code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( A , A , A ): # Initialise PyTorch model UpperCamelCase__ = MobileBertConfig.from_json_file(A ) print(f"Building PyTorch model from configuration: {config}" ) UpperCamelCase__ = MobileBertForPreTraining(A ) # Load weights from tf checkpoint UpperCamelCase__ = load_tf_weights_in_mobilebert(A , A , A ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , A ) if __name__ == "__main__": __magic_name__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
415
import collections import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_flax_cross_test, require_flax, require_torch, require_vision, slow, torch_device, ) from transformers.utils import is_flax_available, is_torch_available, is_vision_available from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_flax_bert import FlaxBertModelTester from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester from ..vit.test_modeling_flax_vit import FlaxViTModelTester if is_flax_available(): from transformers import ( FlaxBertModel, FlaxCLIPVisionModel, FlaxVisionTextDualEncoderModel, FlaxViTModel, VisionTextDualEncoderConfig, VisionTextDualEncoderProcessor, ) from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) if is_torch_available(): import torch from transformers import VisionTextDualEncoderModel if is_vision_available(): from PIL import Image def __UpperCamelCase ( A ): if isinstance(A , collections.abc.Iterable ): return x return (x, x) @require_flax class _A : def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' pass def _a (self ) -> Tuple: '''simple docstring''' pass def _a (self ) -> Dict: '''simple docstring''' pass def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = np.abs((a - b) ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , F"Difference between torch and flax is {diff} (>= {tol})." ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' UpperCamelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.get_vision_text_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.get_vision_text_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output[0] with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model(input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = after_output[0] UpperCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-3 ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.get_vision_text_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = {'''vision_model''': vision_model, '''text_model''': text_model} UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model( input_ids=SCREAMING_SNAKE_CASE_ , pixel_values=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , output_attentions=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = output.vision_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ = to_atuple(vision_model.config.image_size ) UpperCamelCase__ = to_atuple(vision_model.config.patch_size ) UpperCamelCase__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) UpperCamelCase__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) UpperCamelCase__ = output.text_model_output.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' pt_model.to(SCREAMING_SNAKE_CASE_ ) pt_model.eval() # prepare inputs UpperCamelCase__ = inputs_dict UpperCamelCase__ = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()} with torch.no_grad(): UpperCamelCase__ = pt_model(**SCREAMING_SNAKE_CASE_ ).to_tuple() UpperCamelCase__ = fx_model(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE_ , pt_output.numpy() , 4E-2 ) # PT -> Flax with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE_ , from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = fx_model_loaded(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE_ , pt_output.numpy() , 4E-2 ) # Flax -> PT with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = VisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE_ , from_flax=SCREAMING_SNAKE_CASE_ ) pt_model_loaded.to(SCREAMING_SNAKE_CASE_ ) pt_model_loaded.eval() with torch.no_grad(): UpperCamelCase__ = pt_model_loaded(**SCREAMING_SNAKE_CASE_ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ): self.assert_almost_equals(SCREAMING_SNAKE_CASE_ , pt_output_loaded.numpy() , 4E-2 ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = VisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = fx_state self.check_pt_flax_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = VisionTextDualEncoderConfig.from_vision_text_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = VisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = FlaxVisionTextDualEncoderModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE_ , fx_model.params ) self.check_pt_flax_equivalence(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**SCREAMING_SNAKE_CASE_ ) def _a (self ) -> int: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() self.check_save_load(**SCREAMING_SNAKE_CASE_ ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**SCREAMING_SNAKE_CASE_ ) @is_pt_flax_cross_test def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() UpperCamelCase__ = config_inputs_dict.pop('''vision_config''' ) UpperCamelCase__ = config_inputs_dict.pop('''text_config''' ) UpperCamelCase__ = config_inputs_dict self.check_equivalence_pt_to_flax(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.check_equivalence_flax_to_pt(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def _a (self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ = self.get_pretrained_model_and_inputs() UpperCamelCase__ = model_a(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = outputs[0] with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = model_a(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = after_outputs[0] UpperCamelCase__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(SCREAMING_SNAKE_CASE_ , 1E-5 ) @require_flax class _A ( __UpperCamelCase , unittest.TestCase ): def _a (self ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=SCREAMING_SNAKE_CASE_ , text_from_pt=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = 13 UpperCamelCase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase__ = random_attention_mask([batch_size, 4] ) UpperCamelCase__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' UpperCamelCase__ = FlaxViTModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) return vision_model, text_model def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = FlaxViTModelTester(self ) UpperCamelCase__ = FlaxBertModelTester(self ) UpperCamelCase__ = vit_model_tester.prepare_config_and_inputs() UpperCamelCase__ = bert_model_tester.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ = vision_config_and_inputs UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_torch class _A ( __UpperCamelCase , unittest.TestCase ): def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-clip''' , '''hf-internal-testing/tiny-bert''' , vision_from_pt=SCREAMING_SNAKE_CASE_ , text_from_pt=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = 13 UpperCamelCase__ = floats_tensor( [ batch_size, model.config.vision_config.num_channels, model.config.vision_config.image_size, model.config.vision_config.image_size, ] ) UpperCamelCase__ = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size ) UpperCamelCase__ = random_attention_mask([batch_size, 4] ) UpperCamelCase__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = FlaxCLIPVisionModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = FlaxBertModel(SCREAMING_SNAKE_CASE_ ) return vision_model, text_model def _a (self ) -> List[str]: '''simple docstring''' UpperCamelCase__ = FlaxCLIPVisionModelTester(self ) UpperCamelCase__ = FlaxBertModelTester(self ) UpperCamelCase__ = clip_model_tester.prepare_config_and_inputs() UpperCamelCase__ = bert_model_tester.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ = vision_config_and_inputs UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = text_config_and_inputs # make sure that cross attention layers are added return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": attention_mask, "input_ids": input_ids, "token_type_ids": token_type_ids, } @require_flax @require_vision class _A ( unittest.TestCase ): @slow def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = FlaxVisionTextDualEncoderModel.from_pretrained('''clip-italian/clip-italian''' , logit_scale_init_value=1.0 ) UpperCamelCase__ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) UpperCamelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) UpperCamelCase__ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' ) UpperCamelCase__ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) UpperCamelCase__ = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
415
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __lowercase : def __init__(self , A , A=1_3 , A=7 , A=True , A=True , A=False , A=True , A=9_9 , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ): lowerCamelCase_ : int = parent lowerCamelCase_ : Dict = batch_size lowerCamelCase_ : Union[str, Any] = seq_length lowerCamelCase_ : Dict = is_training lowerCamelCase_ : Tuple = use_input_mask lowerCamelCase_ : Any = use_token_type_ids lowerCamelCase_ : List[str] = use_labels lowerCamelCase_ : List[str] = vocab_size lowerCamelCase_ : List[str] = hidden_size lowerCamelCase_ : Tuple = num_hidden_layers lowerCamelCase_ : Dict = num_attention_heads lowerCamelCase_ : Tuple = intermediate_size lowerCamelCase_ : List[str] = hidden_act lowerCamelCase_ : Union[str, Any] = hidden_dropout_prob lowerCamelCase_ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase_ : int = max_position_embeddings lowerCamelCase_ : Tuple = type_vocab_size lowerCamelCase_ : str = type_sequence_label_size lowerCamelCase_ : Any = initializer_range lowerCamelCase_ : Any = num_labels lowerCamelCase_ : int = num_choices lowerCamelCase_ : Union[str, Any] = scope def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ : List[str] = None if self.use_input_mask: lowerCamelCase_ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ : Dict = None if self.use_token_type_ids: lowerCamelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase_ : Any = None lowerCamelCase_ : int = None lowerCamelCase_ : Dict = None if self.use_labels: lowerCamelCase_ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase_ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase_ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ (self ): return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A ): lowerCamelCase_ : List[Any] = OpenLlamaModel(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Tuple = model(A , attention_mask=A ) lowerCamelCase_ : Optional[Any] = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A , A , A , ): lowerCamelCase_ : int = True lowerCamelCase_ : Dict = OpenLlamaModel(A ) model.to(A ) model.eval() lowerCamelCase_ : Dict = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) lowerCamelCase_ : Optional[Any] = model( A , attention_mask=A , encoder_hidden_states=A , ) lowerCamelCase_ : Optional[int] = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A , A , A , ): lowerCamelCase_ : int = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() lowerCamelCase_ : Dict = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ (self , A , A , A , A , A , A , A , A , A , ): lowerCamelCase_ : Dict = True lowerCamelCase_ : List[Any] = True lowerCamelCase_ : str = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass lowerCamelCase_ : int = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) lowerCamelCase_ : Tuple = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCamelCase_ : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_ : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCamelCase_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCamelCase_ : int = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] lowerCamelCase_ : Tuple = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice lowerCamelCase_ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCamelCase_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.prepare_config_and_inputs() ( lowerCamelCase_ ) : Any = config_and_inputs lowerCamelCase_ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): lowerCamelCase : List[Any] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) lowerCamelCase : List[Any] = (OpenLlamaForCausalLM,) if is_torch_available() else () lowerCamelCase : str = ( { "feature-extraction": OpenLlamaModel, "text-classification": OpenLlamaForSequenceClassification, "text-generation": OpenLlamaForCausalLM, "zero-shot": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : List[str] = False lowerCamelCase : int = False def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = OpenLlamaModelTester(self ) lowerCamelCase_ : List[str] = ConfigTester(self , config_class=A , hidden_size=3_7 ) def UpperCAmelCase__ (self ): self.config_tester.run_common_tests() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase_ : List[str] = type self.model_tester.create_and_check_model(*A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : str = 3 lowerCamelCase_ : Optional[int] = input_dict['''input_ids'''] lowerCamelCase_ : int = input_ids.ne(1 ).to(A ) lowerCamelCase_ : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ : Optional[Any] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : List[Any] = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Union[str, Any] = 3 lowerCamelCase_ : Union[str, Any] = '''single_label_classification''' lowerCamelCase_ : List[Any] = input_dict['''input_ids'''] lowerCamelCase_ : str = input_ids.ne(1 ).to(A ) lowerCamelCase_ : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCamelCase_ : Optional[int] = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : int = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Optional[Any] = 3 lowerCamelCase_ : str = '''multi_label_classification''' lowerCamelCase_ : Union[str, Any] = input_dict['''input_ids'''] lowerCamelCase_ : Any = input_ids.ne(1 ).to(A ) lowerCamelCase_ : int = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCamelCase_ : Tuple = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() lowerCamelCase_ : Any = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def UpperCAmelCase__ (self ): pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ : Any = ids_tensor([1, 1_0] , config.vocab_size ) lowerCamelCase_ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase_ : Optional[Any] = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() lowerCamelCase_ : str = original_model(A ).last_hidden_state lowerCamelCase_ : List[Any] = original_model(A ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights lowerCamelCase_ : int = {'''type''': scaling_type, '''factor''': 10.0} lowerCamelCase_ : Optional[Any] = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() lowerCamelCase_ : Optional[Any] = scaled_model(A ).last_hidden_state lowerCamelCase_ : Any = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowercase : List[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : List[Any] = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
0
import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCamelCase_ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase_ = direct_transformers_import(PATH_TO_TRANSFORMERS) lowerCamelCase_ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCamelCase_ = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCamelCase_ = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def __magic_name__ ( __a : List[str] ): '''simple docstring''' UpperCamelCase__ = None # source code of `config_class` UpperCamelCase__ = inspect.getsource(__a ) UpperCamelCase__ = _re_checkpoint.findall(__a ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith("""/""" ): UpperCamelCase__ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link UpperCamelCase__ = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: UpperCamelCase__ = ckpt_name break return checkpoint def __magic_name__ ( ): '''simple docstring''' UpperCamelCase__ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue UpperCamelCase__ = get_checkpoint_from_config_class(__a ) UpperCamelCase__ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__a ) if len(__a ) > 0: UpperCamelCase__ = """\n""".join(sorted(__a ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
513
from __future__ import annotations import time import numpy as np lowerCamelCase_ = [8, 5, 9, 7] lowerCamelCase_ = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] lowerCamelCase_ = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = claim_vector UpperCamelCase__ = allocated_resources_table UpperCamelCase__ = maximum_claim_table def UpperCAmelCase_ (self ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def UpperCAmelCase_ (self ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def UpperCAmelCase_ (self ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(SCREAMING_SNAKE_CASE_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def UpperCAmelCase_ (self ): return {self.__need().index(SCREAMING_SNAKE_CASE_ ): i for i in self.__need()} def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.__need() UpperCamelCase__ = self.__allocated_resources_table UpperCamelCase__ = self.__available_resources() UpperCamelCase__ = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("""_""" * 50 + """\n""" ) while need_list: UpperCamelCase__ = False for each_need in need_list: UpperCamelCase__ = True for index, need in enumerate(SCREAMING_SNAKE_CASE_ ): if need > available_resources[index]: UpperCamelCase__ = False break if execution: UpperCamelCase__ = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase__ = original_need_index print(F"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(SCREAMING_SNAKE_CASE_ ) # update available/freed resources stack UpperCamelCase__ = np.array(SCREAMING_SNAKE_CASE_ ) + np.array( alloc_resources_table[process_number] ) print( """Updated available resource stack for processes: """ + """ """.join([str(SCREAMING_SNAKE_CASE_ ) for x in available_resources] ) ) break if safe: print("""The process is in a safe state.\n""" ) else: print("""System in unsafe state. Aborting...\n""" ) break def UpperCAmelCase_ (self ): print(""" """ * 9 + """Allocated Resource Table""" ) for item in self.__allocated_resources_table: print( F"P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE_ ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print(""" """ * 9 + """System Resource Table""" ) for item in self.__maximum_claim_table: print( F"P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE_ ) + 1}" + """ """.join(F"{it:>8}" for it in item ) + """\n""" ) print( """Current Usage by Active Processes: """ + """ """.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__claim_vector ) ) print( """Initial Available Resources: """ + """ """.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
513
1
"""simple docstring""" def A_ ( __lowercase ): return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import requests from bsa import BeautifulSoup def A_ ( __lowercase = "https://www.worldometers.info/coronavirus" ): UpperCamelCase_ : Dict =BeautifulSoup(requests.get(__lowercase ).text , 'html.parser' ) UpperCamelCase_ : List[Any] =soup.findAll('h1' ) UpperCamelCase_ : List[str] =soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__lowercase , __lowercase )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F"""{key}\n{value}\n""")
395
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a__: List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( A__ ): __SCREAMING_SNAKE_CASE = ['''pixel_values'''] def __init__( self,__lowerCamelCase = True,__lowerCamelCase = None,__lowerCamelCase = 0.9,__lowerCamelCase = PILImageResampling.BICUBIC,__lowerCamelCase = True,__lowerCamelCase = None,__lowerCamelCase = 1 / 255,__lowerCamelCase = True,__lowerCamelCase = True,__lowerCamelCase = None,__lowerCamelCase = None,**__lowerCamelCase,): super().__init__(**__snake_case ) A__ = size if size is not None else {'''shortest_edge''': 224} A__ = get_size_dict(__snake_case,default_to_square=__snake_case ) A__ = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} A__ = get_size_dict(__snake_case,param_name='''crop_size''' ) A__ = do_resize A__ = size A__ = crop_pct A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN A__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = PILImageResampling.BICUBIC,__lowerCamelCase = None,**__lowerCamelCase,): A__ = get_size_dict(__snake_case,default_to_square=__snake_case ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}" ) if crop_pct is not None: if "shortest_edge" in size: A__ = int(size['''shortest_edge'''] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: A__ = int(size['''height'''] / crop_pct ) else: A__ = (int(size['''height'''] / crop_pct ), int(size['''width'''] / crop_pct )) else: raise ValueError('''Invalid size for resize: {}'''.format(__snake_case ) ) A__ = get_resize_output_image_size(__snake_case,size=__snake_case,default_to_square=__snake_case ) else: if "shortest_edge" in size: A__ = get_resize_output_image_size(__snake_case,size=size['''shortest_edge'''],default_to_square=__snake_case ) elif "height" in size and "width" in size: A__ = (size['''height'''], size['''width''']) else: raise ValueError('''Invalid size for resize: {}'''.format(__snake_case ) ) return resize(__snake_case,size=__snake_case,resample=__snake_case,data_format=__snake_case,**__snake_case ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = None,**__lowerCamelCase,): A__ = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"size must contain \'height\' and \'width\' as keys. Got {size.keys()}" ) return center_crop(__snake_case,size=(size['''height'''], size['''width''']),data_format=__snake_case,**__snake_case ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = None,**__lowerCamelCase,): return rescale(__snake_case,scale=__snake_case,data_format=__snake_case,**__snake_case ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase = None,**__lowerCamelCase,): return normalize(__snake_case,mean=__snake_case,std=__snake_case,data_format=__snake_case,**__snake_case ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = None,__lowerCamelCase = ChannelDimension.FIRST,**__lowerCamelCase,): A__ = do_resize if do_resize is not None else self.do_resize A__ = crop_pct if crop_pct is not None else self.crop_pct A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = size if size is not None else self.size A__ = get_size_dict(__snake_case,default_to_square=__snake_case ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(__snake_case,param_name='''crop_size''' ) A__ = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_pct is None: raise ValueError('''Crop_pct must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(__snake_case ) for image in images] if do_resize: A__ = [self.resize(image=__snake_case,size=__snake_case,crop_pct=__snake_case,resample=__snake_case ) for image in images] if do_center_crop: A__ = [self.center_crop(image=__snake_case,size=__snake_case ) for image in images] if do_rescale: A__ = [self.rescale(image=__snake_case,scale=__snake_case ) for image in images] if do_normalize: A__ = [self.normalize(image=__snake_case,mean=__snake_case,std=__snake_case ) for image in images] A__ = [to_channel_dimension_format(__snake_case,__snake_case ) for image in images] A__ = {'''pixel_values''': images} return BatchFeature(data=__snake_case,tensor_type=__snake_case )
190
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = ["image_processor", "tokenizer"] snake_case_ = "LayoutLMv2ImageProcessor" snake_case_ = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : List[Any] , __snake_case : Union[str, Any]=None , __snake_case : Optional[int]=None , **__snake_case : Union[str, Any] )-> str: if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __snake_case , ) snake_case = kwargs.pop("""feature_extractor""" ) snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__snake_case , __snake_case ) def __call__( self : Optional[Any] , __snake_case : Dict , __snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __snake_case : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , __snake_case : Union[List[List[int]], List[List[List[int]]]] = None , __snake_case : Optional[Union[List[int], List[List[int]]]] = None , __snake_case : bool = True , __snake_case : Union[bool, str, PaddingStrategy] = False , __snake_case : Union[bool, str, TruncationStrategy] = None , __snake_case : Optional[int] = None , __snake_case : int = 0 , __snake_case : Optional[int] = None , __snake_case : Optional[bool] = None , __snake_case : Optional[bool] = None , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = False , __snake_case : bool = True , __snake_case : Optional[Union[str, TensorType]] = None , **__snake_case : List[str] , )-> BatchEncoding: # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor snake_case = self.image_processor(images=__snake_case , return_tensors=__snake_case ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__snake_case , __snake_case ): snake_case = [text] # add batch dimension (as the image processor always adds a batch dimension) snake_case = features["""words"""] snake_case = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__snake_case , add_special_tokens=__snake_case , padding=__snake_case , truncation=__snake_case , max_length=__snake_case , stride=__snake_case , pad_to_multiple_of=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , return_overflowing_tokens=__snake_case , return_special_tokens_mask=__snake_case , return_offsets_mapping=__snake_case , return_length=__snake_case , verbose=__snake_case , return_tensors=__snake_case , **__snake_case , ) # add pixel values snake_case = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: snake_case = self.get_overflowing_images(__snake_case , encoded_inputs["""overflow_to_sample_mapping"""] ) snake_case = images return encoded_inputs def lowerCAmelCase ( self : Any , __snake_case : List[Any] , __snake_case : str )-> List[str]: # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image snake_case = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__snake_case ) != len(__snake_case ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__snake_case )} and {len(__snake_case )}''' ) return images_with_overflow def lowerCAmelCase ( self : int , *__snake_case : Optional[int] , **__snake_case : Tuple )-> str: return self.tokenizer.batch_decode(*__snake_case , **__snake_case ) def lowerCAmelCase ( self : Dict , *__snake_case : Tuple , **__snake_case : Optional[int] )-> List[Any]: return self.tokenizer.decode(*__snake_case , **__snake_case ) @property def lowerCAmelCase ( self : str )-> int: return ["input_ids", "bbox", "attention_mask", "image"] @property def lowerCAmelCase ( self : Union[str, Any] )-> List[str]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __snake_case , ) return self.image_processor_class @property def lowerCAmelCase ( self : Optional[Any] )-> Tuple: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __snake_case , ) return self.image_processor
369
0
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : Dict = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } snake_case_ : int = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: for attribute in key.split('''.''' ): UpperCAmelCase_ : str = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) if weight_type is not None: UpperCAmelCase_ : List[str] = getattr(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ).shape else: UpperCAmelCase_ : str = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase_ : List[Any] = value elif weight_type == "weight_g": UpperCAmelCase_ : str = value elif weight_type == "weight_v": UpperCAmelCase_ : Tuple = value elif weight_type == "bias": UpperCAmelCase_ : str = value else: UpperCAmelCase_ : Optional[int] = value logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Tuple = fairseq_model.state_dict() UpperCAmelCase_ : Tuple = hf_model.feature_extractor UpperCAmelCase_ : Union[str, Any] = hf_model.adapter for name, value in fairseq_dict.items(): UpperCAmelCase_ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, hf_model.config.feat_extract_norm == '''group''', ) UpperCAmelCase_ : List[str] = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase_ : Union[str, Any] = True if "*" in mapped_key: UpperCAmelCase_ : List[str] = name.split(SCREAMING_SNAKE_CASE__ )[0].split('''.''' )[-2] UpperCAmelCase_ : Any = mapped_key.replace('''*''', SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: UpperCAmelCase_ : Dict = '''weight_g''' elif "weight_v" in name: UpperCAmelCase_ : List[Any] = '''weight_v''' elif "bias" in name: UpperCAmelCase_ : Dict = '''bias''' elif "weight" in name: UpperCAmelCase_ : Dict = '''weight''' else: UpperCAmelCase_ : Optional[int] = None set_recursively(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Dict: UpperCAmelCase_ : Any = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase_ : Union[str, Any] = name.split('''.''' ) UpperCAmelCase_ : int = int(items[0] ) UpperCAmelCase_ : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase_ : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase_ : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) UpperCAmelCase_ : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase_ : Dict = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : int, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: UpperCAmelCase_ : Dict = full_name.split('''adaptor.''' )[-1] UpperCAmelCase_ : Union[str, Any] = name.split('''.''' ) if items[1].isdigit(): UpperCAmelCase_ : Union[str, Any] = int(items[1] ) else: UpperCAmelCase_ : Tuple = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" UpperCAmelCase_ : int = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" UpperCAmelCase_ : Optional[Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" UpperCAmelCase_ : List[str] = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" UpperCAmelCase_ : int = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" UpperCAmelCase_ : Tuple = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" UpperCAmelCase_ : List[Any] = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> Dict: UpperCAmelCase_ , UpperCAmelCase_ : Dict = emb.weight.shape UpperCAmelCase_ : Any = nn.Linear(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, bias=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Optional[int] = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Tuple, SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Any, SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : List[str], SCREAMING_SNAKE_CASE__ : List[Any], SCREAMING_SNAKE_CASE__ : str, SCREAMING_SNAKE_CASE__ : int, ) -> Any: UpperCAmelCase_ : Optional[Any] = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE__, add_adapter=SCREAMING_SNAKE_CASE__, adapter_stride=SCREAMING_SNAKE_CASE__, adapter_kernel_size=SCREAMING_SNAKE_CASE__, use_auth_token=SCREAMING_SNAKE_CASE__, output_hidden_size=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : Optional[Any] = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) # load model UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, }, ) UpperCAmelCase_ : Any = model[0].eval() # load feature extractor UpperCAmelCase_ : List[str] = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__, use_auth_token=SCREAMING_SNAKE_CASE__ ) # set weights for wav2vec2 encoder UpperCAmelCase_ : int = WavaVecaModel(SCREAMING_SNAKE_CASE__ ) recursively_load_weights_wavaveca(model.encoder, SCREAMING_SNAKE_CASE__ ) # load decoder weights UpperCAmelCase_ : Union[str, Any] = MBartForCausalLM(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict(), strict=SCREAMING_SNAKE_CASE__ ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) UpperCAmelCase_ : int = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__, decoder=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : int = MBartaaTokenizer(SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[str] = hf_wavavec.config.to_dict() UpperCAmelCase_ : Tuple = tokenizer.pad_token_id UpperCAmelCase_ : Optional[int] = tokenizer.bos_token_id UpperCAmelCase_ : Optional[int] = tokenizer.eos_token_id UpperCAmelCase_ : int = '''mbart50''' UpperCAmelCase_ : List[str] = '''wav2vec2''' UpperCAmelCase_ : Dict = tokenizer.eos_token_id UpperCAmelCase_ : List[str] = 250004 UpperCAmelCase_ : List[str] = tokenizer.eos_token_id UpperCAmelCase_ : Dict = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=10_24, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_00_04, type=int, help="`decoder_start_token_id` of model config") snake_case_ : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
644
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : list[int] ) -> list[list[int]]: UpperCAmelCase_ : int = [] if len(SCREAMING_SNAKE_CASE__ ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ : List[Any] = nums.pop(0 ) UpperCAmelCase_ : Optional[Any] = permute(SCREAMING_SNAKE_CASE__ ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE__ ) result.extend(SCREAMING_SNAKE_CASE__ ) nums.append(SCREAMING_SNAKE_CASE__ ) return result def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Any: def backtrack(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if start == len(SCREAMING_SNAKE_CASE__ ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = nums[i], nums[start] backtrack(start + 1 ) UpperCAmelCase_ , UpperCAmelCase_ : int = nums[i], nums[start] # backtrack UpperCAmelCase_ : Optional[int] = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function snake_case_ : Tuple = permutea([1, 2, 3]) print(res) doctest.testmod()
644
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
525
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCAmelCase__ = input('Enter image url: ').strip() print(F'Downloading image from {url} ...') lowerCAmelCase__ = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image lowerCAmelCase__ = soup.find('meta', {'property': 'og:image'})['content'] lowerCAmelCase__ = requests.get(image_url).content lowerCAmelCase__ = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, 'wb') as fp: fp.write(image_data) print(F'Done. Image saved to disk as {file_name}.')
621
0
import unittest import numpy as np def _a ( lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : np.ndarray , lowercase__ : np.ndarray | None = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = np.shape(__snake_case ) SCREAMING_SNAKE_CASE__ : Dict = np.shape(__snake_case ) SCREAMING_SNAKE_CASE__ : Tuple = np.shape(__snake_case ) if shape_a[0] != shape_b[0]: SCREAMING_SNAKE_CASE__ : int = ( "Expected the same number of rows for A and B. " f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(__snake_case ) if shape_b[1] != shape_c[1]: SCREAMING_SNAKE_CASE__ : Dict = ( "Expected the same number of columns for B and C. " f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(__snake_case ) SCREAMING_SNAKE_CASE__ : List[Any] = pseudo_inv if a_inv is None: try: SCREAMING_SNAKE_CASE__ : Dict = np.linalg.inv(__snake_case ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class snake_case ( unittest.TestCase ): def __lowercase( self : Tuple )-> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE__ : List[str] = np.array([[2, 1], [6, 3]] ) SCREAMING_SNAKE_CASE__ : List[str] = schur_complement(a_ , a_ , a_ ) SCREAMING_SNAKE_CASE__ : Any = np.block([[a, b], [b.T, c]] ) SCREAMING_SNAKE_CASE__ : List[str] = np.linalg.det(a_ ) SCREAMING_SNAKE_CASE__ : Dict = np.linalg.det(a_ ) SCREAMING_SNAKE_CASE__ : Any = np.linalg.det(a_ ) self.assertAlmostEqual(a_ , det_a * det_s ) def __lowercase( self : Any )-> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE__ : List[str] = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(a_ ): schur_complement(a_ , a_ , a_ ) def __lowercase( self : Dict )-> None: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) SCREAMING_SNAKE_CASE__ : str = np.array([[0, 3], [3, 0], [2, 3]] ) SCREAMING_SNAKE_CASE__ : Dict = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(a_ ): schur_complement(a_ , a_ , a_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
713
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : int = logging.get_logger(__name__) def _a ( lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any]=False , lowercase__ : str=False , lowercase__ : Dict=False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def _a ( lowercase__ : List[str] , lowercase__ : Dict ): '''simple docstring''' for i in range(config.num_hidden_layers ): SCREAMING_SNAKE_CASE__ : Dict = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ : Any = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE__ : Tuple = in_proj_bias[-config.hidden_size :] def _a ( lowercase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) def _a ( lowercase__ : int , lowercase__ : int , lowercase__ : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = dct.pop(lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = val @torch.no_grad() def _a ( lowercase__ : Dict , lowercase__ : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=lowercase__ ) SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : List[str] = False SCREAMING_SNAKE_CASE__ : str = False if "vqa" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : str = 31_29 SCREAMING_SNAKE_CASE__ : Optional[Any] = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ : int = 'vqa2-id2label.json' SCREAMING_SNAKE_CASE__ : str = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = {int(lowercase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : Dict = idalabel SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ : List[str] = ViltForQuestionAnswering(lowercase__ ) elif "nlvr" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : List[str] = 2 SCREAMING_SNAKE_CASE__ : Dict = {0: 'False', 1: 'True'} SCREAMING_SNAKE_CASE__ : Dict = {v: k for k, v in config.idalabel.items()} SCREAMING_SNAKE_CASE__ : Tuple = 3 SCREAMING_SNAKE_CASE__ : int = ViltForImagesAndTextClassification(lowercase__ ) elif "irtr" in checkpoint_url: SCREAMING_SNAKE_CASE__ : Dict = True SCREAMING_SNAKE_CASE__ : str = ViltForImageAndTextRetrieval(lowercase__ ) elif "mlm_itm" in checkpoint_url: SCREAMING_SNAKE_CASE__ : int = True SCREAMING_SNAKE_CASE__ : Optional[int] = ViltForMaskedLM(lowercase__ ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE__ : Any = torch.hub.load_state_dict_from_url(lowercase__ , map_location='cpu' )['state_dict'] SCREAMING_SNAKE_CASE__ : Any = create_rename_keys(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_q_k_v(lowercase__ , lowercase__ ) if mlm_model or irtr_model: SCREAMING_SNAKE_CASE__ : Any = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) # load state dict into HuggingFace model model.eval() if mlm_model: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowercase__ ) # Define processor SCREAMING_SNAKE_CASE__ : str = ViltImageProcessor(size=3_84 ) SCREAMING_SNAKE_CASE__ : List[Any] = BertTokenizer.from_pretrained('bert-base-uncased' ) SCREAMING_SNAKE_CASE__ : List[Any] = ViltProcessor(lowercase__ , lowercase__ ) # Forward pass on example inputs (image + text) if nlvr_model: SCREAMING_SNAKE_CASE__ : List[str] = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) SCREAMING_SNAKE_CASE__ : Any = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=lowercase__ ).raw ) SCREAMING_SNAKE_CASE__ : Tuple = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) SCREAMING_SNAKE_CASE__ : List[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : List[str] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : List[Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: SCREAMING_SNAKE_CASE__ : Tuple = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=lowercase__ ).raw ) if mlm_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'a bunch of [MASK] laying on a [MASK].' else: SCREAMING_SNAKE_CASE__ : Optional[Any] = 'How many cats are there?' SCREAMING_SNAKE_CASE__ : Optional[Any] = processor(lowercase__ , lowercase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ : str = model(**lowercase__ ) # Verify outputs if mlm_model: SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.Size([1, 11, 3_05_22] ) SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 ) # verify masked token prediction equals "cats" SCREAMING_SNAKE_CASE__ : Union[str, Any] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: SCREAMING_SNAKE_CASE__ : str = torch.Size([1, 31_29] ) SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase__ , atol=1E-4 ) # verify vqa prediction equals "2" SCREAMING_SNAKE_CASE__ : List[Any] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size([1, 2] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
636
0
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _UpperCamelCase : '''simple docstring''' def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = UNetaDConditionModel( sample_size=3_2 , layers_per_block=1 , block_out_channels=[3_2, 6_4] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.00_01 , beta_end=0.02 , thresholding=lowerCAmelCase__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=3_2 , layers_per_block=[1, 2] , block_out_channels=[3_2, 6_4] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=3_2 , encoder_hid_dim=3_2 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_14 , time_embedding_act_fn="""gelu""" , time_embedding_dim=3_2 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.00_01 , beta_end=0.02 , thresholding=lowerCAmelCase__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = DDPMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[str] = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = inputs["""prompt"""] __SCREAMING_SNAKE_CASE : Tuple = inputs["""generator"""] __SCREAMING_SNAKE_CASE : int = inputs["""num_inference_steps"""] __SCREAMING_SNAKE_CASE : Any = inputs["""output_type"""] if "image" in inputs: __SCREAMING_SNAKE_CASE : Optional[Any] = inputs["""image"""] else: __SCREAMING_SNAKE_CASE : Union[str, Any] = None if "mask_image" in inputs: __SCREAMING_SNAKE_CASE : Optional[int] = inputs["""mask_image"""] else: __SCREAMING_SNAKE_CASE : List[Any] = None if "original_image" in inputs: __SCREAMING_SNAKE_CASE : str = inputs["""original_image"""] else: __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.encode_prompt(lowerCAmelCase__ ) # inputs with prompt converted to embeddings __SCREAMING_SNAKE_CASE : Tuple = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = image if mask_image is not None: __SCREAMING_SNAKE_CASE : int = mask_image if original_image is not None: __SCREAMING_SNAKE_CASE : int = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = pipe(**lowerCAmelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class.from_pretrained(lowerCAmelCase__ ) pipe_loaded.to(lowerCAmelCase__ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCAmelCase__ , lowerCAmelCase__ ) is None , F"`{optional_component}` did not stay set to None after loading." , ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs["""generator"""] __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs["""num_inference_steps"""] __SCREAMING_SNAKE_CASE : Dict = inputs["""output_type"""] # inputs with prompt converted to embeddings __SCREAMING_SNAKE_CASE : Optional[int] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: __SCREAMING_SNAKE_CASE : List[Any] = image if mask_image is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = mask_image if original_image is not None: __SCREAMING_SNAKE_CASE : int = original_image __SCREAMING_SNAKE_CASE : Optional[Any] = pipe_loaded(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : str = np.abs(to_np(lowerCAmelCase__ ) - to_np(lowerCAmelCase__ ) ).max() self.assertLess(lowerCAmelCase__ , 1E-4 ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.pipeline_class.from_pretrained(lowerCAmelCase__ ) pipe_loaded.to(lowerCAmelCase__ ) pipe_loaded.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = pipe_loaded(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : Tuple = np.abs(to_np(lowerCAmelCase__ ) - to_np(lowerCAmelCase__ ) ).max() self.assertLess(lowerCAmelCase__ , 1E-4 )
578
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: Path , _lowerCamelCase: str = None , _lowerCamelCase: str = None , _lowerCamelCase: str = None , ): if config_name_or_path is None: __SCREAMING_SNAKE_CASE : List[str] = """facebook/rag-token-base""" if model_type == """rag_token""" else """facebook/rag-sequence-base""" if generator_tokenizer_name_or_path is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __SCREAMING_SNAKE_CASE : Tuple = question_encoder_name_or_path __SCREAMING_SNAKE_CASE : int = RagTokenForGeneration if model_type == """rag_token""" else RagSequenceForGeneration # Save model. __SCREAMING_SNAKE_CASE : List[Any] = RagConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = AutoConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = gen_config __SCREAMING_SNAKE_CASE : Union[str, Any] = question_encoder_config __SCREAMING_SNAKE_CASE : Dict = model_class.from_pretrained_question_encoder_generator( _lowerCamelCase , _lowerCamelCase , config=_lowerCamelCase ) rag_model.save_pretrained(_lowerCamelCase ) # Sanity check. model_class.from_pretrained(_lowerCamelCase ) # Save tokenizers. __SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(_lowerCamelCase ) gen_tokenizer.save_pretrained(dest_dir / """generator_tokenizer/""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(_lowerCamelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / """question_encoder_tokenizer/""" ) if __name__ == "__main__": UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) UpperCamelCase__ : Dict = parser.parse_args() UpperCamelCase__ : Any = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
578
1
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( __A , __A , __A ) -> Optional[Any]: '''simple docstring''' return params[F"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __UpperCAmelCase ( __A , __A , __A , __A="attention" ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = UpperCAmelCase__ = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) UpperCAmelCase__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) UpperCAmelCase__ = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) UpperCAmelCase__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) UpperCAmelCase__ = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) UpperCAmelCase__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) UpperCAmelCase__ = np.ascontiguousarray(params[F"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) UpperCAmelCase__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __UpperCAmelCase ( __A , __A , __A , __A=False ) -> Tuple: '''simple docstring''' if split_mlp_wi: UpperCAmelCase__ = params[F"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] UpperCAmelCase__ = params[F"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] UpperCAmelCase__ = (wi_a, wi_a) else: UpperCAmelCase__ = params[F"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] UpperCAmelCase__ = params[F"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __UpperCAmelCase ( __A , __A , __A , __A ) -> Any: '''simple docstring''' return params[F"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __UpperCAmelCase ( __A , *, __A , __A , __A = False ) -> Tuple: '''simple docstring''' UpperCAmelCase__ = traverse_util.flatten_dict(variables["target"] ) UpperCAmelCase__ = {"/".join(__A ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi UpperCAmelCase__ = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , __A ) UpperCAmelCase__ = collections.OrderedDict() # Shared embeddings. UpperCAmelCase__ = old["token_embedder/embedding"] # Encoder. for i in range(__A ): # Block i, layer 0 (Self Attention). UpperCAmelCase__ = tax_layer_norm_lookup(__A , __A , "encoder" , "pre_attention_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = tax_attention_lookup(__A , __A , "encoder" , "attention" ) UpperCAmelCase__ = layer_norm UpperCAmelCase__ = k.T UpperCAmelCase__ = o.T UpperCAmelCase__ = q.T UpperCAmelCase__ = v.T # Block i, layer 1 (MLP). UpperCAmelCase__ = tax_layer_norm_lookup(__A , __A , "encoder" , "pre_mlp_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ = tax_mlp_lookup(__A , __A , "encoder" , __A ) UpperCAmelCase__ = layer_norm if split_mlp_wi: UpperCAmelCase__ = wi[0].T UpperCAmelCase__ = wi[1].T else: UpperCAmelCase__ = wi.T UpperCAmelCase__ = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase__ = tax_relpos_bias_lookup( __A , __A , "encoder" ).T UpperCAmelCase__ = old["encoder/encoder_norm/scale"] if not scalable_attention: UpperCAmelCase__ = tax_relpos_bias_lookup( __A , 0 , "encoder" ).T UpperCAmelCase__ = tax_relpos_bias_lookup( __A , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(__A ): # Block i, layer 0 (Self Attention). UpperCAmelCase__ = tax_layer_norm_lookup(__A , __A , "decoder" , "pre_self_attention_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = tax_attention_lookup(__A , __A , "decoder" , "self_attention" ) UpperCAmelCase__ = layer_norm UpperCAmelCase__ = k.T UpperCAmelCase__ = o.T UpperCAmelCase__ = q.T UpperCAmelCase__ = v.T # Block i, layer 1 (Cross Attention). UpperCAmelCase__ = tax_layer_norm_lookup(__A , __A , "decoder" , "pre_cross_attention_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = tax_attention_lookup(__A , __A , "decoder" , "encoder_decoder_attention" ) UpperCAmelCase__ = layer_norm UpperCAmelCase__ = k.T UpperCAmelCase__ = o.T UpperCAmelCase__ = q.T UpperCAmelCase__ = v.T # Block i, layer 2 (MLP). UpperCAmelCase__ = tax_layer_norm_lookup(__A , __A , "decoder" , "pre_mlp_layer_norm" ) UpperCAmelCase__ , UpperCAmelCase__ = tax_mlp_lookup(__A , __A , "decoder" , __A ) UpperCAmelCase__ = layer_norm if split_mlp_wi: UpperCAmelCase__ = wi[0].T UpperCAmelCase__ = wi[1].T else: UpperCAmelCase__ = wi.T UpperCAmelCase__ = wo.T if scalable_attention: # convert the rel_embedding of each layer UpperCAmelCase__ = tax_relpos_bias_lookup(__A , __A , "decoder" ).T UpperCAmelCase__ = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: UpperCAmelCase__ = old["decoder/logits_dense/kernel"].T return new def __UpperCAmelCase ( __A , __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: UpperCAmelCase__ = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: UpperCAmelCase__ = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) UpperCAmelCase__ = state_dict["shared.weight"] return state_dict def __UpperCAmelCase ( __A , __A , __A , __A , __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = checkpoints.load_tax_checkpoint(__A ) UpperCAmelCase__ = convert_tax_to_pytorch( __A , num_layers=config.num_layers , is_encoder_only=__A , scalable_attention=__A ) UpperCAmelCase__ = make_state_dict(__A , __A ) model.load_state_dict(__A , strict=__A ) def __UpperCAmelCase ( __A , __A , __A , __A = False , __A = False , ) -> List[Any]: '''simple docstring''' UpperCAmelCase__ = MTaConfig.from_json_file(__A ) print(F"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: UpperCAmelCase__ = UMTaEncoderModel(__A ) else: UpperCAmelCase__ = UMTaForConditionalGeneration(__A ) # Load weights from tf checkpoint load_tax_weights_in_ta(__A , __A , __A , __A , __A ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__A ) # Verify that we can load the checkpoint. model.from_pretrained(__A ) print("Done" ) if __name__ == "__main__": A = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) parser.add_argument( "--scalable_attention", action="store_true", help="Whether the model uses scaled attention (umt5 model)", default=False, ) A = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
703
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowercase__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : Dict , _lowercase : int , _lowercase : List[Any]=None , _lowercase : str=True , _lowercase : str=None , **_lowercase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = config_class UpperCAmelCase__ = has_text_modality UpperCAmelCase__ = kwargs UpperCAmelCase__ = common_properties def _UpperCAmelCase ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.config_class(**self.inputs_dict ) UpperCAmelCase__ = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(_lowercase , _lowercase ) , msg=F"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(_lowercase ): try: setattr(_lowercase , _lowercase , _lowercase ) self.parent.assertEqual( getattr(_lowercase , _lowercase ) , _lowercase , msg=F"""`{name} value {idx} expected, but was {getattr(_lowercase , _lowercase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(_lowercase ): try: UpperCAmelCase__ = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(_lowercase , _lowercase ) , _lowercase , msg=F"""`{name} value {idx} expected, but was {getattr(_lowercase , _lowercase )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _UpperCAmelCase ( self : int ): """simple docstring""" UpperCAmelCase__ = self.config_class(**self.inputs_dict ) UpperCAmelCase__ = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , _lowercase ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = os.path.join(_lowercase , "config.json" ) config_first.to_json_file(_lowercase ) UpperCAmelCase__ = self.config_class.from_json_file(_lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(_lowercase ) UpperCAmelCase__ = self.config_class.from_pretrained(_lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.config_class(**self.inputs_dict ) UpperCAmelCase__ = "test" with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ = os.path.join(_lowercase , _lowercase ) config_first.save_pretrained(_lowercase ) UpperCAmelCase__ = self.config_class.from_pretrained(_lowercase , subfolder=_lowercase ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _UpperCAmelCase ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) UpperCAmelCase__ = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _UpperCAmelCase ( self : Any ): """simple docstring""" if self.config_class.is_composition: return UpperCAmelCase__ = self.config_class() self.parent.assertIsNotNone(_lowercase ) def _UpperCAmelCase ( self : Any ): """simple docstring""" UpperCAmelCase__ = copy.deepcopy(_lowercase ) UpperCAmelCase__ = self.config_class(**_lowercase ) UpperCAmelCase__ = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(_lowercase , _lowercase ) != value: wrong_values.append((key, getattr(_lowercase , _lowercase ), value) ) if len(_lowercase ) > 0: UpperCAmelCase__ = "\n".join([F"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(F"""The following keys were not properly set in the config:\n{errors}""" ) def _UpperCAmelCase ( self : Any ): """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
277
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger SCREAMING_SNAKE_CASE__ = '''<<<<<<< This should probably be modified because it mentions: ''' SCREAMING_SNAKE_CASE__ = '''======= >>>>>>> ''' SCREAMING_SNAKE_CASE__ = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] SCREAMING_SNAKE_CASE__ = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def A ( __UpperCamelCase ) -> Optional[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __lowerCAmelCase ( _lowercase ): """simple docstring""" @staticmethod def _a ( _snake_case : ArgumentParser ): """simple docstring""" A__ = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=__lowerCAmelCase , required=__lowerCAmelCase , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self : str , _snake_case : str , _snake_case : str , *_snake_case : int ): """simple docstring""" A__ = get_logger('datasets-cli/converting' ) A__ = tfds_path A__ = datasets_directory def _a ( self : Dict ): """simple docstring""" if os.path.isdir(self._tfds_path ): A__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): A__ = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) A__ = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) A__ = [] A__ = [] A__ = {} if os.path.isdir(self._tfds_path ): A__ = os.listdir(__lowerCAmelCase ) else: A__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) A__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) A__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not os.path.isfile(__lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(__lowerCAmelCase , encoding='utf-8' ) as f: A__ = f.readlines() A__ = [] A__ = False A__ = False A__ = [] for line in lines: A__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: A__ = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here A__ = '''''' continue elif "from absl import logging" in out_line: A__ = '''from datasets import logging\n''' elif "getLogger" in out_line: A__ = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): A__ = True A__ = list(filter(lambda _snake_case : e in out_line , __lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCAmelCase ) + '\n' ) out_lines.append(__lowerCAmelCase ) out_lines.append(__lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: A__ = re.sub(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: A__ = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , __lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) A__ = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: A__ = True out_lines.append(__lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset A__ = f_name.replace('.py' , '' ) A__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) A__ = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCAmelCase ) if needs_manual_update: with_manual_update.append(__lowerCAmelCase ) with open(__lowerCAmelCase , 'w' , encoding='utf-8' ) as f: f.writelines(__lowerCAmelCase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: A__ = os.path.basename(__lowerCAmelCase ) A__ = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(__lowerCAmelCase , __lowerCAmelCase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
9
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowerCAmelCase__ = '''hf-internal-testing/tiny-random-bert''' lowerCAmelCase__ = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowerCAmelCase__ = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class __snake_case ( unittest.TestCase): def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" _lowerCamelCase : Optional[Any] = cached_file(__lowerCAmelCase , __lowerCAmelCase ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__lowerCAmelCase ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) ) ) with open(os.path.join(__lowerCAmelCase , '''refs''' , '''main''' ) ) as f: _lowerCamelCase : Optional[int] = f.read() self.assertEqual(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''snapshots''' , __lowerCAmelCase , __lowerCAmelCase ) ) self.assertTrue(os.path.isfile(__lowerCAmelCase ) ) # File is cached at the same place the second time. _lowerCamelCase : Tuple = cached_file(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) # Using a specific revision to test the full commit hash. _lowerCamelCase : Dict = cached_file(__lowerCAmelCase , __lowerCAmelCase , revision='''9b8c223''' ) self.assertEqual(__lowerCAmelCase , os.path.join(__lowerCAmelCase , '''snapshots''' , __lowerCAmelCase , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid model identifier''' ): _lowerCamelCase : Optional[int] = cached_file('''tiny-random-bert''' , __lowerCAmelCase ) with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid git identifier''' ): _lowerCamelCase : str = cached_file(__lowerCAmelCase , __lowerCAmelCase , revision='''aaaa''' ) with self.assertRaisesRegex(__lowerCAmelCase , '''does not appear to have a file named''' ): _lowerCamelCase : int = cached_file(__lowerCAmelCase , '''conf''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex(__lowerCAmelCase , '''does not appear to have a file named''' ): _lowerCamelCase : Dict = cached_file(__lowerCAmelCase , '''conf''' ) with open(os.path.join(__lowerCAmelCase , '''refs''' , '''main''' ) ) as f: _lowerCamelCase : List[Any] = f.read() self.assertTrue(os.path.isfile(os.path.join(__lowerCAmelCase , '''.no_exist''' , __lowerCAmelCase , '''conf''' ) ) ) _lowerCamelCase : str = cached_file(__lowerCAmelCase , '''conf''' , _raise_exceptions_for_missing_entries=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = cached_file(__lowerCAmelCase , '''conf''' , local_files_only=__lowerCAmelCase , _raise_exceptions_for_missing_entries=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) _lowerCamelCase : Any = mock.Mock() _lowerCamelCase : Optional[Any] = 5_0_0 _lowerCamelCase : Dict = {} _lowerCamelCase : List[Any] = HTTPError _lowerCamelCase : int = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__lowerCAmelCase ) as mock_head: _lowerCamelCase : Union[str, Any] = cached_file(__lowerCAmelCase , '''conf''' , _raise_exceptions_for_connection_errors=__lowerCAmelCase ) self.assertIsNone(__lowerCAmelCase ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __lowerCAmelCase ) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __lowerCAmelCase ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__lowerCAmelCase , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __lowerCAmelCase , revision='''ahaha''' ) _lowerCamelCase : Dict = get_file_from_repo('''bert-base-cased''' , __lowerCAmelCase ) # The name is the cached name which is not very easy to test, so instead we load the content. _lowerCamelCase : Dict = json.loads(open(__lowerCAmelCase , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Any = Path(__lowerCAmelCase ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__lowerCAmelCase , '''a.txt''' ) , str(__lowerCAmelCase ) ) self.assertIsNone(get_file_from_repo(__lowerCAmelCase , '''b.txt''' ) )
83
0
from __future__ import annotations from typing import Any def _lowerCAmelCase ( __lowerCAmelCase ) -> None: """simple docstring""" create_state_space_tree(__lowerCAmelCase , [] , 0 ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: """simple docstring""" if index == len(__lowerCAmelCase ): print(__lowerCAmelCase ) return create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": A__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['''A''', '''B''', '''C''']) generate_all_subsequences(seq)
714
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class a ( __lowerCamelCase ): __lowerCAmelCase : Optional[int] = """markuplm""" def __init__( self :int ,__lowercase :str=3_0_5_2_2 ,__lowercase :str=7_6_8 ,__lowercase :str=1_2 ,__lowercase :Dict=1_2 ,__lowercase :Optional[Any]=3_0_7_2 ,__lowercase :Any="gelu" ,__lowercase :Optional[int]=0.1 ,__lowercase :Dict=0.1 ,__lowercase :Any=5_1_2 ,__lowercase :List[Any]=2 ,__lowercase :Tuple=0.02 ,__lowercase :List[Any]=1e-1_2 ,__lowercase :List[Any]=0 ,__lowercase :Optional[int]=0 ,__lowercase :str=2 ,__lowercase :Optional[Any]=2_5_6 ,__lowercase :List[str]=1_0_2_4 ,__lowercase :List[str]=2_1_6 ,__lowercase :Union[str, Any]=1_0_0_1 ,__lowercase :int=3_2 ,__lowercase :Union[str, Any]=5_0 ,__lowercase :Optional[Any]="absolute" ,__lowercase :int=True ,__lowercase :Optional[Any]=None ,**__lowercase :Union[str, Any] ,): super().__init__( pad_token_id=__lowercase ,bos_token_id=__lowercase ,eos_token_id=__lowercase ,**__lowercase ,) snake_case__ : Optional[int] = vocab_size snake_case__ : Any = hidden_size snake_case__ : Optional[Any] = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Optional[int] = hidden_act snake_case__ : Dict = intermediate_size snake_case__ : Union[str, Any] = hidden_dropout_prob snake_case__ : Optional[int] = attention_probs_dropout_prob snake_case__ : Union[str, Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : str = initializer_range snake_case__ : str = layer_norm_eps snake_case__ : str = position_embedding_type snake_case__ : Optional[Any] = use_cache snake_case__ : Optional[Any] = classifier_dropout # additional properties snake_case__ : Any = max_depth snake_case__ : Optional[Any] = max_xpath_tag_unit_embeddings snake_case__ : Dict = max_xpath_subs_unit_embeddings snake_case__ : str = tag_pad_id snake_case__ : Union[str, Any] = subs_pad_id snake_case__ : List[str] = xpath_unit_hidden_size
219
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _lowerCamelCase ( unittest.TestCase ): def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , ) -> List[Any]: SCREAMING_SNAKE_CASE__: str= size if size is not None else {'''height''': 18, '''width''': 18} SCREAMING_SNAKE_CASE__: Optional[int]= parent SCREAMING_SNAKE_CASE__: str= batch_size SCREAMING_SNAKE_CASE__: Optional[Any]= num_channels SCREAMING_SNAKE_CASE__: List[Any]= image_size SCREAMING_SNAKE_CASE__: Any= min_resolution SCREAMING_SNAKE_CASE__: Tuple= max_resolution SCREAMING_SNAKE_CASE__: str= do_resize SCREAMING_SNAKE_CASE__: Dict= size SCREAMING_SNAKE_CASE__: List[str]= apply_ocr def UpperCamelCase_ ( self ) -> Dict: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ): __a = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: List[str]= LayoutLMvaImageProcessingTester(self ) @property def UpperCamelCase_ ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Optional[Any]= self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''size''' ) ) self.assertTrue(hasattr(lowerCAmelCase , '''apply_ocr''' ) ) def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) SCREAMING_SNAKE_CASE__: Optional[Any]= self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def UpperCamelCase_ ( self ) -> str: pass def UpperCamelCase_ ( self ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__: Optional[int]= self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE__: Tuple= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(image_inputs[0] , return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase ) self.assertIsInstance(encoding.boxes , lowerCAmelCase ) # Test batched SCREAMING_SNAKE_CASE__: Optional[Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Dict: # Initialize image_processing SCREAMING_SNAKE_CASE__: int= self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE__: int= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE__: str= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Union[str, Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Optional[Any]: # Initialize image_processing SCREAMING_SNAKE_CASE__: Dict= self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE__: List[Any]= prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE__: Any= image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched SCREAMING_SNAKE_CASE__: Optional[int]= image_processing(lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def UpperCamelCase_ ( self ) -> Any: # with apply_OCR = True SCREAMING_SNAKE_CASE__: List[Any]= LayoutLMvaImageProcessor() from datasets import load_dataset SCREAMING_SNAKE_CASE__: Dict= load_dataset('''hf-internal-testing/fixtures_docvqa''' , split='''test''' ) SCREAMING_SNAKE_CASE__: str= Image.open(ds[0]['''file'''] ).convert('''RGB''' ) SCREAMING_SNAKE_CASE__: int= image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 SCREAMING_SNAKE_CASE__: Union[str, Any]= [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 SCREAMING_SNAKE_CASE__: Dict= [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase ) self.assertListEqual(encoding.boxes , lowerCAmelCase ) # with apply_OCR = False SCREAMING_SNAKE_CASE__: str= LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= image_processing(lowerCAmelCase , return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
64
'''simple docstring''' import random def _UpperCAmelCase ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[str] ) -> Optional[Any]: _lowerCAmelCase : Tuple = a[left_index] _lowerCAmelCase : Optional[Any] = left_index + 1 for j in range(left_index + 1 , _lowerCamelCase ): if a[j] < pivot: _lowerCAmelCase , _lowerCAmelCase : Dict = a[i], a[j] i += 1 _lowerCAmelCase , _lowerCAmelCase : Optional[int] = a[i - 1], a[left_index] return i - 1 def _UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : int , _lowerCamelCase : List[str] ) -> Dict: if left < right: _lowerCAmelCase : str = random.randint(_lowerCamelCase , right - 1 ) _lowerCAmelCase , _lowerCAmelCase : Any = ( a[left], a[pivot], ) # switches the pivot with the left most bound _lowerCAmelCase : Tuple = partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) quick_sort_random( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # recursive quicksort to the left of the pivot point quick_sort_random( _lowerCamelCase , pivot_index + 1 , _lowerCamelCase ) # recursive quicksort to the right of the pivot point def _UpperCAmelCase ( ) -> List[str]: _lowerCAmelCase : Tuple = input("""Enter numbers separated by a comma:\n""" ).strip() _lowerCAmelCase : List[str] = [int(_lowerCamelCase ) for item in user_input.split(""",""" )] quick_sort_random(_lowerCamelCase , 0 , len(_lowerCamelCase ) ) print(_lowerCamelCase ) if __name__ == "__main__": main()
384
0
import logging from transformers import PretrainedConfig A_ : Tuple = logging.getLogger(__name__) A_ : Dict = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = '''bertabs''' def __init__( self : Optional[int] , __lowerCAmelCase : int=3_0522 , __lowerCAmelCase : Dict=512 , __lowerCAmelCase : Dict=6 , __lowerCAmelCase : Optional[Any]=512 , __lowerCAmelCase : Union[str, Any]=8 , __lowerCAmelCase : Any=512 , __lowerCAmelCase : List[Any]=0.2 , __lowerCAmelCase : List[str]=6 , __lowerCAmelCase : Tuple=768 , __lowerCAmelCase : int=8 , __lowerCAmelCase : str=2048 , __lowerCAmelCase : Any=0.2 , **__lowerCAmelCase : Optional[int] , ) -> Optional[int]: """simple docstring""" super().__init__(**__lowerCAmelCase ) a = vocab_size a = max_pos a = enc_layers a = enc_hidden_size a = enc_heads a = enc_ff_size a = enc_dropout a = dec_layers a = dec_hidden_size a = dec_heads a = dec_ff_size a = dec_dropout
712
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _lowercase : def __init__( self : List[str] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int]=13 , __lowerCAmelCase : str=32 , __lowerCAmelCase : str=3 , __lowerCAmelCase : int=4 , __lowerCAmelCase : List[str]=[10, 20, 30, 40] , __lowerCAmelCase : Any=[2, 2, 3, 2] , __lowerCAmelCase : Any=True , __lowerCAmelCase : int=True , __lowerCAmelCase : str=37 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : int=10 , __lowerCAmelCase : str=0.0_2 , __lowerCAmelCase : int=["stage2", "stage3", "stage4"] , __lowerCAmelCase : List[str]=[2, 3, 4] , __lowerCAmelCase : str=None , ) -> Optional[Any]: """simple docstring""" a = parent a = batch_size a = image_size a = num_channels a = num_stages a = hidden_sizes a = depths a = is_training a = use_labels a = intermediate_size a = hidden_act a = num_labels a = initializer_range a = out_features a = out_indices a = scope def A ( self : Optional[Any] ) -> int: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def A ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def A ( self : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict ) -> Optional[int]: """simple docstring""" a = ConvNextVaModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A ( self : int , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] ) -> Dict: """simple docstring""" a = ConvNextVaForImageClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> int: """simple docstring""" a = ConvNextVaBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None a = None a = ConvNextVaBackbone(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def A ( self : Union[str, Any] ) -> Dict: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict def A ( self : Dict ) -> Optional[int]: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): _UpperCAmelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) _UpperCAmelCase = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False _UpperCAmelCase = False def A ( self : List[str] ) -> List[Any]: """simple docstring""" a = ConvNextVaModelTester(self ) a = ConfigTester(self , config_class=__lowerCAmelCase , has_text_modality=__lowerCAmelCase , hidden_size=37 ) def A ( self : Tuple ) -> Dict: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self : List[Any] ) -> List[Any]: """simple docstring""" return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def A ( self : List[Any] ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def A ( self : int ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def A ( self : Optional[int] ) -> Dict: """simple docstring""" pass def A ( self : List[str] ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: a , a = self.model_tester.prepare_config_and_inputs_with_labels() a = True if model_class.__name__ in [ *get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase ), ]: continue a = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.train() a = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) a = model(**__lowerCAmelCase ).loss loss.backward() def A ( self : Optional[int] ) -> List[str]: """simple docstring""" if not self.model_tester.is_training: return for model_class in self.all_model_classes: a , a = self.model_tester.prepare_config_and_inputs_with_labels() a = False a = True if ( model_class.__name__ in [*get_values(__lowerCAmelCase ), *get_values(__lowerCAmelCase )] or not model_class.supports_gradient_checkpointing ): continue a = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.gradient_checkpointing_enable() model.train() a = self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) a = model(**__lowerCAmelCase ).loss loss.backward() def A ( self : List[Any] ) -> Any: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCAmelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCAmelCase ) def A ( self : Dict ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A ( self : Tuple ) -> List[Any]: """simple docstring""" def check_hidden_states_output(__lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple ): a = model_class(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase ) ) a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a = self.model_tester.num_stages self.assertEqual(len(__lowerCAmelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCAmelCase ) @slow def A ( self : Tuple ) -> List[str]: """simple docstring""" for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = ConvNextVaModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def UpperCAmelCase__ ( ): '''simple docstring''' a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): @cached_property def A ( self : Optional[int] ) -> str: """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def A ( self : List[str] ) -> Union[str, Any]: """simple docstring""" a = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__lowerCAmelCase ) a = self.default_image_processor a = prepare_img() a = preprocessor(images=__lowerCAmelCase , return_tensors="pt" ).to(__lowerCAmelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCAmelCase ) # verify the logits a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCAmelCase ) a = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(__lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCAmelCase , atol=1E-4 ) )
32
0
import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel __a : str = HfApi() __a : Dict = {} # fmt: off __a : List[str] = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) __a : List[Any] = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) __a : List[str] = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) __a : Dict = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) __a : str = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) __a : List[Any] = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) __a : List[str] = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) __a : Tuple = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) __a : List[str] = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) __a : Any = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) __a : Union[str, Any] = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) __a : int = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) __a : Dict = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) __a : str = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) __a : Tuple = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on __a : str = api.list_models(filter="""diffusers""") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": __a : Union[str, Any] = """/home/patrick/google_checkpoints/""" + mod.modelId.split("""/""")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("""CompVis"""): __a : Dict = UNetaDModel.from_pretrained(local_checkpoint, subfolder="""unet""") else: __a : Tuple = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) __a : List[str] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) __a : int = torch.tensor([1_0] * noise.shape[0]) with torch.no_grad(): __a : Optional[int] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :3_0], results["""_""".join("""_""".join(mod.modelId.split("""/""")).split("""-"""))], atol=1e-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
534
import math import sys def lowerCAmelCase( __lowerCamelCase ): if number != int(__lowerCamelCase ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __a = [-1] * (number + 1) __a = 0 for i in range(1 , number + 1 ): __a = sys.maxsize __a = int(math.sqrt(__lowerCamelCase ) ) for j in range(1 , root + 1 ): __a = 1 + answers[i - (j**2)] __a = min(__lowerCamelCase , __lowerCamelCase ) __a = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
559
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase__ = 50_0000 UpperCAmelCase__ , UpperCAmelCase__ = os.path.split(__file__) UpperCAmelCase__ = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def A ( _UpperCAmelCase : datasets.Dataset , **_UpperCAmelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = dataset.map(**_UpperCAmelCase ) @get_duration def A ( _UpperCAmelCase : datasets.Dataset , **_UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = dataset.filter(**_UpperCAmelCase ) def A ( ) -> Dict: '''simple docstring''' _UpperCAmelCase = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _UpperCAmelCase = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _UpperCAmelCase = generate_example_dataset( os.path.join(_UpperCAmelCase , 'dataset.arrow' ) , _UpperCAmelCase , num_examples=_UpperCAmelCase ) _UpperCAmelCase = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=_UpperCAmelCase ) def tokenize(_UpperCAmelCase : List[str] ): return tokenizer(examples['text'] ) _UpperCAmelCase = map(_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , batched=_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='numpy' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='pandas' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='torch' , columns='numbers' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _UpperCAmelCase = map(_UpperCAmelCase , function=lambda _UpperCAmelCase : None , batched=_UpperCAmelCase ) _UpperCAmelCase = map(_UpperCAmelCase , function=_UpperCAmelCase , batched=_UpperCAmelCase ) _UpperCAmelCase = filter(_UpperCAmelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(_UpperCAmelCase , 'wb' ) as f: f.write(json.dumps(_UpperCAmelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
721
def A ( _UpperCAmelCase : list ) -> list: '''simple docstring''' if len(_UpperCAmelCase ) <= 1: return lst _UpperCAmelCase = 1 while i < len(_UpperCAmelCase ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase , _UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase = 1 return lst if __name__ == "__main__": UpperCAmelCase__ = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase__ = [int(item) for item in user_input.split(",")] print(gnome_sort(unsorted))
639
0
import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = np.full((len(UpperCamelCase_ ), sequence_length, 2) , UpperCamelCase_ ) else: UpperCamelCase = np.full((len(UpperCamelCase_ ), sequence_length) , UpperCamelCase_ ) for i, tensor in enumerate(UpperCamelCase_ ): if padding_side == "right": if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = tensor[:sequence_length] else: UpperCamelCase = tensor[:sequence_length] else: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): UpperCamelCase = tensor[:sequence_length] else: UpperCamelCase = tensor[:sequence_length] return out_tensor.tolist() def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = ord(UpperCamelCase_ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126): return True UpperCamelCase = unicodedata.category(UpperCamelCase_ ) if cat.startswith("""P""" ): return True return False @dataclass class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase ): __lowerCAmelCase = 42 __lowerCAmelCase = True __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = -100 __lowerCAmelCase = "pt" def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" import torch UpperCamelCase = """label""" if """label""" in features[0].keys() else """labels""" UpperCamelCase = [feature[label_name] for feature in features] if label_name in features[0].keys() else None UpperCamelCase = self.tokenizer.pad( lowerCamelCase_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" if labels is None else None , ) if labels is None: return batch UpperCamelCase = torch.tensor(batch["""entity_ids"""] ).shape[1] UpperCamelCase = self.tokenizer.padding_side if padding_side == "right": UpperCamelCase = [ list(lowerCamelCase_ ) + [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) for label in labels ] else: UpperCamelCase = [ [self.label_pad_token_id] * (sequence_length - len(lowerCamelCase_ )) + list(lowerCamelCase_ ) for label in labels ] UpperCamelCase = [feature["""ner_tags"""] for feature in features] UpperCamelCase = padding_tensor(lowerCamelCase_ , -1 , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = [feature["""original_entity_spans"""] for feature in features] UpperCamelCase = padding_tensor(lowerCamelCase_ , (-1, -1) , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = {k: torch.tensor(lowerCamelCase_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
537
def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) if n == 0: return 0 UpperCamelCase = float("""-inf""" ) for i in range(1 , n + 1 ): UpperCamelCase = max( UpperCamelCase_ , prices[i - 1] + naive_cut_rod_recursive(n - i , UpperCamelCase_ ) ) return max_revue def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[Any]: '''simple docstring''' if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase = float("""-inf""" ) for i in range(1 , n + 1 ): UpperCamelCase = max( UpperCamelCase_ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , UpperCamelCase_ , UpperCamelCase_ ) , ) UpperCamelCase = max_revenue return max_rev[n] def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' _enforce_args(UpperCamelCase_ , UpperCamelCase_ ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase = [float("""-inf""" ) for _ in range(n + 1 )] UpperCamelCase = 0 for i in range(1 , n + 1 ): UpperCamelCase = max_rev[i] for j in range(1 , i + 1 ): UpperCamelCase = max(UpperCamelCase_ , prices[j - 1] + max_rev[i - j] ) UpperCamelCase = max_revenue_i return max_rev[n] def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' if n < 0: UpperCamelCase = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(UpperCamelCase_ ) if n > len(UpperCamelCase_ ): UpperCamelCase = ( """Each integral piece of rod must have a corresponding price. """ f"""Got n = {n} but length of prices = {len(UpperCamelCase_ )}""" ) raise ValueError(UpperCamelCase_ ) def lowercase( ) -> str: '''simple docstring''' UpperCamelCase = [6, 10, 12, 15, 20, 23] UpperCamelCase = len(UpperCamelCase_ ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase = 36 UpperCamelCase = top_down_cut_rod(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = bottom_up_cut_rod(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = naive_cut_rod_recursive(UpperCamelCase_ , UpperCamelCase_ ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
537
1
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _snake_case (UpperCAmelCase__): def __init__( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case = None ,): super().__init__() self.register_modules(transformer=__lowerCAmelCase ,vae=__lowerCAmelCase ,scheduler=__lowerCAmelCase ) # create a imagenet -> id dictionary for easier use UpperCAmelCase_ : Tuple = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCAmelCase_ : Union[str, Any] = int(__lowerCAmelCase ) UpperCAmelCase_ : int = dict(sorted(self.labels.items() ) ) def UpperCamelCase__ ( self ,_snake_case ): if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): UpperCAmelCase_ : Any = list(__lowerCAmelCase ) for l in label: if l not in self.labels: raise ValueError( f'''{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.''' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self ,_snake_case ,_snake_case = 4.0 ,_snake_case = None ,_snake_case = 50 ,_snake_case = "pil" ,_snake_case = True ,): UpperCAmelCase_ : Union[str, Any] = len(__lowerCAmelCase ) UpperCAmelCase_ : List[Any] = self.transformer.config.sample_size UpperCAmelCase_ : Union[str, Any] = self.transformer.config.in_channels UpperCAmelCase_ : Optional[int] = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) ,generator=__lowerCAmelCase ,device=self.device ,dtype=self.transformer.dtype ,) UpperCAmelCase_ : Tuple = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase_ : List[Any] = torch.tensor(__lowerCAmelCase ,device=self.device ).reshape(-1 ) UpperCAmelCase_ : Dict = torch.tensor([10_00] * batch_size ,device=self.device ) UpperCAmelCase_ : List[Any] = torch.cat([class_labels, class_null] ,0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(__lowerCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase_ : Any = latent_model_input[: len(__lowerCAmelCase ) // 2] UpperCAmelCase_ : Dict = torch.cat([half, half] ,dim=0 ) UpperCAmelCase_ : str = self.scheduler.scale_model_input(__lowerCAmelCase ,__lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = t if not torch.is_tensor(__lowerCAmelCase ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase_ : str = latent_model_input.device.type == "mps" if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): UpperCAmelCase_ : Tuple = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase_ : Dict = torch.intaa if is_mps else torch.intaa UpperCAmelCase_ : Optional[Any] = torch.tensor([timesteps] ,dtype=__lowerCAmelCase ,device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase_ : int = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : int = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase_ : Union[str, Any] = self.transformer( __lowerCAmelCase ,timestep=__lowerCAmelCase ,class_labels=__lowerCAmelCase ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.split(__lowerCAmelCase ,len(__lowerCAmelCase ) // 2 ,dim=0 ) UpperCAmelCase_ : Optional[int] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase_ : int = torch.cat([half_eps, half_eps] ,dim=0 ) UpperCAmelCase_ : Tuple = torch.cat([eps, rest] ,dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase_ , UpperCAmelCase_ : int = torch.split(__lowerCAmelCase ,__lowerCAmelCase ,dim=1 ) else: UpperCAmelCase_ : List[Any] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase_ : Dict = self.scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = latent_model_input.chunk(2 ,dim=0 ) else: UpperCAmelCase_ : Optional[int] = latent_model_input UpperCAmelCase_ : List[str] = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase_ : int = self.vae.decode(__lowerCAmelCase ).sample UpperCAmelCase_ : Optional[Any] = (samples / 2 + 0.5).clamp(0 ,1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ : Tuple = samples.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Optional[Any] = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (samples,) return ImagePipelineOutput(images=__lowerCAmelCase )
710
'''simple docstring''' from __future__ import annotations from typing import Any def a__ ( _SCREAMING_SNAKE_CASE : list ) -> int: """simple docstring""" if not postfix_notation: return 0 UpperCAmelCase_ : Tuple = {"+", "-", "*", "/"} UpperCAmelCase_ : list[Any] = [] for token in postfix_notation: if token in operations: UpperCAmelCase_ , UpperCAmelCase_ : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_SCREAMING_SNAKE_CASE ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
323
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class _A ( _lowerCamelCase ): def __init__( self : List[Any] , *_A : List[Any] , **_A : Union[str, Any] ) -> int: """simple docstring""" warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , _A , ) super().__init__(*_A , **_A )
217
def UpperCamelCase_( _A :Union[str, Any] )-> List[str]: UpperCamelCase__ = [0] * len(_A ) UpperCamelCase__ = [] UpperCamelCase__ = [] UpperCamelCase__ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: UpperCamelCase__ = queue.pop(0 ) cnt += 1 topo.append(_A ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_A ) if cnt != len(_A ): print("Cycle exists" ) else: print(_A ) # Adjacency List of Graph __UpperCamelCase = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
551
0
import logging from transformers import PretrainedConfig _lowercase = logging.getLogger(__name__) _lowercase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class lowercase_ ( A ): __lowerCamelCase = "bertabs" def __init__( self , __A=30_522 , __A=512 , __A=6 , __A=512 , __A=8 , __A=512 , __A=0.2 , __A=6 , __A=768 , __A=8 , __A=2_048 , __A=0.2 , **__A , ) -> Optional[Any]: super().__init__(**__A ) SCREAMING_SNAKE_CASE_ : List[str] =vocab_size SCREAMING_SNAKE_CASE_ : Union[str, Any] =max_pos SCREAMING_SNAKE_CASE_ : List[str] =enc_layers SCREAMING_SNAKE_CASE_ : int =enc_hidden_size SCREAMING_SNAKE_CASE_ : Any =enc_heads SCREAMING_SNAKE_CASE_ : List[Any] =enc_ff_size SCREAMING_SNAKE_CASE_ : int =enc_dropout SCREAMING_SNAKE_CASE_ : int =dec_layers SCREAMING_SNAKE_CASE_ : Optional[int] =dec_hidden_size SCREAMING_SNAKE_CASE_ : Any =dec_heads SCREAMING_SNAKE_CASE_ : List[Any] =dec_ff_size SCREAMING_SNAKE_CASE_ : Dict =dec_dropout
431
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _lowercase = False try: _lowercase = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowercase_ : def __init__( self , __A = None , __A = [] ) -> str: SCREAMING_SNAKE_CASE_ : str =0 SCREAMING_SNAKE_CASE_ : Optional[Any] =choices SCREAMING_SNAKE_CASE_ : str =prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE_ : List[Any] ='''*''' else: SCREAMING_SNAKE_CASE_ : int ='''➔ ''' def _snake_case ( self , __A , __A = "" ) -> Union[str, Any]: if sys.platform != "win32": writeColor(self.choices[index] , 32 , __A ) else: forceWrite(self.choices[index] , __A ) def _snake_case ( self , __A ) -> Optional[int]: if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(__A ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def _snake_case ( self , __A , __A = 1 ) -> Tuple: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__A ) move_cursor(__A , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def _snake_case ( self ) -> int: self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def _snake_case ( self ) -> Any: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def _snake_case ( self ) -> List[Any]: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def _snake_case ( self ) -> int: move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__A )] for number in range(10 )] ) def _snake_case ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ : Any =int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE_ : Any =index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __A ) else: return else: return def _snake_case ( self , __A = 0 ) -> Any: if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) SCREAMING_SNAKE_CASE_ : str =default_choice for i in range(len(self.choices ) ): self.print_choice(__A ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE_ : Dict =int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE_ : Optional[Any] =default_choice else: SCREAMING_SNAKE_CASE_ : Optional[Any] =self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(__A , '''\n''' ) return choice
431
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
351
"""simple docstring""" from typing import Any def __lowerCamelCase ( __UpperCamelCase ) -> list[Any]: """simple docstring""" if not input_list: return [] lowerCAmelCase_ : Any = [input_list.count(__UpperCamelCase ) for value in input_list] lowerCAmelCase_ : List[Any] = max(__UpperCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(__UpperCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
610
0
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Tuple = fname.split(os.path.sep )[-1] return re.search(r"^(.*)_\d+\.jpg$", lowerCamelCase ).groups()[0] class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: List[str] , _lowerCAmelCase: int , _lowerCAmelCase: int=None , _lowerCAmelCase: int=None ): lowercase :List[Any] = file_names lowercase :Dict = image_transform lowercase :str = label_to_id def __len__( self: Tuple ): return len(self.file_names ) def __getitem__( self: Optional[int] , _lowerCAmelCase: Any ): lowercase :int = self.file_names[idx] lowercase :Optional[int] = PIL.Image.open(_lowerCAmelCase ) lowercase :Dict = raw_image.convert("RGB" ) if self.image_transform is not None: lowercase :Any = self.image_transform(_lowerCAmelCase ) lowercase :Optional[Any] = extract_label(_lowerCAmelCase ) if self.label_to_id is not None: lowercase :str = self.label_to_id[label] return {"image": image, "label": label} def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): # Initialize accelerator if args.with_tracking: lowercase :Tuple = Accelerator( cpu=args.cpu, mixed_precision=args.mixed_precision, log_with="all", project_dir=args.project_dir ) else: lowercase :str = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase :Union[str, Any] = config["lr"] lowercase :str = int(config["num_epochs"] ) lowercase :str = int(config["seed"] ) lowercase :Optional[Any] = int(config["batch_size"] ) lowercase :Union[str, Any] = config["image_size"] if not isinstance(lowerCamelCase, (list, tuple) ): lowercase :List[str] = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps, "isdigit" ): if args.checkpointing_steps == "epoch": lowercase :Union[str, Any] = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowercase :List[Any] = int(args.checkpointing_steps ) else: raise ValueError( F"Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed." ) else: lowercase :Any = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowercase :Optional[Any] = os.path.split(lowerCamelCase )[-1].split("." )[0] accelerator.init_trackers(lowerCamelCase, lowerCamelCase ) # Grab all the image filenames lowercase :Tuple = [os.path.join(args.data_dir, lowerCamelCase ) for fname in os.listdir(args.data_dir ) if fname.endswith(".jpg" )] # Build the label correspondences lowercase :int = [extract_label(lowerCamelCase ) for fname in file_names] lowercase :Dict = list(set(lowerCamelCase ) ) id_to_label.sort() lowercase :Optional[Any] = {lbl: i for i, lbl in enumerate(lowerCamelCase )} # Set the seed before splitting the data. np.random.seed(lowerCamelCase ) torch.manual_seed(lowerCamelCase ) torch.cuda.manual_seed_all(lowerCamelCase ) # Split our filenames between train and validation lowercase :Dict = np.random.permutation(len(lowerCamelCase ) ) lowercase :List[Any] = int(0.8 * len(lowerCamelCase ) ) lowercase :str = random_perm[:cut] lowercase :Optional[int] = random_perm[cut:] # For training we use a simple RandomResizedCrop lowercase :Optional[Any] = Compose([RandomResizedCrop(lowerCamelCase, scale=(0.5, 1.0) ), ToTensor()] ) lowercase :List[str] = PetsDataset( [file_names[i] for i in train_split], image_transform=lowerCamelCase, label_to_id=lowerCamelCase ) # For evaluation, we use a deterministic Resize lowercase :int = Compose([Resize(lowerCamelCase ), ToTensor()] ) lowercase :Optional[int] = PetsDataset([file_names[i] for i in eval_split], image_transform=lowerCamelCase, label_to_id=lowerCamelCase ) # Instantiate dataloaders. lowercase :Optional[int] = DataLoader(lowerCamelCase, shuffle=lowerCamelCase, batch_size=lowerCamelCase, num_workers=4 ) lowercase :int = DataLoader(lowerCamelCase, shuffle=lowerCamelCase, batch_size=lowerCamelCase, num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase :Optional[Any] = create_model("resnet50d", pretrained=lowerCamelCase, num_classes=len(lowerCamelCase ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase :int = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowercase :str = False for param in model.get_classifier().parameters(): lowercase :List[str] = True # We normalize the batches of images to be a bit faster. lowercase :Union[str, Any] = torch.tensor(model.default_cfg["mean"] )[None, :, None, None].to(accelerator.device ) lowercase :List[Any] = torch.tensor(model.default_cfg["std"] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowercase :Optional[Any] = torch.optim.Adam(params=model.parameters(), lr=lr / 25 ) # Instantiate learning rate scheduler lowercase :Optional[Any] = OneCycleLR(optimizer=lowerCamelCase, max_lr=lowerCamelCase, epochs=lowerCamelCase, steps_per_epoch=len(lowerCamelCase ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase :Union[str, Any] = accelerator.prepare( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ) # We need to keep track of how many total steps we have iterated over lowercase :str = 0 # We also need to keep track of the starting epoch so files are named properly lowercase :Dict = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F"Resumed from checkpoint: {args.resume_from_checkpoint}" ) accelerator.load_state(args.resume_from_checkpoint ) lowercase :int = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowercase :List[Any] = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowercase :str = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowercase :Optional[int] = os.path.splitext(lowerCamelCase )[0] if "epoch" in training_difference: lowercase :Dict = int(training_difference.replace("epoch_", "" ) ) + 1 lowercase :Optional[int] = None else: lowercase :Any = int(training_difference.replace("step_", "" ) ) lowercase :int = resume_step // len(lowerCamelCase ) resume_step -= starting_epoch * len(lowerCamelCase ) # Now we train the model for epoch in range(lowerCamelCase, lowerCamelCase ): model.train() if args.with_tracking: lowercase :Tuple = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowercase :List[Any] = accelerator.skip_first_batches(lowerCamelCase, lowerCamelCase ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowercase :List[str] = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase :int = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase :List[Any] = (batch["image"] - mean) / std lowercase :str = model(lowerCamelCase ) lowercase :List[str] = torch.nn.functional.cross_entropy(lowerCamelCase, batch["label"] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowerCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowerCamelCase, lowerCamelCase ): lowercase :Tuple = F"step_{overall_step}" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowercase :Tuple = os.path.join(args.output_dir, lowerCamelCase ) accelerator.save_state(lowerCamelCase ) model.eval() lowercase :List[str] = 0 lowercase :Optional[Any] = 0 for step, batch in enumerate(lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase :Optional[int] = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase :List[Any] = (batch["image"] - mean) / std with torch.no_grad(): lowercase :Dict = model(lowerCamelCase ) lowercase :Optional[int] = outputs.argmax(dim=-1 ) lowercase :List[str] = accelerator.gather_for_metrics((predictions, batch["label"]) ) lowercase :Tuple = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowercase :Dict = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}: {100 * eval_metric:.2f}" ) if args.with_tracking: accelerator.log( { "accuracy": 100 * eval_metric, "train_loss": total_loss.item() / len(lowerCamelCase ), "epoch": epoch, }, step=lowerCamelCase, ) if checkpointing_steps == "epoch": lowercase :Dict = F"epoch_{epoch}" if args.output_dir is not None: lowercase :Dict = os.path.join(args.output_dir, lowerCamelCase ) accelerator.save_state(lowerCamelCase ) if args.with_tracking: accelerator.end_training() def UpperCAmelCase__ ( ): lowercase :Any = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument("--data_dir", required=lowerCamelCase, help="The data folder on disk." ) parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training." ) parser.add_argument( "--mixed_precision", type=lowerCamelCase, default=lowerCamelCase, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) parser.add_argument( "--checkpointing_steps", type=lowerCamelCase, default=lowerCamelCase, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--output_dir", type=lowerCamelCase, default=".", help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", ) parser.add_argument( "--resume_from_checkpoint", type=lowerCamelCase, default=lowerCamelCase, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to load in all available experiment trackers from the environment and use them for logging.", ) parser.add_argument( "--project_dir", type=lowerCamelCase, default="logs", help="Location on where to store experiment tracking logs` and relevent project information", ) lowercase :Any = parser.parse_args() lowercase :Any = {"lr": 3e-2, "num_epochs": 3, "seed": 42, "batch_size": 64, "image_size": 224} training_function(lowerCamelCase, lowerCamelCase ) if __name__ == "__main__": main()
710
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _UpperCAmelCase : List[str] = random.Random() def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase=1.0, lowerCamelCase=None, lowerCamelCase=None ): if rng is None: lowercase :Union[str, Any] = global_rng lowercase :Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __lowerCAmelCase ( unittest.TestCase): def __init__( self: Optional[Any] , _lowerCAmelCase: Tuple , _lowerCAmelCase: Union[str, Any]=7 , _lowerCAmelCase: str=4_00 , _lowerCAmelCase: List[str]=20_00 , _lowerCAmelCase: Dict=20_48 , _lowerCAmelCase: Any=1_28 , _lowerCAmelCase: Any=1 , _lowerCAmelCase: List[Any]=5_12 , _lowerCAmelCase: Optional[int]=30 , _lowerCAmelCase: List[Any]=4_41_00 , ): lowercase :Any = parent lowercase :Any = batch_size lowercase :Optional[int] = min_seq_length lowercase :Optional[Any] = max_seq_length lowercase :Dict = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowercase :List[str] = spectrogram_length lowercase :int = feature_size lowercase :Union[str, Any] = num_audio_channels lowercase :Optional[int] = hop_length lowercase :str = chunk_length lowercase :List[str] = sampling_rate def SCREAMING_SNAKE_CASE ( self: str ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE ( self: int , _lowerCAmelCase: int=False , _lowerCAmelCase: int=False ): def _flatten(_lowerCAmelCase: Optional[Any] ): return list(itertools.chain(*_lowerCAmelCase ) ) if equal_length: lowercase :Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowercase :Tuple = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowercase :Optional[int] = [np.asarray(_lowerCAmelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowerCAmelCase ( lowerCAmelCase , unittest.TestCase): _a = TvltFeatureExtractor def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Dict = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(_lowerCAmelCase , "spectrogram_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "feature_size" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "num_audio_channels" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "hop_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "chunk_length" ) ) self.assertTrue(hasattr(_lowerCAmelCase , "sampling_rate" ) ) def SCREAMING_SNAKE_CASE ( self: str ): lowercase :Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase :Tuple = feat_extract_first.save_pretrained(_lowerCAmelCase )[0] check_json_file_has_correct_format(_lowerCAmelCase ) lowercase :Tuple = self.feature_extraction_class.from_pretrained(_lowerCAmelCase ) lowercase :Optional[Any] = feat_extract_first.to_dict() lowercase :List[str] = feat_extract_second.to_dict() lowercase :Any = dict_first.pop("mel_filters" ) lowercase :Any = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: Tuple ): lowercase :Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowercase :Any = os.path.join(_lowerCAmelCase , "feat_extract.json" ) feat_extract_first.to_json_file(_lowerCAmelCase ) lowercase :List[Any] = self.feature_extraction_class.from_json_file(_lowerCAmelCase ) lowercase :Tuple = feat_extract_first.to_dict() lowercase :int = feat_extract_second.to_dict() lowercase :Tuple = dict_first.pop("mel_filters" ) lowercase :Tuple = dict_second.pop("mel_filters" ) self.assertTrue(np.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): # Initialize feature_extractor lowercase :int = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 lowercase :List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowercase :Union[str, Any] = [np.asarray(_lowerCAmelCase ) for speech_input in speech_inputs] # Test not batched input lowercase :Any = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched lowercase :Optional[int] = feature_extractor(_lowerCAmelCase , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking lowercase :Dict = feature_extractor( _lowerCAmelCase , return_tensors="np" , sampling_rate=4_41_00 , mask_audio=_lowerCAmelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. lowercase :Optional[int] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowercase :Union[str, Any] = np.asarray(_lowerCAmelCase ) lowercase :Dict = feature_extractor(_lowerCAmelCase , return_tensors="np" , sampling_rate=4_41_00 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE ( self: Optional[int] , _lowerCAmelCase: Optional[Any] ): lowercase :str = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowercase :Any = ds.sort("id" ).select(range(_lowerCAmelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE ( self: Dict ): lowercase :Optional[int] = self._load_datasamples(1 ) lowercase :Union[str, Any] = TvltFeatureExtractor() lowercase :str = feature_extractor(_lowerCAmelCase , return_tensors="pt" ).audio_values self.assertEquals(audio_values.shape , (1, 1, 1_92, 1_28) ) lowercase :Optional[int] = torch.tensor([[-0.30_32, -0.27_08], [-0.44_34, -0.40_07]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , _lowerCAmelCase , atol=1e-4 ) )
453
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase): __lowercase : List[str] = StableDiffusionSAGPipeline __lowercase : Union[str, Any] = TEXT_TO_IMAGE_PARAMS __lowercase : Dict = TEXT_TO_IMAGE_BATCH_PARAMS __lowercase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS __lowercase : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS __lowercase : Optional[int] = False def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __snake_case = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __snake_case = CLIPTextModel(__SCREAMING_SNAKE_CASE ) __snake_case = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __snake_case = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ) -> int: '''simple docstring''' if str(__SCREAMING_SNAKE_CASE ).startswith('''mps''' ): __snake_case = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __snake_case = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __snake_case = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowerCAmelCase ( self ) -> Any: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) __snake_case = sag_pipe.to(__SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __snake_case = '''.''' __snake_case = torch.manual_seed(0 ) __snake_case = sag_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.1_568, 0.1_738, 0.1_695, 0.1_693, 0.1_507, 0.1_705, 0.1_547, 0.1_751, 0.1_949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sag_pipe.to(__SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __snake_case = '''.''' __snake_case = torch.manual_seed(0 ) __snake_case = sag_pipe( [prompt] , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) __snake_case = output.images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3_459, 0.2_876, 0.2_537, 0.3_002, 0.2_671, 0.2_160, 0.3_026, 0.2_262, 0.2_371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) __snake_case = sag_pipe.to(__SCREAMING_SNAKE_CASE ) sag_pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __snake_case = '''.''' __snake_case = torch.manual_seed(0 ) __snake_case = sag_pipe( [prompt] , width=768 , height=512 , generator=__SCREAMING_SNAKE_CASE , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) __snake_case = output.images assert image.shape == (1, 512, 768, 3)
24
from __future__ import annotations def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(UpperCAmelCase__ ) if n > 1: factors.append(UpperCAmelCase__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
605
0
"""simple docstring""" from __future__ import annotations import typing from collections import Counter def A( snake_case_ ): """simple docstring""" lowercase__: typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(snake_case_ , max_perimeter + 1 ): lowercase__: List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(snake_case_ ): lowercase__: str = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def A( snake_case_ = 1000 ): """simple docstring""" lowercase__: Optional[int] = pythagorean_triple(snake_case_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F"Perimeter {solution()} has maximum solutions")
704
"""simple docstring""" class _a : '''simple docstring''' def __init__( self) -> Union[str, Any]: '''simple docstring''' lowercase__: Union[str, Any] = 0 lowercase__: Optional[Any] = 0 lowercase__: Any = {} def __lowercase ( self , UpperCAmelCase_) -> Tuple: '''simple docstring''' if vertex not in self.adjacency: lowercase__: int = {} self.num_vertices += 1 def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) -> str: '''simple docstring''' self.add_vertex(UpperCAmelCase_) self.add_vertex(UpperCAmelCase_) if head == tail: return lowercase__: List[str] = weight lowercase__: Optional[Any] = weight def __lowercase ( self) -> str: '''simple docstring''' lowercase__: Any = self.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__: Optional[int] = edge edges.remove((tail, head, weight)) for i in range(len(UpperCAmelCase_)): lowercase__: Optional[int] = list(edges[i]) edges.sort(key=lambda UpperCAmelCase_: e[2]) for i in range(len(UpperCAmelCase_) - 1): if edges[i][2] >= edges[i + 1][2]: lowercase__: str = edges[i][2] + 1 for edge in edges: lowercase__ , lowercase__ , lowercase__: Optional[Any] = edge lowercase__: Optional[Any] = weight lowercase__: Any = weight def __str__( self) -> List[str]: '''simple docstring''' lowercase__: Any = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowercase__: Tuple = self.adjacency[head][tail] string += F"""{head} -> {tail} == {weight}\n""" return string.rstrip("\n") def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' lowercase__: Optional[int] = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def __lowercase ( self) -> List[str]: '''simple docstring''' return self.adjacency.keys() @staticmethod def __lowercase ( UpperCAmelCase_=None , UpperCAmelCase_=None) -> Optional[int]: '''simple docstring''' lowercase__: Any = Graph() if vertices is None: lowercase__: List[Any] = [] if edges is None: lowercase__: Any = [] for vertex in vertices: g.add_vertex(UpperCAmelCase_) for edge in edges: g.add_edge(*UpperCAmelCase_) return g class _a : '''simple docstring''' def __init__( self) -> List[str]: '''simple docstring''' lowercase__: str = {} lowercase__: int = {} def __len__( self) -> Optional[int]: '''simple docstring''' return len(self.parent) def __lowercase ( self , UpperCAmelCase_) -> Any: '''simple docstring''' if item in self.parent: return self.find(UpperCAmelCase_) lowercase__: str = item lowercase__: Any = 0 return item def __lowercase ( self , UpperCAmelCase_) -> Tuple: '''simple docstring''' if item not in self.parent: return self.make_set(UpperCAmelCase_) if item != self.parent[item]: lowercase__: Tuple = self.find(self.parent[item]) return self.parent[item] def __lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' lowercase__: int = self.find(UpperCAmelCase_) lowercase__: Optional[int] = self.find(UpperCAmelCase_) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowercase__: List[Any] = roota return roota if self.rank[roota] < self.rank[roota]: lowercase__: Optional[int] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowercase__: List[str] = roota return roota return None @staticmethod def __lowercase ( UpperCAmelCase_) -> Union[str, Any]: '''simple docstring''' lowercase__: str = graph.num_vertices lowercase__: Optional[Any] = Graph.UnionFind() lowercase__: List[str] = [] while num_components > 1: lowercase__: int = {} for vertex in graph.get_vertices(): lowercase__: Dict = -1 lowercase__: Dict = graph.get_edges() for edge in edges: lowercase__ , lowercase__ , lowercase__: str = edge edges.remove((tail, head, weight)) for edge in edges: lowercase__ , lowercase__ , lowercase__: Optional[Any] = edge lowercase__: List[str] = union_find.find(UpperCAmelCase_) lowercase__: List[Any] = union_find.find(UpperCAmelCase_) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__: Optional[Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowercase__: Union[str, Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowercase__ , lowercase__ , lowercase__: Optional[Any] = cheap_edge[vertex] if union_find.find(UpperCAmelCase_) != union_find.find(UpperCAmelCase_): union_find.union(UpperCAmelCase_ , UpperCAmelCase_) mst_edges.append(cheap_edge[vertex]) lowercase__: Optional[int] = num_components - 1 lowercase__: str = Graph.build(edges=UpperCAmelCase_) return mst
120
0
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : int = PriorTransformer lowerCAmelCase__ : List[Any] = """hidden_states""" @property def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(UpperCamelCase ) lowercase__ = floats_tensor((batch_size, embedding_dim) ).to(UpperCamelCase ) lowercase__ = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : Optional[int]=0 ): '''simple docstring''' torch.manual_seed(UpperCamelCase ) lowercase__ = 4 lowercase__ = 8 lowercase__ = 7 lowercase__ = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' return (4, 8) @property def UpperCamelCase__ (self : Any ): '''simple docstring''' return (4, 8) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = { '''num_attention_heads''': 2, '''attention_head_dim''': 4, '''num_layers''': 2, '''embedding_dim''': 8, '''num_embeddings''': 7, '''additional_embeddings''': 4, } lowercase__ = self.dummy_input return init_dict, inputs_dict def UpperCamelCase__ (self : Tuple ): '''simple docstring''' lowercase__ ,lowercase__ = PriorTransformer.from_pretrained( '''hf-internal-testing/prior-dummy''' , output_loading_info=UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(UpperCamelCase ) lowercase__ = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def UpperCamelCase__ (self : Optional[Any] ): '''simple docstring''' lowercase__ ,lowercase__ = self.prepare_init_args_and_inputs_for_common() lowercase__ = self.model_class(**UpperCamelCase ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ['''hidden_states''', '''timestep'''] self.assertListEqual(arg_names[:2] , UpperCamelCase ) def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' ) lowercase__ = model.to(UpperCamelCase ) if hasattr(UpperCamelCase , '''set_default_attn_processor''' ): model.set_default_attn_processor() lowercase__ = self.get_dummy_seed_input() with torch.no_grad(): lowercase__ = model(**UpperCamelCase )[0] lowercase__ = output[0, :5].flatten().cpu() print(UpperCamelCase ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase__ = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(UpperCamelCase , UpperCamelCase , rtol=1E-2 ) ) @slow class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self : List[str] , UpperCamelCase : List[str]=1 , UpperCamelCase : int=768 , UpperCamelCase : Union[str, Any]=77 , UpperCamelCase : Tuple=0 ): '''simple docstring''' torch.manual_seed(UpperCamelCase ) lowercase__ = batch_size lowercase__ = embedding_dim lowercase__ = num_embeddings lowercase__ = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase ) lowercase__ = torch.randn((batch_size, embedding_dim) ).to(UpperCamelCase ) lowercase__ = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(UpperCamelCase ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def UpperCamelCase__ (self : Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def UpperCamelCase__ (self : Dict , UpperCamelCase : int , UpperCamelCase : Dict ): '''simple docstring''' lowercase__ = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' ) model.to(UpperCamelCase ) lowercase__ = self.get_dummy_seed_input(seed=UpperCamelCase ) with torch.no_grad(): lowercase__ = model(**UpperCamelCase )[0] assert list(sample.shape ) == [1, 768] lowercase__ = sample[0, :8].flatten().cpu() print(UpperCamelCase ) lowercase__ = torch.tensor(UpperCamelCase ) assert torch_all_close(UpperCamelCase , UpperCamelCase , atol=1E-3 )
460
'''simple docstring''' def _SCREAMING_SNAKE_CASE (A ) -> bool: """simple docstring""" if not isinstance(A , A ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A ) == 0: raise ValueError('''Input list must be a non empty list''' ) if len(A ) == 1: return True lowercase__ = series[1] - series[0] for index in range(len(A ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def _SCREAMING_SNAKE_CASE (A ) -> float: """simple docstring""" if not isinstance(A , A ): raise ValueError('''Input series is not valid, valid series - [2, 4, 6]''' ) if len(A ) == 0: raise ValueError('''Input list must be a non empty list''' ) lowercase__ = 0 for val in series: answer += val return answer / len(A ) if __name__ == "__main__": import doctest doctest.testmod()
460
1
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger a_ = "<<<<<<< This should probably be modified because it mentions: " a_ = "=======\n>>>>>>>\n" a_ = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] a_ = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" return ConvertCommand(args.tfds_path, args.datasets_directory ) class UpperCAmelCase_ ( __UpperCAmelCase ): @staticmethod def snake_case__ ( lowercase_): snake_case_ : Optional[int] = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=UpperCAmelCase_ , required=UpperCAmelCase_ , help="Path to the HuggingFace Datasets folder.") train_parser.set_defaults(func=UpperCAmelCase_) def __init__( self , lowercase_ , lowercase_ , *lowercase_): snake_case_ : Tuple = get_logger("datasets-cli/converting") snake_case_ : Any = tfds_path snake_case_ : Optional[int] = datasets_directory def snake_case__ ( self): if os.path.isdir(self._tfds_path): snake_case_ : List[str] = os.path.abspath(self._tfds_path) elif os.path.isfile(self._tfds_path): snake_case_ : Union[str, Any] = os.path.dirname(self._tfds_path) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path.") snake_case_ : Any = os.path.abspath(self._datasets_directory) self._logger.info(F'Converting datasets from {abs_tfds_path} to {abs_datasets_path}') snake_case_ : List[str] = [] snake_case_ : str = [] snake_case_ : str = {} if os.path.isdir(self._tfds_path): snake_case_ : Optional[Any] = os.listdir(UpperCAmelCase_) else: snake_case_ : Optional[int] = [os.path.basename(self._tfds_path)] for f_name in file_names: self._logger.info(F'Looking at file {f_name}') snake_case_ : Any = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) snake_case_ : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) if not os.path.isfile(UpperCAmelCase_) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file") continue with open(UpperCAmelCase_ , encoding="utf-8") as f: snake_case_ : Any = f.readlines() snake_case_ : Dict = [] snake_case_ : str = False snake_case_ : int = False snake_case_ : int = [] for line in lines: snake_case_ : List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: snake_case_ : List[str] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here snake_case_ : Optional[int] = "" continue elif "from absl import logging" in out_line: snake_case_ : int = "from datasets import logging\n" elif "getLogger" in out_line: snake_case_ : Dict = out_line.replace("getLogger" , "get_logger") elif any(expression in out_line for expression in TO_HIGHLIGHT): snake_case_ : List[str] = True snake_case_ : Optional[int] = list(filter(lambda lowercase_: e in out_line , UpperCAmelCase_)) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(UpperCAmelCase_) + "\n") out_lines.append(UpperCAmelCase_) out_lines.append(UpperCAmelCase_) continue else: for pattern, replacement in TO_CONVERT: snake_case_ : Dict = re.sub(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: snake_case_ : Any = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , UpperCAmelCase_) tfds_imports.extend(imp.strip() for imp in match.group(1).split(",")) snake_case_ : Any = "from . import " + match.group(1) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'Error converting {out_line.strip()}') if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: snake_case_ : List[Any] = True out_lines.append(UpperCAmelCase_) if is_builder or "wmt" in f_name: # We create a new directory for each dataset snake_case_ : Optional[int] = f_name.replace(".py" , "") snake_case_ : List[Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) snake_case_ : List[Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) self._logger.info(F'Adding directory {output_dir}') imports_to_builder_map.update({imp: output_dir for imp in tfds_imports}) else: # Utilities will be moved at the end utils_files.append(UpperCAmelCase_) if needs_manual_update: with_manual_update.append(UpperCAmelCase_) with open(UpperCAmelCase_ , "w" , encoding="utf-8") as f: f.writelines(UpperCAmelCase_) self._logger.info(F'Converted in {output_file}') for utils_file in utils_files: try: snake_case_ : List[Any] = os.path.basename(UpperCAmelCase_) snake_case_ : Optional[int] = imports_to_builder_map[f_name.replace(".py" , "")] self._logger.info(F'Moving {dest_folder} to {utils_file}') shutil.copy(UpperCAmelCase_ , UpperCAmelCase_) except KeyError: self._logger.error(F'Cannot find destination folder for {utils_file}. Please copy manually.') if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.')
711
'''simple docstring''' import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin a_ = logging.get_logger(__name__) enable_full_determinism() class UpperCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): UpperCAmelCase_ = UNetaDModel UpperCAmelCase_ = """sample""" @property def snake_case__ ( self): snake_case_ : Optional[Any] = 4 snake_case_ : int = 3 snake_case_ : Dict = (32, 32) snake_case_ : str = floats_tensor((batch_size, num_channels) + sizes).to(lowercase_) snake_case_ : Union[str, Any] = torch.tensor([10]).to(lowercase_) return {"sample": noise, "timestep": time_step} @property def snake_case__ ( self): return (3, 32, 32) @property def snake_case__ ( self): return (3, 32, 32) def snake_case__ ( self): snake_case_ : str = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": 3, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } snake_case_ : List[Any] = self.dummy_input return init_dict, inputs_dict class UpperCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): UpperCAmelCase_ = UNetaDModel UpperCAmelCase_ = """sample""" @property def snake_case__ ( self): snake_case_ : List[Any] = 4 snake_case_ : Dict = 4 snake_case_ : Dict = (32, 32) snake_case_ : Dict = floats_tensor((batch_size, num_channels) + sizes).to(lowercase_) snake_case_ : Any = torch.tensor([10]).to(lowercase_) return {"sample": noise, "timestep": time_step} @property def snake_case__ ( self): return (4, 32, 32) @property def snake_case__ ( self): return (4, 32, 32) def snake_case__ ( self): snake_case_ : Any = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } snake_case_ : Any = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self): snake_case_ , snake_case_ : Tuple = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=lowercase_) self.assertIsNotNone(lowercase_) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(lowercase_) snake_case_ : int = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU") def snake_case__ ( self): snake_case_ , snake_case_ : Optional[Any] = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=lowercase_) model.to(lowercase_) snake_case_ : str = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda" , "This test is supposed to run on GPU") def snake_case__ ( self): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` snake_case_ , snake_case_ : Any = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update" , output_loading_info=lowercase_) model_accelerate.to(lowercase_) model_accelerate.eval() snake_case_ : Optional[int] = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0) , ) snake_case_ : List[str] = noise.to(lowercase_) snake_case_ : Any = torch.tensor([10] * noise.shape[0]).to(lowercase_) snake_case_ : Optional[int] = model_accelerate(lowercase_ , lowercase_)["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() snake_case_ , snake_case_ : Union[str, Any] = UNetaDModel.from_pretrained( "fusing/unet-ldm-dummy-update" , output_loading_info=lowercase_ , low_cpu_mem_usage=lowercase_) model_normal_load.to(lowercase_) model_normal_load.eval() snake_case_ : Optional[Any] = model_normal_load(lowercase_ , lowercase_)["sample"] assert torch_all_close(lowercase_ , lowercase_ , rtol=1E-3) def snake_case__ ( self): snake_case_ : Any = UNetaDModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() model.to(lowercase_) snake_case_ : List[str] = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0) , ) snake_case_ : List[str] = noise.to(lowercase_) snake_case_ : str = torch.tensor([10] * noise.shape[0]).to(lowercase_) with torch.no_grad(): snake_case_ : Tuple = model(lowercase_ , lowercase_).sample snake_case_ : Optional[int] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off snake_case_ : Tuple = torch.tensor([-13.3_258, -20.1_100, -15.9_873, -17.6_617, -23.0_596, -17.9_419, -13.3_675, -16.1_889, -12.3_800]) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-3)) class UpperCAmelCase_ ( snake_case__ , snake_case__ , unittest.TestCase ): UpperCAmelCase_ = UNetaDModel UpperCAmelCase_ = """sample""" @property def snake_case__ ( self , lowercase_=(32, 32)): snake_case_ : List[Any] = 4 snake_case_ : str = 3 snake_case_ : str = floats_tensor((batch_size, num_channels) + sizes).to(lowercase_) snake_case_ : Dict = torch.tensor(batch_size * [10]).to(dtype=torch.intaa , device=lowercase_) return {"sample": noise, "timestep": time_step} @property def snake_case__ ( self): return (3, 32, 32) @property def snake_case__ ( self): return (3, 32, 32) def snake_case__ ( self): snake_case_ : List[str] = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1E-6, "mid_block_scale_factor": math.sqrt(2.0), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } snake_case_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict @slow def snake_case__ ( self): snake_case_ , snake_case_ : Optional[int] = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256" , output_loading_info=lowercase_) self.assertIsNotNone(lowercase_) self.assertEqual(len(loading_info["missing_keys"]) , 0) model.to(lowercase_) snake_case_ : Dict = self.dummy_input snake_case_ : Tuple = floats_tensor((4, 3) + (2_56, 2_56)).to(lowercase_) snake_case_ : Tuple = noise snake_case_ : Tuple = model(**lowercase_) assert image is not None, "Make sure output is not None" @slow def snake_case__ ( self): snake_case_ : Dict = UNetaDModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(lowercase_) snake_case_ : List[Any] = 4 snake_case_ : str = 3 snake_case_ : Dict = (2_56, 2_56) snake_case_ : Tuple = torch.ones((batch_size, num_channels) + sizes).to(lowercase_) snake_case_ : List[Any] = torch.tensor(batch_size * [1E-4]).to(lowercase_) with torch.no_grad(): snake_case_ : int = model(lowercase_ , lowercase_).sample snake_case_ : List[str] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case_ : Union[str, Any] = torch.tensor([-4_842.8_691, -6_499.6_631, -3_800.1_953, -7_978.2_686, -10_980.7_129, -20_028.8_535, 8_148.2_822, 2_342.2_905, 567.7_608]) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2)) def snake_case__ ( self): snake_case_ : List[Any] = UNetaDModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(lowercase_) snake_case_ : Dict = 4 snake_case_ : str = 3 snake_case_ : List[Any] = (32, 32) snake_case_ : int = torch.ones((batch_size, num_channels) + sizes).to(lowercase_) snake_case_ : List[Any] = torch.tensor(batch_size * [1E-4]).to(lowercase_) with torch.no_grad(): snake_case_ : Optional[Any] = model(lowercase_ , lowercase_).sample snake_case_ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off snake_case_ : Union[str, Any] = torch.tensor([-0.0_325, -0.0_900, -0.0_869, -0.0_332, -0.0_725, -0.0_270, -0.0_101, 0.0_227, 0.0_256]) # fmt: on self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2)) def snake_case__ ( self): # not required for this model pass
92
0
import argparse UpperCAmelCase : Any = "docs/source/_static/js/custom.js" def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' with open(__lowerCamelCase , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase = f.readlines() lowerCamelCase = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 lowerCamelCase = f'const stableVersion = \"v{version}\"\n' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f' \"v{version}\": \"v{version}\",\n' with open(__lowerCamelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") UpperCAmelCase : Union[str, Any] = parser.parse_args() update_custom_js(args.version)
457
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase =logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =["input_features", "attention_mask"] def __init__( self , snake_case=8_0 , snake_case=1_6_0_0_0 , snake_case=8_0 , snake_case=0.0 , snake_case=True , snake_case=True , snake_case=True , **snake_case , ) -> str: '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case) _UpperCAmelCase : Optional[Any] =num_mel_bins _UpperCAmelCase : Optional[int] =do_ceptral_normalize _UpperCAmelCase : Optional[Any] =normalize_means _UpperCAmelCase : Optional[Any] =normalize_vars _UpperCAmelCase : Tuple =True def lowerCAmelCase ( self , snake_case , ) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : List[Any] =waveform * (2**1_5) # Kaldi compliance: 16-bit signed integers _UpperCAmelCase : Dict =torch.from_numpy(snake_case).unsqueeze(0) _UpperCAmelCase : Union[str, Any] =ta_kaldi.fbank(snake_case , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def lowerCAmelCase ( snake_case , snake_case , snake_case = True , snake_case = True , snake_case = 0.0 , ) -> np.ndarray: '''simple docstring''' # make sure we normalize float32 arrays if normalize_means: _UpperCAmelCase : int =x[:input_length].mean(axis=0) _UpperCAmelCase : List[Any] =np.subtract(snake_case , snake_case) if normalize_vars: _UpperCAmelCase : List[Any] =x[:input_length].std(axis=0) _UpperCAmelCase : Optional[int] =np.divide(snake_case , snake_case) if input_length < x.shape[0]: _UpperCAmelCase : Dict =padding_value # make sure array is in float32 _UpperCAmelCase : str =x.astype(np.floataa) return x def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[np.ndarray]: '''simple docstring''' _UpperCAmelCase : str =attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(snake_case , snake_case , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(snake_case , snake_case) ] def __call__( self , snake_case , snake_case = False , snake_case = None , snake_case = False , snake_case = None , snake_case = None , snake_case = None , snake_case = None , **snake_case , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') _UpperCAmelCase : Optional[int] =isinstance(snake_case , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") _UpperCAmelCase : List[Any] =is_batched_numpy or ( isinstance(snake_case , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCAmelCase : int =[np.asarray(snake_case , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray): _UpperCAmelCase : Tuple =np.asarray(snake_case , dtype=np.floataa) elif isinstance(snake_case , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCAmelCase : int =raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCAmelCase : Dict =[raw_speech] # extract fbank features _UpperCAmelCase : Optional[Any] =[self._extract_fbank_features(snake_case) for waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : List[str] =BatchFeature({'input_features': features}) _UpperCAmelCase : Any =self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format _UpperCAmelCase : Dict =padded_inputs.get('input_features') if isinstance(input_features[0] , snake_case): _UpperCAmelCase : Any =[np.asarray(snake_case , dtype=np.floataa) for feature in input_features] _UpperCAmelCase : int =padded_inputs.get('attention_mask') if attention_mask is not None: _UpperCAmelCase : Tuple =[np.asarray(snake_case , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: _UpperCAmelCase : Optional[Any] =( np.array(snake_case , dtype=np.intaa) if self._get_padding_strategies(snake_case , max_length=snake_case) is not PaddingStrategy.DO_NOT_PAD else None ) _UpperCAmelCase : Optional[int] =self.normalize( padded_inputs['input_features'] , attention_mask=snake_case) if return_tensors is not None: _UpperCAmelCase : List[Any] =padded_inputs.convert_to_tensors(snake_case) return padded_inputs
446
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE :Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Optional[int] = '''▁''' __SCREAMING_SNAKE_CASE :Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} __SCREAMING_SNAKE_CASE :List[Any] = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model''' ), } } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __SCREAMING_SNAKE_CASE :Any = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class A_ ( lowerCAmelCase_ ): _lowerCamelCase : List[str] = VOCAB_FILES_NAMES _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[Any] = ["""input_ids""", """attention_mask"""] _lowerCamelCase : List[int] = [] _lowerCamelCase : List[int] = [] def __init__( self : Optional[Any] , snake_case_ : List[str] , snake_case_ : str="<s>" , snake_case_ : List[Any]="</s>" , snake_case_ : str="</s>" , snake_case_ : List[str]="<s>" , snake_case_ : Tuple="<unk>" , snake_case_ : Tuple="<pad>" , snake_case_ : Dict="<mask>" , snake_case_ : List[str]=None , snake_case_ : str=None , snake_case_ : Dict=None , snake_case_ : Optional[Dict[str, Any]] = None , snake_case_ : Dict=None , snake_case_ : List[Any]=False , **snake_case_ : int , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token _UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCAmelCase = legacy_behaviour super().__init__( bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , tokenizer_file=snake_case_ , src_lang=snake_case_ , tgt_lang=snake_case_ , additional_special_tokens=snake_case_ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=snake_case_ , **snake_case_ , ) _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) _UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCAmelCase = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCAmelCase = 1 _UpperCAmelCase = len(self.sp_model ) _UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case_ ) } _UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _UpperCAmelCase = src_lang if src_lang is not None else "eng_Latn" _UpperCAmelCase = self.lang_code_to_id[self._src_lang] _UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : List[Any] ): _UpperCAmelCase = self.__dict__.copy() _UpperCAmelCase = None _UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : List[str] , snake_case_ : Any ): _UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase = {} _UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowercase ( self : Dict ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowercase ( self : Optional[Any] ): return self._src_lang @src_lang.setter def lowercase ( self : Union[str, Any] , snake_case_ : str ): _UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase ( self : List[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None , snake_case_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) _UpperCAmelCase = [1] * len(self.prefix_tokens ) _UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case_ )) + suffix_ones return prefix_ones + ([0] * len(snake_case_ )) + ([0] * len(snake_case_ )) + suffix_ones def lowercase ( self : List[str] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase ( self : List[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Optional[str] , snake_case_ : Optional[str] , **snake_case_ : List[str] ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _UpperCAmelCase = src_lang _UpperCAmelCase = self(snake_case_ , add_special_tokens=snake_case_ , return_tensors=snake_case_ , **snake_case_ ) _UpperCAmelCase = self.convert_tokens_to_ids(snake_case_ ) _UpperCAmelCase = tgt_lang_id return inputs def lowercase ( self : Optional[Any] ): _UpperCAmelCase = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase ( self : Union[str, Any] , snake_case_ : str ): return self.sp_model.encode(snake_case_ , out_type=snake_case_ ) def lowercase ( self : str , snake_case_ : List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase = self.sp_model.PieceToId(snake_case_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase ( self : Optional[int] , snake_case_ : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase ( self : List[str] , snake_case_ : List[Any] ): _UpperCAmelCase = "".join(snake_case_ ).replace(snake_case_ , " " ).strip() return out_string def lowercase ( self : Dict , snake_case_ : str , snake_case_ : Optional[str] = None ): if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_ , "wb" ) as fi: _UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,) def lowercase ( self : Optional[int] , snake_case_ : List[str] , snake_case_ : str = "eng_Latn" , snake_case_ : Optional[List[str]] = None , snake_case_ : str = "fra_Latn" , **snake_case_ : int , ): _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(snake_case_ , snake_case_ , **snake_case_ ) def lowercase ( self : Tuple ): return self.set_src_lang_special_tokens(self.src_lang ) def lowercase ( self : str ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase ( self : str , snake_case_ : List[Any] ): _UpperCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCAmelCase = [self.cur_lang_code] _UpperCAmelCase = [self.eos_token_id] def lowercase ( self : List[str] , snake_case_ : str ): _UpperCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _UpperCAmelCase = [] _UpperCAmelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCAmelCase = [self.cur_lang_code] _UpperCAmelCase = [self.eos_token_id]
712
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class A_ : @staticmethod def lowercase ( *snake_case_ : Optional[int] , **snake_case_ : str ): pass @is_pipeline_test @require_vision class A_ ( unittest.TestCase ): @require_torch def lowercase ( self : List[Any] ): _UpperCAmelCase = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase = image_classifier(snake_case_ , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(snake_case_ ) , [ [{"score": 0.3_3_3, "label": "a"}, {"score": 0.3_3_3, "label": "b"}, {"score": 0.3_3_3, "label": "c"}], [{"score": 0.3_3_3, "label": "a"}, {"score": 0.3_3_3, "label": "c"}, {"score": 0.3_3_3, "label": "b"}], ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(snake_case_ ) , [ [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], ] , ) @require_tf def lowercase ( self : Union[str, Any] ): _UpperCAmelCase = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase = image_classifier(snake_case_ , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(snake_case_ ) , [{"score": 0.3_3_3, "label": "a"}, {"score": 0.3_3_3, "label": "b"}, {"score": 0.3_3_3, "label": "c"}] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(snake_case_ ) , [ [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], [ {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, {"score": 0.3_3_3, "label": ANY(snake_case_ )}, ], ] , ) @slow @require_torch def lowercase ( self : Dict ): _UpperCAmelCase = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase = image_classifier(snake_case_ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(snake_case_ ) , [ {"score": 0.5_1_1, "label": "remote"}, {"score": 0.4_8_5, "label": "cat"}, {"score": 0.0_0_4, "label": "plane"}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(snake_case_ ) , [ [ {"score": 0.5_1_1, "label": "remote"}, {"score": 0.4_8_5, "label": "cat"}, {"score": 0.0_0_4, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def lowercase ( self : Tuple ): _UpperCAmelCase = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes _UpperCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _UpperCAmelCase = image_classifier(snake_case_ , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(snake_case_ ) , [ {"score": 0.5_1_1, "label": "remote"}, {"score": 0.4_8_5, "label": "cat"}, {"score": 0.0_0_4, "label": "plane"}, ] , ) _UpperCAmelCase = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(snake_case_ ) , [ [ {"score": 0.5_1_1, "label": "remote"}, {"score": 0.4_8_5, "label": "cat"}, {"score": 0.0_0_4, "label": "plane"}, ], ] * 5 , )
119
0
"""simple docstring""" import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def _UpperCAmelCase ( *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Any): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Any: '''simple docstring''' lowercase_ = np.array(__lowerCAmelCase ) lowercase_ = npimg.shape return {"hash": hashimage(__lowerCAmelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): lowercase__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) lowercase__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = MaskGenerationPipeline(model=snake_case__ , image_processor=snake_case__) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" pass @require_tf @unittest.skip("""Image segmentation not implemented in TF""") def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" pass @slow @require_torch def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = pipeline("""mask-generation""" , model="""facebook/sam-vit-huge""") lowercase_ = image_segmenter("""http://images.cocodataset.org/val2017/000000039769.jpg""" , points_per_batch=2_5_6) # Shortening by hashing lowercase_ = [] for i, o in enumerate(outputs["""masks"""]): new_outupt += [{"mask": mask_to_test_readable(snake_case__), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case__ , decimals=4) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.021}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_053}, {"""mask""": {"""hash""": """e2d0b7a0b7""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_967}, {"""mask""": {"""hash""": """453c7844bd""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.993}, {"""mask""": {"""hash""": """3d44f2926d""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_909}, {"""mask""": {"""hash""": """64033ddc3f""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_879}, {"""mask""": {"""hash""": """801064ff79""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_834}, {"""mask""": {"""hash""": """6172f276ef""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_716}, {"""mask""": {"""hash""": """b49e60e084""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_612}, {"""mask""": {"""hash""": """a811e775fd""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_599}, {"""mask""": {"""hash""": """a6a8ebcf4b""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_552}, {"""mask""": {"""hash""": """9d8257e080""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_532}, {"""mask""": {"""hash""": """32de6454a8""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_516}, {"""mask""": {"""hash""": """af3d4af2c8""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_499}, {"""mask""": {"""hash""": """3c6db475fb""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_483}, {"""mask""": {"""hash""": """c290813fb9""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_464}, {"""mask""": {"""hash""": """b6f0b8f606""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.943}, {"""mask""": {"""hash""": """92ce16bfdf""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.943}, {"""mask""": {"""hash""": """c749b25868""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_408}, {"""mask""": {"""hash""": """efb6cab859""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_335}, {"""mask""": {"""hash""": """1ff2eafb30""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_326}, {"""mask""": {"""hash""": """788b798e24""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.9_262}, {"""mask""": {"""hash""": """abea804f0e""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.8_999}, {"""mask""": {"""hash""": """7b9e8ddb73""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.8_986}, {"""mask""": {"""hash""": """cd24047c8a""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.8_984}, {"""mask""": {"""hash""": """6943e6bcbd""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.8_873}, {"""mask""": {"""hash""": """b5f47c9191""", """shape""": (4_8_0, 6_4_0)}, """scores""": 0.8_871} ] , ) # fmt: on @require_torch @slow def _UpperCAmelCase ( self : List[Any]): """simple docstring""" lowercase_ = """facebook/sam-vit-huge""" lowercase_ = pipeline("""mask-generation""" , model=snake_case__) lowercase_ = image_segmenter( """http://images.cocodataset.org/val2017/000000039769.jpg""" , pred_iou_thresh=1 , points_per_batch=2_5_6) # Shortening by hashing lowercase_ = [] for i, o in enumerate(outputs["""masks"""]): new_outupt += [{"mask": mask_to_test_readable(snake_case__), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case__ , decimals=4) , [ {"""mask""": {"""hash""": """115ad19f5f""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_444}, {"""mask""": {"""hash""": """6affa964c6""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_210}, {"""mask""": {"""hash""": """dfe28a0388""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_167}, {"""mask""": {"""hash""": """c0a5f4a318""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_132}, {"""mask""": {"""hash""": """fe8065c197""", """shape""": (4_8_0, 6_4_0)}, """scores""": 1.0_053}, ] , )
567
"""simple docstring""" def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [0] * len(lowerCAmelCase ) UpperCAmelCase = [] UpperCAmelCase = [1] * len(lowerCAmelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowerCAmelCase ) ): if indegree[i] == 0: queue.append(lowerCAmelCase ) while queue: UpperCAmelCase = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCAmelCase = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(lowerCAmelCase ) print(max(lowerCAmelCase ) ) # Adjacency list of Graph lowerCAmelCase_ : str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
673
0
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers _lowerCAmelCase = float('''nan''') class lowerCAmelCase_: '''simple docstring''' def __init__( self ,__UpperCAmelCase ) -> Dict: lowerCAmelCase__ : List[str] = sys.stdout lowerCAmelCase__ : List[Any] = open(__UpperCAmelCase ,"""a""" ) def __getattr__( self ,__UpperCAmelCase ) -> Tuple: return getattr(self.stdout ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: self.stdout.write(__UpperCAmelCase ) # strip tqdm codes self.file.write(re.sub(R"""^.*\r""" ,"""""" ,__UpperCAmelCase ,0 ,re.M ) ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase=80 , UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ : int = [] # deal with critical env vars lowerCAmelCase__ : Any = ["""CUDA_VISIBLE_DEVICES"""] for key in env_keys: lowerCAmelCase__ : List[Any] = os.environ.get(UpperCamelCase , UpperCamelCase ) if val is not None: cmd.append(f"""{key}={val}""" ) # python executable (not always needed if the script is executable) lowerCAmelCase__ : int = sys.executable if full_python_path else sys.executable.split("""/""" )[-1] cmd.append(UpperCamelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowerCAmelCase__ : Tuple = [] lowerCAmelCase__ : Optional[Any] = """""" while len(UpperCamelCase ) > 0: current_line += f"""{cmd.pop(0 )} """ if len(UpperCamelCase ) == 0 or len(UpperCamelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = """""" return "\\\n".join(UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Tuple = re.sub(R"""[\\\n]+""" , """ """ , args.base_cmd ) # remove --output_dir if any and set our own lowerCAmelCase__ : Dict = re.sub("""--output_dir\s+[^\s]+""" , """""" , args.base_cmd ) args.base_cmd += f""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir lowerCAmelCase__ : List[Any] = re.sub("""--overwrite_output_dir\s+""" , """""" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) lowerCAmelCase__ : Union[str, Any] = subprocess.run(UpperCamelCase , capture_output=UpperCamelCase , text=UpperCamelCase ) if verbose: print("""STDOUT""" , result.stdout ) print("""STDERR""" , result.stderr ) # save the streams lowerCAmelCase__ : str = variation.replace(""" """ , """-""" ) with open(Path(UpperCamelCase ) / f"""log.{prefix}.stdout.txt""" , """w""" ) as f: f.write(result.stdout ) with open(Path(UpperCamelCase ) / f"""log.{prefix}.stderr.txt""" , """w""" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("""failed""" ) return {target_metric_key: nan} with io.open(f"""{output_dir}/all_results.json""" , """r""" , encoding="""utf-8""" ) as f: lowerCAmelCase__ : str = json.load(UpperCamelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Tuple = f"""{id}: {variation:<{longest_variation_len}}""" lowerCAmelCase__ : Optional[int] = f"""{preamble}: """ lowerCAmelCase__ : str = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(UpperCamelCase ) , desc=UpperCamelCase , leave=UpperCamelCase ): lowerCAmelCase__ : str = process_run_single( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[str] = single_run_metrics[target_metric_key] if not math.isnan(UpperCamelCase ): metrics.append(UpperCamelCase ) results.append(UpperCamelCase ) outcome += "✓" else: outcome += "✘" lowerCAmelCase__ : int = f"""\33[2K\r{outcome}""" if len(UpperCamelCase ) > 0: lowerCAmelCase__ : int = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowerCAmelCase__ : Any = round(mean_metrics[target_metric_key] , 2 ) lowerCAmelCase__ : Tuple = f"""{outcome} {mean_target}""" if len(UpperCamelCase ) > 1: results_str += f""" {tuple(round(UpperCamelCase , 2 ) for x in results )}""" print(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = variation return mean_metrics else: print(UpperCamelCase ) return {variation_key: variation, target_metric_key: nan} def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = torch.cuda.get_device_properties(torch.device("""cuda""" ) ) return f""" Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB """ def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = pd.DataFrame(UpperCamelCase ) lowerCAmelCase__ : List[Any] = """variation""" lowerCAmelCase__ : Tuple = """diff_%""" lowerCAmelCase__ : Any = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowerCAmelCase__ : Optional[int] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(UpperCamelCase ): # as a fallback, use the minimal value as the sentinel lowerCAmelCase__ : Dict = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(UpperCamelCase ): lowerCAmelCase__ : Dict = df.apply( lambda UpperCamelCase : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="""columns""" , ) # re-order columns lowerCAmelCase__ : Union[str, Any] = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowerCAmelCase__ : List[str] = df.reindex(UpperCamelCase , axis="""columns""" ) # reorder cols # capitalize lowerCAmelCase__ : Optional[Any] = df.rename(str.capitalize , axis="""columns""" ) # make the cols as narrow as possible lowerCAmelCase__ : Any = df.rename(lambda UpperCamelCase : c.replace("""_""" , """<br>""" ) , axis="""columns""" ) lowerCAmelCase__ : int = df.rename(lambda UpperCamelCase : c.replace("""_""" , """\n""" ) , axis="""columns""" ) lowerCAmelCase__ : Optional[Any] = ["""""", """Copy between the cut-here-lines and paste as is to github or a forum"""] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=UpperCamelCase , floatfmt=""".2f""" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=UpperCamelCase , floatfmt=""".2f""" )] print("""\n\n""".join(UpperCamelCase ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--base-cmd""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""Base cmd""" , ) parser.add_argument( """--variations""" , default=UpperCamelCase , type=UpperCamelCase , nargs="""+""" , required=UpperCamelCase , help="""Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'""" , ) parser.add_argument( """--base-variation""" , default=UpperCamelCase , type=UpperCamelCase , help="""Baseline variation to compare to. if None the minimal target value will be used to compare against""" , ) parser.add_argument( """--target-metric-key""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""Target metric key in output_dir/all_results.json, e.g., train_samples_per_second""" , ) parser.add_argument( """--report-metric-keys""" , default="""""" , type=UpperCamelCase , help="""Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples""" , ) parser.add_argument( """--repeat-times""" , default=1 , type=UpperCamelCase , help="""How many times to re-run each variation - an average will be reported""" , ) parser.add_argument( """--output_dir""" , default="""output_benchmark""" , type=UpperCamelCase , help="""The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked""" , ) parser.add_argument( """--verbose""" , default=UpperCamelCase , action="""store_true""" , help="""Whether to show the outputs of each run or just the benchmark progress""" , ) lowerCAmelCase__ : Tuple = parser.parse_args() lowerCAmelCase__ : Optional[Any] = args.output_dir Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = get_base_command(UpperCamelCase , UpperCamelCase ) # split each dimension into its --foo variations lowerCAmelCase__ : Optional[int] = [list(map(str.strip , re.split(R"""\|""" , UpperCamelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowerCAmelCase__ : Any = list(map(str.strip , map(""" """.join , itertools.product(*UpperCamelCase ) ) ) ) lowerCAmelCase__ : Dict = max(len(UpperCamelCase ) for x in variations ) # split wanted keys lowerCAmelCase__ : List[str] = args.report_metric_keys.split() # capture prints into a log file for convenience lowerCAmelCase__ : Union[str, Any] = f"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(f"""\nNote: each run's output is also logged under {output_dir}/log.*.std*.txt""" ) print(f"""and this script's output is also piped into {report_fn}""" ) lowerCAmelCase__ : List[str] = Tee(UpperCamelCase ) print(f"""\n*** Running {len(UpperCamelCase )} benchmarks:""" ) print(f"""Base command: {' '.join(UpperCamelCase )}""" ) lowerCAmelCase__ : Union[str, Any] = """variation""" lowerCAmelCase__ : Optional[Any] = [] for id, variation in enumerate(tqdm(UpperCamelCase , desc="""Total completion: """ , leave=UpperCamelCase ) ): lowerCAmelCase__ : List[str] = base_cmd + variation.split() results.append( process_run( id + 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , args.target_metric_key , UpperCamelCase , args.repeat_times , UpperCamelCase , args.verbose , ) ) process_results(UpperCamelCase , args.target_metric_key , UpperCamelCase , args.base_variation , UpperCamelCase ) if __name__ == "__main__": main()
160
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowerCAmelCase = {'''tokenization_herbert''': ['''HerbertTokenizer''']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''HerbertTokenizerFast'''] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
160
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available A_ : Union[str, Any] = { "configuration_audio_spectrogram_transformer": [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ASTConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ "AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel", ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = ["ASTFeatureExtractor"] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys A_ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
456
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCamelCase : List[Any] = { "configuration_vivit": ["VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "VivitConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[int] = ["VivitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ "VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "VivitModel", "VivitPreTrainedModel", "VivitForVideoClassification", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
430
0
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] ) -> Dict: SCREAMING_SNAKE_CASE__ = TextaTextGenerationPipeline(model=__lowerCamelCase , tokenizer=__lowerCamelCase ) return generator, ["Something to write", "Something else"] def lowercase_ ( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] ) -> str: SCREAMING_SNAKE_CASE__ = generator('''Something there''' ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': ANY(__lowerCamelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]['''generated_text'''].startswith('''Something there''' ) ) SCREAMING_SNAKE_CASE__ = generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], ] , ) SCREAMING_SNAKE_CASE__ = generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], [{'''generated_text''': ANY(__lowerCamelCase )}, {'''generated_text''': ANY(__lowerCamelCase )}], ] , ) with self.assertRaises(__lowerCamelCase ): generator(4 ) @require_torch def lowercase_ ( self : int ) -> str: SCREAMING_SNAKE_CASE__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''pt''' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE__ = generator('''Something there''' , do_sample=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': ''''''}] ) SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = generator( '''Something there''' , num_return_sequences=__lowerCamelCase , num_beams=__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = [ {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': '''Beide Beide Beide Beide Beide Beide Beide Beide'''}, {'''generated_text''': ''''''}, ] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = generator('''This is a test''' , do_sample=__lowerCamelCase , num_return_sequences=2 , return_tensors=__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ] , ) SCREAMING_SNAKE_CASE__ = generator.model.config.eos_token_id SCREAMING_SNAKE_CASE__ = '''<pad>''' SCREAMING_SNAKE_CASE__ = generator( ['''This is a test''', '''This is a second test'''] , do_sample=__lowerCamelCase , num_return_sequences=2 , batch_size=2 , return_tensors=__lowerCamelCase , ) self.assertEqual( __lowerCamelCase , [ [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], [ {'''generated_token_ids''': ANY(torch.Tensor )}, {'''generated_token_ids''': ANY(torch.Tensor )}, ], ] , ) @require_tf def lowercase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = pipeline('''text2text-generation''' , model='''patrickvonplaten/t5-tiny-random''' , framework='''tf''' ) # do_sample=False necessary for reproducibility SCREAMING_SNAKE_CASE__ = generator('''Something there''' , do_sample=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , [{'''generated_text''': ''''''}] )
719
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Dict = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Tuple = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
472
0
'''simple docstring''' from __future__ import annotations A_ : Tuple = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Tuple = graph # mapping node to its parent in resulting breadth first tree snake_case__ : dict[str, str | None] = {} snake_case__ : Dict = source_vertex def __UpperCamelCase ( self ): snake_case__ : Optional[int] = {self.source_vertex} snake_case__ : int = None snake_case__ : Any = [self.source_vertex] # first in first out queue while queue: snake_case__ : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = vertex queue.append(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if target_vertex == self.source_vertex: return self.source_vertex snake_case__ : Union[str, Any] = self.parent.get(__SCREAMING_SNAKE_CASE ) if target_vertex_parent is None: snake_case__ : Optional[Any] = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__SCREAMING_SNAKE_CASE ) return self.shortest_path(__SCREAMING_SNAKE_CASE ) + f"->{target_vertex}" if __name__ == "__main__": A_ : Optional[int] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
38
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __snake_case ( a__ , unittest.TestCase): _lowerCAmelCase = LongformerTokenizer _lowerCAmelCase = True _lowerCAmelCase = LongformerTokenizerFast _lowerCAmelCase = True def UpperCAmelCase_ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase : Optional[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] lowerCamelCase : List[Any] = dict(zip(A, range(len(A ) ) ) ) lowerCamelCase : List[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] lowerCamelCase : Union[str, Any] = {'unk_token': '<unk>'} lowerCamelCase : Dict = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(A ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(A ) ) def UpperCAmelCase_ ( self, **A ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCAmelCase_ ( self, **A ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **A ) def UpperCAmelCase_ ( self, A ): """simple docstring""" lowerCamelCase : Dict = 'lower newer' lowerCamelCase : Any = 'lower newer' return input_text, output_text def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.tokenizer_class(self.vocab_file, self.merges_file, **self.special_tokens_map ) lowerCamelCase : List[str] = 'lower newer' lowerCamelCase : int = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] lowerCamelCase : List[str] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A, A ) lowerCamelCase : Optional[Any] = tokens + [tokenizer.unk_token] lowerCamelCase : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ), A ) def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!', add_special_tokens=A ), [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418', add_special_tokens=A ), [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2], ) @slow def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) lowerCamelCase : Union[str, Any] = tokenizer.encode('sequence builders', add_special_tokens=A ) lowerCamelCase : Union[str, Any] = tokenizer.encode('multi-sequence build', add_special_tokens=A ) lowerCamelCase : Optional[Any] = tokenizer.encode( 'sequence builders', add_special_tokens=A, add_prefix_space=A ) lowerCamelCase : List[Any] = tokenizer.encode( 'sequence builders', 'multi-sequence build', add_special_tokens=A, add_prefix_space=A ) lowerCamelCase : Optional[int] = tokenizer.build_inputs_with_special_tokens(A ) lowerCamelCase : str = tokenizer.build_inputs_with_special_tokens(A, A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_tokenizer() lowerCamelCase : str = 'Encode this sequence.' lowerCamelCase : Any = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments lowerCamelCase : Dict = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) lowerCamelCase : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A, A ) lowerCamelCase : Any = tokenizer.encode(A, add_special_tokens=A, add_prefix_space=A ) lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A, A ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) lowerCamelCase : Union[str, Any] = tokenizer.encode(A, add_special_tokens=A ) lowerCamelCase : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A, A ) # Testing spaces after special tokens lowerCamelCase : Any = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(A, lstrip=A, rstrip=A )} ) # mask token has a left space lowerCamelCase : List[str] = tokenizer.convert_tokens_to_ids(A ) lowerCamelCase : List[Any] = 'Encode <mask> sequence' lowerCamelCase : Any = 'Encode <mask>sequence' lowerCamelCase : Optional[Any] = tokenizer.encode(A ) lowerCamelCase : List[str] = encoded.index(A ) lowerCamelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A, A ) lowerCamelCase : List[Any] = tokenizer.encode(A ) lowerCamelCase : Optional[int] = encoded.index(A ) lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A, A ) def UpperCAmelCase_ ( self ): """simple docstring""" pass def UpperCAmelCase_ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(A, **A ) lowerCamelCase : List[str] = 'A, <mask> AllenNLP sentence.' lowerCamelCase : Dict = tokenizer_r.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) lowerCamelCase : str = tokenizer_p.encode_plus(A, add_special_tokens=A, return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ), sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ), sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ), ) lowerCamelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) lowerCamelCase : str = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'], [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A, ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def UpperCAmelCase_ ( self ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False], repeat=2 ): lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowerCamelCase : str = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['add_prefix_space'], A ) self.assertEqual(post_processor_state['trim_offsets'], A ) def UpperCAmelCase_ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowerCamelCase : Optional[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` lowerCamelCase : Optional[Any] = F'''{text_of_1_token} {text_of_1_token}''' lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : int = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : str = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ) + 1, len(A ) + 1 + len(A )), ) lowerCamelCase : str = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Optional[int] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) lowerCamelCase : List[str] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Tuple = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1], (len(A ), len(A ) + 1 + len(A )), ) lowerCamelCase : Dict = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowerCamelCase : int = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Optional[int] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )), ) lowerCamelCase : Any = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Optional[int] = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), ) lowerCamelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( A, use_fast=A, add_prefix_space=A, trim_offsets=A ) lowerCamelCase : Dict = tokenizer_r(A, return_offsets_mapping=A, add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0], (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1], (1 + len(A ), 1 + len(A ) + 1 + len(A )), )
320
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE__ ( __A , __A=False ) -> Any: _snake_case = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'module.blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'module.blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'module.blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'module.blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'module.blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'module.blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _snake_case = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( __A , __A , __A=False ) -> List[str]: for i in range(config.num_hidden_layers ): if base_model: _snake_case = '' else: _snake_case = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _snake_case = state_dict.pop(F'module.blocks.{i}.attn.qkv.weight' ) _snake_case = state_dict.pop(F'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _snake_case = in_proj_weight[ : config.hidden_size, : ] _snake_case = in_proj_bias[: config.hidden_size] _snake_case = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _snake_case = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _snake_case = in_proj_weight[ -config.hidden_size :, : ] _snake_case = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: _snake_case = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(_A , _A ) def SCREAMING_SNAKE_CASE__ ( __A ) -> int: _snake_case = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(_A , _A ) def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> int: _snake_case = dct.pop(_A ) _snake_case = val def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Any: _snake_case = ViTMSNConfig() _snake_case = 1_000 _snake_case = 'datasets/huggingface/label-files' _snake_case = 'imagenet-1k-id2label.json' _snake_case = json.load(open(hf_hub_download(_A , _A ) , 'r' ) ) _snake_case = {int(_A ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _snake_case = 384 _snake_case = 1_536 _snake_case = 6 elif "l16" in checkpoint_url: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 0.1 elif "b4" in checkpoint_url: _snake_case = 4 elif "l7" in checkpoint_url: _snake_case = 7 _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 0.1 _snake_case = ViTMSNModel(_A ) _snake_case = torch.hub.load_state_dict_from_url(_A , map_location='cpu' )['target_encoder'] _snake_case = ViTImageProcessor(size=config.image_size ) remove_projection_head(_A ) _snake_case = create_rename_keys(_A , base_model=_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , base_model=_A ) model.load_state_dict(_A ) model.eval() _snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' _snake_case = Image.open(requests.get(_A , stream=_A ).raw ) _snake_case = ViTImageProcessor( size=config.image_size , image_mean=_A , image_std=_A ) _snake_case = image_processor(images=_A , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) _snake_case = model(**_A ) _snake_case = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _snake_case = torch.tensor([[-1.0_9_1_5, -1.4_8_7_6, -1.1_8_0_9]] ) elif "b16" in checkpoint_url: _snake_case = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: _snake_case = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: _snake_case = torch.tensor([[-4.3_8_6_8, 5.2_9_3_2, -0.4_1_3_7]] ) else: _snake_case = torch.tensor([[-0.1_7_9_2, -0.6_4_6_5, 2.4_2_6_3]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , _A , atol=1e-4 ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowercase : int = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
709
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class __UpperCAmelCase ( _lowerCamelCase ): @staticmethod @abstractmethod def lowerCamelCase ( lowerCAmelCase_ ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowerCamelCase ( self ): """simple docstring""" raise NotImplementedError()
542
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCAmelCase_ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE : torch.FloatTensor class UpperCAmelCase_ ( _UpperCamelCase , _UpperCamelCase ): @register_to_config def __init__( self : int , A : int = 6_5_5_3_6 , A : Optional[int] = None , A : int = 2 , A : int = 2 , A : int = 0 , A : str = "fourier" , A : bool = True , A : bool = False , A : float = 0.0 , A : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , A : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , A : Tuple[str] = "UNetMidBlock1D" , A : str = None , A : Tuple[int] = (3_2, 3_2, 6_4) , A : str = None , A : int = 8 , A : int = 1 , A : bool = False , ): super().__init__() _UpperCAmelCase : List[str] = sample_size # time if time_embedding_type == "fourier": _UpperCAmelCase : Dict = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=A , log=A , flip_sin_to_cos=A ) _UpperCAmelCase : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": _UpperCAmelCase : Optional[int] = Timesteps( block_out_channels[0] , flip_sin_to_cos=A , downscale_freq_shift=A ) _UpperCAmelCase : Optional[int] = block_out_channels[0] if use_timestep_embedding: _UpperCAmelCase : Any = block_out_channels[0] * 4 _UpperCAmelCase : Dict = TimestepEmbedding( in_channels=A , time_embed_dim=A , act_fn=A , out_dim=block_out_channels[0] , ) _UpperCAmelCase : List[str] = nn.ModuleList([] ) _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : int = nn.ModuleList([] ) _UpperCAmelCase : Tuple = None # down _UpperCAmelCase : List[Any] = in_channels for i, down_block_type in enumerate(A ): _UpperCAmelCase : Union[str, Any] = output_channel _UpperCAmelCase : Dict = block_out_channels[i] if i == 0: input_channel += extra_in_channels _UpperCAmelCase : Any = i == len(A ) - 1 _UpperCAmelCase : Optional[int] = get_down_block( A , num_layers=A , in_channels=A , out_channels=A , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(A ) # mid _UpperCAmelCase : List[str] = get_mid_block( A , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=A , add_downsample=A , ) # up _UpperCAmelCase : Tuple = list(reversed(A ) ) _UpperCAmelCase : Optional[Any] = reversed_block_out_channels[0] if out_block_type is None: _UpperCAmelCase : int = out_channels else: _UpperCAmelCase : List[str] = block_out_channels[0] for i, up_block_type in enumerate(A ): _UpperCAmelCase : Any = output_channel _UpperCAmelCase : Dict = ( reversed_block_out_channels[i + 1] if i < len(A ) - 1 else final_upsample_channels ) _UpperCAmelCase : List[Any] = i == len(A ) - 1 _UpperCAmelCase : str = get_up_block( A , num_layers=A , in_channels=A , out_channels=A , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(A ) _UpperCAmelCase : Tuple = output_channel # out _UpperCAmelCase : Union[str, Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 3_2 ) _UpperCAmelCase : List[Any] = get_out_block( out_block_type=A , num_groups_out=A , embed_dim=block_out_channels[0] , out_channels=A , act_fn=A , fc_dim=block_out_channels[-1] // 4 , ) def snake_case_ ( self : Any , A : torch.FloatTensor , A : Union[torch.Tensor, float, int] , A : bool = True , ): _UpperCAmelCase : Any = timestep if not torch.is_tensor(A ): _UpperCAmelCase : Union[str, Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(A ) and len(timesteps.shape ) == 0: _UpperCAmelCase : Union[str, Any] = timesteps[None].to(sample.device ) _UpperCAmelCase : Union[str, Any] = self.time_proj(A ) if self.config.use_timestep_embedding: _UpperCAmelCase : str = self.time_mlp(A ) else: _UpperCAmelCase : Union[str, Any] = timestep_embed[..., None] _UpperCAmelCase : Any = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _UpperCAmelCase : Dict = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _UpperCAmelCase : Dict = () for downsample_block in self.down_blocks: _UpperCAmelCase , _UpperCAmelCase : Tuple = downsample_block(hidden_states=A , temb=A ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _UpperCAmelCase : Tuple = self.mid_block(A , A ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _UpperCAmelCase : Optional[int] = down_block_res_samples[-1:] _UpperCAmelCase : Any = down_block_res_samples[:-1] _UpperCAmelCase : Union[str, Any] = upsample_block(A , res_hidden_states_tuple=A , temb=A ) # 5. post-process if self.out_block: _UpperCAmelCase : Tuple = self.out_block(A , A ) if not return_dict: return (sample,) return UNetaDOutput(sample=A )
289
"""simple docstring""" import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> int: '''simple docstring''' _UpperCAmelCase : List[str] = tmp_path / "file.csv" _UpperCAmelCase : Union[str, Any] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(SCREAMING_SNAKE_CASE__ , "w" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __snake_case ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase : int = tmp_path / "malformed_file.csv" _UpperCAmelCase : Dict = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(SCREAMING_SNAKE_CASE__ , "w" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __snake_case ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Any = tmp_path / "csv_with_image.csv" _UpperCAmelCase : List[str] = textwrap.dedent( f'\\n image\n {image_file}\n ' ) with open(SCREAMING_SNAKE_CASE__ , "w" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' _UpperCAmelCase : Dict = tmp_path / "csv_with_label.csv" _UpperCAmelCase : Any = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(SCREAMING_SNAKE_CASE__ , "w" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) @pytest.fixture def __snake_case ( SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tmp_path / "csv_with_int_list.csv" _UpperCAmelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(SCREAMING_SNAKE_CASE__ , "w" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ ) def __snake_case ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: '''simple docstring''' _UpperCAmelCase : Optional[Any] = Csv() _UpperCAmelCase : Optional[int] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(SCREAMING_SNAKE_CASE__ , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(SCREAMING_SNAKE_CASE__ ) in record.message for record in caplog.records ) @require_pil def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: _UpperCAmelCase : Union[str, Any] = f.read().splitlines()[1] _UpperCAmelCase : Tuple = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _UpperCAmelCase : Tuple = csv._generate_tables([[csv_file_with_image]] ) _UpperCAmelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _UpperCAmelCase : Optional[Any] = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def __snake_case ( SCREAMING_SNAKE_CASE__ : str ) -> Optional[Any]: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f: _UpperCAmelCase : Tuple = f.read().splitlines()[1:] _UpperCAmelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _UpperCAmelCase : int = csv._generate_tables([[csv_file_with_label]] ) _UpperCAmelCase : Dict = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _UpperCAmelCase : Dict = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(SCREAMING_SNAKE_CASE__ ) for label in labels] def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda SCREAMING_SNAKE_CASE__ : [int(SCREAMING_SNAKE_CASE__ ) for i in x.split()]} ) _UpperCAmelCase : Dict = csv._generate_tables([[csv_file_with_int_list]] ) _UpperCAmelCase : List[Any] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _UpperCAmelCase : Dict = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
289
1
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) lowerCAmelCase_ : Any = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" lowerCAmelCase_ : Dict = str(bin(__UpperCamelCase ) )[2:] # remove the leading "0b" lowerCAmelCase_ : Tuple = max(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(__UpperCamelCase ) , b_binary.zfill(__UpperCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" def UpperCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any ) -> int: """simple docstring""" lowerCAmelCase_ : Tuple = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def UpperCamelCase_ ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] ) -> Dict: """simple docstring""" lowerCAmelCase_ : List[Any] = 0 while b > 0: if b & 1: lowerCAmelCase_ : int = ((res % c) + (a % c)) % c a += a b >>= 1 return res
317
0
def lowerCamelCase_ ( UpperCamelCase__ : str ) -> Optional[int]: """simple docstring""" __lowerCamelCase = 0 # if input_string is "aba" than new_input_string become "a|b|a" __lowerCamelCase = '' __lowerCamelCase = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(lowerCamelCase__ ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring __lowerCamelCase , __lowerCamelCase = 0, 0 # length[i] shows the length of palindromic substring with center i __lowerCamelCase = [1 for i in range(len(lowerCamelCase__ ) )] # for each character in new_string find corresponding palindromic string __lowerCamelCase = 0 for j in range(len(lowerCamelCase__ ) ): __lowerCamelCase = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(lowerCamelCase__ ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 __lowerCamelCase = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: __lowerCamelCase = j - k + 1 # noqa: E741 __lowerCamelCase = j + k - 1 # update max_length and start position if max_length < length[j]: __lowerCamelCase = length[j] __lowerCamelCase = j # create that string __lowerCamelCase = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
469
"""simple docstring""" from __future__ import annotations from statistics import mean def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [0] * no_of_processes lowerCAmelCase__ = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase__ ): lowerCAmelCase__ = burst_time[i] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: lowerCAmelCase__ = [] lowerCAmelCase__ = -1 for i in range(lowerCamelCase__ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: lowerCAmelCase__ = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: lowerCAmelCase__ = i total_time += burst_time[target_process] completed += 1 lowerCAmelCase__ = 0 lowerCAmelCase__ = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = [0] * no_of_processes for i in range(lowerCamelCase__ ): lowerCAmelCase__ = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("[TEST CASE 01]") __lowerCAmelCase : str = 4 __lowerCAmelCase : Dict = [2, 5, 3, 7] __lowerCAmelCase : List[str] = [0, 0, 0, 0] __lowerCAmelCase : Union[str, Any] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __lowerCAmelCase : Union[str, Any] = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time") for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
644
0
import os import re import shutil import sys import tempfile import unittest import black __magic_name__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __magic_name__ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class lowercase ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) UpperCAmelCase = self.transformer_dir shutil.copy( os.path.join(_snake_case , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def snake_case_ ( self , _snake_case , _snake_case , _snake_case , _snake_case=None ) -> Dict: """simple docstring""" UpperCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: UpperCAmelCase = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result UpperCAmelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) UpperCAmelCase = black.format_str(_snake_case , mode=_snake_case ) UpperCAmelCase = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(_snake_case , '''w''' , newline='''\n''' ) as f: f.write(_snake_case ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_snake_case ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_snake_case ) with open(_snake_case , '''r''' ) as f: self.assertTrue(f.read() , _snake_case ) def snake_case_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self ) -> str: """simple docstring""" # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _snake_case , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _snake_case ) , ) # Copy consistency with a really long name UpperCAmelCase = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , f"""{long_class_name}LMPredictionHead""" , re.sub('''Bert''' , _snake_case , _snake_case ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _snake_case , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _snake_case ) , ) def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] UpperCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) UpperCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) UpperCAmelCase , UpperCAmelCase = check_copies.convert_to_localized_md( _snake_case , _snake_case , localized_readme['''format_model_list'''] ) self.assertFalse(_snake_case ) self.assertEqual(_snake_case , _snake_case ) UpperCAmelCase , UpperCAmelCase = check_copies.convert_to_localized_md( _snake_case , _snake_case , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_snake_case ) UpperCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) UpperCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) UpperCAmelCase , UpperCAmelCase = check_copies.convert_to_localized_md( _snake_case , _snake_case , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(_snake_case , _snake_case )
391
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( A__: Optional[int] , A__: List[Any] , A__: str ): '''simple docstring''' UpperCAmelCase = LxmertConfig.from_json_file(A__ ) print(F"""Building PyTorch model from configuration: {config}""" ) UpperCAmelCase = LxmertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A__ , A__ , A__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
391
1
"""simple docstring""" def a_ ( lowercase__ :Any, lowercase__ :Optional[Any] ): __lowerCamelCase = int(lowercase_ ) # Initialize Result __lowerCamelCase = [] # Traverse through all denomination for denomination in reversed(lowercase_ ): # Find denominations while int(lowercase_ ) >= int(lowercase_ ): total_value -= int(lowercase_ ) answer.append(lowercase_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = """0""" if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): __magic_name__ : List[Any] = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"""Denomination {i}: """).strip())) __magic_name__ : Optional[int] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter __magic_name__ : Union[str, Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] __magic_name__ : Optional[int] = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"""Following is minimal change for {value}: """) __magic_name__ : List[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
281
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _snake_case ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=2_24 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=4_00 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , ): '''simple docstring''' lowercase__ : List[str] = size if size is not None else {"""height""": 18, """width""": 18} lowercase__ : int = parent lowercase__ : Union[str, Any] = batch_size lowercase__ : List[str] = num_channels lowercase__ : str = image_size lowercase__ : int = min_resolution lowercase__ : Dict = max_resolution lowercase__ : Tuple = do_resize lowercase__ : Union[str, Any] = size lowercase__ : Any = do_normalize lowercase__ : Tuple = image_mean lowercase__ : str = image_std def lowercase__ ( self): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Optional[Any] = ViTImageProcessor if is_vision_available() else None def lowercase__ ( self): '''simple docstring''' lowercase__ : str = EfficientFormerImageProcessorTester(self) @property def lowercase__ ( self): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_mean""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """image_std""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_normalize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """do_resize""")) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , """size""")) def lowercase__ ( self): '''simple docstring''' pass def lowercase__ ( self): '''simple docstring''' lowercase__ : str = self.image_processing_class(**self.image_processor_dict) # create random PIL images lowercase__ : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray) # Test not batched input lowercase__ : Optional[int] = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Dict = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) def lowercase__ ( self): '''simple docstring''' lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors lowercase__ : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor) # Test not batched input lowercase__ : int = image_processor(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , ) # Test batched lowercase__ : Any = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["""height"""], self.image_proc_tester.size["""width"""], ) , )
12
0
import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" _lowercase : Any = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _lowercase : str = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: a__ = AudioClassificationPipeline(model=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE ) # test with a raw waveform a__ = np.zeros((3_4_0_0_0,) ) a__ = np.zeros((1_4_0_0_0,) ) return audio_classifier, [audioa, audio] def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: a__ , a__ = examples a__ = audio_classifier(SCREAMING_SNAKE_CASE ) # by default a model is initialized with num_labels=2 self.assertEqual( SCREAMING_SNAKE_CASE , [ {'''score''': ANY(SCREAMING_SNAKE_CASE ), '''label''': ANY(SCREAMING_SNAKE_CASE )}, {'''score''': ANY(SCREAMING_SNAKE_CASE ), '''label''': ANY(SCREAMING_SNAKE_CASE )}, ] , ) a__ = audio_classifier(SCREAMING_SNAKE_CASE , top_k=1 ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {'''score''': ANY(SCREAMING_SNAKE_CASE ), '''label''': ANY(SCREAMING_SNAKE_CASE )}, ] , ) self.run_torchaudio(SCREAMING_SNAKE_CASE ) @require_torchaudio def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: import datasets # test with a local file a__ = datasets.load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) a__ = dataset[0]['''audio''']['''array'''] a__ = audio_classifier(SCREAMING_SNAKE_CASE ) self.assertEqual( SCREAMING_SNAKE_CASE , [ {'''score''': ANY(SCREAMING_SNAKE_CASE ), '''label''': ANY(SCREAMING_SNAKE_CASE )}, {'''score''': ANY(SCREAMING_SNAKE_CASE ), '''label''': ANY(SCREAMING_SNAKE_CASE )}, ] , ) @require_torch def _UpperCAmelCase ( self ) -> Tuple: a__ = '''anton-l/wav2vec2-random-tiny-classifier''' a__ = pipeline('''audio-classification''' , model=SCREAMING_SNAKE_CASE ) a__ = np.ones((8_0_0_0,) ) a__ = audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 ) a__ = [ {'''score''': 0.08_42, '''label''': '''no'''}, {'''score''': 0.08_38, '''label''': '''up'''}, {'''score''': 0.08_37, '''label''': '''go'''}, {'''score''': 0.08_34, '''label''': '''right'''}, ] a__ = [ {'''score''': 0.08_45, '''label''': '''stop'''}, {'''score''': 0.08_44, '''label''': '''on'''}, {'''score''': 0.08_41, '''label''': '''right'''}, {'''score''': 0.08_34, '''label''': '''left'''}, ] self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) a__ = {'''array''': np.ones((8_0_0_0,) ), '''sampling_rate''': audio_classifier.feature_extractor.sampling_rate} a__ = audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 ) self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: import datasets a__ = '''superb/wav2vec2-base-superb-ks''' a__ = pipeline('''audio-classification''' , model=SCREAMING_SNAKE_CASE ) a__ = datasets.load_dataset('''anton-l/superb_dummy''' , '''ks''' , split='''test''' ) a__ = np.array(dataset[3]['''speech'''] , dtype=np.floataa ) a__ = audio_classifier(SCREAMING_SNAKE_CASE , top_k=4 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE , decimals=3 ) , [ {'''score''': 0.9_81, '''label''': '''go'''}, {'''score''': 0.0_07, '''label''': '''up'''}, {'''score''': 0.0_06, '''label''': '''_unknown_'''}, {'''score''': 0.0_01, '''label''': '''down'''}, ] , ) @require_tf @unittest.skip('''Audio classification is not implemented for TF''' ) def _UpperCAmelCase ( self ) -> Union[str, Any]: pass
709
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : Union[str, Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys a_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
148
0
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: snake_case__ = None snake_case__ = logging.get_logger(__name__) snake_case__ = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} snake_case__ = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } snake_case__ = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off snake_case__ = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class lowerCAmelCase_ ( _a): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ['input_ids', 'attention_mask'] lowerCamelCase_ = MBartTokenizer lowerCamelCase_ = [] lowerCamelCase_ = [] def __init__( self : str , __A : Any=None , __A : Tuple=None , __A : Dict="<s>" , __A : Any="</s>" , __A : Union[str, Any]="</s>" , __A : str="<s>" , __A : List[Any]="<unk>" , __A : Optional[Any]="<pad>" , __A : Dict="<mask>" , __A : Union[str, Any]=None , __A : Any=None , __A : Dict=None , **__A : str , ) ->List[str]: """simple docstring""" a__ :str = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( vocab_file=__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , src_lang=__A , tgt_lang=__A , additional_special_tokens=__A , **__A , ) a__ :int = vocab_file a__ :Optional[Any] = False if not self.vocab_file else True a__ :Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) a__ :List[Any] = { lang_code: self.convert_tokens_to_ids(__A ) for lang_code in FAIRSEQ_LANGUAGE_CODES } a__ :List[Any] = src_lang if src_lang is not None else "en_XX" a__ :Dict = self.convert_tokens_to_ids(self._src_lang ) a__ :Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self : Optional[Any] ) ->str: """simple docstring""" return self._src_lang @src_lang.setter def _snake_case ( self : Dict , __A : str ) ->None: """simple docstring""" a__ :Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self : List[str] , __A : List[int] , __A : Optional[List[int]] = None ) ->List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self : List[Any] , __A : List[int] , __A : Optional[List[int]] = None ) ->List[int]: """simple docstring""" a__ :Union[str, Any] = [self.sep_token_id] a__ :Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : str , __A : Optional[int] , __A : str , __A : Optional[str] , __A : Optional[str] , **__A : Dict ) ->int: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) a__ :Optional[int] = src_lang a__ :List[str] = self(__A , add_special_tokens=__A , return_tensors=__A , **__A ) a__ :Dict = self.convert_tokens_to_ids(__A ) a__ :Dict = tgt_lang_id return inputs def _snake_case ( self : Union[str, Any] , __A : List[str] , __A : str = "en_XX" , __A : Optional[List[str]] = None , __A : str = "ro_RO" , **__A : Optional[Any] , ) ->BatchEncoding: """simple docstring""" a__ :str = src_lang a__ :str = tgt_lang return super().prepare_seqaseq_batch(__A , __A , **__A ) def _snake_case ( self : List[Any] ) ->Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self : Tuple ) ->Union[str, Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self : List[str] , __A : Optional[Any] ) ->None: """simple docstring""" a__ :int = self.convert_tokens_to_ids(__A ) a__ :List[str] = [] a__ :List[Any] = [self.eos_token_id, self.cur_lang_code] a__ :List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) a__ :Optional[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) a__ :List[str] = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self : int , __A : str ) ->None: """simple docstring""" a__ :str = self.convert_tokens_to_ids(__A ) a__ :List[Any] = [] a__ :Optional[Any] = [self.eos_token_id, self.cur_lang_code] a__ :int = self.convert_ids_to_tokens(self.prefix_tokens ) a__ :Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens ) a__ :str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self : int , __A : str , __A : Optional[str] = None ) ->Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''' ) return a__ :Tuple = os.path.join( __A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
395
def lowerCamelCase__ ( a : list , a : list , a : int , a : int , a : int ) -> int: """simple docstring""" if index == number_of_items: return 0 a__ :str = 0 a__ :Union[str, Any] = 0 a__ :Optional[int] = knapsack(a , a , a , a , index + 1 ) if weights[index] <= max_weight: a__ :str = values[index] + knapsack( a , a , a , max_weight - weights[index] , index + 1 ) return max(a , a ) if __name__ == "__main__": import doctest doctest.testmod()
395
1
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" lowerCamelCase :Optional[int] = [R"""h\.\d+\.attn\.bias""", R"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = 5_02_57 , lowerCAmelCase_ = 10_24 , lowerCAmelCase_ = 7_68 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = 12 , lowerCAmelCase_ = None , lowerCAmelCase_ = "gelu_new" , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 0.1 , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = 0.02 , lowerCAmelCase_ = True , lowerCAmelCase_ = True , lowerCAmelCase_ = False , lowerCAmelCase_ = False , ) -> Tuple: super().__init__() _A = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) _A = prefix_inner_dim _A = prefix_hidden_dim _A = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _A = ( nn.Linear(self.prefix_hidden_dim , lowerCAmelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) _A = GPTaConfig( vocab_size=lowerCAmelCase_ , n_positions=lowerCAmelCase_ , n_embd=lowerCAmelCase_ , n_layer=lowerCAmelCase_ , n_head=lowerCAmelCase_ , n_inner=lowerCAmelCase_ , activation_function=lowerCAmelCase_ , resid_pdrop=lowerCAmelCase_ , embd_pdrop=lowerCAmelCase_ , attn_pdrop=lowerCAmelCase_ , layer_norm_epsilon=lowerCAmelCase_ , initializer_range=lowerCAmelCase_ , scale_attn_weights=lowerCAmelCase_ , use_cache=lowerCAmelCase_ , scale_attn_by_inverse_layer_idx=lowerCAmelCase_ , reorder_and_upcast_attn=lowerCAmelCase_ , ) _A = GPTaLMHeadModel(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , ) -> str: _A = self.transformer.transformer.wte(lowerCAmelCase_ ) _A = self.encode_prefix(lowerCAmelCase_ ) _A = self.decode_prefix(lowerCAmelCase_ ) _A = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _A = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _A = torch.cat((dummy_token, input_ids) , dim=1 ) _A = self.transformer(inputs_embeds=lowerCAmelCase_ , labels=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> torch.Tensor: return torch.zeros(lowerCAmelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: return self.encode_prefix(lowerCAmelCase_ ) @torch.no_grad() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _A = torch.split(lowerCAmelCase_ , 1 , dim=0 ) _A = [] _A = [] for feature in features: _A = self.decode_prefix(feature.to(lowerCAmelCase_ ) ) # back to the clip feature # Only support beam search for now _A , _A = self.generate_beam( input_embeds=lowerCAmelCase_ , device=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _A = torch.stack(lowerCAmelCase_ ) _A = torch.stack(lowerCAmelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def UpperCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_ = 5 , lowerCAmelCase_ = 67 , lowerCAmelCase_ = 1.0 , lowerCAmelCase_ = None , ) -> str: _A = eos_token_id _A = None _A = None _A = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.int ) _A = torch.zeros(lowerCAmelCase_ , device=lowerCAmelCase_ , dtype=torch.bool ) if input_embeds is not None: _A = input_embeds else: _A = self.transformer.transformer.wte(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): _A = self.transformer(inputs_embeds=lowerCAmelCase_ ) _A = outputs.logits _A = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _A = logits.softmax(-1 ).log() if scores is None: _A , _A = logits.topk(lowerCAmelCase_ , -1 ) _A = generated.expand(lowerCAmelCase_ , *generated.shape[1:] ) _A , _A = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _A = next_tokens else: _A = tokens.expand(lowerCAmelCase_ , *tokens.shape[1:] ) _A = torch.cat((tokens, next_tokens) , dim=1 ) else: _A = -float(np.inf ) _A = 0 _A = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _A = scores_sum / seq_lengths[:, None] _A , _A = scores_sum_average.view(-1 ).topk(lowerCAmelCase_ , -1 ) _A = next_tokens // scores_sum.shape[1] _A = seq_lengths[next_tokens_source] _A = next_tokens % scores_sum.shape[1] _A = next_tokens.unsqueeze(1 ) _A = tokens[next_tokens_source] _A = torch.cat((tokens, next_tokens) , dim=1 ) _A = generated[next_tokens_source] _A = scores_sum_average * seq_lengths _A = is_stopped[next_tokens_source] _A = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _A = torch.cat((generated, next_token_embed) , dim=1 ) _A = is_stopped + next_tokens.eq(lowerCAmelCase_ ).squeeze() if is_stopped.all(): break _A = scores / seq_lengths _A = scores.argsort(descending=lowerCAmelCase_ ) # tokens tensors are already padded to max_seq_length _A = [tokens[i] for i in order] _A = torch.stack(lowerCAmelCase_ , dim=0 ) _A = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
717
import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def snake_case ( snake_case__ :int) -> Optional[int]: return EnvironmentCommand() def snake_case ( snake_case__ :Tuple) -> List[str]: return EnvironmentCommand(args.accelerate_config_file) class a ( __lowerCAmelCase ): """simple docstring""" @staticmethod def UpperCAmelCase ( lowerCAmelCase_ ) -> Tuple: _A = parser.add_parser("""env""" ) download_parser.set_defaults(func=lowerCAmelCase_ ) download_parser.add_argument( """--accelerate-config_file""" , default=lowerCAmelCase_ , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self , lowerCAmelCase_ , *lowerCAmelCase_ ) -> None: _A = accelerate_config_file def UpperCAmelCase ( self ) -> Dict: _A = """not installed""" if is_safetensors_available(): import safetensors _A = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors _A = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' _A = """not installed""" _A = _A = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file _A = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(lowerCAmelCase_ ): _A = load_config_from_file(self._accelerate_config_file ).to_dict() _A = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else F'''\t{accelerate_config}''' ) _A = """not installed""" _A = """NA""" if is_torch_available(): import torch _A = torch.__version__ _A = torch.cuda.is_available() _A = """not installed""" _A = """NA""" if is_tf_available(): import tensorflow as tf _A = tf.__version__ try: # deprecated in v2.1 _A = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool _A = bool(tf.config.list_physical_devices("""GPU""" ) ) _A = """not installed""" _A = """not installed""" _A = """not installed""" _A = """NA""" if is_flax_available(): import flax import jax import jaxlib _A = flax.__version__ _A = jax.__version__ _A = jaxlib.__version__ _A = jax.lib.xla_bridge.get_backend().platform _A = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'''{safetensors_version}''', """Accelerate version""": F'''{accelerate_version}''', """Accelerate config""": F'''{accelerate_config_str}''', """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": F'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": F'''{flax_version} ({jax_backend})''', """Jax version""": F'''{jax_version}''', """JaxLib version""": F'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(lowerCAmelCase_ ) ) return info @staticmethod def UpperCAmelCase ( lowerCAmelCase_ ) -> Tuple: return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
83
0
from random import randint, random def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 5 , ): """simple docstring""" lowercase__ = [[-1] * number_of_cells] # Create a highway without any car lowercase__ = 0 lowercase__ = max(SCREAMING_SNAKE_CASE , 0 ) while i < number_of_cells: lowercase__ = ( randint(0 , SCREAMING_SNAKE_CASE ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = 0 lowercase__ = highway_now[car_index + 1 :] for cell in range(len(SCREAMING_SNAKE_CASE ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(SCREAMING_SNAKE_CASE , -1 ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(SCREAMING_SNAKE_CASE ) # Beforce calculations, the highway is empty lowercase__ = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowercase__ = min(highway_now[car_index] + 1 , SCREAMING_SNAKE_CASE ) # Number of empty cell before the next car lowercase__ = get_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - 1 # We can't have the car causing an accident lowercase__ = min(next_highway[car_index] , SCREAMING_SNAKE_CASE ) if random() < probability: # Randomly, a driver will slow down lowercase__ = max(next_highway[car_index] - 1 , 0 ) return next_highway def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = len(highway[0] ) for i in range(SCREAMING_SNAKE_CASE ): lowercase__ = update(highway[i] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): lowercase__ = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowercase__ = (car_index + speed) % number_of_cells # Commit the change of position lowercase__ = speed highway.append(SCREAMING_SNAKE_CASE ) return highway if __name__ == "__main__": import doctest doctest.testmod()
43
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy snake_case__ = logging.get_logger(__name__) class lowerCAmelCase_ ( _a): def __init__( self : Union[str, Any] , __A : int , __A : int , __A : float , **__A : Tuple ) ->Union[str, Any]: """simple docstring""" a__ :Any = feature_size a__ :int = sampling_rate a__ :List[str] = padding_value a__ :str = kwargs.pop("padding_side" , "right" ) a__ :Any = kwargs.pop("return_attention_mask" , __A ) super().__init__(**__A ) def _snake_case ( self : str , __A : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __A : Union[bool, str, PaddingStrategy] = True , __A : Optional[int] = None , __A : bool = False , __A : Optional[int] = None , __A : Optional[bool] = None , __A : Optional[Union[str, TensorType]] = None , ) ->BatchFeature: """simple docstring""" if isinstance(__A , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): a__ :Dict = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( "You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`" F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) a__ :int = processed_features[self.model_input_names[0]] a__ :str = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__A ) == 0: if return_attention_mask: a__ :Optional[int] = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch a__ :int = required_input[0] if isinstance(__A , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. a__ :Any = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__A ): a__ :Tuple = required_input[index][0] if return_tensors is None: if is_tf_tensor(__A ): a__ :Optional[Any] = "tf" elif is_torch_tensor(__A ): a__ :Optional[Any] = "pt" elif isinstance(__A , (int, float, list, tuple, np.ndarray) ): a__ :Union[str, Any] = "np" else: raise ValueError( F'''type of {first_element} unknown: {type(__A )}. ''' "Should be one of a python, numpy, pytorch or tensorflow object." ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): a__ :Optional[Any] = to_numpy(__A ) else: a__ :Union[str, Any] = [to_numpy(__A ) for v in value] # Convert padding_strategy in PaddingStrategy a__ :Optional[int] = self._get_padding_strategies(padding=__A , max_length=__A ) a__ :int = processed_features[self.model_input_names[0]] a__ :Union[str, Any] = len(__A ) if not all(len(__A ) == batch_size for v in processed_features.values() ): raise ValueError("Some items in the output dictionary have a different batch size than others." ) a__ :int = [] for i in range(__A ): a__ :Optional[int] = {k: v[i] for k, v in processed_features.items()} # truncation a__ :Tuple = self._truncate( __A , max_length=__A , pad_to_multiple_of=__A , truncation=__A , ) truncated_inputs.append(__A ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length a__ :str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) a__ :str = PaddingStrategy.MAX_LENGTH a__ :str = {} for i in range(__A ): # padding a__ :Optional[int] = self._pad( truncated_inputs[i] , max_length=__A , padding_strategy=__A , pad_to_multiple_of=__A , return_attention_mask=__A , ) for key, value in outputs.items(): if key not in batch_outputs: a__ :Optional[Any] = [] if value.dtype is np.dtype(np.floataa ): a__ :List[Any] = value.astype(np.floataa ) batch_outputs[key].append(__A ) return BatchFeature(__A , tensor_type=__A ) def _snake_case ( self : List[Any] , __A : Union[Dict[str, np.ndarray], BatchFeature] , __A : Optional[int] = None , __A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __A : Optional[int] = None , __A : Optional[bool] = None , ) ->dict: """simple docstring""" a__ :Union[str, Any] = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: a__ :List[Any] = len(__A ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ :List[str] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ :int = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__A ) < max_length if return_attention_mask and "attention_mask" not in processed_features: a__ :Dict = np.ones(len(__A ) , dtype=np.intaa ) if needs_to_be_padded: a__ :List[str] = max_length - len(__A ) if self.padding_side == "right": if return_attention_mask: a__ :List[Any] = np.pad( processed_features["attention_mask"] , (0, difference) ) a__ :List[Any] = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) a__ :Any = np.pad( __A , __A , "constant" , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: a__ :Dict = np.pad( processed_features["attention_mask"] , (difference, 0) ) a__ :List[str] = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) a__ :List[str] = np.pad( __A , __A , "constant" , constant_values=self.padding_value ) else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return processed_features def _snake_case ( self : Tuple , __A : Union[Dict[str, np.ndarray], BatchFeature] , __A : Optional[int] = None , __A : Optional[int] = None , __A : Optional[bool] = None , ) ->Optional[Any]: """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." ) a__ :str = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): a__ :Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of a__ :List[Any] = len(__A ) > max_length if needs_to_be_truncated: a__ :Optional[Any] = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: a__ :List[Any] = processed_features["attention_mask"][:max_length] return processed_features def _snake_case ( self : Union[str, Any] , __A : int=False , __A : Dict=None ) ->Optional[int]: """simple docstring""" if padding is not False: if padding is True: a__ :Optional[Any] = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__A , __A ): a__ :Union[str, Any] = PaddingStrategy(__A ) elif isinstance(__A , __A ): a__ :Union[str, Any] = padding else: a__ :Optional[Any] = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( "Asking to pad but the feature_extractor does not have a padding value. Please select a value to use" " as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." ) return padding_strategy
395
0
'''simple docstring''' lowercase__ = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
707
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : str , **lowercase_ : Union[str, Any] ) -> None: warnings.warn( 'The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use LayoutLMv2ImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
695
0
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowercase_ : """simple docstring""" def __init__( self : Any, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Tuple=13, UpperCamelCase__ : Optional[int]=10, UpperCamelCase__ : Union[str, Any]=3, UpperCamelCase__ : Optional[Any]=2, UpperCamelCase__ : Optional[int]=2, UpperCamelCase__ : int=2, UpperCamelCase__ : Optional[Any]=True, UpperCamelCase__ : int=True, UpperCamelCase__ : Union[str, Any]=32, UpperCamelCase__ : Dict=5, UpperCamelCase__ : Union[str, Any]=4, UpperCamelCase__ : int=37, UpperCamelCase__ : List[Any]="gelu", UpperCamelCase__ : List[str]=0.1, UpperCamelCase__ : int=0.1, UpperCamelCase__ : Union[str, Any]=10, UpperCamelCase__ : Dict=0.02, UpperCamelCase__ : Any=0.9, UpperCamelCase__ : Dict=None, ) -> Dict: _A = parent _A = batch_size _A = image_size _A = num_channels _A = patch_size _A = tubelet_size _A = num_frames _A = is_training _A = use_labels _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = type_sequence_label_size _A = initializer_range _A = mask_ratio _A = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _A = (image_size // patch_size) ** 2 _A = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _A = int(mask_ratio * self.seq_length ) def __UpperCAmelCase ( self : List[str] ) -> int: _A = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size], self.type_sequence_label_size ) _A = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : Tuple ) -> List[str]: return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any], UpperCamelCase__ : str ) -> str: _A = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[int], UpperCamelCase__ : str, UpperCamelCase__ : List[Any], UpperCamelCase__ : Any ) -> Union[str, Any]: _A = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _A = torch.ones((self.num_masks,) ) _A = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _A = mask.expand(self.batch_size, -1 ).bool() _A = model(UpperCamelCase__, UpperCamelCase__ ) # model only returns predictions for masked patches _A = mask.sum().item() _A = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def __UpperCAmelCase ( self : str ) -> Tuple: _A = self.prepare_config_and_inputs() _A , _A , _A = config_and_inputs _A = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __lowerCAmelCase = ( {"feature-extraction": VideoMAEModel, "video-classification": VideoMAEForVideoClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def __UpperCAmelCase ( self : Tuple ) -> Any: _A = VideoMAEModelTester(self ) _A = ConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__, hidden_size=37 ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], UpperCamelCase__ : str=False ) -> List[Any]: _A = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _A = torch.ones((self.model_tester.num_masks,) ) _A = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _A = mask.expand(self.model_tester.batch_size, -1 ).bool() _A = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: _A = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=UpperCamelCase__ ) return inputs_dict def __UpperCAmelCase ( self : Optional[int] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def __UpperCAmelCase ( self : List[Any] ) -> Tuple: pass def __UpperCAmelCase ( self : str ) -> str: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) _A = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__, nn.Linear ) ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> int: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> int: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def __UpperCAmelCase ( self : str ) -> Optional[Any]: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: if not self.has_attentions: pass else: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: _A = self.model_tester.seq_length - self.model_tester.num_masks _A = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _A = True _A = False _A = True _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) _A = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A = True _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) _A = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) _A = len(UpperCamelCase__ ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) self.assertEqual(out_len + 1, len(UpperCamelCase__ ) ) _A = outputs.attentions self.assertEqual(len(UpperCamelCase__ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def __UpperCAmelCase ( self : int ) -> Dict: def check_hidden_states_output(UpperCamelCase__ : str, UpperCamelCase__ : Optional[int], UpperCamelCase__ : str ): _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) _A = outputs.hidden_states _A = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) _A = self.model_tester.seq_length - self.model_tester.num_masks _A = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: pass def _SCREAMING_SNAKE_CASE ( ): _A = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _A = np.load(__snake_case ) return list(__snake_case ) @require_torch @require_vision class lowercase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : Dict ) -> int: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Any ) -> Optional[int]: _A = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( UpperCamelCase__ ) _A = self.default_image_processor _A = prepare_video() _A = image_processor(UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): _A = model(**UpperCamelCase__ ) # verify the logits _A = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) _A = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCamelCase__, atol=1e-4 ) ) @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: _A = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(UpperCamelCase__ ) _A = self.default_image_processor _A = prepare_video() _A = image_processor(UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask _A = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos', filename='bool_masked_pos.pt' ) _A = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): _A = model(**UpperCamelCase__ ) # verify the logits _A = torch.Size([1, 14_08, 15_36] ) _A = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]], device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], UpperCamelCase__, atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _A = torch.tensor([0.5_142], device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss, UpperCamelCase__, atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _A = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short', norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): _A = model(**UpperCamelCase__ ) _A = torch.tensor(torch.tensor([0.6_469] ), device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss, UpperCamelCase__, atol=1e-4 ) )
107
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case : int | str ): _A = str(__snake_case ) return n == n[::-1] def _SCREAMING_SNAKE_CASE ( __snake_case : int = 1_0_0_0_0_0_0 ): _A = 0 for i in range(1 , __snake_case ): if is_palindrome(__snake_case ) and is_palindrome(bin(__snake_case ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
107
1
'''simple docstring''' import os import sys import unittest A__ : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path A__ : Dict = os.path.join(git_repo_path, '''src''', '''diffusers''') class snake_case__ ( unittest.TestCase ): def A_ ( self : List[str] ) -> Tuple: '''simple docstring''' __snake_case : str = find_backend(' if not is_torch_available():' ) self.assertEqual(__a , 'torch' ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __snake_case : Optional[int] = find_backend(' if not (is_torch_available() and is_transformers_available()):' ) self.assertEqual(__a , 'torch_and_transformers' ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __snake_case : Dict = find_backend( ' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' ) self.assertEqual(__a , 'torch_and_transformers_and_onnx' ) def A_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' __snake_case : int = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , __a ) self.assertIn('torch_and_transformers' , __a ) self.assertIn('flax_and_transformers' , __a ) self.assertIn('torch_and_transformers_and_onnx' , __a ) # Likewise, we can't assert on the exact content of a key self.assertIn('UNet2DModel' , objects['torch'] ) self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] ) self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] ) self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] ) self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] ) self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] ) def A_ ( self : Optional[int] ) -> Any: '''simple docstring''' __snake_case : Dict = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(__a , '\nCONSTANT = None\n' ) __snake_case : Any = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( __a , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) __snake_case : Any = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n' __snake_case : Dict = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(__a , __a ) def A_ ( self : Tuple ) -> List[Any]: '''simple docstring''' __snake_case : Dict = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n' __snake_case : Tuple = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , __a )
124
'''simple docstring''' import argparse from collections import defaultdict import yaml A__ : List[str] = '''docs/source/en/_toctree.yml''' def a_ ( _UpperCAmelCase : List[Any] ) -> List[str]: __snake_case : str = defaultdict(_UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 __snake_case : Any = [key for key, value in counts.items() if value > 1] __snake_case : Dict = [] for duplicate_key in duplicates: __snake_case : Optional[Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(_UpperCAmelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(_UpperCAmelCase ,key=lambda _UpperCAmelCase : s["title"].lower() ) def a_ ( _UpperCAmelCase : Tuple=False ) -> List[str]: with open(_UpperCAmelCase ,encoding='utf-8' ) as f: __snake_case : int = yaml.safe_load(f.read() ) # Get to the API doc __snake_case : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case : Tuple = content[api_idx]['sections'] # Then to the model doc __snake_case : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __snake_case : Any = api_doc[model_idx]['sections'] __snake_case : int = [(idx, section) for idx, section in enumerate(_UpperCAmelCase ) if 'sections' in section] __snake_case : Tuple = False for idx, modality_doc in modalities_docs: __snake_case : Dict = modality_doc['sections'] __snake_case : Union[str, Any] = clean_model_doc_toc(_UpperCAmelCase ) if old_modality_doc != new_modality_doc: __snake_case : Optional[Any] = True if overwrite: __snake_case : Any = new_modality_doc if diff: if overwrite: __snake_case : int = model_doc __snake_case : List[Any] = api_doc with open(_UpperCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(_UpperCAmelCase ,allow_unicode=_UpperCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A__ : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
124
1
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets SCREAMING_SNAKE_CASE__ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" SCREAMING_SNAKE_CASE__ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" SCREAMING_SNAKE_CASE__ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def lowerCamelCase ( _snake_case : List[Any] ): '''simple docstring''' def remove_articles(_snake_case : List[Any] ): lowercase__ = re.compile(R"\b(a|an|the)\b" ,re.UNICODE ) return re.sub(_snake_case ," " ,_snake_case ) def white_space_fix(_snake_case : Dict ): return " ".join(text.split() ) def remove_punc(_snake_case : Tuple ): lowercase__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_snake_case : Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_snake_case ) ) ) ) def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : List[Any] ): '''simple docstring''' return int(normalize_answer(_snake_case ) == normalize_answer(_snake_case ) ) def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : Optional[int] ): '''simple docstring''' lowercase__ = [any(compute_exact(_snake_case ,_snake_case ) for ref in refs ) for pred, refs in zip(_snake_case ,_snake_case )] return (sum(_snake_case ) / len(_snake_case )) * 100 def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : Tuple ,_snake_case : Union[str, Any] ,_snake_case : str ): '''simple docstring''' lowercase__ = [rgram for rgrams in rgramslist for rgram in rgrams] lowercase__ = Counter(_snake_case ) lowercase__ = Counter(_snake_case ) lowercase__ = Counter() for sgram, scount in sgramcounter.items(): lowercase__ = scount * numref lowercase__ = Counter(_snake_case ) lowercase__ = Counter() for cgram, ccount in cgramcounter.items(): lowercase__ = ccount * numref # KEEP lowercase__ = sgramcounter_rep & cgramcounter_rep lowercase__ = keepgramcounter_rep & rgramcounter lowercase__ = sgramcounter_rep & rgramcounter lowercase__ = 0 lowercase__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase__ = 1 lowercase__ = 1 if len(_snake_case ) > 0: lowercase__ = keeptmpscorea / len(_snake_case ) if len(_snake_case ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowercase__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowercase__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowercase__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowercase__ = sgramcounter_rep - cgramcounter_rep lowercase__ = delgramcounter_rep - rgramcounter lowercase__ = sgramcounter_rep - rgramcounter lowercase__ = 0 lowercase__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase__ = 1 if len(_snake_case ) > 0: lowercase__ = deltmpscorea / len(_snake_case ) # ADDITION lowercase__ = set(_snake_case ) - set(_snake_case ) lowercase__ = set(_snake_case ) & set(_snake_case ) lowercase__ = set(_snake_case ) - set(_snake_case ) lowercase__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowercase__ = 1 lowercase__ = 1 if len(_snake_case ) > 0: lowercase__ = addtmpscore / len(_snake_case ) if len(_snake_case ) > 0: lowercase__ = addtmpscore / len(_snake_case ) lowercase__ = 0 if addscore_precision > 0 or addscore_recall > 0: lowercase__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase ( _snake_case : str ,_snake_case : Optional[Any] ,_snake_case : Dict ): '''simple docstring''' lowercase__ = len(_snake_case ) lowercase__ = ssent.split(" " ) lowercase__ = csent.split(" " ) lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] lowercase__ = [] for rsent in rsents: lowercase__ = rsent.split(" " ) lowercase__ = [] lowercase__ = [] lowercase__ = [] ragramslist.append(_snake_case ) for i in range(0 ,len(_snake_case ) - 1 ): if i < len(_snake_case ) - 1: lowercase__ = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_snake_case ) if i < len(_snake_case ) - 2: lowercase__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_snake_case ) if i < len(_snake_case ) - 3: lowercase__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_snake_case ) ragramslist.append(_snake_case ) ragramslist.append(_snake_case ) ragramslist.append(_snake_case ) for i in range(0 ,len(_snake_case ) - 1 ): if i < len(_snake_case ) - 1: lowercase__ = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_snake_case ) if i < len(_snake_case ) - 2: lowercase__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_snake_case ) if i < len(_snake_case ) - 3: lowercase__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_snake_case ) for i in range(0 ,len(_snake_case ) - 1 ): if i < len(_snake_case ) - 1: lowercase__ = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_snake_case ) if i < len(_snake_case ) - 2: lowercase__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_snake_case ) if i < len(_snake_case ) - 3: lowercase__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_snake_case ) ((lowercase__) , (lowercase__) , (lowercase__)) = SARIngram(_snake_case ,_snake_case ,_snake_case ,_snake_case ) ((lowercase__) , (lowercase__) , (lowercase__)) = SARIngram(_snake_case ,_snake_case ,_snake_case ,_snake_case ) ((lowercase__) , (lowercase__) , (lowercase__)) = SARIngram(_snake_case ,_snake_case ,_snake_case ,_snake_case ) ((lowercase__) , (lowercase__) , (lowercase__)) = SARIngram(_snake_case ,_snake_case ,_snake_case ,_snake_case ) lowercase__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowercase__ = sum([delascore, delascore, delascore, delascore] ) / 4 lowercase__ = sum([addascore, addascore, addascore, addascore] ) / 4 lowercase__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : bool = True ,_snake_case : str = "13a" ,_snake_case : bool = True ): '''simple docstring''' if lowercase: lowercase__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowercase__ = sacrebleu.metrics.bleu._get_tokenizer(_snake_case )()(_snake_case ) else: lowercase__ = sacrebleu.TOKENIZERS[tokenizer]()(_snake_case ) elif tokenizer == "moses": lowercase__ = sacremoses.MosesTokenizer().tokenize(_snake_case ,return_str=_snake_case ,escape=_snake_case ) elif tokenizer == "penn": lowercase__ = sacremoses.MosesTokenizer().penn_tokenize(_snake_case ,return_str=_snake_case ) else: lowercase__ = sentence if not return_str: lowercase__ = normalized_sent.split() return normalized_sent def lowerCamelCase ( _snake_case : List[Any] ,_snake_case : Optional[Any] ,_snake_case : List[Any] ): '''simple docstring''' if not (len(_snake_case ) == len(_snake_case ) == len(_snake_case )): raise ValueError("Sources length must match predictions and references lengths." ) lowercase__ = 0 for src, pred, refs in zip(_snake_case ,_snake_case ,_snake_case ): sari_score += SARIsent(normalize(_snake_case ) ,normalize(_snake_case ) ,[normalize(_snake_case ) for sent in refs] ) lowercase__ = sari_score / len(_snake_case ) return 100 * sari_score def lowerCamelCase ( _snake_case : List[Any] ,_snake_case : Union[str, Any] ,_snake_case : Optional[Any]="exp" ,_snake_case : int=None ,_snake_case : Any=False ,_snake_case : List[str]=False ,_snake_case : int=False ,): '''simple docstring''' lowercase__ = len(references[0] ) if any(len(_snake_case ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowercase__ = [[refs[i] for refs in references] for i in range(_snake_case )] lowercase__ = sacrebleu.corpus_bleu( _snake_case ,_snake_case ,smooth_method=_snake_case ,smooth_value=_snake_case ,force=_snake_case ,lowercase=_snake_case ,use_effective_order=_snake_case ,) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case (datasets.Metric ): def _a ( self ) -> Tuple: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Value("string" ,id="sequence" ), "references": datasets.Sequence(datasets.Value("string" ,id="sequence" ) ,id="references" ), } ) ,codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] ,reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] ,) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> int: lowercase__ = {} result.update({"sari": compute_sari(sources=UpperCAmelCase_ ,predictions=UpperCAmelCase_ ,references=UpperCAmelCase_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=UpperCAmelCase_ ,references=UpperCAmelCase_ )} ) result.update({"exact": compute_em(predictions=UpperCAmelCase_ ,references=UpperCAmelCase_ )} ) return result
267
'''simple docstring''' from __future__ import annotations def lowerCamelCase ( _snake_case : int ,_snake_case : int ): '''simple docstring''' if b == 0: return (1, 0) ((lowercase__) , (lowercase__)) = extended_euclid(_snake_case ,a % b ) lowercase__ = a // b return (y, x - k * y) def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : int ,_snake_case : int ): '''simple docstring''' ((lowercase__) , (lowercase__)) = extended_euclid(_snake_case ,_snake_case ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m def lowerCamelCase ( _snake_case : int ,_snake_case : int ): '''simple docstring''' ((lowercase__) , (lowercase__)) = extended_euclid(_snake_case ,_snake_case ) if b < 0: lowercase__ = (b % n + n) % n return b def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : int ,_snake_case : int ): '''simple docstring''' lowercase__ , lowercase__ = invert_modulo(_snake_case ,_snake_case ), invert_modulo(_snake_case ,_snake_case ) lowercase__ = na * na lowercase__ = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
267
1
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DebertaTokenizer __SCREAMING_SNAKE_CASE : Any = True __SCREAMING_SNAKE_CASE : Optional[Any] = DebertaTokenizerFast def a ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] snake_case_ = dict(zip(snake_case , range(len(snake_case ) ) ) ) snake_case_ = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case_ = {'unk_token': '[UNK]'} snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) snake_case_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case ) ) def a ( self , **snake_case ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def a ( self , snake_case ): snake_case_ = 'lower newer' snake_case_ = 'lower newer' return input_text, output_text def a ( self ): snake_case_ = self.get_tokenizer() snake_case_ = 'lower newer' snake_case_ = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] snake_case_ = tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case , snake_case ) snake_case_ = tokens + [tokenizer.unk_token] snake_case_ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) , snake_case ) def a ( self ): snake_case_ = self.get_tokenizer() snake_case_ = tokenizer('Hello' , 'World' ) snake_case_ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] , snake_case ) @slow def a ( self ): snake_case_ = self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) snake_case_ = tokenizer.encode('sequence builders' , add_special_tokens=snake_case ) snake_case_ = tokenizer.encode('multi-sequence build' , add_special_tokens=snake_case ) snake_case_ = tokenizer.encode( 'sequence builders' , add_special_tokens=snake_case , add_prefix_space=snake_case ) snake_case_ = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=snake_case , add_prefix_space=snake_case ) snake_case_ = tokenizer.build_inputs_with_special_tokens(snake_case ) snake_case_ = tokenizer.build_inputs_with_special_tokens(snake_case , snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def a ( self ): snake_case_ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: snake_case_ = tokenizer_class.from_pretrained('microsoft/deberta-base' ) snake_case_ = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] snake_case_ = tokenizer(snake_case , padding=snake_case ) snake_case_ = [tokenizer.decode(snake_case , skip_special_tokens=snake_case ) for seq in encoding['input_ids']] # fmt: off snake_case_ = { 'input_ids': [ [1, 2118, 1_1126, 565, 35, 83, 2_5191, 163, 1_8854, 13, 1_2156, 12, 1_6101, 2_5376, 1_3807, 9, 2_2205, 2_7893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 1_1126, 565, 2_4536, 80, 4_3797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 3_3183, 1_1303, 4_3797, 1938, 4, 870, 2_4165, 2_9105, 5, 739, 3_2644, 3_3183, 1_1303, 3_6173, 88, 80, 650, 7821, 4_5940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 1_3171, 31, 5, 1836, 9, 3_2644, 3_3183, 1_1303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on snake_case_ = [ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data , snake_case ) for expected, decoded in zip(snake_case , snake_case ): self.assertEqual(snake_case , snake_case )
108
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _UpperCAmelCase : Dict = logging.get_logger(__name__) class lowercase ( lowercase_ ): __SCREAMING_SNAKE_CASE : Any = '''upernet''' def __init__( self , snake_case=None , snake_case=512 , snake_case=0.02 , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=384 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ): super().__init__(**snake_case ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) snake_case_ = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(snake_case , snake_case ): snake_case_ = backbone_config.get('model_type' ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(snake_case ) snake_case_ = backbone_config snake_case_ = hidden_size snake_case_ = initializer_range snake_case_ = pool_scales snake_case_ = use_auxiliary_head snake_case_ = auxiliary_loss_weight snake_case_ = auxiliary_in_channels snake_case_ = auxiliary_channels snake_case_ = auxiliary_num_convs snake_case_ = auxiliary_concat_input snake_case_ = loss_ignore_index def a ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output
108
1
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _UpperCAmelCase ( __lowerCamelCase : ndarray ) -> float: return np.dot(__lowerCamelCase , __lowerCamelCase ) class lowerCAmelCase__ : def __init__( self : str , *, _lowerCamelCase : float = np.inf , _lowerCamelCase : str = "linear" , _lowerCamelCase : float = 0.0 , ): _snake_case = regularization _snake_case = gamma if kernel == "linear": _snake_case = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) _snake_case = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: _snake_case = f'''Unknown kernel: {kernel}''' raise ValueError(_lowerCamelCase ) def lowercase ( self : List[str] , _lowerCamelCase : ndarray , _lowerCamelCase : ndarray ): return np.dot(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Dict , _lowerCamelCase : ndarray , _lowerCamelCase : ndarray ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowercase ( self : Union[str, Any] , _lowerCamelCase : list[ndarray] , _lowerCamelCase : ndarray ): _snake_case = observations _snake_case = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((_snake_case) , ) = np.shape(_lowerCamelCase ) def to_minimize(_lowerCamelCase : ndarray ) -> float: _snake_case = 0 ((_snake_case) , ) = np.shape(_lowerCamelCase ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowerCamelCase ) _snake_case = LinearConstraint(_lowerCamelCase , 0 , 0 ) _snake_case = Bounds(0 , self.regularization ) _snake_case = minimize( _lowerCamelCase , np.ones(_lowerCamelCase ) , bounds=_lowerCamelCase , constraints=[ly_contraint] ).x _snake_case = l_star # calculating mean offset of separation plane to points _snake_case = 0 for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) _snake_case = s / n def lowercase ( self : List[Any] , _lowerCamelCase : ndarray ): _snake_case = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowerCamelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
224
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : int ): _snake_case = tempfile.mkdtemp() _snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _snake_case = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _snake_case = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : List[Any] , **_lowerCamelCase : Tuple ): return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : str , **_lowerCamelCase : Tuple ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : Dict , **_lowerCamelCase : Tuple ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : str ): shutil.rmtree(self.tmpdirname ) def lowercase ( self : List[Any] ): _snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _snake_case = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : Tuple ): _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = self.get_image_processor() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def lowercase ( self : int ): _snake_case = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _snake_case = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) _snake_case = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = self.prepare_image_inputs() _snake_case = image_processor(_lowerCamelCase , return_tensors='''np''' ) _snake_case = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self : List[str] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = processor(text=_lowerCamelCase ) _snake_case = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Any ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def lowercase ( self : Optional[Any] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case = processor.batch_decode(_lowerCamelCase ) _snake_case = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Optional[Any] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
224
1
import qiskit def _UpperCAmelCase ( UpperCAmelCase : int , UpperCAmelCase : int ): """simple docstring""" __lowerCamelCase : Dict = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register __lowerCamelCase : int = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __lowerCamelCase : Union[str, Any] = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1_000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": print(F'''Total count for various states are: {single_qubit_measure(1, 1)}''')
703
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class _UpperCamelCase ( A ): '''simple docstring''' def __init__( self : str , _lowerCamelCase : str = "▁" , _lowerCamelCase : bool = True , _lowerCamelCase : Union[str, AddedToken] = "<unk>" , _lowerCamelCase : Union[str, AddedToken] = "</s>" , _lowerCamelCase : Union[str, AddedToken] = "<pad>" , ): '''simple docstring''' __lowerCamelCase : Tuple = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } __lowerCamelCase : Optional[Any] = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): __lowerCamelCase : Tuple = token_dict["""token"""] __lowerCamelCase : Optional[int] = Tokenizer(Unigram() ) __lowerCamelCase : str = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) __lowerCamelCase : int = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_lowerCamelCase , add_prefix_space=_lowerCamelCase ), pre_tokenizers.Digits(individual_digits=_lowerCamelCase ), pre_tokenizers.Punctuation(), ] ) __lowerCamelCase : Tuple = decoders.Metaspace(replacement=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) __lowerCamelCase : Tuple = TemplateProcessing( single=F"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) __lowerCamelCase : Tuple = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(_lowerCamelCase , _lowerCamelCase ) def _snake_case ( self : Dict , _lowerCamelCase : Union[str, List[str]] , _lowerCamelCase : int = 8_0_0_0 , _lowerCamelCase : bool = True , ): '''simple docstring''' __lowerCamelCase : Optional[Any] = trainers.UnigramTrainer( vocab_size=_lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCamelCase , ) if isinstance(_lowerCamelCase , _lowerCamelCase ): __lowerCamelCase : Optional[int] = [files] self._tokenizer.train(_lowerCamelCase , trainer=_lowerCamelCase ) self.add_unk_id() def _snake_case ( self : List[Any] , _lowerCamelCase : Union[Iterator[str], Iterator[Iterator[str]]] , _lowerCamelCase : int = 8_0_0_0 , _lowerCamelCase : bool = True , ): '''simple docstring''' __lowerCamelCase : Any = trainers.UnigramTrainer( vocab_size=_lowerCamelCase , special_tokens=self.special_tokens_list , show_progress=_lowerCamelCase , ) self._tokenizer.train_from_iterator(_lowerCamelCase , trainer=_lowerCamelCase ) self.add_unk_id() def _snake_case ( self : List[str] ): '''simple docstring''' __lowerCamelCase : List[str] = json.loads(self._tokenizer.to_str() ) __lowerCamelCase : Optional[int] = self.special_tokens["""unk"""]["""id"""] __lowerCamelCase : List[str] = Tokenizer.from_str(json.dumps(_lowerCamelCase ) )
458
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
432
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = JukeboxTokenizer UpperCAmelCase__ = { '''artist''': '''Zac Brown Band''', '''genres''': '''Country''', '''lyrics''': '''I met a traveller from an antique land, Who said "Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away ''', } @require_torch def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' import torch A__ = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''') A__ = tokenizer(**self.metas)['''input_ids'''] # fmt: off A__ = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]]), torch.tensor([[0, 0, 0, 1_069, 11]]), torch.tensor([[0, 0, 0, 1_069, 11]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2])) @require_torch def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[int]: '''simple docstring''' import torch A__ = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''') A__ = tokenizer(**self.metas)['''input_ids'''] # fmt: off A__ = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]]), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]]), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]]), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0])) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1])) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2]))
87
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/config.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/config.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/config.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/config.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/config.json''', } class A_ ( _a ): lowerCAmelCase__ = 't5' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = {'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self: List[Any] ,__lowerCAmelCase: str=32_128 ,__lowerCAmelCase: Optional[int]=512 ,__lowerCAmelCase: Union[str, Any]=64 ,__lowerCAmelCase: Dict=2_048 ,__lowerCAmelCase: str=6 ,__lowerCAmelCase: Tuple=None ,__lowerCAmelCase: Any=8 ,__lowerCAmelCase: Union[str, Any]=32 ,__lowerCAmelCase: str=128 ,__lowerCAmelCase: List[Any]=0.1 ,__lowerCAmelCase: Optional[int]=1e-6 ,__lowerCAmelCase: List[Any]=1.0 ,__lowerCAmelCase: Any="relu" ,__lowerCAmelCase: Tuple=True ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: Optional[int]=1 ,**__lowerCAmelCase: Optional[Any] ,): '''simple docstring''' _lowerCamelCase : str = vocab_size _lowerCamelCase : Any = d_model _lowerCamelCase : List[str] = d_kv _lowerCamelCase : Dict = d_ff _lowerCamelCase : Tuple = num_layers _lowerCamelCase : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowerCamelCase : str = num_heads _lowerCamelCase : int = relative_attention_num_buckets _lowerCamelCase : Any = relative_attention_max_distance _lowerCamelCase : Union[str, Any] = dropout_rate _lowerCamelCase : Tuple = layer_norm_epsilon _lowerCamelCase : int = initializer_factor _lowerCamelCase : int = feed_forward_proj _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Tuple = self.feed_forward_proj.split("-" ) _lowerCamelCase : Union[str, Any] = act_info[-1] _lowerCamelCase : int = act_info[0] == "gated" if len(__a ) > 1 and act_info[0] != "gated" or len(__a ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "\'gated-gelu\' or \'relu\'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowerCamelCase : int = "gelu_new" super().__init__( pad_token_id=__a ,eos_token_id=__a ,is_encoder_decoder=__a ,**__a ,) class A_ ( _a ): @property def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: _lowerCamelCase : Optional[Any] = "past_encoder_sequence + sequence" _lowerCamelCase : List[str] = {0: "batch"} _lowerCamelCase : Optional[int] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: _lowerCamelCase : List[str] = {0: "batch", 1: "decoder_sequence"} _lowerCamelCase : List[str] = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__a ,direction="inputs" ) return common_inputs @property def _lowercase ( self: Optional[int] ): '''simple docstring''' return 13
712
"""simple docstring""" import math def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> float: '''simple docstring''' return math.pow(_lowerCamelCase , 2 ) - a def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' return 2 * x def lowerCamelCase_( _lowerCamelCase ) -> float: '''simple docstring''' _lowerCamelCase : Tuple = 2.0 while start <= a: _lowerCamelCase : int = math.pow(_lowerCamelCase , 2 ) return start def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase = 9999 , _lowerCamelCase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: '''simple docstring''' if a < 0: raise ValueError("math domain error" ) _lowerCamelCase : Any = get_initial_point(_lowerCamelCase ) for _ in range(_lowerCamelCase ): _lowerCamelCase : List[str] = value _lowerCamelCase : Tuple = value - fx(_lowerCamelCase , _lowerCamelCase ) / fx_derivative(_lowerCamelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
386
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES UpperCamelCase_ : Any = logging.get_logger(__name__) UpperCamelCase_ : Tuple = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) UpperCamelCase_ : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) UpperCamelCase_ : Dict = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) UpperCamelCase_ : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) UpperCamelCase_ : List[Any] = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) UpperCamelCase_ : int = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) UpperCamelCase_ : Optional[int] = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) UpperCamelCase_ : str = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) UpperCamelCase_ : int = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) UpperCamelCase_ : Dict = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) UpperCamelCase_ : int = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) UpperCamelCase_ : str = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) UpperCamelCase_ : int = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) UpperCamelCase_ : int = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) UpperCamelCase_ : Union[str, Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) UpperCamelCase_ : Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) UpperCamelCase_ : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) UpperCamelCase_ : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) UpperCamelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase_ : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) UpperCamelCase_ : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) UpperCamelCase_ : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase_ : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) UpperCamelCase_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) UpperCamelCase_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) UpperCamelCase_ : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) UpperCamelCase_ : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) UpperCamelCase_ : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = FLAX_MODEL_MAPPING UpperCamelCase_ : str = auto_class_update(FlaxAutoModel) class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING UpperCamelCase_ : Optional[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : List[str] = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase_ : str = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : Dict = FLAX_MODEL_FOR_MASKED_LM_MAPPING UpperCamelCase_ : List[Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING UpperCamelCase_ : List[str] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : str = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING UpperCamelCase_ : List[str] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : str = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING UpperCamelCase_ : Tuple = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : List[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : Optional[Any] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING UpperCamelCase_ : Any = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : List[str] = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING UpperCamelCase_ : Union[str, Any] = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCamelCase_ : int = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING UpperCamelCase_ : List[Any] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class _a ( _BaseAutoModelClass ): SCREAMING_SNAKE_CASE_ : List[str] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING UpperCamelCase_ : int = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
185
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCamelCase : Any = False class lowercase ( unittest.TestCase): '''simple docstring''' pass @nightly @require_torch_gpu class lowercase ( unittest.TestCase): '''simple docstring''' def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case ) SCREAMING_SNAKE_CASE : Any = VersatileDiffusionPipeline.from_pretrained(snake_case , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : List[str] = generator.manual_seed(0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.dual_guided( prompt='first prompt' , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) SCREAMING_SNAKE_CASE : Union[str, Any] = 'cyberpunk 2077' SCREAMING_SNAKE_CASE : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = pipe.dual_guided( prompt=snake_case , image=snake_case , text_to_image_strength=0.75 , generator=snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images SCREAMING_SNAKE_CASE : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Any = 'A painting of a squirrel eating a burger ' SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe.text_to_image( prompt=snake_case , generator=snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images SCREAMING_SNAKE_CASE : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 SCREAMING_SNAKE_CASE : Optional[Any] = pipe.image_variation(snake_case , generator=snake_case , output_type='numpy' ).images SCREAMING_SNAKE_CASE : Optional[int] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
352
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _UpperCAmelCase = random.Random() def _lowerCamelCase ( _a , _a=1.0 , _a=None , _a=None ): """simple docstring""" if rng is None: _lowerCamelCase = global_rng _lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self , a__ , a__=7 , a__=4_00 , a__=20_00 , a__=10 , a__=1_60 , a__=8 , a__=0.0 , a__=40_00 , a__=False , a__=True , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = min_seq_length _lowerCamelCase = max_seq_length _lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCamelCase = padding_value _lowerCamelCase = sampling_rate _lowerCamelCase = return_attention_mask _lowerCamelCase = do_normalize _lowerCamelCase = feature_size _lowerCamelCase = chunk_length _lowerCamelCase = hop_length def _UpperCAmelCase ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _UpperCAmelCase ( self , a__=False , a__=False ): def _flatten(a__ ): return list(itertools.chain(*_a ) ) if equal_length: _lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCamelCase = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __magic_name__ ( UpperCamelCase__ ,unittest.TestCase ): """simple docstring""" _UpperCamelCase = WhisperFeatureExtractor if is_speech_available() else None def _UpperCAmelCase ( self ): _lowerCamelCase = WhisperFeatureExtractionTester(self ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) _lowerCamelCase = self.feature_extraction_class.from_pretrained(_a ) _lowerCamelCase = feat_extract_first.to_dict() _lowerCamelCase = feat_extract_second.to_dict() _lowerCamelCase = feat_extract_first.mel_filters _lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase = os.path.join(_a , '''feat_extract.json''' ) feat_extract_first.to_json_file(_a ) _lowerCamelCase = self.feature_extraction_class.from_json_file(_a ) _lowerCamelCase = feat_extract_first.to_dict() _lowerCamelCase = feat_extract_second.to_dict() _lowerCamelCase = feat_extract_first.mel_filters _lowerCamelCase = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def _UpperCAmelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] _lowerCamelCase = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size _lowerCamelCase = feature_extractor(_a , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(_a , _a , atol=1E-3 ) ) # Test batched _lowerCamelCase = feature_extractor(_a , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(_a , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCamelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] _lowerCamelCase = np.asarray(_a ) _lowerCamelCase = feature_extractor(_a , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(_a , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1E-3 ) ) # Test truncation required _lowerCamelCase = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] _lowerCamelCase = [np.asarray(_a ) for speech_input in speech_inputs] _lowerCamelCase = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowerCamelCase = [np.asarray(_a ) for speech_input in speech_inputs_truncated] _lowerCamelCase = feature_extractor(_a , return_tensors='''np''' ).input_features _lowerCamelCase = feature_extractor(_a , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1E-3 ) ) def _UpperCAmelCase ( self ): import torch _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase = np.random.rand(1_00 , 32 ).astype(np.floataa ) _lowerCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCamelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowerCamelCase = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _UpperCAmelCase ( self , a__ ): _lowerCamelCase = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _lowerCamelCase = ds.sort('''id''' ).select(range(_a ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _UpperCAmelCase ( self ): # fmt: off _lowerCamelCase = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _lowerCamelCase = self._load_datasamples(1 ) _lowerCamelCase = WhisperFeatureExtractor() _lowerCamelCase = feature_extractor(_a , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1E-4 ) ) def _UpperCAmelCase ( self ): _lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCamelCase = self._load_datasamples(1 )[0] _lowerCamelCase = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue _lowerCamelCase = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1E-3 ) )
710
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _UpperCAmelCase = logging.get_logger("transformers.models.speecht5") _UpperCAmelCase = { "speech_encoder_prenet.layer_norm": "speecht5.encoder.prenet.feature_projection.layer_norm", "speech_encoder_prenet.post_extract_proj": "speecht5.encoder.prenet.feature_projection.projection", "speech_encoder_prenet.pos_conv.0": "speecht5.encoder.prenet.pos_conv_embed.conv", "speech_encoder_prenet.mask_emb": "speecht5.encoder.prenet.masked_spec_embed", } _UpperCAmelCase = { "text_encoder_prenet.encoder_prenet.0": "speecht5.encoder.prenet.embed_tokens", "text_encoder_prenet.encoder_prenet.1.alpha": "speecht5.encoder.prenet.encode_positions.alpha", } _UpperCAmelCase = { "speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0": "speecht5.decoder.prenet.layers.0", "speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0": "speecht5.decoder.prenet.layers.1", "speech_decoder_prenet.decoder_prenet.0.1": "speecht5.decoder.prenet.final_layer", "speech_decoder_prenet.decoder_prenet.1.alpha": "speecht5.decoder.prenet.encode_positions.alpha", "speech_decoder_prenet.spkembs_layer.0": "speecht5.decoder.prenet.speaker_embeds_layer", } _UpperCAmelCase = { "speech_decoder_postnet.feat_out": "speech_decoder_postnet.feat_out", "speech_decoder_postnet.prob_out": "speech_decoder_postnet.prob_out", "speech_decoder_postnet.postnet.postnet.0.0": "speech_decoder_postnet.layers.0.conv", "speech_decoder_postnet.postnet.postnet.0.1": "speech_decoder_postnet.layers.0.batch_norm", "speech_decoder_postnet.postnet.postnet.1.0": "speech_decoder_postnet.layers.1.conv", "speech_decoder_postnet.postnet.postnet.1.1": "speech_decoder_postnet.layers.1.batch_norm", "speech_decoder_postnet.postnet.postnet.2.0": "speech_decoder_postnet.layers.2.conv", "speech_decoder_postnet.postnet.postnet.2.1": "speech_decoder_postnet.layers.2.batch_norm", "speech_decoder_postnet.postnet.postnet.3.0": "speech_decoder_postnet.layers.3.conv", "speech_decoder_postnet.postnet.postnet.3.1": "speech_decoder_postnet.layers.3.batch_norm", "speech_decoder_postnet.postnet.postnet.4.0": "speech_decoder_postnet.layers.4.conv", "speech_decoder_postnet.postnet.postnet.4.1": "speech_decoder_postnet.layers.4.batch_norm", } _UpperCAmelCase = { "text_decoder_prenet.embed_tokens": "speecht5.decoder.prenet.embed_tokens", } _UpperCAmelCase = { "text_decoder_postnet.output_projection": "text_decoder_postnet.lm_head", } _UpperCAmelCase = { "encoder.layers.*.self_attn.k_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj", "encoder.layers.*.self_attn.v_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj", "encoder.layers.*.self_attn.q_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj", "encoder.layers.*.self_attn.out_proj": "speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj", "encoder.layers.*.self_attn_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.layer_norm", "encoder.layers.*.fc1": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense", "encoder.layers.*.fc2": "speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense", "encoder.layers.*.final_layer_norm": "speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm", "encoder.layer_norm": "speecht5.encoder.wrapped_encoder.layer_norm", "encoder.pos_emb.pe_k": "speecht5.encoder.wrapped_encoder.embed_positions.pe_k", } _UpperCAmelCase = { "decoder.layers.*.self_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj", "decoder.layers.*.self_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj", "decoder.layers.*.self_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj", "decoder.layers.*.self_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj", "decoder.layers.*.self_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm", "decoder.layers.*.encoder_attn.k_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj", "decoder.layers.*.encoder_attn.v_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj", "decoder.layers.*.encoder_attn.q_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj", "decoder.layers.*.encoder_attn.out_proj": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj", "decoder.layers.*.encoder_attn_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm", "decoder.layers.*.fc1": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense", "decoder.layers.*.fc2": "speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense", "decoder.layers.*.final_layer_norm": "speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm", } _UpperCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _UpperCAmelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCAmelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _UpperCAmelCase = [] _UpperCAmelCase = [ "encoder.version", "encoder.layers.*.norm_k.weight", "encoder.layers.*.norm_k.bias", "decoder.version", "decoder.layers.*.norm_k.weight", "decoder.layers.*.norm_k.bias", "decoder.pos_emb.pe_k", "speech_encoder_prenet.embed_positions._float_tensor", "text_decoder_prenet.embed_positions._float_tensor", ] _UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "speech_decoder_prenet.*", "speech_decoder_postnet.*", ] _UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "speech_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] _UpperCAmelCase = IGNORE_KEYS + [ "encoder.proj", "text_encoder_prenet.*", "text_decoder_prenet.*", "text_decoder_postnet.*", ] def _lowerCamelCase ( _a , _a , _a , _a , _a ): """simple docstring""" for attribute in key.split('''.''' ): _lowerCamelCase = getattr(_a , _a ) if weight_type is not None: _lowerCamelCase = getattr(_a , _a ).shape else: _lowerCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _lowerCamelCase = value elif weight_type == "weight_g": _lowerCamelCase = value elif weight_type == "weight_v": _lowerCamelCase = value elif weight_type == "bias": _lowerCamelCase = value elif weight_type == "running_mean": _lowerCamelCase = value elif weight_type == "running_var": _lowerCamelCase = value elif weight_type == "num_batches_tracked": _lowerCamelCase = value else: _lowerCamelCase = value logger.info(F'''{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}.''' ) def _lowerCamelCase ( _a , _a ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: _lowerCamelCase , _lowerCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowerCamelCase ( _a , _a , _a ): """simple docstring""" _lowerCamelCase = [] if task == "s2t": _lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCamelCase = MAPPING_S2T _lowerCamelCase = IGNORE_KEYS_S2T elif task == "t2s": _lowerCamelCase = None _lowerCamelCase = MAPPING_T2S _lowerCamelCase = IGNORE_KEYS_T2S elif task == "s2s": _lowerCamelCase = hf_model.speechta.encoder.prenet.feature_encoder _lowerCamelCase = MAPPING_S2S _lowerCamelCase = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_a , _a ): logger.info(F'''{name} was ignored''' ) continue _lowerCamelCase = False if "conv_layers" in name: load_conv_layer( _a , _a , _a , _a , hf_model.config.feat_extract_norm == '''group''' , ) _lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: _lowerCamelCase , _lowerCamelCase = key.split('''.*.''' ) if prefix in name and suffix in name: _lowerCamelCase = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: _lowerCamelCase = True if "*" in mapped_key: _lowerCamelCase = name.split(_a )[0].split('''.''' )[-2] _lowerCamelCase = mapped_key.replace('''*''' , _a ) if "weight_g" in name: _lowerCamelCase = '''weight_g''' elif "weight_v" in name: _lowerCamelCase = '''weight_v''' elif "bias" in name: _lowerCamelCase = '''bias''' elif "weight" in name: _lowerCamelCase = '''weight''' elif "running_mean" in name: _lowerCamelCase = '''running_mean''' elif "running_var" in name: _lowerCamelCase = '''running_var''' elif "num_batches_tracked" in name: _lowerCamelCase = '''num_batches_tracked''' else: _lowerCamelCase = None set_recursively(_a , _a , _a , _a , _a ) continue if not is_used: unused_weights.append(_a ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowerCamelCase ( _a , _a , _a , _a , _a ): """simple docstring""" _lowerCamelCase = full_name.split('''conv_layers.''' )[-1] _lowerCamelCase = name.split('''.''' ) _lowerCamelCase = int(items[0] ) _lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _lowerCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _lowerCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _lowerCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _lowerCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_a ) @torch.no_grad() def _lowerCamelCase ( _a , _a , _a , _a=None , _a=None , _a=None , ): """simple docstring""" if config_path is not None: _lowerCamelCase = SpeechTaConfig.from_pretrained(_a ) else: _lowerCamelCase = SpeechTaConfig() if task == "s2t": _lowerCamelCase = config.max_text_positions _lowerCamelCase = SpeechTaForSpeechToText(_a ) elif task == "t2s": _lowerCamelCase = 1_8_7_6 _lowerCamelCase = 6_0_0 _lowerCamelCase = config.max_speech_positions _lowerCamelCase = SpeechTaForTextToSpeech(_a ) elif task == "s2s": _lowerCamelCase = 1_8_7_6 _lowerCamelCase = config.max_speech_positions _lowerCamelCase = SpeechTaForSpeechToSpeech(_a ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: _lowerCamelCase = SpeechTaTokenizer(_a , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it _lowerCamelCase = AddedToken('''<mask>''' , lstrip=_a , rstrip=_a ) _lowerCamelCase = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) _lowerCamelCase = SpeechTaFeatureExtractor() _lowerCamelCase = SpeechTaProcessor(tokenizer=_a , feature_extractor=_a ) processor.save_pretrained(_a ) _lowerCamelCase = torch.load(_a ) recursively_load_weights(fairseq_checkpoint['''model'''] , _a , _a ) model.save_pretrained(_a ) if repo_id: print('''Pushing to the hub...''' ) processor.push_to_hub(_a ) model.push_to_hub(_a ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--task", default="s2t", type=str, help="Type of the SpeechT5 model you'd like to convert. Should be one of 's2t', 't2s', 's2s'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--vocab_path", default=None, type=str, help="Path to SentencePiece model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _UpperCAmelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
297
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor _lowercase = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def A (__lowerCamelCase :List[str] ): if isinstance(__lowerCamelCase , torch.Tensor ): return image elif isinstance(__lowerCamelCase , PIL.Image.Image ): _lowerCAmelCase = [image] _lowerCAmelCase = [trans(img.convert("""RGB""" ) ) for img in image] _lowerCAmelCase = torch.stack(__lowerCamelCase ) return image class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , _lowercase , _lowercase ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _lowerCAmelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_lowercase , scheduler=_lowercase ) def _lowercase ( self , _lowercase ): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(F'The value of strength should in [0.0, 1.0] but is {strength}' ) def _lowercase ( self , _lowercase , _lowercase , _lowercase ): """simple docstring""" _lowerCAmelCase = min(int(num_inference_steps * strength ) , _lowercase ) _lowerCAmelCase = max(num_inference_steps - init_timestep , 0 ) _lowerCAmelCase = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=None ): """simple docstring""" if not isinstance(_lowercase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(_lowercase )}' ) _lowerCAmelCase = image.to(device=_lowercase , dtype=_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) _lowerCAmelCase = init_latents.shape _lowerCAmelCase = randn_tensor(_lowercase , generator=_lowercase , device=_lowercase , dtype=_lowercase ) # get latents print("""add noise to latents at timestep""" , _lowercase ) _lowerCAmelCase = self.scheduler.add_noise(_lowercase , _lowercase , _lowercase ) _lowerCAmelCase = init_latents return latents @torch.no_grad() def __call__( self , _lowercase = None , _lowercase = 0.8 , _lowercase = 1 , _lowercase = None , _lowercase = 0.0 , _lowercase = 50 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ): """simple docstring""" self.check_inputs(_lowercase ) # 2. Preprocess image _lowerCAmelCase = preprocess(_lowercase ) # 3. set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) _lowerCAmelCase , _lowerCAmelCase = self.get_timesteps(_lowercase , _lowercase , self.device ) _lowerCAmelCase = timesteps[:1].repeat(_lowercase ) # 4. Prepare latent variables _lowerCAmelCase = self.prepare_latents(_lowercase , _lowercase , _lowercase , self.unet.dtype , self.device , _lowercase ) _lowerCAmelCase = latents # 5. Denoising loop for t in self.progress_bar(_lowercase ): # 1. predict noise model_output _lowerCAmelCase = self.unet(_lowercase , _lowercase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _lowerCAmelCase = self.scheduler.step( _lowercase , _lowercase , _lowercase , eta=_lowercase , use_clipped_model_output=_lowercase , generator=_lowercase , ).prev_sample _lowerCAmelCase = (image / 2 + 0.5).clamp(0 , 1 ) _lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowerCAmelCase = self.numpy_to_pil(_lowercase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=_lowercase )
5
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCAmelCase__ ( metaclass=lowercase__ ): """simple docstring""" __UpperCAmelCase : List[str] = ['''keras_nlp'''] def __init__( self : Union[str, Any] ,*_a : List[Any] ,**_a : int ): '''simple docstring''' requires_backends(self ,['keras_nlp'] )
229
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCamelCase : Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} _UpperCamelCase : List[str] = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } _UpperCamelCase : Tuple = { "distilbert-base-uncased": 5_12, "distilbert-base-uncased-distilled-squad": 5_12, "distilbert-base-cased": 5_12, "distilbert-base-cased-distilled-squad": 5_12, "distilbert-base-german-cased": 5_12, "distilbert-base-multilingual-cased": 5_12, } _UpperCamelCase : List[Any] = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class UpperCAmelCase_ ( _UpperCamelCase): lowerCamelCase__ : Tuple = VOCAB_FILES_NAMES lowerCamelCase__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Dict = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ : Optional[Any] = ["input_ids", "attention_mask"] lowerCamelCase__ : Union[str, Any] = DistilBertTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ) -> Optional[Any]: super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : Dict = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): lowercase__ : List[Any] = getattr(a , normalizer_state.pop('type' ) ) lowercase__ : Optional[int] = do_lower_case lowercase__ : Any = strip_accents lowercase__ : int = tokenize_chinese_chars lowercase__ : Dict = normalizer_class(**a ) lowercase__ : List[Any] = do_lower_case def _UpperCAmelCase ( self , a , a=None ) -> Union[str, Any]: lowercase__ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self , a , a = None ) -> Optional[Any]: lowercase__ : Optional[Any] = [self.sep_token_id] lowercase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , a , a = None ) -> List[Any]: lowercase__ : List[str] = self._tokenizer.model.save(a , name=a ) return tuple(a )
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch _UpperCamelCase : int = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : def __init__( self , a=False , a=False , a=6.0 , a=None , a=False , a=False , a=None , a="fp4" , a=False , **a , ) -> Tuple: lowercase__ : str = load_in_abit lowercase__ : str = load_in_abit lowercase__ : List[str] = llm_inta_threshold lowercase__ : Dict = llm_inta_skip_modules lowercase__ : Tuple = llm_inta_enable_fpaa_cpu_offload lowercase__ : Any = llm_inta_has_fpaa_weight lowercase__ : Any = bnb_abit_quant_type lowercase__ : Dict = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: lowercase__ : Dict = torch.floataa elif isinstance(a , a ): lowercase__ : Any = getattr(a , a ) elif isinstance(a , torch.dtype ): lowercase__ : Any = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def _UpperCAmelCase ( self ) -> str: if not isinstance(self.llm_inta_threshold , a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def _UpperCAmelCase ( self ) -> Tuple: return self.load_in_abit or self.load_in_abit def _UpperCAmelCase ( self ) -> List[str]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def _UpperCAmelCase ( cls , a , a , **a ) -> Optional[Any]: lowercase__ : List[Any] = cls(**a ) lowercase__ : Union[str, Any] = [] for key, value in kwargs.items(): if hasattr(a , a ): setattr(a , a , a ) to_remove.append(a ) for key in to_remove: kwargs.pop(a , a ) if return_unused_kwargs: return config, kwargs else: return config def _UpperCAmelCase ( self , a ) -> Dict: with open(a , 'w' , encoding='utf-8' ) as writer: lowercase__ : Any = self.to_dict() lowercase__ : str = json.dumps(a , indent=2 , sort_keys=a ) + '\n' writer.write(a ) def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase__ : Any = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> Dict: return f"""{self.__class__.__name__} {self.to_json_string()}""" def _UpperCAmelCase ( self , a = True ) -> str: if use_diff is True: lowercase__ : List[Any] = self.to_diff_dict() else: lowercase__ : List[str] = self.to_dict() return json.dumps(a , indent=2 , sort_keys=a ) + "\n" def _UpperCAmelCase ( self ) -> Dict[str, Any]: lowercase__ : Tuple = self.to_dict() # get the default config dict lowercase__ : Optional[Any] = BitsAndBytesConfig().to_dict() lowercase__ : int = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: lowercase__ : Optional[int] = value return serializable_config_dict
645
0
'''simple docstring''' import math UpperCAmelCase_ : Optional[Any] = 1_0 UpperCAmelCase_ : Dict = 7 UpperCAmelCase_ : List[str] = BALLS_PER_COLOUR * NUM_COLOURS def _lowercase ( UpperCamelCase__ : int = 20 ): __A : Union[str, Any] = math.comb(UpperCamelCase__, UpperCamelCase__ ) __A : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR, UpperCamelCase__ ) __A : Tuple = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(2_0))
365
'''simple docstring''' from math import factorial UpperCAmelCase_ : List[str] = {str(d): factorial(d) for d in range(1_0)} def _lowercase ( UpperCamelCase__ : int ): return sum(DIGIT_FACTORIAL[d] for d in str(UpperCamelCase__ ) ) def _lowercase ( ): __A : Union[str, Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3, UpperCamelCase__ ) if sum_of_digit_factorial(UpperCamelCase__ ) == i ) if __name__ == "__main__": print(f'''{solution() = }''')
365
1
'''simple docstring''' def UpperCAmelCase_ ( __lowercase : int = 1000 ) -> int: '''simple docstring''' _UpperCAmelCase = 2**power _UpperCAmelCase = str(__lowercase ) _UpperCAmelCase = list(__lowercase ) _UpperCAmelCase = 0 for i in list_num: sum_of_num += int(__lowercase ) return sum_of_num if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Optional[Any] = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) __SCREAMING_SNAKE_CASE :Dict = solution(power) print('''Sum of the digits is: ''', result)
716
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __SCREAMING_SNAKE_CASE :List[str] = { '''configuration_swiftformer''': [ '''SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwiftFormerConfig''', '''SwiftFormerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :List[Any] = [ '''SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwiftFormerForImageClassification''', '''SwiftFormerModel''', '''SwiftFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
119
0
'''simple docstring''' def lowerCAmelCase_ ( __A : list ): '''simple docstring''' snake_case: str = len(__A ) for i in range(1 , __A ): snake_case: Union[str, Any] = collection[i] snake_case: Dict = 0 snake_case: int = i - 1 while low <= high: snake_case: List[Any] = (low + high) // 2 if val < collection[mid]: snake_case: Optional[Any] = mid - 1 else: snake_case: Union[str, Any] = mid + 1 for j in range(__A , __A , -1 ): snake_case: str = collection[j - 1] snake_case: Optional[int] = val return collection if __name__ == "__main__": __UpperCAmelCase = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
329
'''simple docstring''' import torch from torch import nn class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' super().__init__() snake_case: str = n_token snake_case: Optional[Any] = d_embed snake_case: List[str] = d_proj snake_case: List[Any] = cutoffs + [n_token] snake_case: Any = [0] + self.cutoffs snake_case: Union[str, Any] = div_val snake_case: Optional[int] = self.cutoffs[0] snake_case: List[Any] = len(self.cutoffs ) - 1 snake_case: Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: snake_case: Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) snake_case: Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters ) ) snake_case: Union[str, Any] = nn.ModuleList() snake_case: List[str] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) else: self.out_projs.append(SCREAMING_SNAKE_CASE__ ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) else: for i in range(len(self.cutoffs ) ): snake_case , snake_case: Union[str, Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case: Tuple = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) self.out_layers.append(nn.Linear(SCREAMING_SNAKE_CASE__ , r_idx - l_idx ) ) snake_case: str = keep_order def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if proj is None: snake_case: str = nn.functional.linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: snake_case: List[Any] = nn.functional.linear(SCREAMING_SNAKE_CASE__ , proj.t().contiguous() ) snake_case: Any = nn.functional.linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=False ): '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n snake_case: List[Any] = hidden[..., :-1, :].contiguous() snake_case: Tuple = labels[..., 1:].contiguous() snake_case: List[Any] = hidden.view(-1 , hidden.size(-1 ) ) snake_case: Dict = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError('Input and labels should have the same size in the batch dimension.' ) else: snake_case: int = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: snake_case: List[Any] = self._compute_logit(SCREAMING_SNAKE_CASE__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: snake_case: str = labels != -1_00 snake_case: List[str] = torch.zeros_like(SCREAMING_SNAKE_CASE__ , dtype=hidden.dtype , device=hidden.device ) snake_case: Tuple = ( -nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: snake_case: Optional[int] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 ) else: # construct weights and biases snake_case , snake_case: Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: snake_case , snake_case: List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case: List[Any] = self.out_layers[0].weight[l_idx:r_idx] snake_case: Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: snake_case: Any = self.out_layers[i].weight snake_case: List[str] = self.out_layers[i].bias if i == 0: snake_case: Optional[Any] = torch.cat([weight_i, self.cluster_weight] , dim=0 ) snake_case: List[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE__ ) biases.append(SCREAMING_SNAKE_CASE__ ) snake_case , snake_case , snake_case: int = weights[0], biases[0], self.out_projs[0] snake_case: List[str] = self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) if labels is None: snake_case: str = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: snake_case: int = torch.zeros_like(SCREAMING_SNAKE_CASE__ , dtype=hidden.dtype , device=hidden.device ) snake_case: Dict = 0 snake_case: List[str] = [0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): snake_case , snake_case: str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: snake_case: Optional[Any] = (labels >= l_idx) & (labels < r_idx) snake_case: Tuple = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue snake_case: List[Any] = labels.index_select(0 , SCREAMING_SNAKE_CASE__ ) - l_idx snake_case: Dict = head_logprob.index_select(0 , SCREAMING_SNAKE_CASE__ ) snake_case: str = hidden.index_select(0 , SCREAMING_SNAKE_CASE__ ) else: snake_case: int = hidden if i == 0: if labels is not None: snake_case: List[Any] = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: snake_case: Dict = head_logprob[:, : self.cutoffs[0]] else: snake_case , snake_case , snake_case: Union[str, Any] = weights[i], biases[i], self.out_projs[i] snake_case: List[str] = self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: Union[str, Any] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) snake_case: Any = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: snake_case: List[Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: snake_case: Dict = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i snake_case: Optional[int] = logprob_i if labels is not None: if (hasattr(self , 'keep_order' ) and self.keep_order) or keep_order: out.index_copy_(0 , SCREAMING_SNAKE_CASE__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if self.n_clusters == 0: snake_case: List[Any] = self._compute_logit(SCREAMING_SNAKE_CASE__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=-1 ) else: # construct weights and biases snake_case , snake_case: Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: snake_case , snake_case: Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] snake_case: List[Any] = self.out_layers[0].weight[l_idx:r_idx] snake_case: Dict = self.out_layers[0].bias[l_idx:r_idx] else: snake_case: Optional[int] = self.out_layers[i].weight snake_case: Optional[Any] = self.out_layers[i].bias if i == 0: snake_case: Any = torch.cat([weight_i, self.cluster_weight] , dim=0 ) snake_case: Any = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(SCREAMING_SNAKE_CASE__ ) biases.append(SCREAMING_SNAKE_CASE__ ) snake_case , snake_case , snake_case: List[Any] = weights[0], biases[0], self.out_projs[0] snake_case: Optional[Any] = self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[str] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) snake_case: Tuple = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) snake_case: Any = [0] + self.cutoffs for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): snake_case , snake_case: Optional[int] = cutoff_values[i], cutoff_values[i + 1] if i == 0: snake_case: Dict = head_logprob[:, : self.cutoffs[0]] else: snake_case , snake_case , snake_case: Optional[Any] = weights[i], biases[i], self.out_projs[i] snake_case: List[str] = self._compute_logit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case: List[Any] = nn.functional.log_softmax(SCREAMING_SNAKE_CASE__ , dim=1 ) snake_case: Tuple = head_logprob[:, -i] + tail_logprob_i snake_case: Union[str, Any] = logprob_i return out
329
1
'''simple docstring''' def __lowerCamelCase ( A__ ) -> list: """simple docstring""" UpperCamelCase = int(A__ ) if n_element < 1: UpperCamelCase = ValueError('a should be a positive number' ) raise my_error UpperCamelCase = [1] UpperCamelCase , UpperCamelCase , UpperCamelCase = (0, 0, 0) UpperCamelCase = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") _lowerCamelCase : Dict = hamming(int(n)) print("-----------------------------------------------------") print(f'''The list with nth numbers is: {hamming_numbers}''') print("-----------------------------------------------------")
704
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase : List[str] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase : Tuple = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase : str = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def A ( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : str=None , UpperCamelCase__ : str=None , UpperCamelCase__ : Optional[int]=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any="auto" , UpperCamelCase__ : List[str]=-1 , UpperCamelCase__ : int=0.9 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : Union[str, Any]=5_0_0 , UpperCamelCase__ : Union[str, Any]="gpt2-large" , UpperCamelCase__ : Union[str, Any]=-1 , UpperCamelCase__ : Dict=1_0_2_4 , UpperCamelCase__ : Dict=2_5 , UpperCamelCase__ : Tuple=5 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=2_5 , ): """simple docstring""" UpperCamelCase = compute_mauve( p_text=UpperCamelCase__ , q_text=UpperCamelCase__ , p_features=UpperCamelCase__ , q_features=UpperCamelCase__ , p_tokens=UpperCamelCase__ , q_tokens=UpperCamelCase__ , num_buckets=UpperCamelCase__ , pca_max_data=UpperCamelCase__ , kmeans_explained_var=UpperCamelCase__ , kmeans_num_redo=UpperCamelCase__ , kmeans_max_iter=UpperCamelCase__ , featurize_model_name=UpperCamelCase__ , device_id=UpperCamelCase__ , max_text_length=UpperCamelCase__ , divergence_curve_discretization_size=UpperCamelCase__ , mauve_scaling_factor=UpperCamelCase__ , verbose=UpperCamelCase__ , seed=UpperCamelCase__ , ) return out
324
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def UpperCAmelCase_ ( self )-> int: '''simple docstring''' UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' try: UpperCamelCase = tempfile.mktemp() with open(A_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ ) UpperCamelCase = AlbertTokenizer.from_pretrained(A_ ) finally: os.remove(A_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ ) UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): lowerCAmelCase_ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCAmelCase_ ( cls )-> int: '''simple docstring''' UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def UpperCAmelCase_ ( cls )-> Optional[Any]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = CustomTokenizer(A_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizerFast.from_pretrained(A_ ) bert_tokenizer.save_pretrained(A_ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' UpperCamelCase = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' UpperCamelCase = Trie() UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A_ , ['AB', 'C'] )
3
"""simple docstring""" def snake_case ( _a: float , _a: float )-> float: '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(100, 0.25) = }""") print(f"""{price_plus_tax(1_25.50, 0.05) = }""")
510
0
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" snake_case_ = (KDPMaDiscreteScheduler,) snake_case_ = 1_0 def _UpperCAmelCase ( self : Dict , **snake_case : Optional[Any] ) -> List[str]: '''simple docstring''' __magic_name__ : Optional[int] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**snake_case ) return config def _UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=snake_case ) def _UpperCAmelCase ( self : int ) -> Dict: '''simple docstring''' for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=snake_case , beta_end=snake_case ) def _UpperCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=snake_case ) def _UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def _UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' __magic_name__ : List[Any] = self.scheduler_classes[0] __magic_name__ : Optional[int] = self.get_scheduler_config(prediction_type='''v_prediction''' ) __magic_name__ : Optional[Any] = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ : Optional[Any] = self.dummy_model() __magic_name__ : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ : Tuple = sample.to(snake_case ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ : Tuple = scheduler.scale_model_input(snake_case , snake_case ) __magic_name__ : Tuple = model(snake_case , snake_case ) __magic_name__ : Optional[int] = scheduler.step(snake_case , snake_case , snake_case ) __magic_name__ : str = output.prev_sample __magic_name__ : Tuple = torch.sum(torch.abs(snake_case ) ) __magic_name__ : int = torch.mean(torch.abs(snake_case ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693_4286_5017_0972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def _UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' if torch_device == "mps": return __magic_name__ : List[str] = self.scheduler_classes[0] __magic_name__ : str = self.get_scheduler_config() __magic_name__ : Union[str, Any] = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps ) __magic_name__ : int = self.dummy_model() __magic_name__ : Optional[int] = self.dummy_sample_deter * scheduler.init_noise_sigma __magic_name__ : str = sample.to(snake_case ) for i, t in enumerate(scheduler.timesteps ): __magic_name__ : Union[str, Any] = scheduler.scale_model_input(snake_case , snake_case ) __magic_name__ : int = model(snake_case , snake_case ) __magic_name__ : Dict = scheduler.step(snake_case , snake_case , snake_case ) __magic_name__ : int = output.prev_sample __magic_name__ : Dict = torch.sum(torch.abs(snake_case ) ) __magic_name__ : Any = torch.mean(torch.abs(snake_case ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def _UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if torch_device == "mps": return __magic_name__ : Optional[Any] = self.scheduler_classes[0] __magic_name__ : Optional[int] = self.get_scheduler_config() __magic_name__ : List[Any] = scheduler_class(**snake_case ) scheduler.set_timesteps(self.num_inference_steps , device=snake_case ) __magic_name__ : Union[str, Any] = self.dummy_model() __magic_name__ : Union[str, Any] = self.dummy_sample_deter.to(snake_case ) * scheduler.init_noise_sigma for t in scheduler.timesteps: __magic_name__ : int = scheduler.scale_model_input(snake_case , snake_case ) __magic_name__ : List[str] = model(snake_case , snake_case ) __magic_name__ : int = scheduler.step(snake_case , snake_case , snake_case ) __magic_name__ : Optional[int] = output.prev_sample __magic_name__ : Optional[int] = torch.sum(torch.abs(snake_case ) ) __magic_name__ : List[Any] = torch.mean(torch.abs(snake_case ) ) if str(snake_case ).startswith('''cpu''' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
147
"""simple docstring""" from math import loga def UpperCamelCase_ ( lowerCamelCase : int ) -> int: """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(lowerCamelCase , lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
147
1
"""simple docstring""" import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def __magic_name__ ( UpperCamelCase : List[str] ) -> Optional[Any]: a__ = FileLock(str(tmpdir / 'foo.lock' ) ) a__ = FileLock(str(tmpdir / 'foo.lock' ) ) a__ = 0.01 with locka.acquire(): with pytest.raises(UpperCamelCase ): a__ = time.time() locka.acquire(UpperCamelCase ) assert time.time() - _start > timeout def __magic_name__ ( UpperCamelCase : Tuple ) -> int: a__ = 'a' * 1000 + '.lock' a__ = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 a__ = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(UpperCamelCase ): locka.acquire(0 )
273
'''simple docstring''' from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class a_ : def __init__( self : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any]=1_3 , __lowerCAmelCase : int=7 , __lowerCAmelCase : int=True , __lowerCAmelCase : str=True , __lowerCAmelCase : str=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : List[Any]=9_9 , __lowerCAmelCase : List[str]=3_2 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Any=4 , __lowerCAmelCase : Any=3_7 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Optional[int]=5_1_2 , __lowerCAmelCase : Optional[Any]=1_6 , __lowerCAmelCase : Optional[Any]=2 , __lowerCAmelCase : Dict=0.02 , __lowerCAmelCase : Dict=False , __lowerCAmelCase : int=True , __lowerCAmelCase : Tuple="None" , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Union[str, Any]=None , ): __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = relative_attention __snake_case = position_biased_input __snake_case = pos_att_type __snake_case = scope def lowercase__ ( self : Dict ): __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=__lowerCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ): __snake_case = TFDebertaVaModel(config=__lowerCAmelCase ) __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __snake_case = [input_ids, input_mask] __snake_case = model(__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[Any] ): __snake_case = TFDebertaVaForMaskedLM(config=__lowerCAmelCase ) __snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[int] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any] ): __snake_case = self.num_labels __snake_case = TFDebertaVaForSequenceClassification(config=__lowerCAmelCase ) __snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ): __snake_case = self.num_labels __snake_case = TFDebertaVaForTokenClassification(config=__lowerCAmelCase ) __snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] ): __snake_case = TFDebertaVaForQuestionAnswering(config=__lowerCAmelCase ) __snake_case = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Union[str, Any] ): __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : List[str] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowercase_ : Union[str, Any] = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowercase_ : int = False lowercase_ : List[Any] = False def lowercase__ ( self : Any ): __snake_case = TFDebertaVaModelTester(self ) __snake_case = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def lowercase__ ( self : Dict ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def lowercase__ ( self : Union[str, Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def lowercase__ ( self : List[Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) def lowercase__ ( self : Any ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCAmelCase ) def lowercase__ ( self : Dict ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def lowercase__ ( self : List[str] ): __snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(__lowerCAmelCase ) @require_tf class a_ ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def lowercase__ ( self : List[str] ): pass @slow def lowercase__ ( self : int ): __snake_case = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) __snake_case = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __snake_case = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __snake_case = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase )[0] __snake_case = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , __lowerCAmelCase , atol=1E-4 )
356
0
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase = random.Random() def __UpperCAmelCase ( a_ , a_=1.0 , a_=None , a_=None): if rng is None: snake_case_ = global_rng snake_case_ = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a , a=7 , a=4_00 , a=20_00 , a=1 , a=0.0 , a=1_60_00 , a=True , a=80 , a=16 , a=64 , a="hann_window" , a=80 , a=76_00 , a=1E-10 , a=True , ) -> Any: snake_case_ = parent snake_case_ = batch_size snake_case_ = min_seq_length snake_case_ = max_seq_length snake_case_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case_ = feature_size snake_case_ = padding_value snake_case_ = sampling_rate snake_case_ = do_normalize snake_case_ = num_mel_bins snake_case_ = hop_length snake_case_ = win_length snake_case_ = win_function snake_case_ = fmin snake_case_ = fmax snake_case_ = mel_floor snake_case_ = return_attention_mask def _UpperCamelCase ( self ) -> str: return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def _UpperCamelCase ( self , a=False , a=False ) -> Tuple: def _flatten(a ): return list(itertools.chain(*a ) ) if equal_length: snake_case_ = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case_ = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(a ) for x in speech_inputs] return speech_inputs def _UpperCamelCase ( self , a=False , a=False ) -> str: if equal_length: snake_case_ = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size snake_case_ = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case_ = [np.asarray(a ) for x in speech_inputs] return speech_inputs @require_torch class UpperCamelCase_ ( snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase = SpeechTaFeatureExtractor def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = SpeechTaFeatureExtractionTester(self ) def _UpperCamelCase ( self , a ) -> Tuple: self.assertTrue(np.all(np.mean(a , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(a , axis=0 ) - 1 ) < 1E-3 ) ) def _UpperCamelCase ( self ) -> List[str]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = [np.asarray(a ) for speech_input in speech_inputs] # Test not batched input snake_case_ = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values snake_case_ = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test batched snake_case_ = feat_extract(a , return_tensors='np' ).input_values snake_case_ = feat_extract(a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = ['longest', 'max_length', 'do_not_pad'] snake_case_ = [None, 16_00, None] for max_length, padding in zip(a , a ): snake_case_ = feat_extract(a , padding=a , max_length=a , return_tensors='np' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self.assertTrue(input_values[0][8_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self.assertTrue(input_values[0][10_00:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = range(8_00 , 14_00 , 2_00 ) snake_case_ = [floats_list((1, x) )[0] for x in lengths] snake_case_ = ['longest', 'max_length', 'do_not_pad'] snake_case_ = [None, 16_00, None] for max_length, padding in zip(a , a ): snake_case_ = feat_extract(a , max_length=a , padding=a ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_00] ) self._check_zero_mean_unit_variance(input_values[1][:10_00] ) self._check_zero_mean_unit_variance(input_values[2][:12_00] ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = feat_extract( a , truncation=a , max_length=10_00 , padding='max_length' , return_tensors='np' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = feat_extract( a , truncation=a , max_length=10_00 , padding='longest' , return_tensors='np' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 10_00) ) snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = feat_extract( a , truncation=a , max_length=20_00 , padding='longest' , return_tensors='np' ) snake_case_ = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_00] ) self._check_zero_mean_unit_variance(input_values[1, :10_00] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 12_00) ) def _UpperCamelCase ( self ) -> Optional[Any]: snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case_ = np.random.rand(1_00 ).astype(np.floataa ) snake_case_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case_ = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def _UpperCamelCase ( self ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus snake_case_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case_ = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] snake_case_ = [np.asarray(a ) for speech_input in speech_inputs] # Test feature size snake_case_ = feature_extractor(audio_target=a , padding=a , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input snake_case_ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values snake_case_ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test batched snake_case_ = feature_extractor(a , return_tensors='np' ).input_values snake_case_ = feature_extractor(a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. snake_case_ = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] snake_case_ = np.asarray(a ) snake_case_ = feature_extractor(a , return_tensors='np' ).input_values snake_case_ = feature_extractor(a , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a , a ): self.assertTrue(np.allclose(a , a , atol=1E-3 ) ) def _UpperCamelCase ( self ) -> Any: snake_case_ = self.feat_extract_tester.prepare_inputs_for_target() snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a ) == len(a ) for x, y in zip(a , processed_features[input_name] ) ) ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a ) snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a ) snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) snake_case_ = processed_features[input_name] if len(batch_features_input.shape ) < 3: snake_case_ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def _UpperCamelCase ( self ) -> List[Any]: snake_case_ = self.feature_extraction_class(**self.feat_extract_dict ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_target() snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.num_mel_bins # hack! snake_case_ = feat_extract.pad(a , padding='longest' , return_tensors='np' )[input_name] snake_case_ = feat_extract.pad(a , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def _UpperCamelCase ( self ) -> List[str]: snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**a ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_target() snake_case_ = [len(a ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = feat_extract.num_mel_bins # hack! snake_case_ = feat_extract.pad(a , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , a ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a ) def _UpperCamelCase ( self ) -> Optional[int]: snake_case_ = self.feat_extract_dict snake_case_ = True snake_case_ = self.feature_extraction_class(**a ) snake_case_ = self.feat_extract_tester.prepare_inputs_for_target() snake_case_ = [len(a ) for x in speech_inputs] snake_case_ = feat_extract.model_input_names[0] snake_case_ = BatchFeature({input_name: speech_inputs} ) snake_case_ = min(a ) snake_case_ = feat_extract.num_mel_bins # hack! snake_case_ = feat_extract.pad( a , padding='max_length' , max_length=a , truncation=a , return_tensors='np' ) self.assertIn('attention_mask' , a ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def _UpperCamelCase ( self , a ) -> Optional[Any]: from datasets import load_dataset snake_case_ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech snake_case_ = ds.sort('id' ).select(range(a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _UpperCamelCase ( self ) -> Optional[Any]: # fmt: off snake_case_ = torch.tensor( [2.3_804E-03, 2.0_752E-03, 1.9_836E-03, 2.1_057E-03, 1.6_174E-03, 3.0_518E-04, 9.1_553E-05, 3.3_569E-04, 9.7_656E-04, 1.8_311E-03, 2.0_142E-03, 2.1_057E-03, 1.7_395E-03, 4.5_776E-04, -3.9_673E-04, 4.5_776E-04, 1.0_071E-03, 9.1_553E-05, 4.8_828E-04, 1.1_597E-03, 7.3_242E-04, 9.4_604E-04, 1.8_005E-03, 1.8_311E-03, 8.8_501E-04, 4.2_725E-04, 4.8_828E-04, 7.3_242E-04, 1.0_986E-03, 2.1_057E-03] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = SpeechTaFeatureExtractor() snake_case_ = feature_extractor(a , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 9_36_80) ) self.assertTrue(torch.allclose(input_values[0, :30] , a , atol=1E-6 ) ) def _UpperCamelCase ( self ) -> Any: # fmt: off snake_case_ = torch.tensor( [-2.6_870, -3.0_104, -3.1_356, -3.5_352, -3.0_044, -3.0_353, -3.4_719, -3.6_777, -3.1_520, -2.9_435, -2.6_553, -2.8_795, -2.9_944, -2.5_921, -3.0_279, -3.0_386, -3.0_864, -3.1_291, -3.2_353, -2.7_444, -2.6_831, -2.7_287, -3.1_761, -3.1_571, -3.2_726, -3.0_582, -3.1_007, -3.4_533, -3.4_695, -3.0_998] ) # fmt: on snake_case_ = self._load_datasamples(1 ) snake_case_ = SpeechTaFeatureExtractor() snake_case_ = feature_extractor(audio_target=a , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 3_66, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a , atol=1E-4 ) )
607
from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor lowercase = transforms.Compose( [ transforms.Resize((256, 256)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def __UpperCAmelCase ( a_): if isinstance(a_ , torch.Tensor): return image elif isinstance(a_ , PIL.Image.Image): snake_case_ = [image] snake_case_ = [trans(img.convert('RGB')) for img in image] snake_case_ = torch.stack(a_) return image class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a ) -> List[Any]: super().__init__() # make sure scheduler can always be converted to DDIM snake_case_ = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a , scheduler=a ) def _UpperCamelCase ( self , a ) -> List[str]: if strength < 0 or strength > 1: raise ValueError(F'''The value of strength should in [0.0, 1.0] but is {strength}''' ) def _UpperCamelCase ( self , a , a , a ) -> Any: # get the original timestep using init_timestep snake_case_ = min(int(num_inference_steps * strength ) , a ) snake_case_ = max(num_inference_steps - init_timestep , 0 ) snake_case_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCamelCase ( self , a , a , a , a , a , a=None ) -> List[Any]: if not isinstance(a , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(a )}''' ) snake_case_ = image.to(device=a , dtype=a ) if isinstance(a , a ) and len(a ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(a )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) snake_case_ = init_latents.shape snake_case_ = randn_tensor(a , generator=a , device=a , dtype=a ) # get latents print('add noise to latents at timestep' , a ) snake_case_ = self.scheduler.add_noise(a , a , a ) snake_case_ = init_latents return latents @torch.no_grad() def __call__( self , a = None , a = 0.8 , a = 1 , a = None , a = 0.0 , a = 50 , a = None , a = "pil" , a = True , ) -> Union[ImagePipelineOutput, Tuple]: self.check_inputs(a ) # 2. Preprocess image snake_case_ = preprocess(a ) # 3. set timesteps self.scheduler.set_timesteps(a , device=self.device ) snake_case_ , snake_case_ = self.get_timesteps(a , a , self.device ) snake_case_ = timesteps[:1].repeat(a ) # 4. Prepare latent variables snake_case_ = self.prepare_latents(a , a , a , self.unet.dtype , self.device , a ) snake_case_ = latents # 5. Denoising loop for t in self.progress_bar(a ): # 1. predict noise model_output snake_case_ = self.unet(a , a ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 snake_case_ = self.scheduler.step( a , a , a , eta=a , use_clipped_model_output=a , generator=a , ).prev_sample snake_case_ = (image / 2 + 0.5).clamp(0 , 1 ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case_ = self.numpy_to_pil(a ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=a )
607
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( snake_case_ , unittest.TestCase ): '''simple docstring''' __snake_case = KandinskyInpaintPipeline __snake_case = ["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] __snake_case = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] __snake_case = [ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __snake_case = False @property def lowerCAmelCase__ ( self: List[str] ) -> Optional[Any]: return 32 @property def lowerCAmelCase__ ( self: int ) -> Dict: return 32 @property def lowerCAmelCase__ ( self: str ) -> Any: return self.time_input_dim @property def lowerCAmelCase__ ( self: str ) -> Any: return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Any ) -> Dict: return 100 @property def lowerCAmelCase__ ( self: Optional[int] ) -> List[str]: __magic_name__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowerCAmelCase__ ( self: int ) -> Union[str, Any]: torch.manual_seed(0 ) __magic_name__ : Optional[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) __magic_name__ : int = MultilingualCLIP(UpperCAmelCase_ ) __magic_name__ : Union[str, Any] = text_encoder.eval() return text_encoder @property def lowerCAmelCase__ ( self: int ) -> Dict: torch.manual_seed(0 ) __magic_name__ : List[str] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __magic_name__ : str = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def lowerCAmelCase__ ( self: Union[str, Any] ) -> str: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase__ ( self: Tuple ) -> Dict: torch.manual_seed(0 ) __magic_name__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase__ ( self: str ) -> List[str]: __magic_name__ : Dict = self.dummy_text_encoder __magic_name__ : List[Any] = self.dummy_tokenizer __magic_name__ : Optional[int] = self.dummy_unet __magic_name__ : Tuple = self.dummy_movq __magic_name__ : str = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="epsilon" , thresholding=UpperCAmelCase_ , ) __magic_name__ : Any = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowerCAmelCase__ ( self: Any , __UpperCamelCase: str , __UpperCamelCase: Optional[Any]=0 ) -> List[str]: __magic_name__ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) __magic_name__ : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ ) # create init_image __magic_name__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) __magic_name__ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __magic_name__ : Any = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("RGB" ).resize((256, 256) ) # create mask __magic_name__ : Optional[int] = np.ones((64, 64) , dtype=np.floataa ) __magic_name__ : List[Any] = 0 if str(UpperCAmelCase_ ).startswith("mps" ): __magic_name__ : List[str] = torch.manual_seed(UpperCAmelCase_ ) else: __magic_name__ : Optional[int] = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) __magic_name__ : int = { 'prompt': 'horse', 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def lowerCAmelCase__ ( self: Dict ) -> Optional[int]: __magic_name__ : Dict = 'cpu' __magic_name__ : Tuple = self.get_dummy_components() __magic_name__ : Tuple = self.pipeline_class(**UpperCAmelCase_ ) __magic_name__ : Optional[int] = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __magic_name__ : int = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) __magic_name__ : int = output.images __magic_name__ : str = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] __magic_name__ : List[str] = image[0, -3:, -3:, -1] __magic_name__ : List[Any] = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) __magic_name__ : int = np.array( [0.8_3_2_6_9_1_9, 0.7_3_7_9_0_4_6_7, 0.2_0_9_1_8_5_8_1, 0.9_3_0_9_6_1_2, 0.5_5_1_1_7_9_1, 0.4_3_7_1_3_3_2_8, 0.5_5_1_3_3_2_1, 0.4_9_9_2_2_9_3_4, 0.5_9_4_9_7_7_8_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowerCAmelCase__ ( self: Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self: Dict ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Optional[Any] ) -> Dict: __magic_name__ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) __magic_name__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) __magic_name__ : Dict = np.ones((768, 768) , dtype=np.floataa ) __magic_name__ : int = 0 __magic_name__ : Optional[int] = 'a hat' __magic_name__ : Union[str, Any] = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) __magic_name__ : List[Any] = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) __magic_name__ : Union[str, Any] = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) __magic_name__ : Any = torch.Generator(device="cpu" ).manual_seed(0 ) __magic_name__ : Union[str, Any] = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() __magic_name__ : Optional[int] = pipeline( UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) __magic_name__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
436
def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [] lowerCAmelCase : Dict = [] lowerCAmelCase : int = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCAmelCase : Optional[Any] = len(_UpperCAmelCase ) if (len(_UpperCAmelCase ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ), 'Stack'.center(_UpperCAmelCase ), 'Postfix'.center(_UpperCAmelCase ), sep=' | ', ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_UpperCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_UpperCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(_UpperCAmelCase ) == 0: stack.append(_UpperCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_UpperCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(_UpperCAmelCase ) # push x to stack print( x.center(8 ), (''.join(_UpperCAmelCase )).ljust(_UpperCAmelCase ), (''.join(_UpperCAmelCase )).ljust(_UpperCAmelCase ), sep=' | ', ) # Output in tabular format while len(_UpperCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ), (''.join(_UpperCAmelCase )).ljust(_UpperCAmelCase ), (''.join(_UpperCAmelCase )).ljust(_UpperCAmelCase ), sep=' | ', ) # Output in tabular format return "".join(_UpperCAmelCase ) # return Postfix as str def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Tuple = list(infix[::-1] ) # reverse the infix equation for i in range(len(_UpperCAmelCase ) ): if infix[i] == "(": lowerCAmelCase : int = ')' # change "(" to ")" elif infix[i] == ")": lowerCAmelCase : List[Any] = '(' # change ")" to "(" return (infix_2_postfix(''.join(_UpperCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __A : Optional[Any] = input('''\nEnter an Infix Equation = ''') # Input an Infix equation __A : str = ''''''.join(Infix.split()) # Remove spaces from the input print('''\n\t''', Infix, '''(Infix) -> ''', infix_2_prefix(Infix), '''(Prefix)''')
343
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __A : List[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , *lowercase__ : Union[str, Any] , **lowercase__ : Optional[Any] ): warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , lowercase__ , ) super().__init__(*lowercase__ , **lowercase__ )
715
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore __A : int = '\nHuman: <<task>>\n\nAssistant: ' __A : List[str] = 'huggingface-tools/default-prompts' __A : Tuple = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase="run" ) ->Optional[int]: """simple docstring""" if prompt_or_repo_id is None: __lowercase : Any = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s", _lowerCamelCase ) is not None: return prompt_or_repo_id __lowercase : Optional[Any] = cached_file( _lowerCamelCase, PROMPT_FILES[mode], repo_type="dataset", user_agent={"agent": agent_name} ) with open(_lowerCamelCase, "r", encoding="utf-8" ) as f: return f.read()
281
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _A = logging.get_logger(__name__) # pylint: disable=invalid-name _A = "\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n\n >>> repo = \"openai/shap-e-img2img\"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"\n >>> image = load_image(image_url).convert(\"RGB\")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")\n ```\n" @dataclass class _lowerCAmelCase ( __a ): _lowercase =42 class _lowerCAmelCase ( __a ): def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> str: super().__init__() self.register_modules( prior=_UpperCamelCase , image_encoder=_UpperCamelCase , image_processor=_UpperCamelCase , scheduler=_UpperCamelCase , renderer=_UpperCamelCase , ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: if latents is None: lowerCAmelCase_ = randn_tensor(_UpperCamelCase , generator=_UpperCamelCase , device=_UpperCamelCase , dtype=_UpperCamelCase ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCAmelCase_ = latents.to(_UpperCamelCase ) lowerCAmelCase_ = latents * scheduler.init_noise_sigma return latents def __a ( self , _UpperCamelCase=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowerCAmelCase_ = torch.device(f"""cuda:{gpu_id}""" ) lowerCAmelCase_ = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_UpperCamelCase , _UpperCamelCase ) @property def __a ( self ) -> Any: if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_UpperCamelCase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> Any: if isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , torch.Tensor ): lowerCAmelCase_ = torch.cat(_UpperCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_UpperCamelCase , axis=0 ) if not isinstance(_UpperCamelCase , torch.Tensor ): lowerCAmelCase_ = self.image_processor(_UpperCamelCase , return_tensors="pt" ).pixel_values[0].unsqueeze(0 ) lowerCAmelCase_ = image.to(dtype=self.image_encoder.dtype , device=_UpperCamelCase ) lowerCAmelCase_ = self.image_encoder(_UpperCamelCase )["last_hidden_state"] lowerCAmelCase_ = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 lowerCAmelCase_ = image_embeds.repeat_interleave(_UpperCamelCase , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase_ = torch.zeros_like(_UpperCamelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase_ = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_UpperCamelCase ) def __call__( self , _UpperCamelCase , _UpperCamelCase = 1 , _UpperCamelCase = 25 , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = 4.0 , _UpperCamelCase = 64 , _UpperCamelCase = "pil" , _UpperCamelCase = True , ) -> Optional[int]: if isinstance(_UpperCamelCase , PIL.Image.Image ): lowerCAmelCase_ = 1 elif isinstance(_UpperCamelCase , torch.Tensor ): lowerCAmelCase_ = image.shape[0] elif isinstance(_UpperCamelCase , _UpperCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): lowerCAmelCase_ = len(_UpperCamelCase ) else: raise ValueError( f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_UpperCamelCase )}""" ) lowerCAmelCase_ = self._execution_device lowerCAmelCase_ = batch_size * num_images_per_prompt lowerCAmelCase_ = guidance_scale > 1.0 lowerCAmelCase_ = self._encode_image(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # prior self.scheduler.set_timesteps(_UpperCamelCase , device=_UpperCamelCase ) lowerCAmelCase_ = self.scheduler.timesteps lowerCAmelCase_ = self.prior.config.num_embeddings lowerCAmelCase_ = self.prior.config.embedding_dim lowerCAmelCase_ = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim lowerCAmelCase_ = latents.reshape(latents.shape[0] , _UpperCamelCase , _UpperCamelCase ) for i, t in enumerate(self.progress_bar(_UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ = self.scheduler.scale_model_input(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase_ = self.prior( _UpperCamelCase , timestep=_UpperCamelCase , proj_embedding=_UpperCamelCase , ).predicted_image_embedding # remove the variance lowerCAmelCase_ , lowerCAmelCase_ = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: lowerCAmelCase_ , lowerCAmelCase_ = noise_pred.chunk(2 ) lowerCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) lowerCAmelCase_ = self.scheduler.step( _UpperCamelCase , timestep=_UpperCamelCase , sample=_UpperCamelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_UpperCamelCase ) lowerCAmelCase_ = [] for i, latent in enumerate(_UpperCamelCase ): print() lowerCAmelCase_ = self.renderer.decode( latent[None, :] , _UpperCamelCase , size=_UpperCamelCase , ray_batch_size=4_096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_UpperCamelCase ) lowerCAmelCase_ = torch.stack(_UpperCamelCase ) if output_type not in ["np", "pil"]: raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) lowerCAmelCase_ = images.cpu().numpy() if output_type == "pil": lowerCAmelCase_ = [self.numpy_to_pil(_UpperCamelCase ) for image in images] # Offload last model to CPU if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_UpperCamelCase )
290
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class _lowerCAmelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=2 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=False , _UpperCamelCase=True , _UpperCamelCase="None" , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ) -> Tuple: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_input_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_choices lowerCAmelCase_ = relative_attention lowerCAmelCase_ = position_biased_input lowerCAmelCase_ = pos_att_type lowerCAmelCase_ = scope def __a ( self ) -> List[str]: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ = None if self.use_input_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_UpperCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: lowerCAmelCase_ = TFDebertaVaModel(config=_UpperCamelCase ) lowerCAmelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase_ = [input_ids, input_mask] lowerCAmelCase_ = model(_UpperCamelCase ) lowerCAmelCase_ = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Any: lowerCAmelCase_ = TFDebertaVaForMaskedLM(config=_UpperCamelCase ) lowerCAmelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCAmelCase_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = TFDebertaVaForSequenceClassification(config=_UpperCamelCase ) lowerCAmelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCAmelCase_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> int: lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = TFDebertaVaForTokenClassification(config=_UpperCamelCase ) lowerCAmelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCAmelCase_ = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: lowerCAmelCase_ = TFDebertaVaForQuestionAnswering(config=_UpperCamelCase ) lowerCAmelCase_ = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCAmelCase_ = model(_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ) -> Tuple: lowerCAmelCase_ = self.prepare_config_and_inputs() ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) = config_and_inputs lowerCAmelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowerCAmelCase ( __a , __a , unittest.TestCase ): _lowercase =( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _lowercase =( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _lowercase =False _lowercase =False def __a ( self ) -> Optional[int]: lowerCAmelCase_ = TFDebertaVaModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def __a ( self ) -> str: self.config_tester.run_common_tests() def __a ( self ) -> int: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def __a ( self ) -> List[str]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def __a ( self ) -> int: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(_UpperCamelCase ) @require_tf class _lowerCAmelCase ( unittest.TestCase ): @unittest.skip(reason="Model not available yet" ) def __a ( self ) -> List[str]: pass @slow def __a ( self ) -> Dict: lowerCAmelCase_ = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) lowerCAmelCase_ = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) lowerCAmelCase_ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCAmelCase_ = model(_UpperCamelCase , attention_mask=_UpperCamelCase )[0] lowerCAmelCase_ = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _UpperCamelCase , atol=1e-4 )
290
1
"""simple docstring""" def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = set() # edges = list of graph's edges A_ : Union[str, Any] = get_edges(_UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: A_ , A_ : Optional[Any] = edges.pop() chosen_vertices.add(_UpperCAmelCase ) chosen_vertices.add(_UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_UpperCAmelCase ) return chosen_vertices def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Tuple = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
361
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ , A_ : List[Any] = emb.weight.shape A_ : List[Any] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) A_ : Any = emb.weight.data return lin_layer def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : int = torch.load(_UpperCAmelCase , map_location='''cpu''' ) A_ : Any = Namespace(**checkpoint['''cfg''']['''model'''] ) A_ : List[str] = checkpoint['''model'''] remove_ignore_keys_(_UpperCAmelCase ) A_ : Union[str, Any] = state_dict['''decoder.embed_tokens.weight'''].shape[0] A_ : List[str] = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} A_ : int = XGLMConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) A_ : Any = XGLMForCausalLM(_UpperCAmelCase ) A_ : int = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) print(_UpperCAmelCase ) A_ : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _lowerCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _lowerCamelCase : int = parser.parse_args() _lowerCamelCase : Optional[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
361
1
"""simple docstring""" import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCamelCase = """\ """ UpperCamelCase = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ UpperCamelCase = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def snake_case__ ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 16 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__=None ) -> List[str]: if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": A__ = "cuda" else: A__ = "cuda" if torch.cuda.is_available() else "cpu" A__ = AutoModelForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE__ ) A__ = model.to(SCREAMING_SNAKE_CASE__ ) A__ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: A__ = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(SCREAMING_SNAKE_CASE__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" A__ = model.config.max_length - 1 else: A__ = model.config.max_length A__ = tokenizer( SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , return_tensors="pt" , return_attention_mask=SCREAMING_SNAKE_CASE__ , ).to(SCREAMING_SNAKE_CASE__ ) A__ = encodings["input_ids"] A__ = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." A__ = [] A__ = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ): A__ = min(start_index + batch_size , len(SCREAMING_SNAKE_CASE__ ) ) A__ = encoded_texts[start_index:end_index] A__ = attn_masks[start_index:end_index] if add_start_token: A__ = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(SCREAMING_SNAKE_CASE__ ) A__ = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) A__ = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(SCREAMING_SNAKE_CASE__ ), attn_mask] , dim=1 ) A__ = encoded_batch with torch.no_grad(): A__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ).logits A__ = out_logits[..., :-1, :].contiguous() A__ = labels[..., 1:].contiguous() A__ = attn_mask[..., 1:].contiguous() A__ = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , SCREAMING_SNAKE_CASE__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(SCREAMING_SNAKE_CASE__ )}
104
'''simple docstring''' import numpy as np def A__ ( A_ ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
497
0
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def A__ ( __lowerCamelCase ): return (data["data"], data["target"]) def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = XGBClassifier() classifier.fit(__lowerCamelCase, __lowerCamelCase ) return classifier def A__ ( ): SCREAMING_SNAKE_CASE_ = load_iris() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = data_handling(__lowerCamelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = train_test_split( __lowerCamelCase, __lowerCamelCase, test_size=0.25 ) SCREAMING_SNAKE_CASE_ = iris['''target_names'''] # Create an XGBoost Classifier from the training data SCREAMING_SNAKE_CASE_ = xgboost(__lowerCamelCase, __lowerCamelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, display_labels=__lowerCamelCase, cmap='''Blues''', normalize='''true''', ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
721
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =KandinskyVaaImgaImgPipeline UpperCAmelCase_ =["image_embeds", "negative_image_embeds", "image"] UpperCAmelCase_ =[ "image_embeds", "negative_image_embeds", "image", ] UpperCAmelCase_ =[ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase_ =False @property def _UpperCamelCase ( self ) -> Optional[Any]: return 32 @property def _UpperCamelCase ( self ) -> Tuple: return 32 @property def _UpperCamelCase ( self ) -> List[Any]: return self.time_input_dim @property def _UpperCamelCase ( self ) -> Tuple: return self.time_input_dim * 4 @property def _UpperCamelCase ( self ) -> List[Any]: return 100 @property def _UpperCamelCase ( self ) -> int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } SCREAMING_SNAKE_CASE_ = UNetaDConditionModel(**_A ) return model @property def _UpperCamelCase ( self ) -> List[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = self.dummy_unet SCREAMING_SNAKE_CASE_ = self.dummy_movq SCREAMING_SNAKE_CASE_ = { '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } SCREAMING_SNAKE_CASE_ = DDIMScheduler(**_A ) SCREAMING_SNAKE_CASE_ = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def _UpperCamelCase ( self , _A , _A=0 ) -> Dict: SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_A ) ).to(_A ) SCREAMING_SNAKE_CASE_ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _A ) # create init_image SCREAMING_SNAKE_CASE_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE_ = Image.fromarray(np.uinta(_A ) ).convert('''RGB''' ).resize((256, 256) ) if str(_A ).startswith('''mps''' ): SCREAMING_SNAKE_CASE_ = torch.manual_seed(_A ) else: SCREAMING_SNAKE_CASE_ = torch.Generator(device=_A ).manual_seed(_A ) SCREAMING_SNAKE_CASE_ = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = '''cpu''' SCREAMING_SNAKE_CASE_ = self.get_dummy_components() SCREAMING_SNAKE_CASE_ = self.pipeline_class(**_A ) SCREAMING_SNAKE_CASE_ = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = pipe(**self.get_dummy_inputs(_A ) ) SCREAMING_SNAKE_CASE_ = output.images SCREAMING_SNAKE_CASE_ = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] SCREAMING_SNAKE_CASE_ = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE_ = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) SCREAMING_SNAKE_CASE_ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) SCREAMING_SNAKE_CASE_ = '''A red cartoon frog, 4k''' SCREAMING_SNAKE_CASE_ = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) SCREAMING_SNAKE_CASE_ = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE_ = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() SCREAMING_SNAKE_CASE_ = pipeline( image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
597
0
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
61
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Optional[Any] = ["""input_ids""", """attention_mask"""] def __init__( self , a="</s>" , a="<unk>" , a="<pad>" , a=125 , a=None , **a , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: lowercase__ : Any = [f"""<extra_id_{i}>""" for i in range(a)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowercase__ : List[Any] = len(set(filter(lambda a: bool('extra_id' in str(a)) , a))) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens') lowercase__ : List[str] = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else pad_token lowercase__ : Tuple = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else eos_token lowercase__ : str = AddedToken(a , lstrip=a , rstrip=a) if isinstance(a , a) else unk_token super().__init__( eos_token=a , unk_token=a , pad_token=a , extra_ids=a , additional_special_tokens=a , **a , ) lowercase__ : str = extra_ids lowercase__ : Any = 2**8 # utf is 8 bits # define special tokens dict lowercase__ : Dict[int, str] = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } lowercase__ : Optional[Any] = len(self.special_tokens_encoder) lowercase__ : List[str] = len(a) for i, token in enumerate(a): lowercase__ : List[Any] = self.vocab_size + i - n lowercase__ : Dict[str, int] = {v: k for k, v in self.special_tokens_encoder.items()} @property def snake_case_ ( self): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def snake_case_ ( self , a , a = None , a = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a) # normal case: some special tokens if token_ids_a is None: return ([0] * len(a)) + [1] return ([0] * len(a)) + [1] + ([0] * len(a)) + [1] def snake_case_ ( self , a): if len(a) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ' eos tokens being added.') return token_ids else: return token_ids + [self.eos_token_id] def snake_case_ ( self , a , a = None): lowercase__ : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def snake_case_ ( self , a , a = None): lowercase__ : List[str] = self._add_eos_if_not_present(a) if token_ids_a is None: return token_ids_a else: lowercase__ : Union[str, Any] = self._add_eos_if_not_present(a) return token_ids_a + token_ids_a def snake_case_ ( self , a): lowercase__ : Any = [chr(a) for i in text.encode('utf-8')] return tokens def snake_case_ ( self , a): if token in self.special_tokens_encoder: lowercase__ : Tuple = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: lowercase__ : Tuple = self.added_tokens_encoder[token] elif len(a) != 1: lowercase__ : Tuple = self.unk_token_id else: lowercase__ : Optional[Any] = ord(a) + self._num_special_tokens return token_id def snake_case_ ( self , a): if index in self.special_tokens_decoder: lowercase__ : Dict = self.special_tokens_decoder[index] else: lowercase__ : List[Any] = chr(index - self._num_special_tokens) return token def snake_case_ ( self , a): lowercase__ : Optional[Any] = B'' for token in tokens: if token in self.special_tokens_decoder: lowercase__ : Optional[int] = self.special_tokens_decoder[token].encode('utf-8') elif token in self.added_tokens_decoder: lowercase__ : Union[str, Any] = self.special_tokens_decoder[token].encode('utf-8') elif token in self.special_tokens_encoder: lowercase__ : List[str] = token.encode('utf-8') elif token in self.added_tokens_encoder: lowercase__ : Optional[int] = token.encode('utf-8') else: lowercase__ : Optional[Any] = bytes([ord(a)]) bstring += tok_string lowercase__ : List[Any] = bstring.decode('utf-8' , errors='ignore') return string def snake_case_ ( self , a , a = None): return ()
164
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : List[Any] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = [ 'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTMSNModel', 'ViTMSNForImageClassification', 'ViTMSNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
709
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : str = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Optional[Any] = """informer""" _UpperCamelCase : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case = None , snake_case = None , snake_case = "student_t" , snake_case = "nll" , snake_case = 1 , snake_case = None , snake_case = "mean" , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = None , snake_case = 64 , snake_case = 32 , snake_case = 32 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = True , snake_case = "gelu" , snake_case = 0.05 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 100 , snake_case = 0.02 , snake_case=True , snake_case = "prob" , snake_case = 5 , snake_case = True , **snake_case , ) -> Union[str, Any]: """simple docstring""" a__ : Optional[Any] = prediction_length a__ : Optional[int] = context_length or prediction_length a__ : Optional[int] = distribution_output a__ : str = loss a__ : Optional[Any] = input_size a__ : int = num_time_features a__ : Optional[int] = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] a__ : Optional[int] = scaling a__ : List[str] = num_dynamic_real_features a__ : Optional[int] = num_static_real_features a__ : Optional[int] = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) a__ : List[Any] = cardinality else: a__ : Tuple = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) a__ : Tuple = embedding_dimension else: a__ : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] a__ : Optional[Any] = num_parallel_samples # Transformer architecture configuration a__ : int = input_size * len(self.lags_sequence ) + self._number_of_features a__ : Union[str, Any] = d_model a__ : Any = encoder_attention_heads a__ : Optional[Any] = decoder_attention_heads a__ : int = encoder_ffn_dim a__ : List[Any] = decoder_ffn_dim a__ : List[str] = encoder_layers a__ : Any = decoder_layers a__ : List[str] = dropout a__ : int = attention_dropout a__ : List[Any] = activation_dropout a__ : Optional[int] = encoder_layerdrop a__ : Tuple = decoder_layerdrop a__ : Any = activation_function a__ : Tuple = init_std a__ : Optional[int] = use_cache # Informer a__ : Union[str, Any] = attention_type a__ : List[str] = sampling_factor a__ : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def _snake_case ( self ) -> int: """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
629
0
"""simple docstring""" import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _lowerCAmelCase :Dict = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument( '--original_config_file', type=str, required=True, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--image_size', default=512, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') def lowerCamelCase_ (UpperCamelCase__ : Optional[Any] ): if string == "True": return True elif string == "False": return False else: raise ValueError(F'could not parse string as bool {string}' ) parser.add_argument( '--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool ) parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int) _lowerCAmelCase :List[Any] = parser.parse_args() _lowerCAmelCase :str = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
506
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : str , lowerCAmelCase : int = 16 , lowerCAmelCase : int = 88 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 1 , lowerCAmelCase : float = 0.0 , lowerCAmelCase : int = 32 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : str = "geglu" , lowerCAmelCase : Optional[int] = None , ): super().__init__() lowerCAmelCase = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowerCAmelCase , attention_head_dim=lowerCAmelCase , in_channels=lowerCAmelCase , num_layers=lowerCAmelCase , dropout=lowerCAmelCase , norm_num_groups=lowerCAmelCase , cross_attention_dim=lowerCAmelCase , attention_bias=lowerCAmelCase , sample_size=lowerCAmelCase , num_vector_embeds=lowerCAmelCase , activation_fn=lowerCAmelCase , num_embeds_ada_norm=lowerCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCAmelCase = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCAmelCase = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCAmelCase = [1, 0] def __lowercase ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : int=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Any=None , lowerCAmelCase : bool = True , ): lowerCAmelCase = hidden_states lowerCAmelCase = [] lowerCAmelCase = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCAmelCase = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCAmelCase = self.transformer_index_for_condition[i] lowerCAmelCase = self.transformers[transformer_index]( lowerCAmelCase , encoder_hidden_states=lowerCAmelCase , timestep=lowerCAmelCase , cross_attention_kwargs=lowerCAmelCase , return_dict=lowerCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCAmelCase = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCAmelCase = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowerCAmelCase )
169
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __a = False __a = True __a = False if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') __a = parser.parse_args() __a = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } __a = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } __a = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: __a = reader.read() __a = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): __a = UNetaDModel(**config) else: __a = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel __a = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __a = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __a = config[key] del config[key] __a = [k.replace('UNetRes', '') for k in config['down_block_types']] __a = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: __a = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) __a = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue __a = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: __a = param_value __a = True if not has_changed: __a = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
708
def lowerCamelCase__ ( _lowercase = 1000 ): '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
300
0
from statistics import mean import numpy as np def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : List[Any] = 0 # Number of processes finished __lowerCAmelCase : List[Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __lowerCAmelCase : Optional[Any] = [0] * no_of_process # List to include calculation results __lowerCAmelCase : Union[str, Any] = [0] * no_of_process # Sort by arrival time. __lowerCAmelCase : Any = [burst_time[i] for i in np.argsort(lowercase__ )] __lowerCAmelCase : List[Any] = [process_name[i] for i in np.argsort(lowercase__ )] arrival_time.sort() while no_of_process > finished_process_count: __lowerCAmelCase : List[str] = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __lowerCAmelCase : Dict = arrival_time[i] __lowerCAmelCase : Any = 0 # Index showing the location of the process being performed __lowerCAmelCase : List[str] = 0 # Saves the current response ratio. __lowerCAmelCase : List[str] = 0 for i in range(0 , lowercase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __lowerCAmelCase : List[str] = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __lowerCAmelCase : Optional[Any] = temp __lowerCAmelCase : Dict = i # Calculate the turn around time __lowerCAmelCase : Union[str, Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __lowerCAmelCase : List[Any] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): __lowerCAmelCase : Tuple = [0] * no_of_process for i in range(0 , lowercase__ ): __lowerCAmelCase : Dict = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCamelCase = 5 _UpperCamelCase = ["A", "B", "C", "D", "E"] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = [1, 2, 3, 4, 5] _UpperCamelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCamelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( F"{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t" F"{turn_around_time[i]}\t\t\t{waiting_time[i]}" ) print(F"average waiting time : {mean(waiting_time):.5f}") print(F"average turn around time : {mean(turn_around_time):.5f}")
492
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def _lowercase ( lowercase__ , lowercase__ , lowercase__=0 ): # Format the message. if name is None: __lowerCAmelCase : Any = None else: __lowerCAmelCase : Union[str, Any] = '''.''' * max(0 , spaces - 2 ) + '''# {:''' + str(5_0 - spaces ) + '''s}''' __lowerCAmelCase : Dict = fmt.format(lowercase__ ) # Print and recurse (if needed). if isinstance(lowercase__ , lowercase__ ): if msg is not None: print(lowercase__ ) for k in val.keys(): recursive_print(lowercase__ , val[k] , spaces + 2 ) elif isinstance(lowercase__ , torch.Tensor ): print(lowercase__ , ''':''' , val.size() ) else: print(lowercase__ , ''':''' , lowercase__ ) def _lowercase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. __lowerCAmelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] __lowerCAmelCase : Tuple = (num_heads, hidden_size, num_splits) + input_shape[1:] __lowerCAmelCase : int = param.view(*lowercase__ ) __lowerCAmelCase : int = param.transpose(0 , 2 ) __lowerCAmelCase : Any = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] __lowerCAmelCase : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] __lowerCAmelCase : str = param.view(*lowercase__ ) __lowerCAmelCase : List[str] = param.transpose(0 , 1 ).contiguous() __lowerCAmelCase : List[str] = param.view(*lowercase__ ) return param def _lowercase ( lowercase__ , lowercase__ , lowercase__ ): # The converted output model. __lowerCAmelCase : Any = {} # old versions did not store training args __lowerCAmelCase : Optional[int] = input_state_dict.get('''args''' , lowercase__ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) __lowerCAmelCase : List[str] = ds_args.padded_vocab_size __lowerCAmelCase : List[str] = ds_args.max_position_embeddings __lowerCAmelCase : Optional[int] = ds_args.hidden_size __lowerCAmelCase : Tuple = ds_args.num_layers __lowerCAmelCase : int = ds_args.num_attention_heads __lowerCAmelCase : Union[str, Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. __lowerCAmelCase : Union[str, Any] = config.n_head # The hidden_size per head. __lowerCAmelCase : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): __lowerCAmelCase : Union[str, Any] = input_state_dict['''checkpoint_version'''] else: __lowerCAmelCase : Optional[Any] = 0.0 # The model. __lowerCAmelCase : int = input_state_dict['''model'''] # The language model. __lowerCAmelCase : str = model['''language_model'''] # The embeddings. __lowerCAmelCase : Optional[Any] = lm['''embedding'''] # The word embeddings. __lowerCAmelCase : Tuple = embeddings['''word_embeddings''']['''weight'''] # Truncate the embedding table to vocab_size rows. __lowerCAmelCase : Dict = word_embeddings[: config.vocab_size, :] __lowerCAmelCase : int = word_embeddings # The position embeddings. __lowerCAmelCase : Optional[Any] = embeddings['''position_embeddings''']['''weight'''] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] __lowerCAmelCase : Dict = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. __lowerCAmelCase : Any = pos_embeddings # The transformer. __lowerCAmelCase : Dict = lm['''transformer'''] if '''transformer''' in lm.keys() else lm['''encoder'''] # The regex to extract layer names. __lowerCAmelCase : Any = re.compile(r'''layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)''' ) # The simple map of names for "automated" rules. __lowerCAmelCase : Optional[Any] = { '''attention.dense''': '''.attn.c_proj.''', '''self_attention.dense''': '''.attn.c_proj.''', '''mlp.dense_h_to_4h''': '''.mlp.c_fc.''', '''mlp.dense_4h_to_h''': '''.mlp.c_proj.''', } # Extract the layers. for key, val in transformer.items(): # Match the name. __lowerCAmelCase : str = layer_re.match(lowercase__ ) # Stop if that's not a layer if m is None: break # The index of the layer. __lowerCAmelCase : Tuple = int(m.group(1 ) ) # The name of the operation. __lowerCAmelCase : Dict = m.group(2 ) # Is it a weight or a bias? __lowerCAmelCase : Optional[Any] = m.group(3 ) # The name of the layer. __lowerCAmelCase : Dict = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith('''layernorm''' ): __lowerCAmelCase : List[Any] = '''ln_1''' if op_name.startswith('''input''' ) else '''ln_2''' __lowerCAmelCase : Optional[int] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. __lowerCAmelCase : List[str] = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , lowercase__ , lowercase__ ) __lowerCAmelCase : List[Any] = causal_mask # Insert a "dummy" tensor for masked_bias. __lowerCAmelCase : str = torch.tensor(-1E4 , dtype=torch.floataa ) __lowerCAmelCase : str = masked_bias __lowerCAmelCase : Tuple = fix_query_key_value_ordering(lowercase__ , lowercase__ , 3 , lowercase__ , lowercase__ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. __lowerCAmelCase : int = out_val.transpose(0 , 1 ).contiguous() # Store. __lowerCAmelCase : Dict = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": __lowerCAmelCase : List[str] = fix_query_key_value_ordering(lowercase__ , lowercase__ , 3 , lowercase__ , lowercase__ ) # Store. No change of shape. __lowerCAmelCase : int = out_val # Transpose the weights. elif weight_or_bias == "weight": __lowerCAmelCase : List[Any] = megatron_to_transformers[op_name] __lowerCAmelCase : Optional[int] = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": __lowerCAmelCase : Optional[int] = megatron_to_transformers[op_name] __lowerCAmelCase : Any = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. __lowerCAmelCase : str = transformer['''final_layernorm.weight'''] __lowerCAmelCase : List[Any] = transformer['''final_layernorm.bias'''] # For LM head, transformers' wants the matrix to weight embeddings. __lowerCAmelCase : List[Any] = word_embeddings # It should be done! return output_state_dict def _lowercase ( ): # Create the argument parser. __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--print-checkpoint-structure''' , action='''store_true''' ) parser.add_argument( '''path_to_checkpoint''' , type=lowercase__ , help='''Path to the checkpoint file (.zip archive or direct .pt file)''' , ) parser.add_argument( '''--config_file''' , default='''''' , type=lowercase__ , help='''An optional config json file describing the pre-trained model.''' , ) __lowerCAmelCase : Optional[int] = parser.parse_args() # Extract the basename. __lowerCAmelCase : Union[str, Any] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith('''.zip''' ): with zipfile.ZipFile(args.path_to_checkpoint , '''r''' ) as checkpoint: with checkpoint.open('''release/mp_rank_00/model_optim_rng.pt''' ) as pytorch_dict: __lowerCAmelCase : Union[str, Any] = torch.load(lowercase__ , map_location='''cpu''' ) else: __lowerCAmelCase : Optional[int] = torch.load(args.path_to_checkpoint , map_location='''cpu''' ) __lowerCAmelCase : int = input_state_dict.get('''args''' , lowercase__ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: __lowerCAmelCase : List[Any] = '''gelu_fast''' elif ds_args.openai_gelu: __lowerCAmelCase : Union[str, Any] = '''gelu_new''' else: __lowerCAmelCase : str = '''gelu''' else: # in the very early days this used to be "gelu_new" __lowerCAmelCase : int = '''gelu_new''' # Spell out all parameters in case the defaults change. __lowerCAmelCase : str = GPTaConfig( vocab_size=5_0_2_5_7 , n_positions=1_0_2_4 , n_embd=1_0_2_4 , n_layer=2_4 , n_head=1_6 , n_inner=4_0_9_6 , activation_function=lowercase__ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.0_2 , summary_type='''cls_index''' , summary_use_proj=lowercase__ , summary_activation=lowercase__ , summary_proj_to_labels=lowercase__ , summary_first_dropout=0.1 , scale_attn_weights=lowercase__ , use_cache=lowercase__ , bos_token_id=5_0_2_5_6 , eos_token_id=5_0_2_5_6 , ) else: __lowerCAmelCase : List[str] = GPTaConfig.from_json_file(args.config_file ) __lowerCAmelCase : List[str] = ['''GPT2LMHeadModel'''] # Convert. print('''Converting''' ) __lowerCAmelCase : List[Any] = convert_megatron_checkpoint(lowercase__ , lowercase__ , lowercase__ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(lowercase__ , lowercase__ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: __lowerCAmelCase : Any = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": __lowerCAmelCase : Any = '''gpt2''' elif tokenizer_type == "PretrainedFromHF": __lowerCAmelCase : Optional[int] = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: __lowerCAmelCase : str = '''gpt2''' __lowerCAmelCase : int = AutoTokenizer.from_pretrained(lowercase__ ) __lowerCAmelCase : Tuple = type(lowercase__ ).__name__ __lowerCAmelCase : Dict = tokenizer_class # Store the config to file. print('''Saving config''' ) config.save_pretrained(lowercase__ ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(lowercase__ ) # Store the state_dict to file. __lowerCAmelCase : List[str] = os.path.join(lowercase__ , '''pytorch_model.bin''' ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(lowercase__ , lowercase__ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
492
1
'''simple docstring''' import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'encoder.layer_norm_for_extract': 'layer_norm_for_extract', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'label_embs_concat': 'label_embeddings_concat', 'mask_emb': 'masked_spec_embed', 'spk_proj': 'speaker_proj', } __UpperCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'label_embeddings_concat', 'speaker_proj', 'layer_norm_for_extract', ] def SCREAMING_SNAKE_CASE_ ( snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : Union[str, Any] , snake_case_ : Dict ) -> Any: for attribute in key.split('.' ): SCREAMING_SNAKE_CASE : str = getattr(snake_case_ , snake_case_ ) if weight_type is not None: SCREAMING_SNAKE_CASE : Optional[Any] = getattr(snake_case_ , snake_case_ ).shape else: SCREAMING_SNAKE_CASE : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE : Dict = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE : Optional[int] = value elif weight_type == "bias": SCREAMING_SNAKE_CASE : Optional[Any] = value else: SCREAMING_SNAKE_CASE : str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : int , snake_case_ : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Optional[int] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE : str = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE : Dict = False if "conv_layers" in name: load_conv_layer( snake_case_ , snake_case_ , snake_case_ , snake_case_ , hf_model.config.feat_extract_norm == 'group' , ) SCREAMING_SNAKE_CASE : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE : Tuple = 'unispeech_sat.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue SCREAMING_SNAKE_CASE : Optional[Any] = True if "*" in mapped_key: SCREAMING_SNAKE_CASE : str = name.split(snake_case_ )[0].split('.' )[-2] SCREAMING_SNAKE_CASE : List[Any] = mapped_key.replace('*' , snake_case_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = 'weight_g' elif "weight_v" in name: SCREAMING_SNAKE_CASE : List[Any] = 'weight_v' elif "bias" in name: SCREAMING_SNAKE_CASE : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE : Optional[int] = 'weight' else: SCREAMING_SNAKE_CASE : Union[str, Any] = None set_recursively(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) continue if not is_used: unused_weights.append(snake_case_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def SCREAMING_SNAKE_CASE_ ( snake_case_ : Tuple , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : int ) -> str: SCREAMING_SNAKE_CASE : List[Any] = full_name.split('conv_layers.' )[-1] SCREAMING_SNAKE_CASE : Dict = name.split('.' ) SCREAMING_SNAKE_CASE : Tuple = int(items[0] ) SCREAMING_SNAKE_CASE : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : str = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) SCREAMING_SNAKE_CASE : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(snake_case_ ) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( snake_case_ : str , snake_case_ : Union[str, Any] , snake_case_ : str=None , snake_case_ : List[Any]=None , snake_case_ : Optional[Any]=True ) -> List[str]: if config_path is not None: SCREAMING_SNAKE_CASE : Optional[Any] = UniSpeechSatConfig.from_pretrained(snake_case_ ) else: SCREAMING_SNAKE_CASE : Any = UniSpeechSatConfig() SCREAMING_SNAKE_CASE : List[Any] = '' if is_finetuned: SCREAMING_SNAKE_CASE : Dict = UniSpeechSatForCTC(snake_case_ ) else: SCREAMING_SNAKE_CASE : Optional[int] = UniSpeechSatForPreTraining(snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) SCREAMING_SNAKE_CASE : Tuple = model[0].eval() recursively_load_weights(snake_case_ , snake_case_ ) hf_wavavec.save_pretrained(snake_case_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __UpperCAmelCase = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
703
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __UpperCAmelCase = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __UpperCAmelCase = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE : Any = (images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE : List[Any] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[Any] = numpy_to_pil(snake_case_ ) return images def SCREAMING_SNAKE_CASE_ ( snake_case_ : List[Any] ) -> Any: if images.ndim == 3: SCREAMING_SNAKE_CASE : Optional[Any] = images[None, ...] SCREAMING_SNAKE_CASE : Optional[int] = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: SCREAMING_SNAKE_CASE : List[Any] = [Image.fromarray(snake_case_ ) for image in images] return pil_images
220
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME _A: Any = ['''small''', '''medium''', '''large'''] _A: Dict = '''lm_head.decoder.weight''' _A: Any = '''lm_head.weight''' def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase )-> Tuple: __UpperCAmelCase = torch.load(A_ ) __UpperCAmelCase = d.pop(A_ ) os.makedirs(A_ , exist_ok=A_ ) torch.save(A_ , os.path.join(A_ , A_ ) ) if __name__ == "__main__": _A: int = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) _A: str = parser.parse_args() for MODEL in DIALOGPT_MODELS: _A: Tuple = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") _A: List[Any] = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
126
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Tuple = {'''vocab_file''': '''spiece.model'''} __snake_case : Dict = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } __snake_case : Tuple = { '''AI-Sweden/gpt-sw3-126m''': 20_48, '''AI-Sweden/gpt-sw3-350m''': 20_48, '''AI-Sweden/gpt-sw3-1.6b''': 20_48, '''AI-Sweden/gpt-sw3-6.7b''': 20_48, '''AI-Sweden/gpt-sw3-20b''': 20_48, } class lowercase_ ( _A ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ["""input_ids""", """attention_mask"""] def __init__( self , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__ = None , **UpperCamelCase__ , ) -> None: """simple docstring""" UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase_ = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) UpperCAmelCase_ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing UpperCAmelCase_ = "<|endoftext|>" if eos_token is None else eos_token UpperCAmelCase_ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: UpperCAmelCase_ = unk_token if pad_token is None else pad_token UpperCAmelCase_ = eos_token if bos_token is None else bos_token else: UpperCAmelCase_ = "<pad>" if pad_token is None else pad_token UpperCAmelCase_ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) # Used for whitespace normalization in input texts # fmt : off UpperCAmelCase_ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing UpperCAmelCase_ = re.compile( F"""[{"".join(map(UpperCamelCase__ , list(range(0 , 9 ) ) + list(range(1_1 , 3_2 ) ) + list(range(1_2_7 , 1_6_0 ) ) + [1_6_0, 1_7_3, 8_2_0_3] ) )}]""" ) def __getstate__( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self , UpperCamelCase__ ) -> List[str]: """simple docstring""" UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def lowerCamelCase_ ( self ) -> int: """simple docstring""" return len(self.sp_model ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = self.non_printing_characters_re.sub("" , UpperCamelCase__ ) # Normalize whitespaces UpperCAmelCase_ = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization UpperCAmelCase_ = unicodedata.normalize("NFC" , UpperCamelCase__ ) return text def lowerCamelCase_ ( self , UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: """simple docstring""" UpperCAmelCase_ = self.preprocess_text(UpperCamelCase__ ) return self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> int: """simple docstring""" return self.sp_model.PieceToId(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" return self.sp_model.IdToPiece(UpperCamelCase__ ) @staticmethod def lowerCamelCase_ ( UpperCamelCase__ ) -> str: """simple docstring""" return out_string def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" UpperCAmelCase_ = [] UpperCAmelCase_ = "" UpperCAmelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase__ ) + token UpperCAmelCase_ = True UpperCAmelCase_ = [] else: current_sub_tokens.append(UpperCamelCase__ ) UpperCAmelCase_ = False out_string += self.sp_model.decode(UpperCamelCase__ ) return out_string def lowerCamelCase_ ( self ) -> Dict[str, int]: """simple docstring""" UpperCAmelCase_ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def lowerCamelCase_ ( self , UpperCamelCase__ , UpperCamelCase__ = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase_ = self.preprocess_text(UpperCamelCase__ ) UpperCAmelCase_ = self.sp_model.encode(UpperCamelCase__ ) else: UpperCAmelCase_ = [self.preprocess_text(UpperCamelCase__ ) for t in text] UpperCAmelCase_ = self.sp_model.encode(UpperCamelCase__ ) if return_tensors is True or return_tensors == "pt": UpperCAmelCase_ = torch.tensor(UpperCamelCase__ ) return token_ids def lowerCamelCase_ ( self , UpperCamelCase__ ) -> str: """simple docstring""" return self.sp_model.decode(UpperCamelCase__ ) def lowerCamelCase_ ( self , UpperCamelCase__ ) -> List[int]: """simple docstring""" UpperCAmelCase_ = [F"""User: {text}""" if is_user else F"""Bot: {text}""" for is_user, text in conversation.iter_texts()] UpperCAmelCase_ = ( F"""{self.eos_token}{self.bos_token}""" + F"""{self.bos_token}""".join(UpperCamelCase__ ) + F"""{self.bos_token}Bot:""" ) return self.encode(text=UpperCamelCase__ )
660
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase__: '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , __SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , ) -> Optional[Any]: """simple docstring""" UpperCamelCase__ : Any =parent UpperCamelCase__ : Any =batch_size UpperCamelCase__ : Optional[int] =image_size UpperCamelCase__ : Optional[int] =num_channels UpperCamelCase__ : Tuple =embeddings_size UpperCamelCase__ : Union[str, Any] =hidden_sizes UpperCamelCase__ : int =depths UpperCamelCase__ : List[Any] =is_training UpperCamelCase__ : List[str] =use_labels UpperCamelCase__ : Any =hidden_act UpperCamelCase__ : str =num_labels UpperCamelCase__ : Any =scope UpperCamelCase__ : int =len(__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Dict: """simple docstring""" UpperCamelCase__ : Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : Any =None if self.use_labels: UpperCamelCase__ : List[str] =ids_tensor([self.batch_size] , self.num_labels) UpperCamelCase__ : Optional[int] =self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self) -> Tuple: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> str: """simple docstring""" UpperCamelCase__ : Dict =TFResNetModel(config=__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Tuple =model(__SCREAMING_SNAKE_CASE) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Dict: """simple docstring""" UpperCamelCase__ : List[Any] =self.num_labels UpperCamelCase__ : Dict =TFResNetForImageClassification(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : int =model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self) -> Any: """simple docstring""" UpperCamelCase__ : Tuple =self.prepare_config_and_inputs() UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] =config_and_inputs UpperCamelCase__ : Union[str, Any] ={"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowercase__( snake_case__ , snake_case__ , unittest.TestCase ): '''simple docstring''' snake_case__ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () snake_case__ = ( {'''feature-extraction''': TFResNetModel, '''image-classification''': TFResNetForImageClassification} if is_tf_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" UpperCamelCase__ : str =TFResNetModelTester(self) UpperCamelCase__ : List[Any] =ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase ( self) -> int: """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds") def UpperCAmelCase ( self) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings") def UpperCAmelCase ( self) -> str: """simple docstring""" pass def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ , UpperCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[int] =model_class(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Dict =inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Dict =[*signature.parameters.keys()] UpperCamelCase__ : Union[str, Any] =["pixel_values"] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> int: """simple docstring""" UpperCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> int: """simple docstring""" def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : List[Any] =model_class(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[str] =model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)) UpperCamelCase__ : Optional[int] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase__ : List[str] =self.model_tester.num_stages self.assertEqual(len(__SCREAMING_SNAKE_CASE) , expected_num_stages + 1) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase__ , UpperCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[Any] =["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase__ : List[str] =layer_type UpperCamelCase__ : Optional[Any] =True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : int =True check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self) -> Dict: """simple docstring""" UpperCamelCase__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE) @slow def UpperCAmelCase ( self) -> Optional[Any]: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Optional[Any] =TFResNetModel.from_pretrained(__SCREAMING_SNAKE_CASE) self.assertIsNotNone(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( ) -> Dict: '''simple docstring''' UpperCamelCase__ : str =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowercase__( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self) -> int: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : int =TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0]) UpperCamelCase__ : Tuple =self.default_image_processor UpperCamelCase__ : Any =prepare_img() UpperCamelCase__ : int =image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="tf") # forward pass UpperCamelCase__ : Optional[int] =model(**__SCREAMING_SNAKE_CASE) # verify the logits UpperCamelCase__ : Tuple =tf.TensorShape((1, 10_00)) self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Optional[int] =tf.constant([-11.10_69, -9.78_77, -8.37_77]) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1E-4))
582
# Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def _lowerCamelCase ( A_ : Any ) -> str: '''simple docstring''' return 1 / (1 + np.exp(-z )) def _lowerCamelCase ( A_ : Optional[Any] , A_ : int ) -> str: '''simple docstring''' return (-y * np.log(A_ ) - (1 - y) * np.log(1 - h )).mean() def _lowerCamelCase ( A_ : Any , A_ : Union[str, Any] , A_ : str ) -> Dict: '''simple docstring''' UpperCamelCase__ : Dict =np.dot(A_ , A_ ) return np.sum(y * scores - np.log(1 + np.exp(A_ ) ) ) def _lowerCamelCase ( A_ : Optional[int] , A_ : List[str] , A_ : Any , A_ : Dict=7_0_0_0_0 ) -> Dict: '''simple docstring''' UpperCamelCase__ : Tuple =np.zeros(x.shape[1] ) for iterations in range(A_ ): UpperCamelCase__ : List[Any] =np.dot(A_ , A_ ) UpperCamelCase__ : Optional[int] =sigmoid_function(A_ ) UpperCamelCase__ : Optional[Any] =np.dot(x.T , h - y ) / y.size UpperCamelCase__ : Optional[int] =theta - alpha * gradient # updating the weights UpperCamelCase__ : Union[str, Any] =np.dot(A_ , A_ ) UpperCamelCase__ : Any =sigmoid_function(A_ ) UpperCamelCase__ : Dict =cost_function(A_ , A_ ) if iterations % 1_0_0 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": __UpperCAmelCase = datasets.load_iris() __UpperCAmelCase = iris.data[:, :2] __UpperCAmelCase = (iris.target != 0) * 1 __UpperCAmelCase = 0.1 __UpperCAmelCase = logistic_reg(alpha, x, y, max_iterations=7_0000) print("""theta: """, theta) # printing the theta i.e our weights vector def _lowerCamelCase ( A_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return sigmoid_function( np.dot(A_ , A_ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="""b""", label="""0""") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="""r""", label="""1""") ((__UpperCAmelCase) , (__UpperCAmelCase)) = (x[:, 0].min(), x[:, 0].max()) ((__UpperCAmelCase) , (__UpperCAmelCase)) = (x[:, 1].min(), x[:, 1].max()) ((__UpperCAmelCase) , (__UpperCAmelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) __UpperCAmelCase = np.c_[xxa.ravel(), xxa.ravel()] __UpperCAmelCase = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="""black""") plt.legend() plt.show()
582
1
'''simple docstring''' from math import isclose, sqrt def __A ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = point_y / 4 / point_x __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __SCREAMING_SNAKE_CASE : Optional[Any] = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __SCREAMING_SNAKE_CASE : List[str] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __SCREAMING_SNAKE_CASE : str = outgoing_gradient**2 + 4 __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __SCREAMING_SNAKE_CASE : Optional[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 __SCREAMING_SNAKE_CASE : Union[str, Any] = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __SCREAMING_SNAKE_CASE : int = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __SCREAMING_SNAKE_CASE : Any = x_minus if isclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else x_plus __SCREAMING_SNAKE_CASE : Optional[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def __A ( _SCREAMING_SNAKE_CASE : float = 1.4 , _SCREAMING_SNAKE_CASE : float = -9.6 ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : float = first_x_coord __SCREAMING_SNAKE_CASE : float = first_y_coord __SCREAMING_SNAKE_CASE : float = (1_0.1 - point_y) / (0.0 - point_x) while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0): __SCREAMING_SNAKE_CASE : Dict = next_point(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(F"""{solution() = }""")
211
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case : '''simple docstring''' def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any]=13 , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : Optional[Any]=2 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : Union[str, Any]=[32, 64, 128] , lowerCAmelCase : Tuple=[1, 2, 1] , lowerCAmelCase : Dict=[2, 2, 4] , lowerCAmelCase : Dict=2 , lowerCAmelCase : Any=2.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : str=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Optional[Any]="gelu" , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : Any=True , lowerCAmelCase : Dict=None , lowerCAmelCase : int=True , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : str=8 , lowerCAmelCase : int=["stage1", "stage2"] , lowerCAmelCase : List[str]=[1, 2] , ) -> List[str]: """simple docstring""" _snake_case : List[Any] = parent _snake_case : List[Any] = batch_size _snake_case : Dict = image_size _snake_case : Tuple = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : Dict = embed_dim _snake_case : Union[str, Any] = hidden_sizes _snake_case : int = depths _snake_case : Tuple = num_heads _snake_case : Any = window_size _snake_case : int = mlp_ratio _snake_case : Union[str, Any] = qkv_bias _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : List[str] = drop_path_rate _snake_case : Union[str, Any] = hidden_act _snake_case : Any = use_absolute_embeddings _snake_case : Dict = patch_norm _snake_case : List[Any] = layer_norm_eps _snake_case : Optional[int] = initializer_range _snake_case : List[Any] = is_training _snake_case : Dict = scope _snake_case : Any = use_labels _snake_case : int = type_sequence_label_size _snake_case : int = encoder_stride _snake_case : Optional[Any] = out_features _snake_case : Any = out_indices def UpperCamelCase_ ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _snake_case : Dict = None if self.use_labels: _snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : Union[str, Any] = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Optional[Any]) -> Any: """simple docstring""" return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = FocalNetModel(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Optional[Any] = model(lowerCAmelCase) _snake_case : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _snake_case : Any = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple) -> Any: """simple docstring""" _snake_case : Any = FocalNetBackbone(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : int = model(lowerCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None _snake_case : Tuple = None _snake_case : str = FocalNetBackbone(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : List[str] = model(lowerCAmelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" _snake_case : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : List[str] = model(lowerCAmelCase) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images _snake_case : Dict = 1 _snake_case : Union[str, Any] = FocalNetForMaskedImageModeling(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _snake_case : Optional[int] = model(lowerCAmelCase) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def UpperCamelCase_ ( self : int , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" _snake_case : List[str] = self.type_sequence_label_size _snake_case : List[str] = FocalNetForImageClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Optional[int] = model(lowerCAmelCase , labels=lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images _snake_case : List[str] = 1 _snake_case : str = FocalNetForImageClassification(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _snake_case : int = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase_ ( self : Tuple) -> Dict: """simple docstring""" _snake_case : int = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case : Optional[int] = config_and_inputs _snake_case : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : int = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) snake_case_ : Optional[int] = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) snake_case_ : List[Any] = False snake_case_ : List[str] = False snake_case_ : Dict = False snake_case_ : str = False snake_case_ : Optional[Any] = False def UpperCamelCase_ ( self : List[str]) -> Any: """simple docstring""" _snake_case : List[str] = FocalNetModelTester(self) _snake_case : List[str] = ConfigTester(self , config_class=lowerCAmelCase , embed_dim=37 , has_text_modality=lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" return def UpperCamelCase_ ( self : Optional[int]) -> Dict: """simple docstring""" _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase) def UpperCamelCase_ ( self : List[Any]) -> Optional[int]: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase) def UpperCamelCase_ ( self : Tuple) -> int: """simple docstring""" _snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase) @unittest.skip(reason="""FocalNet does not use inputs_embeds""") def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""") def UpperCamelCase_ ( self : Optional[int]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Optional[Any]) -> Tuple: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _snake_case : List[str] = model_class(lowerCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _snake_case : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear)) def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _snake_case : Optional[int] = model_class(lowerCAmelCase) _snake_case : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : Dict = [*signature.parameters.keys()] _snake_case : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Dict , lowerCAmelCase : str) -> List[Any]: """simple docstring""" _snake_case : str = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() with torch.no_grad(): _snake_case : int = model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) _snake_case : List[Any] = outputs.hidden_states _snake_case : Optional[Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths) + 1) self.assertEqual(len(lowerCAmelCase) , lowerCAmelCase) # FocalNet has a different seq_length _snake_case : List[Any] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _snake_case : int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) _snake_case : int = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase) , lowerCAmelCase) _snake_case , _snake_case , _snake_case , _snake_case : str = reshaped_hidden_states[0].shape _snake_case : Any = ( reshaped_hidden_states[0].view(lowerCAmelCase , lowerCAmelCase , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def UpperCamelCase_ ( self : Dict) -> List[str]: """simple docstring""" _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _snake_case : int = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Tuple) -> Optional[int]: """simple docstring""" _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Tuple = 3 _snake_case : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _snake_case : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _snake_case : List[str] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _snake_case : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _snake_case : Union[str, Any] = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case : List[Any] = True self.check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , (padded_height, padded_width)) @slow def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Union[str, Any] = FocalNetModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) def UpperCamelCase_ ( self : Dict) -> List[str]: """simple docstring""" _snake_case , _snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Optional[int] = _config_zero_init(lowerCAmelCase) for model_class in self.all_model_classes: _snake_case : str = model_class(config=lowerCAmelCase) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @require_vision @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""") if is_vision_available() else None @slow def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _snake_case : Any = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""").to(lowerCAmelCase) _snake_case : Any = self.default_image_processor _snake_case : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") _snake_case : Optional[int] = image_processor(images=lowerCAmelCase , return_tensors="""pt""").to(lowerCAmelCase) # forward pass with torch.no_grad(): _snake_case : List[str] = model(**lowerCAmelCase) # verify the logits _snake_case : Optional[int] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowerCAmelCase) _snake_case : str = torch.tensor([0.2_166, -0.4_368, 0.2_191]).to(lowerCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1E-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 281) @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : List[str] = (FocalNetBackbone,) if is_torch_available() else () snake_case_ : Any = FocalNetConfig snake_case_ : Optional[Any] = False def UpperCamelCase_ ( self : int) -> Dict: """simple docstring""" _snake_case : Optional[Any] = FocalNetModelTester(self)
477
0
'''simple docstring''' from math import isqrt def __UpperCAmelCase ( UpperCamelCase__ :int ) -> list[int]: snake_case__ : Dict = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase__ , UpperCamelCase__ ): snake_case__ : Optional[int] = False return [i for i in range(2 , UpperCamelCase__ ) if is_prime[i]] def __UpperCAmelCase ( UpperCamelCase__ :int = 10**8 ) -> int: snake_case__ : Optional[int] = calculate_prime_numbers(max_number // 2 ) snake_case__ : List[Any] = 0 snake_case__ : Tuple = 0 snake_case__ : Tuple = len(UpperCamelCase__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"{solution() = }")
574
'''simple docstring''' from __future__ import annotations from PIL import Image # Define glider example _lowercase : Union[str, Any] =[ [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], ] # Define blinker example _lowercase : List[Any] =[[0, 1, 0], [0, 1, 0], [0, 1, 0]] def __UpperCAmelCase ( UpperCamelCase__ :list[list[int]] ) -> list[list[int]]: snake_case__ : str = [] for i in range(len(UpperCamelCase__ ) ): snake_case__ : int = [] for j in range(len(cells[i] ) ): # Get the number of live neighbours snake_case__ : Union[str, Any] = 0 if i > 0 and j > 0: neighbour_count += cells[i - 1][j - 1] if i > 0: neighbour_count += cells[i - 1][j] if i > 0 and j < len(cells[i] ) - 1: neighbour_count += cells[i - 1][j + 1] if j > 0: neighbour_count += cells[i][j - 1] if j < len(cells[i] ) - 1: neighbour_count += cells[i][j + 1] if i < len(UpperCamelCase__ ) - 1 and j > 0: neighbour_count += cells[i + 1][j - 1] if i < len(UpperCamelCase__ ) - 1: neighbour_count += cells[i + 1][j] if i < len(UpperCamelCase__ ) - 1 and j < len(cells[i] ) - 1: neighbour_count += cells[i + 1][j + 1] # Rules of the game of life (excerpt from Wikipedia): # 1. Any live cell with two or three live neighbours survives. # 2. Any dead cell with three live neighbours becomes a live cell. # 3. All other live cells die in the next generation. # Similarly, all other dead cells stay dead. snake_case__ : Dict = cells[i][j] == 1 if ( (alive and 2 <= neighbour_count <= 3) or not alive and neighbour_count == 3 ): next_generation_row.append(1 ) else: next_generation_row.append(0 ) next_generation.append(UpperCamelCase__ ) return next_generation def __UpperCAmelCase ( UpperCamelCase__ :list[list[int]] , UpperCamelCase__ :int ) -> list[Image.Image]: snake_case__ : List[Any] = [] for _ in range(UpperCamelCase__ ): # Create output image snake_case__ : Any = Image.new('''RGB''' , (len(cells[0] ), len(UpperCamelCase__ )) ) snake_case__ : Tuple = img.load() # Save cells to image for x in range(len(UpperCamelCase__ ) ): for y in range(len(cells[0] ) ): snake_case__ : List[str] = 255 - cells[y][x] * 255 snake_case__ : int = (colour, colour, colour) # Save image images.append(UpperCamelCase__ ) snake_case__ : Any = new_generation(UpperCamelCase__ ) return images if __name__ == "__main__": _lowercase : str =generate_images(GLIDER, 16) images[0].save("out.gif", save_all=True, append_images=images[1:])
574
1
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging __snake_case = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Dict=None ): return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ : Dict =list_field( default=[], metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) }, ) UpperCamelCase_ : Any =list_field( default=[8], metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) UpperCamelCase_ : Dict =list_field( default=[8, 32, 128, 512], metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'}, ) UpperCamelCase_ : Dict =field( default=lowercase, metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'}, ) UpperCamelCase_ : List[Any] =field( default=lowercase, metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'}, ) UpperCamelCase_ : List[str] =field( default=lowercase, metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) UpperCamelCase_ : str =field(default=lowercase, metadata={'help': 'Use FP16 to accelerate inference.'} ) UpperCamelCase_ : List[str] =field(default=lowercase, metadata={'help': 'Benchmark training of model'} ) UpperCamelCase_ : Any =field(default=lowercase, metadata={'help': 'Verbose memory tracing'} ) UpperCamelCase_ : Tuple =field( default=lowercase, metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'}, ) UpperCamelCase_ : Optional[int] =field( default=lowercase, metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' }, ) UpperCamelCase_ : Union[str, Any] =field(default=lowercase, metadata={'help': 'Trace memory line by line'} ) UpperCamelCase_ : str =field(default=lowercase, metadata={'help': 'Save result to a CSV file'} ) UpperCamelCase_ : Union[str, Any] =field(default=lowercase, metadata={'help': 'Save all print statements in a log file'} ) UpperCamelCase_ : int =field(default=lowercase, metadata={'help': 'Whether to print environment information'} ) UpperCamelCase_ : Any =field( default=lowercase, metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) }, ) UpperCamelCase_ : List[str] =field( default=f'''inference_time_{round(time() )}.csv''', metadata={'help': 'CSV filename used if saving time results to csv.'}, ) UpperCamelCase_ : List[str] =field( default=f'''inference_memory_{round(time() )}.csv''', metadata={'help': 'CSV filename used if saving memory results to csv.'}, ) UpperCamelCase_ : str =field( default=f'''train_time_{round(time() )}.csv''', metadata={'help': 'CSV filename used if saving time results to csv for training.'}, ) UpperCamelCase_ : Optional[Any] =field( default=f'''train_memory_{round(time() )}.csv''', metadata={'help': 'CSV filename used if saving memory results to csv for training.'}, ) UpperCamelCase_ : int =field( default=f'''env_info_{round(time() )}.csv''', metadata={'help': 'CSV filename used if saving environment information.'}, ) UpperCamelCase_ : Any =field( default=f'''log_{round(time() )}.csv''', metadata={'help': 'Log filename used if print statements are saved in log.'}, ) UpperCamelCase_ : int =field(default=3, metadata={'help': 'Times an experiment will be run.'} ) UpperCamelCase_ : List[str] =field( default=lowercase, metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) }, ) def UpperCAmelCase ( self ) -> Optional[Any]: warnings.warn( F'''The class {self.__class__} is deprecated. Hugging Face Benchmarking utils''' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , _UpperCAmelCase , ) def UpperCAmelCase ( self ) -> Optional[Any]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def UpperCAmelCase ( self ) -> List[str]: if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def UpperCAmelCase ( self ) -> List[str]: if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
658
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
82
0
'''simple docstring''' import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters lowerCAmelCase_ : Optional[Any] = logging.get_logger(__name__) def __a ( __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None ) -> Any: '''simple docstring''' if "." in tensor_name: lowercase_ = tensor_name.split("." ) for split in splits[:-1]: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) lowercase_ = new_module lowercase_ = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(f'{module} does not have a parameter or a buffer named {tensor_name}.' ) lowercase_ = tensor_name in module._buffers lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if old_value.device == torch.device("meta" ) and device not in ["meta", torch.device("meta" )] and value is None: raise ValueError(f'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) lowercase_ = False lowercase_ = False if is_buffer or not is_bitsandbytes_available(): lowercase_ = False lowercase_ = False else: lowercase_ = hasattr(bnb.nn , "Params4bit" ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowercase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowercase_ = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowercase_ = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase_ = value.to("cpu" ) if value.dtype == torch.inta: lowercase_ = version.parse(importlib.metadata.version("bitsandbytes" ) ) > version.parse( "0.37.2" ) if not is_abit_serializable: raise ValueError( "Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. " "Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`." ) else: lowercase_ = torch.tensor(__lowerCamelCase , device="cpu" ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , __lowerCamelCase ) and fpaa_statistics is None: lowercase_ = new_value.T lowercase_ = old_value.__dict__ if is_abit: lowercase_ = bnb.nn.IntaParams(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) elif is_abit: lowercase_ = bnb.nn.Paramsabit(__lowerCamelCase , requires_grad=__lowerCamelCase , **__lowerCamelCase ).to(__lowerCamelCase ) lowercase_ = new_value if fpaa_statistics is not None: setattr(module.weight , "SCB" , fpaa_statistics.to(__lowerCamelCase ) ) else: if value is None: lowercase_ = old_value.to(__lowerCamelCase ) elif isinstance(__lowerCamelCase , torch.Tensor ): lowercase_ = value.to(__lowerCamelCase ) else: lowercase_ = torch.tensor(__lowerCamelCase , device=__lowerCamelCase ) if is_buffer: lowercase_ = new_value else: lowercase_ = nn.Parameter(__lowerCamelCase , requires_grad=old_value.requires_grad ) lowercase_ = new_value def __a ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=False ) -> str: '''simple docstring''' for name, module in model.named_children(): if current_key_name is None: lowercase_ = [] current_key_name.append(__lowerCamelCase ) if (isinstance(__lowerCamelCase , nn.Linear ) or isinstance(__lowerCamelCase , __lowerCamelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in ".".join(__lowerCamelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ , lowercase_ = module.weight.shape else: lowercase_ = module.in_features lowercase_ = module.out_features if quantization_config.quantization_method() == "llm_int8": lowercase_ = bnb.nn.LinearabitLt( __lowerCamelCase , __lowerCamelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowercase_ = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowercase_ = bnb.nn.Linearabit( __lowerCamelCase , __lowerCamelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowercase_ = True # Store the module class in case we need to transpose the weight later lowercase_ = type(__lowerCamelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(__lowerCamelCase ) if len(list(module.children() ) ) > 0: lowercase_ , lowercase_ = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , has_been_replaced=__lowerCamelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __a ( __lowerCamelCase : Dict , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[str]=None ) -> Tuple: '''simple docstring''' lowercase_ = ["lm_head"] if modules_to_not_convert is None else modules_to_not_convert lowercase_ , lowercase_ = _replace_with_bnb_linear( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def __a ( *__lowerCamelCase : Optional[int] , **__lowerCamelCase : Optional[int] ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead" , __lowerCamelCase , ) return replace_with_bnb_linear(*__lowerCamelCase , **__lowerCamelCase ) def __a ( *__lowerCamelCase : List[Any] , **__lowerCamelCase : Tuple ) -> List[str]: '''simple docstring''' warnings.warn( "`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead" , __lowerCamelCase , ) return set_module_quantized_tensor_to_device(*__lowerCamelCase , **__lowerCamelCase ) def __a ( __lowerCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase_ = deepcopy(__lowerCamelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowercase_ = find_tied_parameters(__lowerCamelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCamelCase , __lowerCamelCase ): lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowercase_ = sum(__lowerCamelCase , [] ) lowercase_ = len(__lowerCamelCase ) > 0 # Check if it is a base model lowercase_ = not hasattr(__lowerCamelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowercase_ = list(model.named_children() ) lowercase_ = [list_modules[-1][0]] # add last module together with tied weights lowercase_ = set(__lowerCamelCase ) - set(__lowerCamelCase ) lowercase_ = list(set(__lowerCamelCase ) ) + list(__lowerCamelCase ) # remove ".weight" from the keys lowercase_ = [".weight", ".bias"] lowercase_ = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowercase_ = name.replace(__lowerCamelCase , "" ) filtered_module_names.append(__lowerCamelCase ) return filtered_module_names
717
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowercase : def __init__( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any=14 , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Any=99 , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : Union[str, Any]=5 , __lowerCAmelCase : str=4 , __lowerCAmelCase : Dict=37 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : str=512 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : str=3 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : Union[str, Any]=None , ) -> List[Any]: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_token_type_ids lowercase_ = use_input_mask lowercase_ = use_labels lowercase_ = use_mc_token_ids lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = self.vocab_size - 1 def __UpperCAmelCase ( self : Tuple) -> int: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None if self.use_mc_token_ids: lowercase_ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() lowercase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCAmelCase ( self : Union[str, Any]) -> int: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , *__lowerCAmelCase : Tuple) -> List[str]: lowercase_ = CTRLModel(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase) model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase) lowercase_ = model(__lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values) , config.n_layer) def __UpperCAmelCase ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Dict , *__lowerCAmelCase : int) -> int: lowercase_ = CTRLLMHeadModel(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowercase_ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __UpperCAmelCase ( self : Dict) -> int: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def __UpperCAmelCase ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , *__lowerCAmelCase : List[Any]) -> int: lowercase_ = self.num_labels lowercase_ = CTRLForSequenceClassification(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) @require_torch class lowercase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): lowerCamelCase_ =(CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCamelCase_ =(CTRLLMHeadModel,) if is_torch_available() else () lowerCamelCase_ =( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =False def __UpperCAmelCase ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int) -> Optional[int]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __UpperCAmelCase ( self : str) -> Tuple: lowercase_ = CTRLModelTester(self) lowercase_ = ConfigTester(self , config_class=__lowerCAmelCase , n_embd=37) def __UpperCAmelCase ( self : Dict) -> Optional[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : str) -> List[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Any) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCAmelCase) def __UpperCAmelCase ( self : Tuple) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCAmelCase) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: pass @slow def __UpperCAmelCase ( self : Dict) -> List[str]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = CTRLModel.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def __UpperCAmelCase ( self : Optional[Any]) -> Dict: pass @require_torch class lowercase ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int]) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __UpperCAmelCase ( self : int) -> Any: lowercase_ = CTRLLMHeadModel.from_pretrained("ctrl") model.to(__lowerCAmelCase) lowercase_ = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__lowerCAmelCase) # Legal the president is lowercase_ = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase_ = model.generate(__lowerCAmelCase , do_sample=__lowerCAmelCase) self.assertListEqual(output_ids[0].tolist() , __lowerCAmelCase)
461
0
from __future__ import annotations from typing import Generic, TypeVar __a :Optional[Any] = TypeVar('T') class _a ( Generic[T] ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : str ): A_ = data A_ = self A_ = 0 class _a ( Generic[T] ): """simple docstring""" def __init__( self : List[Any] ): # map from node name to the node object A_ = {} def __A ( self : List[Any] , UpperCAmelCase : str ): # create a new set with x as its member A_ = DisjointSetTreeNode(UpperCAmelCase ) def __A ( self : int , UpperCAmelCase : Optional[int] ): # find the set x belongs to (with path-compression) A_ = self.map[data] if elem_ref != elem_ref.parent: A_ = self.find_set(elem_ref.parent.data ) return elem_ref.parent def __A ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : str ): # helper function for union operation if nodea.rank > nodea.rank: A_ = nodea else: A_ = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def __A ( self : Dict , UpperCAmelCase : Dict , UpperCAmelCase : int ): # merge 2 disjoint sets self.link(self.find_set(UpperCAmelCase ) , self.find_set(UpperCAmelCase ) ) class _a ( Generic[T] ): """simple docstring""" def __init__( self : Tuple ): # connections: map from the node to the neighbouring nodes (with weights) A_ = {} def __A ( self : List[str] , UpperCAmelCase : Optional[int] ): # add a node ONLY if its not present in the graph if node not in self.connections: A_ = {} def __A ( self : Dict , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] ): # add an edge with the given weight self.add_node(UpperCAmelCase ) self.add_node(UpperCAmelCase ) A_ = weight A_ = weight def __A ( self : int ): A_ = [] A_ = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda UpperCAmelCase : x[2] ) # creating the disjoint set A_ = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(UpperCAmelCase ) # MST generation A_ = 0 A_ = 0 A_ = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: A_ = edges[index] index += 1 A_ = disjoint_set.find_set(UpperCAmelCase ) A_ = disjoint_set.find_set(UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) disjoint_set.union(UpperCAmelCase , UpperCAmelCase ) return graph
86
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): @property def UpperCamelCase_ ( self ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: Dict= ort.SessionOptions() SCREAMING_SNAKE_CASE__: List[str]= False return options def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: Dict= load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) SCREAMING_SNAKE_CASE__: int= load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) SCREAMING_SNAKE_CASE__: Tuple= load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''' ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE__: Tuple= OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=lowerCAmelCase , feature_extractor=lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= '''A red cat sitting on a park bench''' SCREAMING_SNAKE_CASE__: Optional[Any]= np.random.RandomState(0 ) SCREAMING_SNAKE_CASE__: Any= pipe( prompt=lowerCAmelCase , image=lowerCAmelCase , mask_image=lowerCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=lowerCAmelCase , output_type='''np''' , ) SCREAMING_SNAKE_CASE__: Any= output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-2
64
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __A =logging.get_logger(__name__) __A ={ 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): for attribute in key.split(""".""" ): UpperCAmelCase__ : List[Any] = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: UpperCAmelCase__ : str = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: UpperCAmelCase__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase__ : str = value elif weight_type == "weight_g": UpperCAmelCase__ : Dict = value elif weight_type == "weight_v": UpperCAmelCase__ : List[str] = value elif weight_type == "bias": UpperCAmelCase__ : str = value else: UpperCAmelCase__ : Union[str, Any] = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Optional[int] = fairseq_model.state_dict() UpperCAmelCase__ : Any = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ : int = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) UpperCAmelCase__ : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ : Dict = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0] and not is_finetuned): UpperCAmelCase__ : str = True if "*" in mapped_key: UpperCAmelCase__ : str = name.split(_lowerCamelCase )[0].split(""".""" )[-2] UpperCAmelCase__ : Tuple = mapped_key.replace("""*""" , _lowerCamelCase ) if "weight_g" in name: UpperCAmelCase__ : List[str] = "weight_g" elif "weight_v" in name: UpperCAmelCase__ : int = "weight_v" elif "weight" in name: UpperCAmelCase__ : Tuple = "weight" elif "bias" in name: UpperCAmelCase__ : int = "bias" else: UpperCAmelCase__ : Dict = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCAmelCase__ : str = full_name.split("""conv_layers.""" )[-1] UpperCAmelCase__ : Union[str, Any] = name.split(""".""" ) UpperCAmelCase__ : List[Any] = int(items[0] ) UpperCAmelCase__ : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase__ : Any = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase__ : Optional[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) UpperCAmelCase__ : Optional[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase__ : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=True ): if config_path is not None: UpperCAmelCase__ : List[Any] = HubertConfig.from_pretrained(_lowerCamelCase ) else: UpperCAmelCase__ : List[Any] = HubertConfig() if is_finetuned: if dict_path: UpperCAmelCase__ : Optional[int] = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ : Dict = target_dict.pad_index UpperCAmelCase__ : Any = target_dict.bos_index UpperCAmelCase__ : Tuple = target_dict.eos_index UpperCAmelCase__ : int = len(target_dict.symbols ) UpperCAmelCase__ : Tuple = os.path.join(_lowerCamelCase , """vocab.json""" ) if not os.path.isdir(_lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , _lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_lowerCamelCase , ) UpperCAmelCase__ : Dict = True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) UpperCAmelCase__ : int = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) UpperCAmelCase__ : str = HubertForCTC(_lowerCamelCase ) else: UpperCAmelCase__ : int = HubertModel(_lowerCamelCase ) if is_finetuned: UpperCAmelCase__ : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: UpperCAmelCase__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) UpperCAmelCase__ : Optional[Any] = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __A =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) __A =parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
717
'''simple docstring''' from itertools import permutations def _UpperCamelCase ( UpperCamelCase__ ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCAmelCase__ : Optional[int] = [7, 1_1, 1_3, 1_7] for i, test in enumerate(UpperCamelCase__ ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def _UpperCamelCase ( UpperCamelCase__ = 1_0 ): return sum( int("""""".join(map(UpperCamelCase__ , UpperCamelCase__ ) ) ) for num in permutations(range(UpperCamelCase__ ) ) if is_substring_divisible(UpperCamelCase__ ) ) if __name__ == "__main__": print(f"""{solution() = }""")
113
0
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) SCREAMING_SNAKE_CASE_ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE_ = {'facebook/bart-base': BartForConditionalGeneration} SCREAMING_SNAKE_CASE_ = {'facebook/bart-base': BartTokenizer} def __snake_case ( ): """simple docstring""" UpperCamelCase = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' ,type=_lowercase ,default=_lowercase ,help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' ,type=_lowercase ,default=5 ,help='''The maximum total input sequence length after tokenization.''' ,) parser.add_argument( '''--num_beams''' ,type=_lowercase ,default=_lowercase ,help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) ,) parser.add_argument( '''--model_name_or_path''' ,type=_lowercase ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=_lowercase ,) parser.add_argument( '''--config_name''' ,type=_lowercase ,default=_lowercase ,help='''Pretrained config name or path if not the same as model_name''' ,) parser.add_argument( '''--device''' ,type=_lowercase ,default='''cpu''' ,help='''Device where the model will be run''' ,) parser.add_argument('''--output_file_path''' ,type=_lowercase ,default=_lowercase ,help='''Where to store the final ONNX file.''' ) UpperCamelCase = parser.parse_args() return args def __snake_case ( _lowercase ,_lowercase="cpu" ): """simple docstring""" UpperCamelCase = model_dict[model_name].from_pretrained(_lowercase ).to(_lowercase ) UpperCamelCase = tokenizer_dict[model_name].from_pretrained(_lowercase ) if model_name in ["facebook/bart-base"]: UpperCamelCase = 0 UpperCamelCase = None UpperCamelCase = 0 return huggingface_model, tokenizer def __snake_case ( _lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ): """simple docstring""" model.eval() UpperCamelCase = None UpperCamelCase = torch.jit.script(BARTBeamSearchGenerator(_lowercase ) ) with torch.no_grad(): UpperCamelCase = '''My friends are cool but they eat too many carbs.''' UpperCamelCase = tokenizer([ARTICLE_TO_SUMMARIZE] ,max_length=1024 ,return_tensors='''pt''' ).to(model.device ) UpperCamelCase = model.generate( inputs['''input_ids'''] ,attention_mask=inputs['''attention_mask'''] ,num_beams=_lowercase ,max_length=_lowercase ,early_stopping=_lowercase ,decoder_start_token_id=model.config.decoder_start_token_id ,) torch.onnx.export( _lowercase ,( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) ,_lowercase ,opset_version=14 ,input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] ,output_names=['''output_ids'''] ,dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } ,example_outputs=_lowercase ,) logger.info('''Model exported to {}'''.format(_lowercase ) ) UpperCamelCase = remove_dup_initializers(os.path.abspath(_lowercase ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(_lowercase ) ) UpperCamelCase = onnxruntime.InferenceSession(_lowercase ) UpperCamelCase = ort_sess.run( _lowercase ,{ '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(_lowercase ), '''max_length''': np.array(_lowercase ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } ,) np.testing.assert_allclose(summary_ids.cpu().numpy() ,ort_out[0] ,rtol=1e-3 ,atol=1e-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def __snake_case ( ): """simple docstring""" UpperCamelCase = parse_args() UpperCamelCase = 5 UpperCamelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO ,) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCamelCase = torch.device(args.device ) UpperCamelCase , UpperCamelCase = load_model_tokenizer(args.model_name_or_path ,_lowercase ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(_lowercase ) if args.max_length: UpperCamelCase = args.max_length if args.num_beams: UpperCamelCase = args.num_beams if args.output_file_path: UpperCamelCase = args.output_file_path else: UpperCamelCase = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(_lowercase ,_lowercase ,_lowercase ,_lowercase ,_lowercase ) if __name__ == "__main__": main()
34
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Tuple ): # A mock response for an HTTP head request to emulate server down __lowercase : List[Any] = mock.Mock() __lowercase : Optional[Any] = 500 __lowercase : List[Any] = {} __lowercase : str = HTTPError __lowercase : Optional[int] = {} # Download this model to make sure it's in the cache. __lowercase : str = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_snake_case ) as mock_head: __lowercase : Optional[int] = BertTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def snake_case_ ( self : Any ): # A mock response for an HTTP head request to emulate server down __lowercase : int = mock.Mock() __lowercase : List[str] = 500 __lowercase : int = {} __lowercase : List[Any] = HTTPError __lowercase : Optional[Any] = {} # Download this model to make sure it's in the cache. __lowercase : Dict = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=_snake_case ) as mock_head: __lowercase : Union[str, Any] = GPTaTokenizerFast.from_pretrained('''gpt2''' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self : int ): # This test is for deprecated behavior and can be removed in v5 try: __lowercase : Tuple = tempfile.mktemp() with open(_snake_case , '''wb''' ) as f: http_get('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' , _snake_case ) __lowercase : List[str] = AlbertTokenizer.from_pretrained(_snake_case ) finally: os.remove(_snake_case ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('''tokenizer.json''' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('''tokenizer.json''' , '''wb''' ) as f: http_get('''https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json''' , _snake_case ) __lowercase : str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('''tokenizer.json''' ) def snake_case_ ( self : Union[str, Any] ): # This test is for deprecated behavior and can be removed in v5 __lowercase : List[str] = AlbertTokenizer.from_pretrained('''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''' ) @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" A__ : Dict = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def snake_case_ ( cls : Optional[Any] ): __lowercase : List[str] = TOKEN HfFolder.save_token(_snake_case ) @classmethod def snake_case_ ( cls : Optional[int] ): try: delete_repo(token=cls._token , repo_id='''test-tokenizer''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-tokenizer-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-tokenizer''' ) except HTTPError: pass def snake_case_ ( self : List[str] ): with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[Any] = os.path.join(_snake_case , '''vocab.txt''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __lowercase : Optional[Any] = BertTokenizer(_snake_case ) tokenizer.push_to_hub('''test-tokenizer''' , use_auth_token=self._token ) __lowercase : List[str] = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''test-tokenizer''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_snake_case , repo_id='''test-tokenizer''' , push_to_hub=_snake_case , use_auth_token=self._token ) __lowercase : List[str] = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def snake_case_ ( self : Any ): with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[str] = os.path.join(_snake_case , '''vocab.txt''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __lowercase : Tuple = BertTokenizer(_snake_case ) tokenizer.push_to_hub('''valid_org/test-tokenizer-org''' , use_auth_token=self._token ) __lowercase : Any = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-tokenizer-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _snake_case , repo_id='''valid_org/test-tokenizer-org''' , push_to_hub=_snake_case , use_auth_token=self._token ) __lowercase : int = BertTokenizer.from_pretrained('''valid_org/test-tokenizer-org''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def snake_case_ ( self : Dict ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : Any = os.path.join(_snake_case , '''vocab.txt''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __lowercase : Tuple = CustomTokenizer(_snake_case ) # No fast custom tokenizer tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) __lowercase : Optional[int] = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowercase : List[str] = os.path.join(_snake_case , '''vocab.txt''' ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) ) __lowercase : Union[str, Any] = BertTokenizerFast.from_pretrained(_snake_case ) bert_tokenizer.save_pretrained(_snake_case ) __lowercase : List[Any] = CustomTokenizerFast.from_pretrained(_snake_case ) tokenizer.push_to_hub('''test-dynamic-tokenizer''' , use_auth_token=self._token ) __lowercase : Tuple = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizerFast''' ) __lowercase : Optional[Any] = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=_snake_case , trust_remote_code=_snake_case ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , '''CustomTokenizer''' ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Optional[Any] ): __lowercase : List[Any] = Trie() trie.add('''Hello 友達''' ) self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) trie.add('''Hello''' ) trie.data self.assertEqual(trie.data , {'''H''': {'''e''': {'''l''': {'''l''': {'''o''': {'''''': 1, ''' ''': {'''友''': {'''達''': {'''''': 1}}}}}}}}} ) def snake_case_ ( self : int ): __lowercase : int = Trie() self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS] This is a extra_id_100'''] ) trie.add('''[CLS]''' ) trie.add('''extra_id_1''' ) trie.add('''extra_id_100''' ) self.assertEqual(trie.split('''[CLS] This is a extra_id_100''' ) , ['''[CLS]''', ''' This is a ''', '''extra_id_100'''] ) def snake_case_ ( self : Dict ): __lowercase : List[str] = Trie() trie.add('''A''' ) self.assertEqual(trie.split('''ABC''' ) , ['''A''', '''BC'''] ) self.assertEqual(trie.split('''BCA''' ) , ['''BC''', '''A'''] ) def snake_case_ ( self : int ): __lowercase : Optional[int] = Trie() trie.add('''TOKEN]''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def snake_case_ ( self : List[Any] ): __lowercase : List[Any] = Trie() trie.add('''A''' ) trie.add('''P''' ) trie.add('''[SPECIAL_TOKEN]''' ) self.assertEqual(trie.split('''This is something [SPECIAL_TOKEN]''' ) , ['''This is something ''', '''[SPECIAL_TOKEN]'''] ) def snake_case_ ( self : Optional[Any] ): __lowercase : List[str] = Trie() trie.add('''AB''' ) trie.add('''B''' ) trie.add('''C''' ) self.assertEqual(trie.split('''ABC''' ) , ['''AB''', '''C'''] ) def snake_case_ ( self : Any ): __lowercase : str = Trie() trie.add('''ABC''' ) trie.add('''B''' ) trie.add('''CD''' ) self.assertEqual(trie.split('''ABCD''' ) , ['''ABC''', '''D'''] ) def snake_case_ ( self : Tuple ): # Even if the offsets are wrong, we necessarily output correct string # parts. __lowercase : List[str] = Trie() __lowercase : Optional[Any] = trie.cut_text('''ABC''' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_snake_case , ['''AB''', '''C'''] )
509
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A: Optional[Any] = logging.get_logger(__name__) A: str = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A: List[Any] = { 'vocab_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/vocab.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/vocab.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/vocab.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/vocab.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/vocab.json', }, 'merges_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/merges.txt', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/merges.txt', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/merges.txt', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/merges.txt', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/merges.txt', }, 'tokenizer_file': { 'gpt2': 'https://huggingface.co/gpt2/resolve/main/tokenizer.json', 'gpt2-medium': 'https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json', 'gpt2-large': 'https://huggingface.co/gpt2-large/resolve/main/tokenizer.json', 'gpt2-xl': 'https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json', 'distilgpt2': 'https://huggingface.co/distilgpt2/resolve/main/tokenizer.json', }, } A: Optional[Any] = { 'gpt2': 1_0_2_4, 'gpt2-medium': 1_0_2_4, 'gpt2-large': 1_0_2_4, 'gpt2-xl': 1_0_2_4, 'distilgpt2': 1_0_2_4, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ['input_ids', 'attention_mask'] __lowerCAmelCase : str = GPTaTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE="<|endoftext|>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Optional[Any]: '''simple docstring''' super().__init__( __A , __A , tokenizer_file=__A , unk_token=__A , bos_token=__A , eos_token=__A , add_prefix_space=__A , **__A , ) UpperCAmelCase : Any = kwargs.pop("""add_bos_token""" , __A ) UpperCAmelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __A ) != add_prefix_space: UpperCAmelCase : Dict = getattr(__A , pre_tok_state.pop("""type""" ) ) UpperCAmelCase : int = add_prefix_space UpperCAmelCase : Union[str, Any] = pre_tok_class(**__A ) UpperCAmelCase : Tuple = add_prefix_space def SCREAMING_SNAKE_CASE ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = kwargs.get("""is_split_into_words""" , __A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] = kwargs.get("""is_split_into_words""" , __A ) assert self.add_prefix_space or not is_split_into_words, ( F"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__A , **__A ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple: '''simple docstring''' UpperCAmelCase : int = self._tokenizer.model.save(__A , name=__A ) return tuple(__A ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A , add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: UpperCAmelCase : Tuple = input_ids[-self.model_max_length :] return input_ids
711
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _snake_case ( UpperCamelCase : list[list[float]] ): UpperCAmelCase : str = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase : Optional[int] = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase : Optional[Any] = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase , UpperCAmelCase : Any = matrix[1][1], matrix[0][0] UpperCAmelCase , UpperCAmelCase : Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase : str = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix UpperCAmelCase : Optional[int] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase : str = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase : List[str] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase : Optional[int] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase : Optional[int] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase : str = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase : Union[str, Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase : Dict = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase : Optional[Any] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase : str = array(UpperCamelCase ) for i in range(3 ): for j in range(3 ): UpperCAmelCase : Any = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase : Tuple = array(UpperCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(UpperCamelCase ) # Calculate the inverse of the matrix return [[float(d(UpperCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
359
0
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _lowerCamelCase( _a ): def __init__( self, *lowerCamelCase, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[Any]: """simple docstring""" super().__init__(*lowerCamelCase, **lowerCamelCase) _lowercase : Any = eval_examples _lowercase : List[Any] = post_process_function def UpperCamelCase ( self, lowerCamelCase = None, lowerCamelCase=None, lowerCamelCase = None, lowerCamelCase = "eval", **lowerCamelCase, ) -> Dict[str, float]: """simple docstring""" _lowercase : Optional[Any] = gen_kwargs.copy() _lowercase : List[Any] = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length') is not None else self.args.generation_max_length ) _lowercase : Any = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams') is not None else self.args.generation_num_beams ) _lowercase : Optional[Any] = gen_kwargs _lowercase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset _lowercase : Optional[int] = self.get_eval_dataloader(lowerCamelCase) _lowercase : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _lowercase : List[Any] = self.compute_metrics _lowercase : int = None _lowercase : Optional[Any] = time.time() _lowercase : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowercase : int = eval_loop( lowerCamelCase, description='Evaluation', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: _lowercase : Union[str, Any] = compute_metrics _lowercase : Optional[int] = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _lowercase : Dict = self.post_process_function(lowerCamelCase, lowerCamelCase, lowerCamelCase) _lowercase : List[Any] = self.compute_metrics(lowerCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _lowercase : Optional[int] = metrics.pop(lowerCamelCase) metrics.update(output.metrics) else: _lowercase : Dict = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(lowerCamelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) _lowercase : List[str] = self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCamelCase) return metrics def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase=None, lowerCamelCase = "test", **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : str = gen_kwargs.copy() _lowercase : str = self.get_test_dataloader(lowerCamelCase) # Temporarily disable metric computation, we will do it in the loop here. _lowercase : List[str] = self.compute_metrics _lowercase : Any = None _lowercase : str = time.time() _lowercase : Optional[int] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _lowercase : str = eval_loop( lowerCamelCase, description='Prediction', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCamelCase, metric_key_prefix=lowerCamelCase, ) finally: _lowercase : int = compute_metrics _lowercase : int = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( lowerCamelCase, lowerCamelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size), )) if self.post_process_function is None or self.compute_metrics is None: return output _lowercase : Dict = self.post_process_function(lowerCamelCase, lowerCamelCase, lowerCamelCase, 'predict') _lowercase : Optional[Any] = self.compute_metrics(lowerCamelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(F'''{metric_key_prefix}_'''): _lowercase : Optional[Any] = metrics.pop(lowerCamelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCamelCase)
89
"""simple docstring""" import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def _SCREAMING_SNAKE_CASE () -> Tuple: '''simple docstring''' lowercase_ = argparse.ArgumentParser() parser.add_argument( """-m""" , """--pretrained_model_name_or_path""" , type=__lowerCAmelCase , default=__lowerCAmelCase , required=__lowerCAmelCase , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , ) parser.add_argument( """-c""" , """--caption""" , type=__lowerCAmelCase , default="""robotic cat with wings""" , help="""Text used to generate images.""" , ) parser.add_argument( """-n""" , """--images_num""" , type=__lowerCAmelCase , default=4 , help="""How much images to generate.""" , ) parser.add_argument( """-s""" , """--seed""" , type=__lowerCAmelCase , default=42 , help="""Seed for random process.""" , ) parser.add_argument( """-ci""" , """--cuda_id""" , type=__lowerCAmelCase , default=0 , help="""cuda_id.""" , ) lowercase_ = parser.parse_args() return args def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' if not len(__lowerCAmelCase ) == rows * cols: raise ValueError("""The specified number of rows and columns are not correct.""" ) lowercase_ , lowercase_ = imgs[0].size lowercase_ = Image.new("""RGB""" , size=(cols * w, rows * h) ) lowercase_ , lowercase_ = grid.size for i, img in enumerate(__lowerCAmelCase ): grid.paste(__lowerCAmelCase , box=(i % cols * w, i // cols * h) ) return grid def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase="robotic cat with wings" , __lowerCAmelCase=7.5 , __lowerCAmelCase=50 , __lowerCAmelCase=1 , __lowerCAmelCase=42 , ) -> Optional[Any]: '''simple docstring''' lowercase_ = torch.Generator(pipeline.device ).manual_seed(__lowerCAmelCase ) lowercase_ = pipeline( __lowerCAmelCase , guidance_scale=__lowerCAmelCase , num_inference_steps=__lowerCAmelCase , generator=__lowerCAmelCase , num_images_per_prompt=__lowerCAmelCase , ).images lowercase_ = int(math.sqrt(__lowerCAmelCase ) ) lowercase_ = image_grid(__lowerCAmelCase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images UpperCAmelCase : str = parse_args() # Load models and create wrapper for stable diffusion UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") UpperCAmelCase : Union[str, Any] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") UpperCAmelCase : Optional[Any] = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") UpperCAmelCase : Dict = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") UpperCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) UpperCAmelCase : List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): UpperCAmelCase : Any = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: UpperCAmelCase : Any = unet.to(torch.device("cuda", args.cuda_id)) UpperCAmelCase : Optional[int] = pipeline.to(unet.device) UpperCAmelCase , UpperCAmelCase : Tuple = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) UpperCAmelCase : str = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
567
0
from __future__ import annotations import math import random from typing import Any class UpperCAmelCase : def __init__( self ): _lowerCAmelCase = [] _lowerCAmelCase = 0 _lowerCAmelCase = 0 def __lowerCAmelCase ( self ): return self.head == self.tail def __lowerCAmelCase ( self , _lowerCAmelCase ): self.data.append(_lowerCAmelCase ) _lowerCAmelCase = self.tail + 1 def __lowerCAmelCase ( self ): _lowerCAmelCase = self.data[self.head] _lowerCAmelCase = self.head + 1 return ret def __lowerCAmelCase ( self ): return self.tail - self.head def __lowerCAmelCase ( self ): print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCAmelCase : def __init__( self , _lowerCAmelCase ): _lowerCAmelCase = data _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = 1 def __lowerCAmelCase ( self ): return self.data def __lowerCAmelCase ( self ): return self.left def __lowerCAmelCase ( self ): return self.right def __lowerCAmelCase ( self ): return self.height def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = data def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = node def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = node def __lowerCAmelCase ( self , _lowerCAmelCase ): _lowerCAmelCase = height def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode | None )->int: if node is None: return 0 return node.get_height() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int )->int: if a > b: return a return b def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->MyNode: print('''left rotation node:''' , node.get_data() ) _lowerCAmelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->MyNode: print('''right rotation node:''' , node.get_data() ) _lowerCAmelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->MyNode: _lowerCAmelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(_SCREAMING_SNAKE_CASE ) ) return right_rotation(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->MyNode: _lowerCAmelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(_SCREAMING_SNAKE_CASE ) ) return left_rotation(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode | None , _SCREAMING_SNAKE_CASE : Any )->MyNode | None: if node is None: return MyNode(_SCREAMING_SNAKE_CASE ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _SCREAMING_SNAKE_CASE ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _lowerCAmelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _lowerCAmelCase = right_rotation(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = lr_rotation(_SCREAMING_SNAKE_CASE ) else: node.set_right(insert_node(node.get_right() , _SCREAMING_SNAKE_CASE ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _lowerCAmelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): _lowerCAmelCase = rl_rotation(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = left_rotation(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) return node def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->Any: while True: _lowerCAmelCase = root.get_right() if right_child is None: break _lowerCAmelCase = right_child return root.get_data() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode )->Any: while True: _lowerCAmelCase = root.get_left() if left_child is None: break _lowerCAmelCase = left_child return root.get_data() def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : MyNode , _SCREAMING_SNAKE_CASE : Any )->MyNode | None: _lowerCAmelCase = root.get_left() _lowerCAmelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _lowerCAmelCase = get_left_most(_SCREAMING_SNAKE_CASE ) root.set_data(_SCREAMING_SNAKE_CASE ) root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) elif left_child is not None: _lowerCAmelCase = left_child elif right_child is not None: _lowerCAmelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _lowerCAmelCase = left_rotation(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = rl_rotation(_SCREAMING_SNAKE_CASE ) elif get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _lowerCAmelCase = right_rotation(_SCREAMING_SNAKE_CASE ) else: _lowerCAmelCase = lr_rotation(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_SCREAMING_SNAKE_CASE ) return root class UpperCAmelCase : def __init__( self ): _lowerCAmelCase = None def __lowerCAmelCase ( self ): return get_height(self.root ) def __lowerCAmelCase ( self , _lowerCAmelCase ): print('''insert:''' + str(_lowerCAmelCase ) ) _lowerCAmelCase = insert_node(self.root , _lowerCAmelCase ) def __lowerCAmelCase ( self , _lowerCAmelCase ): print('''delete:''' + str(_lowerCAmelCase ) ) if self.root is None: print('''Tree is empty!''' ) return _lowerCAmelCase = del_node(self.root , _lowerCAmelCase ) def __str__( self , ): # a level traversale, gives a more intuitive look on the tree _lowerCAmelCase = '''''' _lowerCAmelCase = MyQueue() q.push(self.root ) _lowerCAmelCase = self.get_height() if layer == 0: return output _lowerCAmelCase = 0 while not q.is_empty(): _lowerCAmelCase = q.pop() _lowerCAmelCase = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(_lowerCAmelCase ) q.push(_lowerCAmelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _lowerCAmelCase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , _lowerCAmelCase ) - 1: _lowerCAmelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def UpperCAmelCase__ ( )->None: import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCAmelCase_ = AVLtree() UpperCAmelCase_ = list(range(1_0)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
720
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , a__ , a__=13 , a__=7 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=24 , a__=2 , a__=6 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=None , a__=1000 , ): _lowerCAmelCase : str = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Any = seq_length _lowerCAmelCase : Dict = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : int = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Optional[Any] = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Dict = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : str = type_sequence_label_size _lowerCAmelCase : List[str] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[str] = scope _lowerCAmelCase : str = range_bbox def __A ( self ): _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCAmelCase : Optional[Any] = bbox[i, j, 3] _lowerCAmelCase : Tuple = bbox[i, j, 1] _lowerCAmelCase : List[str] = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCAmelCase : Tuple = bbox[i, j, 2] _lowerCAmelCase : Union[str, Any] = bbox[i, j, 0] _lowerCAmelCase : Optional[int] = t _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Dict = None _lowerCAmelCase : Any = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Tuple = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __A ( self ): return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : str = LiltModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Union[str, Any] = model(a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCAmelCase : Union[str, Any] = model(a__ , bbox=a__ , token_type_ids=a__ ) _lowerCAmelCase : Dict = model(a__ , bbox=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : List[str] = LiltForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Any = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : Tuple = LiltForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Dict = model( a__ , bbox=a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self ): _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : int = config_and_inputs _lowerCAmelCase : Tuple = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) _UpperCamelCase : List[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : List[str] = False _UpperCamelCase : List[Any] = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): return True def __A ( self ): _lowerCAmelCase : Union[str, Any] = LiltModelTester(self ) _lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) @slow def __A ( self ): for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[Any] = LiltModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @require_torch @slow class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Optional[int] = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(a__ ) _lowerCAmelCase : Dict = torch.tensor([[1, 2]] , device=a__ ) _lowerCAmelCase : List[str] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : Any = model(input_ids=a__ , bbox=a__ ) _lowerCAmelCase : Any = torch.Size([1, 2, 768] ) _lowerCAmelCase : Any = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=a__ , ) self.assertTrue(outputs.last_hidden_state.shape , a__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a__ , atol=1e-3 ) )
213
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class __A : def __init__( self , a__ , a__ , a__ ): if dst_width < 0 or dst_height < 0: raise ValueError("""Destination width/height should be > 0""" ) _lowerCAmelCase : List[Any] = img _lowerCAmelCase : Dict = img.shape[1] _lowerCAmelCase : Optional[Any] = img.shape[0] _lowerCAmelCase : str = dst_width _lowerCAmelCase : Tuple = dst_height _lowerCAmelCase : Optional[int] = self.src_w / self.dst_w _lowerCAmelCase : List[str] = self.src_h / self.dst_h _lowerCAmelCase : Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def __A ( self ): for i in range(self.dst_h ): for j in range(self.dst_w ): _lowerCAmelCase : int = self.img[self.get_y(a__ )][self.get_x(a__ )] def __A ( self , a__ ): return int(self.ratio_x * x ) def __A ( self , a__ ): return int(self.ratio_y * y ) if __name__ == "__main__": _a , _a : int = 800, 600 _a : Optional[int] = imread('image_data/lena.jpg', 1) _a : Tuple = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output ) waitKey(0) destroyAllWindows()
213
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCamelCase_ : Optional[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def __lowercase( __snake_case : int ) -> Union[str, Any]: config.addinivalue_line( 'markers' ,'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' ,'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' ,'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' ,'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' ,'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' ,'tool_tests: mark the tool tests that are run on their specific schedule' ) def __lowercase( __snake_case : Union[str, Any] ) -> Dict: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__snake_case ) def __lowercase( __snake_case : Dict ) -> Optional[int]: from transformers.testing_utils import pytest_terminal_summary_main __snake_case = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(__snake_case ,id=__snake_case ) def __lowercase( __snake_case : Optional[Any] ,__snake_case : Dict ) -> int: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: __snake_case = 0 # Doctest custom flag to ignore output. lowerCamelCase_ : List[str] = doctest.register_optionflag("IGNORE_RESULT") lowerCamelCase_ : Tuple = doctest.OutputChecker class _lowerCamelCase (lowerCamelCase ): def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ : int = CustomOutputChecker lowerCamelCase_ : List[Any] = HfDoctestModule lowerCamelCase_ : List[Any] = HfDocTestParser
345
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def __lowercase( __snake_case : Tuple ) -> str: __snake_case = SwinvaConfig() __snake_case = swinva_name.split('_' ) __snake_case = name_split[1] if "to" in name_split[3]: __snake_case = int(name_split[3][-3:] ) else: __snake_case = int(name_split[3] ) if "to" in name_split[2]: __snake_case = int(name_split[2][-2:] ) else: __snake_case = int(name_split[2][6:] ) if model_size == "tiny": __snake_case = 96 __snake_case = (2, 2, 6, 2) __snake_case = (3, 6, 12, 24) elif model_size == "small": __snake_case = 96 __snake_case = (2, 2, 18, 2) __snake_case = (3, 6, 12, 24) elif model_size == "base": __snake_case = 1_28 __snake_case = (2, 2, 18, 2) __snake_case = (4, 8, 16, 32) else: __snake_case = 1_92 __snake_case = (2, 2, 18, 2) __snake_case = (6, 12, 24, 48) if "to" in swinva_name: __snake_case = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): __snake_case = 2_18_41 __snake_case = 'huggingface/label-files' __snake_case = 'imagenet-22k-id2label.json' __snake_case = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type='dataset' ) ,'r' ) ) __snake_case = {int(__snake_case ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} else: __snake_case = 10_00 __snake_case = 'huggingface/label-files' __snake_case = 'imagenet-1k-id2label.json' __snake_case = json.load(open(hf_hub_download(__snake_case ,__snake_case ,repo_type='dataset' ) ,'r' ) ) __snake_case = {int(__snake_case ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} __snake_case = img_size __snake_case = num_classes __snake_case = embed_dim __snake_case = depths __snake_case = num_heads __snake_case = window_size return config def __lowercase( __snake_case : List[str] ) -> Any: if "patch_embed.proj" in name: __snake_case = name.replace('patch_embed.proj' ,'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case = name.replace('patch_embed.norm' ,'embeddings.norm' ) if "layers" in name: __snake_case = 'encoder.' + name if "attn.proj" in name: __snake_case = name.replace('attn.proj' ,'attention.output.dense' ) if "attn" in name: __snake_case = name.replace('attn' ,'attention.self' ) if "norm1" in name: __snake_case = name.replace('norm1' ,'layernorm_before' ) if "norm2" in name: __snake_case = name.replace('norm2' ,'layernorm_after' ) if "mlp.fc1" in name: __snake_case = name.replace('mlp.fc1' ,'intermediate.dense' ) if "mlp.fc2" in name: __snake_case = name.replace('mlp.fc2' ,'output.dense' ) if "q_bias" in name: __snake_case = name.replace('q_bias' ,'query.bias' ) if "k_bias" in name: __snake_case = name.replace('k_bias' ,'key.bias' ) if "v_bias" in name: __snake_case = name.replace('v_bias' ,'value.bias' ) if "cpb_mlp" in name: __snake_case = name.replace('cpb_mlp' ,'continuous_position_bias_mlp' ) if name == "norm.weight": __snake_case = 'layernorm.weight' if name == "norm.bias": __snake_case = 'layernorm.bias' if "head" in name: __snake_case = name.replace('head' ,'classifier' ) else: __snake_case = 'swinv2.' + name return name def __lowercase( __snake_case : str ,__snake_case : Optional[int] ) -> str: for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(__snake_case ) if "mask" in key: continue elif "qkv" in key: __snake_case = key.split('.' ) __snake_case = int(key_split[1] ) __snake_case = int(key_split[3] ) __snake_case = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __snake_case = val[:dim, :] __snake_case = val[dim : dim * 2, :] __snake_case = val[-dim:, :] else: __snake_case = val[:dim] __snake_case = val[ dim : dim * 2 ] __snake_case = val[-dim:] else: __snake_case = val return orig_state_dict def __lowercase( __snake_case : Tuple ,__snake_case : Any ) -> Tuple: __snake_case = timm.create_model(__snake_case ,pretrained=__snake_case ) timm_model.eval() __snake_case = get_swinva_config(__snake_case ) __snake_case = SwinvaForImageClassification(__snake_case ) model.eval() __snake_case = convert_state_dict(timm_model.state_dict() ,__snake_case ) model.load_state_dict(__snake_case ) __snake_case = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' ,'-' ) ) ) __snake_case = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ) __snake_case = image_processor(images=__snake_case ,return_tensors='pt' ) __snake_case = timm_model(inputs['pixel_values'] ) __snake_case = model(**__snake_case ).logits assert torch.allclose(__snake_case ,__snake_case ,atol=1e-3 ) print(f'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) model.push_to_hub( repo_path_or_name=Path(__snake_case ,__snake_case ) ,organization='nandwalritik' ,commit_message='Add model' ,) if __name__ == "__main__": lowerCamelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowerCamelCase_ : Tuple = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
345
1
"""simple docstring""" from __future__ import annotations A: Optional[int] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _snake_case ( UpperCamelCase : list[list[int]] , UpperCamelCase : list[int] , UpperCamelCase : list[int] , UpperCamelCase : int , UpperCamelCase : list[list[int]] , ): UpperCAmelCase : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase ) ) ] # the reference grid UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase ) ) ] # the action grid UpperCAmelCase : Dict = init[0] UpperCAmelCase : Union[str, Any] = init[1] UpperCAmelCase : Dict = 0 UpperCAmelCase : Tuple = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase : str = [[f, g, x, y]] UpperCAmelCase : str = False # flag that is set when search is complete UpperCAmelCase : List[Any] = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase : Tuple = cell.pop() UpperCAmelCase : List[str] = next_cell[2] UpperCAmelCase : Optional[int] = next_cell[3] UpperCAmelCase : Any = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase : Tuple = True else: for i in range(len(UpperCamelCase ) ): # to try out different valid actions UpperCAmelCase : List[Any] = x + DIRECTIONS[i][0] UpperCAmelCase : List[str] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase : Any = g + cost UpperCAmelCase : int = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase : Union[str, Any] = 1 UpperCAmelCase : Optional[int] = i UpperCAmelCase : Tuple = [] UpperCAmelCase : Optional[int] = goal[0] UpperCAmelCase : List[str] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase : Any = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase : int = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase : Optional[Any] = xa UpperCAmelCase : int = ya invpath.append([x, y] ) UpperCAmelCase : List[str] = [] for i in range(len(UpperCamelCase ) ): path.append(invpath[len(UpperCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": A: Tuple = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] A: List[str] = [0, 0] # all coordinates are given in format [y,x] A: Any = [len(grid) - 1, len(grid[0]) - 1] A: Any = 1 # the cost map which pushes the path closer to the goal A: str = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): A: Union[str, Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map A: int = 9_9 A , A: Tuple = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
160
"""simple docstring""" def _snake_case ( UpperCamelCase : str , UpperCamelCase : int ): UpperCAmelCase : List[Any] = word.split() def justify(UpperCamelCase : list , UpperCamelCase : int , UpperCamelCase : int ) -> str: UpperCAmelCase : List[Any] = max_width - width UpperCAmelCase : Any = len(UpperCamelCase ) if len(UpperCamelCase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCAmelCase : Optional[Any] = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCAmelCase : int = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCAmelCase : List[Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase ): num_spaces_between_words_list[i] += 1 UpperCAmelCase : Tuple = [] for i in range(UpperCamelCase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase ) UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : list[str] = [] UpperCAmelCase : Union[str, Any] = 0 for word in words: if width + len(UpperCamelCase ) + len(UpperCamelCase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase ) width += len(UpperCamelCase ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase , UpperCamelCase , UpperCamelCase ) ) # reset new line and new width UpperCAmelCase , UpperCAmelCase : Tuple = [word], len(UpperCamelCase ) UpperCAmelCase : Optional[Any] = max_width - width - len(UpperCamelCase ) answer.append(""" """.join(UpperCamelCase ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
160
1
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCamelCase_ ( UpperCAmelCase_ ) ->int: """simple docstring""" __UpperCAmelCase : Optional[int] = [] embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', f'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', f'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', f'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( f'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', f'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [] attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', f'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( f'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', f'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', f'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', f'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', f'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (f'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', f'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def lowerCamelCase_ ( UpperCAmelCase_ ) ->Dict: """simple docstring""" __UpperCAmelCase : Union[str, Any] = [] token.append((f'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def lowerCamelCase_ ( ) ->Optional[int]: """simple docstring""" __UpperCAmelCase : Optional[Any] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->int: """simple docstring""" __UpperCAmelCase : Optional[Any] = '''imagenet-1k-id2label.json''' __UpperCAmelCase : List[Any] = 10_00 __UpperCAmelCase : str = '''huggingface/label-files''' __UpperCAmelCase : Any = num_labels __UpperCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type='''dataset''' ) ) , '''r''' ) ) __UpperCAmelCase : Union[str, Any] = {int(lowercase__ ): v for k, v in idalabel.items()} __UpperCAmelCase : str = idalabel __UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : int = CvtConfig(num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": __UpperCAmelCase : List[str] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": __UpperCAmelCase : str = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __UpperCAmelCase : str = [2, 2, 20] __UpperCAmelCase : Optional[int] = [3, 12, 16] __UpperCAmelCase : Dict = [1_92, 7_68, 10_24] __UpperCAmelCase : Dict = CvtForImageClassification(lowercase__ ) __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) __UpperCAmelCase : int = image_size __UpperCAmelCase : List[Any] = torch.load(lowercase__ , map_location=torch.device('''cpu''' ) ) __UpperCAmelCase : List[str] = OrderedDict() __UpperCAmelCase : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __UpperCAmelCase : Any = list_of_state_dict + cls_token(lowercase__ ) __UpperCAmelCase : Any = list_of_state_dict + embeddings(lowercase__ ) for cnt in range(config.depth[idx] ): __UpperCAmelCase : Dict = list_of_state_dict + attention(lowercase__ , lowercase__ ) __UpperCAmelCase : Any = list_of_state_dict + final() for gg in list_of_state_dict: print(lowercase__ ) for i in range(len(lowercase__ ) ): __UpperCAmelCase : int = original_weights[list_of_state_dict[i][1]] model.load_state_dict(lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase__ :str = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=3_8_4, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase__ :Optional[int] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
702
"""simple docstring""" def lowerCamelCase_ ( UpperCAmelCase_ ) ->float: """simple docstring""" return 10 - x * x def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ) ->float: """simple docstring""" if equation(UpperCAmelCase_ ) * equation(UpperCAmelCase_ ) >= 0: raise ValueError('''Wrong space!''' ) __UpperCAmelCase : Tuple = a while (b - a) >= 0.01: # Find middle point __UpperCAmelCase : List[str] = (a + b) / 2 # Check if middle point is root if equation(UpperCAmelCase_ ) == 0.0: break # Decide the side to repeat the steps if equation(UpperCAmelCase_ ) * equation(UpperCAmelCase_ ) < 0: __UpperCAmelCase : Union[str, Any] = c else: __UpperCAmelCase : str = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
374
0
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __magic_name__ ( unittest.TestCase , lowerCAmelCase_ ): def _A( self ): lowercase =load_tool('''text-classification''' ) self.tool.setup() lowercase =load_tool('''text-classification''' , remote=lowercase__ ) def _A( self ): lowercase =self.tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(lowercase__ , '''positive''' ) def _A( self ): lowercase =self.remote_tool('''That\'s quite cool''' , ['''positive''', '''negative'''] ) self.assertEqual(lowercase__ , '''positive''' ) def _A( self ): lowercase =self.tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(lowercase__ , '''positive''' ) def _A( self ): lowercase =self.remote_tool(text='''That\'s quite cool''' , labels=['''positive''', '''negative'''] ) self.assertEqual(lowercase__ , '''positive''' )
72
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( lowerCAmelCase_ ): """simple docstring""" __UpperCAmelCase : List[Any] = ["pixel_values"] def __init__( self : Dict , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : int = 0.9 , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : Union[int, float] = 1 / 2_5_5 , lowercase__ : bool = True , lowercase__ : bool = True , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , **lowercase__ : Dict , ): super().__init__(**lowercase__ ) __lowercase : List[str] = size if size is not None else {"shortest_edge": 2_2_4} __lowercase : int = get_size_dict(lowercase__ , default_to_square=lowercase__ ) __lowercase : Tuple = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowercase : str = get_size_dict(lowercase__ , param_name="crop_size" ) __lowercase : Tuple = do_resize __lowercase : Tuple = size __lowercase : Any = crop_pct __lowercase : List[str] = resample __lowercase : str = do_center_crop __lowercase : int = crop_size __lowercase : List[str] = do_rescale __lowercase : List[Any] = rescale_factor __lowercase : Union[str, Any] = do_normalize __lowercase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowercase : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case ( self : Any , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : Optional[float] = None , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Any , ): __lowercase : List[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f'size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) if crop_pct is not None: if "shortest_edge" in size: __lowercase : Any = int(size["shortest_edge"] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __lowercase : Tuple = int(size["height"] / crop_pct ) else: __lowercase : Optional[int] = (int(size["height"] / crop_pct ), int(size["width"] / crop_pct )) else: raise ValueError("Invalid size for resize: {}".format(lowercase__ ) ) __lowercase : List[Any] = get_resize_output_image_size(lowercase__ , size=lowercase__ , default_to_square=lowercase__ ) else: if "shortest_edge" in size: __lowercase : Any = get_resize_output_image_size(lowercase__ , size=size["shortest_edge"] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: __lowercase : List[Any] = (size["height"], size["width"]) else: raise ValueError("Invalid size for resize: {}".format(lowercase__ ) ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def snake_case ( self : Optional[int] , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Union[str, Any] , ): __lowercase : str = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'size must contain \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(lowercase__ , size=(size["height"], size["width"]) , data_format=lowercase__ , **lowercase__ ) def snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Union[int, float] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Tuple , ): return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def snake_case ( self : Union[str, Any] , lowercase__ : np.ndarray , lowercase__ : Union[float, List[float]] , lowercase__ : Union[float, List[float]] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : List[str] , ): return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def snake_case ( self : Dict , lowercase__ : ImageInput , lowercase__ : bool = None , lowercase__ : Dict[str, int] = None , lowercase__ : int = None , lowercase__ : PILImageResampling = None , lowercase__ : bool = None , lowercase__ : Dict[str, int] = None , lowercase__ : bool = None , lowercase__ : float = None , lowercase__ : bool = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : ChannelDimension = ChannelDimension.FIRST , **lowercase__ : int , ): __lowercase : str = do_resize if do_resize is not None else self.do_resize __lowercase : Any = crop_pct if crop_pct is not None else self.crop_pct __lowercase : List[str] = resample if resample is not None else self.resample __lowercase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase : Dict = do_rescale if do_rescale is not None else self.do_rescale __lowercase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase : List[str] = do_normalize if do_normalize is not None else self.do_normalize __lowercase : Any = image_mean if image_mean is not None else self.image_mean __lowercase : int = image_std if image_std is not None else self.image_std __lowercase : Optional[int] = size if size is not None else self.size __lowercase : List[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) __lowercase : List[str] = crop_size if crop_size is not None else self.crop_size __lowercase : List[str] = get_size_dict(lowercase__ , param_name="crop_size" ) __lowercase : Optional[int] = make_list_of_images(lowercase__ ) if not valid_images(lowercase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_pct is None: raise ValueError("Crop_pct must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __lowercase : Optional[Any] = [to_numpy_array(lowercase__ ) for image in images] if do_resize: __lowercase : List[str] = [self.resize(image=lowercase__ , size=lowercase__ , crop_pct=lowercase__ , resample=lowercase__ ) for image in images] if do_center_crop: __lowercase : Any = [self.center_crop(image=lowercase__ , size=lowercase__ ) for image in images] if do_rescale: __lowercase : Dict = [self.rescale(image=lowercase__ , scale=lowercase__ ) for image in images] if do_normalize: __lowercase : Tuple = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) for image in images] __lowercase : Any = [to_channel_dimension_format(lowercase__ , lowercase__ ) for image in images] __lowercase : Optional[int] = {"pixel_values": images} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
575
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase__ ( self : List[Any] ) -> Dict: debug_launcher(test_script.main ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: debug_launcher(test_ops.main )
501
import sys import turtle def lowercase__ ( __A: tuple[float, float] ,__A: tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase__ ( __A: tuple[float, float] ,__A: tuple[float, float] ,__A: tuple[float, float] ,__A: int ,): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __lowerCamelCase : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __lowerCamelCase : Optional[Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
501
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def UpperCamelCase__ ( lowercase__ : Dict , lowercase__ : Union[str, Any]=7 ): snake_case : Dict = None if token is not None: snake_case : List[Any] = {"Accept": "application/vnd.github+json", "Authorization": F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) snake_case : Union[str, Any] = "636036" snake_case : Union[str, Any] = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' snake_case : Dict = requests.get(lowercase__ , headers=lowercase__ ).json() return result["workflow_runs"] def UpperCamelCase__ ( lowercase__ : List[str] ): snake_case : str = get_daily_ci_runs(lowercase__ ) snake_case : int = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": snake_case : int = workflow_run["id"] break return workflow_run_id def UpperCamelCase__ ( lowercase__ : Optional[Any] , lowercase__ : List[str] , lowercase__ : Tuple ): snake_case : Union[str, Any] = get_last_daily_ci_runs(lowercase__ ) if workflow_run_id is not None: snake_case : Optional[int] = get_artifacts_links(worflow_run_id=lowercase__ , token=lowercase__ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: snake_case : List[Any] = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase__ , artifact_url=lowercase__ , output_dir=lowercase__ , token=lowercase__ ) def UpperCamelCase__ ( lowercase__ : Optional[Any] , lowercase__ : str , lowercase__ : Optional[int] ): get_last_daily_ci_artifacts(lowercase__ , lowercase__ , lowercase__ ) snake_case : List[Any] = {} for artifact_name in artifact_names: snake_case : Optional[int] = os.path.join(lowercase__ , F'''{artifact_name}.zip''' ) if os.path.isfile(lowercase__ ): snake_case : Dict = {} with zipfile.ZipFile(lowercase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase__ ): # read the file with z.open(lowercase__ ) as f: snake_case : List[Any] = f.read().decode("UTF-8" ) return results
134
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : str ): snake_case : str = [int(lowercase__ ) for i in ip_va_address.split("." ) if i.isdigit()] return len(lowercase__ ) == 4 and all(0 <= int(lowercase__ ) <= 254 for octet in octets ) if __name__ == "__main__": __A = input().strip() __A = "valid" if is_ip_va_address_valid(ip) else "invalid" print(f'{ip} is a {valid_or_invalid} IP v4 address.')
134
1
import os import re import shutil import sys import tempfile import unittest import black a__ : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. a__ : str = ''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = self.transformer_dir shutil.copy( os.path.join(_lowerCamelCase , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) ->List[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = comment + F"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE : Optional[int] = comment + F"""\nclass {class_name}(nn.Module):\n""" + overwrite_result SCREAMING_SNAKE_CASE : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) SCREAMING_SNAKE_CASE : Any = black.format_str(_lowerCamelCase , mode=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(_lowerCamelCase , '''w''' , newline='''\n''' ) as f: f.write(_lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_lowerCamelCase ) with open(_lowerCamelCase , '''r''' ) as f: self.assertTrue(f.read() , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[Any] = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _lowerCamelCase , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _lowerCamelCase ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE : List[str] = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( F"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}""" , F"""{long_class_name}LMPredictionHead""" , re.sub('''Bert''' , _lowerCamelCase , _lowerCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _lowerCamelCase , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _lowerCamelCase ) , ) def __lowerCAmelCase ( self ) ->str: SCREAMING_SNAKE_CASE : str = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] SCREAMING_SNAKE_CASE : List[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) SCREAMING_SNAKE_CASE : List[str] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) SCREAMING_SNAKE_CASE : List[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) SCREAMING_SNAKE_CASE : int = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) self.assertFalse(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE : str = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) SCREAMING_SNAKE_CASE : List[Any] = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) SCREAMING_SNAKE_CASE : str = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = check_copies.convert_to_localized_md( _lowerCamelCase , _lowerCamelCase , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(_lowerCamelCase , _lowerCamelCase )
706
def UpperCAmelCase_( a__ ): """simple docstring""" return 10 - x * x def UpperCAmelCase_( a__ , a__ ): """simple docstring""" if equation(a__ ) * equation(a__ ) >= 0: raise ValueError('''Wrong space!''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = a while (b - a) >= 0.01: # Find middle point SCREAMING_SNAKE_CASE : Optional[Any] = (a + b) / 2 # Check if middle point is root if equation(a__ ) == 0.0: break # Decide the side to repeat the steps if equation(a__ ) * equation(a__ ) < 0: SCREAMING_SNAKE_CASE : Optional[int] = c else: SCREAMING_SNAKE_CASE : int = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
333
0
'''simple docstring''' # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys a__ : List[Any] = '''3''' print('''Python version:''', sys.version) print('''OS platform:''', platform.platform()) print('''OS architecture:''', platform.machine()) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) except ImportError: print('''Torch version:''', None) try: import transformers print('''transformers version:''', transformers.__version__) except ImportError: print('''transformers version:''', None)
368
'''simple docstring''' from __future__ import annotations a__ : Optional[int] = list[tuple[int, int]] a__ : List[Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a__ : Optional[int] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __snake_case : def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Any: snake_case__ = pos_x snake_case__ = pos_y snake_case__ = (pos_y, pos_x) snake_case__ = goal_x snake_case__ = goal_y snake_case__ = g_cost snake_case__ = parent snake_case__ = self.calculate_heuristic() def _snake_case ( self ) -> float: snake_case__ = abs(self.pos_x - self.goal_x ) snake_case__ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , UpperCamelCase_ ) -> bool: return self.f_cost < other.f_cost class __snake_case : def __init__( self , UpperCamelCase_ , UpperCamelCase_ ) -> Any: snake_case__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , UpperCamelCase_ ) snake_case__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , UpperCamelCase_ ) snake_case__ = [self.start] snake_case__ = [] snake_case__ = False def _snake_case ( self ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() snake_case__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: snake_case__ = True return self.retrace_path(UpperCamelCase_ ) self.closed_nodes.append(UpperCamelCase_ ) snake_case__ = self.get_successors(UpperCamelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(UpperCamelCase_ ) else: # retrieve the best current path snake_case__ = self.open_nodes.pop(self.open_nodes.index(UpperCamelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(UpperCamelCase_ ) else: self.open_nodes.append(UpperCamelCase_ ) if not self.reached: return [self.start.pos] return None def _snake_case ( self , UpperCamelCase_ ) -> list[Node]: snake_case__ = [] for action in delta: snake_case__ = parent.pos_x + action[1] snake_case__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(UpperCamelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( UpperCamelCase_ , UpperCamelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , UpperCamelCase_ , ) ) return successors def _snake_case ( self , UpperCamelCase_ ) -> Path: snake_case__ = node snake_case__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) snake_case__ = current_node.parent path.reverse() return path if __name__ == "__main__": a__ : List[str] = (0, 0) a__ : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') a__ : Optional[int] = GreedyBestFirst(init, goal) a__ : Optional[int] = greedy_bf.search() if path: for pos_x, pos_y in path: a__ : Tuple = 2 for elem in grid: print(elem)
368
1
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : List[str] ): '''simple docstring''' if num < 0: return False _UpperCAmelCase : Dict =num _UpperCAmelCase : int =0 while num > 0: _UpperCAmelCase : Tuple =rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase =logging.get_logger(__name__) lowercase ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase ={ 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } lowercase ={ 'RUCAIBox/mvp': 1024, } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =VOCAB_FILES_NAMES UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase =["input_ids", "attention_mask"] UpperCAmelCase =MvpTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , snake_case=True , **snake_case , ) -> str: '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) _UpperCAmelCase : Union[str, Any] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , snake_case) != add_prefix_space: _UpperCAmelCase : List[str] =getattr(snake_case , pre_tok_state.pop('type')) _UpperCAmelCase : Union[str, Any] =add_prefix_space _UpperCAmelCase : Optional[Any] =pre_tok_class(**snake_case) _UpperCAmelCase : Union[str, Any] =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCAmelCase : List[Any] ='post_processor' _UpperCAmelCase : Optional[int] =getattr(self.backend_tokenizer , snake_case , snake_case) if tokenizer_component_instance: _UpperCAmelCase : int =json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase : Any =tuple(state['sep']) if "cls" in state: _UpperCAmelCase : List[str] =tuple(state['cls']) _UpperCAmelCase : str =False if state.get('add_prefix_space' , snake_case) != add_prefix_space: _UpperCAmelCase : List[str] =add_prefix_space _UpperCAmelCase : Optional[int] =True if state.get('trim_offsets' , snake_case) != trim_offsets: _UpperCAmelCase : Union[str, Any] =trim_offsets _UpperCAmelCase : Tuple =True if changes_to_apply: _UpperCAmelCase : str =getattr(snake_case , state.pop('type')) _UpperCAmelCase : List[Any] =component_class(**snake_case) setattr(self.backend_tokenizer , snake_case , snake_case) @property def lowerCAmelCase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def lowerCAmelCase ( self , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] =AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case) if isinstance(snake_case , snake_case) else value _UpperCAmelCase : Any =value def lowerCAmelCase ( self , *snake_case , **snake_case) -> BatchEncoding: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =kwargs.get('is_split_into_words' , snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*snake_case , **snake_case) def lowerCAmelCase ( self , *snake_case , **snake_case) -> BatchEncoding: '''simple docstring''' _UpperCAmelCase : Any =kwargs.get('is_split_into_words' , snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._encode_plus(*snake_case , **snake_case) def lowerCAmelCase ( self , snake_case , snake_case = None) -> Tuple[str]: '''simple docstring''' _UpperCAmelCase : str =self._tokenizer.model.save(snake_case , name=snake_case) return tuple(snake_case) def lowerCAmelCase ( self , snake_case , snake_case=None) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[int]: '''simple docstring''' _UpperCAmelCase : List[str] =[self.sep_token_id] _UpperCAmelCase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
331
0
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ ( unittest.TestCase ): def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase : Any = "ylacombe/bark-small" _lowerCamelCase : Tuple = tempfile.mkdtemp() _lowerCamelCase : Dict = "en_speaker_1" _lowerCamelCase : List[str] = "This is a test string" _lowerCamelCase : Optional[int] = "speaker_embeddings_path.json" _lowerCamelCase : Dict = "speaker_embeddings" def _lowercase ( self: str ,**__lowerCAmelCase: int ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint ,**__lowerCAmelCase ) def _lowercase ( self: Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.get_tokenizer() _lowerCamelCase : List[str] = BarkProcessor(tokenizer=__lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer.get_vocab() ) @slow def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) processor.save_pretrained( self.tmpdirname ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,speaker_embeddings_directory=self.speaker_embeddings_directory ,) _lowerCamelCase : Any = self.get_tokenizer(bos_token="(BOS)" ,eos_token="(EOS)" ) _lowerCamelCase : List[Any] = BarkProcessor.from_pretrained( self.tmpdirname ,self.speaker_embeddings_dict_path ,bos_token="(BOS)" ,eos_token="(EOS)" ,) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Any = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint ,speaker_embeddings_dict_path=self.speaker_embeddings_dict_path ,) _lowerCamelCase : Union[str, Any] = 35 _lowerCamelCase : Optional[Any] = 2 _lowerCamelCase : int = 8 _lowerCamelCase : Union[str, Any] = { "semantic_prompt": np.ones(__lowerCAmelCase ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset _lowerCamelCase : Union[str, Any] = processor(text=self.input_string ,voice_preset=__lowerCAmelCase ) _lowerCamelCase : List[Any] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(__lowerCAmelCase ,np.array([] ) ).tolist() ) # test loading voice preset from npz file _lowerCamelCase : Optional[int] = os.path.join(self.tmpdirname ,"file.npz" ) np.savez(__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : str = processor(text=self.input_string ,voice_preset=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() ,processed_voice_preset.get(__lowerCAmelCase ,np.array([] ) ).tolist() ) # test loading voice preset from the hub _lowerCamelCase : Optional[Any] = processor(text=self.input_string ,voice_preset=self.voice_preset ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.get_tokenizer() _lowerCamelCase : Optional[Any] = BarkProcessor(tokenizer=__lowerCAmelCase ) _lowerCamelCase : Tuple = processor(text=self.input_string ) _lowerCamelCase : Union[str, Any] = tokenizer( self.input_string ,padding="max_length" ,max_length=256 ,add_special_tokens=__lowerCAmelCase ,return_attention_mask=__lowerCAmelCase ,return_token_type_ids=__lowerCAmelCase ,) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key].squeeze().tolist() )
46
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase : str = ''' Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16 ... ) >>> pipe_prior.to("cuda") >>> prompt = "A red cartoon frog, 4k" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16 ... ) >>> pipe.to("cuda") >>> init_image = load_image( ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" ... "/kandinsky/frog.png" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save("red_frog.png") ``` ''' def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=8 ) -> Tuple: '''simple docstring''' _lowerCamelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _lowerCamelCase : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=512 , _lowerCamelCase=512 ) -> int: '''simple docstring''' _lowerCamelCase : int = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) _lowerCamelCase : Union[str, Any] = np.array(pil_image.convert("RGB" ) ) _lowerCamelCase : Any = arr.astype(np.floataa ) / 1_2_7.5 - 1 _lowerCamelCase : Optional[Any] = np.transpose(_lowerCamelCase , [2, 0, 1] ) _lowerCamelCase : Any = torch.from_numpy(_lowerCamelCase ).unsqueeze(0 ) return image class A_ ( _a ): def __init__( self: Any ,__lowerCAmelCase: UNetaDConditionModel ,__lowerCAmelCase: DDPMScheduler ,__lowerCAmelCase: VQModel ,): '''simple docstring''' super().__init__() self.register_modules( unet=__lowerCAmelCase ,scheduler=__lowerCAmelCase ,movq=__lowerCAmelCase ,) _lowerCamelCase : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowercase ( self: Dict ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : int = min(int(num_inference_steps * strength ) ,__lowerCAmelCase ) _lowerCamelCase : Tuple = max(num_inference_steps - init_timestep ,0 ) _lowerCamelCase : Optional[int] = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowercase ( self: Optional[int] ,__lowerCAmelCase: Any ,__lowerCAmelCase: Any ,__lowerCAmelCase: Optional[Any] ,__lowerCAmelCase: Union[str, Any] ,__lowerCAmelCase: Optional[int] ,__lowerCAmelCase: List[Any] ,__lowerCAmelCase: List[str]=None ): '''simple docstring''' if not isinstance(__lowerCAmelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCAmelCase )}""" ) _lowerCamelCase : Any = image.to(device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = batch_size * num_images_per_prompt if image.shape[1] == 4: _lowerCamelCase : List[Any] = image else: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ) and len(__lowerCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(__lowerCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : List[Any] = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__lowerCAmelCase ) ] _lowerCamelCase : Tuple = torch.cat(__lowerCAmelCase ,dim=0 ) else: _lowerCamelCase : int = self.movq.encode(__lowerCAmelCase ).latent_dist.sample(__lowerCAmelCase ) _lowerCamelCase : int = self.movq.config.scaling_factor * init_latents _lowerCamelCase : Tuple = torch.cat([init_latents] ,dim=0 ) _lowerCamelCase : Optional[int] = init_latents.shape _lowerCamelCase : int = randn_tensor(__lowerCAmelCase ,generator=__lowerCAmelCase ,device=__lowerCAmelCase ,dtype=__lowerCAmelCase ) # get latents _lowerCamelCase : Union[str, Any] = self.scheduler.add_noise(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : str = init_latents return latents def _lowercase ( self: List[Any] ,__lowerCAmelCase: Optional[int]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _lowerCamelCase : str = torch.device(F"""cuda:{gpu_id}""" ) _lowerCamelCase : Dict = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__lowerCAmelCase ,__lowerCAmelCase ) def _lowercase ( self: List[Any] ,__lowerCAmelCase: int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" ,"0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _lowerCamelCase : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" ,silence_dtype_warnings=__lowerCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCamelCase : str = None for cpu_offloaded_model in [self.unet, self.movq]: _lowerCamelCase, _lowerCamelCase : str = cpu_offload_with_hook(__lowerCAmelCase ,__lowerCAmelCase ,prev_module_hook=__lowerCAmelCase ) # We'll offload the last model manually. _lowerCamelCase : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowercase ( self: Union[str, Any] ): '''simple docstring''' if not hasattr(self.unet ,"_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCAmelCase ,"_hf_hook" ) and hasattr(module._hf_hook ,"execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__lowerCAmelCase ) def __call__( self: Dict ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]] ,__lowerCAmelCase: Union[torch.FloatTensor, List[torch.FloatTensor]] ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 512 ,__lowerCAmelCase: int = 100 ,__lowerCAmelCase: float = 4.0 ,__lowerCAmelCase: float = 0.3 ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: Optional[Union[torch.Generator, List[torch.Generator]]] = None ,__lowerCAmelCase: Optional[str] = "pil" ,__lowerCAmelCase: bool = True ,): '''simple docstring''' _lowerCamelCase : Optional[int] = self._execution_device _lowerCamelCase : Dict = guidance_scale > 1.0 if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : int = torch.cat(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Any = image_embeds.shape[0] if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : str = torch.cat(__lowerCAmelCase ,dim=0 ) if do_classifier_free_guidance: _lowerCamelCase : List[str] = image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[int] = negative_image_embeds.repeat_interleave(__lowerCAmelCase ,dim=0 ) _lowerCamelCase : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__lowerCAmelCase ) if not isinstance(__lowerCAmelCase ,__lowerCAmelCase ): _lowerCamelCase : Tuple = [image] if not all(isinstance(__lowerCAmelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(__lowerCAmelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) _lowerCamelCase : Union[str, Any] = torch.cat([prepare_image(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) for i in image] ,dim=0 ) _lowerCamelCase : str = image.to(dtype=image_embeds.dtype ,device=__lowerCAmelCase ) _lowerCamelCase : Tuple = self.movq.encode(__lowerCAmelCase )["latents"] _lowerCamelCase : List[str] = latents.repeat_interleave(__lowerCAmelCase ,dim=0 ) self.scheduler.set_timesteps(__lowerCAmelCase ,device=__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = self.get_timesteps(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Any = timesteps[:1].repeat(batch_size * num_images_per_prompt ) _lowerCamelCase, _lowerCamelCase : Tuple = downscale_height_and_width(__lowerCAmelCase ,__lowerCAmelCase ,self.movq_scale_factor ) _lowerCamelCase : List[Any] = self.prepare_latents( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,image_embeds.dtype ,__lowerCAmelCase ,__lowerCAmelCase ) for i, t in enumerate(self.progress_bar(__lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance _lowerCamelCase : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCamelCase : List[str] = {"image_embeds": image_embeds} _lowerCamelCase : Tuple = self.unet( sample=__lowerCAmelCase ,timestep=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,added_cond_kwargs=__lowerCAmelCase ,return_dict=__lowerCAmelCase ,)[0] if do_classifier_free_guidance: _lowerCamelCase, _lowerCamelCase : Tuple = noise_pred.split(latents.shape[1] ,dim=1 ) _lowerCamelCase, _lowerCamelCase : Dict = noise_pred.chunk(2 ) _lowerCamelCase, _lowerCamelCase : str = variance_pred.chunk(2 ) _lowerCamelCase : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCamelCase : Any = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCamelCase : Optional[int] = self.scheduler.step( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,generator=__lowerCAmelCase ,)[0] # post-processing _lowerCamelCase : Optional[int] = self.movq.decode(__lowerCAmelCase ,force_not_quantize=__lowerCAmelCase )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: _lowerCamelCase : Optional[int] = image * 0.5 + 0.5 _lowerCamelCase : str = image.clamp(0 ,1 ) _lowerCamelCase : Optional[int] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": _lowerCamelCase : str = self.numpy_to_pil(__lowerCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCAmelCase )
46
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json" ), }, } __A = { "facebook/nllb-large-en-ro": 10_24, "facebook/nllb-200-distilled-600M": 10_24, } # fmt: off __A = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = ['''input_ids''', '''attention_mask'''] snake_case_ = NllbTokenizer snake_case_ = [] snake_case_ = [] def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="<s>" , lowerCamelCase__="</s>" , lowerCamelCase__="</s>" , lowerCamelCase__="<s>" , lowerCamelCase__="<unk>" , lowerCamelCase__="<pad>" , lowerCamelCase__="<mask>" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=False , **lowerCamelCase__ , ) -> List[Any]: '''simple docstring''' __lowerCamelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token __lowerCamelCase = legacy_behaviour super().__init__( vocab_file=lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , src_lang=lowerCamelCase__ , tgt_lang=lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , legacy_behaviour=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCamelCase = vocab_file __lowerCamelCase = False if not self.vocab_file else True __lowerCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __lowerCamelCase = { lang_code: self.convert_tokens_to_ids(lowerCamelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __lowerCamelCase = src_lang if src_lang is not None else 'eng_Latn' __lowerCamelCase = self.convert_tokens_to_ids(self._src_lang ) __lowerCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowercase_ ( self ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> List[int]: '''simple docstring''' __lowerCamelCase = [self.sep_token_id] __lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) -> Tuple: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __lowerCamelCase = src_lang __lowerCamelCase = self(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = self.convert_tokens_to_ids(lowerCamelCase__ ) __lowerCamelCase = tgt_lang_id return inputs def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = "eng_Latn" , lowerCamelCase__ = None , lowerCamelCase__ = "fra_Latn" , **lowerCamelCase__ , ) -> BatchEncoding: '''simple docstring''' __lowerCamelCase = src_lang __lowerCamelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = self.convert_tokens_to_ids(lowerCamelCase__ ) if self.legacy_behaviour: __lowerCamelCase = [] __lowerCamelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCamelCase = [self.cur_lang_code] __lowerCamelCase = [self.eos_token_id] __lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self , lowerCamelCase__ ) -> None: '''simple docstring''' __lowerCamelCase = self.convert_tokens_to_ids(lowerCamelCase__ ) if self.legacy_behaviour: __lowerCamelCase = [] __lowerCamelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCamelCase = [self.cur_lang_code] __lowerCamelCase = [self.eos_token_id] __lowerCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __lowerCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __lowerCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowerCamelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __lowerCamelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase__ ): copyfile(self.vocab_file , lowerCamelCase__ ) return (out_vocab_file,)
710
import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset __A = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) __A = dataset.iloc[:, 1:2].values __A = dataset.iloc[:, 2].values __A , __A , __A , __A = train_test_split(X, y, test_size=0.2, random_state=0) __A = PolynomialFeatures(degree=4) __A = poly_reg.fit_transform(X) __A = LinearRegression() pol_reg.fit(X_poly, y) def lowerCamelCase_ ( ) -> List[Any]: """simple docstring""" plt.scatter(UpperCamelCase__ , UpperCamelCase__ , color='red' ) plt.plot(UpperCamelCase__ , pol_reg.predict(poly_reg.fit_transform(UpperCamelCase__ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
167
0