code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import torch def a_ ( ): if torch.cuda.is_available(): A__ = torch.cuda.device_count() else: A__ = 0 print(f'''Successfully ran on {num_gpus} GPUs''' ) if __name__ == "__main__": main()
571
"""simple docstring""" def a_ ( __a , __a ): return int(input_a == input_a == 0 ) def a_ ( ): print('''Truth Table of NOR Gate:''' ) print('''| Input 1 | Input 2 | Output |''' ) print(f'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(f'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(f'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(f'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
571
1
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _UpperCamelCase = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __lowercase : def __init__( self , A_ , A_=16 , A_=13 , A_=7 , A_=14 , A_=10 , A_=19 , A_=5 , A_=4 , A_=True , A_=16 , A_=2 , A_=4 , A_=4 , A_="gelu" , A_=0.1 , A_=0.1 , A_=[1, 2, 3, 4, 5] , A_=25 , A_=5 , ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Optional[Any] = d_model __lowerCAmelCase : Any = parent __lowerCAmelCase : List[Any] = batch_size __lowerCAmelCase : int = prediction_length __lowerCAmelCase : str = context_length __lowerCAmelCase : Any = cardinality __lowerCAmelCase : Tuple = num_time_features __lowerCAmelCase : List[str] = lags_sequence __lowerCAmelCase : Any = embedding_dimension __lowerCAmelCase : Dict = is_training __lowerCAmelCase : Optional[int] = hidden_size __lowerCAmelCase : List[str] = num_hidden_layers __lowerCAmelCase : List[Any] = num_attention_heads __lowerCAmelCase : Tuple = intermediate_size __lowerCAmelCase : int = hidden_act __lowerCAmelCase : Optional[int] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[Any] = context_length __lowerCAmelCase : Any = prediction_length + label_length __lowerCAmelCase : Union[str, Any] = label_length __lowerCAmelCase : Any = moving_average __lowerCAmelCase : Optional[int] = autocorrelation_factor def UpperCamelCase__ ( self ) ->Dict: '''simple docstring''' return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def UpperCamelCase__ ( self , A_ ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : str = config.context_length + max(config.lags_sequence ) __lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) __lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) __lowerCAmelCase : Dict = floats_tensor([self.batch_size, _past_length] ) __lowerCAmelCase : Tuple = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs __lowerCAmelCase : str = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) __lowerCAmelCase : Tuple = floats_tensor([self.batch_size, config.prediction_length] ) __lowerCAmelCase : Optional[int] = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Optional[Any] = self.get_config() __lowerCAmelCase : Tuple = self.prepare_autoformer_inputs_dict(A_ ) return config, inputs_dict def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase__ ( self , A_ , A_ ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Optional[int] = AutoformerModel(config=A_ ).to(A_ ).eval() __lowerCAmelCase : Optional[int] = model(**A_ ) __lowerCAmelCase : Dict = outputs.encoder_last_hidden_state __lowerCAmelCase : int = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Tuple = model.get_encoder() encoder.save_pretrained(A_ ) __lowerCAmelCase : List[Any] = AutoformerEncoder.from_pretrained(A_ ).to(A_ ) __lowerCAmelCase : Any = model.create_network_inputs(**A_ ) __lowerCAmelCase : Dict = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) __lowerCAmelCase : Dict = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) __lowerCAmelCase : Optional[Any] = encoder(inputs_embeds=A_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) __lowerCAmelCase : List[Any] = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) __lowerCAmelCase : List[str] = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) __lowerCAmelCase : Dict = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) __lowerCAmelCase : str = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: __lowerCAmelCase : Dict = model.get_decoder() decoder.save_pretrained(A_ ) __lowerCAmelCase : Any = AutoformerDecoder.from_pretrained(A_ ).to(A_ ) __lowerCAmelCase : List[str] = decoder( trend=A_ , inputs_embeds=A_ , encoder_hidden_states=A_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __lowercase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _UpperCamelCase = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () _UpperCamelCase = (AutoformerForPrediction,) if is_torch_available() else () _UpperCamelCase = {"""feature-extraction""": AutoformerModel} if is_torch_available() else {} _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False _UpperCamelCase = False def UpperCamelCase__ ( self ) ->List[Any]: '''simple docstring''' __lowerCAmelCase : int = AutoformerModelTester(self ) __lowerCAmelCase : Dict = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) ->str: '''simple docstring''' __lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[Any] = model_class(A_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) __lowerCAmelCase : Optional[Any] = model_class.from_pretrained(A_ , output_loading_info=A_ ) self.assertEqual(info['''missing_keys'''] , [] ) def UpperCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A_ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def UpperCamelCase__ ( self ) ->int: '''simple docstring''' pass def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = inspect.signature(getattr(A_ , '''forward''' ) ) # The main input is the name of the argument after `self` __lowerCAmelCase : Optional[Any] = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A_ ) def UpperCamelCase__ ( self ) ->Optional[int]: '''simple docstring''' __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : str = model_class(A_ ) __lowerCAmelCase : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Optional[Any] = [*signature.parameters.keys()] __lowerCAmelCase : str = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A_ )] , A_ ) def UpperCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' __lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : Any = True __lowerCAmelCase : Tuple = getattr(self.model_tester , '''seq_length''' , A_ ) __lowerCAmelCase : Tuple = getattr(self.model_tester , '''decoder_seq_length''' , A_ ) __lowerCAmelCase : Any = getattr(self.model_tester , '''encoder_seq_length''' , A_ ) __lowerCAmelCase : List[str] = getattr(self.model_tester , '''d_model''' , A_ ) __lowerCAmelCase : int = getattr(self.model_tester , '''num_attention_heads''' , A_ ) __lowerCAmelCase : Union[str, Any] = d_model // num_attention_heads for model_class in self.all_model_classes: __lowerCAmelCase : Any = True __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[int] = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : str = model(**self._prepare_for_class(A_ , A_ ) ) __lowerCAmelCase : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Union[str, Any] = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : Any = model(**self._prepare_for_class(A_ , A_ ) ) __lowerCAmelCase : Dict = outputs.encoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) __lowerCAmelCase : Optional[Any] = len(A_ ) __lowerCAmelCase : List[Any] = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A_ , A_ ) # decoder attentions __lowerCAmelCase : List[str] = outputs.decoder_attentions self.assertIsInstance(A_ , (list, tuple) ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions __lowerCAmelCase : Any = outputs.cross_attentions self.assertIsInstance(A_ , (list, tuple) ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine __lowerCAmelCase : List[str] = True __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Dict = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): __lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + 2 , len(A_ ) ) __lowerCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' super().test_retain_grad_hidden_states_attentions() def _lowercase ( lowercase__="train-batch.pt" ): __lowerCAmelCase : List[str] = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=lowercase__ , repo_type='''dataset''' ) __lowerCAmelCase : Tuple = torch.load(lowercase__ , map_location=lowercase__ ) return batch @require_torch @slow class __lowercase (unittest.TestCase ): def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Union[str, Any] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Tuple = prepare_batch() with torch.no_grad(): __lowerCAmelCase : Optional[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] __lowerCAmelCase : Dict = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A_ ) __lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=A_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase__ ( self ) ->List[str]: '''simple docstring''' __lowerCAmelCase : Tuple = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __lowerCAmelCase : List[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state __lowerCAmelCase : List[str] = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A_ ) __lowerCAmelCase : Any = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=A_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , A_ , atol=A_ ) ) def UpperCamelCase__ ( self ) ->Tuple: '''simple docstring''' __lowerCAmelCase : Dict = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A_ ) __lowerCAmelCase : Dict = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): __lowerCAmelCase : Optional[int] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) __lowerCAmelCase : Optional[Any] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A_ ) __lowerCAmelCase : Optional[Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A_ ) __lowerCAmelCase : Tuple = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A_ , rtol=1e-1 ) )
715
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase = { "configuration_luke": ["LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP", "LukeConfig"], "tokenization_luke": ["LukeTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ "LUKE_PRETRAINED_MODEL_ARCHIVE_LIST", "LukeForEntityClassification", "LukeForEntityPairClassification", "LukeForEntitySpanClassification", "LukeForMultipleChoice", "LukeForQuestionAnswering", "LukeForSequenceClassification", "LukeForTokenClassification", "LukeForMaskedLM", "LukeModel", "LukePreTrainedModel", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
583
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __magic_name__ ( ) -> Optional[int]: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase_ : Dict = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , """os.path.join""" , _A ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __magic_name__ ( ) -> List[Any]: """simple docstring""" assert _test_patching.open is open lowercase_ : Optional[Any] = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , _A ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __magic_name__ ( ) -> Union[str, Any]: """simple docstring""" lowercase_ : Optional[int] = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , """pandas.read_csv""" , _A ): pass def __magic_name__ ( ) -> Optional[Any]: """simple docstring""" lowercase_ : Optional[int] = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , _A ) is None with patch_submodule(_test_patching , """len""" , _A ): assert _test_patching.len is mock assert _test_patching.len is len def __magic_name__ ( ) -> Dict: """simple docstring""" lowercase_ : Union[str, Any] = '__test_patch_submodule_start_and_stop_mock__' lowercase_ : List[Any] = patch_submodule(_test_patching , """open""" , _A ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __magic_name__ ( ) -> str: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase_ : Any = '__test_patch_submodule_successive_join__' lowercase_ : int = '__test_patch_submodule_successive_dirname__' lowercase_ : str = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , _A ): with patch_submodule(_test_patching , """os.rename""" , _A ): with patch_submodule(_test_patching , """os.path.dirname""" , _A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , _A ): with patch_submodule(_test_patching , """os.path.join""" , _A ): with patch_submodule(_test_patching , """os.path.dirname""" , _A ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __magic_name__ ( ) -> int: """simple docstring""" lowercase_ : List[Any] = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , _A ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , _A ): pass
458
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase: Tuple = logging.get_logger(__name__) lowerCAmelCase: Dict = '▁' lowerCAmelCase: Dict = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', } lowerCAmelCase: int = { 'vocab_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json' ), }, 'spm_file': { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model' ) }, } lowerCAmelCase: Any = { 'facebook/s2t-small-librispeech-asr': 1_0_2_4, } lowerCAmelCase: Optional[int] = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de'] lowerCAmelCase: List[Any] = {'mustc': MUSTC_LANGS} class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = MAX_MODEL_INPUT_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] def __init__( self : int , __snake_case : int , __snake_case : Optional[Any] , __snake_case : Optional[Any]="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Union[str, Any]="<pad>" , __snake_case : str="<unk>" , __snake_case : Dict=False , __snake_case : int=False , __snake_case : str=None , __snake_case : Optional[int]=None , __snake_case : Optional[Dict[str, Any]] = None , **__snake_case : Union[str, Any] , ): a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , do_upper_case=__snake_case , do_lower_case=__snake_case , tgt_lang=__snake_case , lang_codes=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) a : Tuple = do_upper_case a : Optional[Any] = do_lower_case a : List[str] = load_json(__snake_case ) a : Dict = {v: k for k, v in self.encoder.items()} a : int = spm_file a : Tuple = load_spm(__snake_case , self.sp_model_kwargs ) if lang_codes is not None: a : Any = lang_codes a : str = LANGUAGES[lang_codes] a : Tuple = [F"""<lang:{lang}>""" for lang in self.langs] a : str = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} a : Optional[Any] = self.lang_tokens a : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: a : List[str] = {} @property def lowercase_ ( self : Optional[Any] ): return len(self.encoder ) @property def lowercase_ ( self : int ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self : int , __snake_case : Optional[int] ): a : Union[str, Any] = new_tgt_lang self.set_tgt_lang_special_tokens(__snake_case ) def lowercase_ ( self : str , __snake_case : str ): a : int = self.lang_code_to_id[tgt_lang] a : int = [lang_code_id] def lowercase_ ( self : Optional[int] , __snake_case : str ): return self.sp_model.encode(__snake_case , out_type=__snake_case ) def lowercase_ ( self : List[str] , __snake_case : List[Any] ): return self.encoder.get(__snake_case , self.encoder[self.unk_token] ) def lowercase_ ( self : List[Any] , __snake_case : int ): return self.decoder.get(__snake_case , self.unk_token ) def lowercase_ ( self : Union[str, Any] , __snake_case : List[str] ): a : List[Any] = [] a : List[Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: a : Union[str, Any] = self.sp_model.decode(__snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " a : Optional[int] = [] else: current_sub_tokens.append(__snake_case ) a : Tuple = self.sp_model.decode(__snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self : int , __snake_case : List[Any] , __snake_case : List[str]=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self : Optional[int] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) a : Optional[int] = [1] * len(self.prefix_tokens ) a : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__snake_case )) + suffix_ones return prefix_ones + ([0] * len(__snake_case )) + ([0] * len(__snake_case )) + suffix_ones def lowercase_ ( self : Union[str, Any] ): a : Union[str, Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): a : List[str] = self.__dict__.copy() a : Union[str, Any] = None return state def __setstate__( self : str , __snake_case : Dict ): a : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): a : int = {} a : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self : str , __snake_case : str , __snake_case : Optional[str] = None ): a : Union[str, Any] = Path(__snake_case ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" a : Any = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) a : List[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , __snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __snake_case ) elif not os.path.isfile(self.spm_file ): with open(__snake_case , 'wb' ) as fi: a : Tuple = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (str(__snake_case ), str(__snake_case )) def lowerCamelCase__ ( _A , _A ): a : List[Any] = sentencepiece.SentencePieceProcessor(**_A ) spm.Load(str(_A ) ) return spm def lowerCamelCase__ ( _A ): with open(_A , 'r' ) as f: return json.load(_A ) def lowerCamelCase__ ( _A , _A ): with open(_A , 'w' ) as f: json.dump(_A , _A , indent=2 )
526
0
def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) lowerCamelCase_ = str(bin(UpperCAmelCase__ ) ) binary_number += "0" * shift_amount return binary_number def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: if number < 0 or shift_amount < 0: raise ValueError("""both inputs must be positive integers""" ) lowerCamelCase_ = str(bin(UpperCAmelCase__ ) )[2:] if shift_amount >= len(UpperCAmelCase__ ): return "0b0" lowerCamelCase_ = binary_number[: len(UpperCAmelCase__ ) - shift_amount] return "0b" + shifted_binary_number def __lowerCAmelCase ( UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> str: if number >= 0: # Get binary representation of positive number lowerCamelCase_ = """0""" + str(bin(UpperCAmelCase__ ) ).strip("""-""" )[2:] else: # Get binary (2's complement) representation of negative number lowerCamelCase_ = len(bin(UpperCAmelCase__ )[3:] ) # Find 2's complement of number lowerCamelCase_ = bin(abs(UpperCAmelCase__ ) - (1 << binary_number_length) )[3:] lowerCamelCase_ = ( """1""" + """0""" * (binary_number_length - len(UpperCAmelCase__ )) + binary_number ) if shift_amount >= len(UpperCAmelCase__ ): return "0b" + binary_number[0] * len(UpperCAmelCase__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(UpperCAmelCase__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
103
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer lowercase = logging.get_logger(__name__) lowercase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } lowercase = {'''mobilebert-uncased''': 5_1_2} lowercase = {} class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = MobileBertTokenizer def __init__( self : Union[str, Any] , __UpperCamelCase : str=None , __UpperCamelCase : str=None , __UpperCamelCase : Dict=True , __UpperCamelCase : Any="[UNK]" , __UpperCamelCase : str="[SEP]" , __UpperCamelCase : Dict="[PAD]" , __UpperCamelCase : List[str]="[CLS]" , __UpperCamelCase : Any="[MASK]" , __UpperCamelCase : Any=True , __UpperCamelCase : int=None , **__UpperCamelCase : Dict , ): super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __UpperCamelCase ) != do_lower_case or normalizer_state.get("""strip_accents""" , __UpperCamelCase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __UpperCamelCase ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(__UpperCamelCase , normalizer_state.pop("""type""" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**__UpperCamelCase ) lowerCamelCase_ = do_lower_case def lowercase__ ( self : List[str] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict=None ): lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Tuple , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ): lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ): lowerCamelCase_ = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
103
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"""schedulers/""" ) ) __SCREAMING_SNAKE_CASE = self.diffusers_dir shutil.copy( os.path.join(lowerCamelCase ,"""src/diffusers/schedulers/scheduling_ddpm.py""" ) ,os.path.join(self.diffusers_dir ,"""schedulers/scheduling_ddpm.py""" ) ,) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : List[str] ,lowerCamelCase : Tuple ,lowerCamelCase : Optional[Any] ,lowerCamelCase : List[Any]=None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: __SCREAMING_SNAKE_CASE = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result __SCREAMING_SNAKE_CASE = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) __SCREAMING_SNAKE_CASE = black.format_str(lowerCamelCase ,mode=lowerCamelCase ) __SCREAMING_SNAKE_CASE = os.path.join(self.diffusers_dir ,"""new_code.py""" ) with open(lowerCamelCase ,"""w""" ,newline="""\n""" ) as f: f.write(lowerCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=lowerCamelCase ) with open(lowerCamelCase ,"""r""" ) as f: self.assertTrue(f.read() ,lowerCamelCase ) def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(lowerCamelCase ,lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,lowerCamelCase ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,re.sub("""DDPM""" ,"""Test""" ,lowerCamelCase ) ,) # Copy consistency with a really long name __SCREAMING_SNAKE_CASE = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" ,f"""{long_class_name}SchedulerOutput""" ,re.sub("""Bert""" ,lowerCamelCase ,lowerCamelCase ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,lowerCamelCase ,overwrite_result=re.sub("""DDPM""" ,"""Test""" ,lowerCamelCase ) ,)
109
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " f"""{test_file} instead.""" ) __SCREAMING_SNAKE_CASE = components[-1] if not test_fn.endswith("py" ): raise ValueError(f"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("test_modeling_" ): raise ValueError( f"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) __SCREAMING_SNAKE_CASE = components[:-1] + [test_fn.replace(".py" , "" )] __SCREAMING_SNAKE_CASE = ".".join(lowerCAmelCase_ ) return test_module_path def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_module_path(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = importlib.import_module(lowerCAmelCase_ ) return test_module def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = get_test_module(lowerCAmelCase_ ) for attr in dir(lowerCAmelCase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = get_test_module(lowerCAmelCase_ ) for attr in dir(lowerCAmelCase_ ): __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase_ , "all_model_classes" , [] ) if len(lowerCAmelCase_ ) > 0: test_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = test_class() if hasattr(lowerCAmelCase_ , "setUp" ): test.setUp() __SCREAMING_SNAKE_CASE = None if hasattr(lowerCAmelCase_ , "model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __SCREAMING_SNAKE_CASE = test.model_tester.__class__ return model_tester def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = [] for test_class in test_classes: __SCREAMING_SNAKE_CASE = get_model_tester_from_test_class(lowerCAmelCase_ ) if tester_class is not None: tester_classes.append(lowerCAmelCase_ ) # sort with class names return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : x.__name__ ) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_test_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {test_class: get_model_tester_from_test_class(lowerCAmelCase_ ) for test_class in test_classes} return test_tester_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_model_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { model_class: get_test_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in model_classes } return model_test_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = get_model_classes(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = { model_class: get_tester_classes_for_model(lowerCAmelCase_ , lowerCAmelCase_ ) for model_class in model_classes } return model_to_tester_mapping def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return o elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return o.__name__ elif isinstance(lowerCAmelCase_ , (list, tuple) ): return [to_json(lowerCAmelCase_ ) for x in o] elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return {to_json(lowerCAmelCase_ ): to_json(lowerCAmelCase_ ) for k, v in o.items()} else: return o
682
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : int = logging.get_logger(__name__) lowercase_ : Dict = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class __UpperCamelCase (_UpperCAmelCase ): __A = '''rwkv''' __A = {'''max_position_embeddings''': '''context_length'''} def __init__( self , _lowerCAmelCase=5_0277 , _lowerCAmelCase=1024 , _lowerCAmelCase=4096 , _lowerCAmelCase=32 , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=1E-5 , _lowerCAmelCase=0 , _lowerCAmelCase=0 , _lowerCAmelCase=6 , _lowerCAmelCase=False , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Union[str, Any]: '''simple docstring''' lowercase = vocab_size lowercase = context_length lowercase = hidden_size lowercase = num_hidden_layers lowercase = attention_hidden_size if attention_hidden_size is not None else hidden_size lowercase = intermediate_size if intermediate_size is not None else 4 * hidden_size lowercase = layer_norm_epsilon lowercase = rescale_every lowercase = use_cache lowercase = bos_token_id lowercase = eos_token_id super().__init__( tie_word_embeddings=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase )
718
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ : Optional[Any] = logging.get_logger(__name__) lowercase_ : int = {'''vocab_file''': '''spm_char.model'''} lowercase_ : int = { '''vocab_file''': { '''microsoft/speecht5_asr''': '''https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model''', '''microsoft/speecht5_tts''': '''https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model''', '''microsoft/speecht5_vc''': '''https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model''', } } lowercase_ : Optional[Any] = { '''microsoft/speecht5_asr''': 1024, '''microsoft/speecht5_tts''': 1024, '''microsoft/speecht5_vc''': 1024, } class __UpperCamelCase (_UpperCAmelCase ): __A = VOCAB_FILES_NAMES __A = PRETRAINED_VOCAB_FILES_MAP __A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="<s>" , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCAmelCase , ) lowercase = vocab_file lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @property def _a ( self ) -> List[Any]: '''simple docstring''' return self.sp_model.get_piece_size() def _a ( self ) -> str: '''simple docstring''' lowercase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self , _lowerCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _a ( self , _lowerCAmelCase ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> List[Any]: '''simple docstring''' return self.sp_model.piece_to_id(_lowerCAmelCase ) def _a ( self , _lowerCAmelCase ) -> str: '''simple docstring''' lowercase = self.sp_model.IdToPiece(_lowerCAmelCase ) return token def _a ( self , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = [] lowercase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowerCAmelCase ) + token lowercase = [] else: current_sub_tokens.append(_lowerCAmelCase ) out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _a ( self , _lowerCAmelCase , _lowerCAmelCase=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) lowercase = [1] if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + suffix_ones return ([0] * len(_lowerCAmelCase )) + ([0] * len(_lowerCAmelCase )) + suffix_ones def _a ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase = os.path.join( _lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , """wb""" ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
653
0
import os import pytest from transformers.dynamic_module_utils import get_imports __a : List[str] = "\nimport os\n" __a : str = "\ndef foo():\n import os\n return False\n" __a : List[str] = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" __a : List[Any] = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" __a : Optional[int] = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" __a : Tuple = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" __a : Any = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" __a : Dict = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" __a : Tuple = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" __a : Union[str, Any] = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" __a : List[str] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , __lowercase ) def _SCREAMING_SNAKE_CASE ( __lowercase : int , __lowercase : str ) -> Any: """simple docstring""" __A = os.path.join(__lowercase , """test_file.py""" ) with open(__lowercase , """w""" ) as _tmp_file: _tmp_file.write(__lowercase ) __A = get_imports(__lowercase ) assert parsed_imports == ["os"]
637
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("1.0.0a"): raise Exception("requires fairseq >= 1.0.0a") logging.set_verbosity_info() __a : Union[str, Any] = logging.get_logger(__name__) __a : Tuple = "Hello world! cécé herlolip" def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : str , __lowercase : bool ) -> List[Any]: """simple docstring""" __A = FairseqRobertaModel.from_pretrained(__lowercase ) roberta.eval() # disable dropout __A = roberta.model.encoder.sentence_encoder __A = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: __A = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , __lowercase ) __A = XLMRobertaXLForSequenceClassification(__lowercase ) if classification_head else XLMRobertaXLForMaskedLM(__lowercase ) model.eval() # Now let's copy all the weights. # Embeddings __A = roberta_sent_encoder.embed_tokens.weight __A = roberta_sent_encoder.embed_positions.weight __A = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __A = roberta_sent_encoder.layer_norm.weight __A = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __A = model.roberta.encoder.layer[i] __A = roberta_sent_encoder.layers[i] __A = layer.attention __A = roberta_layer.self_attn_layer_norm.weight __A = roberta_layer.self_attn_layer_norm.bias # self attention __A = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __A = roberta_layer.self_attn.q_proj.weight __A = roberta_layer.self_attn.q_proj.bias __A = roberta_layer.self_attn.k_proj.weight __A = roberta_layer.self_attn.k_proj.bias __A = roberta_layer.self_attn.v_proj.weight __A = roberta_layer.self_attn.v_proj.bias # self-attention output __A = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __A = roberta_layer.self_attn.out_proj.weight __A = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __A = roberta_layer.final_layer_norm.weight __A = roberta_layer.final_layer_norm.bias # intermediate __A = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __A = roberta_layer.fca.weight __A = roberta_layer.fca.bias # output __A = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __A = roberta_layer.fca.weight __A = roberta_layer.fca.bias # end of layer if classification_head: __A = roberta.model.classification_heads["""mnli"""].dense.weight __A = roberta.model.classification_heads["""mnli"""].dense.bias __A = roberta.model.classification_heads["""mnli"""].out_proj.weight __A = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head __A = roberta.model.encoder.lm_head.dense.weight __A = roberta.model.encoder.lm_head.dense.bias __A = roberta.model.encoder.lm_head.layer_norm.weight __A = roberta.model.encoder.lm_head.layer_norm.bias __A = roberta.model.encoder.lm_head.weight __A = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __A = roberta.encode(__lowercase ).unsqueeze(0 ) # batch of size 1 __A = model(__lowercase )[0] if classification_head: __A = roberta.model.classification_heads["""mnli"""](roberta.extract_features(__lowercase ) ) else: __A = roberta.model(__lowercase )[0] print(our_output.shape , their_output.shape ) __A = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __A = torch.allclose(__lowercase , __lowercase , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(__lowercase ).mkdir(parents=__lowercase , exist_ok=__lowercase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) if __name__ == "__main__": __a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--classification_head", action="store_true", help="Whether to convert a final classification head." ) __a : Dict = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
637
1
from __future__ import annotations def _lowerCamelCase ( _a ): """simple docstring""" if not nums: raise ValueError('''List is empty''' ) return sum(_a ) / len(_a ) if __name__ == "__main__": import doctest doctest.testmod()
297
def _lowerCamelCase ( _a ): """simple docstring""" if bit_count < 0: raise ValueError('''The given input must be positive''' ) # get the generated string sequence _lowerCamelCase = gray_code_sequence_string(_a ) # # convert them to integers for i in range(len(_a ) ): _lowerCamelCase = int(sequence[i] , 2 ) return sequence def _lowerCamelCase ( _a ): """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] _lowerCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits _lowerCamelCase = gray_code_sequence_string(bit_count - 1 ) _lowerCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): _lowerCamelCase = '''0''' + smaller_sequence[i] sequence.append(_a ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): _lowerCamelCase = '''1''' + smaller_sequence[i] sequence.append(_a ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
297
1
'''simple docstring''' from __future__ import annotations lowerCAmelCase: str = 'Muhammad Umer Farooq' lowerCAmelCase: List[str] = 'MIT' lowerCAmelCase: Tuple = '1.0.0' lowerCAmelCase: List[Any] = 'Muhammad Umer Farooq' lowerCAmelCase: Optional[Any] = '[email protected]' lowerCAmelCase: Dict = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class a__( lowerCamelCase__ ): def __init__( self : Dict , __snake_case : str ): super().__init__() a : list[str] = [] a : List[Any] = domain def lowercase_ ( self : Dict , __snake_case : str , __snake_case : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: a : Tuple = parse.urljoin(self.domain , __snake_case ) self.urls.append(__snake_case ) def lowerCamelCase__ ( _A ): return ".".join(get_sub_domain_name(_A ).split('.' )[-2:] ) def lowerCamelCase__ ( _A ): return parse.urlparse(_A ).netloc def lowerCamelCase__ ( _A = "https://github.com" ): a : Any = get_domain_name(_A ) # Initialize the parser a : Tuple = Parser(_A ) try: # Open URL a : List[Any] = requests.get(_A ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through a : Union[str, Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: a : int = requests.get(_A ) # Get the valid email. a : Optional[Any] = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_A ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_A ) if __name__ == "__main__": lowerCAmelCase: Any = emails_from_url('https://github.com') print(F"{len(emails)} emails found:") print('\n'.join(sorted(emails)))
526
'''simple docstring''' import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCAmelCase: Optional[int] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCAmelCase: Optional[Any] = [file for file in filepaths if file != file.lower()] if upper_files: print(F"{len(upper_files)} files contain uppercase characters:") print('\n'.join(upper_files) + '\n') lowerCAmelCase: int = [file for file in filepaths if ' ' in file] if space_files: print(F"{len(space_files)} files contain space characters:") print('\n'.join(space_files) + '\n') lowerCAmelCase: Union[str, Any] = [file for file in filepaths if '-' in file] if hyphen_files: print(F"{len(hyphen_files)} files contain hyphen characters:") print('\n'.join(hyphen_files) + '\n') lowerCAmelCase: Union[str, Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"{len(nodir_files)} files are not in a directory:") print('\n'.join(nodir_files) + '\n') lowerCAmelCase: int = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
526
1
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : float = 1 / sqrt(2 ) ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(_snake_case ) lowercase__ = cos(_snake_case ) lowercase__ = _sin / (2 * q_factor) lowercase__ = (1 - _cos) / 2 lowercase__ = 1 - _cos lowercase__ = 1 + alpha lowercase__ = -2 * _cos lowercase__ = 1 - alpha lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : float = 1 / sqrt(2 ) ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(_snake_case ) lowercase__ = cos(_snake_case ) lowercase__ = _sin / (2 * q_factor) lowercase__ = (1 + _cos) / 2 lowercase__ = -1 - _cos lowercase__ = 1 + alpha lowercase__ = -2 * _cos lowercase__ = 1 - alpha lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : float = 1 / sqrt(2 ) ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(_snake_case ) lowercase__ = cos(_snake_case ) lowercase__ = _sin / (2 * q_factor) lowercase__ = _sin / 2 lowercase__ = 0 lowercase__ = -ba lowercase__ = 1 + alpha lowercase__ = -2 * _cos lowercase__ = 1 - alpha lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : float = 1 / sqrt(2 ) ): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(_snake_case ) lowercase__ = cos(_snake_case ) lowercase__ = _sin / (2 * q_factor) lowercase__ = 1 - alpha lowercase__ = -2 * _cos lowercase__ = 1 + alpha lowercase__ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] ,[ba, ba, ba] ) return filt def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : float ,_snake_case : float = 1 / sqrt(2 ) ,): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(_snake_case ) lowercase__ = cos(_snake_case ) lowercase__ = _sin / (2 * q_factor) lowercase__ = 10 ** (gain_db / 40) lowercase__ = 1 + alpha * big_a lowercase__ = -2 * _cos lowercase__ = 1 - alpha * big_a lowercase__ = 1 + alpha / big_a lowercase__ = -2 * _cos lowercase__ = 1 - alpha / big_a lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : float ,_snake_case : float = 1 / sqrt(2 ) ,): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(_snake_case ) lowercase__ = cos(_snake_case ) lowercase__ = _sin / (2 * q_factor) lowercase__ = 10 ** (gain_db / 40) lowercase__ = (big_a + 1) - (big_a - 1) * _cos lowercase__ = (big_a + 1) + (big_a - 1) * _cos lowercase__ = (big_a - 1) - (big_a + 1) * _cos lowercase__ = (big_a - 1) + (big_a + 1) * _cos lowercase__ = 2 * sqrt(_snake_case ) * alpha lowercase__ = big_a * (pmc + aaa) lowercase__ = 2 * big_a * mpc lowercase__ = big_a * (pmc - aaa) lowercase__ = ppmc + aaa lowercase__ = -2 * pmpc lowercase__ = ppmc - aaa lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt def lowerCamelCase ( _snake_case : int ,_snake_case : int ,_snake_case : float ,_snake_case : float = 1 / sqrt(2 ) ,): '''simple docstring''' lowercase__ = tau * frequency / samplerate lowercase__ = sin(_snake_case ) lowercase__ = cos(_snake_case ) lowercase__ = _sin / (2 * q_factor) lowercase__ = 10 ** (gain_db / 40) lowercase__ = (big_a + 1) - (big_a - 1) * _cos lowercase__ = (big_a + 1) + (big_a - 1) * _cos lowercase__ = (big_a - 1) - (big_a + 1) * _cos lowercase__ = (big_a - 1) + (big_a + 1) * _cos lowercase__ = 2 * sqrt(_snake_case ) * alpha lowercase__ = big_a * (ppmc + aaa) lowercase__ = -2 * big_a * pmpc lowercase__ = big_a * (ppmc - aaa) lowercase__ = pmc + aaa lowercase__ = 2 * mpc lowercase__ = pmc - aaa lowercase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] ,[ba, ba, ba] ) return filt
539
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class snake_case (tf.keras.layers.Layer ): def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ) -> List[Any]: super().__init__() lowercase__ = pad_token_id lowercase__ = max_length lowercase__ = vocab lowercase__ = merges lowercase__ = BytePairTokenizer(UpperCAmelCase_ ,UpperCAmelCase_ ,sequence_length=UpperCAmelCase_ ) @classmethod def _a ( cls ,UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> List[str]: lowercase__ = [" ".join(UpperCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] lowercase__ = tokenizer.get_vocab() return cls(UpperCAmelCase_ ,UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def _a ( cls ,UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) -> Optional[Any]: lowercase__ = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) return cls.from_tokenizer(UpperCAmelCase_ ,*UpperCAmelCase_ ,**UpperCAmelCase_ ) @classmethod def _a ( cls ,UpperCAmelCase_ ) -> Optional[Any]: return cls(**UpperCAmelCase_ ) def _a ( self ) -> Tuple: return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ) -> Tuple: lowercase__ = self.tf_tokenizer(UpperCAmelCase_ ) lowercase__ = tf.ones_like(UpperCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length lowercase__ = max_length if max_length is not None else self.max_length if max_length is not None: lowercase__ , lowercase__ = pad_model_inputs( UpperCAmelCase_ ,max_seq_length=UpperCAmelCase_ ,pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
539
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np snake_case__ : Union[str, Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 snake_case__ : Any = typing.Union[np.floataa, int, float] # noqa: UP007 def _snake_case (__lowercase , __lowercase): return np.sqrt(np.sum((np.asarray(__lowercase) - np.asarray(__lowercase)) ** 2)) def _snake_case (__lowercase , __lowercase): return sum((va - va) ** 2 for va, va in zip(__lowercase , __lowercase)) ** (1 / 2) if __name__ == "__main__": def _snake_case (): from timeit import timeit print('Without Numpy') print( timeit( 'euclidean_distance_no_np([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , )) print('With Numpy') print( timeit( 'euclidean_distance([1, 2, 3], [4, 5, 6])' , number=10000 , globals=globals() , )) benchmark()
23
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class A ( UpperCamelCase_ ): UpperCamelCase__ : List[str] =(PNDMScheduler,) UpperCamelCase__ : Dict =(('num_inference_steps', 50),) def lowerCamelCase ( self : Dict , **lowercase_ : Dict ) -> str: """simple docstring""" _lowerCamelCase : List[Any] ={ 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**lowercase_ ) return config def lowerCamelCase ( self : Any , lowercase_ : str=0 , **lowercase_ : str ) -> Optional[int]: """simple docstring""" _lowerCamelCase : Optional[Any] =dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[Any] =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Tuple =self.dummy_sample _lowerCamelCase : int =0.1 * sample _lowerCamelCase : int =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : str =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : str =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Optional[Any] =scheduler_class.from_pretrained(lowercase_ ) new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals _lowerCamelCase : Any =dummy_past_residuals[:] _lowerCamelCase : Union[str, Any] =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : List[str] =new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCamelCase : Optional[int] =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Optional[Any] =new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Any ) -> Any: """simple docstring""" pass def lowerCamelCase ( self : Union[str, Any] , lowercase_ : List[str]=0 , **lowercase_ : int ) -> int: """simple docstring""" _lowerCamelCase : Any =dict(self.forward_default_kwargs ) _lowerCamelCase : Dict =kwargs.pop('num_inference_steps' , lowercase_ ) _lowerCamelCase : Union[str, Any] =self.dummy_sample _lowerCamelCase : Optional[int] =0.1 * sample _lowerCamelCase : List[str] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCamelCase : Any =self.get_scheduler_config() _lowerCamelCase : int =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # copy over dummy past residuals (must be after setting timesteps) _lowerCamelCase : Any =dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_ ) _lowerCamelCase : Optional[Any] =scheduler_class.from_pretrained(lowercase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_ ) # copy over dummy past residual (must be after setting timesteps) _lowerCamelCase : Optional[int] =dummy_past_residuals[:] _lowerCamelCase : List[str] =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : str =new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _lowerCamelCase : Optional[Any] =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : List[str] =new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase ( self : Optional[Any] , **lowercase_ : Any ) -> Tuple: """simple docstring""" _lowerCamelCase : Union[str, Any] =self.scheduler_classes[0] _lowerCamelCase : Optional[Any] =self.get_scheduler_config(**lowercase_ ) _lowerCamelCase : Any =scheduler_class(**lowercase_ ) _lowerCamelCase : Union[str, Any] =10 _lowerCamelCase : str =self.dummy_model() _lowerCamelCase : Union[str, Any] =self.dummy_sample_deter scheduler.set_timesteps(lowercase_ ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCamelCase : Union[str, Any] =model(lowercase_ , lowercase_ ) _lowerCamelCase : Any =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCamelCase : List[Any] =model(lowercase_ , lowercase_ ) _lowerCamelCase : int =scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ ).prev_sample return sample def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _lowerCamelCase : Any =dict(self.forward_default_kwargs ) _lowerCamelCase : Optional[int] =kwargs.pop('num_inference_steps' , lowercase_ ) for scheduler_class in self.scheduler_classes: _lowerCamelCase : List[str] =self.get_scheduler_config() _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) _lowerCamelCase : Union[str, Any] =self.dummy_sample _lowerCamelCase : Optional[int] =0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , 'set_timesteps' ): scheduler.set_timesteps(lowercase_ ) elif num_inference_steps is not None and not hasattr(lowercase_ , 'set_timesteps' ): _lowerCamelCase : Tuple =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCamelCase : List[Any] =[residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCamelCase : Union[str, Any] =dummy_past_residuals[:] _lowerCamelCase : List[Any] =scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : str =scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCamelCase : Tuple =scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_ ).prev_sample _lowerCamelCase : Optional[Any] =scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_ ) def lowerCamelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_ ) _lowerCamelCase : Optional[int] =self.scheduler_classes[0] _lowerCamelCase : Dict =self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def lowerCamelCase ( self : List[str] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_ ) def lowerCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_ ) def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_ ) def lowerCamelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_ ) def lowerCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowercase_ ) def lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Optional[int] =27 for scheduler_class in self.scheduler_classes: _lowerCamelCase : Dict =self.dummy_sample _lowerCamelCase : List[Any] =0.1 * sample _lowerCamelCase : List[Any] =self.get_scheduler_config() _lowerCamelCase : List[str] =scheduler_class(**lowercase_ ) scheduler.set_timesteps(lowercase_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCamelCase : Tuple =scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ ).prev_sample def lowerCamelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowercase_ ): _lowerCamelCase : Dict =self.scheduler_classes[0] _lowerCamelCase : Optional[Any] =self.get_scheduler_config() _lowerCamelCase : List[Any] =scheduler_class(**lowercase_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" _lowerCamelCase : Tuple =self.full_loop() _lowerCamelCase : Optional[Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : Union[str, Any] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 198.1318 ) < 1E-2 assert abs(result_mean.item() - 0.2580 ) < 1E-3 def lowerCamelCase ( self : Any ) -> Optional[int]: """simple docstring""" _lowerCamelCase : int =self.full_loop(prediction_type='v_prediction' ) _lowerCamelCase : Dict =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : str =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 67.3986 ) < 1E-2 assert abs(result_mean.item() - 0.0878 ) < 1E-3 def lowerCamelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Tuple =self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) _lowerCamelCase : Optional[Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : Union[str, Any] =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 230.0399 ) < 1E-2 assert abs(result_mean.item() - 0.2995 ) < 1E-3 def lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCamelCase : str =self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01 ) _lowerCamelCase : Union[str, Any] =torch.sum(torch.abs(lowercase_ ) ) _lowerCamelCase : str =torch.mean(torch.abs(lowercase_ ) ) assert abs(result_sum.item() - 186.9482 ) < 1E-2 assert abs(result_mean.item() - 0.2434 ) < 1E-3
464
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ ( __lowerCAmelCase ): """simple docstring""" A__ : Any = (UnCLIPScheduler,) def snake_case__ ( self , **SCREAMING_SNAKE_CASE__ ) -> int: A__ = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_UpperCamelCase ) return config def snake_case__ ( self ) -> int: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_UpperCamelCase ) def snake_case__ ( self ) -> Optional[Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_UpperCamelCase ) def snake_case__ ( self ) -> Union[str, Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCamelCase ) def snake_case__ ( self ) -> str: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_UpperCamelCase ) def snake_case__ ( self ) -> Tuple: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_UpperCamelCase ) def snake_case__ ( self ) -> Optional[int]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_UpperCamelCase , prev_timestep=_UpperCamelCase ) def snake_case__ ( self ) -> Any: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(variance_type="fixed_small_log" ) A__ = scheduler_class(**_UpperCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_5_4_9_6_2_5 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_9_9_4_9_8_7 ) ) < 1e-5 def snake_case__ ( self ) -> List[Any]: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config(variance_type="learned_range" ) A__ = scheduler_class(**_UpperCamelCase ) A__ = 0.5 assert scheduler._get_variance(1 , predicted_variance=_UpperCamelCase ) - -10.1712790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_UpperCamelCase ) - -5.7_9_9_8_0_5_2 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_UpperCamelCase ) - -0.0_0_1_0_0_1_1 < 1e-5 def snake_case__ ( self ) -> int: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**_UpperCamelCase ) A__ = scheduler.timesteps A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCamelCase ): # 1. predict noise residual A__ = model(_UpperCamelCase , _UpperCamelCase ) # 2. predict previous mean of sample x_t-1 A__ = scheduler.step(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , generator=_UpperCamelCase ).prev_sample A__ = pred_prev_sample A__ = torch.sum(torch.abs(_UpperCamelCase ) ) A__ = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 252.2682495 ) < 1e-2 assert abs(result_mean.item() - 0.3_2_8_4_7_4_3 ) < 1e-3 def snake_case__ ( self ) -> Dict: A__ = self.scheduler_classes[0] A__ = self.get_scheduler_config() A__ = scheduler_class(**_UpperCamelCase ) scheduler.set_timesteps(25 ) A__ = scheduler.timesteps A__ = self.dummy_model() A__ = self.dummy_sample_deter A__ = torch.manual_seed(0 ) for i, t in enumerate(_UpperCamelCase ): # 1. predict noise residual A__ = model(_UpperCamelCase , _UpperCamelCase ) if i + 1 == timesteps.shape[0]: A__ = None else: A__ = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 A__ = scheduler.step( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , prev_timestep=_UpperCamelCase , generator=_UpperCamelCase ).prev_sample A__ = pred_prev_sample A__ = torch.sum(torch.abs(_UpperCamelCase ) ) A__ = torch.mean(torch.abs(_UpperCamelCase ) ) assert abs(result_sum.item() - 258.2044983 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_6_2_0_3_8 ) < 1e-3 def snake_case__ ( self ) -> Union[str, Any]: pass def snake_case__ ( self ) -> str: pass
715
"""simple docstring""" import numpy as np def _lowerCamelCase ( UpperCAmelCase_ : np.array ) -> np.array: """simple docstring""" return 1 / (1 + np.exp(-vector )) def _lowerCamelCase ( UpperCAmelCase_ : np.array ) -> np.array: """simple docstring""" return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
562
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase_ (unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=3 , lowercase_=30 , lowercase_=400 , lowercase_=True , lowercase_=None , lowercase_=True , lowercase_=[0.5, 0.5, 0.5] , lowercase_=[0.5, 0.5, 0.5] , lowercase_=True , lowercase_=1 / 255 , lowercase_=True , ) -> List[Any]: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p a__ =size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} a__ =parent a__ =batch_size a__ =num_channels a__ =min_resolution a__ =max_resolution a__ =do_resize a__ =size a__ =do_normalize a__ =image_mean a__ =image_std a__ =do_rescale a__ =rescale_factor a__ =do_pad def __UpperCamelCase ( self) -> Dict: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __UpperCamelCase ( self , lowercase_ , lowercase_=False) -> Any: if not batched: a__ =image_inputs[0] if isinstance(lowercase_ , Image.Image): a__ , a__ =image.size else: a__ , a__ =image.shape[1], image.shape[2] if w < h: a__ =int(self.size['shortest_edge'] * h / w) a__ =self.size['shortest_edge'] elif w > h: a__ =self.size['shortest_edge'] a__ =int(self.size['shortest_edge'] * w / h) else: a__ =self.size['shortest_edge'] a__ =self.size['shortest_edge'] else: a__ =[] for image in image_inputs: a__ , a__ =self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) a__ =max(lowercase_ , key=lambda lowercase_: item[0])[0] a__ =max(lowercase_ , key=lambda lowercase_: item[1])[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =ConditionalDetrImageProcessor if is_vision_available() else None def __UpperCamelCase ( self) -> Tuple: a__ =ConditionalDetrImageProcessingTester(self) @property def __UpperCamelCase ( self) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self) -> Any: a__ =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowercase_ , 'image_mean')) self.assertTrue(hasattr(lowercase_ , 'image_std')) self.assertTrue(hasattr(lowercase_ , 'do_normalize')) self.assertTrue(hasattr(lowercase_ , 'do_resize')) self.assertTrue(hasattr(lowercase_ , 'size')) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333}) self.assertEqual(image_processor.do_pad , lowercase_) a__ =self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase_) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: pass def __UpperCamelCase ( self) -> Optional[Any]: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random PIL images a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image) # Test not batched input a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) a__ =image_processing(lowercase_ , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self) -> Optional[int]: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray) # Test not batched input a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ =image_processing(lowercase_ , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __UpperCamelCase ( self) -> Optional[Any]: # Initialize image_processing a__ =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a__ =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor) # Test not batched input a__ =image_processing(image_inputs[0] , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a__ =image_processing(lowercase_ , return_tensors='pt').pixel_values a__ , a__ =self.image_processor_tester.get_expected_values(lowercase_ , batched=lowercase_) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __UpperCamelCase ( self) -> List[Any]: # prepare image and target a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: a__ =json.loads(f.read()) a__ ={'image_id': 39769, 'annotations': target} # encode them a__ =ConditionalDetrImageProcessor.from_pretrained('microsoft/conditional-detr-resnet-50') a__ =image_processing(images=lowercase_ , annotations=lowercase_ , return_tensors='pt') # verify pixel values a__ =torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , lowercase_) a__ =torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4)) # verify area a__ =torch.tensor([58_87.96_00, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_)) # verify boxes a__ =torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_) a__ =torch.tensor([0.55_03, 0.27_65, 0.06_04, 0.22_15]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3)) # verify image_id a__ =torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_)) # verify is_crowd a__ =torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_)) # verify class_labels a__ =torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_)) # verify orig_size a__ =torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_)) # verify size a__ =torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_)) @slow def __UpperCamelCase ( self) -> Dict: # prepare image, target and masks_path a__ =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: a__ =json.loads(f.read()) a__ ={'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} a__ =pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them a__ =ConditionalDetrImageProcessor(format='coco_panoptic') a__ =image_processing(images=lowercase_ , annotations=lowercase_ , masks_path=lowercase_ , return_tensors='pt') # verify pixel values a__ =torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , lowercase_) a__ =torch.tensor([0.27_96, 0.31_38, 0.34_81]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase_ , atol=1e-4)) # verify area a__ =torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 58_79.65_62, 76_34.11_47]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase_)) # verify boxes a__ =torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase_) a__ =torch.tensor([0.26_25, 0.54_37, 0.46_88, 0.86_25]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase_ , atol=1e-3)) # verify image_id a__ =torch.tensor([39769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase_)) # verify is_crowd a__ =torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase_)) # verify class_labels a__ =torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase_)) # verify masks a__ =822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase_) # verify orig_size a__ =torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase_)) # verify size a__ =torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase_))
20
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCAmelCase_ ( snake_case__ , snake_case__ ): """simple docstring""" a_ :List[str] ="""nat""" a_ :int ={ """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Any , SCREAMING_SNAKE_CASE__ : List[Any]=4 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : Optional[int]=6_4 , SCREAMING_SNAKE_CASE__ : List[str]=[3, 4, 6, 5] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=[2, 4, 8, 1_6] , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : int=3.0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : int=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : int="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.0_2 , SCREAMING_SNAKE_CASE__ : Tuple=1E-5 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE__ ) __a = patch_size __a = num_channels __a = embed_dim __a = depths __a = len(SCREAMING_SNAKE_CASE__ ) __a = num_heads __a = kernel_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = layer_norm_eps __a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __a = int(embed_dim * 2 ** (len(SCREAMING_SNAKE_CASE__ ) - 1) ) __a = layer_scale_init_value __a = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(SCREAMING_SNAKE_CASE__ ) + 1 )] __a , __a = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE__ , out_indices=SCREAMING_SNAKE_CASE__ , stage_names=self.stage_names )
582
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = 0 if start < end: _lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = a[end] _lowerCAmelCase = a[pivot] _lowerCAmelCase = temp _lowerCAmelCase , _lowerCAmelCase = _in_place_partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , p - 1 ) count += _in_place_quick_sort(SCREAMING_SNAKE_CASE_ , p + 1 , SCREAMING_SNAKE_CASE_ ) return count def __a(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = 0 _lowerCAmelCase = randint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = a[end] _lowerCAmelCase = a[pivot] _lowerCAmelCase = temp _lowerCAmelCase = start - 1 for index in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _lowerCAmelCase = new_pivot_index + 1 _lowerCAmelCase = a[new_pivot_index] _lowerCAmelCase = a[index] _lowerCAmelCase = temp _lowerCAmelCase = a[new_pivot_index + 1] _lowerCAmelCase = a[end] _lowerCAmelCase = temp return new_pivot_index + 1, count _SCREAMING_SNAKE_CASE = TemporaryFile() _SCREAMING_SNAKE_CASE = 1_00 # 1000 elements are to be sorted _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0, 1 # mean and standard deviation _SCREAMING_SNAKE_CASE = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _SCREAMING_SNAKE_CASE = np.load(outfile) _SCREAMING_SNAKE_CASE = len(M) - 1 _SCREAMING_SNAKE_CASE = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
489
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , collections.abc.Iterable ): return x return (x, x) @require_tf class lowerCAmelCase_ : def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> str: pass def _snake_case ( self ) -> Dict: pass def _snake_case ( self ) -> int: pass def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase = VisionTextDualEncoderConfig.from_vision_text_configs(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = {"vision_model": vision_model, "text_model": text_model} _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model(input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase ) _lowerCAmelCase = after_output[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> Dict: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[int]: _lowerCAmelCase = np.abs((a - b) ).max() self.assertLessEqual(_lowerCAmelCase , _lowerCAmelCase , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def _snake_case ( self ) -> Tuple: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**_lowerCAmelCase ) def _snake_case ( self ) -> Optional[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**_lowerCAmelCase ) def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_save_load(**_lowerCAmelCase ) def _snake_case ( self ) -> List[Any]: _lowerCAmelCase = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**_lowerCAmelCase ) @slow def _snake_case ( self ) -> List[Any]: _lowerCAmelCase , _lowerCAmelCase = self.get_pretrained_model_and_inputs() _lowerCAmelCase = model_a(**_lowerCAmelCase ) _lowerCAmelCase = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained(_lowerCAmelCase ) _lowerCAmelCase = model_a(**_lowerCAmelCase ) _lowerCAmelCase = after_outputs[0].numpy() _lowerCAmelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_lowerCAmelCase , 1E-5 ) @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = TFViTModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFBertModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> Optional[int]: _lowerCAmelCase = TFViTModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> List[Any]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None , **_lowerCAmelCase ) -> int: _lowerCAmelCase , _lowerCAmelCase = self.get_vision_text_model(_lowerCAmelCase , _lowerCAmelCase ) _lowerCAmelCase = TFVisionTextDualEncoderModel(vision_model=_lowerCAmelCase , text_model=_lowerCAmelCase ) _lowerCAmelCase = model( input_ids=_lowerCAmelCase , pixel_values=_lowerCAmelCase , attention_mask=_lowerCAmelCase , output_attentions=_lowerCAmelCase ) _lowerCAmelCase = output.vision_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCAmelCase = to_atuple(vision_model.config.image_size ) _lowerCAmelCase = to_atuple(vision_model.config.patch_size ) _lowerCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowerCAmelCase = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowerCAmelCase = output.text_model_output.attentions self.assertEqual(len(_lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: _lowerCAmelCase = TFDeiTModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFRobertaModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> List[str]: _lowerCAmelCase = TFDeiTModelTester(self ) _lowerCAmelCase = TFRobertaModelTester(self ) _lowerCAmelCase = vit_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class lowerCAmelCase_ ( __magic_name__ ,unittest.TestCase ): def _snake_case ( self ) -> Any: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) _lowerCAmelCase = 13 _lowerCAmelCase = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowerCAmelCase = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowerCAmelCase = random_attention_mask([batch_size, 4] ) _lowerCAmelCase = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> int: _lowerCAmelCase = TFCLIPVisionModel(_lowerCAmelCase , name="vision_model" ) _lowerCAmelCase = TFBertModel(_lowerCAmelCase , name="text_model" ) return vision_model, text_model def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFCLIPVisionModelTester(self ) _lowerCAmelCase = TFBertModelTester(self ) _lowerCAmelCase = clip_model_tester.prepare_config_and_inputs() _lowerCAmelCase = bert_model_tester.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase = vision_config_and_inputs ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def _snake_case ( self ) -> Union[str, Any]: _lowerCAmelCase = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=_lowerCAmelCase ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) _lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) _lowerCAmelCase = processor( text=["una foto di un gatto", "una foto di un cane"] , images=_lowerCAmelCase , padding=_lowerCAmelCase , return_tensors="np" ) _lowerCAmelCase = model(**_lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowerCAmelCase = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , _lowerCAmelCase , atol=1E-3 ) )
489
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class snake_case__ ( metaclass=UpperCamelCase): a_ = ["torch", "scipy"] def __init__( self : int , *_A : Optional[int] , **_A : List[str] ) -> int: requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def A ( cls : Optional[int] , *_A : Optional[Any] , **_A : Optional[Any] ) -> List[str]: requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def A ( cls : Optional[int] , *_A : str , **_A : Any ) -> str: requires_backends(cls , ['''torch''', '''scipy'''] )
541
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _UpperCamelCase : Tuple = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
541
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
def a ( snake_case__: int ): '''simple docstring''' lowercase_ = [0] * len(snake_case__ ) lowercase_ = [] lowercase_ = [] lowercase_ = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case__ ) ): if indegree[i] == 0: queue.append(snake_case__ ) while queue: lowercase_ = queue.pop(0 ) cnt += 1 topo.append(snake_case__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case__ ) if cnt != len(snake_case__ ): print('''Cycle exists''' ) else: print(snake_case__ ) # Adjacency List of Graph __a = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
409
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowercase : str = logging.get_logger(__name__) __lowercase : Dict = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class _A ( snake_case , snake_case ): '''simple docstring''' __lowerCamelCase : Optional[int] = '''convnextv2''' def __init__( self ,SCREAMING_SNAKE_CASE_=3 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=4 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_="gelu" ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=1E-12 ,SCREAMING_SNAKE_CASE_=0.0 ,SCREAMING_SNAKE_CASE_=224 ,SCREAMING_SNAKE_CASE_=None ,SCREAMING_SNAKE_CASE_=None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Dict = num_channels snake_case : List[str] = patch_size snake_case : List[Any] = num_stages snake_case : Union[str, Any] = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes snake_case : Optional[Any] = [3, 3, 9, 3] if depths is None else depths snake_case : List[Any] = hidden_act snake_case : Optional[Any] = initializer_range snake_case : str = layer_norm_eps snake_case : str = drop_path_rate snake_case : Any = image_size snake_case : Tuple = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] snake_case , snake_case : str = get_aligned_output_features_output_indices( out_features=SCREAMING_SNAKE_CASE_ ,out_indices=SCREAMING_SNAKE_CASE_ ,stage_names=self.stage_names )
36
'''simple docstring''' # using dfs for finding eulerian path traversal def _lowercase ( __A ,__A ,__A ,__A=None ): '''simple docstring''' __UpperCamelCase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __UpperCamelCase , __UpperCamelCase = True, True __UpperCamelCase = dfs(__A ,__A ,__A ,__A ) return path def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = 0 __UpperCamelCase = -1 for i in range(__A ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __UpperCamelCase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _lowercase ( __A ,__A ): '''simple docstring''' __UpperCamelCase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __UpperCamelCase , __UpperCamelCase = check_circuit_or_path(__A ,__A ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return __UpperCamelCase = 1 if check == 2: __UpperCamelCase = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) __UpperCamelCase = dfs(__A ,__A ,__A ) print(__A ) def _lowercase ( ): '''simple docstring''' __UpperCamelCase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __UpperCamelCase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __UpperCamelCase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __UpperCamelCase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __UpperCamelCase = { 1: [], 2: [] # all degree is zero } __UpperCamelCase = 10 check_euler(__A ,__A ) check_euler(__A ,__A ) check_euler(__A ,__A ) check_euler(__A ,__A ) check_euler(__A ,__A ) if __name__ == "__main__": main()
601
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCamelCase: int =logging.get_logger(__name__) _UpperCamelCase: Union[str, Any] ={ 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json' ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class __lowercase( SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase_ = '''roformer''' def __init__( self : Dict , _lowerCAmelCase : int=5_0000 , _lowerCAmelCase : Union[str, Any]=None , _lowerCAmelCase : Dict=768 , _lowerCAmelCase : int=12 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Optional[int]=3072 , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : List[Any]=0.1 , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Optional[int]=1536 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : Optional[int]=0.02 , _lowerCAmelCase : List[Any]=1e-12 , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : Dict=False , _lowerCAmelCase : str=True , **_lowerCAmelCase : Tuple , ) -> Optional[int]: super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size if embedding_size is None else embedding_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = hidden_act _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = rotary_value _lowerCAmelCase = use_cache class __lowercase( SCREAMING_SNAKE_CASE ): """simple docstring""" @property def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase = {0: 'batch', 1: 'sequence'} _lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
716
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __lowercase( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int]=7 , _lowerCAmelCase : Dict=3 , _lowerCAmelCase : str=30 , _lowerCAmelCase : Tuple=400 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : int=None , _lowerCAmelCase : Any=True , _lowerCAmelCase : Dict=1 / 255 , _lowerCAmelCase : str=True , _lowerCAmelCase : Tuple=[0.5, 0.5, 0.5] , _lowerCAmelCase : Any=[0.5, 0.5, 0.5] , _lowerCAmelCase : Optional[Any]=True , ) -> int: # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _lowerCAmelCase = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_pad def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[Any]: return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=False ) -> Union[str, Any]: if not batched: _lowerCAmelCase = image_inputs[0] if isinstance(_lowerCAmelCase , Image.Image ): _lowerCAmelCase , _lowerCAmelCase = image.size else: _lowerCAmelCase , _lowerCAmelCase = image.shape[1], image.shape[2] if w < h: _lowerCAmelCase = int(self.size['shortest_edge'] * h / w ) _lowerCAmelCase = self.size['shortest_edge'] elif w > h: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = int(self.size['shortest_edge'] * w / h ) else: _lowerCAmelCase = self.size['shortest_edge'] _lowerCAmelCase = self.size['shortest_edge'] else: _lowerCAmelCase = [] for image in image_inputs: _lowerCAmelCase , _lowerCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[0] )[0] _lowerCAmelCase = max(_lowerCAmelCase , key=lambda _lowerCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __lowercase( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = DetrImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: _lowerCAmelCase = DetrImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[str]: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_rescale' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'rescale_factor' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(_lowerCAmelCase , 'do_pad' ) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) _lowerCAmelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_lowerCAmelCase ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _lowerCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: pass def SCREAMING_SNAKE_CASE_ ( self : Any ) -> List[str]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(_lowerCAmelCase , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='pt' ).pixel_values _lowerCAmelCase , _lowerCAmelCase = self.image_processor_tester.get_expected_values(_lowerCAmelCase , batched=_lowerCAmelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Any: # prepare image and target _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'image_id': 3_9769, 'annotations': target} # encode them _lowerCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50' ) _lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , return_tensors='pt' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify area _lowerCAmelCase = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowerCAmelCase ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowerCAmelCase , atol=1e-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowerCAmelCase ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowerCAmelCase ) ) # verify class_labels _lowerCAmelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowerCAmelCase ) ) # verify orig_size _lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowerCAmelCase ) ) # verify size _lowerCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowerCAmelCase ) ) @slow def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> List[Any]: # prepare image, target and masks_path _lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: _lowerCAmelCase = json.loads(f.read() ) _lowerCAmelCase = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} _lowerCAmelCase = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them _lowerCAmelCase = DetrImageProcessor.from_pretrained('facebook/detr-resnet-50-panoptic' ) _lowerCAmelCase = image_processing(images=_lowerCAmelCase , annotations=_lowerCAmelCase , masks_path=_lowerCAmelCase , return_tensors='pt' ) # verify pixel values _lowerCAmelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _lowerCAmelCase , atol=1e-4 ) ) # verify area _lowerCAmelCase = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _lowerCAmelCase ) ) # verify boxes _lowerCAmelCase = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _lowerCAmelCase , atol=1e-3 ) ) # verify image_id _lowerCAmelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _lowerCAmelCase ) ) # verify is_crowd _lowerCAmelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _lowerCAmelCase ) ) # verify class_labels _lowerCAmelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _lowerCAmelCase ) ) # verify masks _lowerCAmelCase = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _lowerCAmelCase ) # verify orig_size _lowerCAmelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _lowerCAmelCase ) ) # verify size _lowerCAmelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _lowerCAmelCase ) )
585
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = tempfile.mkdtemp() # fmt: off UpperCAmelCase__ : int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCAmelCase__ : str = dict(zip(_lowerCAmelCase , range(len(_lowerCAmelCase ) ) ) ) UpperCAmelCase__ : List[Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] UpperCAmelCase__ : List[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCAmelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCAmelCase ) ) UpperCAmelCase__ : Optional[Any] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } UpperCAmelCase__ : Tuple = os.path.join(self.tmpdirname , _lowerCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self , **_lowerCAmelCase ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __UpperCAmelCase ( self , **_lowerCAmelCase ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __UpperCAmelCase ( self , **_lowerCAmelCase ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __UpperCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCAmelCase__ : Union[str, Any] = [Image.fromarray(np.moveaxis(_lowerCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = self.get_tokenizer() UpperCAmelCase__ : List[str] = self.get_rust_tokenizer() UpperCAmelCase__ : int = self.get_image_processor() UpperCAmelCase__ : Tuple = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCAmelCase ) UpperCAmelCase__ : Dict = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : Optional[Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Tuple = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCAmelCase__ : str = self.get_image_processor(do_normalize=_lowerCAmelCase , padding_value=1.0 ) UpperCAmelCase__ : str = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_lowerCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.get_image_processor() UpperCAmelCase__ : Tuple = self.get_tokenizer() UpperCAmelCase__ : str = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : str = self.prepare_image_inputs() UpperCAmelCase__ : str = image_processor(_lowerCAmelCase , return_tensors="""np""" ) UpperCAmelCase__ : List[Any] = processor(images=_lowerCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Union[str, Any] = self.get_image_processor() UpperCAmelCase__ : List[Any] = self.get_tokenizer() UpperCAmelCase__ : Optional[Any] = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = """lower newer""" UpperCAmelCase__ : int = processor(text=_lowerCAmelCase ) UpperCAmelCase__ : Dict = tokenizer(_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Any = self.get_image_processor() UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() UpperCAmelCase__ : List[Any] = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = """lower newer""" UpperCAmelCase__ : int = self.prepare_image_inputs() UpperCAmelCase__ : Optional[int] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = self.get_image_processor() UpperCAmelCase__ : Any = self.get_tokenizer() UpperCAmelCase__ : Tuple = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : Any = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCAmelCase__ : Any = processor.batch_decode(_lowerCAmelCase ) UpperCAmelCase__ : List[Any] = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __UpperCAmelCase ( self ): UpperCAmelCase__ : Optional[Any] = self.get_image_processor() UpperCAmelCase__ : List[str] = self.get_tokenizer() UpperCAmelCase__ : Any = CLIPProcessor(tokenizer=_lowerCAmelCase , image_processor=_lowerCAmelCase ) UpperCAmelCase__ : str = """lower newer""" UpperCAmelCase__ : Optional[Any] = self.prepare_image_inputs() UpperCAmelCase__ : List[Any] = processor(text=_lowerCAmelCase , images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
79
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = 'informer' __lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = "student_t" , _lowerCAmelCase = "nll" , _lowerCAmelCase = 1 , _lowerCAmelCase = None , _lowerCAmelCase = "mean" , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = 0 , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = 64 , _lowerCAmelCase = 32 , _lowerCAmelCase = 32 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = 2 , _lowerCAmelCase = True , _lowerCAmelCase = "gelu" , _lowerCAmelCase = 0.0_5 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 0.1 , _lowerCAmelCase = 100 , _lowerCAmelCase = 0.0_2 , _lowerCAmelCase=True , _lowerCAmelCase = "prob" , _lowerCAmelCase = 5 , _lowerCAmelCase = True , **_lowerCAmelCase , ): # time series specific configuration UpperCAmelCase__ : List[str] = prediction_length UpperCAmelCase__ : Optional[Any] = context_length or prediction_length UpperCAmelCase__ : str = distribution_output UpperCAmelCase__ : int = loss UpperCAmelCase__ : Optional[Any] = input_size UpperCAmelCase__ : Any = num_time_features UpperCAmelCase__ : int = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] UpperCAmelCase__ : Union[str, Any] = scaling UpperCAmelCase__ : Optional[Any] = num_dynamic_real_features UpperCAmelCase__ : List[str] = num_static_real_features UpperCAmelCase__ : str = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase__ : List[str] = cardinality else: UpperCAmelCase__ : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_lowerCAmelCase ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) UpperCAmelCase__ : str = embedding_dimension else: UpperCAmelCase__ : List[str] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] UpperCAmelCase__ : Union[str, Any] = num_parallel_samples # Transformer architecture configuration UpperCAmelCase__ : Dict = input_size * len(self.lags_sequence ) + self._number_of_features UpperCAmelCase__ : Any = d_model UpperCAmelCase__ : int = encoder_attention_heads UpperCAmelCase__ : Optional[Any] = decoder_attention_heads UpperCAmelCase__ : int = encoder_ffn_dim UpperCAmelCase__ : Tuple = decoder_ffn_dim UpperCAmelCase__ : List[Any] = encoder_layers UpperCAmelCase__ : Optional[Any] = decoder_layers UpperCAmelCase__ : Tuple = dropout UpperCAmelCase__ : int = attention_dropout UpperCAmelCase__ : List[str] = activation_dropout UpperCAmelCase__ : Any = encoder_layerdrop UpperCAmelCase__ : Union[str, Any] = decoder_layerdrop UpperCAmelCase__ : Tuple = activation_function UpperCAmelCase__ : Dict = init_std UpperCAmelCase__ : str = use_cache # Informer UpperCAmelCase__ : Union[str, Any] = attention_type UpperCAmelCase__ : int = sampling_factor UpperCAmelCase__ : Any = distil super().__init__(is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase ) @property def __UpperCAmelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
79
1
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: complex , UpperCamelCase: str = "x" , UpperCamelCase: float = 1_0**-1_0 , UpperCamelCase: int = 1 , ): """simple docstring""" __lowerCAmelCase = symbols(UpperCamelCase ) __lowerCAmelCase = lambdify(UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = lambdify(UpperCamelCase , diff(UpperCamelCase , UpperCamelCase ) ) __lowerCAmelCase = starting_point while True: if diff_function(UpperCamelCase ) != 0: __lowerCAmelCase = prev_guess - multiplicity * func(UpperCamelCase ) / diff_function( UpperCamelCase ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __lowerCAmelCase = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial # Find fourth Root of 5 print(f'''The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}''') # Find value of e print( "The root of log(y) - 1 = 0 is ", f'''{newton_raphson("log(y) - 1", 2, variable="y")}''', ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", f'''{newton_raphson("exp(x) - 1", 1_0, precision=0.0_0_5)}''', ) # Find root of cos(x) print(f'''The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}''')
376
import math import sys def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = "" try: with open(UpperCamelCase , "rb" ) as binary_file: __lowerCAmelCase = binary_file.read() for dat in data: __lowerCAmelCase = F"{dat:08b}" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = {"0": "0", "1": "1"} __lowerCAmelCase , __lowerCAmelCase = "", "" __lowerCAmelCase = len(UpperCamelCase ) for i in range(len(UpperCamelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __lowerCAmelCase = lexicon[curr_string] result += last_match_id __lowerCAmelCase = last_match_id + "0" if math.loga(UpperCamelCase ).is_integer(): __lowerCAmelCase = {} for curr_key in list(UpperCamelCase ): __lowerCAmelCase = lexicon.pop(UpperCamelCase ) __lowerCAmelCase = new_lex __lowerCAmelCase = last_match_id + "1" index += 1 __lowerCAmelCase = "" return result def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = 8 try: with open(UpperCamelCase , "wb" ) as opened_file: __lowerCAmelCase = [ to_write[i : i + byte_length] for i in range(0 , len(UpperCamelCase ) , UpperCamelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(UpperCamelCase , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 __lowerCAmelCase = data_bits[counter:] __lowerCAmelCase = data_bits[counter + 1 :] return data_bits def _UpperCAmelCase ( UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" __lowerCAmelCase = read_file_binary(UpperCamelCase ) __lowerCAmelCase = remove_prefix(UpperCamelCase ) __lowerCAmelCase = decompress_data(UpperCamelCase ) write_file_binary(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
376
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A_: int = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_: Optional[int] = ['PoolFormerFeatureExtractor'] A_: List[Any] = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_: Optional[Any] = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys A_: Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
398
def a ( a ) ->List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = len(a ) while cur > 1: # Find the maximum number in arr SCREAMING_SNAKE_CASE = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi SCREAMING_SNAKE_CASE = arr[mi::-1] + arr[mi + 1 : len(a )] # Reverse whole list SCREAMING_SNAKE_CASE = arr[cur - 1 :: -1] + arr[cur : len(a )] cur -= 1 return arr if __name__ == "__main__": __lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
201
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging lowercase : Dict = logging.get_logger(__name__) lowercase : Optional[Any] = {'vocab_file': 'spiece.model'} lowercase : int = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } lowercase : Union[str, Any] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) lowercase : Any = 0 lowercase : List[Any] = 1 lowercase : Union[str, Any] = 2 lowercase : Any = 3 lowercase : int = 4 class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = 'left' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Tuple="<s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : Optional[int]="<unk>" , SCREAMING_SNAKE_CASE : int="<sep>" , SCREAMING_SNAKE_CASE : List[str]="<pad>" , SCREAMING_SNAKE_CASE : Optional[int]="<cls>" , SCREAMING_SNAKE_CASE : Optional[int]="<mask>" , SCREAMING_SNAKE_CASE : int=["<eop>", "<eod>"] , SCREAMING_SNAKE_CASE : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE : Any , ) -> None: """simple docstring""" lowerCAmelCase = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else mask_token lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=SCREAMING_SNAKE_CASE , remove_space=SCREAMING_SNAKE_CASE , keep_accents=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , additional_special_tokens=SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE , ) lowerCAmelCase = 3 lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE ) @property def __A ( self : Optional[int] ) -> Tuple: """simple docstring""" return len(self.sp_model ) def __A ( self : Any ) -> str: """simple docstring""" lowerCAmelCase = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Dict ) -> List[Any]: """simple docstring""" lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self : Optional[int] , SCREAMING_SNAKE_CASE : Dict ) -> Dict: """simple docstring""" lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Dict: """simple docstring""" if self.remove_space: lowerCAmelCase = " ".join(inputs.strip().split() ) else: lowerCAmelCase = inputs lowerCAmelCase = outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: lowerCAmelCase = unicodedata.normalize("NFKD" , SCREAMING_SNAKE_CASE ) lowerCAmelCase = "".join([c for c in outputs if not unicodedata.combining(SCREAMING_SNAKE_CASE )] ) if self.do_lower_case: lowerCAmelCase = outputs.lower() return outputs def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" lowerCAmelCase = self.preprocess_text(SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.sp_model.encode(SCREAMING_SNAKE_CASE , out_type=SCREAMING_SNAKE_CASE ) lowerCAmelCase = [] for piece in pieces: if len(SCREAMING_SNAKE_CASE ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): lowerCAmelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(SCREAMING_SNAKE_CASE , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase = cur_pieces[1:] else: lowerCAmelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(SCREAMING_SNAKE_CASE ) else: new_pieces.append(SCREAMING_SNAKE_CASE ) return new_pieces def __A ( self : Any , SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" return self.sp_model.PieceToId(SCREAMING_SNAKE_CASE ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : Any ) -> Union[str, Any]: """simple docstring""" return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = "".join(SCREAMING_SNAKE_CASE ).replace(SCREAMING_SNAKE_CASE , " " ).strip() return out_string def __A ( self : str , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : str , ) -> str: """simple docstring""" lowerCAmelCase = kwargs.pop("use_source_tokenizer" , SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCAmelCase = [] lowerCAmelCase = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = [] sub_texts.append(SCREAMING_SNAKE_CASE ) else: current_sub_text.append(SCREAMING_SNAKE_CASE ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(SCREAMING_SNAKE_CASE ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens lowerCAmelCase = "".join(SCREAMING_SNAKE_CASE ) lowerCAmelCase = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCAmelCase = self.clean_up_tokenization(SCREAMING_SNAKE_CASE ) return clean_text else: return text def __A ( self : Dict , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self : List[Any] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None , SCREAMING_SNAKE_CASE : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE , token_ids_a=SCREAMING_SNAKE_CASE , already_has_special_tokens=SCREAMING_SNAKE_CASE ) if token_ids_a is not None: return ([0] * len(SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] return ([0] * len(SCREAMING_SNAKE_CASE )) + [1, 1] def __A ( self : int , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowerCAmelCase = [self.sep_token_id] lowerCAmelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase = os.path.join( SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE , "wb" ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
159
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowercase : Optional[int] = random.Random() def __a ( A__ , A__=1.0 , A__=None , A__=None ) -> Any: if rng is None: lowerCAmelCase = global_rng lowerCAmelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int=7 , SCREAMING_SNAKE_CASE : Optional[Any]=4_0_0 , SCREAMING_SNAKE_CASE : Optional[Any]=2_0_0_0 , SCREAMING_SNAKE_CASE : Union[str, Any]=1 , SCREAMING_SNAKE_CASE : int=0.0 , SCREAMING_SNAKE_CASE : Optional[int]=1_6_0_0_0 , SCREAMING_SNAKE_CASE : Any=True , SCREAMING_SNAKE_CASE : Optional[Any]=8_0 , SCREAMING_SNAKE_CASE : int=1_6 , SCREAMING_SNAKE_CASE : Any=6_4 , SCREAMING_SNAKE_CASE : List[Any]="hann_window" , SCREAMING_SNAKE_CASE : Dict=8_0 , SCREAMING_SNAKE_CASE : Any=7_6_0_0 , SCREAMING_SNAKE_CASE : Optional[Any]=1E-10 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , ) -> Any: """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = min_seq_length lowerCAmelCase = max_seq_length lowerCAmelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase = feature_size lowerCAmelCase = padding_value lowerCAmelCase = sampling_rate lowerCAmelCase = do_normalize lowerCAmelCase = num_mel_bins lowerCAmelCase = hop_length lowerCAmelCase = win_length lowerCAmelCase = win_function lowerCAmelCase = fmin lowerCAmelCase = fmax lowerCAmelCase = mel_floor lowerCAmelCase = return_attention_mask def __A ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __A ( self : List[str] , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Optional[Any]=False ) -> str: """simple docstring""" def _flatten(SCREAMING_SNAKE_CASE : List[Any] ): return list(itertools.chain(*SCREAMING_SNAKE_CASE ) ) if equal_length: lowerCAmelCase = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs def __A ( self : List[str] , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Optional[int]=False ) -> str: """simple docstring""" if equal_length: lowerCAmelCase = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for x in speech_inputs] return speech_inputs @require_torch class _lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" lowerCAmelCase = SpeechTaFeatureExtractor def __A ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = SpeechTaFeatureExtractionTester(self ) def __A ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(SCREAMING_SNAKE_CASE , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(SCREAMING_SNAKE_CASE , axis=0 ) - 1 ) < 1E-3 ) ) def __A ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def __A ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = ["longest", "max_length", "do_not_pad"] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self.assertTrue(input_values[0][8_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self.assertTrue(input_values[0][1_0_0_0:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __A ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = range(8_0_0 , 1_4_0_0 , 2_0_0 ) lowerCAmelCase = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase = ["longest", "max_length", "do_not_pad"] lowerCAmelCase = [None, 1_6_0_0, None] for max_length, padding in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase = feat_extract(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:8_0_0] ) self._check_zero_mean_unit_variance(input_values[1][:1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2][:1_2_0_0] ) def __A ( self : str ) -> Any: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=1_0_0_0 , padding="max_length" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __A ( self : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=1_0_0_0 , padding="longest" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_0_0_0) ) lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = feat_extract( SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=2_0_0_0 , padding="longest" , return_tensors="np" ) lowerCAmelCase = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :8_0_0] ) self._check_zero_mean_unit_variance(input_values[1, :1_0_0_0] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_2_0_0) ) def __A ( self : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase = np.random.rand(1_0_0 ).astype(np.floataa ) lowerCAmelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __A ( self : int ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] lowerCAmelCase = [np.asarray(SCREAMING_SNAKE_CASE ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase = feature_extractor(audio_target=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCAmelCase = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test batched lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE ) lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) ) def __A ( self : Dict ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , processed_features[input_name] ) ) ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE ) lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target(equal_length=SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowerCAmelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __A ( self : Optional[int] ) -> Dict: """simple docstring""" lowerCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="np" )[input_name] lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 ) def __A ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = [len(SCREAMING_SNAKE_CASE ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , SCREAMING_SNAKE_CASE ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE ) def __A ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase = self.feat_extract_dict lowerCAmelCase = True lowerCAmelCase = self.feature_extraction_class(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase = [len(SCREAMING_SNAKE_CASE ) for x in speech_inputs] lowerCAmelCase = feat_extract.model_input_names[0] lowerCAmelCase = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase = min(SCREAMING_SNAKE_CASE ) lowerCAmelCase = feat_extract.num_mel_bins # hack! lowerCAmelCase = feat_extract.pad( SCREAMING_SNAKE_CASE , padding="max_length" , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , return_tensors="np" ) self.assertIn("attention_mask" , SCREAMING_SNAKE_CASE ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __A ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[Any]: """simple docstring""" from datasets import load_dataset lowerCAmelCase = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase = ds.sort("id" ).select(range(SCREAMING_SNAKE_CASE ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def __A ( self : List[Any] ) -> int: """simple docstring""" lowerCAmelCase = torch.tensor( [2.38_04E-03, 2.07_52E-03, 1.98_36E-03, 2.10_57E-03, 1.61_74E-03, 3.05_18E-04, 9.15_53E-05, 3.35_69E-04, 9.76_56E-04, 1.83_11E-03, 2.01_42E-03, 2.10_57E-03, 1.73_95E-03, 4.57_76E-04, -3.96_73E-04, 4.57_76E-04, 1.00_71E-03, 9.15_53E-05, 4.88_28E-04, 1.15_97E-03, 7.32_42E-04, 9.46_04E-04, 1.80_05E-03, 1.83_11E-03, 8.85_01E-04, 4.27_25E-04, 4.88_28E-04, 7.32_42E-04, 1.09_86E-03, 2.10_57E-03] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = SpeechTaFeatureExtractor() lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 9_3_6_8_0) ) self.assertTrue(torch.allclose(input_values[0, :3_0] , SCREAMING_SNAKE_CASE , atol=1E-6 ) ) def __A ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase = torch.tensor( [-2.6_8_7_0, -3.0_1_0_4, -3.1_3_5_6, -3.5_3_5_2, -3.0_0_4_4, -3.0_3_5_3, -3.4_7_1_9, -3.6_7_7_7, -3.1_5_2_0, -2.9_4_3_5, -2.6_5_5_3, -2.8_7_9_5, -2.9_9_4_4, -2.5_9_2_1, -3.0_2_7_9, -3.0_3_8_6, -3.0_8_6_4, -3.1_2_9_1, -3.2_3_5_3, -2.7_4_4_4, -2.6_8_3_1, -2.7_2_8_7, -3.1_7_6_1, -3.1_5_7_1, -3.2_7_2_6, -3.0_5_8_2, -3.1_0_0_7, -3.4_5_3_3, -3.4_6_9_5, -3.0_9_9_8] ) # fmt: on lowerCAmelCase = self._load_datasamples(1 ) lowerCAmelCase = SpeechTaFeatureExtractor() lowerCAmelCase = feature_extractor(audio_target=SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 3_6_6, 8_0) ) self.assertTrue(torch.allclose(input_values[0, 0, :3_0] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
159
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __UpperCamelCase = get_logger() __UpperCamelCase = None class lowerCAmelCase ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Dict: super().__init__(features=lowerCAmelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( F'Expected {device} to be a `str` not {type(lowerCAmelCase__ )}, as `jaxlib.xla_extension.Device` ' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) SCREAMING_SNAKE_CASE = device if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'Device with string identifier {self.device} not listed among the available ' F'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' F'device: {str(jax.devices()[0] )}.' ) SCREAMING_SNAKE_CASE = str(jax.devices()[0] ) SCREAMING_SNAKE_CASE = jnp_array_kwargs @staticmethod def __A ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: import jax return {str(lowerCAmelCase__ ): device for device in jax.devices()} def __A ( self , lowerCAmelCase__ ) -> Any: import jax import jax.numpy as jnp if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and column: if all( isinstance(lowerCAmelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(lowerCAmelCase__ , axis=0 ) return column def __A ( self , lowerCAmelCase__ ) -> Optional[Any]: import jax import jax.numpy as jnp if isinstance(lowerCAmelCase__ , (str, bytes, type(lowerCAmelCase__ )) ): return value elif isinstance(lowerCAmelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() SCREAMING_SNAKE_CASE = {} if isinstance(lowerCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: SCREAMING_SNAKE_CASE = {'dtype': jnp.intaa} else: SCREAMING_SNAKE_CASE = {'dtype': jnp.intaa} elif isinstance(lowerCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): SCREAMING_SNAKE_CASE = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE = np.asarray(lowerCAmelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: SCREAMING_SNAKE_CASE = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(lowerCAmelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def __A ( self , lowerCAmelCase__ ) -> Any: import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(lowerCAmelCase__ , '__array__' ) and not isinstance(lowerCAmelCase__ , jax.Array ): SCREAMING_SNAKE_CASE = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase__ ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase__ ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> Union[str, Any]: return map_nested(self._recursive_tensorize , lowerCAmelCase__ , map_list=lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> Mapping: SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_row(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_row(lowerCAmelCase__ ) return self.recursive_tensorize(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> "jax.Array": SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_column(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_column(lowerCAmelCase__ , pa_table.column_names[0] ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self._consolidate(lowerCAmelCase__ ) return column def __A ( self , lowerCAmelCase__ ) -> Mapping: SCREAMING_SNAKE_CASE = self.numpy_arrow_extractor().extract_batch(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.python_features_decoder.decode_batch(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.recursive_tensorize(lowerCAmelCase__ ) for column_name in batch: SCREAMING_SNAKE_CASE = self._consolidate(batch[column_name] ) return batch
247
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[torch.FloatTensor] = None SCREAMING_SNAKE_CASE_ : torch.FloatTensor = None SCREAMING_SNAKE_CASE_ : Optional[Tuple[torch.FloatTensor]] = None SCREAMING_SNAKE_CASE_ : Optional[Tuple[torch.FloatTensor]] = None class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__=512 , lowerCAmelCase__="cls" , lowerCAmelCase__=False , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Tuple: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = project_dim SCREAMING_SNAKE_CASE = pooler_fn SCREAMING_SNAKE_CASE = learn_encoder SCREAMING_SNAKE_CASE = use_attention_mask class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [R"""pooler""", R"""logit_scale"""] SCREAMING_SNAKE_CASE_ : List[Any] = [R"""position_ids""", R"""predictions.decoder.bias"""] SCREAMING_SNAKE_CASE_ : Union[str, Any] = """roberta""" SCREAMING_SNAKE_CASE_ : Dict = RobertaSeriesConfig def __init__( self , lowerCAmelCase__ ) -> Union[str, Any]: super().__init__(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = XLMRobertaModel(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , 'has_pre_transformation' , lowerCAmelCase__ ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim ) SCREAMING_SNAKE_CASE = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __A ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE = self.base_model( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase__ , ) if self.has_pre_transformation: SCREAMING_SNAKE_CASE = outputs['hidden_states'][-2] SCREAMING_SNAKE_CASE = self.pre_LN(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.transformation_pre(lowerCAmelCase__ ) return TransformationModelOutput( projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: SCREAMING_SNAKE_CASE = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
247
1
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowerCAmelCase ( _lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def lowerCAmelCase ( _lowerCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" class _UpperCamelCase : def __init__( self :Optional[int] , lowerCamelCase :Union[str, Any] ) -> List[Any]: UpperCAmelCase__ = metric_id class _UpperCamelCase : UpperCAmelCase_ = [MetricMock(_SCREAMING_SNAKE_CASE ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def UpperCAmelCase_ ( self :Optional[int] ) -> Optional[int]: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str] ) -> str: """simple docstring""" if "tmp_path" in args: UpperCAmelCase__ = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(_lowerCAmelCase , match="https://huggingface.co/docs/evaluate" ): func(*_lowerCAmelCase )
703
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCAmelCase : Optional[int] = { "configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : List[str] = [ "GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoForCausalLM", "GPTNeoForQuestionAnswering", "GPTNeoForSequenceClassification", "GPTNeoForTokenClassification", "GPTNeoModel", "GPTNeoPreTrainedModel", "load_tf_weights_in_gpt_neo", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ "FlaxGPTNeoForCausalLM", "FlaxGPTNeoModel", "FlaxGPTNeoPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
0
import qiskit def A ( lowercase__ : Any , lowercase__ : Union[str, Any] ) -> List[str]: UpperCamelCase__ :Any = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register UpperCamelCase__ :List[str] = qiskit.QuantumCircuit(_A , _A ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCamelCase__ :Optional[Any] = qiskit.execute(_A , _A , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_A ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
45
def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = 0 while number > 0: snake_case_ = number % 10 sum_of_digits += last_digit snake_case_ = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCamelCase__ ( _A = 100 ): '''simple docstring''' snake_case_ = factorial(_A ) snake_case_ = split_and_add(_A ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
376
0
import argparse import json from tqdm import tqdm def SCREAMING_SNAKE_CASE ( ): __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=a_ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=a_ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=a_ , help='where to store parsed gold_data_path file' , ) __a = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: __a = json.load(a_ ) for dpr_record in tqdm(a_ ): __a = dpr_record['question'] __a = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(a_ ) + '\n' ) if __name__ == "__main__": main()
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
490
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowercase__ ( __UpperCamelCase : int ): '''simple docstring''' __lowercase = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def lowercase__ ( __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def lowercase__ ( __UpperCamelCase : Union[str, Any] ): '''simple docstring''' __lowercase = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def lowercase__ ( ): '''simple docstring''' __lowercase = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def lowercase__ ( __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Optional[Any] ): '''simple docstring''' __lowercase = """imagenet-1k-id2label.json""" __lowercase = 1000 __lowercase = """huggingface/label-files""" __lowercase = num_labels __lowercase = json.load(open(cached_download(hf_hub_url(__UpperCamelCase , __UpperCamelCase , repo_type="""dataset""" ) ) , """r""" ) ) __lowercase = {int(__UpperCamelCase ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = __lowercase = CvtConfig(num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": __lowercase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": __lowercase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __lowercase = [2, 2, 20] __lowercase = [3, 12, 16] __lowercase = [192, 768, 1024] __lowercase = CvtForImageClassification(__UpperCamelCase ) __lowercase = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) __lowercase = image_size __lowercase = torch.load(__UpperCamelCase , map_location=torch.device("""cpu""" ) ) __lowercase = OrderedDict() __lowercase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __lowercase = list_of_state_dict + cls_token(__UpperCamelCase ) __lowercase = list_of_state_dict + embeddings(__UpperCamelCase ) for cnt in range(config.depth[idx] ): __lowercase = list_of_state_dict + attention(__UpperCamelCase , __UpperCamelCase ) __lowercase = list_of_state_dict + final() for gg in list_of_state_dict: print(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __lowercase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__UpperCamelCase ) model.save_pretrained(__UpperCamelCase ) image_processor.save_pretrained(__UpperCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": snake_case : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) snake_case : Any = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
566
'''simple docstring''' def lowercase__ ( __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 ): '''simple docstring''' __lowercase = right or len(__UpperCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCamelCase , __UpperCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
566
1
from typing import TYPE_CHECKING from ...utils import _LazyModule _SCREAMING_SNAKE_CASE : Dict = {'''processing_wav2vec2_with_lm''': ['''Wav2Vec2ProcessorWithLM''']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
472
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = {'''vocab_file''': '''spiece.model'''} _SCREAMING_SNAKE_CASE : int = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } _SCREAMING_SNAKE_CASE : List[Any] = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) _SCREAMING_SNAKE_CASE : Optional[int] = 0 _SCREAMING_SNAKE_CASE : Optional[Any] = 1 _SCREAMING_SNAKE_CASE : int = 2 _SCREAMING_SNAKE_CASE : str = 3 _SCREAMING_SNAKE_CASE : str = 4 class UpperCAmelCase__ ( A__ ): """simple docstring""" a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = "left" def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Tuple="<unk>" , __lowerCamelCase : List[str]="<sep>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : int="<cls>" , __lowerCamelCase : Any="<mask>" , __lowerCamelCase : Dict=["<eop>", "<eod>"] , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : int , ) -> None: # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) SCREAMING_SNAKE_CASE__ = 3 SCREAMING_SNAKE_CASE__ = do_lower_case SCREAMING_SNAKE_CASE__ = remove_space SCREAMING_SNAKE_CASE__ = keep_accents SCREAMING_SNAKE_CASE__ = vocab_file SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) @property def lowercase_ ( self : Optional[Any] ) -> Union[str, Any]: return len(self.sp_model ) def lowercase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : Any , __lowerCamelCase : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ) -> List[str]: if self.remove_space: SCREAMING_SNAKE_CASE__ = ''' '''.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE__ = inputs SCREAMING_SNAKE_CASE__ = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: SCREAMING_SNAKE_CASE__ = unicodedata.normalize('''NFKD''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ''''''.join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE__ = outputs.lower() return outputs def lowercase_ ( self : Any , __lowerCamelCase : str ) -> List[str]: SCREAMING_SNAKE_CASE__ = self.preprocess_text(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = [] for piece in pieces: if len(__lowerCamelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE__ = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE__ = cur_pieces[1:] else: SCREAMING_SNAKE_CASE__ = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCamelCase ) else: new_pieces.append(__lowerCamelCase ) return new_pieces def lowercase_ ( self : List[Any] , __lowerCamelCase : Optional[int] ) -> Optional[Any]: return self.sp_model.PieceToId(__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> List[Any]: return self.sp_model.IdToPiece(__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : bool = False , __lowerCamelCase : bool = None , __lowerCamelCase : bool = True , **__lowerCamelCase : int , ) -> str: SCREAMING_SNAKE_CASE__ = kwargs.pop('''use_source_tokenizer''' , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.convert_ids_to_tokens(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = [] sub_texts.append(__lowerCamelCase ) else: current_sub_text.append(__lowerCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__lowerCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens SCREAMING_SNAKE_CASE__ = ''''''.join(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: SCREAMING_SNAKE_CASE__ = self.clean_up_tokenization(__lowerCamelCase ) return clean_text else: return text def lowercase_ ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase_ ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is not None: return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1, 1] return ([0] * len(__lowerCamelCase )) + [1, 1] def lowercase_ ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: SCREAMING_SNAKE_CASE__ = [self.sep_token_id] SCREAMING_SNAKE_CASE__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase_ ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return SCREAMING_SNAKE_CASE__ = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , '''wb''' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
472
1
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('1.6'): SCREAMING_SNAKE_CASE = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def a (lowerCAmelCase__=None , lowerCAmelCase__=None ): return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class __UpperCAmelCase : """simple docstring""" _lowerCamelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _lowerCamelCase = field( default=__A , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) _lowerCamelCase = field( default=__A , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) _lowerCamelCase = field( default=0.1 , metadata={"""help""": """The dropout ratio for the attention probabilities."""} ) _lowerCamelCase = field( default=0.1 , metadata={"""help""": """The dropout ratio for activations inside the fully connected layer."""} ) _lowerCamelCase = field( default=0.1 , metadata={ """help""": """The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.""" } , ) _lowerCamelCase = field( default=0.1 , metadata={"""help""": """The dropout probabilitiy for all 1D convolutional layers in feature extractor."""} , ) _lowerCamelCase = field( default=0.05 , metadata={ """help""": ( """Propability of each feature vector along the time axis to be chosen as the start of the vector""" """span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature""" """vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.""" ) } , ) _lowerCamelCase = field(default=0.0 , metadata={"""help""": """The LayerDrop probability."""} ) @dataclass class __UpperCAmelCase : """simple docstring""" _lowerCamelCase = field( default=__A , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) _lowerCamelCase = field( default="""train+validation""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) _lowerCamelCase = field( default=__A , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) _lowerCamelCase = field( default=__A , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) _lowerCamelCase = field( default=__A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) _lowerCamelCase = field( default=__A , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of validation examples to this """ """value if set.""" ) } , ) _lowerCamelCase = list_field( default=[""",""", """?""", """.""", """!""", """-""", """;""", """:""", """\"\"""", """%""", """'""", """\"""", """�"""] , metadata={"""help""": """A list of characters to remove from the transcripts."""} , ) @dataclass class __UpperCAmelCase : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = True _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None _lowerCamelCase = None def __call__( self , __A ): # split inputs and labels since they have to be of different lenghts and need # different padding methods __a = [{"""input_values""": feature["""input_values"""]} for feature in features] __a = [{"""input_ids""": feature["""labels"""]} for feature in features] __a = self.processor.pad( __A , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="""pt""" , ) __a = self.processor.pad( labels=__A , padding=self.padding , max_length=self.max_length_labels , pad_to_multiple_of=self.pad_to_multiple_of_labels , return_tensors="""pt""" , ) # replace padding with -100 to ignore loss correctly __a = labels_batch["""input_ids"""].masked_fill(labels_batch.attention_mask.ne(1 ) , -100 ) __a = labels return batch class __UpperCAmelCase ( __A ): """simple docstring""" def snake_case_ ( self , __A , __A ): model.train() __a = self._prepare_inputs(__A ) if self.use_amp: with autocast(): __a = self.compute_loss(__A , __A ) else: __a = self.compute_loss(__A , __A ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": __a = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": __a = loss.sum() / (inputs["""labels"""] >= 0).sum() else: raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: __a = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__A ).backward() elif self.use_apex: with amp.scale_loss(__A , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__A ) else: loss.backward() return loss.detach() def a (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __a , __a , __a = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __a , __a , __a = parser.parse_args_into_dataclasses() # Detecting last checkpoint. __a = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __a = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , lowerCAmelCase__ ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: __a = datasets.load_dataset( """common_voice""" , data_args.dataset_config_name , split=data_args.train_split_name ) __a = datasets.load_dataset("""common_voice""" , data_args.dataset_config_name , split="""test""" ) # Create and save tokenizer __a = f'''[{''.join(data_args.chars_to_ignore )}]''' def remove_special_characters(lowerCAmelCase__ ): __a = re.sub(lowerCAmelCase__ , """""" , batch["""sentence"""] ).lower() + """ """ return batch __a = train_dataset.map(lowerCAmelCase__ , remove_columns=["""sentence"""] ) __a = eval_dataset.map(lowerCAmelCase__ , remove_columns=["""sentence"""] ) def extract_all_chars(lowerCAmelCase__ ): __a = """ """.join(batch["""text"""] ) __a = list(set(lowerCAmelCase__ ) ) return {"vocab": [vocab], "all_text": [all_text]} __a = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , batch_size=-1 , keep_in_memory=lowerCAmelCase__ , remove_columns=train_dataset.column_names , ) __a = train_dataset.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , batch_size=-1 , keep_in_memory=lowerCAmelCase__ , remove_columns=eval_dataset.column_names , ) __a = list(set(vocab_train["""vocab"""][0] ) | set(vocab_test["""vocab"""][0] ) ) __a = {v: k for k, v in enumerate(lowerCAmelCase__ )} __a = vocab_dict[""" """] del vocab_dict[" "] __a = len(lowerCAmelCase__ ) __a = len(lowerCAmelCase__ ) with open("""vocab.json""" , """w""" ) as vocab_file: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a = WavaVecaCTCTokenizer( """vocab.json""" , unk_token="""[UNK]""" , pad_token="""[PAD]""" , word_delimiter_token="""|""" , ) __a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0.0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ ) __a = WavaVecaProcessor(feature_extractor=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) __a = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction="""mean""" , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: __a = min(len(lowerCAmelCase__ ) , data_args.max_train_samples ) __a = train_dataset.select(range(lowerCAmelCase__ ) ) if data_args.max_val_samples is not None: __a = eval_dataset.select(range(data_args.max_val_samples ) ) __a = torchaudio.transforms.Resample(48_000 , 16_000 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(lowerCAmelCase__ ): __a , __a = torchaudio.load(batch["""path"""] ) __a = resampler(lowerCAmelCase__ ).squeeze().numpy() __a = 16_000 __a = batch["""text"""] return batch __a = train_dataset.map( lowerCAmelCase__ , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) __a = eval_dataset.map( lowerCAmelCase__ , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(lowerCAmelCase__ ): # check that all files have the correct sampling rate assert ( len(set(batch["""sampling_rate"""] ) ) == 1 ), f'''Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.''' __a = processor( audio=batch["""speech"""] , text=batch["""target_text"""] , sampling_rate=batch["""sampling_rate"""][0] ) batch.update(lowerCAmelCase__ ) return batch __a = train_dataset.map( lowerCAmelCase__ , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , ) __a = eval_dataset.map( lowerCAmelCase__ , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=lowerCAmelCase__ , num_proc=data_args.preprocessing_num_workers , ) # Metric __a = datasets.load_metric("""wer""" ) def compute_metrics(lowerCAmelCase__ ): __a = pred.predictions __a = np.argmax(lowerCAmelCase__ , axis=-1 ) __a = processor.tokenizer.pad_token_id __a = processor.batch_decode(lowerCAmelCase__ ) # we do not want to group tokens when computing the metrics __a = processor.batch_decode(pred.label_ids , group_tokens=lowerCAmelCase__ ) __a = wer_metric.compute(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator __a = DataCollatorCTCWithPadding(processor=lowerCAmelCase__ , padding=lowerCAmelCase__ ) # Initialize our Trainer __a = CTCTrainer( model=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: __a = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): __a = model_args.model_name_or_path else: __a = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) __a = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) trainer.save_model() __a = train_result.metrics __a = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) __a = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("""train""" , lowerCAmelCase__ ) trainer.save_metrics("""train""" , lowerCAmelCase__ ) trainer.save_state() # Evaluation __a = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __a = trainer.evaluate() __a = data_args.max_val_samples if data_args.max_val_samples is not None else len(lowerCAmelCase__ ) __a = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics("""eval""" , lowerCAmelCase__ ) trainer.save_metrics("""eval""" , lowerCAmelCase__ ) return results if __name__ == "__main__": main()
99
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] ): # A mock response for an HTTP head request to emulate server down snake_case__ : List[str] = mock.Mock() snake_case__ : Optional[int] = 5_0_0 snake_case__ : int = {} snake_case__ : List[Any] = HTTPError snake_case__ : List[Any] = {} # Download this model to make sure it's in the cache. snake_case__ : List[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__A ) as mock_head: snake_case__ : List[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def _lowercase ( self : Dict ): # A mock response for an HTTP head request to emulate server down snake_case__ : Optional[Any] = mock.Mock() snake_case__ : str = 5_0_0 snake_case__ : Union[str, Any] = {} snake_case__ : Optional[int] = HTTPError snake_case__ : List[str] = {} # Download this model to make sure it's in the cache. snake_case__ : Dict = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=__A ) as mock_head: snake_case__ : str = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def _lowercase ( self : Tuple ): # This test is for deprecated behavior and can be removed in v5 try: snake_case__ : int = tempfile.mktemp() with open(__A , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , __A ) snake_case__ : Optional[int] = AlbertTokenizer.from_pretrained(__A ) finally: os.remove(__A ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , __A ) snake_case__ : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_0_0_0 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def _lowercase ( self : Tuple ): # This test is for deprecated behavior and can be removed in v5 snake_case__ : int = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a_ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _lowercase ( cls : str ): snake_case__ : Union[str, Any] = TOKEN HfFolder.save_token(__A ) @classmethod def _lowercase ( cls : str ): try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def _lowercase ( self : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Union[str, Any] = os.path.join(__A , "vocab.txt" ) with open(__A , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ : int = BertTokenizer(__A ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) snake_case__ : Any = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__A , repo_id="test-tokenizer" , push_to_hub=__A , use_auth_token=self._token ) snake_case__ : Any = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def _lowercase ( self : Dict ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Any = os.path.join(__A , "vocab.txt" ) with open(__A , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ : int = BertTokenizer(__A ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) snake_case__ : Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( __A , repo_id="valid_org/test-tokenizer-org" , push_to_hub=__A , use_auth_token=self._token ) snake_case__ : int = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def _lowercase ( self : List[str] ): CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : List[Any] = os.path.join(__A , "vocab.txt" ) with open(__A , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ : Optional[int] = CustomTokenizer(__A ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case__ : Tuple = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : Any = os.path.join(__A , "vocab.txt" ) with open(__A , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case__ : Optional[Any] = BertTokenizerFast.from_pretrained(__A ) bert_tokenizer.save_pretrained(__A ) snake_case__ : Union[str, Any] = CustomTokenizerFast.from_pretrained(__A ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=__A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) snake_case__ : int = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=__A , trust_remote_code=__A ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Any ): snake_case__ : List[Any] = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def _lowercase ( self : Union[str, Any] ): snake_case__ : int = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def _lowercase ( self : Union[str, Any] ): snake_case__ : Tuple = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def _lowercase ( self : List[str] ): snake_case__ : Any = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def _lowercase ( self : Dict ): snake_case__ : Union[str, Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def _lowercase ( self : List[str] ): snake_case__ : List[Any] = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def _lowercase ( self : Optional[Any] ): snake_case__ : List[str] = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def _lowercase ( self : Optional[int] ): # Even if the offsets are wrong, we necessarily output correct string # parts. snake_case__ : Dict = Trie() snake_case__ : Tuple = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(__A , ["AB", "C"] )
297
0
import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments A : List[str] = logging.getLogger(__name__) @dataclass class UpperCamelCase( _a ): '''simple docstring''' snake_case_ : Optional[float] = field( default=0.0 , metadata={"""help""": """The label smoothing epsilon to apply (if not zero)."""} ) snake_case_ : bool = field(default=_a , metadata={"""help""": """Whether to SortishSamler or not."""} ) snake_case_ : bool = field( default=_a , metadata={"""help""": """Whether to use generate to calculate generative metrics (ROUGE, BLEU)."""} ) snake_case_ : bool = field(default=_a , metadata={"""help""": """whether to use adafactor"""} ) snake_case_ : Optional[float] = field( default=_a , metadata={"""help""": """Encoder layer dropout probability. Goes into model.config."""} ) snake_case_ : Optional[float] = field( default=_a , metadata={"""help""": """Decoder layer dropout probability. Goes into model.config."""} ) snake_case_ : Optional[float] = field(default=_a , metadata={"""help""": """Dropout probability. Goes into model.config."""} ) snake_case_ : Optional[float] = field( default=_a , metadata={"""help""": """Attention dropout probability. Goes into model.config."""} ) snake_case_ : Optional[str] = field( default="""linear""" , metadata={"""help""": f"Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"} , )
709
import os from typing import Dict, List, Tuple, TypeVar, Union A : List[Any] = TypeVar('T') A : Dict = Union[List[T], Tuple[T, ...]] A : Any = Union[T, List[T], Dict[str, T]] A : Optional[int] = Union[str, bytes, os.PathLike]
473
0
import flax.linen as nn import jax import jax.numpy as jnp class __magic_name__ ( nn.Module): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = 42 SCREAMING_SNAKE_CASE__ : int = jnp.floataa def _A ( self: List[str] ): SCREAMING_SNAKE_CASE_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Union[str, Any] , _lowerCamelCase: Any ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = hidden_states.shape SCREAMING_SNAKE_CASE_ = jax.image.resize( UpperCamelCase_ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) SCREAMING_SNAKE_CASE_ = self.conv(UpperCamelCase_ ) return hidden_states class __magic_name__ ( nn.Module): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = 42 SCREAMING_SNAKE_CASE__ : Dict = jnp.floataa def _A ( self: str ): SCREAMING_SNAKE_CASE_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: str , _lowerCamelCase: Tuple ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) SCREAMING_SNAKE_CASE_ = self.conv(UpperCamelCase_ ) return hidden_states class __magic_name__ ( nn.Module): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = 42 SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : List[str] = 0.0 SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : List[str] = jnp.floataa def _A ( self: str ): SCREAMING_SNAKE_CASE_ = self.in_channels if self.out_channels is None else self.out_channels SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE_ = nn.Conv( UpperCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = nn.Dense(UpperCamelCase_ , dtype=self.dtype ) SCREAMING_SNAKE_CASE_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE_ = nn.Dropout(self.dropout_prob ) SCREAMING_SNAKE_CASE_ = nn.Conv( UpperCamelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE_ = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut SCREAMING_SNAKE_CASE_ = None if use_nin_shortcut: SCREAMING_SNAKE_CASE_ = nn.Conv( UpperCamelCase_ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self: List[Any] , _lowerCamelCase: Optional[Any] , _lowerCamelCase: int , _lowerCamelCase: Optional[int]=True ): SCREAMING_SNAKE_CASE_ = hidden_states SCREAMING_SNAKE_CASE_ = self.norma(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ = nn.swish(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ = self.conva(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ = self.time_emb_proj(nn.swish(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE_ = jnp.expand_dims(jnp.expand_dims(UpperCamelCase_ , 1 ) , 1 ) SCREAMING_SNAKE_CASE_ = hidden_states + temb SCREAMING_SNAKE_CASE_ = self.norma(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ = nn.swish(UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ = self.dropout(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE_ = self.conva(UpperCamelCase_ ) if self.conv_shortcut is not None: SCREAMING_SNAKE_CASE_ = self.conv_shortcut(UpperCamelCase_ ) return hidden_states + residual
234
"""simple docstring""" from collections.abc import Callable import numpy as np def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> np.array: __magic_name__ = int(np.ceil((x_end - xa) / step_size ) ) __magic_name__ = np.zeros((n + 1,) ) __magic_name__ = ya __magic_name__ = xa for k in range(__UpperCamelCase ): __magic_name__ = y[k] + step_size * ode_func(__UpperCamelCase , y[k] ) __magic_name__ = y[k] + ( (step_size / 2) * (ode_func(__UpperCamelCase , y[k] ) + ode_func(x + step_size , __UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
490
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase (a__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase (unittest.TestCase ): @property def UpperCAmelCase_ ( self ) -> str: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : int = ort.SessionOptions() _snake_case : str = False return options def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _snake_case : Optional[int] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _snake_case : List[str] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) _snake_case : Dict = '''A red cat sitting on a park bench''' _snake_case : Tuple = np.random.RandomState(0 ) _snake_case : Dict = pipe( prompt=lowercase__ , image=lowercase__ , mask_image=lowercase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase__ , output_type='''np''' , ) _snake_case : Union[str, Any] = output.images _snake_case : List[str] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _snake_case : List[Any] = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase_ ( self ) -> List[str]: """simple docstring""" _snake_case : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) _snake_case : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) _snake_case : str = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , subfolder='''scheduler''' , revision='''onnx''' ) _snake_case : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( '''runwayml/stable-diffusion-inpainting''' , revision='''onnx''' , scheduler=lowercase__ , safety_checker=lowercase__ , feature_extractor=lowercase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase__ ) _snake_case : Dict = '''A red cat sitting on a park bench''' _snake_case : int = np.random.RandomState(0 ) _snake_case : int = pipe( prompt=lowercase__ , image=lowercase__ , mask_image=lowercase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase__ , output_type='''np''' , ) _snake_case : List[Any] = output.images _snake_case : Dict = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) _snake_case : Optional[int] = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
47
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) UpperCAmelCase : Dict = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase (a__ ): _lowercase : List[str] = """sew-d""" def __init__( self , lowercase__=32 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__=2 , lowercase__=512 , lowercase__=256 , lowercase__=True , lowercase__=True , lowercase__=("p2c", "c2p") , lowercase__="layer_norm" , lowercase__="gelu_python" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.1 , lowercase__=0.0 , lowercase__=0.1 , lowercase__=0.02 , lowercase__=1E-7 , lowercase__=1E-5 , lowercase__="group" , lowercase__="gelu" , lowercase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase__=False , lowercase__=128 , lowercase__=16 , lowercase__=True , lowercase__=0.05 , lowercase__=10 , lowercase__=2 , lowercase__=0.0 , lowercase__=10 , lowercase__=0 , lowercase__="mean" , lowercase__=False , lowercase__=False , lowercase__=256 , lowercase__=0 , lowercase__=1 , lowercase__=2 , **lowercase__ , ) -> Dict: """simple docstring""" super().__init__(**lowercase__ , pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ ) _snake_case : List[str] = hidden_size _snake_case : Optional[Any] = feat_extract_norm _snake_case : Tuple = feat_extract_activation _snake_case : Tuple = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = list(lowercase__ ) _snake_case : Any = conv_bias _snake_case : List[Any] = num_conv_pos_embeddings _snake_case : Any = num_conv_pos_embedding_groups _snake_case : Union[str, Any] = len(self.conv_dim ) _snake_case : Optional[Any] = num_hidden_layers _snake_case : Optional[int] = intermediate_size _snake_case : Any = squeeze_factor _snake_case : Optional[Any] = max_position_embeddings _snake_case : Tuple = position_buckets _snake_case : Tuple = share_att_key _snake_case : Any = relative_attention _snake_case : Optional[int] = norm_rel_ebd _snake_case : Optional[Any] = list(lowercase__ ) _snake_case : List[Any] = hidden_act _snake_case : List[Any] = num_attention_heads _snake_case : Dict = hidden_dropout _snake_case : Tuple = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : List[Any] = feat_proj_dropout _snake_case : Optional[int] = final_dropout _snake_case : Optional[Any] = layer_norm_eps _snake_case : Dict = feature_layer_norm_eps _snake_case : List[Any] = initializer_range _snake_case : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _snake_case : Union[str, Any] = apply_spec_augment _snake_case : Any = mask_time_prob _snake_case : List[str] = mask_time_length _snake_case : Dict = mask_time_min_masks _snake_case : Union[str, Any] = mask_feature_prob _snake_case : Tuple = mask_feature_length _snake_case : Union[str, Any] = mask_feature_min_masks # ctc loss _snake_case : Optional[Any] = ctc_loss_reduction _snake_case : Optional[Any] = ctc_zero_infinity # sequence classification _snake_case : List[Any] = use_weighted_layer_sum _snake_case : Any = classifier_proj_size @property def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
47
1
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ): '''simple docstring''' _lowerCamelCase , _lowerCamelCase : Optional[int] =9, 14 # noqa: F841 _lowerCamelCase : Dict =[ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCamelCase : List[Any] =defaultdict(SCREAMING_SNAKE_CASE__ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _lowerCamelCase : Tuple =mst(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : Tuple =[ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _lowerCamelCase : Union[str, Any] =tuple(answer[:2] ) _lowerCamelCase : List[Any] =tuple(edge[::-1] ) assert edge in result or reverse in result
464
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class a : def __init__( self : str ): """simple docstring""" __lowerCAmelCase = "" __lowerCAmelCase = "" __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 256 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : List[str] ): """simple docstring""" __lowerCAmelCase = cva.imread(snake_case__ , 0 ) __lowerCAmelCase = copy.deepcopy(self.img ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label="x" ) __lowerCAmelCase = np.sum(snake_case__ ) for i in range(len(snake_case__ ) ): __lowerCAmelCase = x[i] / self.k self.sk += prk __lowerCAmelCase = (self.L - 1) * self.sk if self.rem != 0: __lowerCAmelCase = int(last % last ) __lowerCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(snake_case__ ) __lowerCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) __lowerCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __lowerCAmelCase = self.img[j][i] if num != self.last_list[num]: __lowerCAmelCase = self.last_list[num] cva.imwrite("output_data/output.jpg" , self.img ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" cva.imshow("Output-Image" , self.img ) cva.imshow("Input-Image" , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": UpperCamelCase_ = os.path.join(os.path.basename(__file__), "image_data/input.jpg") UpperCamelCase_ = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
611
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _UpperCamelCase : Any ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] =["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys _UpperCamelCase : Any =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
575
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = CycleDiffusionPipeline SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'negative_prompt', 'height', 'width', 'negative_prompt_embeds', } SCREAMING_SNAKE_CASE_ = PipelineTesterMixin.required_optional_params - {'latents'} SCREAMING_SNAKE_CASE_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'source_prompt'} ) SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowerCamelCase ( self ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __lowerCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , num_train_timesteps=10_00 , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) __lowerCamelCase = CLIPTextModel(_snake_case ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _lowerCamelCase ( self , _snake_case , _snake_case=0 ): """simple docstring""" __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) __lowerCamelCase = image / 2 + 0.5 if str(_snake_case ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(_snake_case ) else: __lowerCamelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __lowerCamelCase = { '''prompt''': '''An astronaut riding an elephant''', '''source_prompt''': '''An astronaut riding a horse''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''eta''': 0.1, '''strength''': 0.8, '''guidance_scale''': 3, '''source_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = CycleDiffusionPipeline(**_snake_case ) __lowerCamelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCamelCase = self.get_dummy_inputs(_snake_case ) __lowerCamelCase = pipe(**_snake_case ) __lowerCamelCase = output.images __lowerCamelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.4_4_5_9, 0.4_9_4_3, 0.4_5_4_4, 0.6_6_4_3, 0.5_4_7_4, 0.4_3_2_7, 0.5_7_0_1, 0.5_9_5_9, 0.5_1_7_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = self.get_dummy_components() for name, module in components.items(): if hasattr(_snake_case , '''half''' ): __lowerCamelCase = module.half() __lowerCamelCase = CycleDiffusionPipeline(**_snake_case ) __lowerCamelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCamelCase = self.get_dummy_inputs(_snake_case ) __lowerCamelCase = pipe(**_snake_case ) __lowerCamelCase = output.images __lowerCamelCase = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.3_5_0_6, 0.4_5_4_3, 0.4_4_6, 0.4_5_7_5, 0.5_1_9_5, 0.4_1_5_5, 0.5_2_7_3, 0.5_1_8, 0.4_1_1_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_save_load_local() @unittest.skip('''non-deterministic pipeline''' ) def _lowerCamelCase ( self ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _lowerCamelCase ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def _lowerCamelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy''' ) __lowerCamelCase = init_image.resize((5_12, 5_12) ) __lowerCamelCase = '''CompVis/stable-diffusion-v1-4''' __lowerCamelCase = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''' ) __lowerCamelCase = CycleDiffusionPipeline.from_pretrained( _snake_case , scheduler=_snake_case , safety_checker=_snake_case , torch_dtype=torch.floataa , revision='''fp16''' ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() __lowerCamelCase = '''A black colored car''' __lowerCamelCase = '''A blue colored car''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=_snake_case , source_prompt=_snake_case , image=_snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_snake_case , output_type='''np''' , ) __lowerCamelCase = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/cycle-diffusion/black_colored_car.png''' ) __lowerCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy''' ) __lowerCamelCase = init_image.resize((5_12, 5_12) ) __lowerCamelCase = '''CompVis/stable-diffusion-v1-4''' __lowerCamelCase = DDIMScheduler.from_pretrained(_snake_case , subfolder='''scheduler''' ) __lowerCamelCase = CycleDiffusionPipeline.from_pretrained(_snake_case , scheduler=_snake_case , safety_checker=_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) pipe.enable_attention_slicing() __lowerCamelCase = '''A black colored car''' __lowerCamelCase = '''A blue colored car''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe( prompt=_snake_case , source_prompt=_snake_case , image=_snake_case , num_inference_steps=1_00 , eta=0.1 , strength=0.8_5 , guidance_scale=3 , source_guidance_scale=1 , generator=_snake_case , output_type='''np''' , ) __lowerCamelCase = output.images assert np.abs(image - expected_image ).max() < 2E-2
575
1
def _a ( SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') _lowerCamelCase : Any = int(input('''Enter number: ''').strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
663
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase (__lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = ["image_processor", "tokenizer"] UpperCAmelCase_ = "AutoImageProcessor" UpperCAmelCase_ = "AutoTokenizer" def __init__( self : Tuple, _UpperCAmelCase : str=None, _UpperCAmelCase : str=None, **_UpperCAmelCase : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", _UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : str = kwargs.pop("feature_extractor" ) SCREAMING_SNAKE_CASE__ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = self.image_processor SCREAMING_SNAKE_CASE__ : Any = False def __call__( self : List[str], *_UpperCAmelCase : Any, **_UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = kwargs.pop("images", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = kwargs.pop("text", _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: SCREAMING_SNAKE_CASE__ : Optional[int] = args[0] SCREAMING_SNAKE_CASE__ : str = args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process." ) if images is not None: SCREAMING_SNAKE_CASE__ : Dict = self.image_processor(_UpperCAmelCase, *_UpperCAmelCase, **_UpperCAmelCase ) if text is not None: SCREAMING_SNAKE_CASE__ : str = self.tokenizer(_UpperCAmelCase, **_UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE__ : Optional[int] = encodings["input_ids"] return inputs def A_ ( self : Dict, *_UpperCAmelCase : Tuple, **_UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*_UpperCAmelCase, **_UpperCAmelCase ) def A_ ( self : List[str], *_UpperCAmelCase : int, **_UpperCAmelCase : Dict ) -> Any: """simple docstring""" return self.tokenizer.decode(*_UpperCAmelCase, **_UpperCAmelCase ) @contextmanager def A_ ( self : Optional[Any] ) -> Tuple: """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call." ) SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer yield SCREAMING_SNAKE_CASE__ : Optional[Any] = self.image_processor SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def A_ ( self : Tuple, _UpperCAmelCase : List[Any], _UpperCAmelCase : int=False, _UpperCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" if added_vocab is None: SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer.get_added_vocab() SCREAMING_SNAKE_CASE__ : str = {} while tokens: SCREAMING_SNAKE_CASE__ : Dict = re.search(r"<s_(.*?)>", _UpperCAmelCase, re.IGNORECASE ) if start_token is None: break SCREAMING_SNAKE_CASE__ : Any = start_token.group(1 ) SCREAMING_SNAKE_CASE__ : Dict = re.search(rF'''</s_{key}>''', _UpperCAmelCase, re.IGNORECASE ) SCREAMING_SNAKE_CASE__ : Any = start_token.group() if end_token is None: SCREAMING_SNAKE_CASE__ : List[str] = tokens.replace(_UpperCAmelCase, "" ) else: SCREAMING_SNAKE_CASE__ : Optional[int] = end_token.group() SCREAMING_SNAKE_CASE__ : List[str] = re.escape(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = re.escape(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = re.search(F'''{start_token_escaped}(.*?){end_token_escaped}''', _UpperCAmelCase, re.IGNORECASE ) if content is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node SCREAMING_SNAKE_CASE__ : str = self.tokenajson(_UpperCAmelCase, is_inner_value=_UpperCAmelCase, added_vocab=_UpperCAmelCase ) if value: if len(_UpperCAmelCase ) == 1: SCREAMING_SNAKE_CASE__ : str = value[0] SCREAMING_SNAKE_CASE__ : List[str] = value else: # leaf nodes SCREAMING_SNAKE_CASE__ : Optional[int] = [] for leaf in content.split(r"<sep/>" ): SCREAMING_SNAKE_CASE__ : Tuple = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": SCREAMING_SNAKE_CASE__ : str = leaf[1:-2] # for categorical special tokens output[key].append(_UpperCAmelCase ) if len(output[key] ) == 1: SCREAMING_SNAKE_CASE__ : str = output[key][0] SCREAMING_SNAKE_CASE__ : Optional[Any] = tokens[tokens.find(_UpperCAmelCase ) + len(_UpperCAmelCase ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:], is_inner_value=_UpperCAmelCase, added_vocab=_UpperCAmelCase ) if len(_UpperCAmelCase ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def A_ ( self : str ) -> Optional[Any]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", _UpperCAmelCase, ) return self.image_processor_class @property def A_ ( self : int ) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", _UpperCAmelCase, ) return self.image_processor
663
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case ) -> str: '''simple docstring''' lowerCamelCase__ = BertConfig.from_json_file(__snake_case ) print(F'Building PyTorch model from configuration: {config}' ) lowerCamelCase__ = BertForPreTraining(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_bert(__snake_case ,__snake_case ,__snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() ,__snake_case ) if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--bert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _a = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
29
import string from math import logaa def lowerCAmelCase__(__snake_case ,__snake_case ) -> int: '''simple docstring''' lowerCamelCase__ = document.translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ).replace('''\n''' ,'''''' ) lowerCamelCase__ = document_without_punctuation.split(''' ''' ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> tuple[int, int]: '''simple docstring''' lowerCamelCase__ = corpus.lower().translate( str.maketrans('''''' ,'''''' ,string.punctuation ) ) # strip all punctuation and replace it with '' lowerCamelCase__ = corpus_without_punctuation.split('''\n''' ) lowerCamelCase__ = term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case=False ) -> float: '''simple docstring''' if smoothing: if n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(1 + logaa(n / (1 + df) ) ,3 ) if df == 0: raise ZeroDivisionError('''df must be > 0''' ) elif n == 0: raise ValueError('''log10(0) is undefined.''' ) return round(logaa(n / df ) ,3 ) def lowerCAmelCase__(__snake_case ,__snake_case ) -> float: '''simple docstring''' return round(tf * idf ,3 )
29
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __lowerCamelCase : List[Any] =['image_processor', 'tokenizer'] __lowerCamelCase : Union[str, Any] ='BridgeTowerImageProcessor' __lowerCamelCase : Optional[Any] =('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : Optional[int] , __lowercase : List[Any] , __lowercase : Dict ): '''simple docstring''' super().__init__(__lowercase , __lowercase ) def __call__( self : Any , __lowercase : Tuple , __lowercase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowercase : bool = True , __lowercase : Union[bool, str, PaddingStrategy] = False , __lowercase : Union[bool, str, TruncationStrategy] = None , __lowercase : Optional[int] = None , __lowercase : int = 0 , __lowercase : Optional[int] = None , __lowercase : Optional[bool] = None , __lowercase : Optional[bool] = None , __lowercase : bool = False , __lowercase : bool = False , __lowercase : bool = False , __lowercase : bool = False , __lowercase : bool = True , __lowercase : Optional[Union[str, TensorType]] = None , **__lowercase : Dict , ): '''simple docstring''' __a = self.tokenizer( text=__lowercase , add_special_tokens=__lowercase , padding=__lowercase , truncation=__lowercase , max_length=__lowercase , stride=__lowercase , pad_to_multiple_of=__lowercase , return_token_type_ids=__lowercase , return_attention_mask=__lowercase , return_overflowing_tokens=__lowercase , return_special_tokens_mask=__lowercase , return_offsets_mapping=__lowercase , return_length=__lowercase , verbose=__lowercase , return_tensors=__lowercase , **__lowercase , ) # add pixel_values + pixel_mask __a = self.image_processor( __lowercase , return_tensors=__lowercase , do_normalize=__lowercase , do_center_crop=__lowercase , **__lowercase ) encoding.update(__lowercase ) return encoding def UpperCamelCase_ ( self : List[str] , *__lowercase : str , **__lowercase : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowercase , **__lowercase ) def UpperCamelCase_ ( self : int , *__lowercase : Union[str, Any] , **__lowercase : str ): '''simple docstring''' return self.tokenizer.decode(*__lowercase , **__lowercase ) @property def UpperCamelCase_ ( self : str ): '''simple docstring''' __a = self.tokenizer.model_input_names __a = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
225
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict =GPTSanJapaneseTokenizer __lowerCamelCase : List[Any] =False __lowerCamelCase : List[str] ={'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase_ ( self : str ): '''simple docstring''' super().setUp() # fmt: off __a = ["""こん""", """こんに""", """にちは""", """ばんは""", """世界,㔺界""", """、""", """。""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __a = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # 😀 __a = {"""unk_token""": """<unk>"""} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowercase ) ) def UpperCamelCase_ ( self : Dict , **__lowercase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = """こんにちは、世界。 \nこんばんは、㔺界。😀""" __a = """こんにちは、世界。 \nこんばんは、世界。😀""" return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a , __a = self.get_input_output_texts(__lowercase ) __a = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __a = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) return text, ids def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.get_tokenizer() # Testing tokenization __a = """こんにちは、世界。 こんばんは、㔺界。""" __a = ["""こん""", """にちは""", """、""", """世界""", """。""", """<SP>""", """こん""", """ばんは""", """、""", """㔺界""", """。"""] __a = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids without special tokens __a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids with special tokens __a = tokens + [tokenizer.unk_token] __a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = self.get_tokenizer() # Testing tokenization __a = """こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。""" __a = """こんにちは、、、、世界。こんばんは、、、、世界。""" __a = tokenizer.encode(__lowercase ) __a = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __a = """こんにちは、世界。""" __a = """こんばんは、㔺界。😀""" __a = """こんにちは、世界。こんばんは、世界。😀""" __a = tokenizer.encode(prefix_text + input_text ) __a = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) __a = tokenizer.encode(__lowercase , prefix_text=__lowercase ) __a = tokenizer.decode(__lowercase ) __a = tokenizer.decode(__lowercase ) __a = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __a = """こんにちは、世界。""" __a = """こんばんは、㔺界。😀""" __a = len(tokenizer.encode(__lowercase ) ) - 2 __a = len(tokenizer.encode(__lowercase ) ) - 2 __a = [1] + [0] * (len_prefix + len_text + 1) __a = [1] * (len_prefix + len_text + 1) + [0] __a = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __a = tokenizer(prefix_text + input_text ).token_type_ids __a = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids __a = tokenizer(__lowercase , prefix_text=__lowercase ).token_type_ids self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __a = tokenizer.encode("""あンいワ""" ) __a = tokenizer.encode("""""" , prefix_text="""あンいワ""" ) __a = tokenizer.encode("""いワ""" , prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(__lowercase ) , tokenizer.decode(__lowercase ) ) self.assertEqual(tokenizer.decode(__lowercase ) , tokenizer.decode(__lowercase ) ) self.assertNotEqual(__lowercase , __lowercase ) self.assertNotEqual(__lowercase , __lowercase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __a = [["""武田信玄""", """は、"""], ["""織田信長""", """の配下の、"""]] __a = tokenizer(__lowercase , padding=__lowercase ) __a = tokenizer.batch_encode_plus(__lowercase , padding=__lowercase ) # fmt: off __a = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] __a = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __a = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowercase ) self.assertListEqual(x_token.token_type_ids , __lowercase ) self.assertListEqual(x_token.attention_mask , __lowercase ) self.assertListEqual(x_token_a.input_ids , __lowercase ) self.assertListEqual(x_token_a.token_type_ids , __lowercase ) self.assertListEqual(x_token_a.attention_mask , __lowercase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # tokenizer has no padding token pass
225
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): lowercase : Tuple = True from torch.cuda.amp import autocast lowercase : Dict = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" __A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __A : Optional[bool] = field( default=__UpperCAmelCase , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) __A : Optional[bool] = field( default=__UpperCAmelCase , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) __A : Optional[float] = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) __A : Optional[float] = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) __A : Optional[float] = field( default=0.99_9995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def A_ ( A__ , A__ ) -> Tuple: logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) a__ : Dict = logging.WARNING if model_args.verbose_logging: a__ : List[str] = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): a__ : Dict = logging.INFO logger.setLevel(A__ ) @dataclass class A__ : """simple docstring""" __A : str = field( default=__UpperCAmelCase , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __A : Optional[str] = field( default=__UpperCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __A : Optional[str] = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) __A : Optional[str] = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) __A : Optional[str] = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) __A : bool = field( default=__UpperCAmelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __A : Optional[int] = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) __A : Optional[int] = field( default=__UpperCAmelCase , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __A : Optional[float] = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class A__ : """simple docstring""" __A : WavaVecaForPreTraining __A : WavaVecaFeatureExtractor __A : Union[bool, str] = "longest" __A : Optional[int] = None __A : Optional[int] = None def __call__( self , lowercase) -> Dict[str, torch.Tensor]: '''simple docstring''' a__ : Dict = self.feature_extractor.pad( lowercase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) a__ : Dict = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1]) a__ : int = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula a__ : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1)).to( torch.long) a__ : Any = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device) # these two operations makes sure that all values # before the output lengths indices are attended to a__ : List[Any] = 1 a__ : Any = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices a__ : List[Any] = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=lowercase , min_masks=2 , ) return batch class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , *lowercase , lowercase=1 , lowercase=0 , lowercase=1.0 , **lowercase) -> Dict: '''simple docstring''' super().__init__(*lowercase , **lowercase) a__ : List[Any] = 0 a__ : Dict = max_gumbel_temp a__ : Optional[Any] = min_gumbel_temp a__ : Tuple = gumbel_temp_decay def __lowercase ( self , lowercase , lowercase) -> torch.Tensor: '''simple docstring''' model.train() a__ : Optional[int] = self._prepare_inputs(lowercase) if self.use_amp: with autocast(): a__ : Dict = self.compute_loss(lowercase , lowercase) else: a__ : Optional[Any] = self.compute_loss(lowercase , lowercase) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": a__ : str = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": a__ : Any = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']') if self.args.gradient_accumulation_steps > 1: a__ : Union[str, Any] = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase).backward() elif self.use_apex: with amp.scale_loss(lowercase , self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp)) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp)) return loss.detach() def A_ ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a__ , a__ , a__ : Dict = parser.parse_args_into_dataclasses() configure_logger(A__ , A__ ) # Downloading and loading a dataset from the hub. a__ : str = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" a__ : str = DatasetDict() a__ : List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) a__ : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" a__ : Tuple = DatasetDict() a__ : int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split='validation' , cache_dir=model_args.cache_dir , ) a__ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported a__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=A__ ) def prepare_dataset(A__ ): # check that all files have the correct sampling rate a__ , a__ : List[Any] = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays a__ : Dict = datasets.map( A__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets['train'].column_names ) # filter audio files that are too long a__ : List[Any] = vectorized_datasets.filter( lambda A__ : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(A__ ): return feature_extractor(batch['speech'] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` a__ : List[str] = vectorized_datasets.map( A__ , batched=A__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets['train'].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 a__ : Any = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) a__ : Union[str, Any] = WavaVecaForPreTraining(A__ ) a__ : List[str] = DataCollatorForWavaVecaPretraining(model=A__ , feature_extractor=A__ ) a__ : Any = WavaVecaPreTrainer( model=A__ , data_collator=A__ , args=A__ , train_dataset=vectorized_datasets['train'] , eval_dataset=vectorized_datasets['validation'] , tokenizer=A__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
392
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Tuple = ['''image_processor''', '''tokenizer'''] __A : Any = '''ChineseCLIPImageProcessor''' __A : Tuple = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , lowercase=None , lowercase=None , **lowercase) -> List[str]: '''simple docstring''' a__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowercase , ) a__ : Optional[Any] = kwargs.pop('feature_extractor') a__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(lowercase , lowercase) a__ : List[str] = self.image_processor def __call__( self , lowercase=None , lowercase=None , lowercase=None , **lowercase) -> List[str]: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: a__ : str = self.tokenizer(lowercase , return_tensors=lowercase , **lowercase) if images is not None: a__ : Optional[Any] = self.image_processor(lowercase , return_tensors=lowercase , **lowercase) if text is not None and images is not None: a__ : Tuple = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowercase) , tensor_type=lowercase) def __lowercase ( self , *lowercase , **lowercase) -> Any: '''simple docstring''' return self.tokenizer.batch_decode(*lowercase , **lowercase) def __lowercase ( self , *lowercase , **lowercase) -> Optional[int]: '''simple docstring''' return self.tokenizer.decode(*lowercase , **lowercase) @property def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[Any] = self.tokenizer.model_input_names a__ : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __lowercase ( self) -> Tuple: '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowercase , ) return self.image_processor_class
392
1
import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : int , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Optional[Any] , lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Tuple , lowercase : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = {"""col_3""": """float64""", """col_1""": """string""", """col_2""": """int64"""} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Tuple ): '''simple docstring''' lowerCamelCase_ = {"""col_2""": """int64""", """col_3""": """float64""", """col_1""": """string"""} lowerCamelCase_ = features.copy() lowerCamelCase_ = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = JsonDatasetReader(_lowerCamelCase , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Tuple , lowercase : Union[str, Any] ): '''simple docstring''' lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase_ = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase , split=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : str , lowercase : Union[str, Any] ): '''simple docstring''' if issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ = jsonl_path elif issubclass(_lowerCamelCase , _lowerCamelCase ): lowerCamelCase_ = [jsonl_path] lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase_ = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_dataset(_lowerCamelCase , _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Union[str, Any] , lowercase : List[Any]=("train",) ): '''simple docstring''' assert isinstance(_lowerCamelCase , _lowerCamelCase ) for split in splits: lowerCamelCase_ = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : Dict ): '''simple docstring''' lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} , cache_dir=_lowerCamelCase , keep_in_memory=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _SCREAMING_SNAKE_CASE ( lowercase : Dict , lowercase : Optional[Any] , lowercase : Any ): '''simple docstring''' lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase_ = features.copy() if features else default_expected_features lowerCamelCase_ = ( Features({feature: Value(_lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCamelCase_ = JsonDatasetReader({'train': jsonl_path} , features=_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] , lowercase : Optional[int] , lowercase : List[str] ): '''simple docstring''' if split: lowerCamelCase_ = {split: jsonl_path} else: lowerCamelCase_ = """train""" lowerCamelCase_ = {"""train""": jsonl_path, """test""": jsonl_path} lowerCamelCase_ = tmp_path / """cache""" lowerCamelCase_ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowerCamelCase_ = JsonDatasetReader(_lowerCamelCase , cache_dir=_lowerCamelCase ).read() _check_json_datasetdict(_lowerCamelCase , _lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' return json.load(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( lowercase : Union[str, Any] ): '''simple docstring''' return [json.loads(_lowerCamelCase ) for line in buffer] class A: '''simple docstring''' @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : Any , A_ : Optional[int] , A_ : Union[str, Any] , A_ : Tuple ) -> Dict: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : Any , A_ : List[str] , A_ : Union[str, Any] , A_ : Dict , A_ : List[Any] , A_ : Any ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)] ) def a__ ( self : List[str] , A_ : Tuple , A_ : str , A_ : Any ) -> Dict: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json_function(_lowercase ) assert isinstance(_lowercase , _lowercase ) assert isinstance(exported_content[0] , _lowercase ) assert len(_lowercase ) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789' ), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def a__ ( self : Tuple , A_ : List[str] , A_ : str , A_ : Optional[Any] , A_ : List[Any] , A_ : List[Any] ) -> Optional[int]: """simple docstring""" with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , lines=_lowercase , orient=_lowercase , num_proc=2 ).write() buffer.seek(0 ) lowerCamelCase_ = load_json(_lowercase ) assert isinstance(_lowercase , _lowercase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(_lowercase , 'keys' ) and not hasattr(exported_content[0] , 'keys' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(_lowercase ) == 10 def a__ ( self : int , A_ : str ) -> Optional[Any]: """simple docstring""" with pytest.raises(_lowercase ): with io.BytesIO() as buffer: JsonDatasetWriter(_lowercase , _lowercase , num_proc=0 ) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')] ) def a__ ( self : Tuple , A_ : int , A_ : Optional[int] , A_ : Optional[int] , A_ : Optional[int] , A_ : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = tmp_path_factory.mktemp('data' ) / f"""test.json.{extension}""" lowerCamelCase_ = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(_lowercase , _lowercase , compression=_lowercase ).write() with fsspec.open(_lowercase , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() with fsspec.open(_lowercase , 'rb' , compression='infer' ) as f: lowerCamelCase_ = f.read() assert exported_content == original_content
70
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : str ): def get_masked_lm_array(_lowerCamelCase : str ): __a : int = F'''masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __a : Dict = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: __a : List[str] = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_array(_lowerCamelCase : str ): __a : Optional[Any] = F'''encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __a : Any = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: __a : List[Any] = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_layer_array(_lowerCamelCase : int , _lowerCamelCase : str ): __a : Dict = F'''encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __a : List[str] = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) if "kernel" in name: __a : List[str] = array.transpose() return torch.from_numpy(_lowerCamelCase ) def get_encoder_attention_layer_array(_lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Any ): __a : Optional[Any] = F'''encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE''' __a : Tuple = tf.train.load_variable(_lowerCamelCase , _lowerCamelCase ) __a : Any = array.reshape(_lowerCamelCase ) if "kernel" in name: __a : Tuple = array.transpose() return torch.from_numpy(_lowerCamelCase ) print(F'''Loading model based on config from {config_path}...''' ) __a : int = BertConfig.from_json_file(_lowerCamelCase ) __a : str = BertForMaskedLM(_lowerCamelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __a : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __a : BertSelfAttention = layer.attention.self __a : List[str] = get_encoder_attention_layer_array( _lowerCamelCase , """_query_dense/kernel""" , self_attn.query.weight.data.shape ) __a : Dict = get_encoder_attention_layer_array( _lowerCamelCase , """_query_dense/bias""" , self_attn.query.bias.data.shape ) __a : Optional[Any] = get_encoder_attention_layer_array( _lowerCamelCase , """_key_dense/kernel""" , self_attn.key.weight.data.shape ) __a : Optional[Any] = get_encoder_attention_layer_array( _lowerCamelCase , """_key_dense/bias""" , self_attn.key.bias.data.shape ) __a : List[str] = get_encoder_attention_layer_array( _lowerCamelCase , """_value_dense/kernel""" , self_attn.value.weight.data.shape ) __a : List[str] = get_encoder_attention_layer_array( _lowerCamelCase , """_value_dense/bias""" , self_attn.value.bias.data.shape ) # Self-attention Output __a : BertSelfOutput = layer.attention.output __a : List[Any] = get_encoder_attention_layer_array( _lowerCamelCase , """_output_dense/kernel""" , self_output.dense.weight.data.shape ) __a : Tuple = get_encoder_attention_layer_array( _lowerCamelCase , """_output_dense/bias""" , self_output.dense.bias.data.shape ) __a : Optional[Any] = get_encoder_layer_array(_lowerCamelCase , """_attention_layer_norm/gamma""" ) __a : List[str] = get_encoder_layer_array(_lowerCamelCase , """_attention_layer_norm/beta""" ) # Intermediate __a : BertIntermediate = layer.intermediate __a : str = get_encoder_layer_array(_lowerCamelCase , """_intermediate_dense/kernel""" ) __a : str = get_encoder_layer_array(_lowerCamelCase , """_intermediate_dense/bias""" ) # Output __a : BertOutput = layer.output __a : Union[str, Any] = get_encoder_layer_array(_lowerCamelCase , """_output_dense/kernel""" ) __a : List[str] = get_encoder_layer_array(_lowerCamelCase , """_output_dense/bias""" ) __a : Optional[int] = get_encoder_layer_array(_lowerCamelCase , """_output_layer_norm/gamma""" ) __a : Tuple = get_encoder_layer_array(_lowerCamelCase , """_output_layer_norm/beta""" ) # Embeddings __a : str = get_encoder_array("""_position_embedding_layer/embeddings""" ) __a : Any = get_encoder_array("""_type_embedding_layer/embeddings""" ) __a : Optional[Any] = get_encoder_array("""_embedding_norm_layer/gamma""" ) __a : Dict = get_encoder_array("""_embedding_norm_layer/beta""" ) # LM Head __a : Any = model.cls.predictions.transform __a : List[Any] = get_masked_lm_array("""dense/kernel""" ) __a : Optional[Any] = get_masked_lm_array("""dense/bias""" ) __a : Optional[int] = get_masked_lm_array("""layer_norm/gamma""" ) __a : Tuple = get_masked_lm_array("""layer_norm/beta""" ) __a : Optional[Any] = get_masked_lm_array("""embedding_table""" ) # Pooling __a : Tuple = BertPooler(config=_lowerCamelCase ) __a : BertPooler = get_encoder_array("""_pooler_layer/kernel""" ) __a : BertPooler = get_encoder_array("""_pooler_layer/bias""" ) # Export final model model.save_pretrained(_lowerCamelCase ) # Integration test - should load without any errors ;) __a : List[str] = BertForMaskedLM.from_pretrained(_lowerCamelCase ) print(new_model.eval() ) print("""Model conversion was done sucessfully!""" ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) lowercase__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
581
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowercase :Union[str, Any] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Tuple = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :str = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase :Any = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __lowercase :Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList __lowercase :str = ["\nclass", "\ndef", "\n#", "\n@", "\nprint", "\nif"] class _a ( lowercase__ ): """simple docstring""" def __init__( self : List[str] , a : Optional[int] , a : str , a : int=None , a : Optional[Any]=1 ) ->Optional[Any]: SCREAMING_SNAKE_CASE__ : Dict = tokenizer SCREAMING_SNAKE_CASE__ : Optional[int] = dataset SCREAMING_SNAKE_CASE__ : Optional[Any] = len(a ) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE__ : Dict = n_copies def __iter__( self : str ) ->Tuple: SCREAMING_SNAKE_CASE__ : str = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer(a , padding=a , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class _a ( lowercase__ ): """simple docstring""" def __init__( self : Dict , a : int , a : int , a : Tuple ) ->Dict: SCREAMING_SNAKE_CASE__ : Dict = start_length SCREAMING_SNAKE_CASE__ : Any = eof_strings SCREAMING_SNAKE_CASE__ : Any = tokenizer def __call__( self : Any , a : Optional[int] , a : int , **a : Union[str, Any] ) ->List[str]: SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) SCREAMING_SNAKE_CASE__ : int = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(a ) def UpperCAmelCase ( _lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = re.split("(%s)" % "|".join(_lowerCamelCase ) , _lowerCamelCase ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase ( _lowerCamelCase : Dict , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : str=20 , **_lowerCamelCase : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = defaultdict(_lowerCamelCase ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_lowerCamelCase ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = batch["ids"].shape[-1] SCREAMING_SNAKE_CASE__ : List[Any] = accelerator.unwrap_model(_lowerCamelCase ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=_lowerCamelCase , **_lowerCamelCase ) # each task is generated batch_size times SCREAMING_SNAKE_CASE__ : Dict = batch["task_id"].repeat(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Dict = accelerator.pad_across_processes( _lowerCamelCase , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Any = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE__ : Dict = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE__ : Any = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_lowerCamelCase , _lowerCamelCase ): gen_token_dict[task].append(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = [[] for _ in range(_lowerCamelCase )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE__ : List[Any] = tokenizer.decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase , clean_up_tokenization_spaces=_lowerCamelCase ) code_gens[task].append(remove_last_block(_lowerCamelCase ) ) return code_gens def UpperCAmelCase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = HfArgumentParser(_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE__ : List[str] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE__ : str = "false" if args.num_workers is None: SCREAMING_SNAKE_CASE__ : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE__ : Dict = Accelerator() set_seed(args.seed , device_specific=_lowerCamelCase ) # Load model and tokenizer SCREAMING_SNAKE_CASE__ : Any = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.eos_token SCREAMING_SNAKE_CASE__ : List[str] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE__ : List[Any] = { "do_sample": args.do_sample, "temperature": args.temperature, "max_new_tokens": args.max_new_tokens, "top_p": args.top_p, "top_k": args.top_k, "stopping_criteria": StoppingCriteriaList([EndOfFunctionCriteria(0 , _lowerCamelCase , _lowerCamelCase )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE__ : str = load_dataset("openai_humaneval" ) SCREAMING_SNAKE_CASE__ : Any = load_metric("code_eval" ) SCREAMING_SNAKE_CASE__ : Dict = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE__ : Dict = TokenizedDataset(_lowerCamelCase , human_eval["test"] , n_copies=_lowerCamelCase , n_tasks=_lowerCamelCase ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE__ : Optional[int] = DataLoader(_lowerCamelCase , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE__ : int = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Optional[int] = accelerator.prepare(_lowerCamelCase , _lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Tuple = complete_code( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , n_tasks=_lowerCamelCase , batch_size=args.batch_size , **_lowerCamelCase , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for task in tqdm(range(_lowerCamelCase ) ): SCREAMING_SNAKE_CASE__ : List[Any] = human_eval["test"][task]["test"] SCREAMING_SNAKE_CASE__ : List[Any] = f"""check({human_eval['test'][task]['entry_point']})""" references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ : Dict = code_eval_metric.compute( references=_lowerCamelCase , predictions=_lowerCamelCase , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
26
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def snake_case__ ( self : Tuple ): __magic_name__ = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''' ) __magic_name__ = { '''input_ids''': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } __magic_name__ = model(_lowercase )['''last_hidden_state'''] __magic_name__ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _lowercase ) # compare the actual values for a slice. __magic_name__ = tf.convert_to_tensor( [ [ [0.0_681_762, 0.10_894_451, 0.06_772_504], [-0.06_423_668, 0.02_366_615, 0.04_329_344], [-0.06_057_295, 0.09_974_135, -0.00_070_584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
432
'''simple docstring''' import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE : List[Any] = "0.12" # assumed parallelism: 8 if is_torch_available(): import torch def _UpperCamelCase ( lowerCAmelCase__: Dict ,lowerCAmelCase__: int ,lowerCAmelCase__: Tuple=None ) -> Union[str, Any]: if rng is None: SCREAMING_SNAKE_CASE_ = random.Random() SCREAMING_SNAKE_CASE_ = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE_ = [] for _ in range(lowerCAmelCase__ ): values.append(rng.randint(0 ,vocab_size - 1 ) ) SCREAMING_SNAKE_CASE_ = np.array(lowerCAmelCase__ ,dtype=jnp.intaa ).reshape(lowerCAmelCase__ ) return output def _UpperCamelCase ( lowerCAmelCase__: Tuple ,lowerCAmelCase__: str=None ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = ids_tensor(lowerCAmelCase__ ,vocab_size=2 ,rng=lowerCAmelCase__ ) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE_ = 1 return attn_mask @require_flax class snake_case : """simple docstring""" _a = None _a = () def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = inputs['input_ids'].shape[-1] // 2 SCREAMING_SNAKE_CASE_ = inputs['input_ids'][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE_ = jnp.ones_like(_lowercase ) SCREAMING_SNAKE_CASE_ = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE_ = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE_ = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def a__ ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE_ = getattr(_lowercase, _lowercase ) SCREAMING_SNAKE_CASE_ = pt_model_class(_lowercase ).eval() SCREAMING_SNAKE_CASE_ = load_flax_weights_in_pytorch_model(_lowercase, flax_model.params ) SCREAMING_SNAKE_CASE_ = flax_model.generate(_lowercase ).sequences SCREAMING_SNAKE_CASE_ = pt_model.generate(torch.tensor(_lowercase, dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE_ = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist(), flax_generation_outputs.tolist() ) def a__ ( self ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> Any: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[0], input_ids.shape[0] * config.num_return_sequences ) def a__ ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 0.8 SCREAMING_SNAKE_CASE_ = 10 SCREAMING_SNAKE_CASE_ = 0.3 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> Dict: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE_ = max_length SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_ = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase, attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase, attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_ = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase, attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase, attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) def a__ ( self ) -> int: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE_ = attention_mask.at[(0, 0)].set(0 ) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowercase ) SCREAMING_SNAKE_CASE_ = model.generate(_lowercase, attention_mask=_lowercase ).sequences self.assertEqual(generation_outputs.shape[-1], _lowercase ) SCREAMING_SNAKE_CASE_ = jit(model.generate ) SCREAMING_SNAKE_CASE_ = jit_generate(_lowercase, attention_mask=_lowercase ).sequences self.assertListEqual(generation_outputs.tolist(), jit_generation_outputs.tolist() ) @require_flax class snake_case ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) SCREAMING_SNAKE_CASE_ = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) SCREAMING_SNAKE_CASE_ = 'Hello world' SCREAMING_SNAKE_CASE_ = tokenizer(_lowercase, return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(_lowercase, 'do_samples' ): model.generate(_lowercase, do_samples=_lowercase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(_lowercase, 'foo' ): SCREAMING_SNAKE_CASE_ = {'foo': 'bar'} model.generate(_lowercase, **_lowercase )
294
0
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 10**9 ) -> int: SCREAMING_SNAKE_CASE_ : Union[str, Any] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE_ : List[str] = 0 SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Dict = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value SCREAMING_SNAKE_CASE_ : Any = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f'''{solution() = }''')
311
from string import ascii_lowercase, ascii_uppercase def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: if not sentence: return "" SCREAMING_SNAKE_CASE_ : int = dict(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
311
1
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCAmelCase = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. _lowerCAmelCase = importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) _lowerCAmelCase = spec.loader.load_module() _lowerCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` _lowerCAmelCase = re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") _lowerCAmelCase = { """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def lowercase ( ) -> Optional[Any]: UpperCAmelCase_: Optional[Any] = [] for config_class in list(CONFIG_MAPPING.values() ): UpperCAmelCase_: Tuple = False # source code of `config_class` UpperCAmelCase_: Optional[int] = inspect.getsource(_a ) UpperCAmelCase_: List[Any] = _re_checkpoint.findall(_a ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` UpperCAmelCase_ , UpperCAmelCase_: int = checkpoint # verify the checkpoint name corresponds to the checkpoint link UpperCAmelCase_: List[Any] = f"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: UpperCAmelCase_: Optional[Any] = True break UpperCAmelCase_: Any = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_a ) if len(_a ) > 0: UpperCAmelCase_: Optional[Any] = "\n".join(sorted(_a ) ) raise ValueError(f"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
137
import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def lowercase ( _a=None ,_a=None ) -> List[Any]: return field(default_factory=lambda: default ,metadata=_a ) @dataclass class UpperCAmelCase__ : snake_case_ = list_field( default=[] , metadata={ '''help''': ( '''Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version''' ''' of all available models''' ) } , ) snake_case_ = list_field( default=[8] , metadata={'''help''': '''List of batch sizes for which memory and time performance will be evaluated'''} ) snake_case_ = list_field( default=[8, 32, 128, 512] , metadata={'''help''': '''List of sequence lengths for which memory and time performance will be evaluated'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to benchmark inference of model. Inference can be disabled via --no-inference.'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'''} , ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Use FP16 to accelerate inference.'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Benchmark training of model'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Verbose memory tracing'''} ) snake_case_ = field( default=snake_case__ , metadata={'''help''': '''Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'''} , ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': '''Whether to perform memory measurements. Memory measurements can be disabled via --no-memory''' } , ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Trace memory line by line'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Save result to a CSV file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Save all print statements in a log file'''} ) snake_case_ = field(default=snake_case__ , metadata={'''help''': '''Whether to print environment information'''} ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': ( '''Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use''' ''' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled''' ''' for debugging / testing and on TPU.''' ) } , ) snake_case_ = field( default=F'inference_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv.'''} , ) snake_case_ = field( default=F'inference_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv.'''} , ) snake_case_ = field( default=F'train_time_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving time results to csv for training.'''} , ) snake_case_ = field( default=F'train_memory_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving memory results to csv for training.'''} , ) snake_case_ = field( default=F'env_info_{round(time() )}.csv' , metadata={'''help''': '''CSV filename used if saving environment information.'''} , ) snake_case_ = field( default=F'log_{round(time() )}.csv' , metadata={'''help''': '''Log filename used if print statements are saved in log.'''} , ) snake_case_ = field(default=3 , metadata={'''help''': '''Times an experiment will be run.'''} ) snake_case_ = field( default=snake_case__ , metadata={ '''help''': ( '''Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain''' ''' model weights.''' ) } , ) def snake_case_ ( self ): """simple docstring""" warnings.warn( F"The class {self.__class__} is deprecated. Hugging Face Benchmarking utils" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , A__ , ) def snake_case_ ( self ): """simple docstring""" return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def snake_case_ ( self ): """simple docstring""" if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def snake_case_ ( self ): """simple docstring""" if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
137
1
'''simple docstring''' def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : List[str] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
718
import random def UpperCamelCase ( __lowercase : int ): '''simple docstring''' A_ : Tuple = num - 1 A_ : Optional[Any] = 0 while s % 2 == 0: A_ : Optional[int] = s // 2 t += 1 for _ in range(5 ): A_ : Optional[int] = random.randrange(2 ,num - 1 ) A_ : Any = pow(__lowercase ,__lowercase ,__lowercase ) if v != 1: A_ : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: A_ : Union[str, Any] = i + 1 A_ : Tuple = (v**2) % num return True def UpperCamelCase ( __lowercase : int ): '''simple docstring''' if num < 2: return False A_ : Optional[Any] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__lowercase ) def UpperCamelCase ( __lowercase : int = 10_24 ): '''simple docstring''' while True: A_ : Union[str, Any] = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(__lowercase ): return num if __name__ == "__main__": _UpperCAmelCase = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
70
0
'''simple docstring''' def a ( _UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" a_ = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def a ( _UpperCAmelCase ) -> Dict: """simple docstring""" a_ = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key a_ = remove_duplicates(key.upper() ) a_ = len(__lowerCamelCase ) # First fill cipher with key characters a_ = {alphabet[i]: char for i, char in enumerate(__lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(__lowerCamelCase ) , 2_6 ): a_ = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 a_ = alphabet[i - offset] a_ = char return cipher_alphabet def a ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: """simple docstring""" return "".join(cipher_map.get(__lowerCamelCase , __lowerCamelCase ) for ch in message.upper() ) def a ( _UpperCAmelCase , _UpperCAmelCase ) -> Dict: """simple docstring""" a_ = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(__lowerCamelCase , __lowerCamelCase ) for ch in message.upper() ) def a ( ) -> Dict: """simple docstring""" a_ = input('Enter message to encode or decode: ' ).strip() a_ = input('Enter keyword: ' ).strip() a_ = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: a_ = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) a_ = create_cipher_map(__lowerCamelCase ) print(func(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
697
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowercase =logging.get_logger(__name__) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =["audio_values", "audio_mask"] def __init__( self , snake_case=2_0_4_8 , snake_case=1 , snake_case=[1_6, 1_6] , snake_case=1_2_8 , snake_case=4_4_1_0_0 , snake_case=8_6 , snake_case=2_0_4_8 , snake_case=0.0 , **snake_case , ) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case , ) _UpperCAmelCase : Dict =spectrogram_length _UpperCAmelCase : Any =num_channels _UpperCAmelCase : Optional[int] =patch_size _UpperCAmelCase : List[str] =feature_size // self.patch_size[1] _UpperCAmelCase : Optional[int] =n_fft _UpperCAmelCase : int =sampling_rate // hop_length_to_sampling_rate _UpperCAmelCase : int =sampling_rate _UpperCAmelCase : List[Any] =padding_value _UpperCAmelCase : Optional[int] =mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=snake_case , min_frequency=0.0 , max_frequency=2_20_50.0 , sampling_rate=snake_case , norm='slaney' , mel_scale='slaney' , ).T def lowerCAmelCase ( self , snake_case) -> np.ndarray: '''simple docstring''' _UpperCAmelCase : Any =spectrogram( snake_case , window_function(self.n_fft , 'hann') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='dB' , db_range=80.0 , ) _UpperCAmelCase : Any =log_spec[:, :-1] _UpperCAmelCase : List[str] =log_spec - 20.0 _UpperCAmelCase : Union[str, Any] =np.clip(log_spec / 40.0 , -2.0 , 0.0) + 1.0 return log_spec def __call__( self , snake_case , snake_case = None , snake_case = True , snake_case = None , snake_case = False , snake_case = False , **snake_case , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') _UpperCAmelCase : Tuple =isinstance(snake_case , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") _UpperCAmelCase : str =is_batched_numpy or ( isinstance(snake_case , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCAmelCase : List[str] =[np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray): _UpperCAmelCase : List[Any] =np.asarray(snake_case , dtype=np.floataa) elif isinstance(snake_case , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCAmelCase : List[Any] =raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCAmelCase : Dict =[np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCAmelCase : List[Any] =[ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , snake_case): _UpperCAmelCase : Dict =[np.asarray(snake_case , dtype=np.floataa) for feature in audio_features] # Create audio attention mask _UpperCAmelCase : Tuple =max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCAmelCase : Any =[ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] _UpperCAmelCase : int =np.array(snake_case).astype(np.floataa) # convert into correct format for padding _UpperCAmelCase : List[Any] =max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCAmelCase : List[str] =np.ones([len(snake_case), 1, max_time_len, self.feature_size]).astype(np.floataa) _UpperCAmelCase : Any =padded_audio_features * self.padding_value for i in range(len(snake_case)): _UpperCAmelCase : List[str] =audio_features[i] _UpperCAmelCase : Dict =feature # return as BatchFeature if return_attention_mask: _UpperCAmelCase : List[str] ={'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: _UpperCAmelCase : Optional[int] ={'audio_values': padded_audio_features} _UpperCAmelCase : Any =BatchFeature(data=snake_case , tensor_type=snake_case) return encoded_inputs
446
0
"""simple docstring""" import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MobileBertTokenizer SCREAMING_SNAKE_CASE__ = MobileBertTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = filter_non_english SCREAMING_SNAKE_CASE__ = '''google/mobilebert-uncased''' def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' super().setUp() UpperCAmelCase : List[str] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] UpperCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) UpperCAmelCase : List[Any] = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __lowerCAmelCase ( self : Union[str, Any] , lowercase : Any ): '''simple docstring''' UpperCAmelCase : Dict = "UNwant\u00E9d,running" UpperCAmelCase : Dict = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase : Dict = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowercase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , [9, 6, 7, 12, 10, 11] ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase : Dict = self.get_tokenizer() UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() UpperCAmelCase : Dict = "UNwant\u00E9d,running" UpperCAmelCase : int = tokenizer.tokenize(lowercase ) UpperCAmelCase : List[Any] = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase : List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() UpperCAmelCase : Union[str, Any] = tokenizer.encode(lowercase ) UpperCAmelCase : Tuple = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) # With lower casing UpperCAmelCase : Dict = self.get_tokenizer(do_lower_case=lowercase ) UpperCAmelCase : Dict = self.get_rust_tokenizer(do_lower_case=lowercase ) UpperCAmelCase : int = "UNwant\u00E9d,running" UpperCAmelCase : Any = tokenizer.tokenize(lowercase ) UpperCAmelCase : List[str] = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase : str = tokenizer.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase : Optional[int] = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase : Tuple = self.get_rust_tokenizer() UpperCAmelCase : str = tokenizer.encode(lowercase ) UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : int = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Tuple = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : int = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : Any = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = BasicTokenizer(do_lower_case=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Optional[int] = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Optional[Any] = BasicTokenizer(do_lower_case=lowercase , strip_accents=lowercase ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : List[Any] = BasicTokenizer(do_lower_case=lowercase , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase : List[Any] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] UpperCAmelCase : Any = {} for i, token in enumerate(lowercase ): UpperCAmelCase : int = i UpperCAmelCase : int = WordpieceTokenizer(vocab=lowercase , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self : int ): '''simple docstring''' self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.get_tokenizer() UpperCAmelCase : Dict = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowercase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowercase ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def __lowerCAmelCase ( self : str ): '''simple docstring''' UpperCAmelCase : int = self.tokenizer_class.from_pretrained("google/mobilebert-uncased" ) UpperCAmelCase : Optional[int] = tokenizer.encode("sequence builders" , add_special_tokens=lowercase ) UpperCAmelCase : str = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase ) UpperCAmelCase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowercase ) UpperCAmelCase : Any = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) UpperCAmelCase : Optional[int] = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCAmelCase : Dict = tokenizer_r.encode_plus( lowercase , return_attention_mask=lowercase , return_token_type_ids=lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase , ) UpperCAmelCase : Dict = tokenizer_r.do_lower_case if hasattr(lowercase , "do_lower_case" ) else False UpperCAmelCase : int = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : Dict = ["的", "人", "有"] UpperCAmelCase : List[str] = "".join(lowercase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase : Tuple = True UpperCAmelCase : List[Any] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) UpperCAmelCase : int = tokenizer_p.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase : List[Any] = tokenizer_r.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase : Dict = tokenizer_r.convert_ids_to_tokens(lowercase ) UpperCAmelCase : int = tokenizer_p.convert_ids_to_tokens(lowercase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase : List[Any] = False UpperCAmelCase : Any = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) UpperCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) UpperCAmelCase : Tuple = tokenizer_r.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase : List[str] = tokenizer_p.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase : Tuple = tokenizer_r.convert_ids_to_tokens(lowercase ) UpperCAmelCase : List[str] = tokenizer_p.convert_ids_to_tokens(lowercase ) # it is expected that only the first Chinese character is not preceded by "##". UpperCAmelCase : Tuple = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowercase ) ] self.assertListEqual(lowercase , lowercase ) self.assertListEqual(lowercase , lowercase )
292
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case_ : Dict = { """configuration_mvp""": ["""MVP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MvpConfig""", """MvpOnnxConfig"""], """tokenization_mvp""": ["""MvpTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = ["""MvpTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ """MVP_PRETRAINED_MODEL_ARCHIVE_LIST""", """MvpForCausalLM""", """MvpForConditionalGeneration""", """MvpForQuestionAnswering""", """MvpForSequenceClassification""", """MvpModel""", """MvpPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
292
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> Union[str, Any]: '''simple docstring''' if b == 0: return 1 if (b % 2) == 0: return actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) ) else: return a * actual_power(snake_case_ , int(b / 2 ) ) * actual_power(snake_case_ , int(b / 2 ) ) def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> float: '''simple docstring''' if b < 0: return 1 / actual_power(snake_case_ , snake_case_ ) return actual_power(snake_case_ , snake_case_ ) if __name__ == "__main__": print(power(-2, -3))
78
'''simple docstring''' import requests def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str ) -> None: '''simple docstring''' UpperCAmelCase_ = {"Content-Type": "application/json"} UpperCAmelCase_ = requests.post(snake_case_ , json={"text": message_body} , headers=snake_case_ ) if response.status_code != 2_00: UpperCAmelCase_ = ( "Request to slack returned an error " f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(snake_case_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
78
1
def A ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = len(_lowerCamelCase ) for i in range(1 , _lowerCamelCase ): _lowerCAmelCase : List[Any] = collection[i] _lowerCAmelCase : str = 0 _lowerCAmelCase : Union[str, Any] = i - 1 while low <= high: _lowerCAmelCase : List[str] = (low + high) // 2 if val < collection[mid]: _lowerCAmelCase : Optional[int] = mid - 1 else: _lowerCAmelCase : List[str] = mid + 1 for j in range(_lowerCamelCase , _lowerCamelCase , -1 ): _lowerCAmelCase : int = collection[j - 1] _lowerCAmelCase : Optional[int] = val return collection if __name__ == "__main__": _snake_case = input("Enter numbers separated by a comma:\n").strip() _snake_case = [int(item) for item in user_input.split(",")] print(binary_insertion_sort(unsorted))
658
from __future__ import annotations def A ( _lowerCamelCase ): '''simple docstring''' if not nums: raise ValueError("List is empty" ) return sum(_lowerCamelCase ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
658
1
'''simple docstring''' from __future__ import annotations def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> None: """simple docstring""" a_ = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def a ( _UpperCAmelCase ) -> None: """simple docstring""" a_ = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print('' ) print(len(_UpperCAmelCase ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
697
'''simple docstring''' def a ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False ) -> Optional[Any]: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and isinstance(_UpperCAmelCase , _UpperCAmelCase ): a_ = len(set_a.intersection(_UpperCAmelCase ) ) if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) else: a_ = len(set_a.union(_UpperCAmelCase ) ) return intersection / union if isinstance(_UpperCAmelCase , (list, tuple) ) and isinstance(_UpperCAmelCase , (list, tuple) ): a_ = [element for element in set_a if element in set_b] if alternative_union: a_ = len(_UpperCAmelCase ) + len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / union else: a_ = set_a + [element for element in set_b if element not in set_a] return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return len(_UpperCAmelCase ) / len(_UpperCAmelCase ) return None if __name__ == "__main__": __lowerCAmelCase ={"a", "b", "c", "d", "e"} __lowerCAmelCase ={"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
697
1
import torch from diffusers import StableDiffusionPipeline _A = '''path-to-your-trained-model''' _A = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('''cuda''') _A = '''A photo of sks dog in a bucket''' _A = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('''dog-bucket.png''')
708
import torch from transformers import AutoModel class A ( torch.nn.Module ): def __init__( self, UpperCamelCase__="sayef/fsner-bert-base-uncased" ): """simple docstring""" super(UpperCamelCase__, self ).__init__() lowerCAmelCase_ = AutoModel.from_pretrained(UpperCamelCase__, return_dict=UpperCamelCase__ ) lowerCAmelCase_ = torch.nn.CosineSimilarity(3, 1E-08 ) lowerCAmelCase_ = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return self.bert(**UpperCamelCase__ ).last_hidden_state def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return token_embeddings.sum(2, keepdim=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__=1 ): """simple docstring""" return self.softmax(T * self.cos(UpperCamelCase__, UpperCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = W_supports['''sizes'''].tolist() lowerCAmelCase_ = W_supports['''start_token_id'''].item() lowerCAmelCase_ = W_supports['''end_token_id'''].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowerCAmelCase_ = self.BERT(**UpperCamelCase__ ) lowerCAmelCase_ = self.BERT(**UpperCamelCase__ ) lowerCAmelCase_ = None lowerCAmelCase_ = None lowerCAmelCase_ = W_supports['''input_ids'''] == start_token_id lowerCAmelCase_ = W_supports['''input_ids'''] == end_token_id for i, size in enumerate(UpperCamelCase__ ): if i == 0: lowerCAmelCase_ = 0 else: lowerCAmelCase_ = support_sizes[i - 1] lowerCAmelCase_ = S[s : s + size][start_token_masks[s : s + size]] lowerCAmelCase_ = S[s : s + size][end_token_masks[s : s + size]] lowerCAmelCase_ = torch.matmul(q[i], s_start.T ).sum(1 ).softmax(0 ) lowerCAmelCase_ = torch.matmul(q[i], s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowerCAmelCase_ = torch.vstack((p_starts, p_start) ) lowerCAmelCase_ = torch.vstack((p_ends, p_end) ) else: lowerCAmelCase_ = p_start lowerCAmelCase_ = p_end return p_starts, p_ends
325
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser __snake_case =re.compile(R"""\s+""") def a_ ( lowerCamelCase : Union[str, Any] ): return {"hash": hashlib.mda(re.sub(lowercase__ , '' , example['content'] ).encode('utf-8' ) ).hexdigest()} def a_ ( lowerCamelCase : Tuple ): lowerCAmelCase = [len(lowercase__ ) for line in example['content'].splitlines()] return {"line_mean": np.mean(lowercase__ ), "line_max": max(lowercase__ )} def a_ ( lowerCamelCase : Optional[int] ): lowerCAmelCase = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def a_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Tuple ): if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Any=5 ): lowerCAmelCase = ['auto-generated', 'autogenerated', 'automatically generated'] lowerCAmelCase = example['content'].splitlines() for _, line in zip(range(lowercase__ ) , lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def a_ ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any]=5 , lowerCamelCase : List[Any]=0.05 ): lowerCAmelCase = ['unit tests', 'test file', 'configuration file'] lowerCAmelCase = example['content'].splitlines() lowerCAmelCase = 0 lowerCAmelCase = 0 # first test for _, line in zip(range(lowercase__ ) , lowercase__ ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCAmelCase = example['content'].count('\n' ) lowerCAmelCase = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def a_ ( lowerCamelCase : int ): lowerCAmelCase = ['def ', 'class ', 'for ', 'while '] lowerCAmelCase = example['content'].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def a_ ( lowerCamelCase : Any , lowerCamelCase : Tuple=4 ): lowerCAmelCase = example['content'].splitlines() lowerCAmelCase = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def a_ ( lowerCamelCase : Any ): lowerCAmelCase = tokenizer(example['content'] , truncation=lowercase__ )['input_ids'] lowerCAmelCase = len(example['content'] ) / len(lowercase__ ) return {"ratio": ratio} def a_ ( lowerCamelCase : List[Any] ): lowerCAmelCase = {} results.update(get_hash(lowercase__ ) ) results.update(line_stats(lowercase__ ) ) results.update(alpha_stats(lowercase__ ) ) results.update(char_token_ratio(lowercase__ ) ) results.update(is_autogenerated(lowercase__ ) ) results.update(is_config_or_test(lowercase__ ) ) results.update(has_no_keywords(lowercase__ ) ) results.update(has_few_assignments(lowercase__ ) ) return results def a_ ( lowerCamelCase : Dict , lowerCamelCase : List[Any] , lowerCamelCase : str ): if not check_uniques(lowercase__ , lowercase__ ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def a_ ( lowerCamelCase : Optional[int] ): with open(lowercase__ , 'rb' ) as f_in: with gzip.open(str(lowercase__ ) + '.gz' , 'wb' , compresslevel=6 ) as f_out: shutil.copyfileobj(lowercase__ , lowercase__ ) os.unlink(lowercase__ ) # Settings __snake_case =HfArgumentParser(PreprocessingArguments) __snake_case =parser.parse_args() if args.num_workers is None: __snake_case =multiprocessing.cpu_count() __snake_case =AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset __snake_case =time.time() __snake_case =load_dataset(args.dataset_name, split="""train""") print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing __snake_case =time.time() __snake_case =ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes __snake_case =set(ds.unique("""hash""")) __snake_case =len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics __snake_case =time.time() __snake_case =ds.filter(filter, fn_kwargs={"""uniques""": uniques, """args""": args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: __snake_case =time.time() __snake_case , __snake_case =deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file __snake_case =Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / """duplicate_clusters.json""", """w""") as f: json.dump(duplicate_clusters, f) __snake_case =output_dir / """data""" data_dir.mkdir(exist_ok=True) __snake_case =time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): __snake_case =str(data_dir / F'''file-{file_number+1:012}.json''') __snake_case =min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
133
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
0
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : str , *UpperCAmelCase__ : str , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : str=None , **UpperCAmelCase__ : Union[str, Any] ) -> str: super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = eval_examples __SCREAMING_SNAKE_CASE = post_process_function def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : str=None , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str = "eval" ) -> str: __SCREAMING_SNAKE_CASE = self.eval_dataset if eval_dataset is None else eval_dataset __SCREAMING_SNAKE_CASE = self.get_eval_dataloader(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __SCREAMING_SNAKE_CASE = self.compute_metrics __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __SCREAMING_SNAKE_CASE = time.time() try: __SCREAMING_SNAKE_CASE = eval_loop( UpperCAmelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , ) finally: __SCREAMING_SNAKE_CASE = compute_metrics __SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __SCREAMING_SNAKE_CASE = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions ) __SCREAMING_SNAKE_CASE = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __SCREAMING_SNAKE_CASE = metrics.pop(UpperCAmelCase__ ) metrics.update(output.metrics ) else: __SCREAMING_SNAKE_CASE = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(UpperCAmelCase__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __SCREAMING_SNAKE_CASE = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCAmelCase__ ) return metrics def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : str = "test" ) -> Dict: __SCREAMING_SNAKE_CASE = self.get_test_dataloader(UpperCAmelCase__ ) # Temporarily disable metric computation, we will do it in the loop here. __SCREAMING_SNAKE_CASE = self.compute_metrics __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __SCREAMING_SNAKE_CASE = time.time() try: __SCREAMING_SNAKE_CASE = eval_loop( UpperCAmelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCAmelCase__ , metric_key_prefix=UpperCAmelCase__ , ) finally: __SCREAMING_SNAKE_CASE = compute_metrics __SCREAMING_SNAKE_CASE = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( UpperCAmelCase__ , UpperCAmelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __SCREAMING_SNAKE_CASE = self.post_process_function(UpperCAmelCase__ , UpperCAmelCase__ , output.predictions , "predict" ) __SCREAMING_SNAKE_CASE = self.compute_metrics(UpperCAmelCase__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __SCREAMING_SNAKE_CASE = metrics.pop(UpperCAmelCase__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCAmelCase__ )
700
"""simple docstring""" from math import asin, atan, cos, radians, sin, sqrt, tan a__ : List[str] = 6_37_81_37.0 a__ : Tuple = 6_35_67_52.31_42_45 a__ : str = 6_3_7_8_1_3_7 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (AXIS_A - AXIS_B) / AXIS_A __SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = radians(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = radians(lowerCAmelCase_ ) # Equation __SCREAMING_SNAKE_CASE = sin((phi_a - phi_a) / 2 ) __SCREAMING_SNAKE_CASE = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __SCREAMING_SNAKE_CASE = sqrt(sin_sq_phi + (cos(lowerCAmelCase_ ) * cos(lowerCAmelCase_ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
553
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['MobileViTFeatureExtractor'] __UpperCAmelCase = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
406
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __a ( lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' UpperCAmelCase_= SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_= 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: UpperCAmelCase_= 4 UpperCAmelCase_= 48 UpperCAmelCase_= """pixelshuffle_aux""" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_= [6, 6, 6, 6] UpperCAmelCase_= 60 UpperCAmelCase_= [6, 6, 6, 6] UpperCAmelCase_= """pixelshuffledirect""" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_= 4 UpperCAmelCase_= """nearest+conv""" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: UpperCAmelCase_= 1 UpperCAmelCase_= 1 UpperCAmelCase_= 1_26 UpperCAmelCase_= 7 UpperCAmelCase_= 255.0 UpperCAmelCase_= """""" return config def __a ( lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Optional[Any] ) -> Any: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: UpperCAmelCase_= name.replace("""patch_embed.proj""" ,"""embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: UpperCAmelCase_= name.replace("""patch_embed.norm""" ,"""embeddings.patch_embeddings.layernorm""" ) if "layers" in name: UpperCAmelCase_= name.replace("""layers""" ,"""encoder.stages""" ) if "residual_group.blocks" in name: UpperCAmelCase_= name.replace("""residual_group.blocks""" ,"""layers""" ) if "attn.proj" in name: UpperCAmelCase_= name.replace("""attn.proj""" ,"""attention.output.dense""" ) if "attn" in name: UpperCAmelCase_= name.replace("""attn""" ,"""attention.self""" ) if "norm1" in name: UpperCAmelCase_= name.replace("""norm1""" ,"""layernorm_before""" ) if "norm2" in name: UpperCAmelCase_= name.replace("""norm2""" ,"""layernorm_after""" ) if "mlp.fc1" in name: UpperCAmelCase_= name.replace("""mlp.fc1""" ,"""intermediate.dense""" ) if "mlp.fc2" in name: UpperCAmelCase_= name.replace("""mlp.fc2""" ,"""output.dense""" ) if "q_bias" in name: UpperCAmelCase_= name.replace("""q_bias""" ,"""query.bias""" ) if "k_bias" in name: UpperCAmelCase_= name.replace("""k_bias""" ,"""key.bias""" ) if "v_bias" in name: UpperCAmelCase_= name.replace("""v_bias""" ,"""value.bias""" ) if "cpb_mlp" in name: UpperCAmelCase_= name.replace("""cpb_mlp""" ,"""continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: UpperCAmelCase_= name.replace("""patch_embed.proj""" ,"""patch_embed.projection""" ) if name == "norm.weight": UpperCAmelCase_= """layernorm.weight""" if name == "norm.bias": UpperCAmelCase_= """layernorm.bias""" if "conv_first" in name: UpperCAmelCase_= name.replace("""conv_first""" ,"""first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: UpperCAmelCase_= name.replace("""conv_last""" ,"""final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: UpperCAmelCase_= name.replace("""conv_before_upsample.0""" ,"""conv_before_upsample""" ) if "upsample.0" in name: UpperCAmelCase_= name.replace("""upsample.0""" ,"""upsample.convolution_0""" ) if "upsample.2" in name: UpperCAmelCase_= name.replace("""upsample.2""" ,"""upsample.convolution_1""" ) UpperCAmelCase_= """upsample.""" + name elif config.upsampler == "pixelshuffledirect": UpperCAmelCase_= name.replace("""upsample.0.weight""" ,"""upsample.conv.weight""" ) UpperCAmelCase_= name.replace("""upsample.0.bias""" ,"""upsample.conv.bias""" ) else: pass else: UpperCAmelCase_= """swin2sr.""" + name return name def __a ( lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : Dict ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCAmelCase_= orig_state_dict.pop(lowerCAmelCase_ ) if "qkv" in key: UpperCAmelCase_= key.split(""".""" ) UpperCAmelCase_= int(key_split[1] ) UpperCAmelCase_= int(key_split[4] ) UpperCAmelCase_= config.embed_dim if "weight" in key: UpperCAmelCase_= val[:dim, :] UpperCAmelCase_= val[dim : dim * 2, :] UpperCAmelCase_= val[-dim:, :] else: UpperCAmelCase_= val[:dim] UpperCAmelCase_= val[dim : dim * 2] UpperCAmelCase_= val[-dim:] pass else: UpperCAmelCase_= val return orig_state_dict def __a ( lowerCAmelCase_ : Dict ,lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_= get_config(lowerCAmelCase_ ) UpperCAmelCase_= SwinaSRForImageSuperResolution(lowerCAmelCase_ ) model.eval() UpperCAmelCase_= torch.hub.load_state_dict_from_url(lowerCAmelCase_ ,map_location="""cpu""" ) UpperCAmelCase_= convert_state_dict(lowerCAmelCase_ ,lowerCAmelCase_ ) UpperCAmelCase_, UpperCAmelCase_= model.load_state_dict(lowerCAmelCase_ ,strict=lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: raise ValueError("""Missing keys when converting: {}""".format(lowerCAmelCase_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values UpperCAmelCase_= """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true""" UpperCAmelCase_= Image.open(requests.get(lowerCAmelCase_ ,stream=lowerCAmelCase_ ).raw ).convert("""RGB""" ) UpperCAmelCase_= SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values UpperCAmelCase_= 1_26 if """Jpeg""" in checkpoint_url else 2_56 UpperCAmelCase_= Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] ,std=[0.229, 0.224, 0.225] ), ] ) UpperCAmelCase_= transforms(lowerCAmelCase_ ).unsqueeze(0 ) if config.num_channels == 1: UpperCAmelCase_= pixel_values[:, 0, :, :].unsqueeze(1 ) UpperCAmelCase_= model(lowerCAmelCase_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: UpperCAmelCase_= torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase_= torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: UpperCAmelCase_= torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_= torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here UpperCAmelCase_= torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_= torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: UpperCAmelCase_= torch.Size([1, 3, 5_12, 5_12] ) UpperCAmelCase_= torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: UpperCAmelCase_= torch.Size([1, 3, 10_24, 10_24] ) UpperCAmelCase_= torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] ,lowerCAmelCase_ ,atol=1E-3 ) print("""Looks ok!""" ) UpperCAmelCase_= { """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": ( """swin2SR-classical-sr-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": ( """swin2SR-classical-sr-x4-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": ( """swin2SR-compressed-sr-x4-48""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": ( """swin2SR-lightweight-x2-64""" ), """https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": ( """swin2SR-realworld-sr-x4-64-bsrgan-psnr""" ), } UpperCAmelCase_= url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') __A = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
593
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. A : List[Any] = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class lowerCAmelCase_ ( unittest.TestCase ): __UpperCAmelCase = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCAmelCase = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __UpperCAmelCase = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __UpperCAmelCase = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __snake_case ( self : int ): '''simple docstring''' snake_case : Any =pipeline( task='''text-classification''', model='''hf-internal-testing/tiny-random-distilbert''', framework='''pt''' ) snake_case : Tuple =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) snake_case : List[Any] =text_classifier('''This is great !''', top_k=2 ) self.assertEqual( nested_simplify(_snake_case ), [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) snake_case : Any =text_classifier(['''This is great !''', '''This is bad'''], top_k=2 ) self.assertEqual( nested_simplify(_snake_case ), [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ], ) snake_case : str =text_classifier('''This is great !''', top_k=1 ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior snake_case : Tuple =text_classifier('''This is great !''', return_all_scores=_snake_case ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) snake_case : List[Any] =text_classifier('''This is great !''', return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ), [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) snake_case : str =text_classifier(['''This is great !''', '''Something else'''], return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ), [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ], ) snake_case : List[Any] =text_classifier(['''This is great !''', '''Something else'''], return_all_scores=_snake_case ) self.assertEqual( nested_simplify(_snake_case ), [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ], ) @require_torch def __snake_case ( self : Union[str, Any] ): '''simple docstring''' import torch snake_case : int =pipeline( task='''text-classification''', model='''hf-internal-testing/tiny-random-distilbert''', framework='''pt''', device=torch.device('''cpu''' ), ) snake_case : Tuple =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Union[str, Any] =pipeline( task='''text-classification''', model='''hf-internal-testing/tiny-random-distilbert''', framework='''tf''' ) snake_case : Optional[int] =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def __snake_case ( self : List[Any] ): '''simple docstring''' snake_case : str =pipeline('''text-classification''' ) snake_case : List[str] =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) snake_case : List[Any] =text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) snake_case : List[Any] =text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Optional[Any] =pipeline('''text-classification''', framework='''tf''' ) snake_case : Optional[Any] =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) snake_case : Any =text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) snake_case : str =text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def __snake_case ( self : Optional[Any], _snake_case : Optional[Any], _snake_case : Optional[Any], _snake_case : Tuple ): '''simple docstring''' snake_case : Optional[Any] =TextClassificationPipeline(model=_snake_case, tokenizer=_snake_case ) return text_classifier, ["HuggingFace is in", "This is another test"] def __snake_case ( self : Tuple, _snake_case : Union[str, Any], _snake_case : Optional[Any] ): '''simple docstring''' snake_case : int =text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 snake_case : int ='''HuggingFace is in''' snake_case : Optional[int] =text_classifier(_snake_case ) self.assertEqual(nested_simplify(_snake_case ), [{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) snake_case : Optional[int] =['''HuggingFace is in ''', '''Paris is in France'''] snake_case : int =text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ), [{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}, {'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}], ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format snake_case : Tuple =text_classifier(_snake_case, top_k=_snake_case ) snake_case : Any =len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(_snake_case ), [[{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] * N, [{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}] * N], ) snake_case : Optional[Any] ={'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} snake_case : Dict =text_classifier(_snake_case ) self.assertEqual( nested_simplify(_snake_case ), {'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}, ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. snake_case : Optional[Any] =[['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(_snake_case ): text_classifier(_snake_case ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility snake_case : Optional[Any] =text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(_snake_case ), [{'''label''': ANY(_snake_case ), '''score''': ANY(_snake_case )}], ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
136
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class lowerCAmelCase_ : def __init__( self : List[str], _snake_case : int ): '''simple docstring''' snake_case : Optional[Any] =value snake_case : Node | None =None snake_case : Node | None =None class lowerCAmelCase_ : def __init__( self : Tuple, _snake_case : Node ): '''simple docstring''' snake_case : Optional[int] =tree def __snake_case ( self : str, _snake_case : Node | None ): '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ): '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
136
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS _lowercase : Tuple =logging.get_logger(__name__) _lowercase : List[str] ={ "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase=None , __lowercase=None , *__lowercase , **__lowercase ) -> Optional[Any]: """simple docstring""" super().__init__(*__lowercase , **__lowercase ) if config is None: assert isinstance(self.model , __lowercase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F''' {self.model.__class__}''' ) a__ : Optional[Any] = self.model.config else: a__ : Optional[Any] = config a__ : List[str] = data_args a__ : str = self.config.tgt_vocab_size if isinstance(self.config , __lowercase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' """ padding..""" ) if self.args.label_smoothing == 0: a__ : int = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss a__ : Union[str, Any] = label_smoothed_nll_loss def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" if self.optimizer is None: a__ : Dict = ["""bias""", """LayerNorm.weight"""] a__ : Optional[Any] = [ { """params""": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], """weight_decay""": self.args.weight_decay, }, { """params""": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], """weight_decay""": 0.0, }, ] a__ : Tuple = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: a__ : Any = Adafactor a__ : Optional[Any] = {"""scale_parameter""": False, """relative_step""": False} else: a__ : int = AdamW a__ : Tuple = { """betas""": (self.args.adam_betaa, self.args.adam_betaa), """eps""": self.args.adam_epsilon, } a__ : Union[str, Any] = self.args.learning_rate if self.sharded_ddp: a__ : List[str] = OSS( params=__lowercase , optim=__lowercase , **__lowercase , ) else: a__ : Any = optimizer_cls(__lowercase , **__lowercase ) if self.lr_scheduler is None: a__ : int = self._get_lr_scheduler(__lowercase ) else: # ignoring --lr_scheduler logger.warning("""scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.""" ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : List[str] = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": a__ : Optional[Any] = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": a__ : Tuple = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: a__ : int = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=__lowercase ) return scheduler def SCREAMING_SNAKE_CASE__( self ) -> Optional[torch.utils.data.Sampler]: """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> str: """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token a__ : Tuple = model(**__lowercase , use_cache=__lowercase )[0] a__ : Union[str, Any] = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models a__ , a__ : int = model(**__lowercase , labels=__lowercase , use_cache=__lowercase )[:2] else: # compute label smoothed loss a__ : Optional[Any] = model(**__lowercase , use_cache=__lowercase )[0] a__ : List[str] = torch.nn.functional.log_softmax(__lowercase , dim=-1 ) a__ , a__ : List[str] = self.loss_fn(__lowercase , __lowercase , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" a__ : int = inputs.pop("""labels""" ) a__ , a__ : Any = self._compute_loss(__lowercase , __lowercase , __lowercase ) return loss def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """simple docstring""" a__ : Any = self._prepare_inputs(__lowercase ) a__ : Optional[int] = { """max_length""": self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, """num_beams""": self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: a__ : Any = self.model.generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , **__lowercase , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: a__ : Any = self._pad_tensors_to_max_len(__lowercase , gen_kwargs["""max_length"""] ) a__ : Any = inputs.pop("""labels""" ) with torch.no_grad(): # compute loss on predict data a__ , a__ : List[Any] = self._compute_loss(__lowercase , __lowercase , __lowercase ) a__ : List[Any] = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) a__ : List[str] = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: a__ : str = self._pad_tensors_to_max_len(__lowercase , gen_kwargs["""max_length"""] ) return (loss, logits, labels) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase ) -> Any: """simple docstring""" a__ : Any = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( """Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be""" F''' padded to `max_length`={max_length}''' ) a__ : Union[str, Any] = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) a__ : List[str] = tensor return padded_tensor
136
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowercase : List[str] ="platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class snake_case__ : """simple docstring""" __lowerCAmelCase :Tuple = PegasusConfig __lowerCAmelCase :List[str] = {} __lowerCAmelCase :Optional[Any] = "gelu" def __init__( self , __lowercase , __lowercase=1_3 , __lowercase=7 , __lowercase=True , __lowercase=False , __lowercase=9_9 , __lowercase=3_2 , __lowercase=5 , __lowercase=4 , __lowercase=3_7 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=2_0 , __lowercase=2 , __lowercase=1 , __lowercase=0 , ) -> Any: """simple docstring""" a__ : str = parent a__ : List[str] = batch_size a__ : Optional[int] = seq_length a__ : Tuple = is_training a__ : List[str] = use_labels a__ : Dict = vocab_size a__ : Tuple = hidden_size a__ : Union[str, Any] = num_hidden_layers a__ : List[str] = num_attention_heads a__ : List[str] = intermediate_size a__ : Union[str, Any] = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : List[str] = max_position_embeddings a__ : Optional[int] = eos_token_id a__ : List[str] = pad_token_id a__ : Optional[Any] = bos_token_id def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) a__ : Union[str, Any] = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) a__ : List[str] = np.concatenate([input_ids, eos_tensor] , axis=1 ) a__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) a__ : str = prepare_pegasus_inputs_dict(__lowercase , __lowercase , __lowercase ) return config, inputs_dict def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> List[str]: """simple docstring""" a__ : Optional[Any] = 2_0 a__ : Union[str, Any] = model_class_name(__lowercase ) a__ : Dict = model.encode(inputs_dict["""input_ids"""] ) a__ , a__ : str = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) a__ : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , __lowercase , __lowercase ) a__ : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) a__ : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , __lowercase , decoder_attention_mask=__lowercase , past_key_values=__lowercase , decoder_position_ids=__lowercase , ) a__ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) a__ : Optional[Any] = model.decode( decoder_input_ids[:, -1:] , __lowercase , decoder_attention_mask=__lowercase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowercase , ) a__ : int = model.decode(__lowercase , __lowercase ) a__ : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" a__ : int = 2_0 a__ : Optional[int] = model_class_name(__lowercase ) a__ : Optional[Any] = model.encode(inputs_dict["""input_ids"""] ) a__ , a__ : Dict = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) a__ : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) a__ : Dict = model.init_cache(decoder_input_ids.shape[0] , __lowercase , __lowercase ) a__ : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) a__ : List[str] = model.decode( decoder_input_ids[:, :-1] , __lowercase , decoder_attention_mask=__lowercase , past_key_values=__lowercase , decoder_position_ids=__lowercase , ) a__ : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) a__ : Optional[int] = model.decode( decoder_input_ids[:, -1:] , __lowercase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowercase , decoder_position_ids=__lowercase , ) a__ : Union[str, Any] = model.decode(__lowercase , __lowercase , decoder_attention_mask=__lowercase ) a__ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCAmelCase_ ( _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : int=None , _lowercase : str=None , ) -> Optional[Any]: """simple docstring""" if attention_mask is None: a__ : int = np.not_equal(_lowercase , config.pad_token_id).astype(np.inta) if decoder_attention_mask is None: a__ : List[str] = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id).astype(np.inta), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class snake_case__ (A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :Optional[Any] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __lowerCAmelCase :List[Any] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __lowerCAmelCase :List[Any] = True __lowerCAmelCase :str = False __lowerCAmelCase :List[str] = False __lowerCAmelCase :Any = False def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : Optional[int] = FlaxPegasusModelTester(self ) a__ : Tuple = ConfigTester(self , config_class=__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowercase , __lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ , a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowercase , __lowercase , __lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ , a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a__ : Optional[int] = self._prepare_for_class(__lowercase , __lowercase ) a__ : Tuple = model_class(__lowercase ) @jax.jit def encode_jitted(__lowercase , __lowercase=None , **__lowercase ): return model.encode(input_ids=__lowercase , attention_mask=__lowercase ) with self.subTest("""JIT Enabled""" ): a__ : Any = encode_jitted(**__lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): a__ : Tuple = encode_jitted(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) ) for jitted_output, output in zip(__lowercase , __lowercase ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): a__ : int = model_class(__lowercase ) a__ : Optional[Any] = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) a__ : List[str] = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(__lowercase , __lowercase , __lowercase ): return model.decode( decoder_input_ids=__lowercase , decoder_attention_mask=__lowercase , encoder_outputs=__lowercase , ) with self.subTest("""JIT Enabled""" ): a__ : Any = decode_jitted(**__lowercase ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): a__ : int = decode_jitted(**__lowercase ).to_tuple() self.assertEqual(len(__lowercase ) , len(__lowercase ) ) for jitted_output, output in zip(__lowercase , __lowercase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: a__ : Any = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=__lowercase ) a__ : Optional[int] = np.ones((1, 1) ) a__ : Union[str, Any] = model(__lowercase ) self.assertIsNotNone(__lowercase ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" a__ : Union[str, Any] = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) a__ : Optional[int] = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) a__ : List[Any] = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] a__ : Optional[Any] = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] a__ : Union[str, Any] = tokenizer(__lowercase , return_tensors="""np""" , truncation=__lowercase , max_length=5_1_2 , padding=__lowercase ) a__ : Union[str, Any] = model.generate(**__lowercase , num_beams=2 ).sequences a__ : Union[str, Any] = tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase ) assert tgt_text == decoded
136
1
import os import re import shutil import sys import tempfile import unittest import black a :int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. a :List[str] = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class __a (unittest.TestCase): '''simple docstring''' def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) SCREAMING_SNAKE_CASE__ : Tuple = self.diffusers_dir shutil.copy( os.path.join(__UpperCamelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def _a ( self , _a , _a , _a , _a=None ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: SCREAMING_SNAKE_CASE__ : str = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result SCREAMING_SNAKE_CASE__ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) SCREAMING_SNAKE_CASE__ : List[Any] = black.format_str(__UpperCamelCase , mode=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(__UpperCamelCase , """w""" , newline="""\n""" ) as f: f.write(__UpperCamelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(__UpperCamelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=__UpperCamelCase ) with open(__UpperCamelCase , """r""" ) as f: self.assertTrue(f.read() , __UpperCamelCase ) def _a ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _a ( self ) -> Union[str, Any]: """simple docstring""" self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , __UpperCamelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , __UpperCamelCase ) , ) # Copy consistency with a really long name SCREAMING_SNAKE_CASE__ : int = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' , f'''{long_class_name}SchedulerOutput''' , re.sub("""Bert""" , __UpperCamelCase , __UpperCamelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , __UpperCamelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , __UpperCamelCase ) , )
718
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : '''simple docstring''' def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length SCREAMING_SNAKE_CASE__ : str = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Tuple = is_training SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask SCREAMING_SNAKE_CASE__ : List[str] = use_labels SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Any = d_ff SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : str = decoder_layers def _a ( self ) -> Tuple: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any: """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a ) return config, input_dict def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _a ( self ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model( input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a ) SCREAMING_SNAKE_CASE__ : str = model(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""] SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""] # select random slice SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def _a ( self , _a , _a , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else () _SCREAMING_SNAKE_CASE :List[str] = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = True _SCREAMING_SNAKE_CASE :Tuple = False _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :List[Any] = True _SCREAMING_SNAKE_CASE :List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests _SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9] def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0] SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) SCREAMING_SNAKE_CASE__ : List[str] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), } for attn_name, (name, mask) in zip(_a , head_masking.items() ): SCREAMING_SNAKE_CASE__ : List[str] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": SCREAMING_SNAKE_CASE__ : str = torch.ones( config.num_decoder_layers , config.num_heads , device=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , ) # We check the state of decoder_attentions and cross_attentions just from the last step SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _a ( self ) -> Dict: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a ) SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_a , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) ) SCREAMING_SNAKE_CASE__ : int = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a ) self.assertEqual(_a , _a )
12
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ : Any = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a__ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure)
51
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : Any = { 'configuration_autoformer': [ 'AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'AutoformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = [ 'AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'AutoformerForPrediction', 'AutoformerModel', 'AutoformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
51
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available UpperCAmelCase_ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
701
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[Any] ="""bridgetower_vision_model""" def __init__( self , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=288 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _A= hidden_size _A= num_hidden_layers _A= num_channels _A= patch_size _A= image_size _A= initializer_factor _A= layer_norm_eps _A= stop_gradient _A= share_layernorm _A= remove_last_layer @classmethod def a__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): _A, _A= cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": _A= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : List[Any] ="""bridgetower_text_model""" def __init__( self , lowerCAmelCase__=50265 , lowerCAmelCase__=768 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=1 , lowerCAmelCase__=3072 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=514 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__ ) _A= vocab_size _A= hidden_size _A= num_hidden_layers _A= num_attention_heads _A= hidden_act _A= initializer_factor _A= intermediate_size _A= hidden_dropout_prob _A= attention_probs_dropout_prob _A= max_position_embeddings _A= type_vocab_size _A= layer_norm_eps _A= position_embedding_type _A= use_cache _A= pad_token_id _A= bos_token_id _A= eos_token_id @classmethod def a__ ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ): _A, _A= cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": _A= config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class lowerCAmelCase ( _a ): _SCREAMING_SNAKE_CASE : Dict ="""bridgetower""" def __init__( self , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=768 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__="add" , lowerCAmelCase__=12 , lowerCAmelCase__=6 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ): # TODO: remove this once the Hub files are updated. _A= kwargs.pop('text_config_dict' , lowerCAmelCase__ ) _A= kwargs.pop('vision_config_dict' , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) _A= share_cross_modal_transformer_layers _A= hidden_act _A= hidden_size _A= initializer_factor _A= layer_norm_eps _A= share_link_tower_layers _A= link_tower_type _A= num_attention_heads _A= num_hidden_layers _A= tie_word_embeddings _A= init_layernorm_from_vision_encoder if text_config is None: _A= {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: _A= {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) _A= BridgeTowerTextConfig(**lowerCAmelCase__ ) _A= BridgeTowerVisionConfig(**lowerCAmelCase__ ) @classmethod def a__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def a__ ( self ): _A= copy.deepcopy(self.__dict__ ) _A= self.text_config.to_dict() _A= self.vision_config.to_dict() _A= self.__class__.model_type return output
476
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCamelCase = logging.get_logger(__name__) @dataclass class _UpperCamelCase : '''simple docstring''' lowerCAmelCase__ = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) lowerCAmelCase__ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowerCAmelCase__ = field( default=1_28 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase__ = field( default=A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.task_name.lower() class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = """train""" lowerCAmelCase__ = """dev""" lowerCAmelCase__ = """test""" class _UpperCamelCase ( A ): '''simple docstring''' lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self : Dict , _lowerCAmelCase : GlueDataTrainingArguments , _lowerCAmelCase : PreTrainedTokenizerBase , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Union[str, Split] = Split.train , _lowerCAmelCase : Optional[str] = None , ): '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , _lowerCAmelCase , ) __lowercase =args __lowercase =glue_processors[args.task_name]() __lowercase =glue_output_modes[args.task_name] if isinstance(_lowerCAmelCase , _lowerCAmelCase): try: __lowercase =Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file __lowercase =os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}""" , ) __lowercase =self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowercase , __lowercase =label_list[2], label_list[1] __lowercase =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowercase =cached_features_file + '.lock' with FileLock(_lowerCAmelCase): if os.path.exists(_lowerCAmelCase) and not args.overwrite_cache: __lowercase =time.time() __lowercase =torch.load(_lowerCAmelCase) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" , time.time() - start) else: logger.info(f"""Creating features from dataset file at {args.data_dir}""") if mode == Split.dev: __lowercase =self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: __lowercase =self.processor.get_test_examples(args.data_dir) else: __lowercase =self.processor.get_train_examples(args.data_dir) if limit_length is not None: __lowercase =examples[:limit_length] __lowercase =glue_convert_examples_to_features( _lowerCAmelCase , _lowerCAmelCase , max_length=args.max_seq_length , label_list=_lowerCAmelCase , output_mode=self.output_mode , ) __lowercase =time.time() torch.save(self.features , _lowerCAmelCase) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""") def __len__( self : int): '''simple docstring''' return len(self.features) def __getitem__( self : List[str] , _lowerCAmelCase : List[Any]): '''simple docstring''' return self.features[i] def __lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return self.label_list
474
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) lowerCamelCase = logging.getLogger(__name__) lowerCamelCase = tf.data.AUTOTUNE def _A ( ): """simple docstring""" __lowercase =argparse.ArgumentParser(description='Train a masked language model on TPU.' ) parser.add_argument( '--pretrained_model_config' , type=_lowerCAmelCase , default='roberta-base' , help='The model config to use. Note that we don\'t copy the model\'s weights, only the config!' , ) parser.add_argument( '--tokenizer' , type=_lowerCAmelCase , default='unigram-tokenizer-wikitext' , help='The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.' , ) parser.add_argument( '--per_replica_batch_size' , type=_lowerCAmelCase , default=8 , help='Batch size per TPU core.' , ) parser.add_argument( '--no_tpu' , action='store_true' , help='If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.' , ) parser.add_argument( '--tpu_name' , type=_lowerCAmelCase , help='Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.' , default='local' , ) parser.add_argument( '--tpu_zone' , type=_lowerCAmelCase , help='Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.' , ) parser.add_argument( '--gcp_project' , type=_lowerCAmelCase , help='Google cloud project name. Only used for non-Colab TPU nodes.' ) parser.add_argument( '--bfloat16' , action='store_true' , help='Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.' , ) parser.add_argument( '--train_dataset' , type=_lowerCAmelCase , help='Path to training dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--shuffle_buffer_size' , type=_lowerCAmelCase , default=2**18 , help='Size of the shuffle buffer (in samples)' , ) parser.add_argument( '--eval_dataset' , type=_lowerCAmelCase , help='Path to evaluation dataset to load. If the path begins with `gs://`' ' then the dataset will be loaded from a Google Cloud Storage bucket.' , ) parser.add_argument( '--num_epochs' , type=_lowerCAmelCase , default=1 , help='Number of epochs to train for.' , ) parser.add_argument( '--learning_rate' , type=_lowerCAmelCase , default=1e-4 , help='Learning rate to use for training.' , ) parser.add_argument( '--weight_decay_rate' , type=_lowerCAmelCase , default=1e-3 , help='Weight decay rate to use for training.' , ) parser.add_argument( '--max_length' , type=_lowerCAmelCase , default=512 , help='Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py' , ) parser.add_argument( '--mlm_probability' , type=_lowerCAmelCase , default=0.15 , help='Fraction of tokens to mask during training.' , ) parser.add_argument('--output_dir' , type=_lowerCAmelCase , required=_lowerCAmelCase , help='Path to save model checkpoints to.' ) parser.add_argument('--hub_model_id' , type=_lowerCAmelCase , help='Model ID to upload to on the Hugging Face Hub.' ) __lowercase =parser.parse_args() return args def _A ( _lowerCAmelCase ): """simple docstring""" try: if args.tpu_name: __lowercase =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: __lowercase =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( 'Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ' '--gcp_project. When running on a TPU VM, use --tpu_name local.' ) tf.config.experimental_connect_to_cluster(_lowerCAmelCase ) tf.tpu.experimental.initialize_tpu_system(_lowerCAmelCase ) return tpu def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase =0 for file in file_list: __lowercase =file.split('/' )[-1] __lowercase =re.search(r'-\d+-(\d+)\.tfrecord' , _lowerCAmelCase ).group(1 ) __lowercase =int(_lowerCAmelCase ) num_samples += sample_count return num_samples def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=None ): """simple docstring""" __lowercase =count_samples(_lowerCAmelCase ) __lowercase =tf.data.Dataset.from_tensor_slices(_lowerCAmelCase ) if shuffle: __lowercase =dataset.shuffle(len(_lowerCAmelCase ) ) __lowercase =tf.data.TFRecordDataset(_lowerCAmelCase , num_parallel_reads=_lowerCAmelCase ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here __lowercase =dataset.apply(tf.data.experimental.assert_cardinality(_lowerCAmelCase ) ) __lowercase =dataset.map(_lowerCAmelCase , num_parallel_calls=_lowerCAmelCase ) if shuffle: assert shuffle_buffer_size is not None __lowercase =dataset.shuffle(args.shuffle_buffer_size ) __lowercase =dataset.batch(_lowerCAmelCase , drop_remainder=_lowerCAmelCase ) __lowercase =dataset.map(_lowerCAmelCase , num_parallel_calls=_lowerCAmelCase ) __lowercase =dataset.prefetch(_lowerCAmelCase ) return dataset def _A ( _lowerCAmelCase ): """simple docstring""" if not args.no_tpu: __lowercase =initialize_tpu(_lowerCAmelCase ) __lowercase =tf.distribute.TPUStrategy(_lowerCAmelCase ) else: __lowercase =tf.distribute.OneDeviceStrategy(device='/gpu:0' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('mixed_bfloat16' ) __lowercase =AutoTokenizer.from_pretrained(args.tokenizer ) __lowercase =AutoConfig.from_pretrained(args.pretrained_model_config ) __lowercase =tokenizer.vocab_size __lowercase =tf.io.gfile.glob(os.path.join(args.train_dataset , '*.tfrecord' ) ) if not training_records: raise ValueError(f"""No .tfrecord files found in {args.train_dataset}.""" ) __lowercase =tf.io.gfile.glob(os.path.join(args.eval_dataset , '*.tfrecord' ) ) if not eval_records: raise ValueError(f"""No .tfrecord files found in {args.eval_dataset}.""" ) __lowercase =count_samples(_lowerCAmelCase ) __lowercase =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) __lowercase =steps_per_epoch * args.num_epochs with strategy.scope(): __lowercase =TFAutoModelForMaskedLM.from_config(_lowerCAmelCase ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built __lowercase , __lowercase =create_optimizer( num_train_steps=_lowerCAmelCase , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_lowerCAmelCase , metrics=['accuracy'] ) def decode_fn(_lowerCAmelCase ): __lowercase ={ 'input_ids': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), 'attention_mask': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(_lowerCAmelCase , _lowerCAmelCase ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. __lowercase =DataCollatorForLanguageModeling( tokenizer=_lowerCAmelCase , mlm_probability=args.mlm_probability , mlm=_lowerCAmelCase , return_tensors='tf' ) def mask_with_collator(_lowerCAmelCase ): # TF really needs an isin() function __lowercase =( ~tf.cast(batch['attention_mask'] , tf.bool ) | (batch['input_ids'] == tokenizer.cls_token_id) | (batch['input_ids'] == tokenizer.sep_token_id) ) __lowercase , __lowercase =data_collator.tf_mask_tokens( batch['input_ids'] , vocab_size=len(_lowerCAmelCase ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=_lowerCAmelCase , ) return batch __lowercase =args.per_replica_batch_size * strategy.num_replicas_in_sync __lowercase =prepare_dataset( _lowerCAmelCase , decode_fn=_lowerCAmelCase , mask_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , shuffle_buffer_size=args.shuffle_buffer_size , ) __lowercase =prepare_dataset( _lowerCAmelCase , decode_fn=_lowerCAmelCase , mask_fn=_lowerCAmelCase , batch_size=_lowerCAmelCase , shuffle=_lowerCAmelCase , ) __lowercase =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=_lowerCAmelCase ) ) model.fit( _lowerCAmelCase , validation_data=_lowerCAmelCase , epochs=args.num_epochs , callbacks=_lowerCAmelCase , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": lowerCamelCase = parse_args() main(args)
474
1
'''simple docstring''' _lowerCamelCase : Dict = 8.3_144_598 def _lowerCAmelCase ( __a , __a ) -> float: '''simple docstring''' if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _lowerCamelCase : int = 3_00 _lowerCamelCase : int = 28 _lowerCamelCase : Any = rms_speed_of_molecule(temperature, molar_mass) print(f"Vrms of Nitrogen gas at 300 K is {vrms} m/s")
512
'''simple docstring''' import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () _lowerCamelCase : Optional[int] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). _lowerCamelCase : List[Any] = [0, 25, 50] _lowerCamelCase : Dict = [25, 50, 75] _lowerCamelCase : Optional[Any] = fuzz.membership.trimf(X, abca) _lowerCamelCase : Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. _lowerCamelCase : Optional[Any] = np.ones(75) _lowerCamelCase : Optional[int] = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) _lowerCamelCase : int = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) _lowerCamelCase : Tuple = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) _lowerCamelCase : List[str] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) _lowerCamelCase : Any = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] _lowerCamelCase : Tuple = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) _lowerCamelCase : int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] _lowerCamelCase : str = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] _lowerCamelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
512
1
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _A : Any = logging.get_logger(__name__) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Any = ["""input_features""", """attention_mask"""] def __init__( self , A_=80 , A_=1_60_00 , A_=80 , A_=0.0 , A_=True , A_=True , A_=True , **A_ , ): '''simple docstring''' super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ ) SCREAMING_SNAKE_CASE__ = num_mel_bins SCREAMING_SNAKE_CASE__ = do_ceptral_normalize SCREAMING_SNAKE_CASE__ = normalize_means SCREAMING_SNAKE_CASE__ = normalize_vars SCREAMING_SNAKE_CASE__ = True def lowercase_ ( self , A_ , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers SCREAMING_SNAKE_CASE__ = torch.from_numpy(A_ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = ta_kaldi.fbank(A_ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def lowercase_ ( A_ , A_ , A_ = True , A_ = True , A_ = 0.0 , ): '''simple docstring''' if normalize_means: SCREAMING_SNAKE_CASE__ = x[:input_length].mean(axis=0 ) SCREAMING_SNAKE_CASE__ = np.subtract(A_ , A_ ) if normalize_vars: SCREAMING_SNAKE_CASE__ = x[:input_length].std(axis=0 ) SCREAMING_SNAKE_CASE__ = np.divide(A_ , A_ ) if input_length < x.shape[0]: SCREAMING_SNAKE_CASE__ = padding_value # make sure array is in float32 SCREAMING_SNAKE_CASE__ = x.astype(np.floataa ) return x def lowercase_ ( self , A_ , A_ = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(A_ , A_ , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(A_ , A_ ) ] def __call__( self , A_ , A_ = False , A_ = None , A_ = False , A_ = None , A_ = None , A_ = None , A_ = None , **A_ , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) SCREAMING_SNAKE_CASE__ = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE__ = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE__ = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): SCREAMING_SNAKE_CASE__ = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE__ = [raw_speech] # extract fbank features SCREAMING_SNAKE_CASE__ = [self._extract_fbank_features(A_ ) for waveform in raw_speech] # convert into correct format for padding SCREAMING_SNAKE_CASE__ = BatchFeature({'''input_features''': features} ) SCREAMING_SNAKE_CASE__ = self.pad( A_ , padding=A_ , max_length=A_ , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , **A_ , ) # make sure list is in array format SCREAMING_SNAKE_CASE__ = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , A_ ): SCREAMING_SNAKE_CASE__ = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features] SCREAMING_SNAKE_CASE__ = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: SCREAMING_SNAKE_CASE__ = [np.asarray(A_ , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: SCREAMING_SNAKE_CASE__ = ( np.array(A_ , dtype=np.intaa ) if self._get_padding_strategies(A_ , max_length=A_ ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE__ = self.normalize( padded_inputs['''input_features'''] , attention_mask=A_ ) if return_tensors is not None: SCREAMING_SNAKE_CASE__ = padded_inputs.convert_to_tensors(A_ ) return padded_inputs
100
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow snake_case__ = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.') @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase): def _snake_case ( self : Dict , __A : Path , __A : Union[str, None] = None , __A : Union[List[str], None] = None , __A : Union[str, List[str], None] = None , __A : bool = True , ) ->Any: """simple docstring""" a__ :Dict = [file for file in os.listdir(__A ) if os.path.isfile(os.path.join(__A , __A ) )] if identifier is not None: a__ :Union[str, Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__A , __A ): for n_ in n_identifier: a__ :Union[str, Any] = [file for file in files if n_ not in file] else: a__ :Dict = [file for file in files if n_identifier not in file] a__ :List[str] = ignore_files or [] ignore_files.append("__init__.py" ) a__ :Optional[Any] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("Testing" , __A ) if only_modules: a__ :Tuple = file.split("." )[0] try: a__ :Dict = getattr(__A , __A ) a__ :int = doctest.DocTestSuite(__A ) a__ :Any = unittest.TextTestRunner().run(__A ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: a__ :int = doctest.testfile(str(".." / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _snake_case ( self : int ) ->List[Any]: """simple docstring""" a__ :Tuple = Path("src/transformers" ) a__ :Union[str, Any] = "modeling" a__ :Any = [ "modeling_ctrl.py", "modeling_tf_ctrl.py", ] self.analyze_directory(__A , identifier=__A , ignore_files=__A ) def _snake_case ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" a__ :Optional[int] = Path("src/transformers" ) a__ :Dict = "tokenization" self.analyze_directory(__A , identifier=__A ) def _snake_case ( self : List[str] ) ->Union[str, Any]: """simple docstring""" a__ :List[Any] = Path("src/transformers" ) a__ :List[Any] = "configuration" self.analyze_directory(__A , identifier=__A ) def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" a__ :List[str] = Path("src/transformers" ) a__ :str = ["configuration", "modeling", "tokenization"] self.analyze_directory(__A , n_identifier=__A ) def _snake_case ( self : List[Any] ) ->Optional[int]: """simple docstring""" a__ :List[str] = Path("docs/source" ) a__ :Union[str, Any] = ["favicon.ico"] self.analyze_directory(__A , ignore_files=__A , only_modules=__A )
395
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging UpperCamelCase : Dict = logging.get_logger(__name__) UpperCamelCase : Union[str, Any] = { """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class A__ ( A__ ): """simple docstring""" _lowercase = 'perceiver' def __init__( self : Union[str, Any] , lowerCamelCase__ : str=256 , lowerCamelCase__ : str=1_280 , lowerCamelCase__ : List[str]=768 , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : int=26 , lowerCamelCase__ : Any=8 , lowerCamelCase__ : List[str]=8 , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : str=None , lowerCamelCase__ : Optional[int]="kv" , lowerCamelCase__ : str=1 , lowerCamelCase__ : str=1 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : List[str]=0.1 , lowerCamelCase__ : Any=0.02 , lowerCamelCase__ : Optional[int]=1E-12 , lowerCamelCase__ : Optional[int]=True , lowerCamelCase__ : Optional[Any]=262 , lowerCamelCase__ : Dict=2_048 , lowerCamelCase__ : str=56 , lowerCamelCase__ : List[str]=[368, 496] , lowerCamelCase__ : str=16 , lowerCamelCase__ : Union[str, Any]=1_920 , lowerCamelCase__ : Dict=16 , lowerCamelCase__ : List[Any]=[1, 16, 224, 224] , **lowerCamelCase__ : List[str] , ): super().__init__(**lowerCamelCase__ ) a__ : Optional[Any] = num_latents a__ : str = d_latents a__ : str = d_model a__ : Tuple = num_blocks a__ : List[str] = num_self_attends_per_block a__ : List[Any] = num_self_attention_heads a__ : List[Any] = num_cross_attention_heads a__ : Tuple = qk_channels a__ : List[Any] = v_channels a__ : Union[str, Any] = cross_attention_shape_for_attention a__ : List[str] = self_attention_widening_factor a__ : int = cross_attention_widening_factor a__ : Dict = hidden_act a__ : int = attention_probs_dropout_prob a__ : Any = initializer_range a__ : Union[str, Any] = layer_norm_eps a__ : Dict = use_query_residual # masked language modeling attributes a__ : List[Any] = vocab_size a__ : str = max_position_embeddings # image classification attributes a__ : Union[str, Any] = image_size # flow attributes a__ : Dict = train_size # multimodal autoencoding attributes a__ : Dict = num_frames a__ : Tuple = audio_samples_per_frame a__ : Dict = samples_per_patch a__ : List[Any] = output_shape class A__ ( A__ ): """simple docstring""" @property def _UpperCamelCase( self : List[str] ): if self.task == "multiple-choice": a__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: a__ : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def _UpperCamelCase( self : Tuple ): return 1E-4 def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase__ : int = -1 , lowerCamelCase__ : int = -1 , lowerCamelCase__ : int = -1 , lowerCamelCase__ : bool = False , lowerCamelCase__ : Optional[TensorType] = None , lowerCamelCase__ : int = 3 , lowerCamelCase__ : int = 40 , lowerCamelCase__ : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(lowerCamelCase__ , lowerCamelCase__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a__ : Union[str, Any] = compute_effective_axis_dimension( lowerCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX a__ : Tuple = preprocessor.num_special_tokens_to_add(lowerCamelCase__ ) a__ : Any = compute_effective_axis_dimension( lowerCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase__ ) # Generate dummy inputs according to compute batch and sequence a__ : Optional[Any] = [" ".join(["a"] ) * seq_length] * batch_size a__ : Tuple = dict(preprocessor(lowerCamelCase__ , return_tensors=lowerCamelCase__ ) ) a__ : Optional[int] = inputs.pop("input_ids" ) return inputs elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX a__ : Any = compute_effective_axis_dimension(lowerCamelCase__ , fixed_dimension=OnnxConfig.default_fixed_batch ) a__ : Dict = self._generate_dummy_images(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) a__ : Dict = dict(preprocessor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) ) a__ : Optional[int] = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
715
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem UpperCamelCase : Dict = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 UpperCamelCase : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f"""A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.""") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def UpperCamelCase_ ( __a ) -> str: if "://" in dataset_path: a__ : Any = dataset_path.split("://" )[1] return dataset_path def UpperCamelCase_ ( __a ) -> bool: if fs is not None and fs.protocol != "file": return True else: return False def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = not is_remote_filesystem(__a ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__a ) , fs._strip_protocol(__a ) ) else: fs.mv(__a , __a , recursive=__a ) def UpperCamelCase_ ( ) -> None: if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: a__ : Tuple = None a__ : int = None a__ : int = threading.Lock()
151
0
'''simple docstring''' _snake_case = { 'km/h': 1.0, 'm/s': 3.6, 'mph': 1.6_0_9_3_4_4, 'knot': 1.8_5_2, } _snake_case = { 'km/h': 1.0, 'm/s': 0.2_7_7_7_7_7_7_7_8, 'mph': 0.6_2_1_3_7_1_1_9_2, 'knot': 0.5_3_9_9_5_6_8_0_3, } def _A ( snake_case , snake_case , snake_case ) -> Any: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _lowercase : List[str] = ( F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' F'''Valid values are: {', '.join(SCREAMING_SNAKE_CASE__ )}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
245
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = KandinskyVaaControlnetPipeline lowerCAmelCase_ : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] lowerCAmelCase_ : List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] lowerCAmelCase_ : Union[str, Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] lowerCAmelCase_ : List[Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" return self.time_input_dim @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" return 1_00 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } UpperCAmelCase__ = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase__ = VQModel(**self.dummy_movq_kwargs ) return model def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.dummy_unet UpperCAmelCase__ = self.dummy_movq UpperCAmelCase__ = DDIMScheduler( num_train_timesteps=10_00 , beta_schedule="""linear""" , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=_UpperCAmelCase , ) UpperCAmelCase__ = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def SCREAMING_SNAKE_CASE__ ( self : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict=0 ): """simple docstring""" UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) UpperCAmelCase__ = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) # create hint UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(_UpperCAmelCase ) else: UpperCAmelCase__ = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) UpperCAmelCase__ = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = """cpu""" UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**_UpperCAmelCase ) UpperCAmelCase__ = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) UpperCAmelCase__ = output.images UpperCAmelCase__ = pipe( **self.get_dummy_inputs(_UpperCAmelCase ) , return_dict=_UpperCAmelCase , )[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] UpperCAmelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase__ = np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) UpperCAmelCase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) UpperCAmelCase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).float() / 255.0 UpperCAmelCase__ = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase__ = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) UpperCAmelCase__ = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) UpperCAmelCase__ = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) UpperCAmelCase__ = """A robot, 4k photo""" UpperCAmelCase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ = pipe_prior( _UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() UpperCAmelCase__ = torch.Generator(device="""cuda""" ).manual_seed(0 ) UpperCAmelCase__ = pipeline( image_embeds=_UpperCAmelCase , negative_image_embeds=_UpperCAmelCase , hint=_UpperCAmelCase , generator=_UpperCAmelCase , num_inference_steps=1_00 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
603
0
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class a ( unittest.TestCase ,_UpperCamelCase ): def __snake_case ( self : int ): snake_case : Union[str, Any] = load_tool('''text-to-speech''' ) self.tool.setup() def __snake_case ( self : Optional[int] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) snake_case : List[str] = self.tool('''hey''' ) snake_case : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ), ) ) def __snake_case ( self : Optional[Any] ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) snake_case : List[str] = self.tool('''hey''' ) snake_case : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ), ) )
713
'''simple docstring''' from __future__ import annotations import math def A ( A_ : int ): if num <= 0: snake_case : List[Any] = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(A_ ) snake_case : Optional[Any] = [True] * (num + 1) snake_case : List[str] = [] snake_case : List[Any] = 2 snake_case : str = int(math.sqrt(A_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(A_ ) # Set multiples of start be False for i in range(start * start , num + 1 , A_ ): if sieve[i] is True: snake_case : int = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(A_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
555
0
'''simple docstring''' from __future__ import annotations from cmath import sqrt def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> tuple[complex, complex]: """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) __snake_case : str = b * b - 4 * a * c __snake_case : Optional[Any] = (-b + sqrt(_lowerCamelCase )) / (2 * a) __snake_case : Dict = (-b - sqrt(_lowerCamelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _a ( ) -> Tuple: """simple docstring""" __snake_case , __snake_case : Dict = quadratic_roots(a=5 , b=6 , c=1 ) print(F'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
26
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __lowerCAmelCase ( lowerCAmelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) __lowerCamelCase = Generator( cache_dir=__UpperCAmelCase , features=__UpperCAmelCase , generator=__UpperCAmelCase , gen_kwargs=__UpperCAmelCase , **__UpperCAmelCase , ) def lowerCamelCase ( self ): '''simple docstring''' # Build iterable dataset if self.streaming: __lowerCamelCase = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) __lowerCamelCase = self.builder.as_dataset( split='''train''' , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset
175
0
"""simple docstring""" import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : int = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = DebertaVaTokenizer snake_case__ = DebertaVaTokenizerFast snake_case__ = True snake_case__ = True def __lowerCAmelCase ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ,unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Tuple ,lowerCamelCase__ : Tuple ): UpperCAmelCase__ = 'this is a test' UpperCAmelCase__ = 'this is a test' return input_text, output_text def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = '<pad>' UpperCAmelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<pad>' ) self.assertEqual(vocab_keys[1] ,'<unk>' ) self.assertEqual(vocab_keys[-1] ,'[PAD]' ) self.assertEqual(len(lowerCamelCase__ ) ,30_001 ) def __lowerCAmelCase ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size ,30_000 ) def __lowerCAmelCase ( self : Dict ): # fmt: off UpperCAmelCase__ = ' \tHeLLo!how \n Are yoU? ' UpperCAmelCase__ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = DebertaVaTokenizerFast(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __lowerCAmelCase ( self : List[str] ): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def __lowerCAmelCase ( self : int ): pass def __lowerCAmelCase ( self : Optional[Any] ): # fmt: off UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = DebertaVaTokenizerFast(lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): # fmt: off UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = DebertaVaTokenizerFast(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): # fmt: off UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = DebertaVaTokenizerFast(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): # fmt: off UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = DebertaVaTokenizerFast(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : int ): # fmt: off UpperCAmelCase__ = ' \tHeLLo!how \n Are yoU? ' UpperCAmelCase__ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = DebertaVaTokenizerFast(lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,split_by_punct=lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = self.get_tokenizer() UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = self.get_rust_tokenizer() UpperCAmelCase__ = tokenizer.encode(lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Union[str, Any] ): UpperCAmelCase__ = 'This is a test' UpperCAmelCase__ = [13, 1, 4_398, 25, 21, 1_289] UpperCAmelCase__ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] UpperCAmelCase__ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) UpperCAmelCase__ = DebertaVaTokenizerFast(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) # fmt: off UpperCAmelCase__ = 'I was born in 92000, and this is falsé.' UpperCAmelCase__ = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] UpperCAmelCase__ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] UpperCAmelCase__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on UpperCAmelCase__ = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) UpperCAmelCase__ = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = DebertaVaTokenizer(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.encode('sequence builders' ) UpperCAmelCase__ = tokenizer.encode('multi-sequence build' ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] ,lowerCamelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] ,lowerCamelCase__ ,) @slow def __lowerCAmelCase ( self : List[str] ): # fmt: off UpperCAmelCase__ = {'input_ids': [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='microsoft/deberta-v2-xlarge' ,revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' ,)
712
"""simple docstring""" import re def a_ ( lowerCamelCase ): return [char.split() for char in re.split(r'[^ a-z A-Z 0-9 \s]' , str_ )] def a_ ( lowerCamelCase ): UpperCAmelCase__ = split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): try: UpperCAmelCase__ = split_input(lowerCamelCase ) if upper: UpperCAmelCase__ = ''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: UpperCAmelCase__ = ''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def a_ ( lowerCamelCase ): return to_simple_case(lowerCamelCase ) def a_ ( lowerCamelCase ): try: UpperCAmelCase__ = to_simple_case(lowerCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def a_ ( lowerCamelCase , lowerCamelCase ): return to_complex_case(lowerCamelCase , lowerCamelCase , '_' ) def a_ ( lowerCamelCase , lowerCamelCase ): return to_complex_case(lowerCamelCase , lowerCamelCase , '-' ) if __name__ == "__main__": __import__('doctest').testmod()
632
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class UpperCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int = 13 , UpperCAmelCase__ : int = 64 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : int = 3 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : int=[16, 32, 64, 128] , UpperCAmelCase__ : int = 7 , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 37 , UpperCAmelCase__ : str = "gelu" , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 1 , UpperCAmelCase__ : int = 128 , UpperCAmelCase__ : List[int] = [2, 2, 2, 2] , UpperCAmelCase__ : int = 2 , UpperCAmelCase__ : int = 2 , ) ->List[str]: '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = encoder_stride A__ = num_attention_outputs A__ = embed_dim A__ = embed_dim + 1 A__ = resolution A__ = depths A__ = hidden_sizes A__ = dim A__ = mlp_expansion_ratio def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self : str) ->Tuple: '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : str) ->Any: '''simple docstring''' A__ = TFEfficientFormerModel(config=UpperCAmelCase__) A__ = model(UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int]) ->Optional[Any]: '''simple docstring''' A__ = self.type_sequence_label_size A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__ , training=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images A__ = 1 A__ = TFEfficientFormerForImageClassification(UpperCAmelCase__) A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) A__ = model(UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def SCREAMING_SNAKE_CASE ( self : Dict) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase__ = ( { '''feature-extraction''': TFEfficientFormerModel, '''image-classification''': ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = TFEfficientFormerModelTester(self) A__ = ConfigTester( self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : List[str]) ->int: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''EfficientFormer does not use inputs_embeds''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[Any]: '''simple docstring''' pass @unittest.skip(reason='''EfficientFormer does not support input and output embeddings''') def SCREAMING_SNAKE_CASE ( self : str) ->int: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(UpperCAmelCase__) A__ = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str]) ->Optional[Any]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict): A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states A__ = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) if hasattr(self.model_tester , '''encoder_seq_length'''): A__ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , '''chunk_length''') and self.model_tester.chunk_length > 1: A__ = seq_length * self.model_tester.chunk_length else: A__ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: A__ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCAmelCase__ , (list, tuple)) self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''decoder_seq_length''' , UpperCAmelCase__) self.assertListEqual( list(hidden_states[-1].shape[-2:]) , [decoder_seq_length, self.model_tester.hidden_size] , ) A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True check_hidden_states_output(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any=False) ->Tuple: '''simple docstring''' A__ = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def SCREAMING_SNAKE_CASE ( self : List[str]) ->str: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) @unittest.skip(reason='''EfficientFormer does not implement masked image modeling yet''') def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Any: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFEfficientFormerModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = True A__ = getattr(self.model_tester , '''seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''encoder_seq_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''key_length''' , UpperCAmelCase__) A__ = getattr(self.model_tester , '''chunk_length''' , UpperCAmelCase__) if chunk_length is not None and hasattr(self.model_tester , '''num_hashes'''): A__ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: A__ = True A__ = False A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ = True A__ = model_class(UpperCAmelCase__) A__ = model(**self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) , training=UpperCAmelCase__) A__ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCAmelCase__) , self.model_tester.num_attention_outputs) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:]) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def SCREAMING_SNAKE_CASE ( self : Dict) ->str: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model A__ = model_class(UpperCAmelCase__) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes A__ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCAmelCase__) for key, val in model.input_signature.items() if key in model.dummy_inputs } A__ = model(UpperCAmelCase__) self.assertTrue(outputs_dict is not None) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" A__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[Any]: '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('''snap-research/efficientformer-l1-300''') if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self : str) ->Union[str, Any]: '''simple docstring''' A__ = TFEfficientFormerForImageClassification.from_pretrained('''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.0555, 0.4825, -0.0852]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: '''simple docstring''' A__ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( '''snap-research/efficientformer-l1-300''') A__ = self.default_image_processor A__ = prepare_img() A__ = image_processor(images=UpperCAmelCase__ , return_tensors='''tf''') # forward pass A__ = model(**UpperCAmelCase__ , training=UpperCAmelCase__) # verify the logits A__ = tf.TensorShape((1, 1_000)) self.assertEqual(outputs.logits.shape , UpperCAmelCase__) A__ = tf.constant([-0.1312, 0.4353, -1.0499]) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCAmelCase__ , atol=1e-4))
87
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
36
0
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=4 , ): """simple docstring""" UpperCamelCase : Tuple = parent UpperCamelCase : Any = batch_size UpperCamelCase : str = seq_length UpperCamelCase : Dict = is_training UpperCamelCase : Optional[int] = use_attention_mask UpperCamelCase : Optional[int] = use_token_type_ids UpperCamelCase : Tuple = use_labels UpperCamelCase : Optional[Any] = vocab_size UpperCamelCase : Optional[int] = hidden_size UpperCamelCase : Tuple = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Dict = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : Optional[int] = hidden_dropout_prob UpperCamelCase : Any = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : List[str] = type_vocab_size UpperCamelCase : Optional[Any] = type_sequence_label_size UpperCamelCase : Optional[Any] = initializer_range UpperCamelCase : Tuple = num_choices def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : List[Any] = None if self.use_attention_mask: UpperCamelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Tuple = None if self.use_token_type_ids: UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Any = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = config_and_inputs UpperCamelCase : str = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = config_and_inputs UpperCamelCase : Optional[Any] = True UpperCamelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : int = True __UpperCamelCase : Union[str, Any] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = FlaxBertModelTester(self ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = FlaxBertModel.from_pretrained('''bert-base-cased''' ) UpperCamelCase : Union[str, Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
643
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
1
"""simple docstring""" from __future__ import annotations from statistics import mean def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __lowerCamelCase : Optional[Any] =[0] * no_of_processes __lowerCamelCase : List[str] =[0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =burst_time[i] __lowerCamelCase : list[int] =[] __lowerCamelCase : Union[str, Any] =0 __lowerCamelCase : Union[str, Any] =0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCamelCase : Tuple =[] __lowerCamelCase : str =-1 for i in range(SCREAMING_SNAKE_CASE ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: __lowerCamelCase : Any =ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCamelCase : Optional[Any] =i total_time += burst_time[target_process] completed += 1 __lowerCamelCase : Optional[int] =0 __lowerCamelCase : Dict =( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' __lowerCamelCase : Optional[int] =[0] * no_of_processes for i in range(SCREAMING_SNAKE_CASE ): __lowerCamelCase : Union[str, Any] =burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('[TEST CASE 01]') _UpperCamelCase = 4 _UpperCamelCase = [2, 5, 3, 7] _UpperCamelCase = [0, 0, 0, 0] _UpperCamelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) _UpperCamelCase = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time') for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
179
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" __snake_case : int = LEDConfig __snake_case : int = {} __snake_case : Any = """gelu""" def __init__( self :Optional[Any] , __lowercase :List[Any] , __lowercase :int=13 , __lowercase :Union[str, Any]=7 , __lowercase :List[Any]=True , __lowercase :List[Any]=False , __lowercase :str=99 , __lowercase :Optional[int]=32 , __lowercase :List[Any]=2 , __lowercase :str=4 , __lowercase :str=37 , __lowercase :Any=0.1 , __lowercase :List[Any]=0.1 , __lowercase :Optional[Any]=20 , __lowercase :Union[str, Any]=2 , __lowercase :str=1 , __lowercase :List[str]=0 , __lowercase :List[Any]=4 , ): __lowerCamelCase : Union[str, Any] =parent __lowerCamelCase : List[Any] =batch_size __lowerCamelCase : str =seq_length __lowerCamelCase : List[str] =is_training __lowerCamelCase : Dict =use_labels __lowerCamelCase : int =vocab_size __lowerCamelCase : Union[str, Any] =hidden_size __lowerCamelCase : Any =num_hidden_layers __lowerCamelCase : List[Any] =num_attention_heads __lowerCamelCase : str =intermediate_size __lowerCamelCase : Optional[Any] =hidden_dropout_prob __lowerCamelCase : Optional[Any] =attention_probs_dropout_prob __lowerCamelCase : Optional[Any] =max_position_embeddings __lowerCamelCase : Optional[Any] =eos_token_id __lowerCamelCase : str =pad_token_id __lowerCamelCase : Any =bos_token_id __lowerCamelCase : Union[str, Any] =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __lowerCamelCase : List[Any] =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __lowerCamelCase : Optional[Any] =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowercase ( self :Tuple ): __lowerCamelCase : Any =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowerCamelCase : List[str] =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowerCamelCase : Tuple =tf.concat([input_ids, eos_tensor] , axis=1 ) __lowerCamelCase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : Optional[int] =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __lowerCamelCase : int =prepare_led_inputs_dict(__lowercase , __lowercase , __lowercase ) __lowerCamelCase : Optional[Any] =tf.concat( [tf.zeros_like(__lowercase )[:, :-1], tf.ones_like(__lowercase )[:, -1:]] , axis=-1 , ) __lowerCamelCase : Any =global_attention_mask return config, inputs_dict def __lowercase ( self :Union[str, Any] , __lowercase :List[str] , __lowercase :List[str] ): __lowerCamelCase : int =TFLEDModel(config=__lowercase ).get_decoder() __lowerCamelCase : Dict =inputs_dict['''input_ids'''] __lowerCamelCase : Optional[Any] =input_ids[:1, :] __lowerCamelCase : List[Any] =inputs_dict['''attention_mask'''][:1, :] __lowerCamelCase : List[Any] =1 # first forward pass __lowerCamelCase : List[Any] =model(__lowercase , attention_mask=__lowercase , use_cache=__lowercase ) __lowerCamelCase , __lowerCamelCase : Any =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase : List[Any] =ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase : Union[str, Any] =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowerCamelCase : Dict =tf.concat([input_ids, next_tokens] , axis=-1 ) __lowerCamelCase : int =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowerCamelCase : str =model(__lowercase , attention_mask=__lowercase )[0] __lowerCamelCase : List[str] =model(__lowercase , attention_mask=__lowercase , past_key_values=__lowercase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowerCamelCase : List[str] =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowerCamelCase : Dict =output_from_no_past[:, -3:, random_slice_idx] __lowerCamelCase : int =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowercase , __lowercase , rtol=1e-3 ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Tuple=None , ): '''simple docstring''' if attention_mask is None: __lowerCamelCase : Optional[int] =tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowerCamelCase : str =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowerCamelCase : Dict =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCamelCase : List[str] =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" __snake_case : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __snake_case : Tuple = (TFLEDForConditionalGeneration,) if is_tf_available() else () __snake_case : Optional[Any] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __snake_case : int = True __snake_case : int = False __snake_case : Optional[int] = False __snake_case : Optional[int] = False def __lowercase ( self :Optional[int] ): __lowerCamelCase : int =TFLEDModelTester(self ) __lowerCamelCase : Any =ConfigTester(self , config_class=__lowercase ) def __lowercase ( self :Dict ): self.config_tester.run_common_tests() def __lowercase ( self :str ): __lowerCamelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowercase ) def __lowercase ( self :Optional[Any] ): __lowerCamelCase , __lowerCamelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : int =tf.zeros_like(inputs_dict['''attention_mask'''] ) __lowerCamelCase : List[Any] =2 __lowerCamelCase : Optional[Any] =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) __lowerCamelCase : Tuple =True __lowerCamelCase : Optional[Any] =self.model_tester.seq_length __lowerCamelCase : List[str] =self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowercase :Any ): __lowerCamelCase : Union[str, Any] =outputs.decoder_attentions self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__lowercase :List[str] ): __lowerCamelCase : Any =[t.numpy() for t in outputs.encoder_attentions] __lowerCamelCase : Optional[int] =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__lowercase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __lowerCamelCase : List[str] =True __lowerCamelCase : int =False __lowerCamelCase : Optional[Any] =False __lowerCamelCase : str =model_class(__lowercase ) __lowerCamelCase : Any =model(self._prepare_for_class(__lowercase , __lowercase ) ) __lowerCamelCase : int =len(__lowercase ) self.assertEqual(config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) if self.is_encoder_decoder: __lowerCamelCase : Optional[int] =model_class(__lowercase ) __lowerCamelCase : Union[str, Any] =model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(config.output_hidden_states , __lowercase ) check_decoder_attentions_output(__lowercase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowerCamelCase : Any =True __lowerCamelCase : Union[str, Any] =model_class(__lowercase ) __lowerCamelCase : Tuple =model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) # Check attention is always last and order is fine __lowerCamelCase : Optional[Any] =True __lowerCamelCase : Optional[int] =True __lowerCamelCase : Dict =model_class(__lowercase ) __lowerCamelCase : Union[str, Any] =model(self._prepare_for_class(__lowercase , __lowercase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowercase ) ) self.assertEqual(model.config.output_hidden_states , __lowercase ) check_encoder_attentions_output(__lowercase ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __lowercase ( self :int ): pass def __lowercase ( self :int ): # TODO: Head-masking not yet implement pass def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return tf.constant(SCREAMING_SNAKE_CASE , dtype=tf.intaa ) _UpperCamelCase = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self :List[str] ): __lowerCamelCase : Dict =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here __lowerCamelCase : List[str] =_long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) __lowerCamelCase : Dict =_long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) __lowerCamelCase : Optional[int] =prepare_led_inputs_dict(model.config , __lowercase , __lowercase ) __lowerCamelCase : Dict =model(**__lowercase )[0] __lowerCamelCase : Optional[int] =(1, 1024, 768) self.assertEqual(output.shape , __lowercase ) # change to expected output here __lowerCamelCase : Dict =tf.convert_to_tensor( [[2.3050, 2.8279, 0.6531], [-1.8457, -0.1455, -3.5661], [-1.0186, 0.4586, -2.2043]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1e-3 ) def __lowercase ( self :Tuple ): __lowerCamelCase : Any =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here __lowerCamelCase : Union[str, Any] =_long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) __lowerCamelCase : Any =_long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) __lowerCamelCase : Tuple =prepare_led_inputs_dict(model.config , __lowercase , __lowercase ) __lowerCamelCase : List[Any] =model(**__lowercase )[0] __lowerCamelCase : str =(1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __lowercase ) # change to expected output here __lowerCamelCase : List[str] =tf.convert_to_tensor( [[33.6507, 6.4572, 16.8089], [5.8739, -2.4238, 11.2902], [-3.2139, -4.3149, 4.2783]] , ) tf.debugging.assert_near(output[:, :3, :3] , __lowercase , atol=1e-3 , rtol=1e-3 )
179
1
'''simple docstring''' import math import sys def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: if number != int(UpperCAmelCase__ ): raise ValueError("""the value of input must be a natural number""" ) if number < 0: raise ValueError("""the value of input must not be a negative number""" ) if number == 0: return 1 A_ = [-1] * (number + 1) A_ = 0 for i in range(1, number + 1 ): A_ = sys.maxsize A_ = int(math.sqrt(UpperCAmelCase__ ) ) for j in range(1, root + 1 ): A_ = 1 + answers[i - (j**2)] A_ = min(UpperCAmelCase__, UpperCAmelCase__ ) A_ = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class A__ ( _snake_case ): lowercase = 42 class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("DownEncoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__=True , ) -> Union[str, Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) # down A_ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out A_ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = 2 * out_channels if double_z else out_channels A_ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = x A_ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: A_ = down_block(UpperCamelCase__ ) # middle A_ = self.mid_block(UpperCamelCase__ ) # post-process A_ = self.conv_norm_out(UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__=3 , UpperCamelCase__=3 , UpperCamelCase__=("UpDecoderBlock2D",) , UpperCamelCase__=(64,) , UpperCamelCase__=2 , UpperCamelCase__=32 , UpperCamelCase__="silu" , UpperCamelCase__="group" , ) -> List[Any]: '''simple docstring''' super().__init__() A_ = layers_per_block A_ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) A_ = None A_ = nn.ModuleList([] ) A_ = in_channels if norm_type == """spatial""" else None # mid A_ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up A_ = list(reversed(UpperCamelCase__ ) ) A_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): A_ = output_channel A_ = reversed_block_out_channels[i] A_ = i == len(UpperCamelCase__ ) - 1 A_ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) A_ = output_channel # out if norm_type == "spatial": A_ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: A_ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1e-6 ) A_ = nn.SiLU() A_ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) A_ = False def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=None ) -> Optional[Any]: '''simple docstring''' A_ = z A_ = self.conv_in(UpperCamelCase__ ) A_ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ ): def custom_forward(*UpperCamelCase__ ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle A_ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle A_ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) A_ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: A_ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: A_ = self.conv_norm_out(UpperCamelCase__ ) else: A_ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) A_ = self.conv_act(UpperCamelCase__ ) A_ = self.conv_out(UpperCamelCase__ ) return sample class A__ ( nn.Module ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__="random" , UpperCamelCase__=False , UpperCamelCase__=True ) -> str: '''simple docstring''' super().__init__() A_ = n_e A_ = vq_embed_dim A_ = beta A_ = legacy A_ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) A_ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) A_ = self.used.shape[0] A_ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": A_ = self.re_embed A_ = self.re_embed + 1 print( f'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' f'''Using {self.unknown_index} for unknown indices.''' ) else: A_ = n_e A_ = sane_index_shape def snake_case_ ( self , UpperCamelCase__ ) -> Optional[Any]: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) A_ = (inds[:, :, None] == used[None, None, ...]).long() A_ = match.argmax(-1 ) A_ = match.sum(2 ) < 1 if self.unknown_index == "random": A_ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: A_ = self.unknown_index return new.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' A_ = inds.shape assert len(UpperCamelCase__ ) > 1 A_ = inds.reshape(ishape[0] , -1 ) A_ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token A_ = 0 # simply set to zero A_ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ ) -> str: '''simple docstring''' # reshape z -> (batch, height, width, channel) and flatten A_ = z.permute(0 , 2 , 3 , 1 ).contiguous() A_ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z A_ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) A_ = self.embedding(UpperCamelCase__ ).view(z.shape ) A_ = None A_ = None # compute loss for embedding if not self.legacy: A_ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: A_ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients A_ = z + (z_q - z).detach() # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: A_ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis A_ = self.remap_to_used(UpperCamelCase__ ) A_ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: A_ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' # shape specifying (batch, height, width, channel) if self.remap is not None: A_ = indices.reshape(shape[0] , -1 ) # add batch axis A_ = self.unmap_to_all(UpperCamelCase__ ) A_ = indices.reshape(-1 ) # flatten again # get quantized latent vectors A_ = self.embedding(UpperCamelCase__ ) if shape is not None: A_ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape A_ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=False ) -> Dict: '''simple docstring''' A_ = parameters A_ , A_ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) A_ = torch.clamp(self.logvar , -30.0 , 20.0 ) A_ = deterministic A_ = torch.exp(0.5 * self.logvar ) A_ = torch.exp(self.logvar ) if self.deterministic: A_ = A_ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def snake_case_ ( self , UpperCamelCase__ = None ) -> torch.FloatTensor: '''simple docstring''' # make sure sample is on the same device as the parameters and has same dtype A_ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) A_ = self.mean + self.std * sample return x def snake_case_ ( self , UpperCamelCase__=None ) -> int: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__=[1, 2, 3] ) -> Optional[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) A_ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' return self.mean
667
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a_ :Union[str, Any] = logging.get_logger(__name__) a_ :Union[str, Any] = OrderedDict( [ ('audio-spectrogram-transformer', 'ASTFeatureExtractor'), ('beit', 'BeitFeatureExtractor'), ('chinese_clip', 'ChineseCLIPFeatureExtractor'), ('clap', 'ClapFeatureExtractor'), ('clip', 'CLIPFeatureExtractor'), ('clipseg', 'ViTFeatureExtractor'), ('conditional_detr', 'ConditionalDetrFeatureExtractor'), ('convnext', 'ConvNextFeatureExtractor'), ('cvt', 'ConvNextFeatureExtractor'), ('data2vec-audio', 'Wav2Vec2FeatureExtractor'), ('data2vec-vision', 'BeitFeatureExtractor'), ('deformable_detr', 'DeformableDetrFeatureExtractor'), ('deit', 'DeiTFeatureExtractor'), ('detr', 'DetrFeatureExtractor'), ('dinat', 'ViTFeatureExtractor'), ('donut-swin', 'DonutFeatureExtractor'), ('dpt', 'DPTFeatureExtractor'), ('encodec', 'EncodecFeatureExtractor'), ('flava', 'FlavaFeatureExtractor'), ('glpn', 'GLPNFeatureExtractor'), ('groupvit', 'CLIPFeatureExtractor'), ('hubert', 'Wav2Vec2FeatureExtractor'), ('imagegpt', 'ImageGPTFeatureExtractor'), ('layoutlmv2', 'LayoutLMv2FeatureExtractor'), ('layoutlmv3', 'LayoutLMv3FeatureExtractor'), ('levit', 'LevitFeatureExtractor'), ('maskformer', 'MaskFormerFeatureExtractor'), ('mctct', 'MCTCTFeatureExtractor'), ('mobilenet_v1', 'MobileNetV1FeatureExtractor'), ('mobilenet_v2', 'MobileNetV2FeatureExtractor'), ('mobilevit', 'MobileViTFeatureExtractor'), ('nat', 'ViTFeatureExtractor'), ('owlvit', 'OwlViTFeatureExtractor'), ('perceiver', 'PerceiverFeatureExtractor'), ('poolformer', 'PoolFormerFeatureExtractor'), ('regnet', 'ConvNextFeatureExtractor'), ('resnet', 'ConvNextFeatureExtractor'), ('segformer', 'SegformerFeatureExtractor'), ('sew', 'Wav2Vec2FeatureExtractor'), ('sew-d', 'Wav2Vec2FeatureExtractor'), ('speech_to_text', 'Speech2TextFeatureExtractor'), ('speecht5', 'SpeechT5FeatureExtractor'), ('swiftformer', 'ViTFeatureExtractor'), ('swin', 'ViTFeatureExtractor'), ('swinv2', 'ViTFeatureExtractor'), ('table-transformer', 'DetrFeatureExtractor'), ('timesformer', 'VideoMAEFeatureExtractor'), ('tvlt', 'TvltFeatureExtractor'), ('unispeech', 'Wav2Vec2FeatureExtractor'), ('unispeech-sat', 'Wav2Vec2FeatureExtractor'), ('van', 'ConvNextFeatureExtractor'), ('videomae', 'VideoMAEFeatureExtractor'), ('vilt', 'ViltFeatureExtractor'), ('vit', 'ViTFeatureExtractor'), ('vit_mae', 'ViTFeatureExtractor'), ('vit_msn', 'ViTFeatureExtractor'), ('wav2vec2', 'Wav2Vec2FeatureExtractor'), ('wav2vec2-conformer', 'Wav2Vec2FeatureExtractor'), ('wavlm', 'Wav2Vec2FeatureExtractor'), ('whisper', 'WhisperFeatureExtractor'), ('xclip', 'CLIPFeatureExtractor'), ('yolos', 'YolosFeatureExtractor'), ] ) a_ :int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def a ( A__ ) -> Dict: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: SCREAMING_SNAKE_CASE__ : Union[str, Any] = model_type_to_module_name(A__ ) SCREAMING_SNAKE_CASE__ : str = importlib.import_module(f""".{module_name}""" , '''transformers.models''' ) try: return getattr(A__ , A__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(A__ , '''__name__''' , A__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. SCREAMING_SNAKE_CASE__ : List[str] = importlib.import_module('''transformers''' ) if hasattr(A__ , A__ ): return getattr(A__ , A__ ) return None def a ( A__ , A__ = None , A__ = False , A__ = False , A__ = None , A__ = None , A__ = None , A__ = False , **A__ , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = get_file_from_repo( A__ , A__ , cache_dir=A__ , force_download=A__ , resume_download=A__ , proxies=A__ , use_auth_token=A__ , revision=A__ , local_files_only=A__ , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(A__ , encoding='''utf-8''' ) as reader: return json.load(A__ ) class lowercase : def __init__( self : Any ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def lowercase__ ( cls : List[str] , _lowercase : Optional[int] , **_lowercase : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = kwargs.pop('''config''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = kwargs.pop('''trust_remote_code''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = FeatureExtractionMixin.get_feature_extractor_dict(_lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : Any = config_dict.get('''feature_extractor_type''' , _lowercase ) SCREAMING_SNAKE_CASE__ : Any = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): SCREAMING_SNAKE_CASE__ : List[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[int] = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.feature_extractor_type`` SCREAMING_SNAKE_CASE__ : List[str] = getattr(_lowercase , '''feature_extractor_type''' , _lowercase ) if hasattr(_lowercase , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: SCREAMING_SNAKE_CASE__ : Dict = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: SCREAMING_SNAKE_CASE__ : Any = feature_extractor_class_from_name(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = feature_extractor_auto_map is not None SCREAMING_SNAKE_CASE__ : List[Any] = feature_extractor_class is not None or type(_lowercase ) in FEATURE_EXTRACTOR_MAPPING SCREAMING_SNAKE_CASE__ : Dict = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: SCREAMING_SNAKE_CASE__ : List[Any] = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = kwargs.pop('''code_revision''' , _lowercase ) if os.path.isdir(_lowercase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_lowercase , **_lowercase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_lowercase ) in FEATURE_EXTRACTOR_MAPPING: SCREAMING_SNAKE_CASE__ : Tuple = FEATURE_EXTRACTOR_MAPPING[type(_lowercase )] return feature_extractor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowercase__ ( _lowercase : Dict , _lowercase : Optional[Any] ): FEATURE_EXTRACTOR_MAPPING.register(_lowercase , _lowercase )
35
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available a_ :List[Any] = logging.getLogger(__name__) @dataclass class lowercase : lowerCamelCase : str lowerCamelCase : List[str] lowerCamelCase : Optional[List[str]] @dataclass class lowercase : lowerCamelCase : List[int] lowerCamelCase : List[int] lowerCamelCase : Optional[List[int]] = None lowerCamelCase : Optional[List[int]] = None class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = '''train''' lowerCamelCase : Tuple = '''dev''' lowerCamelCase : Any = '''test''' class lowercase : @staticmethod def lowercase__ ( _lowercase : Any , _lowercase : Union[Split, str] ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : str ): raise NotImplementedError @staticmethod def lowercase__ ( _lowercase : List[InputExample] , _lowercase : List[str] , _lowercase : int , _lowercase : PreTrainedTokenizer , _lowercase : int=False , _lowercase : Optional[Any]="[CLS]" , _lowercase : Tuple=1 , _lowercase : Optional[Any]="[SEP]" , _lowercase : Tuple=False , _lowercase : Optional[Any]=False , _lowercase : List[Any]=0 , _lowercase : Optional[int]=0 , _lowercase : Optional[Any]=-1_00 , _lowercase : Tuple=0 , _lowercase : Union[str, Any]=True , ): SCREAMING_SNAKE_CASE__ : Tuple = {label: i for i, label in enumerate(_lowercase )} SCREAMING_SNAKE_CASE__ : Dict = [] for ex_index, example in enumerate(_lowercase ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' , _lowercase , len(_lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for word, label in zip(example.words , example.labels ): SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize(_lowercase ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(_lowercase ) > 0: tokens.extend(_lowercase ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(_lowercase ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.num_special_tokens_to_add() if len(_lowercase ) > max_seq_length - special_tokens_count: SCREAMING_SNAKE_CASE__ : List[str] = tokens[: (max_seq_length - special_tokens_count)] SCREAMING_SNAKE_CASE__ : Any = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] SCREAMING_SNAKE_CASE__ : Optional[int] = [sequence_a_segment_id] * len(_lowercase ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: SCREAMING_SNAKE_CASE__ : Optional[Any] = [cls_token] + tokens SCREAMING_SNAKE_CASE__ : Tuple = [pad_token_label_id] + label_ids SCREAMING_SNAKE_CASE__ : Tuple = [cls_token_segment_id] + segment_ids SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. SCREAMING_SNAKE_CASE__ : str = [1 if mask_padding_with_zero else 0] * len(_lowercase ) # Zero-pad up to the sequence length. SCREAMING_SNAKE_CASE__ : List[str] = max_seq_length - len(_lowercase ) if pad_on_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ([pad_token] * padding_length) + input_ids SCREAMING_SNAKE_CASE__ : str = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask SCREAMING_SNAKE_CASE__ : Tuple = ([pad_token_segment_id] * padding_length) + segment_ids SCREAMING_SNAKE_CASE__ : int = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length assert len(_lowercase ) == max_seq_length if ex_index < 5: logger.info('''*** Example ***''' ) logger.info('''guid: %s''' , example.guid ) logger.info('''tokens: %s''' , ''' '''.join([str(_lowercase ) for x in tokens] ) ) logger.info('''input_ids: %s''' , ''' '''.join([str(_lowercase ) for x in input_ids] ) ) logger.info('''input_mask: %s''' , ''' '''.join([str(_lowercase ) for x in input_mask] ) ) logger.info('''segment_ids: %s''' , ''' '''.join([str(_lowercase ) for x in segment_ids] ) ) logger.info('''label_ids: %s''' , ''' '''.join([str(_lowercase ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : List[Any] = None features.append( InputFeatures( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , label_ids=_lowercase ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowercase ( _UpperCAmelCase ): lowerCamelCase : List[InputFeatures] lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : Optional[int]=False , _lowercase : Split = Split.train , ): # Load data features from cache or dataset file SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(_lowercase ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE__ : Optional[int] = cached_features_file + '''.lock''' with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) SCREAMING_SNAKE_CASE__ : Any = torch.load(_lowercase ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) SCREAMING_SNAKE_CASE__ : str = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : Any = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"""Saving features into cached file {cached_features_file}""" ) torch.save(self.features , _lowercase ) def __len__( self : Tuple ): return len(self.features ) def __getitem__( self : Optional[int] , _lowercase : List[str] ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowercase : lowerCamelCase : List[InputFeatures] lowerCamelCase : int = -100 def __init__( self : int , _lowercase : TokenClassificationTask , _lowercase : str , _lowercase : PreTrainedTokenizer , _lowercase : List[str] , _lowercase : str , _lowercase : Optional[int] = None , _lowercase : List[str]=False , _lowercase : Split = Split.train , ): SCREAMING_SNAKE_CASE__ : Optional[int] = token_classification_task.read_examples_from_file(_lowercase , _lowercase ) # TODO clean up all this to leverage built-in features of tokenizers SCREAMING_SNAKE_CASE__ : List[str] = token_classification_task.convert_examples_to_features( _lowercase , _lowercase , _lowercase , _lowercase , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=_lowercase , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , ( {'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: SCREAMING_SNAKE_CASE__ : int = tf.data.Dataset.from_generator( _lowercase , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , ( { '''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] ), '''token_type_ids''': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self : Dict ): return len(self.features ) def __getitem__( self : Optional[Any] , _lowercase : Union[str, Any] ): return self.features[i]
35
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __A ( A ): '''simple docstring''' __lowerCamelCase : List[Any] = 'lilt' def __init__(self , A=30_522 , A=768 , A=12 , A=12 , A=3_072 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=2 , A=0.02 , A=1E-12 , A=0 , A="absolute" , A=None , A=4 , A=1_024 , **A , ) -> str: """simple docstring""" super().__init__(pad_token_id=A , **A ) _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_act _a = intermediate_size _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = initializer_range _a = layer_norm_eps _a = position_embedding_type _a = classifier_dropout _a = channel_shrink_ratio _a = max_ad_position_embeddings
708
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 lowercase_ = get_tests_dir("fixtures") class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> List[Any]: """simple docstring""" _a = mock.Mock() _a = 500 _a = {} _a = HTTPError _a = {} # Download this model to make sure it's in the cache. _a = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=A ) as mock_head: _a = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ) -> str: """simple docstring""" _a = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def a__ (self ) -> Dict: """simple docstring""" with self.assertRaises(A ): # config is in subfolder, the following should not work without specifying the subfolder _a = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) _a = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(A ) @is_staging_test class __A ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ) -> Any: """simple docstring""" _a = TOKEN HfFolder.save_token(A ) @classmethod def a__ (cls ) -> Union[str, Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def a__ (self ) -> str: """simple docstring""" _a = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id='''test-image-processor''' , push_to_hub=A , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained(f'''{USER}/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def a__ (self ) -> List[Any]: """simple docstring""" _a = ViTImageProcessor.from_pretrained(A ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=A , use_auth_token=self._token ) _a = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A , getattr(A , A ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" CustomImageProcessor.register_for_auto_class() _a = CustomImageProcessor.from_pretrained(A ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) _a = AutoImageProcessor.from_pretrained( f'''{USER}/test-dynamic-image-processor''' , trust_remote_code=A ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
352
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter UpperCamelCase_ = True except ImportError: UpperCamelCase_ = False UpperCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Dict: return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): @staticmethod def A__ (UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =parser.add_parser('''add-new-model''') add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''') add_new_model_parser.add_argument('''--testing_file''' , type=UpperCAmelCase , help='''Configuration file on which to run.''') add_new_model_parser.add_argument( '''--path''' , type=UpperCAmelCase , help='''Path to cookiecutter. Should only be used for testing purposes.''') add_new_model_parser.set_defaults(func=UpperCAmelCase) def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , *UpperCAmelCase): '''simple docstring''' __UpperCAmelCase =testing __UpperCAmelCase =testing_file __UpperCAmelCase =path def A__ (self): '''simple docstring''' warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''') if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''') # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory __UpperCAmelCase =[directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:2_2]] if len(UpperCAmelCase) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''') __UpperCAmelCase =( Path(UpperCAmelCase).parent.parent.parent.parent if self._path is None else Path(self._path).parent.parent ) __UpperCAmelCase =path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(UpperCAmelCase)) else: with open(self._testing_file , '''r''') as configuration_file: __UpperCAmelCase =json.load(UpperCAmelCase) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path) , no_input=UpperCAmelCase , extra_context=UpperCAmelCase , ) __UpperCAmelCase =[directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:2_2]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''') as configuration_file: __UpperCAmelCase =json.load(UpperCAmelCase) __UpperCAmelCase =configuration['''lowercase_modelname'''] __UpperCAmelCase =configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""") __UpperCAmelCase ='''PyTorch''' in generate_tensorflow_pytorch_and_flax __UpperCAmelCase ='''TensorFlow''' in generate_tensorflow_pytorch_and_flax __UpperCAmelCase ='''Flax''' in generate_tensorflow_pytorch_and_flax __UpperCAmelCase =f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=UpperCAmelCase) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w'''): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(UpperCAmelCase): with open(UpperCAmelCase , '''r''') as f: __UpperCAmelCase =f.readlines() with open(UpperCAmelCase , '''w''') as f: for line in lines: if "# Copied from transformers." not in line: f.write(UpperCAmelCase) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""") shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""") os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""") if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""") shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""") os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""") if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""") shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""") os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""") shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase): # Create temp file __UpperCAmelCase , __UpperCAmelCase =mkstemp() __UpperCAmelCase =False with fdopen(UpperCAmelCase , '''w''') as new_file: with open(UpperCAmelCase) as old_file: for line in old_file: new_file.write(UpperCAmelCase) if line_to_copy_below in line: __UpperCAmelCase =True for line_to_copy in lines_to_copy: new_file.write(UpperCAmelCase) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""") # Copy the file permissions from the old file to the new file copymode(UpperCAmelCase , UpperCAmelCase) # Remove original file remove(UpperCAmelCase) # Move new file move(UpperCAmelCase , UpperCAmelCase) def skip_units(UpperCAmelCase): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(UpperCAmelCase): with open(UpperCAmelCase) as datafile: __UpperCAmelCase =[] __UpperCAmelCase =False __UpperCAmelCase =False for line in datafile: if "# To replace in: " in line and "##" not in line: __UpperCAmelCase =line.split('''"''')[1] __UpperCAmelCase =skip_units(UpperCAmelCase) elif "# Below: " in line and "##" not in line: __UpperCAmelCase =line.split('''"''')[1] __UpperCAmelCase =skip_units(UpperCAmelCase) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase) __UpperCAmelCase =[] elif "# Replace with" in line and "##" not in line: __UpperCAmelCase =[] elif "##" not in line: lines_to_copy.append(UpperCAmelCase) remove(UpperCAmelCase) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""") os.rmdir(UpperCAmelCase)
132
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: __UpperCAmelCase =multiprocessing.Manager() __UpperCAmelCase =manager.list() __UpperCAmelCase =multiprocessing.Process(target=snake_case__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __UpperCAmelCase =shutil.rmtree __UpperCAmelCase =os.rmdir __UpperCAmelCase =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __UpperCAmelCase ={} with swallow_io(): with time_limit(snake_case__ ): exec(snake_case__ , snake_case__ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. __UpperCAmelCase =rmtree __UpperCAmelCase =rmdir __UpperCAmelCase =chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Tuple: def signal_handler(snake_case__ , snake_case__ ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , snake_case__ ) signal.signal(signal.SIGALRM , snake_case__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> List[Any]: __UpperCAmelCase =WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case__ ): with contextlib.redirect_stderr(snake_case__ ): with redirect_stdin(snake_case__ ): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> Dict: with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case__ ): yield dirname class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): pass class _SCREAMING_SNAKE_CASE ( io.StringIO ): def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return False class _SCREAMING_SNAKE_CASE ( contextlib._RedirectStream ): # type: ignore a_ : Dict = '''stdin''' @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case__ ) -> List[str]: if root == ".": yield return __UpperCAmelCase =os.getcwd() os.chdir(snake_case__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__=None ) -> Tuple: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __UpperCAmelCase =None __UpperCAmelCase =None import os __UpperCAmelCase ='''1''' __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None import shutil __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None import subprocess __UpperCAmelCase =None # type: ignore __UpperCAmelCase =None import sys __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None
132
1
def a ( snake_case__: Union[str, Any] , snake_case__: Optional[Any] , snake_case__: Optional[Any] , snake_case__: Tuple ): '''simple docstring''' if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def a ( snake_case__: int , snake_case__: int , snake_case__: Any ): '''simple docstring''' if curr_ind == len(lowercase_ ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(lowercase_ ) ): if valid_connection(lowercase_ , lowercase_ , lowercase_ , lowercase_ ): # Insert current vertex into path as next transition lowercase_ = next_ver # Validate created path if util_hamilton_cycle(lowercase_ , lowercase_ , curr_ind + 1 ): return True # Backtrack lowercase_ = -1 return False def a ( snake_case__: Union[str, Any] , snake_case__: Optional[Any] = 0 ): '''simple docstring''' lowercase_ = [-1] * (len(lowercase_ ) + 1) # initialize start and end of path with starting index lowercase_ = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(lowercase_ , lowercase_ , 1 ) else []
707
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowercase__: """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=1_3 , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : int=2_4 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_6 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=True , SCREAMING_SNAKE_CASE_ : Tuple=True , SCREAMING_SNAKE_CASE_ : List[str]=3_2 , SCREAMING_SNAKE_CASE_ : str=5 , SCREAMING_SNAKE_CASE_ : Any=4 , SCREAMING_SNAKE_CASE_ : Optional[int]=3_7 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Optional[int]=1_0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , ) -> Union[str, Any]: lowercase_ = parent lowercase_ = batch_size lowercase_ = patch_size lowercase_ = max_length lowercase_ = num_mel_bins lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = scope lowercase_ = frequency_stride lowercase_ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase_ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 lowercase_ = (self.max_length - self.patch_size) // self.time_stride + 1 lowercase_ = frequency_out_dimension * time_out_dimension lowercase_ = num_patches + 2 def _lowercase ( self : Optional[Any] ) -> List[Any]: lowercase_ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = self.get_config() return config, input_values, labels def _lowercase ( self : List[Any] ) -> Any: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> str: lowercase_ = ASTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[int] ) -> Dict: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {'''input_values''': input_values} return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Optional[int] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) a :List[Any] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) a :Optional[Any] = False a :str = False a :Optional[int] = False a :int = False def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = ASTModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : List[str] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def _lowercase ( self : Tuple ) -> str: pass def _lowercase ( self : List[str] ) -> Union[str, Any]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def _lowercase ( self : int ) -> List[str]: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ['''input_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : Union[str, Any] ) -> Dict: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = ASTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def a ( ): '''simple docstring''' lowercase_ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) lowercase_ , lowercase_ = torchaudio.load(snake_case__ ) return audio, sampling_rate @require_torch @require_torchaudio class lowercase__( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Tuple ) -> Any: return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def _lowercase ( self : List[str] ) -> Any: lowercase_ = self.default_feature_extractor lowercase_ = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.default_feature_extractor lowercase_ , lowercase_ = prepare_audio() lowercase_ = audio.squeeze().numpy() lowercase_ = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowercase_ = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits lowercase_ = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
409
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
201
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class lowerCamelCase ( __lowerCamelCase ): UpperCamelCase_ : Union[str, Any] = 'mgp-str' def __init__( self :Union[str, Any] , lowercase :Union[str, Any]=[3_2, 1_2_8] , lowercase :Tuple=4 , lowercase :Optional[int]=3 , lowercase :Union[str, Any]=2_7 , lowercase :List[str]=3_8 , lowercase :Optional[Any]=5_0_2_5_7 , lowercase :str=3_0_5_2_2 , lowercase :Dict=7_6_8 , lowercase :List[Any]=1_2 , lowercase :List[str]=1_2 , lowercase :Optional[Any]=4.0 , lowercase :Optional[Any]=True , lowercase :str=False , lowercase :Optional[Any]=1e-5 , lowercase :List[str]=0.0 , lowercase :List[Any]=0.0 , lowercase :Optional[int]=0.0 , lowercase :Dict=False , lowercase :Optional[Any]=0.02 , **lowercase :Optional[Any] , ) -> Dict: """simple docstring""" super().__init__(**lowercase ) SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = max_token_length SCREAMING_SNAKE_CASE = num_character_labels SCREAMING_SNAKE_CASE = num_bpe_labels SCREAMING_SNAKE_CASE = num_wordpiece_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = distilled SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = drop_rate SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = attn_drop_rate SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = output_aa_attentions SCREAMING_SNAKE_CASE = initializer_range
201
1
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase_ ( lowerCamelCase : Optional[int] , lowerCamelCase : Tuple , lowerCamelCase : List[Any] , lowerCamelCase : Tuple ) -> Dict: """simple docstring""" __magic_name__ : Optional[Any] = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] __magic_name__ : str = { '''wmt16-en-de-dist-12-1''': [2_8.3, 2_7.5_2], '''wmt16-en-de-dist-6-1''': [2_7.4, 2_7.1_1], '''wmt16-en-de-12-1''': [2_6.9, 2_5.7_5], } __magic_name__ : Union[str, Any] = f"""{src_lang}-{tgt_lang}""" __magic_name__ : Dict = f""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=lowerCamelCase , exist_ok=lowerCamelCase ) __magic_name__ : int = os.path.join(lowerCamelCase , '''README.md''' ) print(f"""Generating {path}""" ) with open(lowerCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(lowerCamelCase ) # make sure we are under the root of the project A = Path(__file__).resolve().parent.parent.parent A = repo_dir / """model_cards""" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: A = model_cards_dir / """allenai""" / model_name write_model_card(model_card_dir, src_lang="""en""", tgt_lang="""de""", model_name=model_name)
147
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self : Dict , snake_case : Path , snake_case : Union[str, None] = None , snake_case : Union[List[str], None] = None , snake_case : Union[str, List[str], None] = None , snake_case : bool = True , ) -> int: '''simple docstring''' __magic_name__ : List[str] = [file for file in os.listdir(snake_case ) if os.path.isfile(os.path.join(snake_case , snake_case ) )] if identifier is not None: __magic_name__ : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case , snake_case ): for n_ in n_identifier: __magic_name__ : int = [file for file in files if n_ not in file] else: __magic_name__ : Tuple = [file for file in files if n_identifier not in file] __magic_name__ : Tuple = ignore_files or [] ignore_files.append('''__init__.py''' ) __magic_name__ : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , snake_case ) if only_modules: __magic_name__ : List[Any] = file.split('''.''' )[0] try: __magic_name__ : Dict = getattr(snake_case , snake_case ) __magic_name__ : List[str] = doctest.DocTestSuite(snake_case ) __magic_name__ : Dict = unittest.TextTestRunner().run(snake_case ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: __magic_name__ : Tuple = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _UpperCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = Path('''src/transformers''' ) __magic_name__ : str = '''modeling''' __magic_name__ : str = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(snake_case , identifier=snake_case , ignore_files=snake_case ) def _UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Dict = Path('''src/transformers''' ) __magic_name__ : Union[str, Any] = '''tokenization''' self.analyze_directory(snake_case , identifier=snake_case ) def _UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' __magic_name__ : Any = Path('''src/transformers''' ) __magic_name__ : int = '''configuration''' self.analyze_directory(snake_case , identifier=snake_case ) def _UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' __magic_name__ : List[str] = Path('''src/transformers''' ) __magic_name__ : str = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(snake_case , n_identifier=snake_case ) def _UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Any = Path('''docs/source''' ) __magic_name__ : str = ['''favicon.ico'''] self.analyze_directory(snake_case , ignore_files=snake_case , only_modules=snake_case )
147
1
'''simple docstring''' from ... import PretrainedConfig __snake_case : int = { '''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''', } class lowercase_ ( __lowerCamelCase ): a_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP a_ = "nezha" def __init__( self , UpperCamelCase__=2_1_1_2_8 , UpperCamelCase__=7_6_8 , UpperCamelCase__=1_2 , UpperCamelCase__=1_2 , UpperCamelCase__=3_0_7_2 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=5_1_2 , UpperCamelCase__=6_4 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-12 , UpperCamelCase__=0.1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , **UpperCamelCase__ , ) -> str: """simple docstring""" super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = max_relative_position UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = classifier_dropout UpperCAmelCase_ = use_cache
660
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowerCamelCase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowerCamelCase_ = logging.get_logger(__name__) class __a ( __lowerCamelCase ): """simple docstring""" _A : Optional[int] = "maskformer" _A : List[str] = {"hidden_size": "mask_feature_size"} _A : Tuple = ["resnet", "swin"] _A : Optional[Any] = ["detr"] def __init__( self : List[str] ,_UpperCamelCase : int = 2_5_6 ,_UpperCamelCase : int = 2_5_6 ,_UpperCamelCase : float = 0.1 ,_UpperCamelCase : bool = False ,_UpperCamelCase : Optional[Dict] = None ,_UpperCamelCase : Optional[Dict] = None ,_UpperCamelCase : float = 0.02 ,_UpperCamelCase : float = 1.0 ,_UpperCamelCase : float = 1.0 ,_UpperCamelCase : float = 1.0 ,_UpperCamelCase : float = 20.0 ,_UpperCamelCase : Optional[bool] = None ,**_UpperCamelCase : str ,) -> Tuple: '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k SCREAMING_SNAKE_CASE__ =SwinConfig( image_size=3_8_4 ,in_channels=3 ,patch_size=4 ,embed_dim=1_2_8 ,depths=[2, 2, 1_8, 2] ,num_heads=[4, 8, 1_6, 3_2] ,window_size=1_2 ,drop_path_rate=0.3 ,out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ,) if isinstance(_UpperCamelCase ,_UpperCamelCase ): SCREAMING_SNAKE_CASE__ =backbone_config.pop("""model_type""" ) SCREAMING_SNAKE_CASE__ =CONFIG_MAPPING[backbone_model_type] SCREAMING_SNAKE_CASE__ =config_class.from_dict(_UpperCamelCase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {",".join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 SCREAMING_SNAKE_CASE__ =DetrConfig() else: # verify that the decoder is supported SCREAMING_SNAKE_CASE__ =( decoder_config.pop("""model_type""" ) if isinstance(_UpperCamelCase ,_UpperCamelCase ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {",".join(self.decoders_supported )}""" ) if isinstance(_UpperCamelCase ,_UpperCamelCase ): SCREAMING_SNAKE_CASE__ =CONFIG_MAPPING[decoder_type] SCREAMING_SNAKE_CASE__ =config_class.from_dict(_UpperCamelCase ) SCREAMING_SNAKE_CASE__ =backbone_config SCREAMING_SNAKE_CASE__ =decoder_config # main feature dimension for the model SCREAMING_SNAKE_CASE__ =fpn_feature_size SCREAMING_SNAKE_CASE__ =mask_feature_size # initializer SCREAMING_SNAKE_CASE__ =init_std SCREAMING_SNAKE_CASE__ =init_xavier_std # Hungarian matcher && loss SCREAMING_SNAKE_CASE__ =cross_entropy_weight SCREAMING_SNAKE_CASE__ =dice_weight SCREAMING_SNAKE_CASE__ =mask_weight SCREAMING_SNAKE_CASE__ =use_auxiliary_loss SCREAMING_SNAKE_CASE__ =no_object_weight SCREAMING_SNAKE_CASE__ =output_auxiliary_logits SCREAMING_SNAKE_CASE__ =self.decoder_config.encoder_attention_heads SCREAMING_SNAKE_CASE__ =self.decoder_config.num_hidden_layers super().__init__(**_UpperCamelCase ) @classmethod def __A ( cls : int ,_UpperCamelCase : PretrainedConfig ,_UpperCamelCase : PretrainedConfig ,**_UpperCamelCase : Any ) -> Union[str, Any]: '''simple docstring''' return cls( backbone_config=_UpperCamelCase ,decoder_config=_UpperCamelCase ,**_UpperCamelCase ,) def __A ( self : int ) -> Dict[str, any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ =copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE__ =self.backbone_config.to_dict() SCREAMING_SNAKE_CASE__ =self.decoder_config.to_dict() SCREAMING_SNAKE_CASE__ =self.__class__.model_type return output
151
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __magic_name__( lowerCamelCase): __lowerCAmelCase = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:]) class a__ ( __A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = StableDiffusionLatentUpscalePipeline __UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { 'height', 'width', 'cross_attention_kwargs', 'negative_prompt_embeds', 'prompt_embeds', } __UpperCamelCase : str = PipelineTesterMixin.required_optional_params - {'num_images_per_prompt'} __UpperCamelCase : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCamelCase : Tuple = frozenset([] ) __UpperCamelCase : str = True @property def _snake_case (self ): __lowerCAmelCase = 1 __lowerCAmelCase = 4 __lowerCAmelCase = (16, 16) __lowerCAmelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowercase ) return image def _snake_case (self ): torch.manual_seed(0 ) __lowerCAmelCase = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=__lowercase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=1_60 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=__lowercase , only_cross_attention=__lowercase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) __lowerCAmelCase = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) __lowerCAmelCase = EulerDiscreteScheduler(prediction_type='''sample''' ) __lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''quick_gelu''' , projection_dim=5_12 , ) __lowerCAmelCase = CLIPTextModel(__lowercase ) __lowerCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __lowerCAmelCase = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _snake_case (self , __lowercase , __lowercase=0 ): if str(__lowercase ).startswith('''mps''' ): __lowerCAmelCase = torch.manual_seed(__lowercase ) else: __lowerCAmelCase = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) __lowerCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _snake_case (self ): __lowerCAmelCase = '''cpu''' __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = pipe(**__lowercase ).images __lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_56, 2_56, 3) ) __lowerCAmelCase = np.array( [0.4_7_2_2_2_4_1_2, 0.4_1_9_2_1_6_3_3, 0.4_4_7_1_7_4_3_4, 0.4_6_8_7_4_1_9_2, 0.4_2_5_8_8_2_5_8, 0.4_6_1_5_0_7_2_6, 0.4_6_7_7_5_3_4, 0.4_5_5_8_3_8_3_2, 0.4_8_5_7_9_0_5_5] ) __lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowercase , 1e-3 ) def _snake_case (self ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def _snake_case (self ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def _snake_case (self ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def _snake_case (self ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def _snake_case (self ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def _snake_case (self ): super().test_save_load_local(expected_max_difference=3e-3 ) def _snake_case (self ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def _snake_case (self ): __lowerCAmelCase = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) __lowerCAmelCase = self.get_dummy_inputs(__lowercase ) __lowerCAmelCase = 2 __lowerCAmelCase = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue __lowerCAmelCase = getattr(__lowercase , scheduler_enum.name ) __lowerCAmelCase = scheduler_cls.from_config(pipe.scheduler.config ) __lowerCAmelCase = pipe(**__lowercase )[0] outputs.append(__lowercase ) assert check_same_shape(__lowercase ) @require_torch_gpu @slow class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case (self ): __lowerCAmelCase = torch.manual_seed(33 ) __lowerCAmelCase = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) __lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) __lowerCAmelCase = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' __lowerCAmelCase = pipe(__lowercase , generator=__lowercase , output_type='''latent''' ).images __lowerCAmelCase = upscaler( prompt=__lowercase , image=__lowercase , num_inference_steps=20 , guidance_scale=0 , generator=__lowercase , output_type='''np''' , ).images[0] __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def _snake_case (self ): __lowerCAmelCase = torch.manual_seed(33 ) __lowerCAmelCase = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) __lowerCAmelCase = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' __lowerCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) __lowerCAmelCase = upscaler( prompt=__lowercase , image=__lowercase , num_inference_steps=20 , guidance_scale=0 , generator=__lowercase , output_type='''np''' , ).images[0] __lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5e-2
474
'''simple docstring''' import requests from bsa import BeautifulSoup def __magic_name__( lowerCamelCase, lowerCamelCase): __lowerCAmelCase = BeautifulSoup(requests.get(lowerCamelCase, params=lowerCamelCase).content, '''html.parser''') __lowerCAmelCase = soup.find('''div''', attrs={'''class''': '''gs_ri'''}) __lowerCAmelCase = div.find('''div''', attrs={'''class''': '''gs_fl'''}).find_all('''a''') return anchors[2].get_text() if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = { """title""": ( """Precisely geometry controlled microsupercapacitors for ultrahigh areal """ """capacitance, volumetric capacitance, and energy density""" ), """journal""": """Chem. Mater.""", """volume""": 3_0, """pages""": """3979-3990""", """year""": 2_0_1_8, """hl""": """en""", } print(get_citation("""https://scholar.google.com/scholar_lookup""", params=params))
474
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _UpperCamelCase ( A , A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = StableDiffusionXLImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowerCamelCase ( self : Optional[int]): '''simple docstring''' torch.manual_seed(0) __lowercase =UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=_lowerCAmelCase , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) __lowercase =EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0) __lowercase =AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0) __lowercase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=3_2 , ) __lowercase =CLIPTextModel(_lowerCAmelCase) __lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=_lowerCAmelCase) __lowercase =CLIPTextModelWithProjection(_lowerCAmelCase) __lowercase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=_lowerCAmelCase) __lowercase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __lowerCamelCase ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any=0): '''simple docstring''' __lowercase =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_lowerCAmelCase)).to(_lowerCAmelCase) __lowercase =image / 2 + 0.5 if str(_lowerCAmelCase).startswith('mps'): __lowercase =torch.manual_seed(_lowerCAmelCase) else: __lowercase =torch.Generator(device=_lowerCAmelCase).manual_seed(_lowerCAmelCase) __lowercase ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase ='cpu' # ensure determinism for the device-dependent torch.Generator __lowercase =self.get_dummy_components() __lowercase =StableDiffusionXLImgaImgPipeline(**_lowerCAmelCase) __lowercase =sd_pipe.to(_lowerCAmelCase) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase =self.get_dummy_inputs(_lowerCAmelCase) __lowercase =sd_pipe(**_lowerCAmelCase).images __lowercase =image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __lowercase =np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __lowerCamelCase ( self : Optional[Any]): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3e-3) def __lowerCamelCase ( self : List[Any]): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3) def __lowerCamelCase ( self : int): '''simple docstring''' pass def __lowerCamelCase ( self : List[str]): '''simple docstring''' __lowercase =self.get_dummy_components() __lowercase =StableDiffusionXLImgaImgPipeline(**_lowerCAmelCase) __lowercase =sd_pipe.to(_lowerCAmelCase) __lowercase =sd_pipe.to(_lowerCAmelCase) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase) # forward without prompt embeds __lowercase =self.get_dummy_inputs(_lowerCAmelCase) __lowercase =3 * ['this is a negative prompt'] __lowercase =negative_prompt __lowercase =3 * [inputs['prompt']] __lowercase =sd_pipe(**_lowerCAmelCase) __lowercase =output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowercase =self.get_dummy_inputs(_lowerCAmelCase) __lowercase =3 * ['this is a negative prompt'] __lowercase =3 * [inputs.pop('prompt')] ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) =sd_pipe.encode_prompt(_lowerCAmelCase , negative_prompt=_lowerCAmelCase) __lowercase =sd_pipe( **_lowerCAmelCase , prompt_embeds=_lowerCAmelCase , negative_prompt_embeds=_lowerCAmelCase , pooled_prompt_embeds=_lowerCAmelCase , negative_pooled_prompt_embeds=_lowerCAmelCase , ) __lowercase =output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1e-4 @slow @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCamelCase ( self : int): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self : List[str] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple="cpu" , _lowerCAmelCase : Any=torch.floataa , _lowerCAmelCase : List[Any]=0): '''simple docstring''' __lowercase =torch.Generator(device=_lowerCAmelCase).manual_seed(_lowerCAmelCase) __lowercase =np.random.RandomState(_lowerCAmelCase).standard_normal((1, 4, 6_4, 6_4)) __lowercase =torch.from_numpy(_lowerCAmelCase).to(device=_lowerCAmelCase , dtype=_lowerCAmelCase) __lowercase ={ 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __lowerCamelCase ( self : Tuple): '''simple docstring''' __lowercase =DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base') pipe.to(_lowerCAmelCase) pipe.set_progress_bar_config(disable=_lowerCAmelCase) __lowercase =self.get_inputs(_lowerCAmelCase) __lowercase =pipe(**_lowerCAmelCase).images __lowercase =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowercase =np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506]) assert np.abs(image_slice - expected_slice).max() < 7e-3
474
'''simple docstring''' def _A ( _lowerCAmelCase = 50 ): """simple docstring""" __lowercase =[[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"{solution() = }")
474
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase__ = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
711
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json', } class _UpperCAmelCase ( snake_case ): __lowerCamelCase: List[Any] = 'gpt_neox_japanese' def __init__( self : List[str] , a : List[Any]=3_2_0_0_0 , a : Union[str, Any]=2_5_6_0 , a : Optional[Any]=3_2 , a : Any=3_2 , a : str=4 , a : Optional[int]="gelu" , a : Optional[Any]=1.00 , a : Dict=1_0_0_0_0 , a : List[Any]=2_0_4_8 , a : Dict=0.02 , a : int=1e-5 , a : Optional[int]=True , a : Union[str, Any]=3_1_9_9_6 , a : List[Any]=3_1_9_9_9 , a : List[str]=0.1 , a : Dict=0.0 , **a : Union[str, Any] , ): '''simple docstring''' super().__init__(bos_token_id=a , eos_token_id=a , **a ) lowercase_ : int = vocab_size lowercase_ : int = max_position_embeddings lowercase_ : List[str] = hidden_size lowercase_ : Any = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = intermediate_multiple_size lowercase_ : List[str] = hidden_act lowercase_ : Optional[int] = rotary_pct lowercase_ : Tuple = rotary_emb_base lowercase_ : Optional[Any] = initializer_range lowercase_ : List[str] = layer_norm_eps lowercase_ : List[str] = use_cache lowercase_ : Any = attention_dropout lowercase_ : List[Any] = hidden_dropout
640
0
'''simple docstring''' import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __UpperCamelCase ( UpperCAmelCase = 8 ): lowercase__ : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(UpperCamelCase__ ) lowercase__ : Optional[Any] = i // 3 lowercase__ : int = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase__ : int = ( chars_incl + random(UpperCamelCase__ , quotient + remainder ) + random(UpperCamelCase__ , UpperCamelCase__ ) + random(UpperCamelCase__ , UpperCamelCase__ ) ) lowercase__ : Optional[Any] = list(UpperCamelCase__ ) shuffle(UpperCamelCase__ ) return "".join(UpperCamelCase__ ) # random is a generalised function for letters, characters and numbers def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): return "".join(secrets.choice(UpperCamelCase__ ) for _ in range(UpperCamelCase__ ) ) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): pass # Put your code here... def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): pass # Put your code here... def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): pass # Put your code here... def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase = 8 ): if len(UpperCamelCase__ ) < min_length: # Your Password must be at least 8 characters long return False lowercase__ : Union[str, Any] = any(char in ascii_uppercase for char in password ) lowercase__ : Any = any(char in ascii_lowercase for char in password ) lowercase__ : Dict = any(char in digits for char in password ) lowercase__ : int = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __UpperCamelCase ( ): lowercase__ : List[str] = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowercase__ : Union[str, Any] = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(UpperCamelCase__ ) ) print( '''Alternative Password generated:''' , alternative_password_generator(UpperCamelCase__ , UpperCamelCase__ ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
152
import pytest import datasets # Import fixture modules as plugins a__: Dict = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def UpperCamelCase__( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple )->List[str]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def UpperCamelCase__( UpperCamelCase__ : Dict )->List[Any]: config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int )->Union[str, Any]: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? A__ = tmp_path_factory.getbasetemp() / '''cache''' A__ = test_hf_cache_home / '''datasets''' A__ = test_hf_cache_home / '''metrics''' A__ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(UpperCamelCase__ ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(UpperCamelCase__ ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(UpperCamelCase__ ) ) A__ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(UpperCamelCase__ ) ) A__ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(UpperCamelCase__ ) ) @pytest.fixture(autouse=UpperCamelCase__ , scope='''session''' ) def UpperCamelCase__( )->int: datasets.disable_progress_bar() @pytest.fixture(autouse=UpperCamelCase__ ) def UpperCamelCase__( UpperCamelCase__ : str )->Tuple: # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , UpperCamelCase__ ) @pytest.fixture def UpperCamelCase__( UpperCamelCase__ : List[Any] )->Optional[Any]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , UpperCamelCase__ )
190
0
"""simple docstring""" def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Union[str, Any]: UpperCAmelCase__ = word.split() def justify(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: UpperCAmelCase__ = max_width - width UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: UpperCAmelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] UpperCAmelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] UpperCAmelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(SCREAMING_SNAKE_CASE__ ): num_spaces_between_words_list[i] += 1 UpperCAmelCase__ = [] for i in range(SCREAMING_SNAKE_CASE__ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] UpperCAmelCase__ = 0 for word in words: if width + len(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(SCREAMING_SNAKE_CASE__ ) width += len(SCREAMING_SNAKE_CASE__ ) else: # justify the line and add it to result answer.append(justify(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # reset new line and new width UpperCAmelCase__ = [word], len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = max_width - width - len(SCREAMING_SNAKE_CASE__ ) answer.append(""" """.join(SCREAMING_SNAKE_CASE__ ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
704
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' def A__ ( self , __lowercase ): with open(__lowercase , encoding="""utf-8""" ) as input_file: UpperCAmelCase__ = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) UpperCAmelCase__ = input_file.read() UpperCAmelCase__ = regexp.search(__lowercase ) return match def A__ ( self , __lowercase ): with open(__lowercase , encoding="""utf-8""" ) as input_file: UpperCAmelCase__ = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) UpperCAmelCase__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ = regexp.finditer(__lowercase ) UpperCAmelCase__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def A__ ( self ): UpperCAmelCase__ = Path("""./datasets""" ) UpperCAmelCase__ = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowercase ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def A__ ( self ): UpperCAmelCase__ = Path("""./datasets""" ) UpperCAmelCase__ = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowercase ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
422
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCAmelCase_ : """simple docstring""" def __a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' return None class lowerCAmelCase_ : """simple docstring""" def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' return None class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" a_ :Tuple =[ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def __a ( self : Any ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE__ , """tf""" , 1_2 , **SCREAMING_SNAKE_CASE__ ) @require_torch @slow def __a ( self : Any ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(SCREAMING_SNAKE_CASE__ , """pt""" , 1_2 , **SCREAMING_SNAKE_CASE__ ) @require_torch @slow def __a ( self : Optional[Any] ): '''simple docstring''' from transformers import BertModel __a = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(SCREAMING_SNAKE_CASE__ ) ) vocab_file.flush() __a = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __a = BertModel(BertConfig(vocab_size=len(SCREAMING_SNAKE_CASE__ ) ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) self._test_export(SCREAMING_SNAKE_CASE__ , """pt""" , 1_2 , SCREAMING_SNAKE_CASE__ ) @require_tf @slow def __a ( self : List[str] ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __a = self._test_export(SCREAMING_SNAKE_CASE__ , """tf""" , 1_2 , **SCREAMING_SNAKE_CASE__ ) __a = quantize(Path(SCREAMING_SNAKE_CASE__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE__ ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def __a ( self : int ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __a = self._test_export(SCREAMING_SNAKE_CASE__ , """pt""" , 1_2 , **SCREAMING_SNAKE_CASE__ ) __a = quantize(SCREAMING_SNAKE_CASE__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(SCREAMING_SNAKE_CASE__ ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def __a ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int=None , **SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: __a = Path(SCREAMING_SNAKE_CASE__ ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return path except Exception as e: self.fail(SCREAMING_SNAKE_CASE__ ) @require_torch @require_tokenizers @slow def __a ( self : str ): '''simple docstring''' from transformers import BertModel __a = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __a = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """pt""" ) @require_tf @require_tokenizers @slow def __a ( self : Tuple ): '''simple docstring''' from transformers import TFBertModel __a = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) __a = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , """tf""" ) def __a ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' __a = FeatureExtractionPipeline(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __a = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] __a , __a , __a , __a = infer_shapes(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Assert all variables are present self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , SCREAMING_SNAKE_CASE__ ) self.assertSequenceEqual(variable_names[3:] , SCREAMING_SNAKE_CASE__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def __a ( self : Union[str, Any] ): '''simple docstring''' __a = ["""input_ids""", """attention_mask""", """token_type_ids"""] __a = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} __a , __a = ensure_valid_input(FuncContiguousArgs() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(SCREAMING_SNAKE_CASE__ ) , set(SCREAMING_SNAKE_CASE__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(SCREAMING_SNAKE_CASE__ , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __a , __a = ensure_valid_input(FuncNonContiguousArgs() , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1 ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def __a ( self : List[Any] ): '''simple docstring''' __a = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
582
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 3 class lowerCAmelCase_ ( snake_case__ ): """simple docstring""" pass def __lowercase ( __SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" for shard in shards: for i in range(__SCREAMING_SNAKE_CASE ): yield {"i": i, "shard": shard} def __lowercase ( ) -> Tuple: """simple docstring""" __a = int(os.environ["""RANK"""] ) __a = int(os.environ["""WORLD_SIZE"""] ) __a = ArgumentParser() parser.add_argument("""--streaming""" , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--local_rank""" , type=__SCREAMING_SNAKE_CASE ) parser.add_argument("""--num_workers""" , type=__SCREAMING_SNAKE_CASE , default=0 ) __a = parser.parse_args() __a = args.streaming __a = args.num_workers __a = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(__SCREAMING_SNAKE_CASE )]} __a = IterableDataset.from_generator(__SCREAMING_SNAKE_CASE , gen_kwargs=__SCREAMING_SNAKE_CASE ) if not streaming: __a = Dataset.from_list(list(__SCREAMING_SNAKE_CASE ) ) __a = split_dataset_by_node(__SCREAMING_SNAKE_CASE , rank=__SCREAMING_SNAKE_CASE , world_size=__SCREAMING_SNAKE_CASE ) __a = torch.utils.data.DataLoader(__SCREAMING_SNAKE_CASE , num_workers=__SCREAMING_SNAKE_CASE ) __a = NUM_SHARDS * NUM_ITEMS_PER_SHARD __a = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __a = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
582
1
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ ( __lowercase): '''simple docstring''' def _lowerCamelCase ( self :str ) -> List[str]: __UpperCamelCase : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(a , "embed_dim" ) ) self.parent.assertTrue(hasattr(a , "num_heads" ) ) class lowerCamelCase__ : '''simple docstring''' def __init__( self :List[Any] , a :Dict , a :Optional[int]=1_3 , a :Any=6_4 , a :List[str]=3 , a :int=[1_6, 4_8, 9_6] , a :str=[1, 3, 6] , a :Optional[Any]=[1, 2, 1_0] , a :Dict=[7, 3, 3] , a :List[Any]=[4, 2, 2] , a :Optional[Any]=[2, 1, 1] , a :Tuple=[2, 2, 2] , a :Union[str, Any]=[False, False, True] , a :int=[0.0, 0.0, 0.0] , a :str=0.02 , a :str=1E-1_2 , a :Optional[int]=True , a :List[str]=True , a :List[Any]=2 , ) -> Optional[Any]: __UpperCamelCase : Any = parent __UpperCamelCase : Optional[int] = batch_size __UpperCamelCase : Optional[int] = image_size __UpperCamelCase : Optional[int] = patch_sizes __UpperCamelCase : Optional[Any] = patch_stride __UpperCamelCase : List[str] = patch_padding __UpperCamelCase : Any = is_training __UpperCamelCase : Any = use_labels __UpperCamelCase : int = num_labels __UpperCamelCase : Tuple = num_channels __UpperCamelCase : Dict = embed_dim __UpperCamelCase : Dict = num_heads __UpperCamelCase : Union[str, Any] = stride_kv __UpperCamelCase : Tuple = depth __UpperCamelCase : Optional[int] = cls_token __UpperCamelCase : Tuple = attention_drop_rate __UpperCamelCase : str = initializer_range __UpperCamelCase : Any = layer_norm_eps def _lowerCamelCase ( self :Optional[int] ) -> int: __UpperCamelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase : str = None if self.use_labels: __UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase : List[str] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self :Tuple ) -> Dict: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self :str , a :List[Any] , a :Optional[Any] , a :List[Any] ) -> int: __UpperCamelCase : List[str] = CvtModel(config=a ) model.to(a ) model.eval() __UpperCamelCase : str = model(a ) __UpperCamelCase : List[str] = (self.image_size, self.image_size) __UpperCamelCase : int = image_size[0], image_size[1] for i in range(len(self.depth ) ): __UpperCamelCase : List[str] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __UpperCamelCase : Tuple = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def _lowerCamelCase ( self :str , a :Tuple , a :Optional[Any] , a :Optional[Any] ) -> Tuple: __UpperCamelCase : Optional[Any] = self.num_labels __UpperCamelCase : Optional[Any] = CvtForImageClassification(a ) model.to(a ) model.eval() __UpperCamelCase : Any = model(a , labels=a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :str ) -> int: __UpperCamelCase : str = self.prepare_config_and_inputs() __UpperCamelCase : str = config_and_inputs __UpperCamelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = (CvtModel, CvtForImageClassification) if is_torch_available() else () _A = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False _A = False def _lowerCamelCase ( self :Tuple ) -> Dict: __UpperCamelCase : Optional[int] = CvtModelTester(self ) __UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=3_7 ) def _lowerCamelCase ( self :Optional[Any] ) -> Any: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self :int ) -> Tuple: return @unittest.skip(reason="Cvt does not output attentions" ) def _lowerCamelCase ( self :List[str] ) -> Optional[Any]: pass @unittest.skip(reason="Cvt does not use inputs_embeds" ) def _lowerCamelCase ( self :Optional[Any] ) -> Dict: pass @unittest.skip(reason="Cvt does not support input and output embeddings" ) def _lowerCamelCase ( self :int ) -> int: pass def _lowerCamelCase ( self :List[Any] ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : List[Any] = model_class(a ) __UpperCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase : Any = [*signature.parameters.keys()] __UpperCamelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1] , a ) def _lowerCamelCase ( self :Dict ) -> Optional[int]: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :Tuple ) -> Union[str, Any]: def check_hidden_states_output(a :str , a :str , a :List[str] ): __UpperCamelCase : List[str] = model_class(a ) model.to(a ) model.eval() with torch.no_grad(): __UpperCamelCase : int = model(**self._prepare_for_class(a , a ) ) __UpperCamelCase : Union[str, Any] = outputs.hidden_states __UpperCamelCase : Any = len(self.model_tester.depth ) self.assertEqual(len(a ) , a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase : List[str] = True check_hidden_states_output(a , a , a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase : Dict = True check_hidden_states_output(a , a , a ) def _lowerCamelCase ( self :Optional[int] ) -> Dict: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _lowerCamelCase ( self :Optional[Any] ) -> Any: pass @slow def _lowerCamelCase ( self :Optional[int] ) -> Optional[Any]: for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : List[str] = CvtModel.from_pretrained(a ) self.assertIsNotNone(a ) def _SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' __UpperCamelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowerCamelCase ( self :int ) -> List[Any]: return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def _lowerCamelCase ( self :Dict ) -> int: __UpperCamelCase : int = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(a ) __UpperCamelCase : int = self.default_image_processor __UpperCamelCase : int = prepare_img() __UpperCamelCase : int = image_processor(images=a , return_tensors="pt" ).to(a ) # forward pass with torch.no_grad(): __UpperCamelCase : Dict = model(**a ) # verify the logits __UpperCamelCase : List[Any] = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , a ) __UpperCamelCase : Any = torch.tensor([0.9285, 0.9015, -0.3150] ).to(a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) )
703
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase : str = { 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = ['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[Any] = ['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : int = ['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase :List[Any] = {'''UserAgent''': UserAgent().random} def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" __magic_name__ : Tuple = script.contents[0] __magic_name__ : Any = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , _A : Optional[Any] ) -> Optional[int]: __magic_name__ : List[str] = F'https://www.instagram.com/{username}/' __magic_name__ : str = self.get_json() def __lowerCAmelCase ( self : Tuple ) -> dict: __magic_name__ : Tuple = requests.get(self.url , headers=_A ).text __magic_name__ : Union[str, Any] = BeautifulSoup(_A , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Optional[Any] ) -> str: return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self : List[str] ) -> str: return F'{self.fullname} ({self.username}) is {self.biography}' @property def __lowerCAmelCase ( self : Optional[Any] ) -> str: return self.user_data["username"] @property def __lowerCAmelCase ( self : List[str] ) -> str: return self.user_data["full_name"] @property def __lowerCAmelCase ( self : List[str] ) -> str: return self.user_data["biography"] @property def __lowerCAmelCase ( self : Tuple ) -> str: return self.user_data["business_email"] @property def __lowerCAmelCase ( self : str ) -> str: return self.user_data["external_url"] @property def __lowerCAmelCase ( self : Optional[int] ) -> int: return self.user_data["edge_followed_by"]["count"] @property def __lowerCAmelCase ( self : List[str] ) -> int: return self.user_data["edge_follow"]["count"] @property def __lowerCAmelCase ( self : List[str] ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __lowerCAmelCase ( self : str ) -> str: return self.user_data["profile_pic_url_hd"] @property def __lowerCAmelCase ( self : List[Any] ) -> bool: return self.user_data["is_verified"] @property def __lowerCAmelCase ( self : List[Any] ) -> bool: return self.user_data["is_private"] def lowerCamelCase ( lowerCAmelCase : str = "github" ): """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions __magic_name__ : List[Any] = InstagramUser(lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase :int = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
561
'''simple docstring''' from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class _lowerCamelCase : '''simple docstring''' A_ : Tuple = XGLMConfig A_ : str = {} A_ : Any = """gelu""" def __init__( self : Union[str, Any] , _A : List[str] , _A : Dict=14 , _A : Any=7 , _A : Any=True , _A : Tuple=True , _A : Union[str, Any]=True , _A : Any=99 , _A : Optional[Any]=32 , _A : Union[str, Any]=2 , _A : Union[str, Any]=4 , _A : List[Any]=37 , _A : Tuple="gelu" , _A : Dict=0.1 , _A : Optional[int]=0.1 , _A : List[Any]=512 , _A : Tuple=0.02 , ) -> str: __magic_name__ : Any = parent __magic_name__ : Dict = batch_size __magic_name__ : Dict = seq_length __magic_name__ : int = is_training __magic_name__ : List[Any] = use_input_mask __magic_name__ : Tuple = use_labels __magic_name__ : Optional[int] = vocab_size __magic_name__ : Union[str, Any] = d_model __magic_name__ : str = num_hidden_layers __magic_name__ : Optional[Any] = num_attention_heads __magic_name__ : Any = ffn_dim __magic_name__ : List[str] = activation_function __magic_name__ : Optional[Any] = activation_dropout __magic_name__ : List[Any] = attention_dropout __magic_name__ : Optional[Any] = max_position_embeddings __magic_name__ : Union[str, Any] = initializer_range __magic_name__ : Optional[Any] = None __magic_name__ : str = 0 __magic_name__ : Optional[Any] = 2 __magic_name__ : int = 1 def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __lowerCAmelCase ( self : Optional[Any] ) -> str: __magic_name__ : Tuple = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __magic_name__ : int = None if self.use_input_mask: __magic_name__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : List[Any] = self.get_config() __magic_name__ : Optional[int] = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=_A , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=_A , ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: __magic_name__ : List[Any] = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Tuple = config_and_inputs __magic_name__ : Optional[int] = { 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class _lowerCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : int = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () A_ : Optional[Any] = (TFXGLMForCausalLM,) if is_tf_available() else () A_ : Union[str, Any] = ( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) A_ : Dict = False A_ : Union[str, Any] = False A_ : Tuple = False def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: __magic_name__ : Optional[Any] = TFXGLMModelTester(self ) __magic_name__ : Dict = ConfigTester(self , config_class=_A , n_embd=37 ) def __lowerCAmelCase ( self : Any ) -> Dict: self.config_tester.run_common_tests() @slow def __lowerCAmelCase ( self : Any ) -> int: for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Union[str, Any] = TFXGLMModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: super().test_resize_token_embeddings() @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __lowerCAmelCase ( self : str , _A : Optional[int]=True ) -> Dict: __magic_name__ : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __magic_name__ : str = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __magic_name__ : str = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __magic_name__ : Union[str, Any] = model.generate(_A , do_sample=_A , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , _A ) @slow def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: __magic_name__ : Tuple = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __magic_name__ : List[Any] = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __magic_name__ : Optional[int] = tokenizer('Today is a nice day and' , return_tensors='tf' ) __magic_name__ : Optional[int] = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __magic_name__ : Tuple = model.generate(_A , do_sample=_A , seed=[7, 0] ) __magic_name__ : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=_A ) __magic_name__ : str = ( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(_A , _A ) @slow def __lowerCAmelCase ( self : int ) -> str: __magic_name__ : int = TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __magic_name__ : Optional[Any] = XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __magic_name__ : Dict = 'left' # use different length sentences to test batching __magic_name__ : str = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __magic_name__ : int = tokenizer(_A , return_tensors='tf' , padding=_A ) __magic_name__ : Dict = inputs['input_ids'] __magic_name__ : Any = model.generate(input_ids=_A , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __magic_name__ : Union[str, Any] = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __magic_name__ : Dict = model.generate(input_ids=_A , max_new_tokens=12 ) __magic_name__ : Union[str, Any] = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __magic_name__ : int = model.generate(input_ids=_A , max_new_tokens=12 ) __magic_name__ : Dict = tokenizer.batch_decode(_A , skip_special_tokens=_A ) __magic_name__ : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_A ) __magic_name__ : str = tokenizer.decode(output_padded[0] , skip_special_tokens=_A ) __magic_name__ : List[str] = [ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , [non_padded_sentence, padded_sentence] )
561
1
"""simple docstring""" from __future__ import annotations def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> list[list[int]]: SCREAMING_SNAKE_CASE__ = [] create_all_state(1 , __UpperCAmelCase , __UpperCAmelCase , [] , __UpperCAmelCase ) return result def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(__UpperCAmelCase , total_number - level + 2 ): current_list.append(__UpperCAmelCase ) create_all_state(i + 1 , __UpperCAmelCase , level - 1 , __UpperCAmelCase , __UpperCAmelCase ) current_list.pop() def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> None: for i in total_list: print(*__UpperCAmelCase ) if __name__ == "__main__": _A = 4 _A = 2 _A = generate_all_combinations(n, k) print_all_state(total_list)
538
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE ( ) -> List[str]: SCREAMING_SNAKE_CASE__ = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" SCREAMING_SNAKE_CASE__ = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ).convert("RGB" ) return image def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: SCREAMING_SNAKE_CASE__ = dct.pop(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = val def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases SCREAMING_SNAKE_CASE__ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) SCREAMING_SNAKE_CASE__ = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict SCREAMING_SNAKE_CASE__ = torch.cat((q_bias, torch.zeros_like(__UpperCAmelCase , requires_grad=__UpperCAmelCase ), v_bias) ) SCREAMING_SNAKE_CASE__ = qkv_bias def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ = 364 if "coco" in model_name else 224 SCREAMING_SNAKE_CASE__ = BlipaVisionConfig(image_size=__UpperCAmelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: SCREAMING_SNAKE_CASE__ = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=__UpperCAmelCase ).to_dict() elif "opt-6.7b" in model_name: SCREAMING_SNAKE_CASE__ = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=__UpperCAmelCase ).to_dict() elif "t5-xl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: SCREAMING_SNAKE_CASE__ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() SCREAMING_SNAKE_CASE__ = BlipaConfig(vision_config=__UpperCAmelCase , text_config=__UpperCAmelCase ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=False ) -> List[str]: SCREAMING_SNAKE_CASE__ = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) SCREAMING_SNAKE_CASE__ = tokenizer("\n" , add_special_tokens=__UpperCAmelCase ).input_ids[0] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_blipa_config(__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = BlipaForConditionalGeneration(__UpperCAmelCase ).eval() SCREAMING_SNAKE_CASE__ = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model_name_to_original[model_name] # load original model print("Loading original model..." ) SCREAMING_SNAKE_CASE__ = "cuda" if torch.cuda.is_available() else "cpu" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = load_model_and_preprocess( name=__UpperCAmelCase , model_type=__UpperCAmelCase , is_eval=__UpperCAmelCase , device=__UpperCAmelCase ) original_model.eval() print("Done!" ) # update state dict keys SCREAMING_SNAKE_CASE__ = original_model.state_dict() SCREAMING_SNAKE_CASE__ = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): SCREAMING_SNAKE_CASE__ = state_dict.pop(__UpperCAmelCase ) if key.startswith("Qformer.bert" ): SCREAMING_SNAKE_CASE__ = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: SCREAMING_SNAKE_CASE__ = key.replace("self" , "attention" ) if "opt_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: SCREAMING_SNAKE_CASE__ = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): SCREAMING_SNAKE_CASE__ = key.replace("opt" , "language" ) if key.startswith("t5" ): SCREAMING_SNAKE_CASE__ = key.replace("t5" , "language" ) SCREAMING_SNAKE_CASE__ = val # read in qv biases read_in_q_v_bias(__UpperCAmelCase , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = hf_model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) assert len(__UpperCAmelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] SCREAMING_SNAKE_CASE__ = load_demo_image() SCREAMING_SNAKE_CASE__ = vis_processors["eval"](__UpperCAmelCase ).unsqueeze(0 ).to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(__UpperCAmelCase ) # create processor SCREAMING_SNAKE_CASE__ = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = BlipaProcessor(image_processor=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = processor(images=__UpperCAmelCase , return_tensors="pt" ).pixel_values.to(__UpperCAmelCase ) # make sure processor creates exact same pixel values assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase ) original_model.to(__UpperCAmelCase ) hf_model.to(__UpperCAmelCase ) with torch.no_grad(): if "opt" in model_name: SCREAMING_SNAKE_CASE__ = original_model({"image": original_pixel_values, "text_input": [""]} ).logits SCREAMING_SNAKE_CASE__ = hf_model(__UpperCAmelCase , __UpperCAmelCase ).logits else: SCREAMING_SNAKE_CASE__ = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits SCREAMING_SNAKE_CASE__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) SCREAMING_SNAKE_CASE__ = hf_model(__UpperCAmelCase , __UpperCAmelCase , labels=__UpperCAmelCase ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=__UpperCAmelCase ) assert torch.allclose(logits[0, :3, :3] , __UpperCAmelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": SCREAMING_SNAKE_CASE__ = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=__UpperCAmelCase ) else: # cast to same type SCREAMING_SNAKE_CASE__ = logits.dtype assert torch.allclose(original_logits.to(__UpperCAmelCase ) , __UpperCAmelCase , atol=1e-2 ) print("Looks ok!" ) print("Generating a caption..." ) SCREAMING_SNAKE_CASE__ = "" SCREAMING_SNAKE_CASE__ = tokenizer(__UpperCAmelCase , return_tensors="pt" ).input_ids.to(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = original_model.generate({"image": original_pixel_values} ) SCREAMING_SNAKE_CASE__ = hf_model.generate( __UpperCAmelCase , __UpperCAmelCase , do_sample=__UpperCAmelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , __UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = input_ids.shape[1] SCREAMING_SNAKE_CASE__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = [text.strip() for text in output_text] print("HF generation:" , __UpperCAmelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__UpperCAmelCase ) hf_model.save_pretrained(__UpperCAmelCase ) if push_to_hub: processor.push_to_hub(F"""nielsr/{model_name}""" ) hf_model.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() _A = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) _A = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
538
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} snake_case_ = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } snake_case_ = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } snake_case_ = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Dict = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Dict = PRETRAINED_INIT_CONFIGURATION A_ : Optional[Any] = RoFormerTokenizer def __init__(self : Tuple , a__ : Tuple=None , a__ : Dict=None , a__ : Any=True , a__ : Dict="[UNK]" , a__ : Any="[SEP]" , a__ : str="[PAD]" , a__ : Union[str, Any]="[CLS]" , a__ : List[str]="[MASK]" , a__ : List[str]=True , a__ : Any=None , **a__ : List[str] , ): """simple docstring""" super().__init__( a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , ) __snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('''lowercase''' , a__ ) != do_lower_case or pre_tok_state.get('''strip_accents''' , a__ ) != strip_accents ): __snake_case = getattr(a__ , pre_tok_state.pop('''type''' ) ) __snake_case = do_lower_case __snake_case = strip_accents __snake_case = pre_tok_class(**a__ ) __snake_case = do_lower_case def __getstate__(self : Optional[int] ): """simple docstring""" __snake_case = self.__dict__.copy() __snake_case = BertPreTokenizer() return state def __setstate__(self : str , a__ : Optional[Any] ): """simple docstring""" __snake_case = d __snake_case = self.__dict__['''_tokenizer'''].get_vocab() __snake_case = PreTokenizer.custom(JiebaPreTokenizer(a__ ) ) def a (self : Optional[Any] , a__ : Any , a__ : str=None ): """simple docstring""" __snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a (self : Any , a__ : List[int] , a__ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a (self : Any , a__ : str , a__ : Optional[str] = None ): """simple docstring""" __snake_case = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def a (self : Optional[Any] , a__ : Dict , a__ : Tuple=None , a__ : Optional[int]=None , a__ : str=False , **a__ : Any , ): """simple docstring""" __snake_case = BertPreTokenizer() return super().save_pretrained(a__ , a__ , a__ , a__ , **a__ )
592
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : int = 'xlnet' A_ : str = ['mems'] A_ : str = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__(self : str , a__ : Any=3_2000 , a__ : List[str]=1024 , a__ : List[str]=24 , a__ : Dict=16 , a__ : Optional[int]=4096 , a__ : Optional[int]="gelu" , a__ : Optional[Any]=True , a__ : int="bi" , a__ : Optional[Any]=0.0_2 , a__ : str=1E-12 , a__ : Dict=0.1 , a__ : List[str]=512 , a__ : Optional[int]=None , a__ : Optional[int]=True , a__ : Any=False , a__ : List[Any]=False , a__ : List[Any]=-1 , a__ : Optional[Any]=False , a__ : List[Any]="last" , a__ : Dict=True , a__ : Union[str, Any]="tanh" , a__ : Optional[int]=0.1 , a__ : Tuple=5 , a__ : str=5 , a__ : int=5 , a__ : Any=1 , a__ : List[Any]=2 , **a__ : Union[str, Any] , ): """simple docstring""" __snake_case = vocab_size __snake_case = d_model __snake_case = n_layer __snake_case = n_head if d_model % n_head != 0: raise ValueError(f"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""" ) __snake_case = d_model // n_head __snake_case = ff_activation __snake_case = d_inner __snake_case = untie_r __snake_case = attn_type __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = dropout __snake_case = mem_len __snake_case = reuse_len __snake_case = bi_data __snake_case = clamp_len __snake_case = same_length __snake_case = summary_type __snake_case = summary_use_proj __snake_case = summary_activation __snake_case = summary_last_dropout __snake_case = start_n_top __snake_case = end_n_top __snake_case = bos_token_id __snake_case = pad_token_id __snake_case = eos_token_id if "use_cache" in kwargs: warnings.warn( '''The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`''' ''' instead.''' , a__ , ) __snake_case = kwargs['''use_cache'''] __snake_case = use_mems_eval __snake_case = use_mems_train super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) @property def a (self : Any ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a (self : Dict , a__ : Union[str, Any] ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
592
1
'''simple docstring''' import importlib.metadata import operator import re import sys from typing import Optional from packaging import version snake_case_ = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def __lowercase (_SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Optional[int] ): if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(__lowercase ) , version.parse(__lowercase ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def __lowercase (_SCREAMING_SNAKE_CASE :str , _SCREAMING_SNAKE_CASE :Optional[str] = None ): SCREAMING_SNAKE_CASE : int = F'''\n{hint}''' if hint is not None else '' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , __lowercase ): SCREAMING_SNAKE_CASE : List[str] = requirement, None, None else: SCREAMING_SNAKE_CASE : Optional[int] = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , __lowercase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) SCREAMING_SNAKE_CASE : Tuple = match[0] SCREAMING_SNAKE_CASE : Optional[Any] = want_full.split(''',''' ) # there could be multiple requirements SCREAMING_SNAKE_CASE : Optional[int] = {} for w in want_range: SCREAMING_SNAKE_CASE : int = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , __lowercase ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) SCREAMING_SNAKE_CASE : Any = match[0] SCREAMING_SNAKE_CASE : int = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": SCREAMING_SNAKE_CASE : Union[str, Any] = '.'.join([str(__lowercase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) return # check if any version is installed try: SCREAMING_SNAKE_CASE : Dict = importlib.metadata.version(__lowercase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) def __lowercase (_SCREAMING_SNAKE_CASE :Optional[int] ): SCREAMING_SNAKE_CASE : int = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(__lowercase , __lowercase )
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class a__ ( _lowercase ): __magic_name__ : Optional[Any] = "nllb-moe" __magic_name__ : Optional[Any] = ["past_key_values"] __magic_name__ : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self : int, __UpperCAmelCase : Tuple=128112, __UpperCAmelCase : Any=1024, __UpperCAmelCase : Optional[Any]=12, __UpperCAmelCase : Optional[int]=4096, __UpperCAmelCase : Any=16, __UpperCAmelCase : Any=12, __UpperCAmelCase : Optional[Any]=4096, __UpperCAmelCase : Optional[int]=16, __UpperCAmelCase : List[Any]=0.05, __UpperCAmelCase : Dict=0.05, __UpperCAmelCase : Dict=True, __UpperCAmelCase : List[Any]=True, __UpperCAmelCase : Any="relu", __UpperCAmelCase : Union[str, Any]=1024, __UpperCAmelCase : Optional[int]=0.1, __UpperCAmelCase : Tuple=0.1, __UpperCAmelCase : List[Any]=0.0, __UpperCAmelCase : Optional[int]=0.02, __UpperCAmelCase : Tuple=2, __UpperCAmelCase : int=True, __UpperCAmelCase : int=False, __UpperCAmelCase : int="float32", __UpperCAmelCase : Optional[Any]=False, __UpperCAmelCase : List[str]=128, __UpperCAmelCase : Dict=64, __UpperCAmelCase : Dict=4, __UpperCAmelCase : Optional[Any]=4, __UpperCAmelCase : Optional[Any]=0.001, __UpperCAmelCase : Optional[Any]=0.001, __UpperCAmelCase : Optional[Any]="all", __UpperCAmelCase : List[str]=False, __UpperCAmelCase : Dict=False, __UpperCAmelCase : Any=1.0, __UpperCAmelCase : Dict=0.2, __UpperCAmelCase : int=1, __UpperCAmelCase : Union[str, Any]=0, __UpperCAmelCase : Any=2, __UpperCAmelCase : Union[str, Any]=False, **__UpperCAmelCase : Dict, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : int = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE : Dict = dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : Dict = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = init_std SCREAMING_SNAKE_CASE : Any = encoder_layerdrop SCREAMING_SNAKE_CASE : Optional[int] = decoder_layerdrop SCREAMING_SNAKE_CASE : Dict = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : List[str] = router_z_loss_coef SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef SCREAMING_SNAKE_CASE : int = decoder_sparse_step SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_sparse_step SCREAMING_SNAKE_CASE : Union[str, Any] = num_experts SCREAMING_SNAKE_CASE : List[Any] = expert_capacity SCREAMING_SNAKE_CASE : Optional[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : int = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : Dict = batch_prioritized_routing SCREAMING_SNAKE_CASE : Dict = second_expert_policy SCREAMING_SNAKE_CASE : Tuple = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : List[str] = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : List[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : List[Any] = output_router_logits super().__init__( pad_token_id=__UpperCAmelCase, bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, is_encoder_decoder=__UpperCAmelCase, decoder_start_token_id=__UpperCAmelCase, **__UpperCAmelCase, )
355
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE :Union[str, Any] = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ["""MobileNetV2FeatureExtractor"""] SCREAMING_SNAKE_CASE :List[str] = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[str] = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys SCREAMING_SNAKE_CASE :Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
628
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> str: """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" UpperCamelCase_ = False if num < 0: UpperCamelCase_ = True UpperCamelCase_ = -num UpperCamelCase_ = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
628
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_:Union[str, Any] = logging.get_logger(__name__) def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> Union[str, Any]: """simple docstring""" A : Optional[int] = """backbone.""" if is_semantic else """""" A : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', """beit.embeddings.cls_token"""), (f'''{prefix}patch_embed.proj.weight''', """beit.embeddings.patch_embeddings.projection.weight"""), (f'''{prefix}patch_embed.proj.bias''', """beit.embeddings.patch_embeddings.projection.bias"""), (f'''{prefix}pos_embed''', """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False , _lowerCAmelCase=False ) -> str: """simple docstring""" for i in range(config.num_hidden_layers ): A : Any = """backbone.""" if is_semantic else """""" # queries, keys and values A : List[str] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) A : str = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) A : Tuple = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) A : Tuple = in_proj_weight[ : config.hidden_size, : ] A : List[str] = q_bias A : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A : List[str] = in_proj_weight[ -config.hidden_size :, : ] A : Optional[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained A : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) A : List[str] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) A : Tuple = gamma_a A : List[Any] = gamma_a def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: """simple docstring""" A : str = dct.pop(_lowerCAmelCase ) A : Any = val def __UpperCamelCase ( ) -> List[str]: """simple docstring""" A : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" A : Tuple = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> List[Any]: """simple docstring""" A : List[Any] = False if """rvlcdip""" in checkpoint_url else True A : Tuple = BeitConfig(use_absolute_position_embeddings=_lowerCAmelCase , use_mask_token=_lowerCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: A : Tuple = 1024 A : Union[str, Any] = 4096 A : Tuple = 24 A : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: A : Dict = 16 A : List[str] = """huggingface/label-files""" A : str = """rvlcdip-id2label.json""" A : Dict = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) A : int = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} A : Optional[Any] = idalabel A : Any = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys A : List[str] = torch.hub.load_state_dict_from_url(_lowerCAmelCase , map_location="""cpu""" )["""model"""] A : int = create_rename_keys(_lowerCAmelCase , has_lm_head=_lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , has_lm_head=_lowerCAmelCase ) # load HuggingFace model A : List[str] = BeitForMaskedImageModeling(_lowerCAmelCase ) if has_lm_head else BeitForImageClassification(_lowerCAmelCase ) model.eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image A : str = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=_lowerCAmelCase ) A : Dict = prepare_img() A : List[Any] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ) A : Optional[Any] = encoding["""pixel_values"""] A : Any = model(_lowerCAmelCase ) A : List[Any] = outputs.logits # verify logits A : Dict = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(_lowerCAmelCase ), "Shape of logits not as expected" Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: if has_lm_head: A : Optional[int] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: A : Any = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=_lowerCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(_lowerCAmelCase , _lowerCAmelCase ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=_lowerCAmelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_:Tuple = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) SCREAMING_SNAKE_CASE_:Tuple = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
520
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL SCREAMING_SNAKE_CASE_:Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = ["pixel_values"] def __init__( self, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = PILImageResampling.BILINEAR, lowerCamelCase__ = True, lowerCamelCase__ = 1 / 255, lowerCamelCase__ = True, lowerCamelCase__ = None, lowerCamelCase__ = None, **lowerCamelCase__, ): super().__init__(**lowerCamelCase__ ) A : str = size if size is not None else {"""shortest_edge""": 384} A : List[Any] = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : str = do_resize A : Union[str, Any] = size # Default value set here for backwards compatibility where the value in config is None A : Optional[Any] = crop_pct if crop_pct is not None else 224 / 256 A : Any = resample A : List[Any] = do_rescale A : Union[str, Any] = rescale_factor A : Tuple = do_normalize A : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = PILImageResampling.BICUBIC, lowerCamelCase__ = None, **lowerCamelCase__, ): A : Tuple = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) A : int = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct A : Dict = int(shortest_edge / crop_pct ) A : Optional[int] = get_resize_output_image_size(lowerCamelCase__, size=lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Optional[Any] = resize(image=lowerCamelCase__, size=lowerCamelCase__, resample=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowerCamelCase__, size=(shortest_edge, shortest_edge), data_format=lowerCamelCase__, **lowerCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowerCamelCase__, size=(shortest_edge, shortest_edge), resample=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, **lowerCamelCase__, ): return rescale(lowerCamelCase__, scale=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ = None, **lowerCamelCase__, ): return normalize(lowerCamelCase__, mean=lowerCamelCase__, std=lowerCamelCase__, data_format=lowerCamelCase__, **lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = None, lowerCamelCase__ = ChannelDimension.FIRST, **lowerCamelCase__, ): A : List[str] = do_resize if do_resize is not None else self.do_resize A : str = crop_pct if crop_pct is not None else self.crop_pct A : List[str] = resample if resample is not None else self.resample A : List[Any] = do_rescale if do_rescale is not None else self.do_rescale A : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor A : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize A : Optional[int] = image_mean if image_mean is not None else self.image_mean A : Optional[int] = image_std if image_std is not None else self.image_std A : Dict = size if size is not None else self.size A : Dict = get_size_dict(lowerCamelCase__, default_to_square=lowerCamelCase__ ) A : Tuple = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. A : Dict = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: A : Any = [self.resize(image=lowerCamelCase__, size=lowerCamelCase__, crop_pct=lowerCamelCase__, resample=lowerCamelCase__ ) for image in images] if do_rescale: A : Dict = [self.rescale(image=lowerCamelCase__, scale=lowerCamelCase__ ) for image in images] if do_normalize: A : List[str] = [self.normalize(image=lowerCamelCase__, mean=lowerCamelCase__, std=lowerCamelCase__ ) for image in images] A : Any = [to_channel_dimension_format(lowerCamelCase__, lowerCamelCase__ ) for image in images] A : Tuple = {"""pixel_values""": images} return BatchFeature(data=lowerCamelCase__, tensor_type=lowerCamelCase__ )
520
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = StableDiffusionControlNetImgaImgPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) __UpperCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) A_ : List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) A_ : List[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) A_ : List[str] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) A_ : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A_ : Optional[int] = CLIPTextModel(snake_case ) A_ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A_ : Any = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :int , snake_case :int=0 ): '''simple docstring''' if str(snake_case ).startswith("mps" ): A_ : Optional[Any] = torch.manual_seed(snake_case ) else: A_ : Union[str, Any] = torch.Generator(device=snake_case ).manual_seed(snake_case ) A_ : Union[str, Any] = 2 A_ : Dict = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ) A_ : Any = floats_tensor(control_image.shape , rng=random.Random(snake_case ) ).to(snake_case ) A_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : Union[str, Any] = Image.fromarray(np.uinta(snake_case ) ).convert("RGB" ).resize((64, 64) ) A_ : Union[str, Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = StableDiffusionControlNetImgaImgPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} __UpperCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCamelCase = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' torch.manual_seed(0 ) A_ : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(snake_case :Optional[int] ): if isinstance(snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) A_ : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(snake_case ) torch.manual_seed(0 ) A_ : Union[str, Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(snake_case ) torch.manual_seed(0 ) A_ : Optional[int] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) A_ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) A_ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A_ : Dict = CLIPTextModel(snake_case ) A_ : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) A_ : Optional[Any] = MultiControlNetModel([controlneta, controlneta] ) A_ : Union[str, Any] = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :str , snake_case :Optional[int]=0 ): '''simple docstring''' if str(snake_case ).startswith("mps" ): A_ : List[Any] = torch.manual_seed(snake_case ) else: A_ : Any = torch.Generator(device=snake_case ).manual_seed(snake_case ) A_ : Dict = 2 A_ : Tuple = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=snake_case , device=torch.device(snake_case ) , ), ] A_ : Dict = floats_tensor(control_image[0].shape , rng=random.Random(snake_case ) ).to(snake_case ) A_ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : List[str] = Image.fromarray(np.uinta(snake_case ) ).convert("RGB" ).resize((64, 64) ) A_ : int = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : str = self.get_dummy_components() A_ : List[str] = self.pipeline_class(**snake_case ) pipe.to(snake_case ) A_ : str = 10.0 A_ : List[Any] = 4 A_ : Tuple = self.get_dummy_inputs(snake_case ) A_ : int = steps A_ : Any = scale A_ : List[Any] = pipe(**snake_case )[0] A_ : Optional[Any] = self.get_dummy_inputs(snake_case ) A_ : Union[str, Any] = steps A_ : Union[str, Any] = scale A_ : Tuple = pipe(**snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] A_ : Any = self.get_dummy_inputs(snake_case ) A_ : List[Any] = steps A_ : Tuple = scale A_ : Any = pipe(**snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] A_ : Optional[Any] = self.get_dummy_inputs(snake_case ) A_ : str = steps A_ : Dict = scale A_ : str = pipe(**snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.get_dummy_components() A_ : List[Any] = self.pipeline_class(**snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Tuple = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) A_ : int = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=snake_case , controlnet=snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=snake_case ) A_ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) A_ : Optional[int] = "evil space-punk bird" A_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) A_ : List[str] = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) A_ : Any = pipe( snake_case , snake_case , control_image=snake_case , generator=snake_case , output_type="np" , num_inference_steps=50 , strength=0.6 , ) A_ : Dict = output.images[0] assert image.shape == (512, 512, 3) A_ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
454
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''umt5''' __UpperCamelCase = ['''past_key_values'''] def __init__( self :int , snake_case :Optional[Any]=250_112 , snake_case :Optional[int]=512 , snake_case :Any=64 , snake_case :Union[str, Any]=1_024 , snake_case :Tuple=8 , snake_case :Optional[int]=None , snake_case :Union[str, Any]=6 , snake_case :List[Any]=32 , snake_case :Dict=128 , snake_case :List[str]=0.1 , snake_case :List[Any]=1e-6 , snake_case :Dict=1.0 , snake_case :Union[str, Any]="gated-gelu" , snake_case :Union[str, Any]=True , snake_case :Any=True , snake_case :List[str]="T5Tokenizer" , snake_case :Union[str, Any]=True , snake_case :Union[str, Any]=0 , snake_case :List[Any]=1 , snake_case :List[Any]=0 , **snake_case :Any , ): '''simple docstring''' super().__init__( is_encoder_decoder=snake_case , tokenizer_class=snake_case , tie_word_embeddings=snake_case , pad_token_id=snake_case , eos_token_id=snake_case , decoder_start_token_id=snake_case , **snake_case , ) A_ : Union[str, Any] = vocab_size A_ : Tuple = d_model A_ : List[str] = d_kv A_ : Union[str, Any] = d_ff A_ : Any = num_layers A_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : List[Any] = num_heads A_ : List[str] = relative_attention_num_buckets A_ : Dict = relative_attention_max_distance A_ : Optional[Any] = dropout_rate A_ : Any = layer_norm_epsilon A_ : List[Any] = initializer_factor A_ : Any = feed_forward_proj A_ : Optional[Any] = use_cache A_ : int = self.feed_forward_proj.split("-" ) A_ : Any = act_info[-1] A_ : Tuple = act_info[0] == "gated" if len(snake_case ) > 1 and act_info[0] != "gated" or len(snake_case ) > 2: raise ValueError( f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer." "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) if feed_forward_proj == "gated-gelu": A_ : Optional[Any] = "gelu_new" @property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return self.d_model @property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return self.num_heads @property def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return self.num_layers class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = { "input_ids": {0: "batch", 1: "encoder_sequence"}, "attention_mask": {0: "batch", 1: "encoder_sequence"}, } if self.use_past: A_ : Any = "past_encoder_sequence + sequence" A_ : Union[str, Any] = {0: "batch"} A_ : Optional[int] = {0: "batch", 1: "past_decoder_sequence + sequence"} else: A_ : Dict = {0: "batch", 1: "decoder_sequence"} A_ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(snake_case , direction="inputs" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' return 13 @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return 5e-4
454
1
'''simple docstring''' import re def UpperCAmelCase ( lowerCamelCase_ :str ): '''simple docstring''' snake_case_ : str = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __A : List[str] = '0094702343221' print(is_sri_lankan_phone_number(phone))
706
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __A : Any = logging.getLogger(__name__) class __UpperCamelCase ( lowercase__ ): def a__ ( self :int ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Any=None ): snake_case_ : List[str] = self.layer[current_layer](_UpperCamelCase ,_UpperCamelCase ,head_mask[current_layer] ) snake_case_ : Tuple = layer_outputs[0] return hidden_states @add_start_docstrings( 'The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.' , lowercase__ , ) class __UpperCamelCase ( lowercase__ ): def __init__( self :Dict ,_UpperCamelCase :Optional[Any] ): super().__init__(_UpperCamelCase ) snake_case_ : List[Any] = BertEncoderWithPabee(_UpperCamelCase ) self.init_weights() snake_case_ : int = 0 snake_case_ : Optional[Any] = 0 snake_case_ : Any = 0 snake_case_ : str = 0 def a__ ( self :Tuple ,_UpperCamelCase :int ): snake_case_ : Optional[Any] = threshold def a__ ( self :Optional[Any] ,_UpperCamelCase :Union[str, Any] ): snake_case_ : str = patience def a__ ( self :Optional[int] ): snake_case_ : List[str] = 0 snake_case_ : List[Any] = 0 def a__ ( self :List[Any] ): snake_case_ : str = self.inference_layers_num / self.inference_instances_num snake_case_ : List[str] = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(_UpperCamelCase ) @add_start_docstrings_to_model_forward(_UpperCamelCase ) def a__ ( self :Optional[Any] ,_UpperCamelCase :Any=None ,_UpperCamelCase :List[str]=None ,_UpperCamelCase :Any=None ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :int=None ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :Any=None ,_UpperCamelCase :int=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :int=False ,): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: snake_case_ : Any = input_ids.size() elif inputs_embeds is not None: snake_case_ : Union[str, Any] = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) snake_case_ : Tuple = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: snake_case_ : Any = torch.ones(_UpperCamelCase ,device=_UpperCamelCase ) if token_type_ids is None: snake_case_ : str = torch.zeros(_UpperCamelCase ,dtype=torch.long ,device=_UpperCamelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. snake_case_ : torch.Tensor = self.get_extended_attention_mask(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: snake_case_ , snake_case_ , snake_case_ : List[Any] = encoder_hidden_states.size() snake_case_ : str = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: snake_case_ : List[str] = torch.ones(_UpperCamelCase ,device=_UpperCamelCase ) snake_case_ : Optional[Any] = self.invert_attention_mask(_UpperCamelCase ) else: snake_case_ : List[str] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] snake_case_ : List[Any] = self.get_head_mask(_UpperCamelCase ,self.config.num_hidden_layers ) snake_case_ : Dict = self.embeddings( input_ids=_UpperCamelCase ,position_ids=_UpperCamelCase ,token_type_ids=_UpperCamelCase ,inputs_embeds=_UpperCamelCase ) snake_case_ : Optional[int] = embedding_output if self.training: snake_case_ : Any = [] for i in range(self.config.num_hidden_layers ): snake_case_ : Any = self.encoder.adaptive_forward( _UpperCamelCase ,current_layer=_UpperCamelCase ,attention_mask=_UpperCamelCase ,head_mask=_UpperCamelCase ) snake_case_ : Dict = self.pooler(_UpperCamelCase ) snake_case_ : str = output_layers[i](output_dropout(_UpperCamelCase ) ) res.append(_UpperCamelCase ) elif self.patience == 0: # Use all layers for inference snake_case_ : List[str] = self.encoder( _UpperCamelCase ,attention_mask=_UpperCamelCase ,head_mask=_UpperCamelCase ,encoder_hidden_states=_UpperCamelCase ,encoder_attention_mask=_UpperCamelCase ,) snake_case_ : int = self.pooler(encoder_outputs[0] ) snake_case_ : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCamelCase )] else: snake_case_ : Any = 0 snake_case_ : List[str] = None snake_case_ : Any = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 snake_case_ : Dict = self.encoder.adaptive_forward( _UpperCamelCase ,current_layer=_UpperCamelCase ,attention_mask=_UpperCamelCase ,head_mask=_UpperCamelCase ) snake_case_ : Union[str, Any] = self.pooler(_UpperCamelCase ) snake_case_ : Optional[Any] = output_layers[i](_UpperCamelCase ) if regression: snake_case_ : Union[str, Any] = logits.detach() if patient_result is not None: snake_case_ : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: snake_case_ : Union[str, Any] = 0 else: snake_case_ : Any = logits.detach().argmax(dim=1 ) if patient_result is not None: snake_case_ : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCamelCase ) ): patient_counter += 1 else: snake_case_ : List[str] = 0 snake_case_ : List[Any] = logits if patient_counter == self.patience: break snake_case_ : int = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( 'Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. ' , lowercase__ , ) class __UpperCamelCase ( lowercase__ ): def __init__( self :Tuple ,_UpperCamelCase :List[str] ): super().__init__(_UpperCamelCase ) snake_case_ : List[str] = config.num_labels snake_case_ : Dict = BertModelWithPabee(_UpperCamelCase ) snake_case_ : List[str] = nn.Dropout(config.hidden_dropout_prob ) snake_case_ : str = nn.ModuleList( [nn.Linear(config.hidden_size ,self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCamelCase ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Tuple=None ,_UpperCamelCase :Dict=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Union[str, Any]=None ,_UpperCamelCase :Tuple=None ,_UpperCamelCase :int=None ,_UpperCamelCase :Union[str, Any]=None ,): snake_case_ : int = self.bert( input_ids=_UpperCamelCase ,attention_mask=_UpperCamelCase ,token_type_ids=_UpperCamelCase ,position_ids=_UpperCamelCase ,head_mask=_UpperCamelCase ,inputs_embeds=_UpperCamelCase ,output_dropout=self.dropout ,output_layers=self.classifiers ,regression=self.num_labels == 1 ,) snake_case_ : Optional[int] = (logits[-1],) if labels is not None: snake_case_ : Optional[Any] = None snake_case_ : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCamelCase ): if self.num_labels == 1: # We are doing regression snake_case_ : Dict = MSELoss() snake_case_ : List[str] = loss_fct(logits_item.view(-1 ) ,labels.view(-1 ) ) else: snake_case_ : Any = CrossEntropyLoss() snake_case_ : str = loss_fct(logits_item.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) if total_loss is None: snake_case_ : str = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 snake_case_ : str = (total_loss / total_weights,) + outputs return outputs
267
0
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _lowercase ( __A="" ): '''simple docstring''' __UpperCamelCase = tempfile.mkdtemp() return os.path.join(__A ,str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 __UpperCamelCase = AgentAudio(lowercase ) __UpperCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase ) ) # Ensure that the file contains the same value as the original tensor __UpperCamelCase , __UpperCamelCase = sf.read(lowercase ) self.assertTrue(torch.allclose(lowercase , torch.tensor(lowercase ) , atol=1E-4 ) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 __UpperCamelCase = get_new_path(suffix=""".wav""" ) sf.write(lowercase , lowercase , 1_6_0_0_0 ) __UpperCamelCase = AgentAudio(lowercase ) self.assertTrue(torch.allclose(lowercase , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowercase ) @require_vision @require_torch class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) __UpperCamelCase = AgentImage(lowercase ) __UpperCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase ) ) def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" __UpperCamelCase = Image.open(lowercase ) __UpperCamelCase = AgentImage(lowercase ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase ) ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" __UpperCamelCase = Image.open(lowercase ) __UpperCamelCase = AgentImage(lowercase ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase ) ) class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = """Hey!""" __UpperCamelCase = AgentText(lowercase ) self.assertEqual(lowercase , agent_type.to_string() ) self.assertEqual(lowercase , agent_type.to_raw() ) self.assertEqual(lowercase , lowercase )
601
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase): __SCREAMING_SNAKE_CASE = RobertaTokenizer __SCREAMING_SNAKE_CASE = RobertaTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = {'''cls_token''': '''<s>'''} def __lowerCamelCase ( self ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] __UpperCamelCase = dict(zip(lowercase , range(len(lowercase ) ) ) ) __UpperCamelCase = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] __UpperCamelCase = {"""unk_token""": """<unk>"""} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowercase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowercase ) ) def __lowerCamelCase ( self , **lowercase ) -> Any: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def __lowerCamelCase ( self , **lowercase ) -> List[Any]: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def __lowerCamelCase ( self , lowercase ) -> Optional[int]: __UpperCamelCase = """lower newer""" __UpperCamelCase = """lower newer""" return input_text, output_text def __lowerCamelCase ( self ) -> List[str]: __UpperCamelCase = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase = """lower newer""" __UpperCamelCase = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] __UpperCamelCase = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=lowercase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=lowercase ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def __lowerCamelCase ( self ) -> str: __UpperCamelCase = self.tokenizer_class.from_pretrained("""roberta-base""" ) __UpperCamelCase = tokenizer.encode("""sequence builders""" , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.encode( """sequence builders""" , add_special_tokens=lowercase , add_prefix_space=lowercase ) __UpperCamelCase = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=lowercase , add_prefix_space=lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase ) __UpperCamelCase = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = """Encode this sequence.""" __UpperCamelCase = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments __UpperCamelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) __UpperCamelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) __UpperCamelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens __UpperCamelCase = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space __UpperCamelCase = tokenizer.convert_tokens_to_ids(lowercase ) __UpperCamelCase = """Encode <mask> sequence""" __UpperCamelCase = """Encode <mask>sequence""" __UpperCamelCase = tokenizer.encode(lowercase ) __UpperCamelCase = encoded.index(lowercase ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) __UpperCamelCase = tokenizer.encode(lowercase ) __UpperCamelCase = encoded.index(lowercase ) __UpperCamelCase = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def __lowerCamelCase ( self ) -> Any: pass def __lowerCamelCase ( self ) -> Dict: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) __UpperCamelCase = """A, <mask> AllenNLP sentence.""" __UpperCamelCase = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) __UpperCamelCase = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) __UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) __UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( lowercase , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def __lowerCamelCase ( self ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) __UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) __UpperCamelCase = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , lowercase ) self.assertEqual(post_processor_state["""add_prefix_space"""] , lowercase ) self.assertEqual(post_processor_state["""trim_offsets"""] , lowercase ) def __lowerCamelCase ( self ) -> Optional[Any]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __UpperCamelCase = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` __UpperCamelCase = f"{text_of_1_token} {text_of_1_token}" __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) __UpperCamelCase = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) __UpperCamelCase = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) __UpperCamelCase = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) __UpperCamelCase = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) __UpperCamelCase = f" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) __UpperCamelCase = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) __UpperCamelCase = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) __UpperCamelCase = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) __UpperCamelCase = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
601
1
"""simple docstring""" from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput A = 8 def UpperCamelCase_ ( lowerCamelCase : Dict , lowerCamelCase : Optional[int]=BITS ) -> List[Any]: """simple docstring""" __magic_name__ : Optional[Any] = x.device __magic_name__ : int = (x * 255).int().clamp(0 , 255 ) __magic_name__ : Dict = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase ) __magic_name__ : Union[str, Any] = rearrange(lowerCamelCase , '''d -> d 1 1''' ) __magic_name__ : Tuple = rearrange(lowerCamelCase , '''b c h w -> b c 1 h w''' ) __magic_name__ : Tuple = ((x & mask) != 0).float() __magic_name__ : List[Any] = rearrange(lowerCamelCase , '''b c d h w -> b (c d) h w''' ) __magic_name__ : Dict = bits * 2 - 1 return bits def UpperCamelCase_ ( lowerCamelCase : List[Any] , lowerCamelCase : Union[str, Any]=BITS ) -> Optional[Any]: """simple docstring""" __magic_name__ : Union[str, Any] = x.device __magic_name__ : Optional[Any] = (x > 0).int() __magic_name__ : Union[str, Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCamelCase , dtype=torch.intaa ) __magic_name__ : Union[str, Any] = rearrange(lowerCamelCase , '''d -> d 1 1''' ) __magic_name__ : List[str] = rearrange(lowerCamelCase , '''b (c d) h w -> b c d h w''' , d=8 ) __magic_name__ : int = reduce(x * mask , '''b c d h w -> b c h w''' , '''sum''' ) return (dec / 255).clamp(0.0 , 1.0 ) def UpperCamelCase_ ( self : Optional[Any] , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int , lowerCamelCase : torch.FloatTensor , lowerCamelCase : float = 0.0 , lowerCamelCase : bool = True , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( '''Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler''' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __magic_name__ : List[str] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __magic_name__ : List[Any] = self.alphas_cumprod[timestep] __magic_name__ : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __magic_name__ : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __magic_name__ : int = self.bit_scale if self.config.clip_sample: __magic_name__ : Union[str, Any] = torch.clamp(lowerCamelCase , -scale , lowerCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __magic_name__ : Optional[int] = self._get_variance(lowerCamelCase , lowerCamelCase ) __magic_name__ : Any = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __magic_name__ : Any = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ : List[str] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __magic_name__ : Dict = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __magic_name__ : Dict = model_output.device if torch.is_tensor(lowerCamelCase ) else '''cpu''' __magic_name__ : List[Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCamelCase ).to(lowerCamelCase ) __magic_name__ : Tuple = self._get_variance(lowerCamelCase , lowerCamelCase ) ** 0.5 * eta * noise __magic_name__ : Union[str, Any] = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) def UpperCamelCase_ ( self : Dict , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int , lowerCamelCase : torch.FloatTensor , lowerCamelCase : int="epsilon" , lowerCamelCase : int=None , lowerCamelCase : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" __magic_name__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __magic_name__ , __magic_name__ : int = torch.split(lowerCamelCase , sample.shape[1] , dim=1 ) else: __magic_name__ : Union[str, Any] = None # 1. compute alphas, betas __magic_name__ : int = self.alphas_cumprod[t] __magic_name__ : Tuple = self.alphas_cumprod[t - 1] if t > 0 else self.one __magic_name__ : str = 1 - alpha_prod_t __magic_name__ : Dict = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __magic_name__ : Dict = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __magic_name__ : Optional[Any] = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" __magic_name__ : str = self.bit_scale if self.config.clip_sample: __magic_name__ : Any = torch.clamp(lowerCamelCase , -scale , lowerCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[str] = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __magic_name__ : List[str] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __magic_name__ : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __magic_name__ : Dict = 0 if t > 0: __magic_name__ : Dict = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCamelCase ).to(model_output.device ) __magic_name__ : str = (self._get_variance(lowerCamelCase , predicted_variance=lowerCamelCase ) ** 0.5) * noise __magic_name__ : Optional[Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCamelCase , pred_original_sample=lowerCamelCase ) class _UpperCamelCase ( lowerCamelCase__ ): """simple docstring""" def __init__( self : Any , snake_case : UNetaDConditionModel , snake_case : Union[DDIMScheduler, DDPMScheduler] , snake_case : Optional[float] = 1.0 , ) -> Optional[Any]: '''simple docstring''' super().__init__() __magic_name__ : str = bit_scale __magic_name__ : str = ( ddim_bit_scheduler_step if isinstance(snake_case , snake_case ) else ddpm_bit_scheduler_step ) self.register_modules(unet=snake_case , scheduler=snake_case ) @torch.no_grad() def __call__( self : str , snake_case : Optional[int] = 256 , snake_case : Optional[int] = 256 , snake_case : Optional[int] = 50 , snake_case : Optional[torch.Generator] = None , snake_case : Optional[int] = 1 , snake_case : Optional[str] = "pil" , snake_case : bool = True , **snake_case : int , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' __magic_name__ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=snake_case , ) __magic_name__ : Tuple = decimal_to_bits(snake_case ) * self.bit_scale __magic_name__ : Dict = latents.to(self.device ) self.scheduler.set_timesteps(snake_case ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __magic_name__ : Any = self.unet(snake_case , snake_case ).sample # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : List[str] = self.scheduler.step(snake_case , snake_case , snake_case ).prev_sample __magic_name__ : List[str] = bits_to_decimal(snake_case ) if output_type == "pil": __magic_name__ : Tuple = self.numpy_to_pil(snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case )
147
"""simple docstring""" def UpperCamelCase_ ( lowerCamelCase : float ) -> float: """simple docstring""" return 10 - x * x def UpperCamelCase_ ( lowerCamelCase : float , lowerCamelCase : float ) -> float: """simple docstring""" if equation(lowerCamelCase ) * equation(lowerCamelCase ) >= 0: raise ValueError('''Wrong space!''' ) __magic_name__ : int = a while (b - a) >= 0.0_1: # Find middle point __magic_name__ : str = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase ) * equation(lowerCamelCase ) < 0: __magic_name__ : Union[str, Any] = c else: __magic_name__ : List[str] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
147
1
'''simple docstring''' def lowercase__ ( __UpperCamelCase : List[Any] , __UpperCamelCase : Any ): '''simple docstring''' __lowercase = len(__UpperCamelCase ) print("""The following activities are selected:""" ) # The first activity is always selected __lowercase = 0 print(__UpperCamelCase , end=""",""" ) # Consider rest of the activities for j in range(__UpperCamelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__UpperCamelCase , end=""",""" ) __lowercase = j if __name__ == "__main__": import doctest doctest.testmod() snake_case : int = [1, 3, 0, 5, 8, 5] snake_case : Optional[Any] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
566
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["MLukeTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
393
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
323
'''simple docstring''' from typing import Any def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , _SCREAMING_SNAKE_CASE : dict , ) -> list: """simple docstring""" _validation( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) # Creates data structures and fill initial step UpperCAmelCase_ : dict = {} UpperCAmelCase_ : dict = {} for state in states_space: UpperCAmelCase_ : Optional[int] = observations_space[0] UpperCAmelCase_ : List[str] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCAmelCase_ : str = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(_SCREAMING_SNAKE_CASE ) ): UpperCAmelCase_ : Any = observations_space[o] UpperCAmelCase_ : Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCAmelCase_ : List[str] = "" UpperCAmelCase_ : Any = -1 for k_state in states_space: UpperCAmelCase_ : Optional[Any] = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCAmelCase_ : List[Any] = probability UpperCAmelCase_ : List[Any] = k_state # Update probabilities and pointers dicts UpperCAmelCase_ : Optional[int] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCAmelCase_ : str = arg_max # The final observation UpperCAmelCase_ : str = observations_space[len(_SCREAMING_SNAKE_CASE ) - 1] # argmax for given final observation UpperCAmelCase_ : Tuple = "" UpperCAmelCase_ : str = -1 for k_state in states_space: UpperCAmelCase_ : int = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCAmelCase_ : Optional[Any] = probability UpperCAmelCase_ : Optional[Any] = k_state UpperCAmelCase_ : Any = arg_max # Process pointers backwards UpperCAmelCase_ : Union[str, Any] = last_state UpperCAmelCase_ : List[str] = [] for o in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): result.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = pointers[previous, observations_space[o]] result.reverse() return result def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ) -> None: """simple docstring""" _validate_not_empty( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) _validate_lists(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _validate_dicts( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any ) -> None: """simple docstring""" _validate_list(_SCREAMING_SNAKE_CASE , "observations_space" ) _validate_list(_SCREAMING_SNAKE_CASE , "states_space" ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" if not isinstance(_object , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Tuple = F'''{var_name} must be a list''' raise ValueError(_SCREAMING_SNAKE_CASE ) else: for x in _object: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Optional[int] = F'''{var_name} must be a list of strings''' raise ValueError(_SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Any , ) -> None: """simple docstring""" _validate_dict(_SCREAMING_SNAKE_CASE , "initial_probabilities" , _SCREAMING_SNAKE_CASE ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , "transition_probabilities" ) _validate_nested_dict(_SCREAMING_SNAKE_CASE , "emission_probabilities" ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" _validate_dict(_object , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values(): _validate_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : type , _SCREAMING_SNAKE_CASE : bool = False ) -> None: """simple docstring""" if not isinstance(_object , _SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : int = F'''{var_name} must be a dict''' raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object ): UpperCAmelCase_ : Optional[Any] = F'''{var_name} all keys must be strings''' raise ValueError(_SCREAMING_SNAKE_CASE ) if not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for x in _object.values() ): UpperCAmelCase_ : str = "nested dictionary " if nested else "" UpperCAmelCase_ : Optional[int] = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": from doctest import testmod testmod()
323
1
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __snake_case , __snake_case , __snake_case = False, False, False @dataclass class _SCREAMING_SNAKE_CASE : """simple docstring""" _a : Optional[int] = None _a : bool = True _a : bool = True _a : Optional[str] = None # Automatically constructed _a : ClassVar[str] = "dict" _a : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _a : str = field(default='''Audio''' , init=__UpperCAmelCase , repr=__UpperCAmelCase ) def __call__( self ) -> Union[str, Any]: return self.pa_type def UpperCAmelCase__( self , lowerCamelCase__ ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"bytes": None, "path": value} elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase__ : int = BytesIO() sf.write(lowerCamelCase__ , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase__ : Tuple = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: lowercase__ : Union[str, Any] = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 3_2767 lowercase__ : Union[str, Any] = BytesIO(bytes() ) sf.write(lowerCamelCase__ , lowerCamelCase__ , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def UpperCAmelCase__( self , lowerCamelCase__ , lowerCamelCase__ = None ) -> dict: if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) lowercase__ , lowercase__ : Tuple = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err lowercase__ : Dict = xsplitext(lowerCamelCase__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: lowercase__ : str = token_per_repo_id or {} lowercase__ : str = path.split("""::""" )[-1] try: lowercase__ : Dict = string_to_dict(lowerCamelCase__ , config.HUB_DATASETS_URL )["""repo_id"""] lowercase__ : List[str] = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase__ : Union[str, Any] = None with xopen(lowerCamelCase__ , """rb""" , use_auth_token=lowerCamelCase__ ) as f: lowercase__ , lowercase__ : int = sf.read(lowerCamelCase__ ) else: lowercase__ , lowercase__ : Union[str, Any] = sf.read(lowerCamelCase__ ) lowercase__ : str = array.T if self.mono: lowercase__ : Optional[int] = librosa.to_mono(lowerCamelCase__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase__ : List[Any] = librosa.resample(lowerCamelCase__ , orig_sr=lowerCamelCase__ , target_sr=self.sampling_rate ) lowercase__ : str = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCAmelCase__( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def UpperCAmelCase__( self , lowerCamelCase__ ) -> pa.StructArray: if pa.types.is_string(storage.type ): lowercase__ : Tuple = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) lowercase__ : Dict = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): lowercase__ : Tuple = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) lowercase__ : Union[str, Any] = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): lowercase__ : List[Any] = pa.array([Audio().encode_example(lowerCamelCase__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: lowercase__ : List[str] = storage.field("""bytes""" ) else: lowercase__ : Dict = pa.array([None] * len(lowerCamelCase__ ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: lowercase__ : Union[str, Any] = storage.field("""path""" ) else: lowercase__ : Union[str, Any] = pa.array([None] * len(lowerCamelCase__ ) , type=pa.string() ) lowercase__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type ) def UpperCAmelCase__( self , lowerCamelCase__ ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(lowerCamelCase__ ): with xopen(lowerCamelCase__ , """rb""" ) as f: lowercase__ : Optional[Any] = f.read() return bytes_ lowercase__ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase__ : Any = pa.array( [os.path.basename(lowerCamelCase__ ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) lowercase__ : str = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(lowerCamelCase__ , self.pa_type )
200
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __snake_case = { 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 128, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 50, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 10, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 10, 'exponential_decay_length_penalty': (5, 1.01), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @classmethod def UpperCAmelCase__( cls ) -> Dict: lowercase__ : str = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def UpperCAmelCase__( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id="""test-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-config""" ) except HTTPError: pass def UpperCAmelCase__( self ) -> List[str]: lowercase__ : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""test-config""" , use_auth_token=self._token ) lowercase__ : Union[str, Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase__ , repo_id="""test-config""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) lowercase__ : Optional[Any] = BertConfig.from_pretrained(F'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def UpperCAmelCase__( self ) -> Optional[Any]: lowercase__ : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token ) lowercase__ : List[str] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase__ , repo_id="""valid_org/test-config-org""" , push_to_hub=lowerCamelCase__ , use_auth_token=self._token ) lowercase__ : Optional[Any] = BertConfig.from_pretrained("""valid_org/test-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) def UpperCAmelCase__( self ) -> Dict: CustomConfig.register_for_auto_class() lowercase__ : int = CustomConfig(attribute=42 ) config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} ) lowercase__ : Any = AutoConfig.from_pretrained(F'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" ) self.assertEqual(new_config.attribute , 42 ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__( self ) -> Tuple: lowercase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowercase__ : List[str] = c.n_embd + 1 # int lowercase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowercase__ : int = not c.scale_attn_weights # bool lowercase__ : Optional[int] = c.summary_type + """foo""" # str c.update_from_string( F'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase__ , c.n_embd , """mismatch for key: n_embd""" ) self.assertEqual(lowerCamelCase__ , c.resid_pdrop , """mismatch for key: resid_pdrop""" ) self.assertEqual(lowerCamelCase__ , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" ) self.assertEqual(lowerCamelCase__ , c.summary_type , """mismatch for key: summary_type""" ) def UpperCAmelCase__( self ) -> Optional[int]: lowercase__ : List[str] = PretrainedConfig() lowercase__ : Union[str, Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase__ , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] ) lowercase__ : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase__ , lowerCamelCase__ )] if len(lowerCamelCase__ ) > 0: raise ValueError( """The following keys are set with the default values in""" """ `test_configuration_common.config_common_kwargs` pick another value for them:""" F''' {', '.join(lowerCamelCase__ )}.''' ) def UpperCAmelCase__( self ) -> Optional[Any]: with self.assertRaises(lowerCamelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase__ : str = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" ) lowercase__ : Union[str, Any] = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCAmelCase__( self ) -> Union[str, Any]: # A mock response for an HTTP head request to emulate server down lowercase__ : Dict = mock.Mock() lowercase__ : str = 500 lowercase__ : int = {} lowercase__ : Optional[int] = HTTPError lowercase__ : Dict = {} # Download this model to make sure it's in the cache. lowercase__ : Any = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=lowerCamelCase__ ) as mock_head: lowercase__ : int = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__( self ) -> int: # This test is for deprecated behavior and can be removed in v5 lowercase__ : Optional[Any] = BertConfig.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" ) def UpperCAmelCase__( self ) -> List[Any]: lowercase__ : Optional[int] = AutoConfig.from_pretrained("""bert-base-cased""" ) lowercase__ : Union[str, Any] = ["""config.4.0.0.json"""] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase__ ) lowercase__ : Optional[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCamelCase__ , """config.4.0.0.json""" ) , """w""" ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowercase__ : Optional[int] = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowercase__ : Optional[int] = ["""config.42.0.0.json"""] lowercase__ : Optional[int] = 768 configuration.save_pretrained(lowerCamelCase__ ) shutil.move(os.path.join(lowerCamelCase__ , """config.4.0.0.json""" ) , os.path.join(lowerCamelCase__ , """config.42.0.0.json""" ) ) lowercase__ : Dict = AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def UpperCAmelCase__( self ) -> List[Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. lowercase__ : Any = """hf-internal-testing/test-two-configs""" import transformers as new_transformers lowercase__ : Union[str, Any] = """v4.0.0""" lowercase__ , lowercase__ : int = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase__ , return_unused_kwargs=lowerCamelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowercase__ : str = """v3.0.0""" lowercase__ : int = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
200
1
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class __A ( UpperCamelCase__ ): def __lt__( self :List[Any] , __snake_case :Dict ): '''simple docstring''' return self[-1] < other[-1] def __eq__( self :Any , __snake_case :Optional[Any] ): '''simple docstring''' return self[-1] == other[-1] def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : list[Stack] =[] # sort into stacks for element in collection: __magic_name__ : int =Stack([element] ) __magic_name__ : Dict =bisect_left(lowerCamelCase , lowerCamelCase ) if i != len(lowerCamelCase ): stacks[i].append(lowerCamelCase ) else: stacks.append(lowerCamelCase ) # use a heap-based merge to merge stack efficiently __magic_name__ : Any =merge(*(reversed(lowerCamelCase ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase_ : Union[str, Any] = input("Enter numbers separated by a comma:\n").strip() UpperCAmelCase_ : Dict = [int(item) for item in user_input.split(",")] print(patience_sort(unsorted))
367
UpperCAmelCase_ : int = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] UpperCAmelCase_ : Optional[Any] = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] UpperCAmelCase_ : int = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] UpperCAmelCase_ : Dict = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] UpperCAmelCase_ : int = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] UpperCAmelCase_ : str = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] UpperCAmelCase_ : Any = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] UpperCAmelCase_ : Any = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
367
1
import qiskit def _lowerCAmelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: '''simple docstring''' __snake_case = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register __snake_case = qiskit.QuantumCircuit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator __snake_case = qiskit.execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''')
371
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowercase = get_logger(__name__) class __lowerCamelCase : '''simple docstring''' snake_case__ : Optional[Any] = '''dummy_data''' snake_case__ : Optional[int] = '''datasets''' snake_case__ : Any = False def __init__( self , a__ , a__ , a__ , a__ = None , a__ = False , a__ = True , a__ = None , ): __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : Optional[Any] = dataset_name __SCREAMING_SNAKE_CASE : List[str] = cache_dir __SCREAMING_SNAKE_CASE : Optional[int] = use_local_dummy_data __SCREAMING_SNAKE_CASE : Optional[Any] = config # download_callbacks take a single url as input __SCREAMING_SNAKE_CASE : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root __SCREAMING_SNAKE_CASE : Optional[int] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general __SCREAMING_SNAKE_CASE : List[Any] = str(a__ ) # to be downloaded __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Any = None @property def a_ ( self ): if self._dummy_file is None: __SCREAMING_SNAKE_CASE : Tuple = self.download_dummy_data() return self._dummy_file @property def a_ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def a_ ( self ): return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def a_ ( self ): __SCREAMING_SNAKE_CASE : Any = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) __SCREAMING_SNAKE_CASE : int = cached_path( a__ , cache_dir=self.cache_dir , extract_compressed_file=a__ , force_extract=a__ ) return os.path.join(a__ , self.dummy_file_name ) @property def a_ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def a_ ( self ): if self._bucket_url is None: __SCREAMING_SNAKE_CASE : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def a_ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def a_ ( self , a__ , *a__ ): if self.load_existing_dummy_data: # dummy data is downloaded and tested __SCREAMING_SNAKE_CASE : Any = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_file_name # special case when data_url is a dict if isinstance(a__ , a__ ): return self.create_dummy_data_dict(a__ , a__ ) elif isinstance(a__ , (list, tuple) ): return self.create_dummy_data_list(a__ , a__ ) else: return self.create_dummy_data_single(a__ , a__ ) def a_ ( self , a__ , *a__ ): return self.download_and_extract(a__ ) def a_ ( self , a__ , a__ ): return self.download_and_extract(a__ ) def a_ ( self , a__ , *a__ , **a__ ): return path def a_ ( self ): return {} def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(a__ , a__ ): for single_url in single_urls: download_callback(a__ ) else: __SCREAMING_SNAKE_CASE : Any = single_urls download_callback(a__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE : Any = [os.path.join(a__ , urllib.parse.quote_plus(Path(a__ ).name ) ) for x in single_urls] else: __SCREAMING_SNAKE_CASE : Optional[Any] = single_urls __SCREAMING_SNAKE_CASE : str = os.path.join(a__ , urllib.parse.quote_plus(Path(a__ ).name ) ) __SCREAMING_SNAKE_CASE : List[str] = value # make sure that values are unique if all(isinstance(a__ , a__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique __SCREAMING_SNAKE_CASE : Union[str, Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def a_ ( self , a__ , a__ ): __SCREAMING_SNAKE_CASE : List[str] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one __SCREAMING_SNAKE_CASE : Optional[int] = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , a__ ) ) for url in data_url ) __SCREAMING_SNAKE_CASE : List[str] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): __SCREAMING_SNAKE_CASE : Union[str, Any] = [data_url[0]] * len(a__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(a__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __SCREAMING_SNAKE_CASE : str = os.path.join(a__ , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(a__ ) return dummy_data_list def a_ ( self , a__ , a__ ): for download_callback in self.download_callbacks: download_callback(a__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(a__ , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(a__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def a_ ( self ): pass def a_ ( self ): pass def a_ ( self , a__ ): def _iter_archive_members(a__ ): # this preserves the order of the members inside the ZIP archive __SCREAMING_SNAKE_CASE : Dict = Path(self.dummy_file ).parent __SCREAMING_SNAKE_CASE : str = path.relative_to(a__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: __SCREAMING_SNAKE_CASE : Any = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(a__ ) __SCREAMING_SNAKE_CASE : List[Any] = Path(a__ ) __SCREAMING_SNAKE_CASE : int = _iter_archive_members(a__ ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(a__ ).as_posix(), file_path.open("rb" ) def a_ ( self , a__ ): if not isinstance(a__ , a__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [paths] for path in paths: if os.path.isfile(a__ ): if os.path.basename(a__ ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(a__ ): if os.path.basename(a__ ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(a__ ): if filename.startswith((".", "__") ): continue yield os.path.join(a__ , a__ )
211
0
"""simple docstring""" import flax.linen as nn import jax import jax.numpy as jnp class _lowerCAmelCase ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : List[Any] , a : Union[str, Any] ) -> int: """simple docstring""" lowercase , lowercase , lowercase , lowercase = hidden_states.shape lowercase = jax.image.resize( a , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) lowercase = self.conv(a ) return hidden_states class _lowerCAmelCase ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" lowercase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[Any] , a : Dict ) -> Tuple: """simple docstring""" lowercase = self.conv(a ) return hidden_states class _lowerCAmelCase ( nn.Module ): __lowerCAmelCase : int __lowerCAmelCase : int = None __lowerCAmelCase : float = 0.0 __lowerCAmelCase : bool = None __lowerCAmelCase : jnp.dtype = jnp.floataa def _lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" lowercase = self.in_channels if self.out_channels is None else self.out_channels lowercase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase = nn.Conv( a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = nn.Dense(a , dtype=self.dtype ) lowercase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) lowercase = nn.Dropout(self.dropout_prob ) lowercase = nn.Conv( a , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut lowercase = None if use_nin_shortcut: lowercase = nn.Conv( a , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__( self : List[Any] , a : str , a : Any , a : Dict=True ) -> int: """simple docstring""" lowercase = hidden_states lowercase = self.norma(a ) lowercase = nn.swish(a ) lowercase = self.conva(a ) lowercase = self.time_emb_proj(nn.swish(a ) ) lowercase = jnp.expand_dims(jnp.expand_dims(a , 1 ) , 1 ) lowercase = hidden_states + temb lowercase = self.norma(a ) lowercase = nn.swish(a ) lowercase = self.dropout(a , a ) lowercase = self.conva(a ) if self.conv_shortcut is not None: lowercase = self.conv_shortcut(a ) return hidden_states + residual
718
"""simple docstring""" import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def A_ ( __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[int] ): lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' lowercase = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ).convert('''RGB''' ) lowercase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73) , (0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11) ), ] ) lowercase = transform(__UpperCamelCase ).unsqueeze(0 ).to(__UpperCamelCase ) return image def A_ ( __UpperCamelCase : str ): if "visual_encoder" in key: lowercase = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , __UpperCamelCase ) if "blocks" in key: lowercase = re.sub(R'''blocks''' , '''layers''' , __UpperCamelCase ) if "attn" in key: lowercase = re.sub(R'''attn''' , '''self_attn''' , __UpperCamelCase ) if "norm1" in key: lowercase = re.sub(R'''norm1''' , '''layer_norm1''' , __UpperCamelCase ) if "norm2" in key: lowercase = re.sub(R'''norm2''' , '''layer_norm2''' , __UpperCamelCase ) if "encoder.norm" in key: lowercase = re.sub(R'''encoder.norm''' , '''post_layernorm''' , __UpperCamelCase ) if "encoder.patch_embed.proj" in key: lowercase = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , __UpperCamelCase ) if "encoder.pos_embed" in key: lowercase = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , __UpperCamelCase ) if "encoder.cls_token" in key: lowercase = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , __UpperCamelCase ) if "self_attn" in key: lowercase = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , __UpperCamelCase ) return key @torch.no_grad() def A_ ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int]=None ): if config_path is not None: lowercase = BlipConfig.from_pretrained(__UpperCamelCase ) else: lowercase = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} ) lowercase = BlipForConditionalGeneration(__UpperCamelCase ).eval() lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' lowercase = blip_decoder(pretrained=__UpperCamelCase , image_size=3_84 , vit='''base''' ) lowercase = pt_model.eval() lowercase = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value hf_model.load_state_dict(__UpperCamelCase ) lowercase = 3_84 lowercase = load_demo_image(image_size=__UpperCamelCase , device='''cpu''' ) lowercase = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase = tokenizer(['''a picture of'''] ).input_ids lowercase = hf_model.generate(__UpperCamelCase , __UpperCamelCase ) assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] lowercase = hf_model.generate(__UpperCamelCase ) assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(__UpperCamelCase ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) lowercase = blip_vqa(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit='''base''' ) vqa_model.eval() lowercase = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value lowercase = BlipForQuestionAnswering(__UpperCamelCase ) hf_vqa_model.load_state_dict(__UpperCamelCase ) lowercase = ['''How many dogs are in this image?'''] lowercase = tokenizer(__UpperCamelCase , return_tensors='''pt''' ).input_ids lowercase = hf_vqa_model.generate(__UpperCamelCase , __UpperCamelCase ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' lowercase = blip_itm(pretrained=__UpperCamelCase , image_size=__UpperCamelCase , vit='''base''' ) itm_model.eval() lowercase = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase = modified_state_dict.pop(__UpperCamelCase ) lowercase = rename_key(__UpperCamelCase ) lowercase = value lowercase = BlipForImageTextRetrieval(__UpperCamelCase ) lowercase = ['''A picture of a woman with a dog sitting in a beach'''] lowercase = tokenizer( __UpperCamelCase , return_tensors='''pt''' , padding='''max_length''' , truncation=__UpperCamelCase , max_length=35 , ).input_ids hf_itm_model.load_state_dict(__UpperCamelCase ) hf_itm_model.eval() lowercase = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) lowercase = hf_itm_model(__UpperCamelCase , __UpperCamelCase , use_itm_head=__UpperCamelCase ) assert out[0].item() == 0.21_10_68_74_94_27_79_54 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_56_98_84_53_86_50_51_27 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __lowerCAmelCase = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
396
0