n - 1 ) lowerCAmelCase = 1 + min(lowercase , lowercase , lowercase ) return self.dp[m][n] def _snake_case ( self , lowercase , lowercase ) -> int: lowerCAmelCase = worda lowerCAmelCase = worda lowerCAmelCase = [[-1 for _ in range(len(lowercase ) )] for _ in range(len(lowercase ) )] return self.__min_dist_top_down_dp(len(lowercase ) - 1 , len(lowercase ) - 1 ) def _snake_case ( self , lowercase , lowercase ) -> int: lowerCAmelCase = worda lowerCAmelCase = worda lowerCAmelCase = len(lowercase ) lowerCAmelCase = len(lowercase ) lowerCAmelCase = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty lowerCAmelCase = j elif j == 0: # second string is empty lowerCAmelCase = i elif worda[i - 1] == worda[j - 1]: # last characters are equal lowerCAmelCase = self.dp[i - 1][j - 1] else: lowerCAmelCase = self.dp[i][j - 1] lowerCAmelCase = self.dp[i - 1][j] lowerCAmelCase = self.dp[i - 1][j - 1] lowerCAmelCase = 1 + min(lowercase , lowercase , lowercase ) return self.dp[m][n] if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() SCREAMING_SNAKE_CASE__ = input("Enter the first string: ").strip() SCREAMING_SNAKE_CASE__ = input("Enter the second string: ").strip() print() print(f'The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}') print(f'The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
532
1
'''simple docstring''' def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) __UpperCAmelCase = str(bin(lowerCamelCase__ ) )[2:] # remove the leading "0b" __UpperCAmelCase = str(bin(lowerCamelCase__ ) )[2:] __UpperCAmelCase = max(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase__ ) , b_binary.zfill(lowerCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase ( UpperCAmelCase_ ): def __init__( self , __A , __A=13 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=False , __A=True , __A="None" , __A=3 , __A=4 , __A=None , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = seq_length __UpperCAmelCase = is_training __UpperCAmelCase = use_input_mask __UpperCAmelCase = use_token_type_ids __UpperCAmelCase = use_labels __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = max_position_embeddings __UpperCAmelCase = type_vocab_size __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = initializer_range __UpperCAmelCase = num_labels __UpperCAmelCase = num_choices __UpperCAmelCase = relative_attention __UpperCAmelCase = position_biased_input __UpperCAmelCase = pos_att_type __UpperCAmelCase = scope def __lowerCamelCase ( self ): __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase = None if self.use_input_mask: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __UpperCAmelCase = None if self.use_token_type_ids: __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __lowerCamelCase ( self , __A ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = DebertaVaModel(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A )[0] __UpperCAmelCase = model(__A , token_type_ids=__A )[0] __UpperCAmelCase = model(__A )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = DebertaVaForMaskedLM(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = DebertaVaForSequenceClassification(__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__A ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = self.num_labels __UpperCAmelCase = DebertaVaForTokenClassification(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = DebertaVaForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , __A , __A , __A , __A , __A , __A , __A ): __UpperCAmelCase = DebertaVaForMultipleChoice(config=__A ) model.to(__A ) model.eval() __UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) = config_and_inputs __UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): _A : Optional[Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) _A : int = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) _A : List[str] = True _A : Union[str, Any] = False _A : int = False _A : Dict = False _A : int = False def __lowerCamelCase ( self ): __UpperCAmelCase = DebertaVaModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=__A , hidden_size=37 ) def __lowerCamelCase ( self ): self.config_tester.run_common_tests() def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__A ) def __lowerCamelCase ( self ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__A ) @slow def __lowerCamelCase ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase = DebertaVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def __lowerCamelCase ( self ): pass @slow def __lowerCamelCase ( self ): __UpperCAmelCase = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __UpperCAmelCase = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __UpperCAmelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCAmelCase = model(__A , attention_mask=__A )[0] # compare the actual values for a slice. __UpperCAmelCase = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
617
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase_ : def __init__( self : str, _snake_case : List[str], _snake_case : Any=3, _snake_case : Dict=32, _snake_case : str=3, _snake_case : int=10, _snake_case : Dict=[10, 20, 30, 40], _snake_case : Any=[1, 1, 2, 1], _snake_case : Any=True, _snake_case : List[Any]=True, _snake_case : Dict="relu", _snake_case : List[Any]=3, _snake_case : Optional[Any]=None, ): '''simple docstring''' snake_case : int =parent snake_case : Union[str, Any] =batch_size snake_case : Any =image_size snake_case : str =num_channels snake_case : str =embeddings_size snake_case : List[Any] =hidden_sizes snake_case : int =depths snake_case : Any =is_training snake_case : Union[str, Any] =use_labels snake_case : List[Any] =hidden_act snake_case : Any =num_labels snake_case : Optional[Any] =scope snake_case : Union[str, Any] =len(_snake_case ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Optional[int] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : Tuple =None if self.use_labels: snake_case : str =ids_tensor([self.batch_size], self.num_labels ) snake_case : Tuple =self.get_config() return config, pixel_values, labels def __snake_case ( self : List[str] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels, embeddings_size=self.embeddings_size, hidden_sizes=self.hidden_sizes, depths=self.depths, hidden_act=self.hidden_act, num_labels=self.num_labels, ) def __snake_case ( self : Optional[Any], _snake_case : str, _snake_case : List[str], _snake_case : List[Any] ): '''simple docstring''' snake_case : List[str] =TFRegNetModel(config=_snake_case ) snake_case : List[str] =model(_snake_case, training=_snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32), ) def __snake_case ( self : Tuple, _snake_case : Union[str, Any], _snake_case : List[str], _snake_case : List[str] ): '''simple docstring''' snake_case : Optional[int] =self.num_labels snake_case : Optional[Any] =TFRegNetForImageClassification(_snake_case ) snake_case : List[Any] =model(_snake_case, labels=_snake_case, training=_snake_case ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __snake_case ( self : List[str] ): '''simple docstring''' snake_case : List[Any] =self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Union[str, Any] =config_and_inputs snake_case : Optional[Any] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase_ ( a_ , a_ , unittest.TestCase ): __UpperCAmelCase = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __UpperCAmelCase = ( {'feature-extraction': TFRegNetModel, 'image-classification': TFRegNetForImageClassification} if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __snake_case ( self : Any ): '''simple docstring''' snake_case : List[Any] =TFRegNetModelTester(self ) snake_case : List[str] =ConfigTester(self, config_class=_snake_case, has_text_modality=_snake_case ) def __snake_case ( self : Any ): '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('''GPU''' ) ) == 0, reason='''TF does not support backprop for grouped convolutions on CPU.''', ) @slow def __snake_case ( self : Any ): '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __snake_case ( self : int ): '''simple docstring''' pass def __snake_case ( self : Any ): '''simple docstring''' snake_case , snake_case : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] =model_class(_snake_case ) snake_case : List[str] =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : Optional[Any] =[*signature.parameters.keys()] snake_case : Optional[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1], _snake_case ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(_snake_case : List[str], _snake_case : str, _snake_case : str ): snake_case : str =model_class(_snake_case ) snake_case : Optional[Any] =model(**self._prepare_for_class(_snake_case, _snake_case ), training=_snake_case ) snake_case : Union[str, Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : List[str] =self.model_tester.num_stages self.assertEqual(len(_snake_case ), expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 2, self.model_tester.image_size // 2], ) snake_case , snake_case : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[Any] =['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case : Union[str, Any] =layer_type snake_case : Dict =True check_hidden_states_output(_snake_case, _snake_case, _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : int =True check_hidden_states_output(_snake_case, _snake_case, _snake_case ) def __snake_case ( self : Dict ): '''simple docstring''' snake_case , snake_case : int =self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(_snake_case : Dict, _snake_case : Union[str, Any], _snake_case : List[str], _snake_case : str={} ): snake_case : Optional[int] =model(_snake_case, return_dict=_snake_case, **_snake_case ) snake_case : Optional[int] =model(_snake_case, return_dict=_snake_case, **_snake_case ).to_tuple() def recursive_check(_snake_case : Any, _snake_case : List[str] ): if isinstance(_snake_case, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_snake_case, _snake_case ): recursive_check(_snake_case, _snake_case ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_snake_case, _snake_case ) ), msg=( '''Tuple and dict output are not equal. Difference:''' f''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ), ) recursive_check(_snake_case, _snake_case ) for model_class in self.all_model_classes: snake_case : Optional[Any] =model_class(_snake_case ) snake_case : int =self._prepare_for_class(_snake_case, _snake_case ) snake_case : List[Any] =self._prepare_for_class(_snake_case, _snake_case ) check_equivalence(_snake_case, _snake_case, _snake_case ) snake_case : Dict =self._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) snake_case : Optional[int] =self._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) check_equivalence(_snake_case, _snake_case, _snake_case ) snake_case : List[str] =self._prepare_for_class(_snake_case, _snake_case ) snake_case : int =self._prepare_for_class(_snake_case, _snake_case ) check_equivalence(_snake_case, _snake_case, _snake_case, {'''output_hidden_states''': True} ) snake_case : Tuple =self._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) snake_case : Any =self._prepare_for_class(_snake_case, _snake_case, return_labels=_snake_case ) check_equivalence(_snake_case, _snake_case, _snake_case, {'''output_hidden_states''': True} ) def __snake_case ( self : int ): '''simple docstring''' snake_case : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def __snake_case ( self : Any ): '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : str =TFRegNetModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _a ( ): snake_case : Any =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class lowerCAmelCase_ ( unittest.TestCase ): @cached_property def __snake_case ( self : List[Any] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : int =TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) snake_case : Any =self.default_image_processor snake_case : Tuple =prepare_img() snake_case : List[Any] =image_processor(images=_snake_case, return_tensors='''tf''' ) # forward pass snake_case : Tuple =model(**_snake_case, training=_snake_case ) # verify the logits snake_case : Tuple =tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape, _snake_case ) snake_case : Tuple =tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3], _snake_case, atol=1E-4 )
349
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging A : Optional[Any] = logging.get_logger(__name__) A : Optional[Any] = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class lowerCAmelCase_ ( a_ ): __UpperCAmelCase = 'perceiver' def __init__( self : List[str], _snake_case : Optional[Any]=256, _snake_case : int=1_280, _snake_case : Optional[int]=768, _snake_case : List[str]=1, _snake_case : str=26, _snake_case : Union[str, Any]=8, _snake_case : Optional[int]=8, _snake_case : Optional[int]=None, _snake_case : str=None, _snake_case : List[str]="kv", _snake_case : str=1, _snake_case : Optional[Any]=1, _snake_case : str="gelu", _snake_case : List[Any]=0.1, _snake_case : Any=0.02, _snake_case : Union[str, Any]=1E-12, _snake_case : str=True, _snake_case : Any=262, _snake_case : Union[str, Any]=2_048, _snake_case : List[str]=56, _snake_case : Tuple=[368, 496], _snake_case : Dict=16, _snake_case : Tuple=1_920, _snake_case : Optional[Any]=16, _snake_case : Optional[Any]=[1, 16, 224, 224], **_snake_case : Optional[Any], ): '''simple docstring''' super().__init__(**_snake_case ) snake_case : Union[str, Any] =num_latents snake_case : str =d_latents snake_case : Any =d_model snake_case : Any =num_blocks snake_case : Tuple =num_self_attends_per_block snake_case : int =num_self_attention_heads snake_case : str =num_cross_attention_heads snake_case : List[Any] =qk_channels snake_case : Tuple =v_channels snake_case : str =cross_attention_shape_for_attention snake_case : Union[str, Any] =self_attention_widening_factor snake_case : Union[str, Any] =cross_attention_widening_factor snake_case : Optional[int] =hidden_act snake_case : Any =attention_probs_dropout_prob snake_case : int =initializer_range snake_case : str =layer_norm_eps snake_case : Dict =use_query_residual # masked language modeling attributes snake_case : List[Any] =vocab_size snake_case : List[Any] =max_position_embeddings # image classification attributes snake_case : List[str] =image_size # flow attributes snake_case : Optional[Any] =train_size # multimodal autoencoding attributes snake_case : Dict =num_frames snake_case : Optional[Any] =audio_samples_per_frame snake_case : Dict =samples_per_patch snake_case : Union[str, Any] =output_shape class lowerCAmelCase_ ( a_ ): @property def __snake_case ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": snake_case : Tuple ={0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case : Union[str, Any] ={0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''inputs''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] ) @property def __snake_case ( self : List[str] ): '''simple docstring''' return 1E-4 def __snake_case ( self : Dict, _snake_case : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"], _snake_case : int = -1, _snake_case : int = -1, _snake_case : int = -1, _snake_case : bool = False, _snake_case : Optional[TensorType] = None, _snake_case : int = 3, _snake_case : int = 40, _snake_case : int = 40, ): '''simple docstring''' if isinstance(_snake_case, _snake_case ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case : Any =compute_effective_axis_dimension( _snake_case, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case : Tuple =preprocessor.num_special_tokens_to_add(_snake_case ) snake_case : Optional[Any] =compute_effective_axis_dimension( _snake_case, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=_snake_case ) # Generate dummy inputs according to compute batch and sequence snake_case : str =[''' '''.join(['''a'''] ) * seq_length] * batch_size snake_case : int =dict(preprocessor(_snake_case, return_tensors=_snake_case ) ) snake_case : List[str] =inputs.pop('''input_ids''' ) return inputs elif isinstance(_snake_case, _snake_case ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX snake_case : Union[str, Any] =compute_effective_axis_dimension(_snake_case, fixed_dimension=OnnxConfig.default_fixed_batch ) snake_case : Dict =self._generate_dummy_images(_snake_case, _snake_case, _snake_case, _snake_case ) snake_case : Optional[Any] =dict(preprocessor(images=_snake_case, return_tensors=_snake_case ) ) snake_case : Optional[Any] =inputs.pop('''pixel_values''' ) return inputs else: raise ValueError( '''Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.''' )
349
1
from decimal import Decimal, getcontext from math import ceil, factorial def _lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) A_ = precision A_ = ceil(precision / 14 ) A_ = 426880 * Decimal(10005 ).sqrt() A_ = 1 A_ = 13591409 A_ = Decimal(SCREAMING_SNAKE_CASE ) for k in range(1 , SCREAMING_SNAKE_CASE ): A_ = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": __lowercase = 50 print(f'The first {n} digits of pi is: {pi(n)}')
563
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowercase = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = ["""DeiTFeatureExtractor"""] __lowercase = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
563
1
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' return "".join([hex(lowerCAmelCase_ )[2:].zfill(2 ).upper() for byte in list(lowerCAmelCase_ )] ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if (len(lowerCAmelCase_ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowerCAmelCase_ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowerCAmelCase_ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
682
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : Optional[Any] = 1_6 a__ : str = 3_2 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = 16 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("bert-base-cased" ) __SCREAMING_SNAKE_CASE = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) __SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __SCREAMING_SNAKE_CASE = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. __SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": __SCREAMING_SNAKE_CASE = 8 else: __SCREAMING_SNAKE_CASE = None return tokenizer.pad( lowerCAmelCase_ , padding="longest" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="pt" , ) # Instantiate dataloaders. __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : List[Any] = mocked_dataloaders # noqa: F811 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase_ ) == "1": __SCREAMING_SNAKE_CASE = 2 # Initialize accelerator __SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __SCREAMING_SNAKE_CASE = config["lr"] __SCREAMING_SNAKE_CASE = int(config["num_epochs"] ) __SCREAMING_SNAKE_CASE = int(config["seed"] ) __SCREAMING_SNAKE_CASE = int(config["batch_size"] ) __SCREAMING_SNAKE_CASE = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase_ ) def inner_training_loop(lowerCAmelCase_ ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer __SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate scheduler __SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.loss accelerator.backward(lowerCAmelCase_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) __SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase_ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
682
1
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase__: Tuple = "\\n@article{hendrycks2021cuad,\n title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},\n author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},\n journal={arXiv preprint arXiv:2103.06268},\n year={2021}\n}\n" UpperCamelCase__: Union[str, Any] = "\nThis metric wrap the official scoring script for version 1 of the Contract\nUnderstanding Atticus Dataset (CUAD).\nContract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510\ncommercial legal contracts that have been manually labeled to identify 41 categories of important\nclauses that lawyers look for when reviewing contracts in connection with corporate transactions.\n" UpperCamelCase__: Optional[Any] = "\nComputes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair as given in the references (see below)\n - \'prediction_text\': list of possible texts for the answer, as a list of strings\n depending on a threshold on the confidence probability of each prediction.\n references: List of question-answers dictionaries with the following key-values:\n - \'id\': id of the question-answer pair (see above),\n - \'answers\': a Dict in the CUAD dataset format\n {\n \'text\': list of possible texts for the answer, as a list of strings\n \'answer_start\': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n \'exact_match\': Exact match (the normalized answer exactly match the gold answer)\n \'f1\': The F-score of predicted tokens versus the gold answer\n \'aupr\': Area Under the Precision-Recall curve\n \'prec_at_80_recall\': Precision at 80% recall\n \'prec_at_90_recall\': Precision at 90% recall\nExamples:\n >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}]\n >>> cuad_metric = datasets.load_metric(\"cuad\")\n >>> results = cuad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE( datasets.Metric ): """simple docstring""" def A ( self : str ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def A ( self : List[Any] , __snake_case : int , __snake_case : int ) -> Tuple: UpperCAmelCase : Tuple = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} UpperCAmelCase : Tuple = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] UpperCAmelCase : Optional[int] = evaluate(dataset=a_ , predictions=a_ ) return score
706
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCamelCase__: List[str] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : str , __snake_case : Tuple , __snake_case : int , __snake_case : List[Any]=None , __snake_case : List[Any]=None ) -> Optional[int]: UpperCAmelCase : Union[str, Any] = self.layer[current_layer](__snake_case , __snake_case , head_mask[current_layer] ) UpperCAmelCase : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , A__ , ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : int , __snake_case : Any ) -> Any: super().__init__(__snake_case ) UpperCAmelCase : Any = BertEncoderWithPabee(__snake_case ) self.init_weights() UpperCAmelCase : Optional[Any] = 0 UpperCAmelCase : List[str] = 0 UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = 0 def A ( self : List[str] , __snake_case : List[str] ) -> List[Any]: UpperCAmelCase : Union[str, Any] = threshold def A ( self : str , __snake_case : List[str] ) -> Optional[Any]: UpperCAmelCase : List[str] = patience def A ( self : Dict ) -> str: UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Dict = 0 def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Dict = self.inference_layers_num / self.inference_instances_num UpperCAmelCase : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(__snake_case ) @add_start_docstrings_to_model_forward(__snake_case ) def A ( self : Union[str, Any] , __snake_case : Optional[Any]=None , __snake_case : str=None , __snake_case : int=None , __snake_case : Optional[Any]=None , __snake_case : Tuple=None , __snake_case : Tuple=None , __snake_case : Tuple=None , __snake_case : Optional[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : Optional[int]=None , __snake_case : Optional[int]=False , ) -> List[str]: if input_ids is not None and inputs_embeds is not None: raise ValueError('''You cannot specify both input_ids and inputs_embeds at the same time''' ) elif input_ids is not None: UpperCAmelCase : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: UpperCAmelCase : List[Any] = inputs_embeds.size()[:-1] else: raise ValueError('''You have to specify either input_ids or inputs_embeds''' ) UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: UpperCAmelCase : Optional[Any] = torch.ones(__snake_case , device=__snake_case ) if token_type_ids is None: UpperCAmelCase : Tuple = torch.zeros(__snake_case , dtype=torch.long , device=__snake_case ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(__snake_case , __snake_case , __snake_case ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Any = encoder_hidden_states.size() UpperCAmelCase : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: UpperCAmelCase : str = torch.ones(__snake_case , device=__snake_case ) UpperCAmelCase : Tuple = self.invert_attention_mask(__snake_case ) else: UpperCAmelCase : List[str] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] UpperCAmelCase : List[Any] = self.get_head_mask(__snake_case , self.config.num_hidden_layers ) UpperCAmelCase : Any = self.embeddings( input_ids=__snake_case , position_ids=__snake_case , token_type_ids=__snake_case , inputs_embeds=__snake_case ) UpperCAmelCase : Optional[int] = embedding_output if self.training: UpperCAmelCase : str = [] for i in range(self.config.num_hidden_layers ): UpperCAmelCase : Optional[int] = self.encoder.adaptive_forward( __snake_case , current_layer=__snake_case , attention_mask=__snake_case , head_mask=__snake_case ) UpperCAmelCase : List[str] = self.pooler(__snake_case ) UpperCAmelCase : Dict = output_layers[i](output_dropout(__snake_case ) ) res.append(__snake_case ) elif self.patience == 0: # Use all layers for inference UpperCAmelCase : Any = self.encoder( __snake_case , attention_mask=__snake_case , head_mask=__snake_case , encoder_hidden_states=__snake_case , encoder_attention_mask=__snake_case , ) UpperCAmelCase : Dict = self.pooler(encoder_outputs[0] ) UpperCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](__snake_case )] else: UpperCAmelCase : Tuple = 0 UpperCAmelCase : List[str] = None UpperCAmelCase : Optional[Any] = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 UpperCAmelCase : Optional[Any] = self.encoder.adaptive_forward( __snake_case , current_layer=__snake_case , attention_mask=__snake_case , head_mask=__snake_case ) UpperCAmelCase : List[str] = self.pooler(__snake_case ) UpperCAmelCase : Optional[int] = output_layers[i](__snake_case ) if regression: UpperCAmelCase : Union[str, Any] = logits.detach() if patient_result is not None: UpperCAmelCase : List[str] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: UpperCAmelCase : Dict = 0 else: UpperCAmelCase : Union[str, Any] = logits.detach().argmax(dim=1 ) if patient_result is not None: UpperCAmelCase : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(__snake_case ) ): patient_counter += 1 else: UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : List[str] = logits if patient_counter == self.patience: break UpperCAmelCase : List[Any] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , A__ , ) class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def __init__( self : str , __snake_case : str ) -> Optional[Any]: super().__init__(__snake_case ) UpperCAmelCase : Optional[int] = config.num_labels UpperCAmelCase : Optional[Any] = BertModelWithPabee(__snake_case ) UpperCAmelCase : Tuple = nn.Dropout(config.hidden_dropout_prob ) UpperCAmelCase : Dict = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(__snake_case ) def A ( self : Any , __snake_case : Dict=None , __snake_case : str=None , __snake_case : List[Any]=None , __snake_case : List[Any]=None , __snake_case : Union[str, Any]=None , __snake_case : int=None , __snake_case : str=None , ) -> Union[str, Any]: UpperCAmelCase : Optional[int] = self.bert( input_ids=__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case , position_ids=__snake_case , head_mask=__snake_case , inputs_embeds=__snake_case , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) UpperCAmelCase : List[str] = (logits[-1],) if labels is not None: UpperCAmelCase : Tuple = None UpperCAmelCase : Any = 0 for ix, logits_item in enumerate(__snake_case ): if self.num_labels == 1: # We are doing regression UpperCAmelCase : Optional[Any] = MSELoss() UpperCAmelCase : Optional[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: UpperCAmelCase : Dict = CrossEntropyLoss() UpperCAmelCase : Dict = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: UpperCAmelCase : Dict = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 UpperCAmelCase : Any = (total_loss / total_weights,) + outputs return outputs
528
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =StableDiffusionLatentUpscalePipeline _lowerCamelCase =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } _lowerCamelCase =PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} _lowerCamelCase =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _lowerCamelCase =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _lowerCamelCase =frozenset([] ) _lowerCamelCase =True @property def __snake_case ( self : Optional[Any] ): UpperCAmelCase = 1 UpperCAmelCase = 4 UpperCAmelCase = (16, 16) UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a__ ) return image def __snake_case ( self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=a__ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=a__ , only_cross_attention=a__ , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) UpperCAmelCase = EulerDiscreteScheduler(prediction_type='''sample''' ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) UpperCAmelCase = CLIPTextModel(a__ ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def __snake_case ( self : Any , a__ : Optional[int] , a__ : List[Any]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __snake_case ( self : Optional[int] ): UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_dummy_inputs(a__ ) UpperCAmelCase = pipe(**a__ ).images UpperCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) UpperCAmelCase = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) UpperCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(a__ , 1e-3 ) def __snake_case ( self : Dict ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def __snake_case ( self : Optional[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def __snake_case ( self : str ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __snake_case ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def __snake_case ( self : List[Any] ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def __snake_case ( self : Optional[int] ): super().test_save_load_local(expected_max_difference=3e-3 ) def __snake_case ( self : List[str] ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __snake_case ( self : Optional[Any] ): UpperCAmelCase = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**a__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_dummy_inputs(a__ ) UpperCAmelCase = 2 UpperCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue UpperCAmelCase = getattr(a__ , scheduler_enum.name ) UpperCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) UpperCAmelCase = pipe(**a__ )[0] outputs.append(a__ ) assert check_same_shape(a__ ) @require_torch_gpu @slow class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Union[str, Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[Any] ): UpperCAmelCase = torch.manual_seed(33 ) UpperCAmelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) UpperCAmelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' UpperCAmelCase = pipe(a__ , generator=a__ , output_type='''latent''' ).images UpperCAmelCase = upscaler( prompt=a__ , image=a__ , num_inference_steps=20 , guidance_scale=0 , generator=a__ , output_type='''np''' , ).images[0] UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def __snake_case ( self : Optional[int] ): UpperCAmelCase = torch.manual_seed(33 ) UpperCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) UpperCAmelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) UpperCAmelCase = upscaler( prompt=a__ , image=a__ , num_inference_steps=20 , guidance_scale=0 , generator=a__ , output_type='''np''' , ).images[0] UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
51
'''simple docstring''' def lowerCamelCase__ ( a__ , a__) -> float: """simple docstring""" _validate_point(a__) _validate_point(a__) if len(a__) != len(a__): raise ValueError('Both points must be in the same n-dimensional space') return float(sum(abs(a - b) for a, b in zip(a__ , a__))) def lowerCamelCase__ ( a__) -> None: """simple docstring""" if point: if isinstance(a__ , a__): for item in point: if not isinstance(a__ , (int, float)): _snake_case : Any = ( 'Expected a list of numbers as input, found ' F"""{type(a__).__name__}""" ) raise TypeError(a__) else: _snake_case : Tuple = F"""Expected a list of numbers as input, found {type(a__).__name__}""" raise TypeError(a__) else: raise ValueError('Missing an input') def lowerCamelCase__ ( a__ , a__) -> float: """simple docstring""" _validate_point(a__) _validate_point(a__) if len(a__) != len(a__): raise ValueError('Both points must be in the same n-dimensional space') return float(sum(abs(x - y) for x, y in zip(a__ , a__))) if __name__ == "__main__": import doctest doctest.testmod()
517
0
def UpperCamelCase ( ) -> Dict: '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_lowerCamelCase , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(F"{solution() = }")
716
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class lowerCAmelCase : _SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] _SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] _SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] _SCREAMING_SNAKE_CASE : torch.Tensor # [batch_size x 3] _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : float _SCREAMING_SNAKE_CASE : Tuple[int] def a__ ( self ): assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def a__ ( self ): return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def a__ ( self ): return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def a__ ( self ): _A= torch.arange(self.height * self.width ) _A= torch.stack( [ pixel_indices % self.width, torch.div(lowerCAmelCase__ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def a__ ( self ): _A, *_A= self.shape _A= int(np.prod(lowerCAmelCase__ ) ) _A= self.get_image_coords() _A= torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _A= self.get_camera_rays(lowerCAmelCase__ ) _A= rays.view(lowerCAmelCase__ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def a__ ( self , lowerCAmelCase__ ): _A, *_A, _A= coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _A= coords.view(lowerCAmelCase__ , -1 , 2 ) _A= self.resolution() _A= self.fov() _A= (flat.float() / (res - 1)) * 2 - 1 _A= fracs * torch.tan(fov / 2 ) _A= fracs.view(lowerCAmelCase__ , -1 , 2 ) _A= ( self.z.view(lowerCAmelCase__ , 1 , 3 ) + self.x.view(lowerCAmelCase__ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(lowerCAmelCase__ , 1 , 3 ) * fracs[:, :, 1:] ) _A= directions / directions.norm(dim=-1 , keepdim=lowerCAmelCase__ ) _A= torch.stack( [ torch.broadcast_to(self.origin.view(lowerCAmelCase__ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(lowerCAmelCase__ , *lowerCAmelCase__ , 2 , 3 ) def a__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ): assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=lowerCAmelCase__ , height=lowerCAmelCase__ , x_fov=self.x_fov , y_fov=self.y_fov , ) def UpperCamelCase ( lowerCAmelCase_ ) -> DifferentiableProjectiveCamera: '''simple docstring''' _A= [] _A= [] _A= [] _A= [] for theta in np.linspace(0 , 2 * np.pi , num=20 ): _A= np.array([np.sin(lowerCAmelCase_ ), np.cos(lowerCAmelCase_ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _A= -z * 4 _A= np.array([np.cos(lowerCAmelCase_ ), -np.sin(lowerCAmelCase_ ), 0.0] ) _A= np.cross(lowerCAmelCase_ , lowerCAmelCase_ ) origins.append(lowerCAmelCase_ ) xs.append(lowerCAmelCase_ ) ys.append(lowerCAmelCase_ ) zs.append(lowerCAmelCase_ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCAmelCase_ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCAmelCase_ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCAmelCase_ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCAmelCase_ , axis=0 ) ).float() , width=lowerCAmelCase_ , height=lowerCAmelCase_ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCAmelCase_ )) , )
476
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _A ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Tuple =MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' UpperCamelCase__ = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) UpperCamelCase__ = VideoClassificationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ , top_k=2 ) UpperCamelCase__ = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' for example in examples: UpperCamelCase__ = video_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'''score''': ANY(SCREAMING_SNAKE_CASE_ ), '''label''': ANY(SCREAMING_SNAKE_CASE_ )}, {'''score''': ANY(SCREAMING_SNAKE_CASE_ ), '''label''': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) @require_torch def _a (self ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' UpperCamelCase__ = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) UpperCamelCase__ = pipeline( '''video-classification''' , model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , frame_sampling_rate=4 ) UpperCamelCase__ = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) UpperCamelCase__ = video_classifier(SCREAMING_SNAKE_CASE_ , top_k=2 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) UpperCamelCase__ = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def _a (self ) -> Dict: '''simple docstring''' pass
415
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __UpperCamelCase ( A , A , A=1e-12 ): UpperCamelCase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T UpperCamelCase__ = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A , axis=1 ) , a_min=A ) ).T return jnp.matmul(A , norm_emb_a.T ) class _A ( nn.Module ): SCREAMING_SNAKE_CASE_ : CLIPConfig SCREAMING_SNAKE_CASE_ : jnp.dtype =jnp.floataa def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase__ = nn.Dense(self.config.projection_dim , use_bias=SCREAMING_SNAKE_CASE_ , dtype=self.dtype ) UpperCamelCase__ = self.param('''concept_embeds''' , jax.nn.initializers.ones , (17, self.config.projection_dim) ) UpperCamelCase__ = self.param( '''special_care_embeds''' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase__ = self.param('''concept_embeds_weights''' , jax.nn.initializers.ones , (17,) ) UpperCamelCase__ = self.param('''special_care_embeds_weights''' , jax.nn.initializers.ones , (3,) ) def __call__(self , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.vision_model(SCREAMING_SNAKE_CASE_ )[1] UpperCamelCase__ = self.visual_projection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = jax_cosine_distance(SCREAMING_SNAKE_CASE_ , self.special_care_embeds ) UpperCamelCase__ = jax_cosine_distance(SCREAMING_SNAKE_CASE_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase__ = 0.0 UpperCamelCase__ = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase__ = jnp.round(SCREAMING_SNAKE_CASE_ , 3 ) UpperCamelCase__ = jnp.any(special_scores > 0 , axis=1 , keepdims=SCREAMING_SNAKE_CASE_ ) # Use a lower threshold if an image has any special care concept UpperCamelCase__ = is_special_care * 0.01 UpperCamelCase__ = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase__ = jnp.round(SCREAMING_SNAKE_CASE_ , 3 ) UpperCamelCase__ = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _A ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] =CLIPConfig SCREAMING_SNAKE_CASE_ : Dict ="clip_input" SCREAMING_SNAKE_CASE_ : Union[str, Any] =FlaxStableDiffusionSafetyCheckerModule def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = jnp.floataa , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> List[str]: '''simple docstring''' if input_shape is None: UpperCamelCase__ = (1, 224, 224, 3) UpperCamelCase__ = self.module_class(config=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , input_shape=SCREAMING_SNAKE_CASE_ , seed=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ , _do_init=_do_init ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> FrozenDict: '''simple docstring''' UpperCamelCase__ = jax.random.normal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ , UpperCamelCase__ = jax.random.split(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {'''params''': params_rng, '''dropout''': dropout_rng} UpperCamelCase__ = self.module.init(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )['''params'''] return random_params def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , ) -> str: '''simple docstring''' UpperCamelCase__ = jnp.transpose(SCREAMING_SNAKE_CASE_ , (0, 2, 3, 1) ) return self.module.apply( {'''params''': params or self.params} , jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.floataa ) , rngs={} , )
415
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = StableDiffusionInpaintPipeline UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase = frozenset([] ) def lowercase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_UpperCAmelCase , ) UpperCAmelCase_ = PNDMScheduler(skip_prk_steps=_UpperCAmelCase ) torch.manual_seed(0 ) UpperCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) UpperCAmelCase_ = CLIPTextModel(_UpperCAmelCase ) UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase__ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any]=0 ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_ = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert("RGB" ).resize((64, 64) ) UpperCAmelCase_ = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(_UpperCAmelCase ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase_ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase_ = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase__ ( self : Any ) -> int: '''simple docstring''' UpperCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = StableDiffusionInpaintPipeline(**_UpperCAmelCase ) UpperCAmelCase_ = sd_pipe.to(_UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase_ = self.get_dummy_inputs(_UpperCAmelCase ) UpperCAmelCase_ = sd_pipe(**_UpperCAmelCase ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase_ = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained(_UpperCAmelCase , safety_checker=_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , torch_dtype=torch.floataa , safety_checker=_UpperCAmelCase , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing() UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type="np" , ) UpperCAmelCase_ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase_ = "stabilityai/stable-diffusion-2-inpainting" UpperCAmelCase_ = PNDMScheduler.from_pretrained(_UpperCAmelCase , subfolder="scheduler" ) UpperCAmelCase_ = StableDiffusionInpaintPipeline.from_pretrained( _UpperCAmelCase , safety_checker=_UpperCAmelCase , scheduler=_UpperCAmelCase , torch_dtype=torch.floataa , ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_ = "Face of a yellow cat, high resolution, sitting on a park bench" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_ = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
14
"""simple docstring""" import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def lowercase__ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , "width_multiplier" ) ) class lowercase__ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Any=64 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=3 , _UpperCAmelCase : Dict="swish" , _UpperCAmelCase : List[Any]=3 , _UpperCAmelCase : int=32 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : int=10 , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : Any=0.25 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[int]=0.0 , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = image_size UpperCAmelCase_ = patch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = make_divisible(512 * width_multiplier , divisor=8 ) UpperCAmelCase_ = hidden_act UpperCAmelCase_ = conv_kernel_size UpperCAmelCase_ = output_stride UpperCAmelCase_ = classifier_dropout_prob UpperCAmelCase_ = use_labels UpperCAmelCase_ = is_training UpperCAmelCase_ = num_labels UpperCAmelCase_ = initializer_range UpperCAmelCase_ = scope UpperCAmelCase_ = width_multiplier UpperCAmelCase_ = ffn_dropout UpperCAmelCase_ = attn_dropout def lowercase__ ( self : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ = None UpperCAmelCase_ = None if self.use_labels: UpperCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCAmelCase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase__ ( self : Tuple ) -> Tuple: '''simple docstring''' return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def lowercase__ ( self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int ) -> int: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple ) -> Dict: '''simple docstring''' UpperCAmelCase_ = self.num_labels UpperCAmelCase_ = MobileViTVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase_ = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCAmelCase_ = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase__ ( self : List[str] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = config_and_inputs UpperCAmelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def lowercase__ ( self : str ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaModelTester(self ) UpperCAmelCase_ = MobileViTVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="MobileViTV2 does not use inputs_embeds" ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not support input and output embeddings" ) def lowercase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="MobileViTV2 does not output attentions" ) def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason="Got `CUDA error: misaligned address` for tests after this one being run." ) def lowercase__ ( self : int ) -> int: '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = model_class(_UpperCAmelCase ) UpperCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ = [*signature.parameters.keys()] UpperCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int ): UpperCAmelCase_ = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): UpperCAmelCase_ = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) UpperCAmelCase_ = outputs.hidden_states UpperCAmelCase_ = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCAmelCase_ = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self : int ) -> int: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase__ ( self : int ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ = MobileViTVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( ): UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase__ ( self : int ) -> List[Any]: '''simple docstring''' return ( MobileViTImageProcessor.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForImageClassification.from_pretrained("apple/mobilevitv2-1.0-imagenet1k-256" ).to( _UpperCAmelCase ) UpperCAmelCase_ = self.default_image_processor UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) # verify the logits UpperCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : List[str] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits # verify the logits UpperCAmelCase_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) UpperCAmelCase_ = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = MobileViTVaForSemanticSegmentation.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = model.to(_UpperCAmelCase ) UpperCAmelCase_ = MobileViTImageProcessor.from_pretrained("shehan97/mobilevitv2-1.0-voc-deeplabv3" ) UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = image_processor(images=_UpperCAmelCase , return_tensors="pt" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): UpperCAmelCase_ = model(**_UpperCAmelCase ) UpperCAmelCase_ = outputs.logits.detach().cpu() UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) UpperCAmelCase_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) UpperCAmelCase_ = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) UpperCAmelCase_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
14
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
437
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
437
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = '''megatron-bert''' def __init__( self : Dict , _UpperCAmelCase : int=29_056 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : Dict=4_096 , _UpperCAmelCase : int="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Optional[Any]="absolute" , _UpperCAmelCase : Dict=True , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache
505
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''tanreinama/GPTSAN-2.8B-spout_is_uniform''': ( '''https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json''' ), } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''gptsan-japanese''' UpperCAmelCase : List[Any] = [ '''past_key_values''', ] UpperCAmelCase : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Any , _UpperCAmelCase : List[Any]=36_000 , _UpperCAmelCase : str=1_280 , _UpperCAmelCase : Tuple=1_024 , _UpperCAmelCase : Union[str, Any]=8_192 , _UpperCAmelCase : Any=4_096 , _UpperCAmelCase : Optional[int]=128 , _UpperCAmelCase : int=10 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Optional[Any]=128 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Optional[Any]=1E-5 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : List[str]="float32" , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : str=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Optional[Any]=0.002 , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]=35_998 , _UpperCAmelCase : Any=35_995 , _UpperCAmelCase : Any=35_999 , **_UpperCAmelCase : Any , ): _A = vocab_size _A = max_position_embeddings _A = d_model _A = d_ff _A = d_ext _A = d_spout _A = num_switch_layers _A = num_ext_layers _A = num_switch_layers + num_ext_layers _A = num_heads _A = num_experts _A = expert_capacity _A = dropout_rate _A = layer_norm_epsilon _A = router_bias _A = router_jitter_noise _A = router_dtype _A = router_ignore_padding_tokens _A = output_hidden_states _A = output_attentions _A = initializer_factor _A = output_router_logits _A = use_cache super().__init__( separator_token_id=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
505
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ShapEPipeline UpperCamelCase = ['''prompt'''] UpperCamelCase = ['''prompt'''] UpperCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase = False @property def a__ ( self : Any ) -> str: """simple docstring""" return 32 @property def a__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return 32 @property def a__ ( self : List[Any] ) -> int: """simple docstring""" return self.time_input_dim * 4 @property def a__ ( self : Any ) -> Tuple: """simple docstring""" return 8 @property def a__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a__ ( self : List[Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(A_ ) @property def a__ ( self : List[Any] ) -> Dict: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } lowerCamelCase_ = PriorTransformer(**A_ ) return model @property def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" torch.manual_seed(0 ) lowerCamelCase_ = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } lowerCamelCase_ = ShapERenderer(**A_ ) return model def a__ ( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ = self.dummy_prior lowerCamelCase_ = self.dummy_text_encoder lowerCamelCase_ = self.dummy_tokenizer lowerCamelCase_ = self.dummy_renderer lowerCamelCase_ = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=A_ , clip_sample=A_ , clip_sample_range=1.0 , ) lowerCamelCase_ = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def a__ ( self : Tuple , A_ : Any , A_ : Tuple=0 ) -> Optional[int]: """simple docstring""" if str(A_ ).startswith('mps' ): lowerCamelCase_ = torch.manual_seed(A_ ) else: lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCamelCase_ = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = 'cpu' lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = pipe(**self.get_dummy_inputs(A_ ) ) lowerCamelCase_ = output.images[0] lowerCamelCase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCamelCase_ = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def a__ ( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = torch_device == 'cpu' lowerCamelCase_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=A_ , relax_max_difference=A_ , ) def a__ ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = self.get_dummy_components() lowerCamelCase_ = self.pipeline_class(**A_ ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = 1 lowerCamelCase_ = 2 lowerCamelCase_ = self.get_dummy_inputs(A_ ) for key in inputs.keys(): if key in self.batch_params: lowerCamelCase_ = batch_size * [inputs[key]] lowerCamelCase_ = pipe(**A_ , num_images_per_prompt=A_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : List[str] ) -> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : str ) -> Tuple: """simple docstring""" lowerCamelCase_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) lowerCamelCase_ = ShapEPipeline.from_pretrained('openai/shap-e' ) lowerCamelCase_ = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCamelCase_ = torch.Generator(device=A_ ).manual_seed(0 ) lowerCamelCase_ = pipe( 'a shark' , generator=A_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(A_ , A_ )
70
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __lowerCAmelCase ( A_ : Union[str, Any] , A_ : Optional[Any]=10 ) -> Optional[int]: __UpperCAmelCase = [] for _ in range(A_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __lowerCAmelCase ( A_ : str , A_ : List[Any]=10 ) -> List[Any]: __UpperCAmelCase = [] for step in range(A_ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = os.path.join(A_ , "schedule.bin" ) torch.save(scheduler.state_dict() , A_ ) __UpperCAmelCase = torch.load(A_ ) scheduler.load_state_dict(A_ ) return lrs @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self: List[str] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Optional[Any] , __lowerCAmelCase: Dict ) -> str: '''simple docstring''' self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[int] ) -> str: '''simple docstring''' __UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) __UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCAmelCase = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __UpperCAmelCase = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def _UpperCAmelCase ( self: Optional[int] ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) __UpperCAmelCase = torch.tensor([0.4, 0.2, -0.5] ) __UpperCAmelCase = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __UpperCAmelCase = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCAmelCase , weight_decay=0.0 , relative_step=__lowerCAmelCase , scale_parameter=__lowerCAmelCase , warmup_init=__lowerCAmelCase , ) for _ in range(1_000 ): __UpperCAmelCase = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Tuple = nn.Linear(50 , 50 ) if is_torch_available() else None lowerCAmelCase__ : Optional[int] = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None lowerCAmelCase__ : Optional[int] = 10 def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: List[str] , __lowerCAmelCase: Any , __lowerCAmelCase: List[Any] , __lowerCAmelCase: int=None ) -> List[Any]: '''simple docstring''' self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase , msg=__lowerCAmelCase ) def _UpperCAmelCase ( self: Union[str, Any] ) -> Any: '''simple docstring''' __UpperCAmelCase = {"num_warmup_steps": 2, "num_training_steps": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __UpperCAmelCase = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"num_warmup_steps": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, "num_cycles": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, "power": 2.0, "lr_end": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"num_warmup_steps": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __UpperCAmelCase , __UpperCAmelCase = data __UpperCAmelCase = scheduler_func(self.optimizer , **__lowerCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __UpperCAmelCase = unwrap_schedule(__lowerCAmelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCAmelCase , __lowerCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) __UpperCAmelCase = scheduler_func(self.optimizer , **__lowerCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCAmelCase ) # wrap to test picklability of the schedule __UpperCAmelCase = unwrap_and_save_reload_schedule(__lowerCAmelCase , self.num_steps ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class UpperCAmelCase__ : """simple docstring""" def __init__( self: Union[str, Any] , __lowerCAmelCase: Tuple ) -> List[Any]: '''simple docstring''' __UpperCAmelCase = fn def __call__( self: int , *__lowerCAmelCase: List[str] , **__lowerCAmelCase: Any ) -> List[Any]: '''simple docstring''' return self.fn(*__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: List[Any] ) -> List[str]: '''simple docstring''' __UpperCAmelCase = list(map(self , scheduler.lr_lambdas ) )
221
0
"""simple docstring""" import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class snake_case : """simple docstring""" def __init__( self : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str]=13 ,lowerCamelCase__ : Optional[Any]=7 ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : Dict=True ,lowerCamelCase__ : str=True ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : List[Any]=99 ,lowerCamelCase__ : Union[str, Any]=64 ,lowerCamelCase__ : Any=32 ,lowerCamelCase__ : List[Any]=5 ,lowerCamelCase__ : List[Any]=4 ,lowerCamelCase__ : Optional[int]=37 ,lowerCamelCase__ : Dict="gelu" ,lowerCamelCase__ : Union[str, Any]=0.1 ,lowerCamelCase__ : int=0.1 ,lowerCamelCase__ : Tuple=512 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : List[str]=2 ,lowerCamelCase__ : Any=0.0_2 ,lowerCamelCase__ : str=3 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : int=None ,): UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = embedding_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self : Tuple ): return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict ): UpperCAmelCase__ = MobileBertModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) UpperCAmelCase__ = model(lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) UpperCAmelCase__ = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Tuple ): UpperCAmelCase__ = MobileBertForMaskedLM(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : int ,lowerCamelCase__ : Any ): UpperCAmelCase__ = MobileBertForNextSentencePrediction(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Dict ): UpperCAmelCase__ = MobileBertForPreTraining(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ,next_sentence_label=lowerCamelCase__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Any ): UpperCAmelCase__ = MobileBertForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,start_positions=lowerCamelCase__ ,end_positions=lowerCamelCase__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ): UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = MobileBertForSequenceClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : str ,lowerCamelCase__ : int ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : int ): UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = MobileBertForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = model(lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : int ,lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : str ): UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = MobileBertForMultipleChoice(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase__ = model( lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) snake_case__ = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Dict ,lowerCamelCase__ : Any ,lowerCamelCase__ : Optional[int]=False ): UpperCAmelCase__ = super()._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ,return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase__ ) UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase__ ) return inputs_dict def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = MobileBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def __lowerCAmelCase ( self : int ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase__ ) def a_ ( lowerCamelCase ): return torch.tensor( lowerCamelCase , dtype=torch.long , device=lowerCamelCase , ) lowerCAmelCase__ : Dict = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): """simple docstring""" @slow def __lowerCAmelCase ( self : int ): UpperCAmelCase__ = MobileBertModel.from_pretrained('google/mobilebert-uncased' ).to(lowerCamelCase__ ) UpperCAmelCase__ = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): UpperCAmelCase__ = model(lowerCamelCase__ )[0] UpperCAmelCase__ = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase__ ) UpperCAmelCase__ = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase__ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase__ = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase__ = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
632
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ : int = { 'configuration_tapas': ['TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TapasConfig'], 'tokenization_tapas': ['TapasTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Union[str, Any] = [ 'TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TapasForMaskedLM', 'TapasForQuestionAnswering', 'TapasForSequenceClassification', 'TapasModel', 'TapasPreTrainedModel', 'load_tf_weights_in_tapas', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Optional[Any] = [ 'TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFTapasForMaskedLM', 'TFTapasForQuestionAnswering', 'TFTapasForSequenceClassification', 'TFTapasModel', 'TFTapasPreTrainedModel', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
632
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : int = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } UpperCAmelCase_ : Tuple = { 'squeezebert/squeezebert-uncased': 512, 'squeezebert/squeezebert-mnli': 512, 'squeezebert/squeezebert-mnli-headless': 512, } UpperCAmelCase_ : Dict = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : Dict = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Dict = PRETRAINED_INIT_CONFIGURATION snake_case__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[Any] = SqueezeBertTokenizer def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE__ : Optional[Any]="[SEP]" , SCREAMING_SNAKE_CASE__ : Any="[PAD]" , SCREAMING_SNAKE_CASE__ : Any="[CLS]" , SCREAMING_SNAKE_CASE__ : Any="[MASK]" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Any , ) -> str: super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) a_ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get('strip_accents' , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): a_ : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop('type' ) ) a_ : int = do_lower_case a_ : Tuple = strip_accents a_ : int = tokenize_chinese_chars a_ : int = normalizer_class(**SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = do_lower_case def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> Optional[int]: a_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : Optional[List[int]] = None ) -> List[int]: a_ : Any = [self.sep_token_id] a_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: a_ : Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
570
def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> List[str]: """simple docstring""" a_ : int = 0 a_ : List[str] = len(__A ) for i in range(n - 1 ): for j in range(i + 1 , __A ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def SCREAMING_SNAKE_CASE_ ( __A : Dict ) -> int: """simple docstring""" if len(__A ) <= 1: return arr, 0 a_ : str = len(__A ) // 2 a_ : List[str] = arr[0:mid] a_ : List[str] = arr[mid:] a_ , a_ : Tuple = count_inversions_recursive(__A ) a_ , a_ : int = count_inversions_recursive(__A ) a_ , a_ : Union[str, Any] = _count_cross_inversions(__A , __A ) a_ : Tuple = inversion_p + inversions_q + cross_inversions return c, num_inversions def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Dict ) -> Optional[int]: """simple docstring""" a_ : Any = [] a_ : str = 0 while i < len(__A ) and j < len(__A ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__A ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__A ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]: """simple docstring""" a_ : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) a_ : Union[str, Any] = count_inversions_bf(__A ) a_ , a_ : Tuple = count_inversions_recursive(__A ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , __A ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() a_ : Optional[Any] = count_inversions_bf(__A ) a_ , a_ : int = count_inversions_recursive(__A ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __A ) # an empty list should also have zero inversions a_ : Tuple = [] a_ : Optional[int] = count_inversions_bf(__A ) a_ , a_ : Union[str, Any] = count_inversions_recursive(__A ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __A ) if __name__ == "__main__": main()
570
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> List[str]: with open(lowerCamelCase_ ,encoding="""utf-8""" ) as input_file: A = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) A = input_file.read() A = regexp.search(lowerCamelCase_ ) return match def UpperCamelCase__ ( self ,lowerCamelCase_ ) -> Any: with open(lowerCamelCase_ ,encoding="""utf-8""" ) as input_file: A = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" ,re.DOTALL ) A = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` A = regexp.finditer(lowerCamelCase_ ) A = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def UpperCamelCase__ ( self ) -> Optional[int]: A = Path("""./datasets""" ) A = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase_ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def UpperCamelCase__ ( self ) -> Optional[int]: A = Path("""./datasets""" ) A = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase_ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
255
"""simple docstring""" UpperCAmelCase =256 # Modulus to hash a string UpperCAmelCase =1_000_003 def _A ( _a : str , _a : str ): """simple docstring""" A = len(_a ) A = len(_a ) if p_len > t_len: return False A = 0 A = 0 A = 1 # Calculating the hash of pattern and substring of text for i in range(_a ): A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _A ( ): """simple docstring""" A = """abc1abc12""" A = """alskfjaldsabc1abc1abc12k23adsfabcabc""" A = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_a , _a ) and not rabin_karp(_a , _a ) # Test 2) A = """ABABX""" A = """ABABZABABYABABX""" assert rabin_karp(_a , _a ) # Test 3) A = """AAAB""" A = """ABAAAAAB""" assert rabin_karp(_a , _a ) # Test 4) A = """abcdabcy""" A = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_a , _a ) # Test 5) A = """Lü""" A = """Lüsai""" assert rabin_karp(_a , _a ) A = """Lue""" assert not rabin_karp(_a , _a ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
255
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a__ ( __UpperCamelCase ): # A local function to see if a dot lands in the circle. def is_in_circle(__UpperCamelCase , __UpperCamelCase ) -> bool: SCREAMING_SNAKE_CASE_ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle SCREAMING_SNAKE_CASE_ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(A__ ) ) # The ratio of the area for circle to square is pi/4. SCREAMING_SNAKE_CASE_ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0.0 , __UpperCamelCase = 1.0 , ): return mean( function_to_integrate(uniform(A__ , A__ ) ) for _ in range(A__ ) ) * (max_value - min_value) def a__ ( __UpperCamelCase , __UpperCamelCase = 0.0 , __UpperCamelCase = 1.0 ): def identity_function(__UpperCamelCase ) -> float: return x SCREAMING_SNAKE_CASE_ = area_under_curve_estimator( A__ , A__ , A__ , A__ ) SCREAMING_SNAKE_CASE_ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print("******************" ) def a__ ( __UpperCamelCase ): def function_to_integrate(__UpperCamelCase ) -> float: return sqrt(4.0 - x * x ) SCREAMING_SNAKE_CASE_ = area_under_curve_estimator( A__ , A__ , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
140
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowercase : Optional[Any] = get_logger(__name__) class A__ : """simple docstring""" __A : List[str] = '''dummy_data''' __A : List[str] = '''datasets''' __A : List[str] = False def __init__( self , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , lowercase = True , lowercase = None , ) -> Tuple: '''simple docstring''' a__ : List[Any] = 0 a__ : Any = dataset_name a__ : int = cache_dir a__ : Union[str, Any] = use_local_dummy_data a__ : int = config # download_callbacks take a single url as input a__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root a__ : int = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general a__ : Tuple = str(lowercase) # to be downloaded a__ : str = None a__ : Optional[Any] = None @property def __lowercase ( self) -> List[str]: '''simple docstring''' if self._dummy_file is None: a__ : List[Any] = self.download_dummy_data() return self._dummy_file @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('dummy' , self.config.name , self.version_name) # structure is dummy / version_name return os.path.join('dummy' , self.version_name) @property def __lowercase ( self) -> int: '''simple docstring''' return os.path.join(self.dummy_data_folder , 'dummy_data.zip') def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) a__ : Dict = cached_path( lowercase , cache_dir=self.cache_dir , extract_compressed_file=lowercase , force_extract=lowercase) return os.path.join(lowercase , self.dummy_file_name) @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file) @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' if self._bucket_url is None: a__ : Any = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/')) return self._bucket_url @property def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' if os.path.isdir(self.dummy_file): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '/').split('/')[:-1]) def __lowercase ( self , lowercase , *lowercase) -> str: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested a__ : List[Any] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned a__ : Tuple = self.dummy_file_name # special case when data_url is a dict if isinstance(lowercase , lowercase): return self.create_dummy_data_dict(lowercase , lowercase) elif isinstance(lowercase , (list, tuple)): return self.create_dummy_data_list(lowercase , lowercase) else: return self.create_dummy_data_single(lowercase , lowercase) def __lowercase ( self , lowercase , *lowercase) -> Dict: '''simple docstring''' return self.download_and_extract(lowercase) def __lowercase ( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' return self.download_and_extract(lowercase) def __lowercase ( self , lowercase , *lowercase , **lowercase) -> Optional[Any]: '''simple docstring''' return path def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' return {} def __lowercase ( self , lowercase , lowercase) -> str: '''simple docstring''' a__ : Union[str, Any] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(lowercase , lowercase): for single_url in single_urls: download_callback(lowercase) else: a__ : Any = single_urls download_callback(lowercase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(lowercase , lowercase): a__ : int = [os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase).name)) for x in single_urls] else: a__ : int = single_urls a__ : Optional[int] = os.path.join(lowercase , urllib.parse.quote_plus(Path(lowercase).name)) a__ : Optional[Any] = value # make sure that values are unique if all(isinstance(lowercase , lowercase) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len( dummy_data_dict.values()): # append key to value to make its name unique a__ : Dict = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __lowercase ( self , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : Optional[int] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one a__ : Optional[int] = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , lowercase)) for url in data_url) a__ : List[str] = all( url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed') for url in data_url) if data_url and (is_tf_records or is_pubmed_records): a__ : str = [data_url[0]] * len(lowercase) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(lowercase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : Tuple = os.path.join(lowercase , urllib.parse.quote_plus(single_url.split('/')[-1])) dummy_data_list.append(lowercase) return dummy_data_list def __lowercase ( self , lowercase , lowercase) -> str: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(lowercase) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus a__ : List[str] = os.path.join(lowercase , urllib.parse.quote_plus(data_url.split('/')[-1])) if os.path.exists(lowercase) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __lowercase ( self) -> int: '''simple docstring''' pass def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' pass def __lowercase ( self , lowercase) -> Dict: '''simple docstring''' def _iter_archive_members(lowercase): # this preserves the order of the members inside the ZIP archive a__ : Any = Path(self.dummy_file).parent a__ : Any = path.relative_to(lowercase) with ZipFile(self.local_path_to_dummy_data) as zip_file: a__ : Tuple = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix()): yield dummy_parent_path.joinpath(lowercase) a__ : Optional[Any] = Path(lowercase) a__ : List[str] = _iter_archive_members(lowercase) if self.use_local_dummy_data else path.rglob('*') for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('.', '__')): yield file_path.relative_to(lowercase).as_posix(), file_path.open('rb') def __lowercase ( self , lowercase) -> int: '''simple docstring''' if not isinstance(lowercase , lowercase): a__ : List[Any] = [paths] for path in paths: if os.path.isfile(lowercase): if os.path.basename(lowercase).startswith(('.', '__')): return yield path else: for dirpath, dirnames, filenames in os.walk(lowercase): if os.path.basename(lowercase).startswith(('.', '__')): continue dirnames.sort() for filename in sorted(lowercase): if filename.startswith(('.', '__')): continue yield os.path.join(lowercase , lowercase)
302
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] ="M-CLIP" def __init__( self , snake_case__=1_024 , snake_case__=768 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = transformerDimSize lowerCAmelCase : Optional[int] = imageDimSize super().__init__(**snake_case__ ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Tuple =MCLIPConfig def __init__( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = XLMRobertaModel(snake_case__ ) lowerCAmelCase : Tuple = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.transformer(input_ids=snake_case__ , attention_mask=snake_case__ )[0] lowerCAmelCase : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(snake_case__ ), embs
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowercase_ : str = input('Enter image url: ').strip() print(f'''Downloading image from {url} ...''') lowercase_ : List[Any] = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image lowercase_ : int = soup.find('meta', {'property': 'og:image'})['content'] lowercase_ : int = requests.get(image_url).content lowercase_ : Tuple = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, 'wb') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
64
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowercase_ : List[Any] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Any = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[int] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowercase_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> str: _SCREAMING_SNAKE_CASE : Optional[Any] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: _SCREAMING_SNAKE_CASE : Tuple = [144, 192, 240] _SCREAMING_SNAKE_CASE : str = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: _SCREAMING_SNAKE_CASE : List[Any] = [96, 120, 144] _SCREAMING_SNAKE_CASE : Optional[int] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: _SCREAMING_SNAKE_CASE : Union[str, Any] = [64, 80, 96] _SCREAMING_SNAKE_CASE : Tuple = [16, 16, 24, 48, 64, 80, 320] _SCREAMING_SNAKE_CASE : Any = 0.05 _SCREAMING_SNAKE_CASE : Tuple = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): _SCREAMING_SNAKE_CASE : Union[str, Any] = 512 _SCREAMING_SNAKE_CASE : Optional[int] = 16 _SCREAMING_SNAKE_CASE : Optional[Any] = 21 _SCREAMING_SNAKE_CASE : Dict = """pascal-voc-id2label.json""" else: _SCREAMING_SNAKE_CASE : Optional[Any] = 1_000 _SCREAMING_SNAKE_CASE : Tuple = """imagenet-1k-id2label.json""" _SCREAMING_SNAKE_CASE : Tuple = """huggingface/label-files""" _SCREAMING_SNAKE_CASE : Optional[Any] = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE : Dict = {int(__A ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE : Tuple = idalabel _SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False )-> str: for i in range(1 , 6 ): if F"""layer_{i}.""" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: _SCREAMING_SNAKE_CASE : Any = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: _SCREAMING_SNAKE_CASE : List[Any] = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: _SCREAMING_SNAKE_CASE : List[Any] = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: _SCREAMING_SNAKE_CASE : str = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: _SCREAMING_SNAKE_CASE : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: _SCREAMING_SNAKE_CASE : List[Any] = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: _SCREAMING_SNAKE_CASE : int = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: _SCREAMING_SNAKE_CASE : int = name.replace(F""".global_rep.{i}.weight""" , """.layernorm.weight""" ) if F""".global_rep.{i}.bias""" in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace(F""".global_rep.{i}.bias""" , """.layernorm.bias""" ) if ".global_rep." in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: _SCREAMING_SNAKE_CASE : Tuple = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: _SCREAMING_SNAKE_CASE : Dict = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: _SCREAMING_SNAKE_CASE : int = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: _SCREAMING_SNAKE_CASE : Optional[Any] = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: _SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: _SCREAMING_SNAKE_CASE : str = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: _SCREAMING_SNAKE_CASE : Optional[int] = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: _SCREAMING_SNAKE_CASE : int = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: _SCREAMING_SNAKE_CASE : List[str] = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: _SCREAMING_SNAKE_CASE : Any = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): _SCREAMING_SNAKE_CASE : Optional[Any] = """mobilevit.""" + name return name def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False )-> int: if base_model: _SCREAMING_SNAKE_CASE : Union[str, Any] = """""" else: _SCREAMING_SNAKE_CASE : Dict = """mobilevit.""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE : Optional[Any] = orig_state_dict.pop(__A ) if key[:8] == "encoder.": _SCREAMING_SNAKE_CASE : str = key[8:] if "qkv" in key: _SCREAMING_SNAKE_CASE : List[str] = key.split(""".""" ) _SCREAMING_SNAKE_CASE : List[Any] = int(key_split[0][6:] ) - 1 _SCREAMING_SNAKE_CASE : str = int(key_split[3] ) _SCREAMING_SNAKE_CASE : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) _SCREAMING_SNAKE_CASE : Tuple = layer.transformer.layer[transformer_num].attention.attention.all_head_size _SCREAMING_SNAKE_CASE : int = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: _SCREAMING_SNAKE_CASE : Union[str, Any] = val[:dim, :] _SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] _SCREAMING_SNAKE_CASE : Any = val[-dim:, :] else: _SCREAMING_SNAKE_CASE : Any = val[:dim] _SCREAMING_SNAKE_CASE : str = val[dim : dim * 2] _SCREAMING_SNAKE_CASE : str = val[-dim:] else: _SCREAMING_SNAKE_CASE : List[str] = val return orig_state_dict def lowerCamelCase_()-> Any: _SCREAMING_SNAKE_CASE : Dict = """http://images.cocodataset.org/val2017/000000039769.jpg""" _SCREAMING_SNAKE_CASE : Any = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False )-> Dict: _SCREAMING_SNAKE_CASE : List[str] = get_mobilevit_config(__A ) # load original state_dict _SCREAMING_SNAKE_CASE : int = torch.load(__A , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): _SCREAMING_SNAKE_CASE : List[str] = MobileViTForSemanticSegmentation(__A ).eval() else: _SCREAMING_SNAKE_CASE : List[str] = MobileViTForImageClassification(__A ).eval() _SCREAMING_SNAKE_CASE : List[str] = convert_state_dict(__A , __A ) model.load_state_dict(__A ) # Check outputs on an image, prepared by MobileViTImageProcessor _SCREAMING_SNAKE_CASE : int = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _SCREAMING_SNAKE_CASE : Any = image_processor(images=prepare_img() , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE : Any = model(**__A ) _SCREAMING_SNAKE_CASE : Any = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": _SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": _SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": _SCREAMING_SNAKE_CASE : Dict = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": _SCREAMING_SNAKE_CASE : List[str] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , __A , atol=1e-4 ) Path(__A ).mkdir(exist_ok=__A ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if push_to_hub: _SCREAMING_SNAKE_CASE : Optional[Any] = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) _SCREAMING_SNAKE_CASE : Dict = model_mapping[mobilevit_name] image_processor.push_to_hub(__A , organization="""apple""" ) model.push_to_hub(__A , organization="""apple""" ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase_ = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
715
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 )-> str: _SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = DatasetDict( { """train""": dataset["""train"""].select(__SCREAMING_SNAKE_CASE ), """validation""": dataset["""train"""].select(__SCREAMING_SNAKE_CASE ), """test""": dataset["""validation"""], } ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _SCREAMING_SNAKE_CASE : str = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. _SCREAMING_SNAKE_CASE : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _SCREAMING_SNAKE_CASE : Optional[Any] = 16 elif accelerator.mixed_precision != "no": _SCREAMING_SNAKE_CASE : Any = 8 else: _SCREAMING_SNAKE_CASE : Optional[int] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding="""longest""" , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets["""train"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: # New Code # _SCREAMING_SNAKE_CASE : Union[str, Any] = [] # Download the dataset _SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) # Create our splits _SCREAMING_SNAKE_CASE : Dict = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _SCREAMING_SNAKE_CASE : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE : Tuple = config["""lr"""] _SCREAMING_SNAKE_CASE : Tuple = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE : int = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE : int = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE : List[str] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _SCREAMING_SNAKE_CASE : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _SCREAMING_SNAKE_CASE : List[str] = batch_size // MAX_GPU_BATCH_SIZE _SCREAMING_SNAKE_CASE : List[str] = MAX_GPU_BATCH_SIZE set_seed(__SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: _SCREAMING_SNAKE_CASE : List[str] = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = get_fold_dataloaders( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE : Tuple = model.to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE : int = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler _SCREAMING_SNAKE_CASE : int = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = outputs.loss _SCREAMING_SNAKE_CASE : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) _SCREAMING_SNAKE_CASE : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end _SCREAMING_SNAKE_CASE : str = [] for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = outputs.logits _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _SCREAMING_SNAKE_CASE : Optional[int] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) _SCREAMING_SNAKE_CASE : List[str] = torch.stack(__SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _SCREAMING_SNAKE_CASE : int = metric.compute(predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE ) accelerator.print("""Average test metrics from all folds:""" , __SCREAMING_SNAKE_CASE ) def lowerCamelCase_()-> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=__SCREAMING_SNAKE_CASE , default=3 , help="""The number of splits to perform across the dataset""" ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
635
0
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : int ): """simple docstring""" assert ( isinstance(UpperCamelCase__ , UpperCamelCase__ ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 __lowercase , __lowercase = 1, 1 for _ in range(number_of_steps - 1 ): __lowercase , __lowercase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
616
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCamelCase__ ( _a , _a , unittest.TestCase ): a : Any = IFPipeline a : str = TEXT_TO_IMAGE_PARAMS - {"""width""", """height""", """latents"""} a : Dict = TEXT_TO_IMAGE_BATCH_PARAMS a : int = PipelineTesterMixin.required_optional_params - {"""latents"""} def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE_ ( self : Any , A_ : int , A_ : Dict=0 ): '''simple docstring''' if str(A_ ).startswith("""mps""" ): __lowercase = torch.manual_seed(A_ ) else: __lowercase = torch.Generator(device=A_ ).manual_seed(A_ ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' __lowercase = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) __lowercase = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=A_ , tokenizer=A_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) __lowercase , __lowercase = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() __lowercase = None __lowercase = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img __lowercase = IFImgaImgPipeline(**pipe_a.components ) __lowercase = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(A_ , A_ , A_ , A_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting __lowercase = IFInpaintingPipeline(**pipe_a.components ) __lowercase = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(A_ , A_ , A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , A_ : Any , A_ : int , A_ : str , A_ : Dict ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_3 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : Tuple , A_ : List[Any] , A_ : List[Any] , A_ : Any ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , A_ : List[Any] , A_ : str , A_ : List[Any] , A_ : List[Any] ): '''simple docstring''' _start_torch_memory_measurement() __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(1 ) ).to(A_ ) __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , num_inference_steps=2 , generator=A_ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (6_4, 6_4, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 1_0 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(A_ , A_ ) # pipeline 2 _start_torch_memory_measurement() __lowercase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(0 ) ).to(A_ ) __lowercase = floats_tensor((1, 3, 2_5_6, 2_5_6) , rng=random.Random(1 ) ).to(A_ ) __lowercase = pipe_a( prompt_embeds=A_ , negative_prompt_embeds=A_ , image=A_ , mask_image=A_ , original_image=A_ , generator=A_ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) __lowercase = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 1_0**9 __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(A_ , A_ ) def lowerCAmelCase_ ( ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
616
1
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowercase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class __lowerCamelCase ( __lowercase , unittest.TestCase ): '''simple docstring''' snake_case__ : List[Any] = ReformerTokenizer snake_case__ : List[str] = ReformerTokenizerFast snake_case__ : int = True snake_case__ : List[Any] = False snake_case__ : Any = True def a_ ( self ): super().setUp() __SCREAMING_SNAKE_CASE : Tuple = ReformerTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Optional[int] = "<s>" __SCREAMING_SNAKE_CASE : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(a__ ) , 1000 ) def a_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def a_ ( self ): if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : str = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = "I was born in 92000, and this is falsé." __SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize(a__ ) __SCREAMING_SNAKE_CASE : Any = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(a__ , add_special_tokens=a__ ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) __SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode(a__ ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) def a_ ( self , a__=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(a__ , **a__ ) # Simple input __SCREAMING_SNAKE_CASE : Union[str, Any] = "This is a simple input" __SCREAMING_SNAKE_CASE : List[Any] = ["This is a simple input 1", "This is a simple input 2"] __SCREAMING_SNAKE_CASE : Tuple = ("This is a simple input", "This is a pair") __SCREAMING_SNAKE_CASE : str = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="max_length" ) # Simple input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="max_length" ) # Simple input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="max_length" , ) # Pair input self.assertRaises(a__ , tokenizer_r.encode , a__ , max_length=a__ , padding="max_length" ) # Pair input self.assertRaises(a__ , tokenizer_r.encode_plus , a__ , max_length=a__ , padding="max_length" ) # Pair input self.assertRaises( a__ , tokenizer_r.batch_encode_plus , a__ , max_length=a__ , padding="max_length" , ) def a_ ( self ): pass def a_ ( self ): __SCREAMING_SNAKE_CASE : List[Any] = ReformerTokenizer(a__ , keep_accents=a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [285, 46, 10, 170, 382] , ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def a_ ( self ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : int = "Hello World!" __SCREAMING_SNAKE_CASE : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def a_ ( self ): __SCREAMING_SNAKE_CASE : List[str] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) __SCREAMING_SNAKE_CASE : Tuple = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @require_torch @slow def a_ ( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence __SCREAMING_SNAKE_CASE : str = list(self.big_tokenizer.get_vocab().keys() )[:10] __SCREAMING_SNAKE_CASE : Optional[Any] = " ".join(a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.big_tokenizer.encode_plus(a__ , return_tensors="pt" ) __SCREAMING_SNAKE_CASE : Dict = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) __SCREAMING_SNAKE_CASE : Tuple = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) __SCREAMING_SNAKE_CASE : Optional[Any] = encoded_sequence["input_ids"].shape __SCREAMING_SNAKE_CASE : Optional[Any] = ReformerModel(a__ ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**a__ ) model(**a__ ) @slow def a_ ( self ): # fmt: off __SCREAMING_SNAKE_CASE : str = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 __SCREAMING_SNAKE_CASE : List[Any] = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=a__ , sequences=a__ , )
706
'''simple docstring''' import math def __A ( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = [True] * n __SCREAMING_SNAKE_CASE : Optional[int] = False __SCREAMING_SNAKE_CASE : Dict = False __SCREAMING_SNAKE_CASE : Any = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): __SCREAMING_SNAKE_CASE : List[Any] = i * 2 while index < n: __SCREAMING_SNAKE_CASE : List[Any] = False __SCREAMING_SNAKE_CASE : List[str] = index + i __SCREAMING_SNAKE_CASE : Optional[Any] = [2] for i in range(3 , _SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(_SCREAMING_SNAKE_CASE ) return primes def __A ( _SCREAMING_SNAKE_CASE : int = 9_9_9_9_6_6_6_6_3_3_3_3 ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = math.floor(math.sqrt(_SCREAMING_SNAKE_CASE ) ) + 1_0_0 __SCREAMING_SNAKE_CASE : Dict = prime_sieve(_SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = primes[prime_index] while (last_prime**2) <= limit: __SCREAMING_SNAKE_CASE : Dict = primes[prime_index + 1] __SCREAMING_SNAKE_CASE : Tuple = last_prime**2 __SCREAMING_SNAKE_CASE : Optional[Any] = next_prime**2 # Get numbers divisible by lps(current) __SCREAMING_SNAKE_CASE : Optional[int] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __SCREAMING_SNAKE_CASE : Optional[int] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __SCREAMING_SNAKE_CASE : Any = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __SCREAMING_SNAKE_CASE : List[Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
564
0
import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel __a :Optional[int] = '0.12' # assumed parallelism: 8 @require_flax @is_staging_test class _a ( unittest.TestCase ): """simple docstring""" @classmethod def __A ( cls : str ): A_ = TOKEN HfFolder.save_token(UpperCAmelCase ) @classmethod def __A ( cls : str ): try: delete_repo(token=cls._token , repo_id="test-model-flax" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-model-flax-org" ) except HTTPError: pass def __A ( self : Any ): A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(UpperCAmelCase ) model.push_to_hub("test-model-flax" , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="test-model-flax" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(UpperCAmelCase , repo_id="test-model-flax" , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) def __A ( self : Tuple ): A_ = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) A_ = FlaxBertModel(UpperCAmelCase ) model.push_to_hub("valid_org/test-model-flax-org" , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-model-flax-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( UpperCAmelCase , repo_id="valid_org/test-model-flax-org" , push_to_hub=UpperCAmelCase , use_auth_token=self._token ) A_ = FlaxBertModel.from_pretrained("valid_org/test-model-flax-org" ) A_ = flatten_dict(unfreeze(model.params ) ) A_ = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): A_ = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(UpperCAmelCase , 1E-3 , msg=f'''{key} not identical''' ) def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : int ): """simple docstring""" A_ = True A_ = flatten_dict(modela.params ) A_ = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: A_ = False return models_are_equal @require_flax class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Union[str, Any] ): A_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) A_ = FlaxBertModel(UpperCAmelCase ) A_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase , UpperCAmelCase ) ) with self.assertRaises(UpperCAmelCase ): A_ = FlaxBertModel.from_pretrained(UpperCAmelCase ) A_ = FlaxBertModel.from_pretrained(UpperCAmelCase , subfolder=UpperCAmelCase ) self.assertTrue(check_models_equal(UpperCAmelCase , UpperCAmelCase ) ) def __A ( self : Tuple ): A_ = BertConfig.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) A_ = FlaxBertModel(UpperCAmelCase ) A_ = "bert" with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(UpperCAmelCase , UpperCAmelCase ) , max_shard_size="10KB" ) with self.assertRaises(UpperCAmelCase ): A_ = FlaxBertModel.from_pretrained(UpperCAmelCase ) A_ = FlaxBertModel.from_pretrained(UpperCAmelCase , subfolder=UpperCAmelCase ) self.assertTrue(check_models_equal(UpperCAmelCase , UpperCAmelCase ) ) def __A ( self : Optional[Any] ): A_ = "bert" A_ = "hf-internal-testing/tiny-random-bert-subfolder" with self.assertRaises(UpperCAmelCase ): A_ = FlaxBertModel.from_pretrained(UpperCAmelCase ) A_ = FlaxBertModel.from_pretrained(UpperCAmelCase , subfolder=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Tuple ): A_ = "bert" A_ = "hf-internal-testing/tiny-random-bert-sharded-subfolder" with self.assertRaises(UpperCAmelCase ): A_ = FlaxBertModel.from_pretrained(UpperCAmelCase ) A_ = FlaxBertModel.from_pretrained(UpperCAmelCase , subfolder=UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase )
86
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase , UpperCamelCase , UpperCamelCase = False, False, False @dataclass class UpperCAmelCase__ : """simple docstring""" lowerCAmelCase__ : Optional[int] = None lowerCAmelCase__ : bool = True lowerCAmelCase__ : bool = True lowerCAmelCase__ : Optional[str] = None # Automatically constructed lowerCAmelCase__ : ClassVar[str] = "dict" lowerCAmelCase__ : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) lowerCAmelCase__ : str = field(default="""Audio""", init=__lowerCamelCase, repr=__lowerCamelCase ) def __call__( self ) -> Optional[int]: return self.pa_type def A ( self , _SCREAMING_SNAKE_CASE ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": None, "path": value} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes a_ : Dict = BytesIO() sf.write(_SCREAMING_SNAKE_CASE , value["array"] , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("path" ) is not None and os.path.isfile(value["path"] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("pcm" ): # "PCM" only has raw audio bytes if value.get("sampling_rate" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" ) if value.get("bytes" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) a_ : Optional[Any] = np.frombuffer(value["bytes"] , dtype=np.intaa ).astype(np.floataa ) / 3_2_7_6_7 else: a_ : List[str] = np.memmap(value["path"] , dtype="h" , mode="r" ).astype(np.floataa ) / 3_2_7_6_7 a_ : Optional[Any] = BytesIO(bytes() ) sf.write(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , value["sampling_rate"] , format="wav" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("path" )} elif value.get("bytes" ) is not None or value.get("path" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("bytes" ), "path": value.get("path" )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> dict: if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." ) a_ , a_ : Tuple = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err a_ : List[Any] = xsplitext(_SCREAMING_SNAKE_CASE )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( "Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( "Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, " "You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " ) if file is None: a_ : Dict = token_per_repo_id or {} a_ : Optional[int] = path.split("::" )[-1] try: a_ : Tuple = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )["repo_id"] a_ : Dict = token_per_repo_id[repo_id] except (ValueError, KeyError): a_ : Tuple = None with xopen(_SCREAMING_SNAKE_CASE , "rb" , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: a_ , a_ : Optional[Any] = sf.read(_SCREAMING_SNAKE_CASE ) else: a_ , a_ : Optional[int] = sf.read(_SCREAMING_SNAKE_CASE ) a_ : Tuple = array.T if self.mono: a_ : Optional[Any] = librosa.to_mono(_SCREAMING_SNAKE_CASE ) if self.sampling_rate and self.sampling_rate != sampling_rate: a_ : Optional[int] = librosa.resample(_SCREAMING_SNAKE_CASE , orig_sr=_SCREAMING_SNAKE_CASE , target_sr=self.sampling_rate ) a_ : List[str] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def A ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("Cannot flatten a decoded Audio feature." ) return { "bytes": Value("binary" ), "path": Value("string" ), } def A ( self , _SCREAMING_SNAKE_CASE ) -> pa.StructArray: if pa.types.is_string(storage.type ): a_ : List[Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) a_ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): a_ : Tuple = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) a_ : List[str] = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ): a_ : str = pa.array([Audio().encode_example(_SCREAMING_SNAKE_CASE ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("bytes" ) >= 0: a_ : Union[str, Any] = storage.field("bytes" ) else: a_ : Optional[Any] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index("path" ) >= 0: a_ : List[str] = storage.field("path" ) else: a_ : List[str] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) a_ : int = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def A ( self , _SCREAMING_SNAKE_CASE ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE , "rb" ) as f: a_ : Union[str, Any] = f.read() return bytes_ a_ : List[str] = pa.array( [ (path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) a_ : Tuple = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field("path" ).to_pylist()] , type=pa.string() , ) a_ : str = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type )
473
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Tuple = logging.get_logger(__name__) _lowerCAmelCase : Dict = {"vocab_file": "sentencepiece.bpe.model"} _lowerCAmelCase : Tuple = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, } _lowerCAmelCase : Any = { "moussaKam/mbarthez": 1_0_2_4, "moussaKam/barthez": 1_0_2_4, "moussaKam/barthez-orangesum-title": 1_0_2_4, } _lowerCAmelCase : List[str] = "▁" class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , lowerCamelCase , lowerCamelCase="<s>" , lowerCamelCase="</s>" , lowerCamelCase="</s>" , lowerCamelCase="<s>" , lowerCamelCase="<unk>" , lowerCamelCase="<pad>" , lowerCamelCase="<mask>" , lowerCamelCase = None , **lowerCamelCase , ) -> None: """simple docstring""" snake_case__ : List[str] = AddedToken(lowerCamelCase , lstrip=lowerCamelCase , rstrip=lowerCamelCase ) if isinstance(lowerCamelCase , lowerCamelCase ) else mask_token snake_case__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase , eos_token=lowerCamelCase , unk_token=lowerCamelCase , sep_token=lowerCamelCase , cls_token=lowerCamelCase , pad_token=lowerCamelCase , mask_token=lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase , ) snake_case__ : int = vocab_file snake_case__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase ) ) snake_case__ : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} snake_case__ : Any = len(self.sp_model ) - 1 snake_case__ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] snake_case__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase , token_ids_a=lowerCamelCase , already_has_special_tokens=lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase )) + [1] return [1] + ([0] * len(lowerCamelCase )) + [1, 1] + ([0] * len(lowerCamelCase )) + [1] def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> List[int]: """simple docstring""" snake_case__ : List[str] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ) -> Optional[Any]: """simple docstring""" return len(self.sp_model ) def lowercase__ ( self ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , lowerCamelCase ) -> List[str]: """simple docstring""" return self.sp_model.encode(lowerCamelCase , out_type=lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Union[str, Any] = self.sp_model.PieceToId(lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def lowercase__ ( self , lowerCamelCase ) -> int: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(lowerCamelCase ) def lowercase__ ( self , lowerCamelCase ) -> List[Any]: """simple docstring""" snake_case__ : int = [] snake_case__ : Dict = '''''' snake_case__ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase ) + token snake_case__ : Any = True snake_case__ : List[str] = [] else: current_sub_tokens.append(lowerCamelCase ) snake_case__ : Dict = False out_string += self.sp_model.decode(lowerCamelCase ) return out_string.strip() def __getstate__( self ) -> Optional[int]: """simple docstring""" snake_case__ : str = self.__dict__.copy() snake_case__ : int = None return state def __setstate__( self , lowerCamelCase ) -> str: """simple docstring""" snake_case__ : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : Dict = {} snake_case__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : List[str] = os.path.join( lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase , '''wb''' ) as fi: snake_case__ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase ) return (out_vocab_file,)
694
'''simple docstring''' from sklearn.metrics import fa_score import datasets _lowerCAmelCase : List[Any] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" _lowerCAmelCase : Tuple = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" _lowerCAmelCase : List[str] = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def lowercase__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 , lowerCamelCase="binary" , lowerCamelCase=None ) -> List[Any]: """simple docstring""" snake_case__ : Union[str, Any] = fa_score( lowerCamelCase , lowerCamelCase , labels=lowerCamelCase , pos_label=lowerCamelCase , average=lowerCamelCase , sample_weight=lowerCamelCase ) return {"f1": float(lowerCamelCase ) if score.size == 1 else score}
694
1
'''simple docstring''' import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging a = logging.get_logger(__name__) logging.set_verbosity_info() def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: """simple docstring""" if "xprophetnet" in prophetnet_checkpoint_path: snake_case: Optional[Any] =XLMProphetNetForConditionalGenerationOld.from_pretrained(__UpperCAmelCase ) snake_case , snake_case: str =XLMProphetNetForConditionalGeneration.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase ) else: snake_case: Optional[int] =ProphetNetForConditionalGenerationOld.from_pretrained(__UpperCAmelCase ) snake_case , snake_case: List[str] =ProphetNetForConditionalGeneration.from_pretrained( __UpperCAmelCase , output_loading_info=__UpperCAmelCase ) snake_case: str =['key_proj', 'value_proj', 'query_proj'] snake_case: str ={ 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: snake_case: List[str] =key.split('.' ) if attributes[0] == "lm_head": snake_case: Dict =prophet snake_case: List[str] =prophet_old else: snake_case: Any =prophet.prophetnet snake_case: int =prophet_old.model snake_case: int =False for attribute in attributes: if attribute in mapping: snake_case: Dict =mapping[attribute] if not hasattr(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) > 0: snake_case: Optional[int] =attribute elif hasattr(__UpperCAmelCase , __UpperCAmelCase ): snake_case: Optional[Any] =attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" snake_case: Optional[Any] =old_model.weight logger.info(f'''{attribute} is initialized.''' ) snake_case: List[str] =True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" snake_case: List[Any] =old_model.bias logger.info(f'''{attribute} is initialized''' ) snake_case: List[Any] =True break elif attribute in special_keys and hasattr(__UpperCAmelCase , 'in_proj_weight' ): snake_case: Optional[int] =old_model.in_proj_weight.shape[0] // 3 snake_case: List[str] =getattr(__UpperCAmelCase , __UpperCAmelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": snake_case: int =nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) snake_case: Any =nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": snake_case: Union[str, Any] =nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) snake_case: List[str] =nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": snake_case: List[str] =nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) snake_case: Union[str, Any] =nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) snake_case: Any =True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_12, "We want 512 position_embeddings." snake_case: Dict =nn.Parameter(old_model.embed_positions.weight[:5_12, :] ) snake_case: Dict =True break if attribute.isdigit(): snake_case: int =model[int(__UpperCAmelCase )] snake_case: Optional[int] =old_model[int(__UpperCAmelCase )] else: snake_case: List[str] =getattr(__UpperCAmelCase , __UpperCAmelCase ) if old_attribute == "": snake_case: Union[str, Any] =old_model else: if not hasattr(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError(f'''{old_model} does not have {old_attribute}''' ) snake_case: List[Any] =getattr(__UpperCAmelCase , __UpperCAmelCase ) if not is_key_init: raise ValueError(f'''{key} was not correctly initialized!''' ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
350
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py a = '.' if __name__ == "__main__": a = os.path.join(REPO_PATH, 'utils/documentation_tests.txt') a = [] a = [] with open(doctest_file_path) as fp: for line in fp: a = line.strip() a = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: a = '\n'.join(non_existent_paths) raise ValueError(F"""`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}""") if all_paths != sorted(all_paths): raise ValueError('Files in `utils/documentation_tests.txt` are not in alphabetical order.')
350
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger UpperCamelCase__ =get_logger(__name__) UpperCamelCase__ =Path(__file__).parent / 'model_card_template.md' UpperCamelCase__ =uuida().hex UpperCamelCase__ =os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES UpperCamelCase__ =os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES UpperCamelCase__ =HUGGINGFACE_CO_RESOLVE_ENDPOINT + '/api/telemetry/' def lowerCamelCase__ (__lowerCamelCase = None ): _SCREAMING_SNAKE_CASE : List[str] = f"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f"""; torch/{_torch_version}""" if is_flax_available(): ua += f"""; jax/{_jax_version}""" ua += f"""; flax/{_flax_version}""" if is_onnx_available(): ua += f"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI", "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__lowerCamelCase, __lowerCamelCase ): ua += "; " + "; ".join(f"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__lowerCamelCase, __lowerCamelCase ): ua += "; " + user_agent return ua def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = None, __lowerCamelCase = None ): if token is None: _SCREAMING_SNAKE_CASE : List[Any] = HfFolder.get_token() if organization is None: _SCREAMING_SNAKE_CASE : Optional[int] = whoami(__lowerCamelCase )["name"] return f"""{username}/{model_id}""" else: return f"""{organization}/{model_id}""" def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(__lowerCamelCase, "local_rank" ) and args.local_rank not in [-1, 0]: return _SCREAMING_SNAKE_CASE : Optional[Any] = args.hub_token if hasattr(__lowerCamelCase, "hub_token" ) else None _SCREAMING_SNAKE_CASE : Dict = get_full_repo_name(__lowerCamelCase, token=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en", license="apache-2.0", library_name="diffusers", tags=[], datasets=args.dataset_name, metrics=[], ), template_path=__lowerCamelCase, model_name=__lowerCamelCase, repo_name=__lowerCamelCase, dataset_name=args.dataset_name if hasattr(__lowerCamelCase, "dataset_name" ) else None, learning_rate=args.learning_rate, train_batch_size=args.train_batch_size, eval_batch_size=args.eval_batch_size, gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__lowerCamelCase, "gradient_accumulation_steps" ) else None ), adam_betaa=args.adam_betaa if hasattr(__lowerCamelCase, "adam_beta1" ) else None, adam_betaa=args.adam_betaa if hasattr(__lowerCamelCase, "adam_beta2" ) else None, adam_weight_decay=args.adam_weight_decay if hasattr(__lowerCamelCase, "adam_weight_decay" ) else None, adam_epsilon=args.adam_epsilon if hasattr(__lowerCamelCase, "adam_epsilon" ) else None, lr_scheduler=args.lr_scheduler if hasattr(__lowerCamelCase, "lr_scheduler" ) else None, lr_warmup_steps=args.lr_warmup_steps if hasattr(__lowerCamelCase, "lr_warmup_steps" ) else None, ema_inv_gamma=args.ema_inv_gamma if hasattr(__lowerCamelCase, "ema_inv_gamma" ) else None, ema_power=args.ema_power if hasattr(__lowerCamelCase, "ema_power" ) else None, ema_max_decay=args.ema_max_decay if hasattr(__lowerCamelCase, "ema_max_decay" ) else None, mixed_precision=args.mixed_precision, ) _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(args.output_dir, "README.md" ) model_card.save(__lowerCamelCase ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = None ): if resolved_file is None or commit_hash is not None: return commit_hash _SCREAMING_SNAKE_CASE : Any = str(Path(__lowerCamelCase ).as_posix() ) _SCREAMING_SNAKE_CASE : Optional[int] = re.search(R"snapshots/([^/]+)/", __lowerCamelCase ) if search is None: return None _SCREAMING_SNAKE_CASE : str = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__lowerCamelCase ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. UpperCamelCase__ =os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) UpperCamelCase__ =os.path.join(hf_cache_home, 'diffusers') def lowerCamelCase__ (__lowerCamelCase = None, __lowerCamelCase = None ): if new_cache_dir is None: _SCREAMING_SNAKE_CASE : Union[str, Any] = DIFFUSERS_CACHE if old_cache_dir is None: _SCREAMING_SNAKE_CASE : List[str] = old_diffusers_cache _SCREAMING_SNAKE_CASE : Dict = Path(__lowerCamelCase ).expanduser() _SCREAMING_SNAKE_CASE : Optional[int] = Path(__lowerCamelCase ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): _SCREAMING_SNAKE_CASE : Union[str, Any] = new_cache_dir / old_blob_path.relative_to(__lowerCamelCase ) new_blob_path.parent.mkdir(parents=__lowerCamelCase, exist_ok=__lowerCamelCase ) os.replace(__lowerCamelCase, __lowerCamelCase ) try: os.symlink(__lowerCamelCase, __lowerCamelCase ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). UpperCamelCase__ =os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): UpperCamelCase__ =0 else: with open(cache_version_file) as f: try: UpperCamelCase__ =int(f.read()) except ValueError: UpperCamelCase__ =0 if cache_version < 1: UpperCamelCase__ =os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: UpperCamelCase__ ='\n'.join(traceback.format_tb(e.__traceback__)) logger.error( f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease " 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f"There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure " 'the directory exists and can be written to.' ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase = None ): if variant is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = weights_name.split("." ) _SCREAMING_SNAKE_CASE : List[Any] = splits[:-1] + [variant] + splits[-1:] _SCREAMING_SNAKE_CASE : Dict = ".".join(__lowerCamelCase ) return weights_name def lowerCamelCase__ (__lowerCamelCase, *, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, ): _SCREAMING_SNAKE_CASE : List[Any] = str(__lowerCamelCase ) if os.path.isfile(__lowerCamelCase ): return pretrained_model_name_or_path elif os.path.isdir(__lowerCamelCase ): if os.path.isfile(os.path.join(__lowerCamelCase, __lowerCamelCase ) ): # Load from a PyTorch checkpoint _SCREAMING_SNAKE_CASE : int = os.path.join(__lowerCamelCase, __lowerCamelCase ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) ): _SCREAMING_SNAKE_CASE : List[Any] = os.path.join(__lowerCamelCase, __lowerCamelCase, __lowerCamelCase ) return model_file else: raise EnvironmentError( f"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__lowerCamelCase ).base_version ) >= version.parse("0.20.0" ) ): try: _SCREAMING_SNAKE_CASE : Union[str, Any] = hf_hub_download( __lowerCamelCase, filename=_add_variant(__lowerCamelCase, __lowerCamelCase ), cache_dir=__lowerCamelCase, force_download=__lowerCamelCase, proxies=__lowerCamelCase, resume_download=__lowerCamelCase, local_files_only=__lowerCamelCase, use_auth_token=__lowerCamelCase, user_agent=__lowerCamelCase, subfolder=__lowerCamelCase, revision=revision or commit_hash, ) warnings.warn( f"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.""", __lowerCamelCase, ) return model_file except: # noqa: E722 warnings.warn( f"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__lowerCamelCase, __lowerCamelCase )} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(__lowerCamelCase, __lowerCamelCase )}' so that the correct variant file can be added.""", __lowerCamelCase, ) try: # 2. Load model file as usual _SCREAMING_SNAKE_CASE : Dict = hf_hub_download( __lowerCamelCase, filename=__lowerCamelCase, cache_dir=__lowerCamelCase, force_download=__lowerCamelCase, proxies=__lowerCamelCase, resume_download=__lowerCamelCase, local_files_only=__lowerCamelCase, use_auth_token=__lowerCamelCase, user_agent=__lowerCamelCase, subfolder=__lowerCamelCase, revision=revision or commit_hash, ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( f"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ "this model name. Check the model page at " f"""'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( f"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( f"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( f"""We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it""" f""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" f""" directory containing a file named {weights_name} or""" " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( f"""Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from """ "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " f"""Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory """ f"""containing a file named {weights_name}""" )
381
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=6 , __lowerCamelCase=1_7 , __lowerCamelCase=2_3 , __lowerCamelCase=1_1 , __lowerCamelCase=True , ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[Any] = parent _SCREAMING_SNAKE_CASE : Optional[Any] = batch_size _SCREAMING_SNAKE_CASE : int = seq_length _SCREAMING_SNAKE_CASE : Optional[Any] = act_dim _SCREAMING_SNAKE_CASE : Optional[int] = state_dim _SCREAMING_SNAKE_CASE : Optional[int] = hidden_size _SCREAMING_SNAKE_CASE : Any = max_length _SCREAMING_SNAKE_CASE : Optional[int] = is_training def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _SCREAMING_SNAKE_CASE : str = floats_tensor((self.batch_size, self.seq_length, 1) ) _SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) _SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask((self.batch_size, self.seq_length) ) _SCREAMING_SNAKE_CASE : List[str] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def UpperCamelCase_ ( self ) -> List[Any]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) -> Any: _SCREAMING_SNAKE_CASE : List[Any] = DecisionTransformerModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) : Optional[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Any = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__( __lowercase , __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = (DecisionTransformerModel,) if is_torch_available() else () __snake_case = () __snake_case = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __snake_case = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = DecisionTransformerModelTester(self ) _SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Dict: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : str = DecisionTransformerModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE : Tuple = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(__lowerCamelCase )] , __lowerCamelCase ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : str = 2 # number of steps of autoregressive prediction we will perform _SCREAMING_SNAKE_CASE : Tuple = 1_0 # defined by the RL environment, may be normalized _SCREAMING_SNAKE_CASE : int = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = model.to(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = model.config torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.randn(1 , 1 , config.state_dim ).to(device=__lowerCamelCase , dtype=torch.floataa ) # env.reset() _SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(__lowerCamelCase , device=__lowerCamelCase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _SCREAMING_SNAKE_CASE : List[str] = state _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=__lowerCamelCase , dtype=torch.floataa ) _SCREAMING_SNAKE_CASE : Dict = torch.zeros(1 , 0 , device=__lowerCamelCase , dtype=torch.floataa ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(0 , device=__lowerCamelCase , dtype=torch.long ).reshape(1 , 1 ) for step in range(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__lowerCamelCase )] , dim=1 ) _SCREAMING_SNAKE_CASE : Any = torch.cat([rewards, torch.zeros(1 , 1 , device=__lowerCamelCase )] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = model( states=__lowerCamelCase , actions=__lowerCamelCase , rewards=__lowerCamelCase , returns_to_go=__lowerCamelCase , timesteps=__lowerCamelCase , attention_mask=__lowerCamelCase , return_dict=__lowerCamelCase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Tuple = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__lowerCamelCase , dtype=torch.floataa ), 1.0, False, {}, ) _SCREAMING_SNAKE_CASE : Optional[Any] = action_pred[0, -1] _SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([states, state] , dim=1 ) _SCREAMING_SNAKE_CASE : List[str] = returns_to_go[0, -1] - reward _SCREAMING_SNAKE_CASE : str = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _SCREAMING_SNAKE_CASE : Tuple = torch.cat( [timesteps, torch.ones((1, 1) , device=__lowerCamelCase , dtype=torch.long ) * (step + 1)] , dim=1 )
381
1
"""simple docstring""" from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __lowerCAmelCase ( _lowercase ): """simple docstring""" def __lt__( self : List[Any] , _snake_case : Optional[Any] ) -> Any: """simple docstring""" return self[-1] < other[-1] def __eq__( self : Any , _snake_case : int ) -> Tuple: """simple docstring""" return self[-1] == other[-1] def A_ (__a ): '''simple docstring''' A_ = [] # sort into stacks for element in collection: A_ = Stack([element] ) A_ = bisect_left(__a , __a ) if i != len(__a ): stacks[i].append(__a ) else: stacks.append(__a ) # use a heap-based merge to merge stack efficiently A_ = merge(*(reversed(__a ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCamelCase_ : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase_ : Optional[int] = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
115
"""simple docstring""" from __future__ import annotations def A_ (__a , __a = None , __a = None ): '''simple docstring''' if start is None: A_ = 0 if end is None: A_ = len(__a ) - 1 if start >= end: return A_ = (start + end) // 2 slowsort(__a , __a , __a ) slowsort(__a , mid + 1 , __a ) if sequence[end] < sequence[mid]: A_ , A_ = sequence[mid], sequence[end] slowsort(__a , __a , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
115
1
def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: if index == number_of_items: return 0 _snake_case : Any = 0 _snake_case : str = 0 _snake_case : Optional[int] = knapsack(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 ) if weights[index] <= max_weight: _snake_case : Tuple = values[index] + knapsack( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_weight - weights[index] , index + 1 ) return max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
198
import argparse import os import re a__ = """src/transformers/models/auto""" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a__ = re.compile(R"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""") # re pattern that matches identifiers in mappings a__ = re.compile(R"""\s*\(\s*\"(\S[^\"]+)\"""") def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool = False ) -> Optional[Any]: with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" ) as f: _snake_case : int = f.read() _snake_case : str = content.split("""\n""" ) _snake_case : List[str] = [] _snake_case : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE__ ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _snake_case : Union[str, Any] = len(re.search(R"""^(\s*)\S""" , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 _snake_case : int = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _snake_case : Optional[Any] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _snake_case : int = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : _re_identifier.search(SCREAMING_SNAKE_CASE__ ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) elif "\n".join(SCREAMING_SNAKE_CASE__ ) != content: return True def lowercase ( SCREAMING_SNAKE_CASE__ : bool = False ) -> int: _snake_case : List[Any] = [os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for f in os.listdir(SCREAMING_SNAKE_CASE__ ) if f.endswith(""".py""" )] _snake_case : str = [sort_auto_mapping(SCREAMING_SNAKE_CASE__ , overwrite=SCREAMING_SNAKE_CASE__ ) for fname in fnames] if not overwrite and any(SCREAMING_SNAKE_CASE__ ): _snake_case : List[Any] = [f for f, d in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if d] raise ValueError( F'''The following files have auto mappings that need sorting: {', '.join(SCREAMING_SNAKE_CASE__ )}. Run `make style` to fix''' """ this.""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") a__ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
198
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : List[str] = '''audio-spectrogram-transformer''' def __init__( self : Union[str, Any] , UpperCamelCase__ : int=7_6_8 , UpperCamelCase__ : List[str]=1_2 , UpperCamelCase__ : str=1_2 , UpperCamelCase__ : str=3_0_7_2 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : List[str]=0.0 , UpperCamelCase__ : Dict=0.02 , UpperCamelCase__ : str=1E-12 , UpperCamelCase__ : Tuple=1_6 , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : List[str]=1_0 , UpperCamelCase__ : List[str]=1_0 , UpperCamelCase__ : Any=1_0_2_4 , UpperCamelCase__ : Optional[int]=1_2_8 , **UpperCamelCase__ : List[Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase__) snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = patch_size snake_case__ = qkv_bias snake_case__ = frequency_stride snake_case__ = time_stride snake_case__ = max_length snake_case__ = num_mel_bins
654
import glob import os import random from string import ascii_lowercase, digits import cva a__ = """""" a__ = """""" a__ = """""" a__ = 1 # (0 is vertical, 1 is horizontal) def _UpperCAmelCase ( ): snake_case__ , snake_case__ = get_dataset(a , a ) print("""Processing...""" ) snake_case__ , snake_case__ , snake_case__ = update_image_and_anno(a , a , a ) for index, image in enumerate(a ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case__ = random_chars(32 ) snake_case__ = paths[index].split(os.sep )[-1].rsplit(""".""" , 1 )[0] snake_case__ = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(a )} with {file_name}''' ) snake_case__ = [] for anno in new_annos[index]: snake_case__ = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(a ) with open(F'''/{file_root}.txt''' , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def _UpperCAmelCase ( a : str , a : str ): snake_case__ = [] snake_case__ = [] for label_file in glob.glob(os.path.join(a , """*.txt""" ) ): snake_case__ = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(a ) as in_file: snake_case__ = in_file.readlines() snake_case__ = os.path.join(a , F'''{label_name}.jpg''' ) snake_case__ = [] for obj_list in obj_lists: snake_case__ = obj_list.rstrip("""\n""" ).split(""" """ ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(a ) labels.append(a ) return img_paths, labels def _UpperCAmelCase ( a : list , a : list , a : int = 1 ): snake_case__ = [] snake_case__ = [] snake_case__ = [] for idx in range(len(a ) ): snake_case__ = [] snake_case__ = img_list[idx] path_list.append(a ) snake_case__ = anno_list[idx] snake_case__ = cva.imread(a ) if flip_type == 1: snake_case__ = cva.flip(a , a ) for bbox in img_annos: snake_case__ = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: snake_case__ = cva.flip(a , a ) for bbox in img_annos: snake_case__ = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(a ) new_imgs_list.append(a ) return new_imgs_list, new_annos_lists, path_list def _UpperCAmelCase ( a : int = 32 ): assert number_char > 1, "The number of character should greater than 1" snake_case__ = ascii_lowercase + digits return "".join(random.choice(a ) for _ in range(a ) ) if __name__ == "__main__": main() print("""DONE ✅""")
654
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ : List[Any] = logging.get_logger(__name__) UpperCamelCase_ : Any = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCAmelCase ( __A ): """simple docstring""" snake_case = "unispeech" def __init__( self : int , _snake_case : Optional[Any]=32 , _snake_case : List[str]=768 , _snake_case : Union[str, Any]=12 , _snake_case : List[str]=12 , _snake_case : str=3_072 , _snake_case : Tuple="gelu" , _snake_case : Union[str, Any]=0.1 , _snake_case : Dict=0.1 , _snake_case : Dict=0.1 , _snake_case : int=0.0 , _snake_case : List[Any]=0.0 , _snake_case : Optional[int]=0.1 , _snake_case : List[str]=0.1 , _snake_case : List[str]=0.0_2 , _snake_case : Any=1e-5 , _snake_case : Tuple="group" , _snake_case : Optional[Any]="gelu" , _snake_case : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , _snake_case : Dict=(5, 2, 2, 2, 2, 2, 2) , _snake_case : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , _snake_case : Optional[int]=False , _snake_case : Dict=128 , _snake_case : Optional[int]=16 , _snake_case : Optional[Any]=False , _snake_case : List[str]=True , _snake_case : Tuple=0.0_5 , _snake_case : Any=10 , _snake_case : List[str]=2 , _snake_case : Optional[int]=0.0 , _snake_case : Tuple=10 , _snake_case : Optional[int]=0 , _snake_case : str=320 , _snake_case : str=2 , _snake_case : List[Any]=0.1 , _snake_case : Optional[int]=100 , _snake_case : int=256 , _snake_case : Optional[Any]=256 , _snake_case : int=0.1 , _snake_case : Optional[Any]="mean" , _snake_case : Tuple=False , _snake_case : List[str]=False , _snake_case : Union[str, Any]=256 , _snake_case : int=80 , _snake_case : List[str]=0 , _snake_case : Union[str, Any]=1 , _snake_case : Dict=2 , _snake_case : Dict=0.5 , **_snake_case : List[str] , ) -> int: """simple docstring""" super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case ) A_ = hidden_size A_ = feat_extract_norm A_ = feat_extract_activation A_ = list(_snake_case ) A_ = list(_snake_case ) A_ = list(_snake_case ) A_ = conv_bias A_ = num_conv_pos_embeddings A_ = num_conv_pos_embedding_groups A_ = len(self.conv_dim ) A_ = num_hidden_layers A_ = intermediate_size A_ = hidden_act A_ = num_attention_heads A_ = hidden_dropout A_ = attention_dropout A_ = activation_dropout A_ = feat_proj_dropout A_ = final_dropout A_ = layerdrop A_ = layer_norm_eps A_ = initializer_range A_ = num_ctc_classes A_ = vocab_size A_ = do_stable_layer_norm A_ = use_weighted_layer_sum A_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A_ = apply_spec_augment A_ = mask_time_prob A_ = mask_time_length A_ = mask_time_min_masks A_ = mask_feature_prob A_ = mask_feature_length A_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations A_ = num_codevectors_per_group A_ = num_codevector_groups A_ = contrastive_logits_temperature A_ = feat_quantizer_dropout A_ = num_negatives A_ = codevector_dim A_ = proj_codevector_dim A_ = diversity_loss_weight # ctc loss A_ = ctc_loss_reduction A_ = ctc_zero_infinity # pretraining loss A_ = replace_prob @property def lowerCamelCase__ ( self : Tuple ) -> int: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
704
"""simple docstring""" from __future__ import annotations import math UpperCamelCase_ : List[str] = '''2020.9.26''' UpperCamelCase_ : List[Any] = '''xcodz-dot, cclaus, dhruvmanila''' def A_ (__a , __a , __a , __a , __a ): '''simple docstring''' if not all(isinstance(__a , (float, int) ) for val in locals().values() ): A_ = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__a ) A_ = ((x * distance) / (z + distance)) * scale A_ = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def A_ (__a , __a , __a , __a , __a ): '''simple docstring''' if not isinstance(__a , __a ): raise TypeError("Axis must be a str" ) A_ = locals() del input_variables["axis"] if not all(isinstance(__a , (float, int) ) for val in input_variables.values() ): A_ = ( "Input values except axis must either be float or int: " f'{list(input_variables.values() )}' ) raise TypeError(__a ) A_ = (angle % 360) / 450 * 180 / math.pi if axis == "z": A_ = x * math.cos(__a ) - y * math.sin(__a ) A_ = y * math.cos(__a ) + x * math.sin(__a ) A_ = z elif axis == "x": A_ = y * math.cos(__a ) - z * math.sin(__a ) A_ = z * math.cos(__a ) + y * math.sin(__a ) A_ = x elif axis == "y": A_ = x * math.cos(__a ) - z * math.sin(__a ) A_ = z * math.cos(__a ) + x * math.sin(__a ) A_ = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 90.0) = }""")
482
0
"""simple docstring""" import os import sys import unittest _lowerCAmelCase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) _lowerCAmelCase : Tuple = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') _lowerCAmelCase : str = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class A_ ( unittest.TestCase ): def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : int = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = get_test_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = {"BertModelTest": "BertModelTester"} _lowerCamelCase : Union[str, Any] = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = get_model_to_test_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } _lowerCamelCase : Optional[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : int = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Dict = get_model_to_tester_mapping(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } _lowerCamelCase : List[str] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase ) self.assertEqual(get_test_info.to_json(__lowerCAmelCase ) ,__lowerCAmelCase )
46
"""simple docstring""" def lowercase__ ( snake_case_ :Dict ): # noqa: E741 __UpperCAmelCase = len(snake_case_ ) __UpperCAmelCase = 0 __UpperCAmelCase = [0] * n __UpperCAmelCase = [False] * n __UpperCAmelCase = [False] * n def dfs(snake_case_ :Tuple , snake_case_ :Union[str, Any] , snake_case_ :Any , snake_case_ :int ): if parent == root: out_edge_count += 1 __UpperCAmelCase = True __UpperCAmelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: __UpperCAmelCase = dfs(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) __UpperCAmelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __UpperCAmelCase = True # AP found via cycle if at == low[to]: __UpperCAmelCase = True else: __UpperCAmelCase = min(low[at] , snake_case_ ) return out_edge_count for i in range(snake_case_ ): if not visited[i]: __UpperCAmelCase = 0 __UpperCAmelCase = dfs(snake_case_ , snake_case_ , -1 , snake_case_ ) __UpperCAmelCase = out_edge_count > 1 for x in range(len(snake_case_ ) ): if is_art[x] is True: print(snake_case_ ) # Adjacency list of graph _lowercase : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
49
0
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) UpperCamelCase__ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) UpperCamelCase__ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) UpperCamelCase__ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) UpperCamelCase__ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) UpperCamelCase__ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCamelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class a ( _BaseAutoModelClass ): UpperCamelCase : Tuple = FLAX_MODEL_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModel) class a ( _BaseAutoModelClass ): UpperCamelCase : str = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class a ( _BaseAutoModelClass ): UpperCamelCase : Dict = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class a ( _BaseAutoModelClass ): UpperCamelCase : Optional[int] = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class a ( _BaseAutoModelClass ): UpperCamelCase : List[str] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class a ( _BaseAutoModelClass ): UpperCamelCase : Dict = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class a ( _BaseAutoModelClass ): UpperCamelCase : int = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class a ( _BaseAutoModelClass ): UpperCamelCase : Any = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class a ( _BaseAutoModelClass ): UpperCamelCase : Tuple = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class a ( _BaseAutoModelClass ): UpperCamelCase : Any = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class a ( _BaseAutoModelClass ): UpperCamelCase : str = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class a ( _BaseAutoModelClass ): UpperCamelCase : Any = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCamelCase__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class a ( _BaseAutoModelClass ): UpperCamelCase : str = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCamelCase__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
254
"""simple docstring""" import numpy as np def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case = 1e-1_2 ,_snake_case = 100 ,): assert np.shape(_snake_case )[0] == np.shape(_snake_case )[1] # Ensure proper dimensionality. assert np.shape(_snake_case )[0] == np.shape(_snake_case )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(_snake_case ) == np.iscomplexobj(_snake_case ) UpperCAmelCase__ : Tuple = np.iscomplexobj(_snake_case ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(_snake_case ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : int = 0 UpperCAmelCase__ : str = 0 UpperCAmelCase__ : str = 1e1_2 while not convergence: # Multiple matrix by the vector. UpperCAmelCase__ : List[str] = np.dot(_snake_case ,_snake_case ) # Normalize the resulting output vector. UpperCAmelCase__ : Optional[Any] = w / np.linalg.norm(_snake_case ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) UpperCAmelCase__ : int = vector.conj().T if is_complex else vector.T UpperCAmelCase__ : Tuple = np.dot(_snake_case ,np.dot(_snake_case ,_snake_case ) ) # Check convergence. UpperCAmelCase__ : str = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : str = lambda_ if is_complex: UpperCAmelCase__ : str = np.real(lambda_ ) return lambda_, vector def lowerCamelCase ( ): UpperCAmelCase__ : Optional[Any] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) UpperCAmelCase__ : Any = np.array([41, 4, 20] ) UpperCAmelCase__ : str = real_input_matrix.astype(np.complexaaa ) UpperCAmelCase__ : Optional[int] = np.triu(1J * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T UpperCAmelCase__ : Any = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": UpperCAmelCase__ : Tuple = real_input_matrix UpperCAmelCase__ : List[str] = real_vector elif problem_type == "complex": UpperCAmelCase__ : Optional[int] = complex_input_matrix UpperCAmelCase__ : List[Any] = complex_vector # Our implementation. UpperCAmelCase__ , UpperCAmelCase__ : int = power_iteration(_snake_case ,_snake_case ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). UpperCAmelCase__ , UpperCAmelCase__ : Tuple = np.linalg.eigh(_snake_case ) # Last eigenvalue is the maximum one. UpperCAmelCase__ : List[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. UpperCAmelCase__ : Tuple = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(_snake_case ) - np.abs(_snake_case ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
254
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() snake_case : Any = logging.get_logger() @dataclass class snake_case_ : UpperCAmelCase__ : nn.Module UpperCAmelCase__ : List[nn.Module] = field(default_factory=lowerCamelCase_ ) UpperCAmelCase__ : list = field(default_factory=lowerCamelCase_ ) def lowerCamelCase__( self :str ,__snake_case :Any ,__snake_case :Tensor ,__snake_case :Tensor ) -> List[Any]: a__ = len(list(m.modules() ) ) == 1 or isinstance(__snake_case ,nn.Convad ) or isinstance(__snake_case ,nn.BatchNormad ) if has_not_submodules: self.traced.append(__snake_case ) def __call__( self :int ,__snake_case :Tensor ) -> Any: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__snake_case ) [x.remove() for x in self.handles] return self @property def lowerCamelCase__( self :str ) -> Optional[int]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __snake_case : len(list(x.state_dict().keys() ) ) > 0 ,self.traced ) ) @dataclass class snake_case_ : UpperCAmelCase__ : nn.Module UpperCAmelCase__ : nn.Module UpperCAmelCase__ : int = 0 UpperCAmelCase__ : List = field(default_factory=lowerCamelCase_ ) UpperCAmelCase__ : List = field(default_factory=lowerCamelCase_ ) def __call__( self :Tuple ,__snake_case :Tensor ) -> Union[str, Any]: a__ = Tracker(self.dest )(__snake_case ).parametrized a__ = Tracker(self.src )(__snake_case ).parametrized a__ = list(filter(lambda __snake_case : type(__snake_case ) not in self.src_skip ,__snake_case ) ) a__ = list(filter(lambda __snake_case : type(__snake_case ) not in self.dest_skip ,__snake_case ) ) if len(__snake_case ) != len(__snake_case ): raise Exception( F'Numbers of operations are different. Source module has {len(__snake_case )} operations while' F' destination module has {len(__snake_case )}.' ) for dest_m, src_m in zip(__snake_case ,__snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}' ) def __lowercase ( __lowerCAmelCase : str , __lowerCAmelCase : ResNetConfig , __lowerCAmelCase : Path , __lowerCAmelCase : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): a__ = timm.create_model(__lowerCAmelCase , pretrained=__lowerCAmelCase ).eval() a__ = ResNetForImageClassification(__lowerCAmelCase ).eval() a__ = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase ) a__ = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__lowerCAmelCase ) assert torch.allclose(from_model(__lowerCAmelCase ) , our_model(__lowerCAmelCase ).logits ), "The model logits don't match the original one." a__ = F'resnet{"-".join(name.split("resnet" ) )}' print(__lowerCAmelCase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=__lowerCAmelCase , ) # we can use the convnext one a__ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=__lowerCAmelCase , ) print(F'Pushed {checkpoint_name}' ) def __lowercase ( __lowerCAmelCase : Path , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = True ): a__ = 'imagenet-1k-id2label.json' a__ = 1_0_0_0 a__ = (1, num_labels) a__ = 'huggingface/label-files' a__ = num_labels a__ = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) a__ = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} a__ = idalabel a__ = {v: k for k, v in idalabel.items()} a__ = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) a__ = { 'resnet18': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet26': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet34': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='basic' ), 'resnet50': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet101': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), 'resnet152': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='bottleneck' ), } if model_name: convert_weight_and_push(__lowerCAmelCase , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return config, expected_shape if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported resnet* architecture,''' ''' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) snake_case : int = parser.parse_args() snake_case : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
335
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case : Optional[Any] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[Any] = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : str = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Any = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys snake_case : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
335
1
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple , __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Any = None , __snake_case : Any = None , __snake_case : Any = None , ): '''simple docstring''' if config_name_or_path is None: lowercase = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: lowercase = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowercase = question_encoder_name_or_path lowercase = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. lowercase = RagConfig.from_pretrained(_lowerCAmelCase ) lowercase = AutoConfig.from_pretrained(_lowerCAmelCase ) lowercase = AutoConfig.from_pretrained(_lowerCAmelCase ) lowercase = gen_config lowercase = question_encoder_config lowercase = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase , _lowerCAmelCase , config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. lowercase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) lowercase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _UpperCamelCase : Dict = parser.parse_args() _UpperCamelCase : Any = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
701
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class a ( unittest.TestCase ): @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = VQModel( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , ) return model @property def UpperCamelCase_ ( self ): torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(_lowerCamelCase ) def UpperCamelCase_ ( self ): lowercase = self.dummy_uncond_unet lowercase = DDIMScheduler() lowercase = self.dummy_vq_model lowercase = LDMPipeline(unet=_lowerCamelCase , vqvae=_lowerCamelCase , scheduler=_lowerCamelCase ) ldm.to(_lowerCamelCase ) ldm.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = torch.manual_seed(0 ) lowercase = ldm(generator=_lowerCamelCase , num_inference_steps=2 , output_type='numpy' ).images lowercase = torch.manual_seed(0 ) lowercase = ldm(generator=_lowerCamelCase , num_inference_steps=2 , output_type='numpy' , return_dict=_lowerCamelCase )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) lowercase = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) lowercase = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): lowercase = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(_lowerCamelCase ) ldm.set_progress_bar_config(disable=_lowerCamelCase ) lowercase = torch.manual_seed(0 ) lowercase = ldm(generator=_lowerCamelCase , num_inference_steps=5 , output_type='numpy' ).images lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) lowercase = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) lowercase = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
134
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={ "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = '''xlm-roberta''' def __init__( self ,lowerCamelCase_=3_0_5_2_2 ,lowerCamelCase_=7_6_8 ,lowerCamelCase_=1_2 ,lowerCamelCase_=1_2 ,lowerCamelCase_=3_0_7_2 ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=5_1_2 ,lowerCamelCase_=2 ,lowerCamelCase_=0.02 ,lowerCamelCase_=1E-12 ,lowerCamelCase_=1 ,lowerCamelCase_=0 ,lowerCamelCase_=2 ,lowerCamelCase_="absolute" ,lowerCamelCase_=True ,lowerCamelCase_=None ,**lowerCamelCase_ ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,bos_token_id=lowerCamelCase_ ,eos_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) A = vocab_size A = hidden_size A = num_hidden_layers A = num_attention_heads A = hidden_act A = intermediate_size A = hidden_dropout_prob A = attention_probs_dropout_prob A = max_position_embeddings A = type_vocab_size A = initializer_range A = layer_norm_eps A = position_embedding_type A = use_cache A = classifier_dropout class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def UpperCamelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": A = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
617
"""simple docstring""" from __future__ import annotations from collections.abc import Sequence from typing import Literal def _A ( _a : str , _a : str ): """simple docstring""" A = list(_a ) A = list(_a ) A = 0 for i in range(len(_a ) ): if lista[i] != lista[i]: count += 1 A = """_""" if count > 1: return False else: return "".join(_a ) def _A ( _a : list[str] ): """simple docstring""" A = [] while True: A = ["""$"""] * len(_a ) A = [] for i in range(len(_a ) ): for j in range(i + 1 , len(_a ) ): A = compare_string(binary[i] , binary[j] ) if k is False: A = """*""" A = """*""" temp.append("""X""" ) for i in range(len(_a ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_a ) == 0: return pi A = list(set(_a ) ) def _A ( _a : int , _a : Sequence[float] ): """simple docstring""" A = [] for minterm in minterms: A = """""" for _ in range(_a ): A = str(minterm % 2 ) + string minterm //= 2 temp.append(_a ) return temp def _A ( _a : str , _a : str , _a : int ): """simple docstring""" A = list(_a ) A = list(_a ) A = 0 for i in range(len(_a ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _A ( _a : list[list[int]] , _a : list[str] ): """simple docstring""" A = [] A = [0] * len(_a ) for i in range(len(chart[0] ) ): A = 0 A = -1 for j in range(len(_a ) ): if chart[j][i] == 1: count += 1 A = j if count == 1: A = 1 for i in range(len(_a ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_a ) ): A = 0 temp.append(prime_implicants[i] ) while True: A = 0 A = -1 A = 0 for i in range(len(_a ) ): A = chart[i].count(1 ) if count_n > max_n: A = count_n A = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_a ) ): A = 0 def _A ( _a : list[str] , _a : list[str] ): """simple docstring""" A = [[0 for x in range(len(_a ) )] for x in range(len(_a ) )] for i in range(len(_a ) ): A = prime_implicants[i].count("""_""" ) for j in range(len(_a ) ): if is_for_table(prime_implicants[i] , binary[j] , _a ): A = 1 return chart def _A ( ): """simple docstring""" A = int(input("""Enter the no. of variables\n""" ) ) A = [ float(_a ) for x in input( """Enter the decimal representation of Minterms 'Spaces Separated'\n""" ).split() ] A = decimal_to_binary(_a , _a ) A = check(_a ) print("""Prime Implicants are:""" ) print(_a ) A = prime_implicant_chart(_a , _a ) A = selection(_a , _a ) print("""Essential Prime Implicants are:""" ) print(_a ) if __name__ == "__main__": import doctest doctest.testmod() main()
617
1
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a : Tuple = 250004 a : int = 250020 @require_sentencepiece @require_tokenizers class __UpperCamelCase ( a__ , unittest.TestCase ): lowerCamelCase : List[Any] =MBartaaTokenizer lowerCamelCase : List[str] =MBartaaTokenizerFast lowerCamelCase : Optional[int] =True lowerCamelCase : List[Any] =True def __a ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing a : Any = MBartaaTokenizer(__UpperCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self ) -> int: a : int = "<s>" a : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCamelCase ) , __UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> List[str]: a : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__UpperCamelCase ) , 1054 ) def __a ( self ) -> List[Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def __a ( self ) -> Optional[int]: a : str = MBartaaTokenizer(__UpperCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__UpperCamelCase ) a : Any = tokenizer.tokenize("This is a test" ) self.assertListEqual(__UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__UpperCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) a : int = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a : int = tokenizer.convert_ids_to_tokens(__UpperCamelCase ) self.assertListEqual( __UpperCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __a ( self ) -> List[str]: # fmt: off a : Tuple = {"input_ids": [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__UpperCamelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def __a ( self ) -> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return a : List[str] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a : Dict = self.rust_tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) a : str = self.tokenizer_class.from_pretrained(__UpperCamelCase , **__UpperCamelCase ) a : str = tempfile.mkdtemp() a : str = tokenizer_r.save_pretrained(__UpperCamelCase ) a : Optional[Any] = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) a : Tuple = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way a : Union[str, Any] = tokenizer_r.from_pretrained(__UpperCamelCase ) a : Optional[Any] = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=True a : int = tempfile.mkdtemp() a : Tuple = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) a : Optional[int] = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it save with the same files self.assertSequenceEqual(__UpperCamelCase , __UpperCamelCase ) # Checks everything loads correctly in the same way a : Optional[int] = tokenizer_r.from_pretrained(__UpperCamelCase ) a : Optional[Any] = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) # Save tokenizer rust, legacy_format=False a : Tuple = tempfile.mkdtemp() a : Optional[Any] = tokenizer_r.save_pretrained(__UpperCamelCase , legacy_format=__UpperCamelCase ) a : Optional[Any] = tokenizer_p.save_pretrained(__UpperCamelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way a : Tuple = tokenizer_r.from_pretrained(__UpperCamelCase ) a : Optional[Any] = tokenizer_p.from_pretrained(__UpperCamelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__UpperCamelCase , __UpperCamelCase ) ) shutil.rmtree(__UpperCamelCase ) @require_torch @require_sentencepiece @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): lowerCamelCase : int ="""facebook/mbart-large-50-one-to-many-mmt""" lowerCamelCase : Tuple =[ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowerCamelCase : List[Any] =[ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowerCamelCase : Optional[int] =[EN_CODE, 8274, 12_7873, 2_5916, 7, 8622, 2071, 438, 6_7485, 53, 18_7895, 23, 5_1712, 2] @classmethod def __a ( cls ) -> int: a : List[Any] = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) a : Optional[int] = 1 return cls def __a ( self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 25_0038 ) def __a ( self ) -> Union[str, Any]: a : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) def __a ( self ) -> Optional[int]: self.assertIn(__UpperCamelCase , self.tokenizer.all_special_ids ) a : Optional[Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] a : List[str] = self.tokenizer.decode(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) a : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__UpperCamelCase ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) self.assertNotIn(self.tokenizer.eos_token , __UpperCamelCase ) def __a ( self ) -> Tuple: a : List[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , __UpperCamelCase ) a : Union[str, Any] = 10 a : int = self.tokenizer(__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase ).input_ids[0] self.assertEqual(ids[0] , __UpperCamelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) def __a ( self ) -> int: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_0053, 25_0001] ) def __a ( self ) -> Any: a : List[Any] = tempfile.mkdtemp() a : List[Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__UpperCamelCase ) a : Union[str, Any] = MBartaaTokenizer.from_pretrained(__UpperCamelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __UpperCamelCase ) @require_torch def __a ( self ) -> int: a : Optional[int] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , return_tensors="pt" ) a : Union[str, Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __a ( self ) -> Optional[int]: a : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) a : Dict = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(__UpperCamelCase , __UpperCamelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) a : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __UpperCamelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __a ( self ) -> Dict: a : Optional[int] = self.tokenizer(self.src_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=3 , return_tensors="pt" ) a : List[Any] = self.tokenizer( text_target=self.tgt_text , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=10 , return_tensors="pt" ) a : Optional[int] = targets["input_ids"] a : str = shift_tokens_right(__UpperCamelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __a ( self ) -> Dict: a : Tuple = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(__UpperCamelCase ) , { # en_XX, A, test, EOS "input_ids": [[25_0004, 62, 3034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_0001, } , )
714
"""simple docstring""" from ..utils import DummyObject, requires_backends class __UpperCamelCase ( metaclass=a__ ): lowerCamelCase : Optional[Any] =["""transformers""", """torch""", """note_seq"""] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]: requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def __a ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any: requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def __a ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: requires_backends(cls , ["transformers", "torch", "note_seq"] )
31
0
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self, lowerCamelCase__ = 16, lowerCamelCase__ = 88, lowerCamelCase__ = None, lowerCamelCase__ = 1, lowerCamelCase__ = 0.0, lowerCamelCase__ = 32, lowerCamelCase__ = None, lowerCamelCase__ = False, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = "geglu", lowerCamelCase__ = None, ): super().__init__() A : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCamelCase__, attention_head_dim=lowerCamelCase__, in_channels=lowerCamelCase__, num_layers=lowerCamelCase__, dropout=lowerCamelCase__, norm_num_groups=lowerCamelCase__, cross_attention_dim=lowerCamelCase__, attention_bias=lowerCamelCase__, sample_size=lowerCamelCase__, num_vector_embeds=lowerCamelCase__, activation_fn=lowerCamelCase__, num_embeds_ada_norm=lowerCamelCase__, ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A : Optional[Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A : str = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A : str = [1, 0] def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__=None, lowerCamelCase__ = True, ): A : Optional[Any] = hidden_states A : int = [] A : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A : Tuple = self.transformer_index_for_condition[i] A : Union[str, Any] = self.transformers[transformer_index]( lowerCamelCase__, encoder_hidden_states=lowerCamelCase__, timestep=lowerCamelCase__, cross_attention_kwargs=lowerCamelCase__, return_dict=lowerCamelCase__, )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A : List[str] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A : Optional[Any] = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCamelCase__ )
662
from typing import Any import numpy as np def __UpperCamelCase ( _lowerCAmelCase ) -> bool: """simple docstring""" return np.array_equal(_lowerCAmelCase , matrix.conjugate().T ) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> Any: """simple docstring""" A : Any = v.conjugate().T A : List[Any] = v_star.dot(_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , np.ndarray ) return (v_star_dot.dot(_lowerCAmelCase )) / (v_star.dot(_lowerCAmelCase )) def __UpperCamelCase ( ) -> None: """simple docstring""" A : Any = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) A : str = np.array([[1], [2], [3]] ) assert is_hermitian(_lowerCAmelCase ), f'''{a} is not hermitian.''' print(rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) ) A : Tuple = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(_lowerCAmelCase ), f'''{a} is not hermitian.''' assert rayleigh_quotient(_lowerCAmelCase , _lowerCAmelCase ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
662
1
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case_ ( A__ ): """simple docstring""" def __UpperCAmelCase ( self): lowerCamelCase__ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(UpperCamelCase , "embed_dim")) self.parent.assertTrue(hasattr(UpperCamelCase , "num_heads")) class snake_case_ : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=64 , UpperCamelCase=3 , UpperCamelCase=[16, 48, 96] , UpperCamelCase=[1, 3, 6] , UpperCamelCase=[1, 2, 10] , UpperCamelCase=[7, 3, 3] , UpperCamelCase=[4, 2, 2] , UpperCamelCase=[2, 1, 1] , UpperCamelCase=[2, 2, 2] , UpperCamelCase=[False, False, True] , UpperCamelCase=[0.0, 0.0, 0.0] , UpperCamelCase=0.0_2 , UpperCamelCase=1E-1_2 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=2 , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = image_size lowerCamelCase__ = patch_sizes lowerCamelCase__ = patch_stride lowerCamelCase__ = patch_padding lowerCamelCase__ = is_training lowerCamelCase__ = use_labels lowerCamelCase__ = num_labels lowerCamelCase__ = num_channels lowerCamelCase__ = embed_dim lowerCamelCase__ = num_heads lowerCamelCase__ = stride_kv lowerCamelCase__ = depth lowerCamelCase__ = cls_token lowerCamelCase__ = attention_drop_rate lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps def __UpperCAmelCase ( self): lowerCamelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_labels) lowerCamelCase__ = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self): return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = CvtModel(config=UpperCamelCase) model.to(UpperCamelCase) model.eval() lowerCamelCase__ = model(UpperCamelCase) lowerCamelCase__ = (self.image_size, self.image_size) lowerCamelCase__ , lowerCamelCase__ = image_size[0], image_size[1] for i in range(len(self.depth)): lowerCamelCase__ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) lowerCamelCase__ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width)) def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = self.num_labels lowerCamelCase__ = CvtForImageClassification(UpperCamelCase) model.to(UpperCamelCase) model.eval() lowerCamelCase__ = model(UpperCamelCase , labels=UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCAmelCase ( self): lowerCamelCase__ = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = config_and_inputs lowerCamelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[Any] =(CvtModel, CvtForImageClassification) if is_torch_available() else () __lowerCAmelCase : Dict =( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : int =False __lowerCAmelCase : List[str] =False __lowerCAmelCase : str =False __lowerCAmelCase : Dict =False __lowerCAmelCase : Optional[int] =False def __UpperCAmelCase ( self): lowerCamelCase__ = CvtModelTester(self) lowerCamelCase__ = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37) def __UpperCAmelCase ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCAmelCase ( self): return @unittest.skip(reason="Cvt does not output attentions") def __UpperCAmelCase ( self): pass @unittest.skip(reason="Cvt does not use inputs_embeds") def __UpperCAmelCase ( self): pass @unittest.skip(reason="Cvt does not support input and output embeddings") def __UpperCAmelCase ( self): pass def __UpperCAmelCase ( self): lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = model_class(UpperCamelCase) lowerCamelCase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ = [*signature.parameters.keys()] lowerCamelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase) def __UpperCAmelCase ( self): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase) def __UpperCAmelCase ( self): def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = model_class(UpperCamelCase) model.to(UpperCamelCase) model.eval() with torch.no_grad(): lowerCamelCase__ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase)) lowerCamelCase__ = outputs.hidden_states lowerCamelCase__ = len(self.model_tester.depth) self.assertEqual(len(UpperCamelCase) , UpperCamelCase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCamelCase__ , lowerCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase) def __UpperCAmelCase ( self): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def __UpperCAmelCase ( self): pass @slow def __UpperCAmelCase ( self): for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ = CvtModel.from_pretrained(UpperCamelCase) self.assertIsNotNone(UpperCamelCase) def lowerCAmelCase( ): '''simple docstring''' lowerCamelCase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self): return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]) @slow def __UpperCAmelCase ( self): lowerCamelCase__ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to(UpperCamelCase) lowerCamelCase__ = self.default_image_processor lowerCamelCase__ = prepare_img() lowerCamelCase__ = image_processor(images=UpperCamelCase , return_tensors="pt").to(UpperCamelCase) # forward pass with torch.no_grad(): lowerCamelCase__ = model(**UpperCamelCase) # verify the logits lowerCamelCase__ = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape , UpperCamelCase) lowerCamelCase__ = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0]).to(UpperCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4))
426
'''simple docstring''' import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) set_seed(7_7_0) lowerCAmelCase_ = { "c_attn": "att_proj", "c_proj": "out_proj", "c_fc": "in_proj", "transformer.": "", "h.": "layers.", "ln_1": "layernorm_1", "ln_2": "layernorm_2", "ln_f": "layernorm_final", "wpe": "position_embeds_layer", "wte": "input_embeds_layer", } lowerCAmelCase_ = { "text_small": { "repo_id": "suno/bark", "file_name": "text.pt", }, "coarse_small": { "repo_id": "suno/bark", "file_name": "coarse.pt", }, "fine_small": { "repo_id": "suno/bark", "file_name": "fine.pt", }, "text": { "repo_id": "suno/bark", "file_name": "text_2.pt", }, "coarse": { "repo_id": "suno/bark", "file_name": "coarse_2.pt", }, "fine": { "repo_id": "suno/bark", "file_name": "fine_2.pt", }, } lowerCAmelCase_ = os.path.dirname(os.path.abspath(__file__)) lowerCAmelCase_ = os.path.join(os.path.expanduser("~"), ".cache") lowerCAmelCase_ = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") def lowerCAmelCase( a__ : Dict , a__ : Union[str, Any]=False ): '''simple docstring''' lowerCamelCase__ = model_type if use_small: key += "_small" return os.path.join(a__ , REMOTE_MODEL_PATHS[key]["file_name"] ) def lowerCAmelCase( a__ : Optional[Any] , a__ : Union[str, Any] ): '''simple docstring''' os.makedirs(a__ , exist_ok=a__ ) hf_hub_download(repo_id=a__ , filename=a__ , local_dir=a__ ) def lowerCAmelCase( a__ : List[Any] , a__ : Optional[int] , a__ : Union[str, Any]=False , a__ : str="text" ): '''simple docstring''' if model_type == "text": lowerCamelCase__ = BarkSemanticModel lowerCamelCase__ = BarkSemanticConfig lowerCamelCase__ = BarkSemanticGenerationConfig elif model_type == "coarse": lowerCamelCase__ = BarkCoarseModel lowerCamelCase__ = BarkCoarseConfig lowerCamelCase__ = BarkCoarseGenerationConfig elif model_type == "fine": lowerCamelCase__ = BarkFineModel lowerCamelCase__ = BarkFineConfig lowerCamelCase__ = BarkFineGenerationConfig else: raise NotImplementedError() lowerCamelCase__ = f"""{model_type}_small""" if use_small else model_type lowerCamelCase__ = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(a__ ): logger.info(f"""{model_type} model not found, downloading into `{CACHE_DIR}`.""" ) _download(model_info["repo_id"] , model_info["file_name"] ) lowerCamelCase__ = torch.load(a__ , map_location=a__ ) # this is a hack lowerCamelCase__ = checkpoint["model_args"] if "input_vocab_size" not in model_args: lowerCamelCase__ = model_args["vocab_size"] lowerCamelCase__ = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments lowerCamelCase__ = model_args.pop("n_head" ) lowerCamelCase__ = model_args.pop("n_embd" ) lowerCamelCase__ = model_args.pop("n_layer" ) lowerCamelCase__ = ConfigClass(**checkpoint["model_args"] ) lowerCamelCase__ = ModelClass(config=a__ ) lowerCamelCase__ = GenerationConfigClass() lowerCamelCase__ = model_generation_config lowerCamelCase__ = checkpoint["model"] # fixup checkpoint lowerCamelCase__ = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(a__ ): # replace part of the key with corresponding layer name in HF implementation lowerCamelCase__ = k[len(a__ ) :] for old_layer_name in new_layer_name_dict: lowerCamelCase__ = new_k.replace(a__ , new_layer_name_dict[old_layer_name] ) lowerCamelCase__ = state_dict.pop(a__ ) lowerCamelCase__ = set(state_dict.keys() ) - set(model.state_dict().keys() ) lowerCamelCase__ = {k for k in extra_keys if not k.endswith(".attn.bias" )} lowerCamelCase__ = set(model.state_dict().keys() ) - set(state_dict.keys() ) lowerCamelCase__ = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(a__ ) != 0: raise ValueError(f"""extra keys found: {extra_keys}""" ) if len(a__ ) != 0: raise ValueError(f"""missing keys: {missing_keys}""" ) model.load_state_dict(a__ , strict=a__ ) lowerCamelCase__ = model.num_parameters(exclude_embeddings=a__ ) lowerCamelCase__ = checkpoint["best_val_loss"].item() logger.info(f"""model loaded: {round(n_params/1E6 , 1 )}M params, {round(a__ , 3 )} loss""" ) model.eval() model.to(a__ ) del checkpoint, state_dict return model def lowerCAmelCase( a__ : Tuple , a__ : List[Any]=False , a__ : Optional[Any]="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() lowerCamelCase__ = "cpu" # do conversion on cpu lowerCamelCase__ = _get_ckpt_path(a__ , use_small=a__ ) lowerCamelCase__ = _load_model(a__ , a__ , model_type=a__ , use_small=a__ ) # load bark initial model lowerCamelCase__ = _bark_load_model(a__ , "cpu" , model_type=a__ , use_small=a__ ) if model_type == "text": lowerCamelCase__ = bark_model["model"] if model.num_parameters(exclude_embeddings=a__ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model lowerCamelCase__ = 5 lowerCamelCase__ = 10 if model_type in ["text", "coarse"]: lowerCamelCase__ = torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) lowerCamelCase__ = bark_model(a__ )[0] lowerCamelCase__ = model(a__ ) # take last logits lowerCamelCase__ = output_new_model_total.logits[:, [-1], :] else: lowerCamelCase__ = 3 lowerCamelCase__ = 8 lowerCamelCase__ = torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) lowerCamelCase__ = model(a__ , a__ ) lowerCamelCase__ = bark_model(a__ , a__ ) lowerCamelCase__ = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) def lowerCAmelCase( a__ : Dict , a__ : int , a__ : List[str] , a__ : Tuple , a__ : int , a__ : Tuple , ): '''simple docstring''' lowerCamelCase__ = os.path.join(a__ , a__ ) lowerCamelCase__ = BarkSemanticConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) lowerCamelCase__ = BarkCoarseConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) lowerCamelCase__ = BarkFineConfig.from_pretrained(os.path.join(a__ , "config.json" ) ) lowerCamelCase__ = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) lowerCamelCase__ = BarkSemanticModel.from_pretrained(a__ ) lowerCamelCase__ = BarkCoarseModel.from_pretrained(a__ ) lowerCamelCase__ = BarkFineModel.from_pretrained(a__ ) lowerCamelCase__ = EncodecModel.from_pretrained("facebook/encodec_24khz" ) lowerCamelCase__ = BarkConfig.from_sub_model_configs( a__ , a__ , a__ , a__ ) lowerCamelCase__ = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) lowerCamelCase__ = BarkModel(a__ ) lowerCamelCase__ = semantic lowerCamelCase__ = coarseAcoustic lowerCamelCase__ = fineAcoustic lowerCamelCase__ = codec lowerCamelCase__ = bark_generation_config Path(a__ ).mkdir(exist_ok=a__ ) bark.save_pretrained(a__ , repo_id=a__ , push_to_hub=a__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument("model_type", type=str, help="text, coarse or fine.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--is_small", action="store_true", help="convert the small version instead of the large.") lowerCAmelCase_ = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
426
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE :Tuple = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Union[str, Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
283
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} SCREAMING_SNAKE_CASE :str = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } SCREAMING_SNAKE_CASE :Tuple = { '''roberta-base''': 5_12, '''roberta-large''': 5_12, '''roberta-large-mnli''': 5_12, '''distilroberta-base''': 5_12, '''roberta-base-openai-detector''': 5_12, '''roberta-large-openai-detector''': 5_12, } class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE = ['input_ids', 'attention_mask'] _SCREAMING_SNAKE_CASE = RobertaTokenizer def __init__( self : Tuple , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Optional[Any]="replace" , _lowerCAmelCase : str="<s>" , _lowerCAmelCase : Tuple="</s>" , _lowerCAmelCase : Any="</s>" , _lowerCAmelCase : Tuple="<s>" , _lowerCAmelCase : Any="<unk>" , _lowerCAmelCase : Tuple="<pad>" , _lowerCAmelCase : List[str]="<mask>" , _lowerCAmelCase : str=False , _lowerCAmelCase : Union[str, Any]=True , **_lowerCAmelCase : int , ) -> str: """simple docstring""" super().__init__( _lowerCAmelCase , _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , errors=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , add_prefix_space=_lowerCAmelCase , trim_offsets=_lowerCAmelCase , **_lowerCAmelCase , ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: snake_case_ = getattr(_lowerCAmelCase , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**_lowerCAmelCase ) snake_case_ = add_prefix_space snake_case_ = "post_processor" snake_case_ = getattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) if tokenizer_component_instance: snake_case_ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: snake_case_ = tuple(state["sep"] ) if "cls" in state: snake_case_ = tuple(state["cls"] ) snake_case_ = False if state.get("add_prefix_space" , _lowerCAmelCase ) != add_prefix_space: snake_case_ = add_prefix_space snake_case_ = True if state.get("trim_offsets" , _lowerCAmelCase ) != trim_offsets: snake_case_ = trim_offsets snake_case_ = True if changes_to_apply: snake_case_ = getattr(_lowerCAmelCase , state.pop("type" ) ) snake_case_ = component_class(**_lowerCAmelCase ) setattr(self.backend_tokenizer , _lowerCAmelCase , _lowerCAmelCase ) @property def lowerCAmelCase__ ( self : Dict ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase__ ( self : Tuple , _lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" snake_case_ = AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else value snake_case_ = value def lowerCAmelCase__ ( self : Dict , *_lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Optional[int] ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] , *_lowerCAmelCase : str , **_lowerCAmelCase : Any ) -> BatchEncoding: """simple docstring""" snake_case_ = kwargs.get("is_split_into_words" , _lowerCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_lowerCAmelCase , **_lowerCAmelCase ) def lowerCAmelCase__ ( self : int , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" snake_case_ = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any , _lowerCAmelCase : int , _lowerCAmelCase : List[Any]=None ) -> Union[str, Any]: """simple docstring""" snake_case_ = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase__ ( self : Union[str, Any] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
283
1
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class lowercase__ ( nn.Module ): def __init__( self : Dict , UpperCAmelCase_ : nn.Module , UpperCAmelCase_ : int ): super().__init__() SCREAMING_SNAKE_CASE__ = module SCREAMING_SNAKE_CASE__ = nn.Sequential( nn.Linear(module.in_features , UpperCAmelCase_ , bias=UpperCAmelCase_ ) , nn.Linear(UpperCAmelCase_ , module.out_features , bias=UpperCAmelCase_ ) , ) SCREAMING_SNAKE_CASE__ = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=UpperCAmelCase_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def A_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ): return self.module(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) + self.adapter(UpperCAmelCase_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module A__ : Any ="""bigscience/bloom-1b7""" # Constant values A__ : Union[str, Any] =2.109_6595_5269_2574 A__ : List[str] ="""Hello my name is""" A__ : List[str] =set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) A__ : Optional[Any] =1_0 def A_ ( self : str ): # Models and tokenizer SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(self.model_name ) class lowercase__ ( _UpperCAmelCase ): def A_ ( self : int ): super().setUp() # Models and tokenizer SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map='auto' ) SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) def A_ ( self : int ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.model_abit.config self.assertTrue(hasattr(UpperCAmelCase_ , 'quantization_config' ) ) SCREAMING_SNAKE_CASE__ = config.to_dict() SCREAMING_SNAKE_CASE__ = config.to_diff_dict() SCREAMING_SNAKE_CASE__ = config.to_json_string() def A_ ( self : Union[str, Any] ): from bitsandbytes.nn import Paramsabit SCREAMING_SNAKE_CASE__ = self.model_fpaa.get_memory_footprint() SCREAMING_SNAKE_CASE__ = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) SCREAMING_SNAKE_CASE__ = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def A_ ( self : List[Any] ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(UpperCAmelCase_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = BitsAndBytesConfig() SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCAmelCase_ , device_map='auto' ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = model_abit_from_config.generate( input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCAmelCase_ ) , self.EXPECTED_OUTPUTS ) def A_ ( self : str ): with self.assertRaises(UpperCAmelCase_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(UpperCAmelCase_ ) def A_ ( self : Tuple ): SCREAMING_SNAKE_CASE__ = BitsAndBytesConfig() with self.assertRaises(UpperCAmelCase_ ): SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=UpperCAmelCase_ , load_in_abit=UpperCAmelCase_ , device_map='auto' , bnb_abit_quant_type='nf4' , ) def A_ ( self : str ): with self.assertRaises(UpperCAmelCase_ ): # Tries with `str` self.model_abit.to('cpu' ) with self.assertRaises(UpperCAmelCase_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(UpperCAmelCase_ ): # Tries with a `device` self.model_abit.to(torch.device('cuda:0' ) ) with self.assertRaises(UpperCAmelCase_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(UpperCAmelCase_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = self.model_fpaa.to(torch.floataa ) SCREAMING_SNAKE_CASE__ = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.to('cpu' ) # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.half() # Check this does not throw an error SCREAMING_SNAKE_CASE__ = self.model_fpaa.float() def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=UpperCAmelCase_ , device_map='auto' ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): @classmethod def A_ ( cls : Dict ): SCREAMING_SNAKE_CASE__ = 't5-small' SCREAMING_SNAKE_CASE__ = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(cls.model_name ) SCREAMING_SNAKE_CASE__ = 'Translate in German: Hello, my dog is cute' def A_ ( self : List[Any] ): gc.collect() torch.cuda.empty_cache() def A_ ( self : int ): from transformers import TaForConditionalGeneration SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration._keep_in_fpaa_modules SCREAMING_SNAKE_CASE__ = None # test with `t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**UpperCAmelCase_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = modules def A_ ( self : Union[str, Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**UpperCAmelCase_ ) # test with `flan-t5-small` SCREAMING_SNAKE_CASE__ = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 ) SCREAMING_SNAKE_CASE__ = model.generate(**UpperCAmelCase_ ) class lowercase__ ( _UpperCAmelCase ): def A_ ( self : int ): super().setUp() # model_name SCREAMING_SNAKE_CASE__ = 'bigscience/bloom-560m' SCREAMING_SNAKE_CASE__ = 't5-small' # Different types of model SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) # Sequence classification model SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) # CausalLM model SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) # Seq2seq model SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=UpperCAmelCase_ , device_map='auto' ) def A_ ( self : List[str] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def A_ ( self : int ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class lowercase__ ( _UpperCAmelCase ): def A_ ( self : Optional[int] ): super().setUp() def A_ ( self : Union[str, Any] ): del self.pipe gc.collect() torch.cuda.empty_cache() def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = pipeline( 'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass SCREAMING_SNAKE_CASE__ = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class lowercase__ ( _UpperCAmelCase ): def A_ ( self : Any ): super().setUp() def A_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=UpperCAmelCase_ , device_map='balanced' ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model SCREAMING_SNAKE_CASE__ = self.tokenizer(self.input_text , return_tensors='pt' ) # Second real batch SCREAMING_SNAKE_CASE__ = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=UpperCAmelCase_ ) , self.EXPECTED_OUTPUTS ) class lowercase__ ( _UpperCAmelCase ): def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = 'facebook/opt-350m' super().setUp() def A_ ( self : Tuple ): if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ): return # Step 1: freeze all parameters SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCAmelCase_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): SCREAMING_SNAKE_CASE__ = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability SCREAMING_SNAKE_CASE__ = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(UpperCAmelCase_ ) ): SCREAMING_SNAKE_CASE__ = LoRALayer(module.q_proj , rank=16 ) SCREAMING_SNAKE_CASE__ = LoRALayer(module.k_proj , rank=16 ) SCREAMING_SNAKE_CASE__ = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch SCREAMING_SNAKE_CASE__ = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE__ = model.forward(**UpperCAmelCase_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(UpperCAmelCase_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class lowercase__ ( _UpperCAmelCase ): A__ : List[Any] ="""gpt2-xl""" A__ : Optional[Any] =3.3191_8548_5415_2187
400
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : Optional[Any] =XLMProphetNetTokenizer A__ : str =False A__ : Union[str, Any] =True def A_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = XLMProphetNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = '[PAD]' SCREAMING_SNAKE_CASE__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : Any ): SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(UpperCAmelCase_ ) , 1012 ) def A_ ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = XLMProphetNetTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(UpperCAmelCase_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def A_ ( self : Tuple ): return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def A_ ( self : List[str] ): SCREAMING_SNAKE_CASE__ = 'Hello World!' SCREAMING_SNAKE_CASE__ = [35389, 6672, 49, 2] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_ ) ) @slow def A_ ( self : Union[str, Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = {'input_ids': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
400
1
def __lowercase ( snake_case ): """simple docstring""" if not all(char in '''01''' for char in bin_string ): raise ValueError('''Non-binary value was passed to the function''' ) if not bin_string: raise ValueError('''Empty string was passed to the function''' ) __magic_name__ :str = '''''' while len(__UpperCamelCase ) % 3 != 0: __magic_name__ :Tuple = '''0''' + bin_string __magic_name__ :Dict = [ bin_string[index : index + 3] for index in range(len(__UpperCamelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __magic_name__ :Tuple = 0 for index, val in enumerate(__UpperCamelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCamelCase ) ) oct_string += str(__UpperCamelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
0
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case : Tuple = logging.get_logger(__name__) snake_case : List[Any] = '▁' snake_case : Tuple = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } snake_case : Optional[Any] = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } snake_case : str = { 'facebook/s2t-small-librispeech-asr': 1_024, } snake_case : Optional[Any] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] snake_case : Union[str, Any] = {'mustc': MUSTC_LANGS} class lowerCamelCase__( snake_case_ ): UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES UpperCamelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase : List[Any] = MAX_MODEL_INPUT_SIZES UpperCamelCase : List[str] = ["input_ids", "attention_mask"] UpperCamelCase : List[int] = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = None , **__UpperCAmelCase , ): """simple docstring""" __lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , do_upper_case=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , lang_codes=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) __lowercase = do_upper_case __lowercase = do_lower_case __lowercase = load_json(__UpperCAmelCase ) __lowercase = {v: k for k, v in self.encoder.items()} __lowercase = spm_file __lowercase = load_spm(__UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __lowercase = lang_codes __lowercase = LANGUAGES[lang_codes] __lowercase = [F'''<lang:{lang}>''' for lang in self.langs] __lowercase = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} __lowercase = self.lang_tokens __lowercase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __lowercase = {} @property def __magic_name__ ( self ): """simple docstring""" return len(self.encoder ) @property def __magic_name__ ( self ): """simple docstring""" return self._tgt_lang @tgt_lang.setter def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = new_tgt_lang self.set_tgt_lang_special_tokens(__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = self.lang_code_to_id[tgt_lang] __lowercase = [lang_code_id] def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.encoder.get(__UpperCAmelCase , self.encoder[self.unk_token] ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" return self.decoder.get(__UpperCAmelCase , self.unk_token ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = [] __lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __lowercase = self.sp_model.decode(__UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __lowercase = [] else: current_sub_tokens.append(__UpperCAmelCase ) __lowercase = self.sp_model.decode(__UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase=None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) __lowercase = [1] * len(self.prefix_tokens ) __lowercase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def __magic_name__ ( self ): """simple docstring""" __lowercase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __lowercase = self.__dict__.copy() __lowercase = None return state def __setstate__( self , __UpperCAmelCase ): """simple docstring""" __lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowercase = {} __lowercase = load_spm(self.spm_file , self.sp_model_kwargs ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase = None ): """simple docstring""" __lowercase = Path(__UpperCAmelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' __lowercase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __lowercase = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__UpperCAmelCase , """wb""" ) as fi: __lowercase = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (str(__UpperCAmelCase ), str(__UpperCAmelCase )) def lowercase__ ( __UpperCamelCase : str , __UpperCamelCase : Dict[str, Any] ): '''simple docstring''' __lowercase = sentencepiece.SentencePieceProcessor(**__UpperCamelCase ) spm.Load(str(__UpperCamelCase ) ) return spm def lowercase__ ( __UpperCamelCase : str ): '''simple docstring''' with open(__UpperCamelCase , """r""" ) as f: return json.load(__UpperCamelCase ) def lowercase__ ( __UpperCamelCase : str , __UpperCamelCase : str ): '''simple docstring''' with open(__UpperCamelCase , """w""" ) as f: json.dump(__UpperCamelCase , __UpperCamelCase , indent=2 )
566
0
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) UpperCAmelCase : Dict = logging.getLogger(__name__) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=30522, type=int) UpperCAmelCase : int = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: UpperCAmelCase : int = pickle.load(fp) logger.info("Counting occurrences for MLM.") UpperCAmelCase : Union[str, Any] = Counter() for tk_ids in data: counter.update(tk_ids) UpperCAmelCase : List[str] = [0] * args.vocab_size for k, v in counter.items(): UpperCAmelCase : str = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
121
"""simple docstring""" def __a ( _lowercase ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCAmelCase : Tuple = int(input("Enter number: ").strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
121
1
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets UpperCAmelCase = datasets.logging.get_logger(__name__) UpperCAmelCase = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' UpperCAmelCase = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' UpperCAmelCase = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' UpperCAmelCase = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __snake_case( datasets.Metric ): '''simple docstring''' def __snake_case ( self ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/google-research/bleurt""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/google-research/bleurt"""] , reference_urls=["""https://github.com/google-research/bleurt""", """https://arxiv.org/abs/2004.04696"""] , ) def __snake_case ( self , A_ ) -> int: # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( """Using default BLEURT-Base checkpoint for sequence maximum length 128. """ """You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').""" ) lowerCAmelCase = """bleurt-base-128""" if self.config_name.lower() in CHECKPOINT_URLS: lowerCAmelCase = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: lowerCAmelCase = self.config_name.upper() else: raise KeyError( f'{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}' ) # download the model checkpoint specified by self.config_name and set up the scorer lowerCAmelCase = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) lowerCAmelCase = score.BleurtScorer(os.path.join(A_ , A_ ) ) def __snake_case ( self , A_ , A_ ) -> Tuple: lowerCAmelCase = self.scorer.score(references=A_ , candidates=A_ ) return {"scores": scores}
433
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowercase( metaclass=_lowerCamelCase ): """simple docstring""" __lowerCamelCase = ['''onnx'''] def __init__( self: Any ,*a: List[str] ,**a: str ): requires_backends(self ,['onnx'] ) @classmethod def snake_case ( cls: Optional[Any] ,*a: List[str] ,**a: Any ): requires_backends(cls ,['onnx'] ) @classmethod def snake_case ( cls: str ,*a: Dict ,**a: str ): requires_backends(cls ,['onnx'] )
396
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters __lowercase = (7_2_0, 1_2_8_0) # Height, Width __lowercase = (0.4, 0.6) # if height or width lower than this scale, drop it. __lowercase = 1 / 1_0_0 __lowercase = '''''' __lowercase = '''''' __lowercase = '''''' __lowercase = 2_5_0 def snake_case__ ( ) -> None: '''simple docstring''' lowerCAmelCase , lowerCAmelCase = get_dataset(_A , _A ) for index in range(_A ): lowerCAmelCase = random.sample(range(len(_A ) ) , 4 ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = update_image_and_anno( _A , _A , _A , _A , _A , filter_scale=_A , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' lowerCAmelCase = random_chars(32 ) lowerCAmelCase = path.split(os.sep )[-1].rsplit(""".""" , 1 )[0] lowerCAmelCase = f"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(f"{file_root}.jpg" , _A , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) lowerCAmelCase = [] for anno in new_annos: lowerCAmelCase = anno[3] - anno[1] lowerCAmelCase = anno[4] - anno[2] lowerCAmelCase = anno[1] + width / 2 lowerCAmelCase = anno[2] + height / 2 lowerCAmelCase = f"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(_A ) with open(f"{file_root}.txt" , """w""" ) as outfile: outfile.write("""\n""".join(line for line in annos_list ) ) def snake_case__ ( _A: str , _A: str ) -> tuple[list, list]: '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = [] for label_file in glob.glob(os.path.join(_A , """*.txt""" ) ): lowerCAmelCase = label_file.split(os.sep )[-1].rsplit(""".""" , 1 )[0] with open(_A ) as in_file: lowerCAmelCase = in_file.readlines() lowerCAmelCase = os.path.join(_A , f"{label_name}.jpg" ) lowerCAmelCase = [] for obj_list in obj_lists: lowerCAmelCase = obj_list.rstrip("""\n""" ).split(""" """ ) lowerCAmelCase = float(obj[1] ) - float(obj[3] ) / 2 lowerCAmelCase = float(obj[2] ) - float(obj[4] ) / 2 lowerCAmelCase = float(obj[1] ) + float(obj[3] ) / 2 lowerCAmelCase = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_A ) labels.append(_A ) return img_paths, labels def snake_case__ ( _A: list , _A: list , _A: list[int] , _A: tuple[int, int] , _A: tuple[float, float] , _A: float = 0.0 , ) -> tuple[list, list, str]: '''simple docstring''' lowerCAmelCase = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) lowerCAmelCase = int(scale_x * output_size[1] ) lowerCAmelCase = int(scale_y * output_size[0] ) lowerCAmelCase = [] lowerCAmelCase = [] for i, index in enumerate(_A ): lowerCAmelCase = all_img_list[index] path_list.append(_A ) lowerCAmelCase = all_annos[index] lowerCAmelCase = cva.imread(_A ) if i == 0: # top-left lowerCAmelCase = cva.resize(_A , (divid_point_x, divid_point_y) ) lowerCAmelCase = img for bbox in img_annos: lowerCAmelCase = bbox[1] * scale_x lowerCAmelCase = bbox[2] * scale_y lowerCAmelCase = bbox[3] * scale_x lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right lowerCAmelCase = cva.resize(_A , (output_size[1] - divid_point_x, divid_point_y) ) lowerCAmelCase = img for bbox in img_annos: lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase = bbox[2] * scale_y lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left lowerCAmelCase = cva.resize(_A , (divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase = img for bbox in img_annos: lowerCAmelCase = bbox[1] * scale_x lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase = bbox[3] * scale_x lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right lowerCAmelCase = cva.resize( _A , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) lowerCAmelCase = img for bbox in img_annos: lowerCAmelCase = scale_x + bbox[1] * (1 - scale_x) lowerCAmelCase = scale_y + bbox[2] * (1 - scale_y) lowerCAmelCase = scale_x + bbox[3] * (1 - scale_x) lowerCAmelCase = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: lowerCAmelCase = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def snake_case__ ( _A: int ) -> str: '''simple docstring''' assert number_char > 1, "The number of character should greater than 1" lowerCAmelCase = ascii_lowercase + digits return "".join(random.choice(_A ) for _ in range(_A ) ) if __name__ == "__main__": main() print('''DONE ✅''')
605
'''simple docstring''' import operator as op def snake_case__ ( _A: Optional[Any] ) -> Tuple: '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = lambda _A , _A : int(x / y ) # noqa: E731 integer division operation lowerCAmelCase = { """^""": op.pow, """*""": op.mul, """/""": div, """+""": op.add, """-""": op.sub, } # operators & their respective operation # print table header print("""Symbol""".center(8 ) , """Action""".center(12 ) , """Stack""" , sep=""" | """ ) print("""-""" * (30 + len(_A )) ) for x in post_fix: if x.isdigit(): # if x in digit stack.append(_A ) # append x to stack # output in tabular format print(x.rjust(8 ) , ("""push(""" + x + """)""").ljust(12 ) , """,""".join(_A ) , sep=""" | """ ) else: lowerCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + b + """)""").ljust(12 ) , """,""".join(_A ) , sep=""" | """ ) lowerCAmelCase = stack.pop() # pop stack # output in tabular format print("""""".rjust(8 ) , ("""pop(""" + a + """)""").ljust(12 ) , """,""".join(_A ) , sep=""" | """ ) stack.append( str(opr[x](int(_A ) , int(_A ) ) ) ) # evaluate the 2 values popped from stack & push result to stack # output in tabular format print( x.rjust(8 ) , ("""push(""" + a + x + b + """)""").ljust(12 ) , """,""".join(_A ) , sep=""" | """ , ) return int(stack[0] ) if __name__ == "__main__": __lowercase = input('''\n\nEnter a Postfix Equation (space separated) = ''').split(''' ''') print('''\n\tResult = ''', solve(Postfix))
605
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[Any] = { '''microsoft/swinv2-tiny-patch4-window8-256''': ( '''https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''swinv2''' lowerCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=96 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[3, 6, 12, 24] , _UpperCAmelCase=7 , _UpperCAmelCase=4.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=32 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : Dict = image_size __A : Optional[int] = patch_size __A : int = num_channels __A : Tuple = embed_dim __A : Dict = depths __A : str = len(_UpperCAmelCase) __A : int = num_heads __A : Optional[int] = window_size __A : int = mlp_ratio __A : Optional[Any] = qkv_bias __A : Dict = hidden_dropout_prob __A : Union[str, Any] = attention_probs_dropout_prob __A : Any = drop_path_rate __A : List[Any] = hidden_act __A : Optional[Any] = use_absolute_embeddings __A : List[Any] = layer_norm_eps __A : Union[str, Any] = initializer_range __A : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : List[str] = int(embed_dim * 2 ** (len(_UpperCAmelCase) - 1)) __A : Dict = (0, 0, 0, 0)
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
import string import numpy def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: int , __lowerCamelCase: int ): return b if a == 0 else greatest_common_divisor(b % a , __lowerCamelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) lowerCAmelCase__ = numpy.vectorize(lambda snake_case_ : x % 36 ) lowerCAmelCase__ = numpy.vectorize(snake_case_ ) def __init__( self , UpperCAmelCase ) -> None: '''simple docstring''' lowercase_ = self.modulus(UpperCAmelCase ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowercase_ = encrypt_key.shape[0] def A__ ( self , UpperCAmelCase ) -> int: '''simple docstring''' return self.key_string.index(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' return self.key_string[round(UpperCAmelCase )] def A__ ( self ) -> None: '''simple docstring''' lowercase_ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ = det % len(self.key_string ) lowercase_ = len(self.key_string ) if greatest_common_divisor(UpperCAmelCase , len(self.key_string ) ) != 1: lowercase_ = ( F'determinant modular {req_l} of encryption key({det}) ' F'is not co prime w.r.t {req_l}.\nTry another key.' ) raise ValueError(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = [char for char in text.upper() if char in self.key_string] lowercase_ = chars[-1] while len(UpperCAmelCase ) % self.break_key != 0: chars.append(UpperCAmelCase ) return "".join(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = self.process_text(text.upper() ) lowercase_ = "" for i in range(0 , len(UpperCAmelCase ) - self.break_key + 1 , self.break_key ): lowercase_ = text[i : i + self.break_key] lowercase_ = [self.replace_letters(UpperCAmelCase ) for char in batch] lowercase_ = numpy.array([vec] ).T lowercase_ = self.modulus(self.encrypt_key.dot(UpperCAmelCase ) ).T.tolist()[ 0 ] lowercase_ = "".join( self.replace_digits(UpperCAmelCase ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def A__ ( self ) -> numpy.ndarray: '''simple docstring''' lowercase_ = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowercase_ = det % len(self.key_string ) lowercase_ = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowercase_ = i break lowercase_ = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(UpperCAmelCase ) ) def A__ ( self , UpperCAmelCase ) -> str: '''simple docstring''' lowercase_ = self.make_decrypt_key() lowercase_ = self.process_text(text.upper() ) lowercase_ = "" for i in range(0 , len(UpperCAmelCase ) - self.break_key + 1 , self.break_key ): lowercase_ = text[i : i + self.break_key] lowercase_ = [self.replace_letters(UpperCAmelCase ) for char in batch] lowercase_ = numpy.array([vec] ).T lowercase_ = self.modulus(decrypt_key.dot(UpperCAmelCase ) ).T.tolist()[0] lowercase_ = "".join( self.replace_digits(UpperCAmelCase ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def SCREAMING_SNAKE_CASE_ ( ): lowercase_ = int(input("Enter the order of the encryption key: " ) ) lowercase_ = [] print("Enter each row of the encryption key with space separated integers" ) for _ in range(__lowerCamelCase ): lowercase_ = [int(__lowerCamelCase ) for x in input().split()] hill_matrix.append(__lowerCamelCase ) lowercase_ = HillCipher(numpy.array(__lowerCamelCase ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) lowercase_ = input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": lowercase_ = input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(__lowerCamelCase ) ) elif option == "2": lowercase_ = input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(__lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
711
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): SCREAMING_SNAKE_CASE__ = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCAmelCase__ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.999_995 , metadata={"help": "Decay of gumbel temperature during training."} ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: ModelArguments , __lowerCamelCase: TrainingArguments ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase_ = logging.WARNING if model_args.verbose_logging: lowercase_ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase_ = logging.INFO logger.setLevel(__lowerCamelCase ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowerCAmelCase__ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowerCAmelCase__ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase__ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase__ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = "longest" lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__( self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowercase_ = self.feature_extractor.pad( UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) lowercase_ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowercase_ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase_ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowercase_ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase_ = 1 lowercase_ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase_ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase , min_masks=2 , ) return batch class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , *UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=1.0 , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCAmelCase , **UpperCAmelCase ) lowercase_ = 0 lowercase_ = max_gumbel_temp lowercase_ = min_gumbel_temp lowercase_ = gumbel_temp_decay def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' model.train() lowercase_ = self._prepare_inputs(UpperCAmelCase ) if self.use_amp: with autocast(): lowercase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) else: lowercase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase_ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowercase_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() configure_logger(__lowerCamelCase , __lowerCamelCase ) # Downloading and loading a dataset from the hub. lowercase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase_ = DatasetDict() lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase_ = DatasetDict() lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase_ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCamelCase ) def prepare_dataset(__lowerCamelCase: Dict ): # check that all files have the correct sampling rate lowercase_ , lowercase_ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase_ = datasets.map( __lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long lowercase_ = vectorized_datasets.filter( lambda __lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCamelCase: Optional[Any] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase_ = vectorized_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase_ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) lowercase_ = WavaVecaForPreTraining(__lowerCamelCase ) lowercase_ = DataCollatorForWavaVecaPretraining(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) lowercase_ = WavaVecaPreTrainer( model=__lowerCamelCase , data_collator=__lowerCamelCase , args=__lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
601
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class lowerCamelCase__ : """simple docstring""" a__ : Optional[int] = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a__ : bool = field( default=lowerCamelCase_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."}) a__ : bool = field( default=lowerCamelCase_ , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) a__ : Optional[int] = field( default=lowerCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a__ : Optional[int] = field( default=lowerCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) a__ : Optional[int] = field( default=lowerCamelCase_ , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class lowerCamelCase__ : """simple docstring""" a__ : str = field( default=lowerCamelCase_ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) a__ : str = field( default=lowerCamelCase_ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}) a__ : Optional[str] = field( default=lowerCamelCase_ , metadata={"help": "Train language if it is different from the evaluation language."}) a__ : Optional[str] = field( default=lowerCamelCase_ , metadata={"help": "Pretrained config name or path if not the same as model_name"}) a__ : Optional[str] = field( default=lowerCamelCase_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) a__ : Optional[str] = field( default=lowerCamelCase_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a__ : Optional[bool] = field( default=lowerCamelCase_ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) a__ : bool = field( default=lowerCamelCase_ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) a__ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a__ : bool = field( default=lowerCamelCase_ , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) a__ : bool = field( default=lowerCamelCase_ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _A = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _A = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _A = train_dataset.features['''label'''].names if training_args.do_eval: _A = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _A = eval_dataset.features['''label'''].names if training_args.do_predict: _A = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _A = predict_dataset.features['''label'''].names # Labels _A = len(SCREAMING_SNAKE_CASE_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE_ , idalabel={str(SCREAMING_SNAKE_CASE_ ): label for i, label in enumerate(SCREAMING_SNAKE_CASE_ )} , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE_ )} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _A = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _A = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _A = False def preprocess_function(_snake_case :Tuple ): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=SCREAMING_SNAKE_CASE_ , max_length=data_args.max_seq_length , truncation=SCREAMING_SNAKE_CASE_ , ) if training_args.do_train: if data_args.max_train_samples is not None: _A = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_train_samples ) _A = train_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): _A = train_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(SCREAMING_SNAKE_CASE_ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: _A = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_eval_samples ) _A = eval_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): _A = eval_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _A = min(len(SCREAMING_SNAKE_CASE_ ) , data_args.max_predict_samples ) _A = predict_dataset.select(range(SCREAMING_SNAKE_CASE_ ) ) with training_args.main_process_first(desc='''prediction dataset map pre-processing''' ): _A = predict_dataset.map( SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function _A = evaluate.load('''xnli''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_snake_case :EvalPrediction ): _A = p.predictions[0] if isinstance(p.predictions , SCREAMING_SNAKE_CASE_ ) else p.predictions _A = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _A = default_data_collator elif training_args.fpaa: _A = DataCollatorWithPadding(SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=8 ) else: _A = None # Initialize our Trainer _A = Trainer( model=SCREAMING_SNAKE_CASE_ , args=SCREAMING_SNAKE_CASE_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , data_collator=SCREAMING_SNAKE_CASE_ , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) _A = train_result.metrics _A = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE_ ) ) _A = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('''train''' , SCREAMING_SNAKE_CASE_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) _A = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE_ ) _A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE_ ) _A = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE_ ) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''' ) _A , _A , _A = trainer.predict(SCREAMING_SNAKE_CASE_ , metric_key_prefix='''predict''' ) _A = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(SCREAMING_SNAKE_CASE_ ) ) _A = min(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) trainer.log_metrics('''predict''' , SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('''predict''' , SCREAMING_SNAKE_CASE_ ) _A = np.argmax(SCREAMING_SNAKE_CASE_ , axis=1 ) _A = os.path.join(training_args.output_dir , '''predictions.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as writer: writer.write('''index\tprediction\n''' ) for index, item in enumerate(SCREAMING_SNAKE_CASE_ ): _A = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
2
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = CLIPConfig SCREAMING_SNAKE_CASE_ : Optional[int] = ["""CLIPEncoderLayer"""] def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]: super().__init__(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = CLIPVisionModelWithProjection(config.vision_config ) SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) SCREAMING_SNAKE_CASE = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=0.5 , lowerCAmelCase__=0.5 ) -> List[str]: SCREAMING_SNAKE_CASE = self.vision_model(lowerCAmelCase__ )[0] SCREAMING_SNAKE_CASE = self.p_head(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = nsfw_detected.flatten() SCREAMING_SNAKE_CASE = nsfw_detected > p_threshold SCREAMING_SNAKE_CASE = nsfw_detected.tolist() if any(lowerCAmelCase__ ): logger.warning( 'Potential NSFW content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, nsfw_detected_ in enumerate(lowerCAmelCase__ ): if nsfw_detected_: SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) SCREAMING_SNAKE_CASE = self.w_head(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = watermark_detected.flatten() SCREAMING_SNAKE_CASE = watermark_detected > w_threshold SCREAMING_SNAKE_CASE = watermark_detected.tolist() if any(lowerCAmelCase__ ): logger.warning( 'Potential watermarked content was detected in one or more images. A black image will be returned instead.' ' Try again with a different prompt and/or seed.' ) for idx, watermark_detected_ in enumerate(lowerCAmelCase__ ): if watermark_detected_: SCREAMING_SNAKE_CASE = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
247
0
'''simple docstring''' from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" __A = ["image_processor", "tokenizer"] __A = "BlipImageProcessor" __A = "AutoTokenizer" def __init__( self , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = False super().__init__(lowerCamelCase__ , lowerCamelCase__ ) snake_case_ = self.image_processor def __call__( self , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: snake_case_ = self.tokenizer snake_case_ = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) return text_encoding # add pixel_values snake_case_ = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ ) if text is not None: snake_case_ = self.tokenizer( text=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) else: snake_case_ = None if text_encoding is not None: encoding_image_processor.update(lowerCamelCase__ ) return encoding_image_processor def __lowerCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def __lowerCAmelCase ( self , *__UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.tokenizer.model_input_names snake_case_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
718
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class SCREAMING_SNAKE_CASE ( __snake_case ): """simple docstring""" def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(__UpperCamelCase , 'num_attention_heads' ) ) class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=6_40 , __UpperCamelCase=4 , __UpperCamelCase="silu" , __UpperCamelCase=3 , __UpperCamelCase=32 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=0.02 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=10 , __UpperCamelCase=None , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = last_hidden_size snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = conv_kernel_size snake_case_ = output_stride snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = classifier_dropout_prob snake_case_ = use_labels snake_case_ = is_training snake_case_ = num_labels snake_case_ = initializer_range snake_case_ = scope def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels, pixel_labels def __lowerCAmelCase ( self ): """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = MobileViTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MobileViTForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = MobileViTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() snake_case_ = model(__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) snake_case_ = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __A = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __A = ( { """feature-extraction""": MobileViTModel, """image-classification""": MobileViTForImageClassification, """image-segmentation""": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __A = False __A = False __A = False __A = False def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTModelTester(self ) snake_case_ = MobileViTConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def __lowerCAmelCase ( self ): """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowerCAmelCase ( self ): """simple docstring""" pass def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): snake_case_ = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) snake_case_ = outputs.hidden_states snake_case_ = 5 self.assertEqual(len(__UpperCamelCase ) , __UpperCamelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. snake_case_ = 2 for i in range(len(__UpperCamelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) @slow def __lowerCAmelCase ( self ): """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = MobileViTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def a(): '''simple docstring''' snake_case_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def __lowerCAmelCase ( self ): """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(__UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = model.to(__UpperCamelCase ) snake_case_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) snake_case_ = outputs.logits # verify the logits snake_case_ = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __UpperCamelCase ) snake_case_ = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=__UpperCamelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCamelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = model.to(__UpperCamelCase ) snake_case_ = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) snake_case_ = prepare_img() snake_case_ = image_processor(images=__UpperCamelCase , return_tensors='pt' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**__UpperCamelCase ) snake_case_ = outputs.logits.detach().cpu() snake_case_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase , target_sizes=[(50, 60)] ) snake_case_ = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase ) snake_case_ = image_processor.post_process_semantic_segmentation(outputs=__UpperCamelCase ) snake_case_ = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __UpperCamelCase )
46
0
"""simple docstring""" from __future__ import annotations def snake_case ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int ) -> list[list[int]]: lowerCamelCase : list[list[int]] = [] lowerCamelCase : list[int] = [] lowerCamelCase : Union[str, Any] = 0 lowerCamelCase : Dict = sum(UpperCamelCase__ ) create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return result def snake_case ( UpperCamelCase__ : list[int] , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , UpperCamelCase__ : list[list[int]] , UpperCamelCase__ : int , ) -> None: if sum(UpperCamelCase__ ) > max_sum or (remaining_nums_sum + sum(UpperCamelCase__ )) < max_sum: return if sum(UpperCamelCase__ ) == max_sum: result.append(UpperCamelCase__ ) return for index in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): create_state_space_tree( UpperCamelCase__ , UpperCamelCase__ , index + 1 , [*path, nums[index]] , UpperCamelCase__ , remaining_nums_sum - nums[index] , ) __lowerCamelCase :Dict = [3, 34, 4, 12, 5, 2] __lowerCamelCase :int = 9 __lowerCamelCase :Union[str, Any] = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
222
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __lowerCamelCase :Tuple = logging.get_logger(__name__) class A__ ( __lowercase): """simple docstring""" snake_case__ : str =['''input_features'''] def __init__( self: Dict , __a: Dict=80 , __a: str=16_000 , __a: int=160 , __a: Tuple=30 , __a: List[str]=400 , __a: Union[str, Any]=0.0 , __a: str=False , **__a: List[Any] , )-> Union[str, Any]: super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , return_attention_mask=__a , **__a , ) lowerCamelCase : List[str] = n_fft lowerCamelCase : Optional[int] = hop_length lowerCamelCase : List[Any] = chunk_length lowerCamelCase : Tuple = chunk_length * sampling_rate lowerCamelCase : Optional[Any] = self.n_samples // hop_length lowerCamelCase : int = sampling_rate lowerCamelCase : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=__a , norm="""slaney""" , mel_scale="""slaney""" , ) def a__ ( self: int , __a: np.array )-> np.ndarray: lowerCamelCase : Tuple = spectrogram( __a , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="""log10""" , ) lowerCamelCase : Union[str, Any] = log_spec[:, :-1] lowerCamelCase : Optional[Any] = np.maximum(__a , log_spec.max() - 8.0 ) lowerCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a__ ( __a: List[np.ndarray] , __a: List[np.ndarray] , __a: float = 0.0 )-> List[np.ndarray]: if attention_mask is not None: lowerCamelCase : int = np.array(__a , np.intaa ) lowerCamelCase : Any = [] for vector, length in zip(__a , attention_mask.sum(-1 ) ): lowerCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCamelCase : Tuple = padding_value normed_input_values.append(__a ) else: lowerCamelCase : Any = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self: str , __a: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __a: bool = True , __a: Optional[int] = None , __a: Optional[Union[str, TensorType]] = None , __a: Optional[bool] = None , __a: Optional[str] = "max_length" , __a: Optional[int] = None , __a: Optional[int] = None , __a: Optional[bool] = None , **__a: List[Any] , )-> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' f' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' f' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase : int = isinstance(__a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase : Optional[int] = is_batched_numpy or ( isinstance(__a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase : Tuple = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray ): lowerCamelCase : str = np.asarray(__a , dtype=np.floataa ) elif isinstance(__a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase : List[Any] = [np.asarray([raw_speech] ).T] lowerCamelCase : Optional[int] = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding lowerCamelCase : Tuple = self.pad( __a , padding=__a , max_length=max_length if max_length else self.n_samples , truncation=__a , pad_to_multiple_of=__a , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCamelCase : int = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""] , attention_mask=padded_inputs["""attention_mask"""] , padding_value=self.padding_value , ) lowerCamelCase : Any = np.stack(padded_inputs["""input_features"""] , axis=0 ) # make sure list is in array format lowerCamelCase : int = padded_inputs.get("""input_features""" ).transpose(2 , 0 , 1 ) lowerCamelCase : str = [self._np_extract_fbank_features(__a ) for waveform in input_features[0]] if isinstance(input_features[0] , __a ): lowerCamelCase : List[Any] = [np.asarray(__a , dtype=np.floataa ) for feature in input_features] else: lowerCamelCase : int = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCamelCase : Dict = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: lowerCamelCase : Optional[Any] = padded_inputs.convert_to_tensors(__a ) return padded_inputs def a__ ( self: Optional[int] )-> Dict[str, Any]: lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) lowerCamelCase : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
222
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class _a ( tf.keras.layers.Layer ): def __init__( self : Dict , lowercase : Dict[str, int] , lowercase : List[str] , lowercase : int = None , lowercase : int = None ): '''simple docstring''' super().__init__() UpperCAmelCase = pad_token_id UpperCAmelCase = max_length UpperCAmelCase = vocab UpperCAmelCase = merges UpperCAmelCase = BytePairTokenizer(lowercase , lowercase , sequence_length=lowercase ) @classmethod def A ( cls : Dict , lowercase : GPTaTokenizer , *lowercase : Optional[Any] , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = [''' '''.join(lowercase ) for m in tokenizer.bpe_ranks.keys()] UpperCAmelCase = tokenizer.get_vocab() return cls(lowercase , lowercase , *lowercase , **lowercase ) @classmethod def A ( cls : Any , lowercase : Union[str, os.PathLike] , *lowercase : List[str] , **lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = GPTaTokenizer.from_pretrained(lowercase , *lowercase , **lowercase ) return cls.from_tokenizer(lowercase , *lowercase , **lowercase ) @classmethod def A ( cls : str , lowercase : Union[str, Any] ): '''simple docstring''' return cls(**lowercase ) def A ( self : Optional[int] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def A ( self : str , lowercase : Tuple , lowercase : int = None ): '''simple docstring''' UpperCAmelCase = self.tf_tokenizer(lowercase ) UpperCAmelCase = tf.ones_like(lowercase ) if self.pad_token_id is not None: # pad the tokens up to max length UpperCAmelCase = max_length if max_length is not None else self.max_length if max_length is not None: UpperCAmelCase , UpperCAmelCase = pad_model_inputs( lowercase , max_seq_length=lowercase , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
358
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _a ( __a , unittest.TestCase ): __a : Tuple = ShapEPipeline __a : Tuple = ["""prompt"""] __a : Tuple = ["""prompt"""] __a : str = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __a : Union[str, Any] = False @property def A ( self : Optional[Any] ): '''simple docstring''' return 32 @property def A ( self : List[Any] ): '''simple docstring''' return 32 @property def A ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def A ( self : Dict ): '''simple docstring''' return 8 @property def A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase ) @property def A ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } UpperCAmelCase = PriorTransformer(**lowercase ) return model @property def A ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase = ShapERenderer(**lowercase ) return model def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = self.dummy_prior UpperCAmelCase = self.dummy_text_encoder UpperCAmelCase = self.dummy_tokenizer UpperCAmelCase = self.dummy_renderer UpperCAmelCase = HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=1_024 , prediction_type='''sample''' , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) UpperCAmelCase = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def A ( self : Dict , lowercase : Optional[int] , lowercase : Optional[int]=0 ): '''simple docstring''' if str(lowercase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowercase ) else: UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def A ( self : str ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowercase ) ) UpperCAmelCase = output.images[0] UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : int ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = torch_device == '''cpu''' UpperCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = 1 UpperCAmelCase = 2 UpperCAmelCase = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase = batch_size * [inputs[key]] UpperCAmelCase = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _a ( unittest.TestCase ): def A ( self : str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int ): '''simple docstring''' UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) UpperCAmelCase = ShapEPipeline.from_pretrained('''openai/shap-e''' ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(0 ) UpperCAmelCase = pipe( '''a shark''' , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
358
1
'''simple docstring''' def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> bool: __UpperCAmelCase = len(_lowerCAmelCase ) + 1 __UpperCAmelCase = len(_lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __UpperCAmelCase = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] # since string of zero length match pattern of zero length __UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCAmelCase ): __UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCAmelCase ): __UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCAmelCase ): for j in range(1 , _lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __UpperCAmelCase = dp[i - 1][j] else: __UpperCAmelCase = 0 else: __UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _A: Any = """aab""" _A: Any = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F"""{input_string} matches the given pattern {pattern}""") else: print(F"""{input_string} does not match with the given pattern {pattern}""")
126
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _A: List[Any] = datasets.load_iris() _A: Union[str, Any] = np.array(data["""data"""]) _A: Union[str, Any] = np.array(data["""target"""]) _A: Dict = data["""target_names"""] _A , _A , _A , _A: List[str] = train_test_split(X, y) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> Optional[int]: return np.linalg.norm(np.array(_lowerCAmelCase ) - np.array(_lowerCAmelCase ) ) def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=5 )-> int: __UpperCAmelCase = zip(_lowerCAmelCase , _lowerCAmelCase ) # List of distances of all points from the point to be classified __UpperCAmelCase = [] for data_point in data: __UpperCAmelCase = euclidean_distance(data_point[0] , _lowerCAmelCase ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCAmelCase = [i[1] for i in sorted(_lowerCAmelCase )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCAmelCase = Counter(_lowerCAmelCase ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
126
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests _UpperCamelCase : Optional[int] =open # noqa: we just need to have a builtin inside this module to test it properly
332
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList _UpperCamelCase : Union[str, Any] =['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class UpperCAmelCase__ ( __snake_case ): def __init__( self ,A__ ,A__ ,A__=None ,A__=1 ): _A : str = tokenizer _A : Dict = dataset _A : int = len(A__ ) if n_tasks is None else n_tasks _A : List[Any] = n_copies def __iter__( self ): _A : Dict = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _A : Any = self.tokenizer(A__ ,padding=A__ ,return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class UpperCAmelCase__ ( __snake_case ): def __init__( self ,A__ ,A__ ,A__ ): _A : Optional[Any] = start_length _A : int = eof_strings _A : int = tokenizer def __call__( self ,A__ ,A__ ,**A__ ): _A : Union[str, Any] = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _A : Any = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(A__ ) def a__ (__lowercase :Optional[Any] ) -> List[Any]: _A : str = re.split('''(%s)''' % '''|'''.join(__lowercase ) , __lowercase ) # last string should be "" return "".join(string_list[:-2] ) def a__ (__lowercase :List[str] , __lowercase :Dict , __lowercase :List[str] , __lowercase :Optional[int] , __lowercase :List[Any] , __lowercase :str=20 , **__lowercase :List[str] ) -> Optional[Any]: _A : Any = defaultdict(__lowercase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__lowercase ) ): with torch.no_grad(): _A : int = batch['''ids'''].shape[-1] _A : Any = accelerator.unwrap_model(__lowercase ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__lowercase , **__lowercase ) # each task is generated batch_size times _A : Union[str, Any] = batch['''task_id'''].repeat(__lowercase ) _A : int = accelerator.pad_across_processes( __lowercase , dim=1 , pad_index=tokenizer.pad_token_id ) _A , _A : List[str] = accelerator.gather((generated_tokens, generated_tasks) ) _A : List[str] = generated_tokens.cpu().numpy() _A : List[str] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__lowercase , __lowercase ): gen_token_dict[task].append(__lowercase ) _A : Tuple = [[] for _ in range(__lowercase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _A : Dict = tokenizer.decode(__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase ) code_gens[task].append(remove_last_block(__lowercase ) ) return code_gens def a__ () -> Dict: # Setup configuration _A : Any = HfArgumentParser(__lowercase ) _A : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _A : Tuple = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _A : List[Any] = '''false''' if args.num_workers is None: _A : List[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate _A : List[str] = Accelerator() set_seed(args.seed , device_specific=__lowercase ) # Load model and tokenizer _A : Optional[Any] = AutoTokenizer.from_pretrained(args.model_ckpt ) _A : int = tokenizer.eos_token _A : Any = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _A : int = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __lowercase , __lowercase )] ), } # Load evaluation dataset and metric _A : str = load_dataset('''openai_humaneval''' ) _A : List[Any] = load_metric('''code_eval''' ) _A : Optional[Any] = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _A : Tuple = args.n_samples // args.batch_size _A : List[Any] = TokenizedDataset(__lowercase , human_eval['''test'''] , n_copies=__lowercase , n_tasks=__lowercase ) # do not confuse args.batch_size, which is actually the num_return_sequences _A : Tuple = DataLoader(__lowercase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _A : List[str] = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _A , _A : Optional[Any] = accelerator.prepare(__lowercase , __lowercase ) _A : Tuple = complete_code( __lowercase , __lowercase , __lowercase , __lowercase , n_tasks=__lowercase , batch_size=args.batch_size , **__lowercase , ) if accelerator.is_main_process: _A : int = [] for task in tqdm(range(__lowercase ) ): _A : List[str] = human_eval['''test'''][task]['''test'''] _A : int = f"""check({human_eval['test'][task]['entry_point']})""" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _A , _A : Union[str, Any] = code_eval_metric.compute( references=__lowercase , predictions=__lowercase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__lowercase , __lowercase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
332
1
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer _snake_case = logging.get_logger(__name__) _snake_case = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} _snake_case = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _snake_case = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } _snake_case = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } _snake_case = { '''facebook/dpr-ctx_encoder-single-nq-base''': 512, '''facebook/dpr-ctx_encoder-multiset-base''': 512, } _snake_case = { '''facebook/dpr-question_encoder-single-nq-base''': 512, '''facebook/dpr-question_encoder-multiset-base''': 512, } _snake_case = { '''facebook/dpr-reader-single-nq-base''': 512, '''facebook/dpr-reader-multiset-base''': 512, } _snake_case = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } _snake_case = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } _snake_case = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : int =CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : str =CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[Any] =CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class _lowerCAmelCase ( __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] =QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] =QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple =QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _snake_case = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) _snake_case = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) _snake_case = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: ``` [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> ``` Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Returns: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(__magic_name__ ) class _lowerCAmelCase : """simple docstring""" def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Union[bool, str] = False , SCREAMING_SNAKE_CASE__ : Union[bool, str] = False , SCREAMING_SNAKE_CASE__ : Optional[int] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE__ : Optional[bool] = None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ): """simple docstring""" if titles is None and texts is None: return super().__call__( SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) elif titles is None or texts is None: UpperCamelCase = titles if texts is None else texts return super().__call__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) UpperCamelCase = titles if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [titles] UpperCamelCase = texts if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [texts] UpperCamelCase = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = questions if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else [questions] * n_passages if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( F'There should be as many titles than texts but got {len(SCREAMING_SNAKE_CASE__ )} titles and {len(SCREAMING_SNAKE_CASE__ )} texts.' ) UpperCamelCase = super().__call__(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['input_ids'] UpperCamelCase = super().__call__(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ )['input_ids'] UpperCamelCase = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ] } if return_attention_mask is not False: UpperCamelCase = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) UpperCamelCase = attention_mask return self.pad(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : BatchEncoding , SCREAMING_SNAKE_CASE__ : DPRReaderOutput , SCREAMING_SNAKE_CASE__ : int = 16 , SCREAMING_SNAKE_CASE__ : int = 64 , SCREAMING_SNAKE_CASE__ : int = 4 , ): """simple docstring""" UpperCamelCase = reader_input['input_ids'] UpperCamelCase , UpperCamelCase , UpperCamelCase = reader_output[:3] UpperCamelCase = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = sorted(range(SCREAMING_SNAKE_CASE__ ) , reverse=SCREAMING_SNAKE_CASE__ , key=relevance_logits.__getitem__ ) UpperCamelCase = [] for doc_id in sorted_docs: UpperCamelCase = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence UpperCamelCase = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: UpperCamelCase = sequence_ids.index(self.pad_token_id ) else: UpperCamelCase = len(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=SCREAMING_SNAKE_CASE__ , top_spans=SCREAMING_SNAKE_CASE__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=SCREAMING_SNAKE_CASE__ , start_index=SCREAMING_SNAKE_CASE__ , end_index=SCREAMING_SNAKE_CASE__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(SCREAMING_SNAKE_CASE__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : List[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , ): """simple docstring""" UpperCamelCase = [] for start_index, start_score in enumerate(SCREAMING_SNAKE_CASE__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) UpperCamelCase = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[1] , reverse=SCREAMING_SNAKE_CASE__ ) UpperCamelCase = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F'Wrong span indices: [{start_index}:{end_index}]' ) UpperCamelCase = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F'Span is too long: {length} > {max_answer_length}' ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(SCREAMING_SNAKE_CASE__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__magic_name__ ) class _lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Optional[int] =READER_PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Any =READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[Any] =READER_PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : str =["input_ids", "attention_mask"]
282
def __lowerCamelCase ( _lowercase ) -> str: return "".join(chr(ord(_lowercase ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
282
1
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowerCAmelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase_ ) class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : int , *_snake_case : List[Any] , **_snake_case : List[Any] ): super().__init__(*_snake_case , **_snake_case ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def snake_case_ ( self : List[Any] , _snake_case : List[str]=None ): __lowercase : int = {} if top_k is not None: __lowercase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[Any] , _snake_case : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_snake_case : List[str] ): return super().__call__(_snake_case , **_snake_case ) def snake_case_ ( self : Optional[Any] , _snake_case : List[str] ): __lowercase : Optional[Any] = load_image(_snake_case ) __lowercase : Dict = self.image_processor(images=_snake_case , return_tensors=self.framework ) return model_inputs def snake_case_ ( self : List[str] , _snake_case : int ): __lowercase : int = self.model(**_snake_case ) return model_outputs def snake_case_ ( self : Tuple , _snake_case : List[Any] , _snake_case : List[Any]=5 ): if top_k > self.model.config.num_labels: __lowercase : Optional[Any] = self.model.config.num_labels if self.framework == "pt": __lowercase : str = model_outputs.logits.softmax(-1 )[0] __lowercase : List[str] = probs.topk(_snake_case ) elif self.framework == "tf": __lowercase : Dict = stable_softmax(model_outputs.logits , axis=-1 )[0] __lowercase : Dict = tf.math.top_k(_snake_case , k=_snake_case ) __lowercase : Tuple = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowercase : Tuple = scores.tolist() __lowercase : Optional[Any] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_snake_case , _snake_case )]
717
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : Tuple = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : Dict = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCAmelCase : Optional[int] = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCAmelCase_ ( __lowerCAmelCase ) -> str: def remove_articles(__lowerCAmelCase ): __lowercase : int = re.compile(R'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(__lowerCAmelCase , ''' ''' , __lowerCAmelCase ) def white_space_fix(__lowerCAmelCase ): return " ".join(text.split() ) def remove_punc(__lowerCAmelCase ): __lowercase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__lowerCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__lowerCAmelCase ) ) ) ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: return int(normalize_answer(__lowerCAmelCase ) == normalize_answer(__lowerCAmelCase ) ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: __lowercase : Union[str, Any] = [any(compute_exact(__lowerCAmelCase , __lowerCAmelCase ) for ref in refs ) for pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase )] return (sum(__lowerCAmelCase ) / len(__lowerCAmelCase )) * 100 def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: __lowercase : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] __lowercase : Dict = Counter(__lowerCAmelCase ) __lowercase : Union[str, Any] = Counter(__lowerCAmelCase ) __lowercase : str = Counter() for sgram, scount in sgramcounter.items(): __lowercase : List[Any] = scount * numref __lowercase : Optional[Any] = Counter(__lowerCAmelCase ) __lowercase : Union[str, Any] = Counter() for cgram, ccount in cgramcounter.items(): __lowercase : Union[str, Any] = ccount * numref # KEEP __lowercase : Optional[Any] = sgramcounter_rep & cgramcounter_rep __lowercase : Dict = keepgramcounter_rep & rgramcounter __lowercase : str = sgramcounter_rep & rgramcounter __lowercase : Tuple = 0 __lowercase : int = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowercase : Any = 1 __lowercase : Union[str, Any] = 1 if len(__lowerCAmelCase ) > 0: __lowercase : List[str] = keeptmpscorea / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __lowercase : Dict = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __lowercase : Dict = 0 if keepscore_precision > 0 or keepscore_recall > 0: __lowercase : str = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __lowercase : Tuple = sgramcounter_rep - cgramcounter_rep __lowercase : str = delgramcounter_rep - rgramcounter __lowercase : int = sgramcounter_rep - rgramcounter __lowercase : Dict = 0 __lowercase : List[str] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowercase : Union[str, Any] = 1 if len(__lowerCAmelCase ) > 0: __lowercase : Union[str, Any] = deltmpscorea / len(__lowerCAmelCase ) # ADDITION __lowercase : int = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) __lowercase : Tuple = set(__lowerCAmelCase ) & set(__lowerCAmelCase ) __lowercase : Any = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) __lowercase : Tuple = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __lowercase : int = 1 __lowercase : Any = 1 if len(__lowerCAmelCase ) > 0: __lowercase : Any = addtmpscore / len(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: __lowercase : str = addtmpscore / len(__lowerCAmelCase ) __lowercase : int = 0 if addscore_precision > 0 or addscore_recall > 0: __lowercase : Any = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: __lowercase : Tuple = len(__lowerCAmelCase ) __lowercase : str = ssent.split(''' ''' ) __lowercase : List[str] = csent.split(''' ''' ) __lowercase : Tuple = [] __lowercase : Any = [] __lowercase : Optional[Any] = [] __lowercase : Optional[int] = [] __lowercase : Dict = [] __lowercase : Optional[int] = [] __lowercase : Dict = [] __lowercase : str = [] __lowercase : Dict = [] __lowercase : List[Any] = [] for rsent in rsents: __lowercase : Any = rsent.split(''' ''' ) __lowercase : Optional[int] = [] __lowercase : List[Any] = [] __lowercase : Tuple = [] ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: __lowercase : List[str] = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: __lowercase : Union[str, Any] = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: __lowercase : int = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) ragramslist.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: __lowercase : Dict = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: __lowercase : int = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: __lowercase : str = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(__lowerCAmelCase ) for i in range(0 , len(__lowerCAmelCase ) - 1 ): if i < len(__lowerCAmelCase ) - 1: __lowercase : int = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 2: __lowercase : Any = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(__lowerCAmelCase ) if i < len(__lowerCAmelCase ) - 3: __lowercase : Optional[int] = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(__lowerCAmelCase ) ((__lowercase) , (__lowercase) , (__lowercase)) : List[str] = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((__lowercase) , (__lowercase) , (__lowercase)) : Optional[int] = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((__lowercase) , (__lowercase) , (__lowercase)) : Optional[Any] = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) ((__lowercase) , (__lowercase) , (__lowercase)) : Any = SARIngram(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : List[Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __lowercase : Any = sum([delascore, delascore, delascore, delascore] ) / 4 __lowercase : int = sum([addascore, addascore, addascore, addascore] ) / 4 __lowercase : str = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = True , __lowerCAmelCase = "13a" , __lowerCAmelCase = True ) -> List[str]: # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __lowercase : List[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __lowercase : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(__lowerCAmelCase )()(__lowerCAmelCase ) else: __lowercase : str = sacrebleu.TOKENIZERS[tokenizer]()(__lowerCAmelCase ) elif tokenizer == "moses": __lowercase : Tuple = sacremoses.MosesTokenizer().tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase , escape=__lowerCAmelCase ) elif tokenizer == "penn": __lowercase : str = sacremoses.MosesTokenizer().penn_tokenize(__lowerCAmelCase , return_str=__lowerCAmelCase ) else: __lowercase : int = sentence if not return_str: __lowercase : List[Any] = normalized_sent.split() return normalized_sent def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: if not (len(__lowerCAmelCase ) == len(__lowerCAmelCase ) == len(__lowerCAmelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) __lowercase : str = 0 for src, pred, refs in zip(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): sari_score += SARIsent(normalize(__lowerCAmelCase ) , normalize(__lowerCAmelCase ) , [normalize(__lowerCAmelCase ) for sent in refs] ) __lowercase : int = sari_score / len(__lowerCAmelCase ) return 100 * sari_score def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase="exp" , __lowerCAmelCase=None , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=False , ) -> str: __lowercase : List[Any] = len(references[0] ) if any(len(__lowerCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) __lowercase : int = [[refs[i] for refs in references] for i in range(__lowerCAmelCase )] __lowercase : List[str] = sacrebleu.corpus_bleu( __lowerCAmelCase , __lowerCAmelCase , smooth_method=__lowerCAmelCase , smooth_value=__lowerCAmelCase , force=__lowerCAmelCase , lowercase=__lowerCAmelCase , use_effective_order=__lowerCAmelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): """simple docstring""" def snake_case_ ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def snake_case_ ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : List[Any] ): __lowercase : List[Any] = {} result.update({'''sari''': compute_sari(sources=_snake_case , predictions=_snake_case , references=_snake_case )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=_snake_case , references=_snake_case )} ) result.update({'''exact''': compute_em(predictions=_snake_case , references=_snake_case )} ) return result
284
0
import re def lowerCamelCase__ (_UpperCAmelCase): if len(re.findall('[ATCG]' , _UpperCAmelCase)) != len(_UpperCAmelCase): raise ValueError('Invalid Strand') return dna.translate(dna.maketrans('ATCG' , 'TAGC')) if __name__ == "__main__": import doctest doctest.testmod()
73
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
73
1
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowercase_ = None lowercase_ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowercase_ = [ np.dtype("|b1"), np.dtype("|u1"), np.dtype("<u2"), np.dtype(">u2"), np.dtype("<i2"), np.dtype(">i2"), np.dtype("<u4"), np.dtype(">u4"), np.dtype("<i4"), np.dtype(">i4"), np.dtype("<f4"), np.dtype(">f4"), np.dtype("<f8"), np.dtype(">f8"), ] @dataclass class __A : '''simple docstring''' __lowerCamelCase : bool = True __lowerCamelCase : Optional[str] = None # Automatically constructed __lowerCamelCase : ClassVar[str] = "PIL.Image.Image" __lowerCamelCase : ClassVar[Any] = pa.struct({'bytes': pa.binary(), 'path': pa.string()} ) __lowerCamelCase : str = field(default='Image' , init=A , repr=A ) def __call__(self ) -> Union[str, Any]: """simple docstring""" return self.pa_type def a__ (self , A ) -> dict: """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''' ) if isinstance(A , A ): _a = np.array(A ) if isinstance(A , A ): return {"path": value, "bytes": None} elif isinstance(A , A ): return {"path": None, "bytes": value} elif isinstance(A , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(A ) elif isinstance(A , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(A ) elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def a__ (self , A , A=None ) -> "PIL.Image.Image": """simple docstring""" if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support decoding images, please install \'Pillow\'.''' ) if token_per_repo_id is None: _a = {} _a , _a = value['''path'''], value['''bytes'''] if bytes_ is None: if path is None: raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) else: if is_local_path(A ): _a = PIL.Image.open(A ) else: _a = path.split('''::''' )[-1] try: _a = string_to_dict(A , config.HUB_DATASETS_URL )['''repo_id'''] _a = token_per_repo_id.get(A ) except ValueError: _a = None with xopen(A , '''rb''' , use_auth_token=A ) as f: _a = BytesIO(f.read() ) _a = PIL.Image.open(bytes_ ) else: _a = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def a__ (self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('''binary''' ), "path": Value('''string''' ), } ) def a__ (self , A ) -> pa.StructArray: """simple docstring""" if pa.types.is_string(storage.type ): _a = pa.array([None] * len(A ) , type=pa.binary() ) _a = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): _a = pa.array([None] * len(A ) , type=pa.string() ) _a = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: _a = storage.field('''bytes''' ) else: _a = pa.array([None] * len(A ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: _a = storage.field('''path''' ) else: _a = pa.array([None] * len(A ) , type=pa.string() ) _a = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): _a = pa.array( [encode_np_array(np.array(A ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) _a = pa.array([None] * len(A ) , type=pa.string() ) _a = pa.StructArray.from_arrays( [bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(A , self.pa_type ) def a__ (self , A ) -> pa.StructArray: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(A ): with xopen(A , '''rb''' ) as f: _a = f.read() return bytes_ _a = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) _a = pa.array( [os.path.basename(A ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) _a = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(A , self.pa_type ) def lowerCAmelCase (): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''') global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() _a = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys())) return _IMAGE_COMPRESSION_FORMATS def lowerCAmelCase (__A): """simple docstring""" _a = BytesIO() if image.format in list_image_compression_formats(): _a = image.format else: _a = '''PNG''' if image.mode in ['''1''', '''L''', '''LA''', '''RGB''', '''RGBA'''] else '''TIFF''' image.save(__A , format=__A) return buffer.getvalue() def lowerCAmelCase (__A): """simple docstring""" if hasattr(__A , '''filename''') and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(__A)} def lowerCAmelCase (__A): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''') _a = array.dtype _a = dtype.byteorder if dtype.byteorder != '''=''' else _NATIVE_BYTEORDER _a = dtype.kind _a = dtype.itemsize _a = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: _a = np.dtype('''|u1''') if dtype_kind not in ["u", "i"]: raise TypeError( F'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''') if dtype is not dest_dtype: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''') # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: _a = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: _a = dtype_byteorder + dtype_kind + str(__A) _a = np.dtype(__A) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''') break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''') _a = PIL.Image.fromarray(array.astype(__A)) return {"path": None, "bytes": image_to_bytes(__A)} def lowerCAmelCase (__A): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('''To support encoding images, please install \'Pillow\'.''') if objs: _a , _a = first_non_null_value(__A) if isinstance(__A , __A): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(__A , np.ndarray): _a = no_op_if_value_is_null(__A) return [obj_to_image_dict_func(__A) for obj in objs] elif isinstance(__A , PIL.Image.Image): _a = no_op_if_value_is_null(__A) return [obj_to_image_dict_func(__A) for obj in objs] else: return objs else: return objs
352
'''simple docstring''' import numpy as np import qiskit def lowerCAmelCase (__A = 8 , __A = None): """simple docstring""" _a = np.random.default_rng(seed=__A) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _a = 6 * key_len # Measurement basis for Alice's qubits. _a = rng.integers(2 , size=__A) # The set of states Alice will prepare. _a = rng.integers(2 , size=__A) # Measurement basis for Bob's qubits. _a = rng.integers(2 , size=__A) # Quantum Circuit to simulate BB84 _a = qiskit.QuantumCircuit(__A , name='''BB84''') # Alice prepares her qubits according to rules above. for index, _ in enumerate(__A): if alice_state[index] == 1: bbaa_circ.x(__A) if alice_basis[index] == 1: bbaa_circ.h(__A) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(__A): if bob_basis[index] == 1: bbaa_circ.h(__A) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _a = qiskit.Aer.get_backend('''aer_simulator''') # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _a = qiskit.execute(__A , __A , shots=1 , seed_simulator=__A) # Returns the result of measurement. _a = job.result().get_counts(__A).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _a = ''''''.join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( __A , __A , __A) if alice_basis_bit == bob_basis_bit ]) # Get final key. Pad with 0 if too short, otherwise truncate. _a = gen_key[:key_len] if len(__A) >= key_len else gen_key.ljust(__A , '''0''') return key if __name__ == "__main__": print(F"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
352
1
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase :Any = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def lowerCamelCase_ (UpperCamelCase__ : Dict ): if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase :Any = parser.parse_args() _lowerCAmelCase :int = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
506
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str=False ): try: _UpperCAmelCase : Tuple = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : str = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : List[str] = strtobool(UpperCamelCase__ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'If set, {key} must be yes or no.' ) return _value _lowerCAmelCase :Optional[Any] = parse_flag_from_env('RUN_SLOW', default=False) def lowerCamelCase_ (UpperCamelCase__ : int ): return unittest.skip('''Test was skipped''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : int ): return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Tuple ): return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[Any] ): return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Dict ): return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : str=None , UpperCamelCase__ : str=None ): if test_case is None: return partial(UpperCamelCase__ , version=UpperCamelCase__ ) return unittest.skipUnless(is_torch_version('''>=''' , UpperCamelCase__ ) , F'test requires torch version >= {version}' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : List[str] ): return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Any ): return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] ): return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(UpperCamelCase__ ) _lowerCAmelCase :Union[str, Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowerCamelCase_ (UpperCamelCase__ : str ): return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(UpperCamelCase__ ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' a__ =True @classmethod def __lowerCAmelCase ( cls ) -> Union[str, Any]: _UpperCAmelCase : Tuple = tempfile.mkdtemp() @classmethod def __lowerCAmelCase ( cls ) -> List[Any]: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __lowerCAmelCase ( self ) -> Dict: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Union[str, Any]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self , A ) -> List[Any]: _UpperCAmelCase : Any = mocks if isinstance(A , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): _UpperCAmelCase : Union[str, Any] = AcceleratorState() _UpperCAmelCase : Union[str, Any] = tensor[None].clone().to(state.device ) _UpperCAmelCase : List[str] = gather(UpperCamelCase__ ).cpu() _UpperCAmelCase : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , UpperCamelCase__ ): return False return True class _UpperCAmelCase : '''simple docstring''' def __init__( self , A , A , A ) -> Optional[int]: _UpperCAmelCase : List[Any] = returncode _UpperCAmelCase : Any = stdout _UpperCAmelCase : Tuple = stderr async def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : int ): while True: _UpperCAmelCase : Tuple = await stream.readline() if line: callback(UpperCamelCase__ ) else: break async def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : int=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : str=False ): if echo: print('''\nRunning: ''' , ''' '''.join(UpperCamelCase__ ) ) _UpperCAmelCase : Dict = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=UpperCamelCase__ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=UpperCamelCase__ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Optional[int] = [] def tee(UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Dict="" ): _UpperCAmelCase : int = line.decode('''utf-8''' ).rstrip() sink.append(UpperCamelCase__ ) if not quiet: print(UpperCamelCase__ , UpperCamelCase__ , file=UpperCamelCase__ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda UpperCamelCase__ : tee(UpperCamelCase__ , UpperCamelCase__ , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=UpperCamelCase__ , ) return _RunOutput(await p.wait() , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int=None , UpperCamelCase__ : Dict=None , UpperCamelCase__ : Union[str, Any]=180 , UpperCamelCase__ : int=False , UpperCamelCase__ : Optional[Any]=True ): _UpperCAmelCase : Optional[int] = asyncio.get_event_loop() _UpperCAmelCase : Union[str, Any] = loop.run_until_complete( _stream_subprocess(UpperCamelCase__ , env=UpperCamelCase__ , stdin=UpperCamelCase__ , timeout=UpperCamelCase__ , quiet=UpperCamelCase__ , echo=UpperCamelCase__ ) ) _UpperCAmelCase : Tuple = ''' '''.join(UpperCamelCase__ ) if result.returncode > 0: _UpperCAmelCase : Any = '''\n'''.join(result.stderr ) raise RuntimeError( F'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' F'The combined stderr from workers follows:\n{stderr}' ) return result class _UpperCAmelCase ( a ): '''simple docstring''' pass def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : str=False ): try: _UpperCAmelCase : Union[str, Any] = subprocess.check_output(UpperCamelCase__ , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(UpperCamelCase__ , '''decode''' ): _UpperCAmelCase : List[Any] = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F'Command `{" ".join(UpperCamelCase__ )}` failed with the following error:\n\n{e.output.decode()}' ) from e
506
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['ConvNextFeatureExtractor'] lowerCAmelCase_ = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
596
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase_ = { 'configuration_altclip': [ 'ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AltCLIPConfig', 'AltCLIPTextConfig', 'AltCLIPVisionConfig', ], 'processing_altclip': ['AltCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'AltCLIPPreTrainedModel', 'AltCLIPModel', 'AltCLIPTextModel', 'AltCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
596
1
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=7, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=False, lowerCamelCase=2, lowerCamelCase=99, lowerCamelCase=0, lowerCamelCase=32, lowerCamelCase=5, lowerCamelCase=4, lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=5_12, lowerCamelCase=2, lowerCamelCase=0.0_2, lowerCamelCase=2, lowerCamelCase=4, lowerCamelCase="last", lowerCamelCase=True, lowerCamelCase=None, lowerCamelCase=0, ) -> str: """simple docstring""" _lowercase : Union[str, Any] = parent _lowercase : Optional[Any] = batch_size _lowercase : List[str] = seq_length _lowercase : int = is_training _lowercase : List[str] = use_input_lengths _lowercase : int = use_token_type_ids _lowercase : Any = use_labels _lowercase : Union[str, Any] = gelu_activation _lowercase : List[str] = sinusoidal_embeddings _lowercase : str = causal _lowercase : Optional[int] = asm _lowercase : Union[str, Any] = n_langs _lowercase : List[Any] = vocab_size _lowercase : Any = n_special _lowercase : Any = hidden_size _lowercase : str = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : Tuple = hidden_dropout_prob _lowercase : Optional[int] = attention_probs_dropout_prob _lowercase : Union[str, Any] = max_position_embeddings _lowercase : List[str] = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : int = num_labels _lowercase : Optional[int] = num_choices _lowercase : Optional[Any] = summary_type _lowercase : Optional[Any] = use_proj _lowercase : int = scope _lowercase : List[Any] = bos_token_id def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowercase : int = None if self.use_input_lengths: _lowercase : Dict = ( ids_tensor([self.batch_size], vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.n_langs) _lowercase : Tuple = None _lowercase : int = None _lowercase : int = None if self.use_labels: _lowercase : str = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowercase : str = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowercase : Dict = ids_tensor([self.batch_size], 2).float() _lowercase : Tuple = ids_tensor([self.batch_size], self.num_choices) _lowercase : Dict = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size, n_special=self.n_special, emb_dim=self.hidden_size, n_layers=self.num_hidden_layers, n_heads=self.num_attention_heads, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, gelu_activation=self.gelu_activation, sinusoidal_embeddings=self.sinusoidal_embeddings, asm=self.asm, causal=self.causal, n_langs=self.n_langs, max_position_embeddings=self.max_position_embeddings, initializer_range=self.initializer_range, summary_type=self.summary_type, use_proj=self.use_proj, num_labels=self.num_labels, bos_token_id=self.bos_token_id, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Tuple: """simple docstring""" _lowercase : List[Any] = XLMModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : str = model(lowerCamelCase, lengths=lowerCamelCase, langs=lowerCamelCase) _lowercase : int = model(lowerCamelCase, langs=lowerCamelCase) _lowercase : Any = model(lowerCamelCase) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[Any]: """simple docstring""" _lowercase : Dict = XLMWithLMHeadModel(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> str: """simple docstring""" _lowercase : Tuple = XLMForQuestionAnsweringSimple(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Dict = model(lowerCamelCase) _lowercase : List[str] = model(lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) _lowercase : Any = outputs self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = XLMForQuestionAnswering(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase) _lowercase : List[Any] = model( lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, cls_index=lowerCamelCase, is_impossible=lowerCamelCase, p_mask=lowerCamelCase, ) _lowercase : List[str] = model( lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase, cls_index=lowerCamelCase, is_impossible=lowerCamelCase, ) ((_lowercase) , ) : Optional[Any] = result_with_labels.to_tuple() _lowercase : List[str] = model(lowerCamelCase, start_positions=lowerCamelCase, end_positions=lowerCamelCase) ((_lowercase) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape, ()) self.parent.assertEqual(result.start_top_log_probs.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape, (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape, (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape, (self.batch_size,)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> int: """simple docstring""" _lowercase : Optional[Any] = XLMForSequenceClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) _lowercase : Optional[int] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.loss.shape, ()) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> List[str]: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : str = XLMForTokenClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : int = model(lowerCamelCase, attention_mask=lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, ) -> Dict: """simple docstring""" _lowercase : Optional[Any] = self.num_choices _lowercase : Optional[int] = XLMForMultipleChoice(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : int = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : Optional[Any] = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous() _lowercase : List[str] = model( lowerCamelCase, attention_mask=lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Dict = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[Any] = config_and_inputs _lowercase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, _a, unittest.TestCase ): lowercase_ : Any = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase_ : Optional[int] = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase_ : Union[str, Any] = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=False) -> Optional[int]: """simple docstring""" _lowercase : Any = super()._prepare_for_class(lowerCamelCase, lowerCamelCase, return_labels=lowerCamelCase) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _lowercase : Any = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase) _lowercase : Dict = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=lowerCamelCase) return inputs_dict def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Union[str, Any] = XLMModelTester(self) _lowercase : List[str] = ConfigTester(self, config_class=lowerCamelCase, emb_dim=37) def UpperCamelCase ( self) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCamelCase) def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCamelCase) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=1) -> int: """simple docstring""" self.assertIsInstance(lowerCamelCase, lowerCamelCase) self.assertListEqual( [isinstance(lowerCamelCase, lowerCamelCase) for iter_attentions in attentions], [True] * len(lowerCamelCase)) self.assertEqual(len(lowerCamelCase), (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(lowerCamelCase): # adds PAD dummy token _lowercase : Dict = min_length + idx + 1 _lowercase : int = min_length + idx + 1 _lowercase : Dict = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions], [expected_shape] * len(lowerCamelCase)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=False, lowerCamelCase=1) -> List[Any]: """simple docstring""" self.assertIsInstance(lowerCamelCase, lowerCamelCase) self.assertListEqual( [isinstance(lowerCamelCase, lowerCamelCase) for iter_hidden_states in hidden_states], [True] * len(lowerCamelCase), ) self.assertEqual(len(lowerCamelCase), (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(lowerCamelCase): # adds PAD dummy token _lowercase : int = min_length + idx + 1 _lowercase : int = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states], [expected_shape] * len(lowerCamelCase), ) pass @slow def UpperCamelCase ( self) -> int: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Dict = XLMModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) @require_torch class _lowerCamelCase( unittest.TestCase ): @slow def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Tuple = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048') model.to(lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([[14, 4_47]], dtype=torch.long, device=lowerCamelCase) # the president _lowercase : Any = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _lowercase : str = model.generate(lowerCamelCase, do_sample=lowerCamelCase) self.assertListEqual(output_ids[0].cpu().numpy().tolist(), lowerCamelCase)
89
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : int = logging.get_logger(__name__) lowercase : int = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _A = "convnextv2" def __init__( self : List[str] , A_ : Any=3 , A_ : Tuple=4 , A_ : Dict=4 , A_ : Union[str, Any]=None , A_ : List[str]=None , A_ : Optional[int]="gelu" , A_ : Optional[Any]=0.02 , A_ : Optional[int]=1e-12 , A_ : Tuple=0.0 , A_ : int=2_24 , A_ : int=None , A_ : Optional[int]=None , **A_ : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_: Tuple = num_channels lowerCamelCase_: Union[str, Any] = patch_size lowerCamelCase_: Any = num_stages lowerCamelCase_: Optional[Any] = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes lowerCamelCase_: Optional[Any] = [3, 3, 9, 3] if depths is None else depths lowerCamelCase_: Tuple = hidden_act lowerCamelCase_: Optional[int] = initializer_range lowerCamelCase_: Dict = layer_norm_eps lowerCamelCase_: Tuple = drop_path_rate lowerCamelCase_: Any = image_size lowerCamelCase_: Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCamelCase_ , lowerCamelCase_: int = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
423
0
from math import factorial def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) or not isinstance(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) lowerCAmelCase : List[Any] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowerCAmelCase : int = float(factorial(SCREAMING_SNAKE_CASE__ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE__ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('Probability of 2 successes out of 4 trails') print('with probability of 0.75 is:', end=' ') print(binomial_distribution(2, 4, 0.7_5))
703
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return int(input_a == input_a == 0 ) def _UpperCAmelCase ( ): '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(F"""| 0 | 0 | {nor_gate(0 ,0 )} |""" ) print(F"""| 0 | 1 | {nor_gate(0 ,1 )} |""" ) print(F"""| 1 | 0 | {nor_gate(1 ,0 )} |""" ) print(F"""| 1 | 1 | {nor_gate(1 ,1 )} |""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
693
0
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowercase ( unittest.TestCase ): def __lowercase ( self : Any ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down UpperCAmelCase__ : Optional[int] = mock.Mock() UpperCAmelCase__ : List[Any] = 500 UpperCAmelCase__ : int = {} UpperCAmelCase__ : List[str] = HTTPError UpperCAmelCase__ : str = {} # Download this model to make sure it's in the cache. UpperCAmelCase__ : int = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=A ) as mock_head: UpperCAmelCase__ : Any = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __lowercase ( self : int ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down UpperCAmelCase__ : List[str] = mock.Mock() UpperCAmelCase__ : List[str] = 500 UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Any = HTTPError UpperCAmelCase__ : Any = {} # Download this model to make sure it's in the cache. UpperCAmelCase__ : List[Any] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("""requests.Session.request""" ,return_value=A ) as mock_head: UpperCAmelCase__ : List[Any] = GPTaTokenizerFast.from_pretrained("""gpt2""" ) # This check we did call the fake head request mock_head.assert_called() def __lowercase ( self : List[str] ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 try: UpperCAmelCase__ : List[str] = tempfile.mktemp() with open(A ,"""wb""" ) as f: http_get("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ,A ) UpperCAmelCase__ : Any = AlbertTokenizer.from_pretrained(A ) finally: os.remove(A ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("""tokenizer.json""" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("""tokenizer.json""" ,"""wb""" ) as f: http_get("""https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json""" ,A ) UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("""tokenizer.json""" ) def __lowercase ( self : List[str] ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 UpperCAmelCase__ : Tuple = AlbertTokenizer.from_pretrained("""https://huggingface.co/albert-base-v1/resolve/main/spiece.model""" ) @is_staging_test class __lowercase ( unittest.TestCase ): snake_case_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def __lowercase ( cls : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = TOKEN HfFolder.save_token(A ) @classmethod def __lowercase ( cls : List[Any] ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id="""test-tokenizer""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""valid_org/test-tokenizer-org""" ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id="""test-dynamic-tokenizer""" ) except HTTPError: pass def __lowercase ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : List[Any] = os.path.join(A ,"""vocab.txt""" ) with open(A ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase__ : List[Any] = BertTokenizer(A ) tokenizer.push_to_hub("""test-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase__ : List[Any] = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""test-tokenizer""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A ,repo_id="""test-tokenizer""" ,push_to_hub=A ,use_auth_token=self._token ) UpperCAmelCase__ : str = BertTokenizer.from_pretrained(f"{USER}/test-tokenizer" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def __lowercase ( self : List[str] ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Dict = os.path.join(A ,"""vocab.txt""" ) with open(A ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase__ : Union[str, Any] = BertTokenizer(A ) tokenizer.push_to_hub("""valid_org/test-tokenizer-org""" ,use_auth_token=self._token ) UpperCAmelCase__ : Dict = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id="""valid_org/test-tokenizer-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A ,repo_id="""valid_org/test-tokenizer-org""" ,push_to_hub=A ,use_auth_token=self._token ) UpperCAmelCase__ : List[str] = BertTokenizer.from_pretrained("""valid_org/test-tokenizer-org""" ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def __lowercase ( self : str ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Optional[Any] = os.path.join(A ,"""vocab.txt""" ) with open(A ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase__ : Tuple = CustomTokenizer(A ) # No fast custom tokenizer tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer" ,trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : List[str] = os.path.join(A ,"""vocab.txt""" ) with open(A ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) UpperCAmelCase__ : Dict = BertTokenizerFast.from_pretrained(A ) bert_tokenizer.save_pretrained(A ) UpperCAmelCase__ : Dict = CustomTokenizerFast.from_pretrained(A ) tokenizer.push_to_hub("""test-dynamic-tokenizer""" ,use_auth_token=self._token ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(f"{USER}/test-dynamic-tokenizer" ,trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizerFast""" ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( f"{USER}/test-dynamic-tokenizer" ,use_fast=A ,trust_remote_code=A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,"""CustomTokenizer""" ) class __lowercase ( unittest.TestCase ): def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Tuple = Trie() trie.add("""Hello 友達""" ) self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {""" """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) trie.add("""Hello""" ) trie.data self.assertEqual(trie.data ,{"""H""": {"""e""": {"""l""": {"""l""": {"""o""": {"""""": 1, """ """: {"""友""": {"""達""": {"""""": 1}}}}}}}}} ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Trie() self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS] This is a extra_id_100"""] ) trie.add("""[CLS]""" ) trie.add("""extra_id_1""" ) trie.add("""extra_id_100""" ) self.assertEqual(trie.split("""[CLS] This is a extra_id_100""" ) ,["""[CLS]""", """ This is a """, """extra_id_100"""] ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = Trie() trie.add("""A""" ) self.assertEqual(trie.split("""ABC""" ) ,["""A""", """BC"""] ) self.assertEqual(trie.split("""BCA""" ) ,["""BC""", """A"""] ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = Trie() trie.add("""TOKEN]""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Dict = Trie() trie.add("""A""" ) trie.add("""P""" ) trie.add("""[SPECIAL_TOKEN]""" ) self.assertEqual(trie.split("""This is something [SPECIAL_TOKEN]""" ) ,["""This is something """, """[SPECIAL_TOKEN]"""] ) def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = Trie() trie.add("""AB""" ) trie.add("""B""" ) trie.add("""C""" ) self.assertEqual(trie.split("""ABC""" ) ,["""AB""", """C"""] ) def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = Trie() trie.add("""ABC""" ) trie.add("""B""" ) trie.add("""CD""" ) self.assertEqual(trie.split("""ABCD""" ) ,["""ABC""", """D"""] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCAmelCase__ : Dict = Trie() UpperCAmelCase__ : Optional[int] = trie.cut_text("""ABC""" ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(A ,["""AB""", """C"""] )
65
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : List[Any] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys SCREAMING_SNAKE_CASE : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
257
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[str] , __snake_case : str = None , __snake_case : List[str] = None , __snake_case : str = None , __snake_case : Optional[Any] = None , __snake_case : Dict = False , __snake_case : int = False , __snake_case : Union[str, Any] = None , **__snake_case : Optional[int] , ): lowerCamelCase :List[Any] = path_or_paths lowerCamelCase :Any = split if split or isinstance(__snake_case , __snake_case ) else '''train''' lowerCamelCase :Optional[Any] = features lowerCamelCase :Optional[int] = cache_dir lowerCamelCase :int = keep_in_memory lowerCamelCase :Optional[Any] = streaming lowerCamelCase :Tuple = num_proc lowerCamelCase :str = kwargs @abstractmethod def snake_case ( self : Any ): pass class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Any , __snake_case : int = None , __snake_case : int = None , __snake_case : Dict = False , __snake_case : Optional[Any] = False , __snake_case : int = None , **__snake_case : Optional[int] , ): lowerCamelCase :int = features lowerCamelCase :List[Any] = cache_dir lowerCamelCase :str = keep_in_memory lowerCamelCase :Optional[Any] = streaming lowerCamelCase :Optional[int] = num_proc lowerCamelCase :int = kwargs @abstractmethod def snake_case ( self : List[str] ): pass
702
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs A__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") A__ = cvtColor(img, COLOR_BGR2GRAY) def _lowerCamelCase ( ): lowerCamelCase :int = cn.convert_to_negative(a_) # assert negative_img array for at least one True assert negative_img.any() def _lowerCamelCase ( ): with Image.open('''digital_image_processing/image_data/lena_small.jpg''') as img: # Work around assertion for response assert str(cc.change_contrast(a_ , 1_10)).startswith( '''<PIL.Image.Image image mode=RGB size=100x100 at''') def _lowerCamelCase ( ): lowerCamelCase :Optional[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4) # Assert ambiguous array assert resp.all() def _lowerCamelCase ( ): lowerCamelCase :str = imread('''digital_image_processing/image_data/lena_small.jpg''' , 0) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase :Optional[Any] = canny.canny(a_) # assert canny array for at least one True assert canny_array.any() def _lowerCamelCase ( ): assert gg.gaussian_filter(a_ , 5 , sigma=0.9).all() def _lowerCamelCase ( ): # laplace diagonals lowerCamelCase :List[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]]) lowerCamelCase :List[Any] = conv.img_convolve(a_ , a_).astype(a_) assert res.any() def _lowerCamelCase ( ): assert med.median_filter(a_ , 3).any() def _lowerCamelCase ( ): lowerCamelCase , lowerCamelCase :Union[str, Any] = sob.sobel_filter(a_) assert grad.any() and theta.any() def _lowerCamelCase ( ): lowerCamelCase :Dict = sp.make_sepia(a_ , 20) assert sepia.all() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg"): lowerCamelCase :Any = bs.Burkes(imread(a_ , 1) , 1_20) burkes.process() assert burkes.output_img.any() def _lowerCamelCase ( a_ : str = "digital_image_processing/image_data/lena_small.jpg" , ): lowerCamelCase :Tuple = rs.NearestNeighbour(imread(a_ , 1) , 4_00 , 2_00) nn.process() assert nn.output.any() def _lowerCamelCase ( ): lowerCamelCase :Tuple = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase :Tuple = imread(a_ , 0) # Test for get_neighbors_pixel function() return not None lowerCamelCase :Dict = 0 lowerCamelCase :Optional[Any] = 0 lowerCamelCase :str = image[x_coordinate][y_coordinate] lowerCamelCase :Any = lbp.get_neighbors_pixel( a_ , a_ , a_ , a_) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase :int = np.zeros((image.shape[0], image.shape[1])) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0]): for j in range(0 , image.shape[1]): lowerCamelCase :Optional[int] = lbp.local_binary_value(a_ , a_ , a_) assert lbp_image.any()
49
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] __a = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
30
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase : Tuple = logging.get_logger(__name__) def __snake_case (__UpperCAmelCase ): """simple docstring""" # initialize config if "resnet-50" in model_name: lowerCamelCase_ : Union[str, Any] = ResNetConfig.from_pretrained('''microsoft/resnet-50''' ) elif "resnet-101" in model_name: lowerCamelCase_ : str = ResNetConfig.from_pretrained('''microsoft/resnet-101''' ) else: raise ValueError('''Model name should include either resnet50 or resnet101''' ) lowerCamelCase_ : Optional[int] = DetrConfig(use_timm_backbone=__UpperCAmelCase , backbone_config=__UpperCAmelCase ) # set label attributes lowerCamelCase_ : str = '''panoptic''' in model_name if is_panoptic: lowerCamelCase_ : Tuple = 250 else: lowerCamelCase_ : Any = 91 lowerCamelCase_ : Optional[int] = '''huggingface/label-files''' lowerCamelCase_ : Tuple = '''coco-detection-id2label.json''' lowerCamelCase_ : Union[str, Any] = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : Dict = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[Any] = idalabel lowerCamelCase_ : List[Any] = {v: k for k, v in idalabel.items()} return config, is_panoptic def __snake_case (__UpperCAmelCase ): """simple docstring""" # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase_ : List[Any] = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''') ) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''') ) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''') ) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''') ) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) return rename_keys def __snake_case (__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : List[Any] = val def __snake_case (__UpperCAmelCase , __UpperCAmelCase=False ): """simple docstring""" lowerCamelCase_ : Any = '''''' if is_panoptic: lowerCamelCase_ : Tuple = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCamelCase_ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase_ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : Dict = in_proj_weight[:256, :] lowerCamelCase_ : Any = in_proj_bias[:256] lowerCamelCase_ : Optional[Any] = in_proj_weight[256:512, :] lowerCamelCase_ : Optional[Any] = in_proj_bias[256:512] lowerCamelCase_ : List[Any] = in_proj_weight[-256:, :] lowerCamelCase_ : Optional[int] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention lowerCamelCase_ : int = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) lowerCamelCase_ : Optional[int] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase_ : Optional[int] = in_proj_weight[:256, :] lowerCamelCase_ : int = in_proj_bias[:256] lowerCamelCase_ : int = in_proj_weight[256:512, :] lowerCamelCase_ : Optional[int] = in_proj_bias[256:512] lowerCamelCase_ : List[str] = in_proj_weight[-256:, :] lowerCamelCase_ : Optional[Any] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCamelCase_ : List[str] = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) lowerCamelCase_ : Optional[Any] = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCamelCase_ : Tuple = in_proj_weight_cross_attn[:256, :] lowerCamelCase_ : int = in_proj_bias_cross_attn[:256] lowerCamelCase_ : int = in_proj_weight_cross_attn[256:512, :] lowerCamelCase_ : List[str] = in_proj_bias_cross_attn[256:512] lowerCamelCase_ : List[Any] = in_proj_weight_cross_attn[-256:, :] lowerCamelCase_ : str = in_proj_bias_cross_attn[-256:] def __snake_case (): """simple docstring""" lowerCamelCase_ : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Tuple = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __snake_case (__UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ): """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = get_detr_config(__UpperCAmelCase ) # load original model from torch hub lowerCamelCase_ : str = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F"""Converting model {model_name}...""" ) lowerCamelCase_ : Any = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__UpperCAmelCase ).eval() lowerCamelCase_ : List[str] = detr.state_dict() # rename keys for src, dest in create_rename_keys(__UpperCAmelCase ): if is_panoptic: lowerCamelCase_ : str = '''detr.''' + src rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(__UpperCAmelCase , is_panoptic=__UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCamelCase_ : str = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''' ) and not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ) ): lowerCamelCase_ : Union[str, Any] = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : int = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCamelCase_ : Any = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : int = val elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ): continue else: lowerCamelCase_ : Any = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : List[str] = val else: if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): lowerCamelCase_ : Tuple = state_dict.pop(__UpperCAmelCase ) lowerCamelCase_ : Tuple = val # finally, create HuggingFace model and load state dict lowerCamelCase_ : Union[str, Any] = DetrForSegmentation(__UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # verify our conversion on an image lowerCamelCase_ : str = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowerCamelCase_ : Tuple = DetrImageProcessor(format=__UpperCAmelCase ) lowerCamelCase_ : List[Any] = processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = encoding['''pixel_values'''] lowerCamelCase_ : List[Any] = detr(__UpperCAmelCase ) lowerCamelCase_ : Dict = model(__UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''' ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": __lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") __lowerCamelCase : Dict = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
501
0
def snake_case_ ( snake_case = 1_00_00_00 ) -> int: lowercase__: List[str] = set(range(3 , snake_case , 2 ) ) primes.add(2 ) for p in range(3 , snake_case , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case , snake_case ) ) ) lowercase__: str = [float(snake_case ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case , limit + 1 , snake_case ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
335
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __a ( __UpperCamelCase ): __lowercase : int = 'canine' def __init__( self , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=3_072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=16_384 , lowerCAmelCase__=16 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1E-12 , lowerCAmelCase__=0 , lowerCAmelCase__=0xe000 , lowerCAmelCase__=0xe001 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=8 , lowerCAmelCase__=16_384 , lowerCAmelCase__=128 , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Optional[int] = max_position_embeddings lowercase__: Any = hidden_size lowercase__: List[str] = num_hidden_layers lowercase__: Any = num_attention_heads lowercase__: Optional[Any] = intermediate_size lowercase__: List[Any] = hidden_act lowercase__: str = hidden_dropout_prob lowercase__: Dict = attention_probs_dropout_prob lowercase__: Dict = initializer_range lowercase__: List[str] = type_vocab_size lowercase__: List[Any] = layer_norm_eps # Character config: lowercase__: List[str] = downsampling_rate lowercase__: int = upsampling_kernel_size lowercase__: Optional[Any] = num_hash_functions lowercase__: Optional[Any] = num_hash_buckets lowercase__: Optional[Any] = local_transformer_stride
335
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/wav2vec2-base-960h": "https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json", # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'wav2vec2' def __init__(self , A=32 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.0 , A=0.1 , A=0.1 , A=0.02 , A=1E-5 , A="group" , A="gelu" , A=(512, 512, 512, 512, 512, 512, 512) , A=(5, 2, 2, 2, 2, 2, 2) , A=(10, 3, 3, 3, 3, 2, 2) , A=False , A=128 , A=16 , A=False , A=True , A=0.05 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A=320 , A=2 , A=0.1 , A=100 , A=256 , A=256 , A=0.1 , A="sum" , A=False , A=False , A=256 , A=(512, 512, 512, 512, 1_500) , A=(5, 3, 3, 1, 1) , A=(1, 2, 3, 1, 1) , A=512 , A=0 , A=1 , A=2 , A=False , A=3 , A=2 , A=3 , A=None , A=None , **A , ) -> int: """simple docstring""" super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(A ) _a = list(A ) _a = list(A ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(A ) _a = list(A ) _a = list(A ) _a = xvector_output_dim @property def a__ (self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
11
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : Union[str, Any] = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[Any] = ["OwlViTFeatureExtractor"] _snake_case : Optional[int] = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : int = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _snake_case : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
81
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __magic_name__ = logging.get_logger(__name__) __magic_name__ = 'T5Config' class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """mt5""" a_ = MTaConfig class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """mt5""" a_ = MTaConfig class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ = """mt5""" a_ = MTaConfig
27
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class _lowerCamelCase ( _a ): """simple docstring""" def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , snake_case_ , ) super().__init__(*snake_case_ , **snake_case_ )
590
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _UpperCAmelCase ( _lowerCamelCase : NDArray[floataa] , _lowerCamelCase : NDArray[floataa] , _lowerCamelCase : list[int] , _lowerCamelCase : int , ) -> list[float]: _lowerCAmelCase , _lowerCAmelCase : Dict = coefficient_matrix.shape _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = constant_matrix.shape if rowsa != colsa: _lowerCAmelCase : Any = f'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(_lowerCamelCase ) if colsa != 1: _lowerCAmelCase : List[str] = f'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(_lowerCamelCase ) if rowsa != rowsa: _lowerCAmelCase : Tuple = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(_lowerCamelCase ) if len(_lowerCamelCase ) != rowsa: _lowerCAmelCase : int = ( """Number of initial values must be equal to number of rows in coefficient """ f'matrix but received {len(_lowerCamelCase )} and {rowsa}' ) raise ValueError(_lowerCamelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) _lowerCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) _lowerCAmelCase , _lowerCAmelCase : Any = table.shape strictly_diagonally_dominant(_lowerCamelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCamelCase ): _lowerCAmelCase : int = [] for row in range(_lowerCamelCase ): _lowerCAmelCase : Any = 0 for col in range(_lowerCamelCase ): if col == row: _lowerCAmelCase : List[Any] = table[row][col] elif col == cols - 1: _lowerCAmelCase : Tuple = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] _lowerCAmelCase : str = (temp + val) / denom new_val.append(_lowerCamelCase ) _lowerCAmelCase : int = new_val return [float(_lowerCamelCase ) for i in new_val] def _UpperCAmelCase ( _lowerCamelCase : NDArray[floataa] ) -> bool: _lowerCAmelCase , _lowerCAmelCase : str = table.shape _lowerCAmelCase : int = True for i in range(0 , _lowerCamelCase ): _lowerCAmelCase : Any = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
384
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _lowerCAmelCase ( lowercase : str , lowercase : Any , lowercase : Any ) ->Dict: """simple docstring""" if openai_config_file == "": lowercase__ = OpenAIGPTConfig() else: lowercase__ = OpenAIGPTConfig.from_json_file(lowercase ) lowercase__ = OpenAIGPTModel(lowercase ) # Load weights from numpy load_tf_weights_in_openai_gpt(lowercase , lowercase , lowercase ) # Save pytorch-model lowercase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME lowercase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , lowercase ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _lowerCAmelCase = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
318
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _lowerCAmelCase = logging.getLogger(__name__) class __A ( a ): """simple docstring""" def __init__( self , _lowerCamelCase=-1 )-> Union[str, Any]: # in NER datasets, the last column is usually reserved for NER label lowercase__ = label_idx def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> List[InputExample]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(_lowerCamelCase , f'''{mode}.txt''' ) lowercase__ = 1 lowercase__ = [] with open(_lowerCamelCase , encoding='''utf-8''' ) as f: lowercase__ = [] lowercase__ = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) guid_index += 1 lowercase__ = [] lowercase__ = [] else: lowercase__ = line.split(''' ''' ) words.append(splits[0] ) if len(_lowerCamelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) return examples def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> List[Any]: lowercase__ = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(_lowerCamelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: lowercase__ = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(_lowerCamelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def snake_case_( self , _lowerCamelCase )-> List[str]: if path: with open(_lowerCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __A ( a ): """simple docstring""" def __init__( self )-> List[str]: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def snake_case_( self , _lowerCamelCase )-> List[str]: if path: with open(_lowerCamelCase , '''r''' ) as f: lowercase__ = f.read().splitlines() if "O" not in labels: lowercase__ = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __A ( a ): """simple docstring""" def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> List[InputExample]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase__ = mode.value lowercase__ = os.path.join(_lowerCamelCase , f'''{mode}.txt''' ) lowercase__ = 1 lowercase__ = [] with open(_lowerCamelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(_lowerCamelCase ): lowercase__ = [] lowercase__ = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(_lowerCamelCase ) == len(_lowerCamelCase ) if words: examples.append(InputExample(guid=f'''{mode}-{guid_index}''' , words=_lowerCamelCase , labels=_lowerCamelCase ) ) guid_index += 1 return examples def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Union[str, Any]: lowercase__ = 0 for sentence in parse_incr(_lowerCamelCase ): lowercase__ = preds_list[example_id] lowercase__ = '''''' for token in sentence: out += f'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(_lowerCamelCase ) example_id += 1 def snake_case_( self , _lowerCamelCase )-> List[str]: if path: with open(_lowerCamelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
318
1
'''simple docstring''' import random def lowerCAmelCase (__A , __A , __A = False): """simple docstring""" _a = {i: [] for i in range(__A)} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__A) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__A): for j in range(i + 1 , __A): if random.random() < probability: graph[i].append(__A) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__A) return graph def lowerCAmelCase (__A): """simple docstring""" return { i: [j for j in range(__A) if i != j] for i in range(__A) } if __name__ == "__main__": import doctest doctest.testmod()
11
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> List[str]: '''simple docstring''' a__ = args.log_outputs a__ = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric a__ = load_metric('wer' ) a__ = load_metric('cer' ) # compute metrics a__ = wer.compute(references=result['target'],predictions=result['prediction'] ) a__ = cer.compute(references=result['target'],predictions=result['prediction'] ) # print & log results a__ = f'''WER: {wer_result}\nCER: {cer_result}''' print(UpperCAmelCase__ ) with open(f'''{dataset_id}_eval_results.txt''','w' ) as f: f.write(UpperCAmelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: a__ = f'''log_{dataset_id}_predictions.txt''' a__ = f'''log_{dataset_id}_targets.txt''' with open(UpperCAmelCase__,'w' ) as p, open(UpperCAmelCase__,'w' ) as t: # mapping function to write output def write_to_file(UpperCAmelCase__,UpperCAmelCase__ ): p.write(f'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(UpperCAmelCase__,with_indices=UpperCAmelCase__ ) def _lowerCamelCase ( UpperCAmelCase__ ) -> str: '''simple docstring''' a__ = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training a__ = re.sub(UpperCAmelCase__,'',text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! a__ = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: a__ = ' '.join(text.split(UpperCAmelCase__ ) ) return text def _lowerCamelCase ( UpperCAmelCase__ ) -> Dict: '''simple docstring''' a__ = load_dataset(args.dataset,args.config,split=args.split,use_auth_token=UpperCAmelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor a__ = AutoFeatureExtractor.from_pretrained(args.model_id ) a__ = feature_extractor.sampling_rate # resample audio a__ = dataset.cast_column('audio',Audio(sampling_rate=UpperCAmelCase__ ) ) # load eval pipeline if args.device is None: a__ = 0 if torch.cuda.is_available() else -1 a__ = pipeline('automatic-speech-recognition',model=args.model_id,device=args.device ) # map function to decode audio def map_to_pred(UpperCAmelCase__ ): a__ = asr( batch['audio']['array'],chunk_length_s=args.chunk_length_s,stride_length_s=args.stride_length_s ) a__ = prediction['text'] a__ = normalize_text(batch['sentence'] ) return batch # run inference on all examples a__ = dataset.map(UpperCAmelCase__,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCAmelCase__,UpperCAmelCase__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) __magic_name__ = parser.parse_args() main(args)
232
0
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def _UpperCamelCase ( self , _A ) -> float: return 0.0 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) SCREAMING_SNAKE_CASE_ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = 5_12 SCREAMING_SNAKE_CASE_ = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE_ = [filter_type.process(__lowerCamelCase ) for item in inputs] SCREAMING_SNAKE_CASE_ = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE_ = np.abs(np.fft.fft(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = 20 * np.logaa(__lowerCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) # Display within reasonable bounds SCREAMING_SNAKE_CASE_ = get_bounds(__lowerCamelCase, __lowerCamelCase ) plt.ylim(max([-80, bounds[0]] ), min([80, bounds[1]] ) ) plt.ylabel('''Gain (dB)''' ) plt.plot(__lowerCamelCase ) plt.show() def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = 5_12 SCREAMING_SNAKE_CASE_ = [1] + [0] * (size - 1) SCREAMING_SNAKE_CASE_ = [filter_type.process(__lowerCamelCase ) for item in inputs] SCREAMING_SNAKE_CASE_ = [0] * (samplerate - size) # zero-padding outputs += filler SCREAMING_SNAKE_CASE_ = np.angle(np.fft.fft(__lowerCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24, samplerate / 2 - 1 ) plt.xlabel('''Frequency (Hz)''' ) plt.xscale('''log''' ) plt.ylim(-2 * pi, 2 * pi ) plt.ylabel('''Phase shift (Radians)''' ) plt.plot(np.unwrap(__lowerCamelCase, -2 * pi ) ) plt.show()
597
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =KandinskyVaaImgaImgPipeline UpperCAmelCase_ =["image_embeds", "negative_image_embeds", "image"] UpperCAmelCase_ =[ "image_embeds", "negative_image_embeds", "image", ] UpperCAmelCase_ =[ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase_ =False @property def _UpperCamelCase ( self ) -> Optional[Any]: return 32 @property def _UpperCamelCase ( self ) -> Tuple: return 32 @property def _UpperCamelCase ( self ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self ) -> List[Any]: return 100 @property def _UpperCamelCase ( self ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(**_A ) return model @property def _UpperCamelCase ( self ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.dummy_unet SCREAMING_SNAKE_CASE_ = self.dummy_movq SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE_ = DDIMScheduler(**_A ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCamelCase ( self , _A , _A=0 ) -> Dict: SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((256, 256) ) if str(_A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = '''cpu''' SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**_A ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(_A ) ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE_ = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) SCREAMING_SNAKE_CASE_ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE_ = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
597
1
snake_case__ = [ '''DownloadConfig''', '''DownloadManager''', '''DownloadMode''', '''StreamingDownloadManager''', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
395
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class lowerCAmelCase_ ( _a): def _snake_case ( self : Any ) ->Tuple: """simple docstring""" a__ :List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , "tf_padding" ) ) self.parent.assertTrue(hasattr(__A , "depth_multiplier" ) ) class lowerCAmelCase_ : def __init__( self : Optional[int] , __A : Optional[Any] , __A : Optional[int]=13 , __A : Dict=3 , __A : Dict=32 , __A : List[str]=0.25 , __A : Optional[Any]=8 , __A : Any=8 , __A : Any=6 , __A : Optional[int]=32 , __A : Optional[int]=True , __A : Dict=True , __A : int=True , __A : str="relu6" , __A : Any=1280 , __A : int=0.1 , __A : List[str]=0.02 , __A : List[Any]=True , __A : int=True , __A : Union[str, Any]=10 , __A : Union[str, Any]=None , ) ->int: """simple docstring""" a__ :Optional[Any] = parent a__ :Dict = batch_size a__ :Union[str, Any] = num_channels a__ :Any = image_size a__ :Dict = depth_multiplier a__ :int = depth_divisible_by a__ :Union[str, Any] = min_depth a__ :Optional[int] = expand_ratio a__ :List[Any] = tf_padding a__ :Union[str, Any] = output_stride a__ :Union[str, Any] = first_layer_is_expansion a__ :Any = finegrained_output a__ :int = hidden_act a__ :Union[str, Any] = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) a__ :List[Any] = classifier_dropout_prob a__ :Dict = use_labels a__ :Dict = is_training a__ :Optional[int] = num_labels a__ :Any = initializer_range a__ :int = scope def _snake_case ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" a__ :int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ :str = None a__ :Any = None if self.use_labels: a__ :Tuple = ids_tensor([self.batch_size] , self.num_labels ) a__ :Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ :Optional[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : List[str] ) ->str: """simple docstring""" return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _snake_case ( self : Optional[int] , __A : Optional[int] , __A : List[Any] , __A : Tuple , __A : Union[str, Any] ) ->Optional[Any]: """simple docstring""" a__ :List[str] = MobileNetVaModel(config=__A ) model.to(__A ) model.eval() a__ :Optional[int] = model(__A ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def _snake_case ( self : List[str] , __A : Dict , __A : Union[str, Any] , __A : Dict , __A : List[str] ) ->int: """simple docstring""" a__ :Dict = self.num_labels a__ :Optional[int] = MobileNetVaForImageClassification(__A ) model.to(__A ) model.eval() a__ :Union[str, Any] = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : str , __A : Any , __A : Any , __A : Optional[Any] , __A : Any ) ->int: """simple docstring""" a__ :Any = self.num_labels a__ :Dict = MobileNetVaForSemanticSegmentation(__A ) model.to(__A ) model.eval() a__ :int = model(__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) a__ :List[Any] = model(__A , labels=__A ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" a__ :Optional[Any] = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ :int = config_and_inputs a__ :Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase_ ( _a ,_a ,unittest.TestCase): lowerCamelCase_ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase_ = ( { 'feature-extraction': MobileNetVaModel, 'image-classification': MobileNetVaForImageClassification, 'image-segmentation': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" a__ :List[str] = MobileNetVaModelTester(self ) a__ :List[str] = MobileNetVaConfigTester(self , config_class=__A , has_text_modality=__A ) def _snake_case ( self : str ) ->str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileNetV2 does not use inputs_embeds" ) def _snake_case ( self : Dict ) ->Tuple: """simple docstring""" pass @unittest.skip(reason="MobileNetV2 does not support input and output embeddings" ) def _snake_case ( self : List[Any] ) ->List[Any]: """simple docstring""" pass @unittest.skip(reason="MobileNetV2 does not output attentions" ) def _snake_case ( self : Tuple ) ->Optional[int]: """simple docstring""" pass def _snake_case ( self : List[str] ) ->Any: """simple docstring""" a__ , a__ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ :int = model_class(__A ) a__ :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ :Union[str, Any] = [*signature.parameters.keys()] a__ :List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def _snake_case ( self : List[Any] ) ->Tuple: """simple docstring""" a__ :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _snake_case ( self : str ) ->Optional[Any]: """simple docstring""" def check_hidden_states_output(__A : Union[str, Any] , __A : Dict , __A : Any ): a__ :int = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): a__ :Optional[Any] = model(**self._prepare_for_class(__A , __A ) ) a__ :Tuple = outputs.hidden_states a__ :Any = 16 self.assertEqual(len(__A ) , __A ) a__ , a__ :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ :Optional[Any] = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ :Optional[Any] = True check_hidden_states_output(__A , __A , __A ) def _snake_case ( self : List[str] ) ->Dict: """simple docstring""" a__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def _snake_case ( self : str ) ->Tuple: """simple docstring""" a__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) @slow def _snake_case ( self : int ) ->Tuple: """simple docstring""" for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ :List[str] = MobileNetVaModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowerCamelCase__ ( ) -> List[str]: """simple docstring""" a__ :Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase): @cached_property def _snake_case ( self : Optional[int] ) ->str: """simple docstring""" return ( MobileNetVaImageProcessor.from_pretrained("google/mobilenet_v2_1.0_224" ) if is_vision_available() else None ) @slow def _snake_case ( self : int ) ->Optional[int]: """simple docstring""" a__ :Any = MobileNetVaForImageClassification.from_pretrained("google/mobilenet_v2_1.0_224" ).to(__A ) a__ :List[Any] = self.default_image_processor a__ :str = prepare_img() a__ :Dict = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): a__ :Tuple = model(**__A ) # verify the logits a__ :List[Any] = torch.Size((1, 1001) ) self.assertEqual(outputs.logits.shape , __A ) a__ :Union[str, Any] = torch.tensor([0.2_445, -1.1_993, 0.1_905] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) ) @slow def _snake_case ( self : Any ) ->Tuple: """simple docstring""" a__ :Any = MobileNetVaForSemanticSegmentation.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) a__ :Union[str, Any] = model.to(__A ) a__ :str = MobileNetVaImageProcessor.from_pretrained("google/deeplabv3_mobilenet_v2_1.0_513" ) a__ :List[str] = prepare_img() a__ :str = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): a__ :Dict = model(**__A ) a__ :Optional[int] = outputs.logits # verify the logits a__ :int = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , __A ) a__ :Optional[Any] = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_595, -2.0_977, -2.3_741], [-2.4_226, -2.3_028, -2.6_835], [-2.7_819, -2.5_991, -2.7_706]], [[4.2_058, 4.8_317, 4.7_638], [4.4_136, 5.0_361, 4.9_383], [4.5_028, 4.9_644, 4.8_734]], ] , device=__A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1E-4 ) )
395
1
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCamelCase = [ """cross_validation.py""", """gradient_accumulation.py""", """local_sgd.py""", """multi_process_metrics.py""", """memory.py""", """automatic_gradient_accumulation.py""", """fsdp_with_peak_mem_tracking.py""", """deepspeed_with_config_support.py""", """megatron_lm_gpt_pretraining.py""", ] class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> Any: A__ = None A__ = os.path.abspath(os.path.join("examples" , "by_feature" ) ) A__ = os.path.abspath("examples" ) for item in os.listdir(SCREAMING_SNAKE_CASE__ ): if item not in EXCLUDE_EXAMPLES: A__ = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ) and ".py" in item_path: with self.subTest( tested_script=SCREAMING_SNAKE_CASE__ , feature_script=SCREAMING_SNAKE_CASE__ , tested_section="main()" if parser_only else "training_function()" , ): A__ = compare_against_test( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = "\n".join(SCREAMING_SNAKE_CASE__ ) if special_strings is not None: for string in special_strings: A__ = diff.replace(SCREAMING_SNAKE_CASE__ , "" ) self.assertEqual(SCREAMING_SNAKE_CASE__ , "" ) def snake_case__ ( self ) -> Optional[int]: self.one_complete_example("complete_nlp_example.py" , SCREAMING_SNAKE_CASE__ ) self.one_complete_example("complete_nlp_example.py" , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Optional[int]: A__ = os.path.abspath(os.path.join("examples" , "cv_example.py" ) ) A__ = [ " " * 16 + "{\n\n", " " * 20 + "\"accuracy\": eval_metric[\"accuracy\"],\n\n", " " * 20 + "\"f1\": eval_metric[\"f1\"],\n\n", " " * 20 + "\"train_loss\": total_loss.item() / len(train_dataloader),\n\n", " " * 20 + "\"epoch\": epoch,\n\n", " " * 16 + "},\n\n", " " * 16 + "step=epoch,\n", " " * 12, " " * 8 + "for step, batch in enumerate(active_dataloader):\n", ] self.one_complete_example("complete_cv_example.py" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.one_complete_example("complete_cv_example.py" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "1"} ) class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : List[Any] = False @classmethod def snake_case__ ( cls ) -> str: super().setUpClass() A__ = tempfile.mkdtemp() A__ = os.path.join(cls._tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) A__ = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def snake_case__ ( cls ) -> List[str]: super().tearDownClass() shutil.rmtree(cls._tmpdir ) def snake_case__ ( self ) -> str: A__ = f""" examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "epoch_0" ) ) ) def snake_case__ ( self ) -> Optional[Any]: A__ = f""" examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} """.split() A__ = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , "step_2" ) ) ) def snake_case__ ( self ) -> List[Any]: A__ = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} """.split() A__ = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) self.assertNotIn("epoch 0:" , SCREAMING_SNAKE_CASE__ ) self.assertIn("epoch 1:" , SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Tuple: A__ = f""" examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} """.split() A__ = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) if torch.cuda.is_available(): A__ = torch.cuda.device_count() else: A__ = 1 if num_processes > 1: self.assertNotIn("epoch 0:" , SCREAMING_SNAKE_CASE__ ) self.assertIn("epoch 1:" , SCREAMING_SNAKE_CASE__ ) else: self.assertIn("epoch 0:" , SCREAMING_SNAKE_CASE__ ) self.assertIn("epoch 1:" , SCREAMING_SNAKE_CASE__ ) @slow def snake_case__ ( self ) -> Optional[Any]: A__ = "\n examples/by_feature/cross_validation.py\n --num_folds 2\n ".split() with mock.patch.dict(os.environ , {"TESTING_MOCKED_DATALOADERS": "0"} ): A__ = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE__ ) A__ = re.findall("({.+})" , SCREAMING_SNAKE_CASE__ ) A__ = [r for r in results if "accuracy" in r][-1] A__ = ast.literal_eval(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(results["accuracy"] , 0.7_5 ) def snake_case__ ( self ) -> str: A__ = ["examples/by_feature/multi_process_metrics.py"] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def snake_case__ ( self ) -> int: with tempfile.TemporaryDirectory() as tmpdir: A__ = f""" examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} """.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , "tracking" ) ) ) def snake_case__ ( self ) -> List[str]: A__ = ["examples/by_feature/gradient_accumulation.py"] run_command(self._launch_args + testargs ) def snake_case__ ( self ) -> int: A__ = ["examples/by_feature/local_sgd.py"] run_command(self._launch_args + testargs )
562
"""simple docstring""" import os import jsonlines import numpy as np from tqdm import tqdm UpperCamelCase = 2048 UpperCamelCase = 4096 UpperCamelCase = 42 UpperCamelCase = os.environ.pop("""PROCESS_TRAIN""", """false""") UpperCamelCase = {"""null""": 0, """short""": 1, """long""": 2, """yes""": 3, """no""": 4} def _lowerCamelCase ( UpperCAmelCase_ : Any ) -> Optional[Any]: """simple docstring""" def choose_first(UpperCAmelCase_ : Union[str, Any], UpperCAmelCase_ : str=False ): assert isinstance(UpperCAmelCase_, UpperCAmelCase_ ) if len(UpperCAmelCase_ ) == 1: A__ = answer[0] return {k: [answer[k]] for k in answer} if is_long_answer else answer for a in answer: if is_long_answer: A__ = {k: [a[k]] for k in a} if len(a["start_token"] ) > 0: break return a A__ = {"id": example["id"]} A__ = example["annotations"] A__ = annotation["yes_no_answer"] if 0 in yes_no_answer or 1 in yes_no_answer: A__ = ["yes"] if 1 in yes_no_answer else ["no"] A__ = A__ = [] A__ = A__ = [] A__ = ["<cls>"] else: A__ = ["short"] A__ = choose_first(annotation["short_answers"] ) if len(out["start_token"] ) == 0: # answer will be long if short is not available A__ = ["long"] A__ = choose_first(annotation["long_answer"], is_long_answer=UpperCAmelCase_ ) A__ = [] answer.update(UpperCAmelCase_ ) # disregard some samples if len(answer["start_token"] ) > 1 or answer["start_token"] == answer["end_token"]: A__ = True else: A__ = False A__ = ["start_token", "end_token", "start_byte", "end_byte", "text"] if not all(isinstance(answer[k], UpperCAmelCase_ ) for k in cols ): raise ValueError("Issue in ID", example["id"] ) return answer def _lowerCamelCase ( UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : Any=False ) -> Optional[Any]: """simple docstring""" A__ = _get_single_answer(UpperCAmelCase_ ) # bytes are of no use del answer["start_byte"] del answer["end_byte"] # handle yes_no answers explicitly if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = example["document"]["tokens"] A__ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) return { "context": " ".join(UpperCAmelCase_ ), "answer": { "start_token": -100, # ignore index in cross-entropy "end_token": -100, # ignore index in cross-entropy "category": answer["category"], "span": answer["category"], # extra }, } # later, help in removing all no answers if answer["start_token"] == [-1]: return { "context": "None", "answer": { "start_token": -1, "end_token": -1, "category": "null", "span": "None", # extra }, } # handling normal samples A__ = ["start_token", "end_token"] answer.update({k: answer[k][0] if len(answer[k] ) > 0 else answer[k] for k in cols} ) # e.g. [10] == 10 A__ = example["document"]["tokens"] A__ = answer["start_token"] A__ = answer["end_token"] A__ = [] for i in range(len(doc["token"] ) ): if not doc["is_html"][i]: context.append(doc["token"][i] ) else: if answer["start_token"] > i: start_token -= 1 if answer["end_token"] > i: end_token -= 1 A__ = " ".join(context[start_token:end_token] ) # checking above code if assertion: A__ = doc["is_html"][answer["start_token"] : answer["end_token"]] A__ = doc["token"][answer["start_token"] : answer["end_token"]] A__ = " ".join([old[i] for i in range(len(UpperCAmelCase_ ) ) if not is_html[i]] ) if new != old: print("ID:", example["id"] ) print("New:", UpperCAmelCase_, end="\n" ) print("Old:", UpperCAmelCase_, end="\n\n" ) return { "context": " ".join(UpperCAmelCase_ ), "answer": { "start_token": start_token, "end_token": end_token - 1, # this makes it inclusive "category": answer["category"], # either long or short "span": new, # extra }, } def _lowerCamelCase ( UpperCAmelCase_ : List[str], UpperCAmelCase_ : Optional[int], UpperCAmelCase_ : List[str]=2048, UpperCAmelCase_ : Union[str, Any]=4096, UpperCAmelCase_ : Optional[int]=True ) -> str: """simple docstring""" A__ = get_context_and_ans(UpperCAmelCase_, assertion=UpperCAmelCase_ ) A__ = out["answer"] # later, removing these samples if answer["start_token"] == -1: return { "example_id": example["id"], "input_ids": [[-1]], "labels": { "start_token": [-1], "end_token": [-1], "category": ["null"], }, } A__ = tokenizer(example["question"]["text"], out["context"] ).input_ids A__ = input_ids.index(tokenizer.sep_token_id ) + 1 # return yes/no if answer["category"][0] in ["yes", "no"]: # category is list with one element A__ = [] A__ = [] A__ = input_ids[:q_len] A__ = range(UpperCAmelCase_, len(UpperCAmelCase_ ), max_length - doc_stride ) for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) category.append(answer["category"][0] ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": [-100] * len(UpperCAmelCase_ ), "end_token": [-100] * len(UpperCAmelCase_ ), "category": category, }, } A__ = out["context"].split() A__ = splitted_context[answer["end_token"]] A__ = len( tokenizer( " ".join(splitted_context[: answer["start_token"]] ), add_special_tokens=UpperCAmelCase_, ).input_ids ) A__ = len( tokenizer(" ".join(splitted_context[: answer["end_token"]] ), add_special_tokens=UpperCAmelCase_ ).input_ids ) answer["start_token"] += q_len answer["end_token"] += q_len # fixing end token A__ = len(tokenizer(UpperCAmelCase_, add_special_tokens=UpperCAmelCase_ ).input_ids ) if num_sub_tokens > 1: answer["end_token"] += num_sub_tokens - 1 A__ = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive A__ = answer["start_token"] A__ = answer["end_token"] if assertion: A__ = tokenizer.decode(UpperCAmelCase_ ) if answer["span"] != new: print("ISSUE IN TOKENIZATION" ) print("OLD:", answer["span"] ) print("NEW:", UpperCAmelCase_, end="\n\n" ) if len(UpperCAmelCase_ ) <= max_length: return { "example_id": example["id"], "input_ids": [input_ids], "labels": { "start_token": [answer["start_token"]], "end_token": [answer["end_token"]], "category": answer["category"], }, } A__ = input_ids[:q_len] A__ = range(UpperCAmelCase_, len(UpperCAmelCase_ ), max_length - doc_stride ) A__ = [] A__ = [] A__ = [] A__ = [] # null, yes, no, long, short for i in doc_start_indices: A__ = i + max_length - q_len A__ = input_ids[i:end_index] inputs.append(q_indices + slice ) assert len(inputs[-1] ) <= max_length, "Issue in truncating length" if start_token >= i and end_token <= end_index - 1: A__ = start_token - i + q_len A__ = end_token - i + q_len answers_category.append(answer["category"][0] ) # ["short"] -> "short" else: A__ = -100 A__ = -100 answers_category.append("null" ) A__ = inputs[-1][start_token : end_token + 1] answers_start_token.append(UpperCAmelCase_ ) answers_end_token.append(UpperCAmelCase_ ) if assertion: if new != old and new != [tokenizer.cls_token_id]: print("ISSUE in strided for ID:", example["id"] ) print("New:", tokenizer.decode(UpperCAmelCase_ ) ) print("Old:", tokenizer.decode(UpperCAmelCase_ ), end="\n\n" ) if slice[-1] == tokenizer.sep_token_id: break return { "example_id": example["id"], "input_ids": inputs, "labels": { "start_token": answers_start_token, "end_token": answers_end_token, "category": answers_category, }, } def _lowerCamelCase ( UpperCAmelCase_ : List[Any], UpperCAmelCase_ : str, UpperCAmelCase_ : Union[str, Any]=2048, UpperCAmelCase_ : Tuple=4096, UpperCAmelCase_ : int=False ) -> List[Any]: """simple docstring""" A__ = get_strided_contexts_and_ans( UpperCAmelCase_, UpperCAmelCase_, doc_stride=UpperCAmelCase_, max_length=UpperCAmelCase_, assertion=UpperCAmelCase_, ) return example def _lowerCamelCase ( UpperCAmelCase_ : List[str], UpperCAmelCase_ : str ) -> Optional[Any]: """simple docstring""" with jsonlines.open(UpperCAmelCase_, "a" ) as writer: for example in tqdm(UpperCAmelCase_, total=len(UpperCAmelCase_ ), desc="Saving samples ... " ): A__ = example["labels"] for ids, start, end, cat in zip( example["input_ids"], labels["start_token"], labels["end_token"], labels["category"], ): if start == -1 and end == -1: continue # leave waste samples with no answer if cat == "null" and np.random.rand() < 0.6: continue # removing 50 % samples writer.write( { "input_ids": ids, "start_token": start, "end_token": end, "category": CATEGORY_MAPPING[cat], } ) if __name__ == "__main__": from datasets import load_dataset from transformers import BigBirdTokenizer UpperCamelCase = load_dataset("""natural_questions""") UpperCamelCase = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""") UpperCamelCase = data["""train""" if PROCESS_TRAIN == """true""" else """validation"""] UpperCamelCase = { """tokenizer""": tokenizer, """doc_stride""": DOC_STRIDE, """max_length""": MAX_LENGTH, """assertion""": False, } UpperCamelCase = data.map(prepare_inputs, fn_kwargs=fn_kwargs) UpperCamelCase = data.remove_columns(["""annotations""", """document""", """id""", """question"""]) print(data) np.random.seed(SEED) UpperCamelCase = """nq-training.jsonl""" if PROCESS_TRAIN == """true""" else """nq-validation.jsonl""" save_to_disk(data, file_name=cache_file_name)
562
1