code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class _lowerCamelCase: lowercase_ : int lowercase_ : int class _lowerCamelCase: def __init__( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : list[list[Edge]] = [[] for _ in range(__snake_case)] _lowercase : Any = size def __getitem__( self, lowerCamelCase) -> List[Any]: """simple docstring""" return iter(self._graph[vertex]) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" return self._size def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> List[Any]: """simple docstring""" if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.') if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).') self._graph[from_vertex].append(Edge(__snake_case, __snake_case)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> Tuple: """simple docstring""" _lowercase : Tuple = deque([start_vertex]) _lowercase : list[int | None] = [None] * self.size _lowercase : Union[str, Any] = 0 while queue: _lowercase : Optional[int] = queue.popleft() _lowercase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _lowercase : List[Any] = current_distance + edge.weight _lowercase : Union[str, Any] = distances[edge.destination_vertex] if ( isinstance(__snake_case, __snake_case) and new_distance >= dest_vertex_distance ): continue _lowercase : str = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.') return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
89
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Any = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowercase__ ( _snake_case ): '''simple docstring''' A_ : Dict = """gpt_bigcode""" A_ : str = ["""past_key_values"""] A_ : Tuple = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __snake_case=5_0257 , __snake_case=1024 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=None , __snake_case="gelu_pytorch_tanh" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=1e-5 , __snake_case=0.02 , __snake_case=True , __snake_case=True , __snake_case=5_0256 , __snake_case=5_0256 , __snake_case=True , __snake_case=True , __snake_case=True , **__snake_case , ): _SCREAMING_SNAKE_CASE : Optional[Any] = vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = n_positions _SCREAMING_SNAKE_CASE : List[Any] = n_embd _SCREAMING_SNAKE_CASE : Union[str, Any] = n_layer _SCREAMING_SNAKE_CASE : Union[str, Any] = n_head _SCREAMING_SNAKE_CASE : Optional[int] = n_inner _SCREAMING_SNAKE_CASE : Optional[Any] = activation_function _SCREAMING_SNAKE_CASE : Union[str, Any] = resid_pdrop _SCREAMING_SNAKE_CASE : Union[str, Any] = embd_pdrop _SCREAMING_SNAKE_CASE : List[Any] = attn_pdrop _SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_epsilon _SCREAMING_SNAKE_CASE : Any = initializer_range _SCREAMING_SNAKE_CASE : str = scale_attn_weights _SCREAMING_SNAKE_CASE : Tuple = use_cache _SCREAMING_SNAKE_CASE : Optional[int] = attention_softmax_in_fpaa _SCREAMING_SNAKE_CASE : List[Any] = scale_attention_softmax_in_fpaa _SCREAMING_SNAKE_CASE : Any = multi_query _SCREAMING_SNAKE_CASE : Optional[int] = bos_token_id _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id super().__init__(bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
533
0
'''simple docstring''' from __future__ import annotations def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = [True] * limit lowercase = False lowercase = False lowercase = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase = i * 2 while index < limit: lowercase = False lowercase = index + i lowercase = [2] for i in range(3 , lowerCAmelCase_ , 2 ): if is_prime[i]: primes.append(lowerCAmelCase_ ) return primes def UpperCAmelCase_ ( lowerCAmelCase_ = 100_0000 ): """simple docstring""" lowercase = prime_sieve(lowerCAmelCase_ ) lowercase = 0 lowercase = 0 for i in range(len(lowerCAmelCase_ ) ): for j in range(i + length , len(lowerCAmelCase_ ) ): lowercase = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase = j - i lowercase = sol return largest if __name__ == "__main__": print(f"{solution() = }")
459
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): UpperCAmelCase : Optional[int] = ViTImageProcessor if is_vision_available() else None @property def UpperCAmelCase__ (self : Optional[int] ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ (self : str ) -> int: lowercase = (3, 3_2, 1_2_8) lowercase = tempfile.mkdtemp() # fmt: off lowercase = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on lowercase = dict(zip(A__ , range(len(A__ ) ) ) ) lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(A__ ) + "\n" ) lowercase = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 3_2, "width": 1_2_8}, } lowercase = os.path.join(self.tmpdirname , A__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A__ , A__ ) def UpperCAmelCase__ (self : Dict , **A__ : List[Any] ) -> Union[str, Any]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCAmelCase__ (self : Any , **A__ : Tuple ) -> Tuple: return ViTImageProcessor.from_pretrained(self.tmpdirname , **A__ ) def UpperCAmelCase__ (self : Optional[int] ) -> int: shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self : str ) -> List[str]: lowercase = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) lowercase = Image.fromarray(np.moveaxis(A__ , 0 , -1 ) ) return image_input def UpperCAmelCase__ (self : str ) -> List[Any]: lowercase = self.get_tokenizer() lowercase = self.get_image_processor() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) processor.save_pretrained(self.tmpdirname ) lowercase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=A__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def UpperCAmelCase__ (self : Any ) -> Optional[int]: lowercase = self.get_tokenizer() lowercase = self.get_image_processor() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowercase = self.get_image_processor(do_normalize=A__ , padding_value=1.0 ) lowercase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , A__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A__ ) def UpperCAmelCase__ (self : List[Any] ) -> List[Any]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = self.prepare_image_inputs() lowercase = image_processor(A__ , return_tensors="np" ) lowercase = processor(images=A__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ (self : List[Any] ) -> Union[str, Any]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = "test" lowercase = processor(text=A__ ) lowercase = tokenizer(A__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ (self : int ) -> Optional[int]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = "test" lowercase = self.prepare_image_inputs() lowercase = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(A__ ): processor() def UpperCAmelCase__ (self : List[Any] ) -> Union[str, Any]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.char_decode(A__ ) lowercase = tokenizer.batch_decode(A__ ) lowercase = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(A__ , A__ ) def UpperCAmelCase__ (self : Any ) -> Optional[int]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = None lowercase = self.prepare_image_inputs() lowercase = processor(text=A__ , images=A__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def UpperCAmelCase__ (self : int ) -> Optional[Any]: lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = MgpstrProcessor(tokenizer=A__ , image_processor=A__ ) lowercase = torch.randn(1 , 2_7 , 3_8 ) lowercase = torch.randn(1 , 2_7 , 5_0_2_5_7 ) lowercase = torch.randn(1 , 2_7 , 3_0_5_2_2 ) lowercase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
459
1
from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = int(UpperCamelCase_ ) assert noofclusters < len(UpperCamelCase_ ) # Find out the dimensionality snake_case = len(vectors[0] ) # Will help select random centroids from among the available vectors snake_case = list(range(len(UpperCamelCase_ ) ) ) shuffle(UpperCamelCase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. snake_case = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION snake_case = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points snake_case = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(UpperCamelCase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values snake_case = tf.placeholder('''float64''' ,[dim] ) snake_case = [] for centroid in centroids: cent_assigns.append(tf.assign(UpperCamelCase_ ,UpperCamelCase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) snake_case = [tf.Variable(0 ) for i in range(len(UpperCamelCase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value snake_case = tf.placeholder('''int32''' ) snake_case = [] for assignment in assignments: cluster_assigns.append(tf.assign(UpperCamelCase_ ,UpperCamelCase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input snake_case = tf.placeholder('''float''' ,[None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors snake_case = tf.reduce_mean(UpperCamelCase_ ,0 ) ##Node for computing Euclidean distances # Placeholders for input snake_case = tf.placeholder('''float''' ,[dim] ) snake_case = tf.placeholder('''float''' ,[dim] ) snake_case = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(UpperCamelCase_ ,UpperCamelCase_ ) ,2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input snake_case = tf.placeholder('''float''' ,[noofclusters] ) snake_case = tf.argmin(UpperCamelCase_ ,0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. snake_case = tf.initialize_all_variables() # Initialize all variables sess.run(UpperCamelCase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. snake_case = 1_00 for _ in range(UpperCamelCase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(UpperCamelCase_ ) ): snake_case = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. snake_case = [ sess.run(UpperCamelCase_ ,feed_dict={va: vect, va: sess.run(UpperCamelCase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input snake_case = sess.run( UpperCamelCase_ ,feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] ,feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(UpperCamelCase_ ): # Collect all the vectors assigned to this cluster snake_case = [ vectors[i] for i in range(len(UpperCamelCase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location snake_case = sess.run( UpperCamelCase_ ,feed_dict={mean_input: array(UpperCamelCase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] ,feed_dict={centroid_value: new_location} ) # Return centroids and assignments snake_case = sess.run(UpperCamelCase_ ) snake_case = sess.run(UpperCamelCase_ ) return centroids, assignments
550
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = tempfile.mkdtemp() snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''的''', '''价''', '''格''', '''是''', '''15''', '''便''', '''alex''', '''##andra''', ''',''', '''。''', '''-''', '''t''', '''shirt''', ] snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) snake_case = { '''do_resize''': True, '''size''': {'''height''': 2_2_4, '''width''': 2_2_4}, '''do_center_crop''': True, '''crop_size''': {'''height''': 1_8, '''width''': 1_8}, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], '''do_convert_rgb''': True, } snake_case = os.path.join(self.tmpdirname , __snake_case ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(__snake_case , __snake_case ) def a_ ( self , **__snake_case ): return BertTokenizer.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self , **__snake_case ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self , **__snake_case ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **__snake_case ) def a_ ( self ): shutil.rmtree(self.tmpdirname ) def a_ ( self ): snake_case = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def a_ ( self ): snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = self.get_image_processor() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_slow.save_pretrained(self.tmpdirname ) snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__snake_case ) snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) processor_fast.save_pretrained(self.tmpdirname ) snake_case = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __snake_case ) self.assertIsInstance(processor_fast.tokenizer , __snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __snake_case ) self.assertIsInstance(processor_fast.image_processor , __snake_case ) def a_ ( self ): snake_case = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case = self.get_tokenizer(cls_token='''(CLS)''' , sep_token='''(SEP)''' ) snake_case = self.get_image_processor(do_normalize=__snake_case ) snake_case = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='''(CLS)''' , sep_token='''(SEP)''' , do_normalize=__snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __snake_case ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = self.prepare_image_inputs() snake_case = image_processor(__snake_case , return_tensors='''np''' ) snake_case = processor(images=__snake_case , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = '''Alexandra,T-shirt的价格是15便士。''' snake_case = processor(text=__snake_case ) snake_case = tokenizer(__snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = '''Alexandra,T-shirt的价格是15便士。''' snake_case = self.prepare_image_inputs() snake_case = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(__snake_case ): processor() def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case = processor.batch_decode(__snake_case ) snake_case = tokenizer.batch_decode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def a_ ( self ): snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = ChineseCLIPProcessor(tokenizer=__snake_case , image_processor=__snake_case ) snake_case = '''Alexandra,T-shirt的价格是15便士。''' snake_case = self.prepare_image_inputs() snake_case = processor(text=__snake_case , images=__snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
550
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): @property def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.dummy_uncond_unet _SCREAMING_SNAKE_CASE = PNDMScheduler() _SCREAMING_SNAKE_CASE = PNDMPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pndm.to(UpperCamelCase ) pndm.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pndm(generator=UpperCamelCase , num_inference_steps=20 , output_type="numpy" ).images _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pndm(generator=UpperCamelCase , num_inference_steps=20 , output_type="numpy" , return_dict=UpperCamelCase )[0] _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): _SCREAMING_SNAKE_CASE = "google/ddpm-cifar10-32" _SCREAMING_SNAKE_CASE = UNetaDModel.from_pretrained(UpperCamelCase ) _SCREAMING_SNAKE_CASE = PNDMScheduler() _SCREAMING_SNAKE_CASE = PNDMPipeline(unet=UpperCamelCase , scheduler=UpperCamelCase ) pndm.to(UpperCamelCase ) pndm.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = pndm(generator=UpperCamelCase , output_type="numpy" ).images _SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _SCREAMING_SNAKE_CASE = np.array([0.15_64, 0.1_46_45, 0.14_06, 0.1_47_15, 0.1_24_25, 0.1_40_45, 0.1_31_15, 0.1_21_75, 0.1_25] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
493
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class lowerCAmelCase : def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.4_14 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase ) _SCREAMING_SNAKE_CASE = inputs["prompt"] _SCREAMING_SNAKE_CASE = inputs["generator"] _SCREAMING_SNAKE_CASE = inputs["num_inference_steps"] _SCREAMING_SNAKE_CASE = inputs["output_type"] if "image" in inputs: _SCREAMING_SNAKE_CASE = inputs["image"] else: _SCREAMING_SNAKE_CASE = None if "mask_image" in inputs: _SCREAMING_SNAKE_CASE = inputs["mask_image"] else: _SCREAMING_SNAKE_CASE = None if "original_image" in inputs: _SCREAMING_SNAKE_CASE = inputs["original_image"] else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = pipe.encode_prompt(UpperCamelCase ) # inputs with prompt converted to embeddings _SCREAMING_SNAKE_CASE = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _SCREAMING_SNAKE_CASE = image if mask_image is not None: _SCREAMING_SNAKE_CASE = mask_image if original_image is not None: _SCREAMING_SNAKE_CASE = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCamelCase , UpperCamelCase , UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe(**UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(UpperCamelCase ) pipe_loaded.to(UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCamelCase , UpperCamelCase ) is None , F'`{optional_component}` did not stay set to None after loading.' , ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase ) _SCREAMING_SNAKE_CASE = inputs["generator"] _SCREAMING_SNAKE_CASE = inputs["num_inference_steps"] _SCREAMING_SNAKE_CASE = inputs["output_type"] # inputs with prompt converted to embeddings _SCREAMING_SNAKE_CASE = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: _SCREAMING_SNAKE_CASE = image if mask_image is not None: _SCREAMING_SNAKE_CASE = mask_image if original_image is not None: _SCREAMING_SNAKE_CASE = original_image _SCREAMING_SNAKE_CASE = pipe_loaded(**UpperCamelCase )[0] _SCREAMING_SNAKE_CASE = np.abs(to_np(UpperCamelCase ) - to_np(UpperCamelCase ) ).max() self.assertLess(UpperCamelCase , 1e-4 ) def lowercase ( self ): _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCamelCase ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe(**UpperCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.pipeline_class.from_pretrained(UpperCamelCase ) pipe_loaded.to(UpperCamelCase ) pipe_loaded.set_progress_bar_config(disable=UpperCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCamelCase ) _SCREAMING_SNAKE_CASE = pipe_loaded(**UpperCamelCase )[0] _SCREAMING_SNAKE_CASE = np.abs(to_np(UpperCamelCase ) - to_np(UpperCamelCase ) ).max() self.assertLess(UpperCamelCase , 1e-4 )
493
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCAmelCase__ :List[str] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class __a : _a : Optional[str] = field( default='cifar10' , metadata={'help': 'Name of a dataset from the datasets package'} ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'The column name of the images in the files.'} ) _a : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the training data.'} ) _a : Optional[str] = field(default=UpperCAmelCase , metadata={'help': 'A folder containing the validation data.'} ) _a : Optional[float] = field( default=0.1_5 , metadata={'help': 'Percent to split off of train for validation.'} ) _a : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) _a : Optional[int] = field( default=UpperCAmelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = {} if self.train_dir is not None: _UpperCAmelCase = self.train_dir if self.validation_dir is not None: _UpperCAmelCase = self.validation_dir _UpperCAmelCase = data_files if data_files else None @dataclass class __a : _a : str = field( default=UpperCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.' ) } , ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name_or_path'} ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={ 'help': ( 'Override some existing default config settings when a model is trained from scratch. Example: ' 'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index' ) } , ) _a : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) _a : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) _a : str = field(default=UpperCAmelCase , metadata={'help': 'Name or path of preprocessor config.'} ) _a : bool = field( default=UpperCAmelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) _a : float = field( default=0.7_5 , metadata={'help': 'The ratio of the number of masked tokens in the input sequence.'} ) _a : bool = field( default=UpperCAmelCase , metadata={'help': 'Whether or not to train with normalized pixel values as target.'} ) @dataclass class __a ( UpperCAmelCase ): _a : float = field( default=1E-3 , metadata={'help': 'Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'} ) def lowerCAmelCase__ ( a__: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def lowerCAmelCase__ ( ) -> Tuple: '''simple docstring''' _UpperCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , a__ , a__ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase = training_args.get_process_log_level() logger.setLevel(a__ ) transformers.utils.logging.set_verbosity(a__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _UpperCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , a__ ) and data_args.train_val_split > 0.0: _UpperCAmelCase = ds['train'].train_test_split(data_args.train_val_split ) _UpperCAmelCase = split['train'] _UpperCAmelCase = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase = ViTMAEConfig.from_pretrained(model_args.config_name , **a__ ) elif model_args.model_name_or_path: _UpperCAmelCase = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **a__ ) else: _UpperCAmelCase = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _UpperCAmelCase = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **a__ ) elif model_args.model_name_or_path: _UpperCAmelCase = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **a__ ) else: _UpperCAmelCase = ViTImageProcessor() # create model if model_args.model_name_or_path: _UpperCAmelCase = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _UpperCAmelCase = ViTMAEForPreTraining(a__ ) if training_args.do_train: _UpperCAmelCase = ds['train'].column_names else: _UpperCAmelCase = ds['validation'].column_names if data_args.image_column_name is not None: _UpperCAmelCase = data_args.image_column_name elif "image" in column_names: _UpperCAmelCase = 'image' elif "img" in column_names: _UpperCAmelCase = 'img' else: _UpperCAmelCase = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _UpperCAmelCase = image_processor.size['shortest_edge'] else: _UpperCAmelCase = (image_processor.size['height'], image_processor.size['width']) _UpperCAmelCase = Compose( [ Lambda(lambda a__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(a__ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(a__: Optional[int] ): _UpperCAmelCase = [transforms(a__ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _UpperCAmelCase = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(a__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _UpperCAmelCase = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(a__ ) # Compute absolute learning rate _UpperCAmelCase = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _UpperCAmelCase = training_args.base_learning_rate * total_train_batch_size / 2_5_6 # Initialize our trainer _UpperCAmelCase = Trainer( model=a__ , args=a__ , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=a__ , data_collator=a__ , ) # Training if training_args.do_train: _UpperCAmelCase = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase = last_checkpoint _UpperCAmelCase = trainer.train(resume_from_checkpoint=a__ ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase = trainer.evaluate() trainer.log_metrics('eval' , a__ ) trainer.save_metrics('eval' , a__ ) # Write model card and (optionally) push to hub _UpperCAmelCase = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**a__ ) else: trainer.create_model_card(**a__ ) def lowerCAmelCase__ ( a__: Tuple ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
618
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowerCAmelCase__ :int = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: Dict ) -> List[str]: '''simple docstring''' _UpperCAmelCase = R'\w+[.]\d+' _UpperCAmelCase = re.findall(a__ , a__ ) for pat in pats: _UpperCAmelCase = key.replace(a__ , '_'.join(pat.split('.' ) ) ) return key def lowerCAmelCase__ ( a__: Optional[int] , a__: Dict , a__: List[Any] ) -> str: '''simple docstring''' _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _UpperCAmelCase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _UpperCAmelCase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _UpperCAmelCase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _UpperCAmelCase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": _UpperCAmelCase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _UpperCAmelCase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _UpperCAmelCase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase__ ( a__: Any , a__: Optional[Any] , a__: int=4_2 ) -> List[str]: '''simple docstring''' _UpperCAmelCase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _UpperCAmelCase = flax_model.init_weights(PRNGKey(a__ ) ) _UpperCAmelCase = flatten_dict(a__ ) _UpperCAmelCase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters _UpperCAmelCase , _UpperCAmelCase = rename_key_and_reshape_tensor(a__ , a__ , a__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown _UpperCAmelCase = jnp.asarray(a__ ) return unflatten_dict(a__ )
618
1
'''simple docstring''' import string # frequency taken from https://en.wikipedia.org/wiki/Letter_frequency __UpperCamelCase : Any = { '''E''': 12.70, '''T''': 9.06, '''A''': 8.17, '''O''': 7.51, '''I''': 6.97, '''N''': 6.75, '''S''': 6.33, '''H''': 6.09, '''R''': 5.99, '''D''': 4.25, '''L''': 4.03, '''C''': 2.78, '''U''': 2.76, '''M''': 2.41, '''W''': 2.36, '''F''': 2.23, '''G''': 2.02, '''Y''': 1.97, '''P''': 1.93, '''B''': 1.29, '''V''': 0.98, '''K''': 0.77, '''J''': 0.15, '''X''': 0.15, '''Q''': 0.10, '''Z''': 0.07, } __UpperCamelCase : Union[str, Any] = '''ETAOINSHRDLCUMWFGYPBVKJXQZ''' __UpperCamelCase : Any = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def lowercase ( lowerCAmelCase : str): """simple docstring""" _A : Optional[int] = {letter: 0 for letter in string.ascii_uppercase} for letter in message.upper(): if letter in LETTERS: letter_count[letter] += 1 return letter_count def lowercase ( lowerCAmelCase : tuple): """simple docstring""" return x[0] def lowercase ( lowerCAmelCase : str): """simple docstring""" _A : Dict = get_letter_count(lowerCAmelCase) _A : dict[int, list[str]] = { freq: [] for letter, freq in letter_to_freq.items() } for letter in LETTERS: freq_to_letter[letter_to_freq[letter]].append(lowerCAmelCase) _A : dict[int, str] = {} for freq in freq_to_letter: freq_to_letter[freq].sort(key=ETAOIN.find , reverse=lowerCAmelCase) _A : Optional[Any] = ''''''.join(freq_to_letter[freq]) _A : Tuple = list(freq_to_letter_str.items()) freq_pairs.sort(key=lowerCAmelCase , reverse=lowerCAmelCase) _A : list[str] = [freq_pair[1] for freq_pair in freq_pairs] return "".join(lowerCAmelCase) def lowercase ( lowerCAmelCase : str): """simple docstring""" _A : str = get_frequency_order(lowerCAmelCase) _A : List[Any] = 0 for common_letter in ETAOIN[:6]: if common_letter in freq_order[:6]: match_score += 1 for uncommon_letter in ETAOIN[-6:]: if uncommon_letter in freq_order[-6:]: match_score += 1 return match_score if __name__ == "__main__": import doctest doctest.testmod()
417
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Any = logging.get_logger(__name__) # TODO Update this __UpperCamelCase : int = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( snake_case_ ): """simple docstring""" __magic_name__ = """esm""" def __init__( self , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=7_6_8 , UpperCAmelCase__=1_2 , UpperCAmelCase__=1_2 , UpperCAmelCase__=3_0_7_2 , UpperCAmelCase__=0.1 , UpperCAmelCase__=0.1 , UpperCAmelCase__=1_0_2_6 , UpperCAmelCase__=0.0_2 , UpperCAmelCase__=1e-12 , UpperCAmelCase__="absolute" , UpperCAmelCase__=True , UpperCAmelCase__=None , UpperCAmelCase__=False , UpperCAmelCase__=False , UpperCAmelCase__=None , UpperCAmelCase__=None , **UpperCAmelCase__ , ) -> List[Any]: super().__init__(pad_token_id=UpperCAmelCase__ , mask_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) _A : List[Any] = vocab_size _A : int = hidden_size _A : Any = num_hidden_layers _A : List[str] = num_attention_heads _A : Dict = intermediate_size _A : Union[str, Any] = hidden_dropout_prob _A : int = attention_probs_dropout_prob _A : List[str] = max_position_embeddings _A : List[str] = initializer_range _A : Optional[Any] = layer_norm_eps _A : Tuple = position_embedding_type _A : Any = use_cache _A : Tuple = emb_layer_norm_before _A : Union[str, Any] = token_dropout _A : Dict = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _A : Dict = EsmFoldConfig() elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _A : List[str] = EsmFoldConfig(**UpperCAmelCase__ ) _A : List[Any] = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _A : Tuple = get_default_vocab_list() else: _A : int = vocab_list else: _A : Dict = None _A : Optional[int] = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def _lowerCamelCase ( self ) -> Optional[Any]: _A : str = super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase__ ): _A : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = True __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = 0 __magic_name__ = True __magic_name__ = False __magic_name__ = 1_2_8 __magic_name__ = None def _lowerCamelCase ( self ) -> List[Any]: if self.trunk is None: _A : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase__ ): _A : Dict = TrunkConfig(**self.trunk ) def _lowerCamelCase ( self ) -> Optional[Any]: _A : Dict = asdict(self ) _A : str = self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : """simple docstring""" __magic_name__ = 4_8 __magic_name__ = 1_0_2_4 __magic_name__ = 1_2_8 __magic_name__ = 3_2 __magic_name__ = 3_2 __magic_name__ = 3_2 __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = False __magic_name__ = 4 __magic_name__ = 1_2_8 __magic_name__ = None def _lowerCamelCase ( self ) -> str: if self.structure_module is None: _A : List[Any] = StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase__ ): _A : Any = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" ) _A : List[Any] = self.sequence_state_dim // self.sequence_head_width _A : str = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" ) if self.dropout >= 0.4: raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" ) def _lowerCamelCase ( self ) -> Tuple: _A : Optional[Any] = asdict(self ) _A : Union[str, Any] = self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : """simple docstring""" __magic_name__ = 3_8_4 __magic_name__ = 1_2_8 __magic_name__ = 1_6 __magic_name__ = 1_2_8 __magic_name__ = 1_2 __magic_name__ = 4 __magic_name__ = 8 __magic_name__ = 0.1 __magic_name__ = 8 __magic_name__ = 1 __magic_name__ = 2 __magic_name__ = 7 __magic_name__ = 1_0 __magic_name__ = 1e-8 __magic_name__ = 1e5 def _lowerCamelCase ( self ) -> Union[str, Any]: return asdict(self ) def lowercase ( ): """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
417
1
import functools from typing import Any def _a ( lowercase__ : str , lowercase__ : list[str] ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ) or len(lowercase__ ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(lowercase__ , lowercase__ ) or not all( isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie SCREAMING_SNAKE_CASE__ : dict[str, Any] = {} SCREAMING_SNAKE_CASE__ : List[Any] = 'WORD_KEEPER' for word in words: SCREAMING_SNAKE_CASE__ : List[Any] = trie for c in word: if c not in trie_node: SCREAMING_SNAKE_CASE__ : Optional[int] = {} SCREAMING_SNAKE_CASE__ : Any = trie_node[c] SCREAMING_SNAKE_CASE__ : Optional[int] = True SCREAMING_SNAKE_CASE__ : int = len(lowercase__ ) # Dynamic programming method @functools.cache def is_breakable(lowercase__ : int ) -> bool: if index == len_string: return True SCREAMING_SNAKE_CASE__ : Tuple = trie for i in range(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Any = trie_node.get(string[i] , lowercase__ ) if trie_node is None: return False if trie_node.get(lowercase__ , lowercase__ ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
85
def lowerCamelCase_ ( lowerCAmelCase: int )-> int: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F"""The input value of [n={number}] is not an integer""" if number == 1: return 2 elif number < 1: _snake_case : int = F"""The input value of [n={number}] has to be > 0""" raise ValueError(lowerCAmelCase ) else: _snake_case : str = sylvester(number - 1 ) _snake_case : Optional[int] = num - 1 _snake_case : List[Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
411
0
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase__ : List[Any] = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = "efficientnet" def __init__( self : List[str] ,lowerCamelCase__ : int = 3 ,lowerCamelCase__ : int = 600 ,lowerCamelCase__ : float = 2.0 ,lowerCamelCase__ : float = 3.1 ,lowerCamelCase__ : int = 8 ,lowerCamelCase__ : List[int] = [3, 3, 5, 3, 5, 5, 3] ,lowerCamelCase__ : List[int] = [32, 16, 24, 40, 80, 112, 192] ,lowerCamelCase__ : List[int] = [16, 24, 40, 80, 112, 192, 320] ,lowerCamelCase__ : List[int] = [] ,lowerCamelCase__ : List[int] = [1, 2, 2, 2, 1, 2, 1] ,lowerCamelCase__ : List[int] = [1, 2, 2, 3, 3, 4, 1] ,lowerCamelCase__ : List[int] = [1, 6, 6, 6, 6, 6, 6] ,lowerCamelCase__ : float = 0.2_5 ,lowerCamelCase__ : str = "swish" ,lowerCamelCase__ : int = 2_560 ,lowerCamelCase__ : str = "mean" ,lowerCamelCase__ : float = 0.0_2 ,lowerCamelCase__ : float = 0.0_0_1 ,lowerCamelCase__ : float = 0.9_9 ,lowerCamelCase__ : float = 0.5 ,lowerCamelCase__ : float = 0.2 ,**lowerCamelCase__ : Dict ,): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__ = num_channels UpperCAmelCase__ = image_size UpperCAmelCase__ = width_coefficient UpperCAmelCase__ = depth_coefficient UpperCAmelCase__ = depth_divisor UpperCAmelCase__ = kernel_sizes UpperCAmelCase__ = in_channels UpperCAmelCase__ = out_channels UpperCAmelCase__ = depthwise_padding UpperCAmelCase__ = strides UpperCAmelCase__ = num_block_repeats UpperCAmelCase__ = expand_ratios UpperCAmelCase__ = squeeze_expansion_ratio UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dim UpperCAmelCase__ = pooling_type UpperCAmelCase__ = initializer_range UpperCAmelCase__ = batch_norm_eps UpperCAmelCase__ = batch_norm_momentum UpperCAmelCase__ = dropout_rate UpperCAmelCase__ = drop_connect_rate UpperCAmelCase__ = sum(lowerCamelCase__ ) * 4 class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = version.parse("1.11" ) @property def __lowerCAmelCase ( self : int ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCAmelCase ( self : Optional[Any] ): return 1e-5
632
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCAmelCase__ : str = 'base_with_context' def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase__ = weights[f'''layers_{lyr_num}'''] UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) UpperCAmelCase__ = ly_weight['attention'] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): UpperCAmelCase__ = weights[f'''layers_{lyr_num}'''] UpperCAmelCase__ = ly_weight['attention'] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=lowerCamelCase ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): UpperCAmelCase__ = weights[f'''layers_{lyr_num}'''] UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) UpperCAmelCase__ = ly_weight['self_attention'] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase__ = ly_weight['MultiHeadDotProductAttention_0'] UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) UpperCAmelCase__ = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def a_ ( lowerCamelCase ): UpperCAmelCase__ = checkpoints.load_tax_checkpoint(args.checkpoint_path ) UpperCAmelCase__ = jnp.tree_util.tree_map(onp.array , lowerCamelCase ) UpperCAmelCase__ = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] UpperCAmelCase__ = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) UpperCAmelCase__ = inference.parse_training_gin_file(lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = inference.InferenceModel(args.checkpoint_path , lowerCamelCase ) UpperCAmelCase__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) UpperCAmelCase__ = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) UpperCAmelCase__ = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) UpperCAmelCase__ = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) UpperCAmelCase__ = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , lowerCamelCase ) UpperCAmelCase__ = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , lowerCamelCase ) UpperCAmelCase__ = load_decoder(ta_checkpoint['target']['decoder'] , lowerCamelCase ) UpperCAmelCase__ = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) UpperCAmelCase__ = SpectrogramDiffusionPipeline( notes_encoder=lowerCamelCase , continuous_encoder=lowerCamelCase , decoder=lowerCamelCase , scheduler=lowerCamelCase , melgan=lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCAmelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='Path to the original jax model checkpoint.', ) lowerCAmelCase__ : List[str] = parser.parse_args() main(args)
632
1
"""simple docstring""" import string def lowercase__ ( snake_case_ :Any ): __UpperCAmelCase = '' for i in sequence: __UpperCAmelCase = ord(a__ ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def lowercase__ ( snake_case_ :str ): __UpperCAmelCase = string.ascii_letters __UpperCAmelCase = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(a__ )] if c in letters else c for c in sequence ) def lowercase__ ( ): from timeit import timeit print('''Running performance benchmarks...''' ) __UpperCAmelCase = 'from string import printable ; from __main__ import atbash, atbash_slow' print(F'''> atbash_slow(): {timeit("atbash_slow(printable)" , setup=a__ )} seconds''' ) print(F'''> atbash(): {timeit("atbash(printable)" , setup=a__ )} seconds''' ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
49
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets SCREAMING_SNAKE_CASE_ = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" SCREAMING_SNAKE_CASE_ = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" SCREAMING_SNAKE_CASE_ = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def __UpperCAmelCase ( self : Optional[int] , snake_case : str , snake_case : int , snake_case : Dict=None , snake_case : List[str]="uniform_average" , snake_case : Any=True ): """simple docstring""" _snake_case : str = mean_squared_error( snake_case , snake_case , sample_weight=snake_case , multioutput=snake_case , squared=snake_case ) return {"mse": mse}
517
0
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_2 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=1_6 , lowerCAmelCase__=[3_2, 6_4, 1_2_8] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=1_0 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ): __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = embed_dim __SCREAMING_SNAKE_CASE = hidden_sizes __SCREAMING_SNAKE_CASE = depths __SCREAMING_SNAKE_CASE = num_heads __SCREAMING_SNAKE_CASE = window_size __SCREAMING_SNAKE_CASE = mlp_ratio __SCREAMING_SNAKE_CASE = qkv_bias __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = drop_path_rate __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = use_absolute_embeddings __SCREAMING_SNAKE_CASE = patch_norm __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = encoder_stride __SCREAMING_SNAKE_CASE = out_features __SCREAMING_SNAKE_CASE = out_indices def snake_case_ ( self): __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size) __SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def snake_case_ ( self): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = FocalNetModel(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) __SCREAMING_SNAKE_CASE = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = FocalNetBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size, 8, 8]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1]) # verify backbone works with out_features=None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = FocalNetBackbone(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , 1) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [self.batch_size, self.image_size * 2, 4, 4]) # verify channels self.parent.assertEqual(len(model.channels) , 1) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]]) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = FocalNetForMaskedImageModeling(config=lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FocalNetForMaskedImageModeling(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.type_sequence_label_size __SCREAMING_SNAKE_CASE = FocalNetForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , labels=lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = FocalNetForImageClassification(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) __SCREAMING_SNAKE_CASE = model(lowerCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = config_and_inputs __SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __a , __a , unittest.TestCase ): """simple docstring""" __lowercase : List[Any] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) __lowercase : Optional[int] = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) __lowercase : Dict = False __lowercase : Optional[Any] = False __lowercase : int = False __lowercase : int = False __lowercase : Optional[Any] = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = FocalNetModelTester(self) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=3_7 , has_text_modality=lowerCAmelCase__) def snake_case_ ( self): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self): return def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__) @unittest.skip(reason="""FocalNet does not use inputs_embeds""") def snake_case_ ( self): pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""") def snake_case_ ( self): pass def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear)) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__) model.to(lowerCAmelCase__) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__)) __SCREAMING_SNAKE_CASE = outputs.hidden_states __SCREAMING_SNAKE_CASE = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths) + 1) self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) # FocalNet has a different seq_length __SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) __SCREAMING_SNAKE_CASE = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__) , lowerCAmelCase__) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = reshaped_hidden_states[0].shape __SCREAMING_SNAKE_CASE = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width).permute(0 , 2 , 1) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = 3 __SCREAMING_SNAKE_CASE = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) __SCREAMING_SNAKE_CASE = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) __SCREAMING_SNAKE_CASE = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __SCREAMING_SNAKE_CASE = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width)) @slow def snake_case_ ( self): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = FocalNetModel.from_pretrained(lowerCAmelCase__) self.assertIsNotNone(lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE = _config_zero_init(lowerCAmelCase__) for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE = model_class(config=lowerCAmelCase__) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @require_vision @require_torch class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case_ ( self): # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""") if is_vision_available() else None @slow def snake_case_ ( self): __SCREAMING_SNAKE_CASE = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""").to(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""") __SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""").to(lowerCAmelCase__) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 1_0_0_0)) self.assertEqual(outputs.logits.shape , lowerCAmelCase__) __SCREAMING_SNAKE_CASE = torch.tensor([0.21_66, -0.43_68, 0.21_91]).to(lowerCAmelCase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4)) self.assertTrue(outputs.logits.argmax(dim=-1).item() , 2_8_1) @require_torch class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : str = (FocalNetBackbone,) if is_torch_available() else () __lowercase : Tuple = FocalNetConfig __lowercase : Any = False def snake_case_ ( self): __SCREAMING_SNAKE_CASE = FocalNetModelTester(self)
248
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __magic_name__ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if got_ver is None or want_ver is None: raise ValueError( f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" f" reinstalling {pkg}." ) if not ops[op](version.parse(UpperCamelCase_ ) , version.parse(UpperCamelCase_ ) ): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = None ): __SCREAMING_SNAKE_CASE = f"\n{hint}" if hint is not None else """""" # non-versioned check if re.match(r"""^[\w_\-\d]+$""" , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = requirement, None, None else: __SCREAMING_SNAKE_CASE = re.findall(r"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , UpperCamelCase_ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f" got {requirement}" ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = match[0] __SCREAMING_SNAKE_CASE = want_full.split(""",""" ) # there could be multiple requirements __SCREAMING_SNAKE_CASE = {} for w in want_range: __SCREAMING_SNAKE_CASE = re.findall(r"""^([\s!=<>]{1,2})(.+)""" , UpperCamelCase_ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f" but got {requirement}" ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = match[0] __SCREAMING_SNAKE_CASE = want_ver if op not in ops: raise ValueError(f"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": __SCREAMING_SNAKE_CASE = """.""".join([str(UpperCamelCase_ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return # check if any version is installed try: __SCREAMING_SNAKE_CASE = importlib.metadata.version(UpperCamelCase_ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(UpperCamelCase_ , UpperCamelCase_ )
248
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : str = logging.get_logger(__name__) snake_case_ : Tuple = { 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = '''decision_transformer''' _snake_case = ['''past_key_values'''] _snake_case = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , lowerCamelCase__=1_7 , lowerCamelCase__=4 , lowerCamelCase__=1_2_8 , lowerCamelCase__=4_0_9_6 , lowerCamelCase__=True , lowerCamelCase__=1 , lowerCamelCase__=1_0_2_4 , lowerCamelCase__=3 , lowerCamelCase__=1 , lowerCamelCase__=None , lowerCamelCase__="relu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1e-5 , lowerCamelCase__=0.02 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=5_0_2_5_6 , lowerCamelCase__=5_0_2_5_6 , lowerCamelCase__=False , lowerCamelCase__=False , **lowerCamelCase__ , ): '''simple docstring''' UpperCamelCase = state_dim UpperCamelCase = act_dim UpperCamelCase = hidden_size UpperCamelCase = max_ep_len UpperCamelCase = action_tanh UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = n_inner UpperCamelCase = activation_function UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = scale_attn_weights UpperCamelCase = use_cache UpperCamelCase = scale_attn_by_inverse_layer_idx UpperCamelCase = reorder_and_upcast_attn UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id super().__init__(bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
212
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=9_9 , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=5_1_2 , lowerCamelCase__=1_6 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ): '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_attention_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_choices def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_attention_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = True UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = True _snake_case = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = FlaxRobertaModelTester(self ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCamelCase = model_class_name.from_pretrained('''roberta-base''' , from_pt=lowerCamelCase__ ) UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ )
212
1
from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _a ( unittest.TestCase ): '''simple docstring''' def _A ( self ): """simple docstring""" a__ : Union[str, Any] = tf.convert_to_tensor( [ [ 8.2_2_2_0_9_9_1, # 3rd highest value; idx. 0 -0.5_6_2_0_0_4_4, 5.2_3_2_2_9_7_5_2, 4.0_3_8_6_3_9_3, -6.8_7_9_8_3_7_8, -0.5_4_7_8_5_8_0_2, -3.2_0_1_2_1_5_3, 2.9_2_7_7_7_1_7_6, 1.8_8_1_7_1_9_5_3, 7.3_5_3_4_1_2_7_6, # 5th highest value; idx. 9 8.4_3_2_0_7_8_3_3, # 2nd highest value; idx. 10 -9.8_5_7_1_1_8_3_6, -5.9_6_2_0_9_2_3_6, -1.1_3_0_3_9_1_6_1, -7.1_1_1_5_2_9_4, -0.8_3_6_9_6_3_3, -5.3_1_8_6_4_0_8, 7.0_6_4_2_7_4_0_7, 0.8_1_3_6_9_3_4_4, -0.8_2_0_2_3_8_1_7, -5.9_1_7_9_7_9_6, 0.5_8_8_1_3_4_4_3, -6.9_9_7_7_8_4_3_8, 4.7_1_5_5_1_1_8_9, -0.1_8_7_7_1_6_3_7, 7.4_4_0_2_0_7_5_9, # 4th highest value; idx. 25 9.3_8_4_5_0_9_8_7, # 1st highest value; idx. 26 2.1_2_6_6_2_9_4_1, -9.3_2_5_6_2_0_3_8, 2.3_5_6_5_2_5_2_2, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5_8_4_2_5_5_1_8, 4.5_3_1_3_9_2_3_8, -5.5_7_5_1_0_4_6_4, -6.2_8_0_3_0_6_9_9, -7.1_9_5_2_9_5_0_3, -4.0_2_1_2_2_5_5_1, 1.3_9_3_3_7_0_3_7, -6.0_6_7_0_7_0_5_7, 1.5_9_4_8_0_5_1_7, -9.6_4_3_1_1_9, 0.0_3_9_0_7_7_9_9, 0.6_7_2_3_1_7_6_2, -8.8_8_2_0_6_7_2_6, 6.2_7_1_1_5_9_2_2, # 4th highest value; idx. 13 2.2_8_5_2_0_7_2_3, 4.8_2_7_6_7_5_0_6, 4.3_0_4_2_1_3_6_8, 8.8_2_7_5_3_1_3, # 2nd highest value; idx. 17 5.4_4_0_2_9_9_5_8, # 5th highest value; idx. 18 -4.4_7_3_5_7_9_4, 7.3_8_5_7_9_5_3_6, # 3rd highest value; idx. 20 -2.9_1_0_5_1_6_6_3, 2.6_1_9_4_6_0_7_7, -2.5_6_7_4_7_6_2, -9.4_8_9_5_9_3_0_2, -4.0_2_9_2_2_6_4_5, -1.3_5_4_1_6_9_1_8, 9.6_7_7_0_2_3_2_3, # 1st highest value; idx. 27 -5.8_9_4_7_8_5_5_3, 1.8_5_3_7_0_4_6_7, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) a__ : int = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above a__ : str = tf.convert_to_tensor( [8.2_2_2_0_9_9, 7.3_5_3_4_1_2_6, 8.4_3_2_0_7_8, 7.4_4_0_2_0_7_5, 9.3_8_4_5_1, 6.2_7_1_1_5_9, 8.8_2_7_5_3_1, 5.4_4_0_2_9_9_5, 7.3_8_5_7_9_5_6, 9.6_7_7_0_2_3] , dtype=tf.floataa , ) # expected non filtered values as noted above a__ : str = tf_top_k_top_p_filtering(UpperCAmelCase__ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) a__ : int = output[output != -float("inf" )] a__ : List[Any] = tf.cast( tf.where(tf.not_equal(UpperCAmelCase__ , tf.constant(-float("inf" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCAmelCase__ , UpperCAmelCase__ , rtol=1E-12 ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @require_tf class _a ( unittest.TestCase , SCREAMING_SNAKE_CASE ): '''simple docstring''' if is_tf_available(): A :Any = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def _A ( self ): """simple docstring""" a__ : List[str] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__ : Dict = 2 a__ : str = 2 class _a ( tf.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" super(UpperCAmelCase__ , self ).__init__() a__ : str = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="input_ids" ), tf.TensorSpec((None, input_length) , tf.intaa , name="attention_mask" ), ) , jit_compile=UpperCAmelCase__ , ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Optional[int] = self.model.generate( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , ) return {"sequences": outputs["sequences"]} a__ : Dict = [[2, 0], [102, 103]] a__ : int = [[1, 0], [1, 1]] a__ : List[Any] = DummyModel(model=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"serving_default": dummy_model.serving} ) a__ : Union[str, Any] = tf.saved_model.load(UpperCAmelCase__ ).signatures["serving_default"] for batch_size in range(1 , len(UpperCAmelCase__ ) + 1 ): a__ : Dict = { "input_ids": tf.constant(dummy_input_ids[:batch_size] ), "attention_mask": tf.constant(dummy_attention_masks[:batch_size] ), } a__ : List[str] = serving_func(**UpperCAmelCase__ )["sequences"] a__ : List[str] = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def _A ( self ): """simple docstring""" a__ : str = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__ : Tuple = 1 a__ : int = 2 class _a ( tf.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase ): """simple docstring""" super(UpperCAmelCase__ , self ).__init__() a__ : List[str] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="input_ids" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="attention_mask" ), ) , jit_compile=UpperCAmelCase__ , ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Tuple = self.model.generate( input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , ) return {"sequences": outputs["sequences"]} a__ : int = [[2], [102, 103]] a__ : Optional[Any] = [[1], [1, 1]] a__ : int = DummyModel(model=UpperCAmelCase__ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCAmelCase__ , UpperCAmelCase__ , signatures={"serving_default": dummy_model.serving} ) a__ : Optional[int] = tf.saved_model.load(UpperCAmelCase__ ).signatures["serving_default"] for input_row in range(len(UpperCAmelCase__ ) ): a__ : Any = { "input_ids": tf.constant([dummy_input_ids[input_row]] ), "attention_mask": tf.constant([dummy_attention_masks[input_row]] ), } a__ : int = serving_func(**UpperCAmelCase__ )["sequences"] a__ : Any = test_model.generate(**UpperCAmelCase__ , max_new_tokens=UpperCAmelCase__ ) tf.debugging.assert_equal(UpperCAmelCase__ , UpperCAmelCase__ ) @slow @require_tensorflow_text def _A ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="google/flan-t5-small" , filename="spiece.model" , local_dir=UpperCAmelCase__ ) class _a ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self ): """simple docstring""" super().__init__() a__ : Optional[Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCAmelCase__ , "spiece.model" ) , "rb" ).read() ) a__ : Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained("hf-internal-testing/tiny-random-t5" ) def _A ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" a__ : int = self.tokenizer.tokenize(UpperCAmelCase__ ) a__ , a__ : Dict = text.pad_model_inputs( UpperCAmelCase__ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) a__ : List[str] = self.model.generate(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) return self.tokenizer.detokenize(UpperCAmelCase__ ) a__ : Tuple = CompleteSentenceTransformer() a__ : List[str] = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="inputs" ) a__ : Dict = complete_model(UpperCAmelCase__ ) a__ : List[Any] = tf.keras.Model(UpperCAmelCase__ , UpperCAmelCase__ ) keras_model.save(UpperCAmelCase__ ) def _A ( self ): """simple docstring""" a__ : List[Any] = { "do_sample": True, "num_beams": 1, "top_p": 0.7, "top_k": 10, "temperature": 0.7, } a__ : str = 14 a__ : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__ : int = "Hello, my dog is cute and" a__ : Any = tokenizer(UpperCAmelCase__ , return_tensors="tf" ) a__ : Optional[int] = TFAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) a__ : Tuple = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) a__ : List[Any] = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) a__ : Union[str, Any] = [638, 198] with tf.device(":/CPU:0" ): tf.random.set_seed(0 ) a__ : Tuple = model.generate(**UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def _A ( self ): """simple docstring""" a__ : str = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bart" ) a__ : Any = "Hugging Face is a technology company based in New York and Paris." a__ : List[Any] = bart_tokenizer(UpperCAmelCase__ , return_tensors="tf" ).input_ids a__ : Union[str, Any] = TFBartForConditionalGeneration.from_pretrained("hf-internal-testing/tiny-random-bart" ) a__ : List[str] = bart_model.generate(UpperCAmelCase__ ).numpy() class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def _A ( self , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase ): """simple docstring""" return super().call(UpperCAmelCase__ , **UpperCAmelCase__ ) a__ : Tuple = FakeBart.from_pretrained("hf-internal-testing/tiny-random-bart" ) a__ : int = bart_model.generate(UpperCAmelCase__ , foo="bar" ).numpy() self.assertTrue(np.array_equal(UpperCAmelCase__ , UpperCAmelCase__ ) ) class _a ( bart_model.model.encoder.__class__ ): '''simple docstring''' def _A ( self , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" return super().call(UpperCAmelCase__ , **UpperCAmelCase__ ) a__ : Any = FakeEncoder(bart_model.config , bart_model.model.shared ) a__ : str = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) a__ : int = bart_model.generate(UpperCAmelCase__ ).numpy() with self.assertRaises(UpperCAmelCase__ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCAmelCase__ , foo="bar" )
721
from collections.abc import Callable def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: a__ : float = a a__ : float = b if function(__UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(__UpperCamelCase ) == 0: return b elif ( function(__UpperCamelCase ) * function(__UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: a__ : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__UpperCamelCase ) == 0: return mid elif function(__UpperCamelCase ) * function(__UpperCamelCase ) < 0: a__ : int = mid else: a__ : List[Any] = mid a__ : Optional[Any] = start + (end - start) / 2.0 return mid def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> float: return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
207
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class lowercase_ ( unittest.TestCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ): """simple docstring""" a_ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} a_ = parent a_ = batch_size a_ = num_channels a_ = min_resolution a_ = max_resolution a_ = do_resize a_ = size a_ = do_normalize a_ = image_mean a_ = image_std a_ = do_rescale a_ = rescale_factor a_ = do_pad def lowercase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase__ ( self , _UpperCAmelCase , _UpperCAmelCase=False ): """simple docstring""" if not batched: a_ = image_inputs[0] if isinstance(lowerCamelCase__ , Image.Image ): a_ = image.size else: a_ = image.shape[1], image.shape[2] if w < h: a_ = int(self.size["""shortest_edge"""] * h / w ) a_ = self.size["shortest_edge"] elif w > h: a_ = self.size["shortest_edge"] a_ = int(self.size["""shortest_edge"""] * w / h ) else: a_ = self.size["shortest_edge"] a_ = self.size["shortest_edge"] else: a_ = [] for image in image_inputs: a_ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) a_ = max(lowerCamelCase__ , key=lambda _UpperCAmelCase : item[0] )[0] a_ = max(lowerCamelCase__ , key=lambda _UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase_ ( UpperCAmelCase__ ,unittest.TestCase): """simple docstring""" snake_case_ = YolosImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" a_ = YolosImageProcessingTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size""" ) ) def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1_333} ) self.assertEqual(image_processor.do_pad , lowerCamelCase__ ) a_ = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase__ ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase__ ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) a_ = image_processing(lowerCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = image_processing(lowerCamelCase__ , return_tensors="""pt""" ).pixel_values a_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input a_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values a_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched a_ = image_processing(lowerCamelCase__ , return_tensors="""pt""" ).pixel_values a_ = self.image_processor_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self ): """simple docstring""" a_ = self.image_processing_class(**self.image_processor_dict ) a_ = self.image_processing_class(do_resize=lowerCamelCase__ , do_normalize=lowerCamelCase__ , do_rescale=lowerCamelCase__ ) # create random PyTorch tensors a_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors a_ = image_processing_a.pad(lowerCamelCase__ , return_tensors="""pt""" ) a_ = image_processing_a(lowerCamelCase__ , return_tensors="""pt""" ) self.assertTrue( torch.allclose(encoded_images_with_method["""pixel_values"""] , encoded_images["""pixel_values"""] , atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" a_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: a_ = json.loads(f.read() ) a_ = {"image_id": 39_769, "annotations": target} # encode them a_ = YolosImageProcessor.from_pretrained("""hustvl/yolos-small""" ) a_ = image_processing(images=lowerCamelCase__ , annotations=lowerCamelCase__ , return_tensors="""pt""" ) # verify pixel values a_ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase__ ) a_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase__ , atol=1e-4 ) ) # verify area a_ = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase__ ) ) # verify boxes a_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase__ ) a_ = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase__ , atol=1e-3 ) ) # verify image_id a_ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase__ ) ) # verify is_crowd a_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase__ ) ) # verify class_labels a_ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase__ ) ) # verify orig_size a_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase__ ) ) # verify size a_ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase__ ) ) @slow def lowercase__ ( self ): """simple docstring""" a_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: a_ = json.loads(f.read() ) a_ = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} a_ = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them a_ = YolosImageProcessor(format="""coco_panoptic""" ) a_ = image_processing(images=lowerCamelCase__ , annotations=lowerCamelCase__ , masks_path=lowerCamelCase__ , return_tensors="""pt""" ) # verify pixel values a_ = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase__ ) a_ = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase__ , atol=1e-4 ) ) # verify area a_ = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase__ ) ) # verify boxes a_ = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase__ ) a_ = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase__ , atol=1e-3 ) ) # verify image_id a_ = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase__ ) ) # verify is_crowd a_ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase__ ) ) # verify class_labels a_ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase__ ) ) # verify masks a_ = 822_873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCamelCase__ ) # verify orig_size a_ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase__ ) ) # verify size a_ = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase__ ) )
483
class _lowercase : '''simple docstring''' def __init__( self ): lowerCAmelCase_: dict[str, TrieNode] = {} # Mapping from char to TrieNode lowerCAmelCase_: str = False def _a ( self , lowerCamelCase__ ): for word in words: self.insert(lowerCamelCase__ ) def _a ( self , lowerCamelCase__ ): lowerCAmelCase_: Union[str, Any] = self for char in word: if char not in curr.nodes: lowerCAmelCase_: List[Any] = TrieNode() lowerCAmelCase_: Optional[Any] = curr.nodes[char] lowerCAmelCase_: Dict = True def _a ( self , lowerCamelCase__ ): lowerCAmelCase_: Optional[Any] = self for char in word: if char not in curr.nodes: return False lowerCAmelCase_: Dict = curr.nodes[char] return curr.is_leaf def _a ( self , lowerCamelCase__ ): def _delete(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> bool: if index == len(lowerCamelCase__ ): # If word does not exist if not curr.is_leaf: return False lowerCAmelCase_: List[str] = False return len(curr.nodes ) == 0 lowerCAmelCase_: Union[str, Any] = word[index] lowerCAmelCase_: Optional[int] = curr.nodes.get(lowerCamelCase__ ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCAmelCase_: List[Any] = _delete(lowerCamelCase__ , lowerCamelCase__ , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , lowerCamelCase__ , 0 ) def snake_case__ ( lowercase , lowercase ): if node.is_leaf: print(lowercase , end=" " ) for key, value in node.nodes.items(): print_words(lowercase , word + key ) def snake_case__ ( ): lowerCAmelCase_: Any = "banana bananas bandana band apple all beast".split() lowerCAmelCase_: Optional[Any] = TrieNode() root.insert_many(lowercase ) # print_words(root, "") assert all(root.find(lowercase ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def snake_case__ ( lowercase , lowercase ): print(str(lowercase ) , "works!" if passes else "doesn't work :(" ) def snake_case__ ( ): assert test_trie() def snake_case__ ( ): print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
613
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __lowerCAmelCase : Optional[int] = 16 __lowerCAmelCase : List[str] = 32 def __lowerCAmelCase ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 1_6 ): '''simple docstring''' snake_case_ : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case_ : Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCamelCase : Tuple ): # max_length=None => use the model max length (it's actually the default) snake_case_ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : List[str] = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCamelCase : List[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Tuple = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Any = 1_6 elif accelerator.mixed_precision != "no": snake_case_ : Any = 8 else: snake_case_ : str = None return tokenizer.pad( __UpperCamelCase , padding="""longest""" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. snake_case_ : List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) snake_case_ : List[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __lowerCAmelCase : Optional[Any] = mocked_dataloaders # noqa: F811 def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Optional[Any] ): '''simple docstring''' if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCamelCase ) == "1": snake_case_ : Union[str, Any] = 2 # New Code # snake_case_ : Any = int(args.gradient_accumulation_steps ) snake_case_ : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator snake_case_ : Dict = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : List[str] = config["""lr"""] snake_case_ : int = int(config["""num_epochs"""] ) snake_case_ : List[Any] = int(config["""seed"""] ) snake_case_ : int = int(config["""batch_size"""] ) snake_case_ : Union[str, Any] = evaluate.load("""glue""" , """mrpc""" ) set_seed(__UpperCamelCase ) snake_case_ , snake_case_ : str = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : List[str] = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler snake_case_ : int = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : Optional[Any] = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): snake_case_ : List[Any] = model(**__UpperCamelCase ) snake_case_ : Dict = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : Optional[int] = model(**__UpperCamelCase ) snake_case_ : Optional[Any] = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) snake_case_ : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __UpperCamelCase ) def __lowerCAmelCase ( ): '''simple docstring''' snake_case_ : Tuple = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__UpperCamelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__UpperCamelCase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) snake_case_ : List[Any] = parser.parse_args() snake_case_ : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 4_2, """batch_size""": 1_6} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
21
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def is_in_circle(__UpperCamelCase : float , __UpperCamelCase : float ) -> bool: snake_case_ : Dict = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle snake_case_ : Tuple = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__UpperCamelCase ) ) # The ratio of the area for circle to square is pi/4. snake_case_ : Union[str, Any] = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Callable[[float], float] , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 , ): '''simple docstring''' return mean( function_to_integrate(uniform(__UpperCamelCase , __UpperCamelCase ) ) for _ in range(__UpperCamelCase ) ) * (max_value - min_value) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ): '''simple docstring''' def identity_function(__UpperCamelCase : float ) -> float: return x snake_case_ : int = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : str = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("""******************""" ) def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' def function_to_integrate(__UpperCamelCase : float ) -> float: return sqrt(4.0 - x * x ) snake_case_ : List[Any] = area_under_curve_estimator( __UpperCamelCase , __UpperCamelCase , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
21
1
"""simple docstring""" from numpy import exp, pi, sqrt def __snake_case ( UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Optional[Any]: '''simple docstring''' a : Any = [] a : List[str] = set({"(", "[", "{"} ) a : int = set({")", "]", "}"} ) a : int = {"{": "}", "[": "]", "(": ")"} for i in range(len(_lowercase ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_lowercase ) == 0 or (len(_lowercase ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_lowercase ) == 0 def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : Any = input("Enter sequence of brackets: " ) if is_balanced(_lowercase ): print(_lowercase , "is balanced" ) else: print(_lowercase , "is not balanced" ) if __name__ == "__main__": main()
633
0
import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def lowerCAmelCase__(__snake_case ) -> Optional[int]: '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCamelCase__ = name.replace('''img_encoder.pos_embed''' ,'''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: lowerCamelCase__ = name.replace('''img_encoder.patch_embed.proj''' ,'''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: lowerCamelCase__ = name.replace('''img_encoder.patch_embed.norm''' ,'''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: lowerCamelCase__ = name.replace('''img_encoder.layers''' ,'''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: lowerCamelCase__ = name.replace('''blocks''' ,'''layers''' ) if "attn" in name and "pre_assign" not in name: lowerCamelCase__ = name.replace('''attn''' ,'''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCamelCase__ = name.replace('''proj''' ,'''out_proj''' ) if "pre_assign_attn.attn.proj" in name: lowerCamelCase__ = name.replace('''pre_assign_attn.attn.proj''' ,'''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: lowerCamelCase__ = name.replace('''norm1''' ,'''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: lowerCamelCase__ = name.replace('''norm2''' ,'''layer_norm2''' ) if "img_encoder.norm" in name: lowerCamelCase__ = name.replace('''img_encoder.norm''' ,'''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: lowerCamelCase__ = name.replace('''text_encoder.token_embedding''' ,'''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: lowerCamelCase__ = name.replace('''text_encoder.positional_embedding''' ,'''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: lowerCamelCase__ = name.replace('''text_encoder.transformer.resblocks.''' ,'''text_model.encoder.layers.''' ) if "ln_1" in name: lowerCamelCase__ = name.replace('''ln_1''' ,'''layer_norm1''' ) if "ln_2" in name: lowerCamelCase__ = name.replace('''ln_2''' ,'''layer_norm2''' ) if "c_fc" in name: lowerCamelCase__ = name.replace('''c_fc''' ,'''fc1''' ) if "c_proj" in name: lowerCamelCase__ = name.replace('''c_proj''' ,'''fc2''' ) if "text_encoder" in name: lowerCamelCase__ = name.replace('''text_encoder''' ,'''text_model''' ) if "ln_final" in name: lowerCamelCase__ = name.replace('''ln_final''' ,'''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: lowerCamelCase__ = name.replace('''img_projector.linear_hidden.''' ,'''visual_projection.''' ) if "img_projector.linear_out." in name: lowerCamelCase__ = name.replace('''img_projector.linear_out.''' ,'''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: lowerCamelCase__ = name.replace('''text_projector.linear_hidden''' ,'''text_projection''' ) if "text_projector.linear_out" in name: lowerCamelCase__ = name.replace('''text_projector.linear_out''' ,'''text_projection.3''' ) return name def lowerCAmelCase__(__snake_case ,__snake_case ) -> Tuple: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCamelCase__ = orig_state_dict.pop(__snake_case ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase__ = key.split('''.''' ) lowerCamelCase__ , lowerCamelCase__ = int(key_split[2] ), int(key_split[4] ) lowerCamelCase__ = config.vision_config.hidden_size if "weight" in key: lowerCamelCase__ = val[:dim, :] lowerCamelCase__ = val[dim : dim * 2, :] lowerCamelCase__ = val[-dim:, :] else: lowerCamelCase__ = val[:dim] lowerCamelCase__ = val[dim : dim * 2] lowerCamelCase__ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCamelCase__ = key.split('''.''' ) lowerCamelCase__ = int(key_split[3] ) lowerCamelCase__ = config.text_config.hidden_size if "weight" in key: lowerCamelCase__ = val[:dim, :] lowerCamelCase__ = val[ dim : dim * 2, : ] lowerCamelCase__ = val[-dim:, :] else: lowerCamelCase__ = val[:dim] lowerCamelCase__ = val[dim : dim * 2] lowerCamelCase__ = val[-dim:] else: lowerCamelCase__ = rename_key(__snake_case ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCamelCase__ = val.squeeze_() else: lowerCamelCase__ = val return orig_state_dict def lowerCAmelCase__() -> Tuple: '''simple docstring''' lowerCamelCase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase__ = Image.open(requests.get(__snake_case ,stream=__snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase__(__snake_case ,__snake_case ,__snake_case="groupvit-gcc-yfcc" ,__snake_case=False ) -> List[str]: '''simple docstring''' lowerCamelCase__ = GroupViTConfig() lowerCamelCase__ = GroupViTModel(__snake_case ).eval() lowerCamelCase__ = torch.load(__snake_case ,map_location='''cpu''' )['''model'''] lowerCamelCase__ = convert_state_dict(__snake_case ,__snake_case ) lowerCamelCase__ , lowerCamelCase__ = model.load_state_dict(__snake_case ,strict=__snake_case ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__snake_case ) == 0) # verify result lowerCamelCase__ = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) lowerCamelCase__ = prepare_img() lowerCamelCase__ = processor(text=['''a photo of a cat''', '''a photo of a dog'''] ,images=__snake_case ,padding=__snake_case ,return_tensors='''pt''' ) with torch.no_grad(): lowerCamelCase__ = model(**__snake_case ) if model_name == "groupvit-gcc-yfcc": lowerCamelCase__ = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": lowerCamelCase__ = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F'Model name {model_name} not supported.' ) assert torch.allclose(outputs.logits_per_image ,__snake_case ,atol=1E-3 ) processor.save_pretrained(__snake_case ) model.save_pretrained(__snake_case ) print('''Successfully saved processor and model to''' ,__snake_case ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(__snake_case ,organization='''nielsr''' ) model.push_to_hub(__snake_case ,organization='''nielsr''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to dump the processor and PyTorch model." ) parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to GroupViT checkpoint") parser.add_argument( "--model_name", default="groupvit-gccy-fcc", type=str, help="Name of the model. Expecting either 'groupvit-gcc-yfcc' or 'groupvit-gcc-redcaps'", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.", ) _a = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
29
from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __A ( lowerCAmelCase ): '''simple docstring''' lowerCAmelCase_ = 42 class __A ( lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1_6 , __lowerCAmelCase = 8_8 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 1 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 3_2 , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = "geglu" , __lowerCAmelCase = True , __lowerCAmelCase = True , ): '''simple docstring''' super().__init__() lowerCamelCase__ = num_attention_heads lowerCamelCase__ = attention_head_dim lowerCamelCase__ = num_attention_heads * attention_head_dim lowerCamelCase__ = in_channels lowerCamelCase__ = torch.nn.GroupNorm(num_groups=__lowerCAmelCase , num_channels=__lowerCAmelCase , eps=1E-6 , affine=__lowerCAmelCase ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # 3. Define transformers blocks lowerCamelCase__ = nn.ModuleList( [ BasicTransformerBlock( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dropout=__lowerCAmelCase , cross_attention_dim=__lowerCAmelCase , activation_fn=__lowerCAmelCase , attention_bias=__lowerCAmelCase , double_self_attention=__lowerCAmelCase , norm_elementwise_affine=__lowerCAmelCase , ) for d in range(__lowerCAmelCase ) ] ) lowerCamelCase__ = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=1 , __lowerCAmelCase=None , __lowerCAmelCase = True , ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = hidden_states.shape lowerCamelCase__ = batch_frames // num_frames lowerCamelCase__ = hidden_states lowerCamelCase__ = hidden_states[None, :].reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) lowerCamelCase__ = self.norm(__lowerCAmelCase ) lowerCamelCase__ = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = self.proj_in(__lowerCAmelCase ) # 2. Blocks for block in self.transformer_blocks: lowerCamelCase__ = block( __lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , timestep=__lowerCAmelCase , cross_attention_kwargs=__lowerCAmelCase , class_labels=__lowerCAmelCase , ) # 3. Output lowerCamelCase__ = self.proj_out(__lowerCAmelCase ) lowerCamelCase__ = ( hidden_states[None, None, :] .reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) lowerCamelCase__ = hidden_states.reshape(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowerCamelCase__ = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowerCAmelCase )
29
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( lowerCAmelCase__ ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __lowerCamelCase = self.unet.config.sample_size __lowerCamelCase = (batch_size, 3, img_size, img_size) __lowerCamelCase = self.unet __lowerCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __lowerCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __lowerCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __lowerCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __lowerCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __lowerCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __lowerCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __lowerCamelCase ,__lowerCamelCase = output.prev_sample, output.prev_sample_mean __lowerCamelCase = sample_mean.clamp(0 , 1 ) __lowerCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowerCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
175
def a__ ( _UpperCamelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('''String must only contain alphabetic characters.''' ) __lowerCamelCase = sorted(string.lower() ) return len(_UpperCamelCase ) == len(set(_UpperCamelCase ) ) if __name__ == "__main__": a_ = input("""Enter a string """).strip() a_ = is_isogram(input_str) print(f"{input_str} is {'an' if isogram else 'not an'} isogram.")
175
1
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch a : Optional[Any] = logging.get_logger(__name__) class a_ ( _UpperCAmelCase ): a : Tuple = ['pixel_values'] def __init__( self : Optional[int] , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Dict[str, int]] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_55 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : List[str] , ) ->None: '''simple docstring''' super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 2_56} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name="""crop_size""" ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def _snake_case ( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size["""shortest_edge"""] , default_to_square=__UpperCamelCase ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Tuple , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Tuple , ) ->np.ndarray: '''simple docstring''' _UpperCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(__UpperCamelCase , size=(size["""height"""], size["""width"""]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] ) ->np.ndarray: '''simple docstring''' return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : List[str] , ) ->np.ndarray: '''simple docstring''' return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def _snake_case ( self : Union[str, Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[float] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__UpperCamelCase : Optional[int] , ) ->List[Any]: '''simple docstring''' _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name="""crop_size""" ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(__UpperCamelCase ) if not valid_images(__UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase ) def _snake_case ( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : List[Tuple] = None ) ->int: '''simple docstring''' _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(__UpperCamelCase ): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(__UpperCamelCase ) ): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=__UpperCamelCase ) _UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCamelCase ) else: _UpperCAmelCase = logits.argmax(dim=1 ) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
718
"""simple docstring""" import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def _UpperCamelCase ( _A , _A=False ) -> str: """simple docstring""" try: _UpperCAmelCase = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase = strtobool(_A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value a : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False) a : Tuple = parse_flag_from_env('''RUN_REMOTE''', default=False) a : Union[str, Any] = parse_flag_from_env('''RUN_LOCAL''', default=True) a : int = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression a : List[Any] = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') a : List[Any] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') a : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio a : int = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam a : Tuple = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility a : Any = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows a : int = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def _UpperCamelCase ( _A ) -> str: """simple docstring""" try: import faiss # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires faiss""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" try: import regex # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires regex""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" try: import elasticsearch # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires elasticsearch""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" try: import sqlalchemy # noqa except ImportError: _UpperCAmelCase = unittest.skip("""test requires sqlalchemy""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Union[str, Any]: """simple docstring""" if not config.TORCH_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires PyTorch""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Optional[Any]: """simple docstring""" if not config.TF_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires TensorFlow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> str: """simple docstring""" if not config.JAX_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires JAX""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" if not config.PIL_AVAILABLE: _UpperCAmelCase = unittest.skip("""test requires Pillow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> str: """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> int: """simple docstring""" def _require_spacy_model(_A ): try: import spacy # noqa F401 spacy.load(_A ) except ImportError: return unittest.skip("""test requires spacy""" )(_A ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(_A ) )(_A ) else: return test_case return _require_spacy_model def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> List[Any]: """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(_A ) else: return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: _UpperCAmelCase = unittest.skip("""test is slow""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Any: """simple docstring""" if not _run_local_tests or _run_local_tests == 0: _UpperCAmelCase = unittest.skip("""test is local""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Optional[int]: """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCAmelCase = unittest.skip("""test is packaged""" )(_A ) return test_case def _UpperCamelCase ( _A ) -> Dict: """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: _UpperCAmelCase = unittest.skip("""test requires remote""" )(_A ) return test_case def _UpperCamelCase ( *_A ) -> Dict: """simple docstring""" def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(_A ) and name.startswith("""test""" ): for decorator in decorators: _UpperCAmelCase = decorator(_A ) setattr(cls , _A , _A ) return cls return decorate class a_ ( _UpperCAmelCase ): pass class a_ ( _UpperCAmelCase ): a : Any = 0 a : Optional[Any] = 1 a : int = 2 @contextmanager def _UpperCamelCase ( _A=OfflineSimulationMode.CONNECTION_FAILS , _A=1e-16 ) -> List[Any]: """simple docstring""" _UpperCAmelCase = requests.Session().request def timeout_request(_A , _A , _A , **_A ): # Change the url to an invalid url so that the connection hangs _UpperCAmelCase = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) _UpperCAmelCase = timeout try: return online_request(_A , _A , **_A ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCAmelCase = url _UpperCAmelCase = e.args[0] _UpperCAmelCase = (max_retry_error.args[0].replace("""10.255.255.1""" , F"""OfflineMock[{url}]""" ),) _UpperCAmelCase = (max_retry_error,) raise def raise_connection_error(_A , _A , **_A ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=_A ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , _A ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , _A ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , _A ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _UpperCamelCase ( *_A , **_A ) -> str: """simple docstring""" _UpperCAmelCase = str(Path().resolve() ) with tempfile.TemporaryDirectory(*_A , **_A ) as tmp_dir: try: os.chdir(_A ) yield finally: os.chdir(_A ) @contextmanager def _UpperCamelCase ( ) -> Any: """simple docstring""" import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" import gc gc.collect() _UpperCAmelCase = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _UpperCamelCase ( _A , _A ) -> str: """simple docstring""" return deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() == deepcopy(_A ).integers(0 , 1_0_0 , 1_0 ).tolist() def _UpperCamelCase ( _A ) -> Tuple: """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(_A , *_A , **_A ): try: return func(*_A , **_A ) except HTTPError as err: if str(_A ).startswith("""500""" ) or str(_A ).startswith("""502""" ): pytest.xfail(str(_A ) ) raise err return decorator.decorator(_wrapper , _A ) class a_ : def __init__( self : int , __UpperCamelCase : List[Any] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] ) ->int: '''simple docstring''' _UpperCAmelCase = returncode _UpperCAmelCase = stdout _UpperCAmelCase = stderr async def _UpperCamelCase ( _A , _A ) -> Union[str, Any]: """simple docstring""" while True: _UpperCAmelCase = await stream.readline() if line: callback(_A ) else: break async def _UpperCamelCase ( _A , _A=None , _A=None , _A=None , _A=False , _A=False ) -> _RunOutput: """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(_A ) ) _UpperCAmelCase = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase = [] _UpperCAmelCase = [] def tee(_A , _A , _A , _A="" ): _UpperCAmelCase = line.decode("""utf-8""" ).rstrip() sink.append(_A ) if not quiet: print(_A , _A , file=_A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _A : tee(_A , _A , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda _A : tee(_A , _A , sys.stderr , label="""stderr:""" ) ), ] , timeout=_A , ) return _RunOutput(await p.wait() , _A , _A ) def _UpperCamelCase ( _A , _A=None , _A=None , _A=1_8_0 , _A=False , _A=True ) -> _RunOutput: """simple docstring""" _UpperCAmelCase = asyncio.get_event_loop() _UpperCAmelCase = loop.run_until_complete( _stream_subprocess(_A , env=_A , stdin=_A , timeout=_A , quiet=_A , echo=_A ) ) _UpperCAmelCase = """ """.join(_A ) if result.returncode > 0: _UpperCAmelCase = """\n""".join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) _UpperCAmelCase = re.sub(R"""^gw""" , """""" , _A , 0 , re.M ) return int(_A ) def _UpperCamelCase ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = 2_9_5_0_0 _UpperCAmelCase = pytest_xdist_worker_id() return port + uniq_delta
19
0
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A_ = tuple[int, int] class __lowerCamelCase : def __init__( self , UpperCAmelCase , UpperCAmelCase ): lowerCamelCase_ = vertices lowerCamelCase_ = { (min(UpperCAmelCase ), max(UpperCAmelCase )): weight for edge, weight in edges.items() } def UpperCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowerCamelCase_ = weight def UpperCAmelCase__ ( self ): lowerCamelCase_ = Graph({min(self.vertices )} , {} ) lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 while len(subgraph.vertices ) < len(self.vertices ): lowerCamelCase_ = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowerCamelCase_ = edge lowerCamelCase_ = weight subgraph.add_edge(UpperCAmelCase , UpperCAmelCase ) return subgraph def lowercase ( lowerCAmelCase__ = "p107_network.txt" ): lowerCamelCase_ = os.path.abspath(os.path.dirname(lowerCAmelCase__ ) ) lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = {} lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = 42 with open(lowerCAmelCase__ ) as f: lowerCamelCase_ = f.read().strip().split('''\n''' ) lowerCamelCase_ = [line.split(''',''' ) for line in data] for edgea in range(1 ,len(lowerCAmelCase__ ) ): for edgea in range(lowerCAmelCase__ ): if adjaceny_matrix[edgea][edgea] != "-": lowerCamelCase_ = int(adjaceny_matrix[edgea][edgea] ) lowerCamelCase_ = Graph(set(range(len(lowerCAmelCase__ ) ) ) ,lowerCAmelCase__ ) lowerCamelCase_ = graph.prims_algorithm() lowerCamelCase_ = sum(graph.edges.values() ) lowerCamelCase_ = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f"{solution() = }")
29
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCamelCase ( lowerCAmelCase , unittest.TestCase ): a__: Tuple = RoCBertTokenizer a__: int = None a__: Optional[Any] = False a__: Optional[int] = True a__: Tuple = filter_non_english def UpperCAmelCase__ ( self ): super().setUp() lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] lowerCamelCase_ = {} lowerCamelCase_ = {} for i, value in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = i lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCAmelCase , UpperCAmelCase , ensure_ascii=UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCAmelCase , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) , [5, 6, 2, 5, 7, 8] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] lowerCamelCase_ = {} for i, token in enumerate(UpperCAmelCase ): lowerCamelCase_ = i lowerCamelCase_ = RoCBertWordpieceTokenizer(vocab=UpperCAmelCase , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: lowerCamelCase_ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def UpperCAmelCase__ ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = f"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." lowerCamelCase_ = tokenizer_r.encode_plus( UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , add_special_tokens=UpperCAmelCase , ) lowerCamelCase_ = tokenizer_r.do_lower_case if hasattr(UpperCAmelCase , '''do_lower_case''' ) else False lowerCamelCase_ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = ['''的''', '''人''', '''有'''] lowerCamelCase_ = ''''''.join(UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase_ = False lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(UpperCAmelCase , **UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer_r.convert_ids_to_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer_p.convert_ids_to_tokens(UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ = [ f"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase ) ] self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase_ = tokenizer.encode('''你好''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) lowerCamelCase_ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizers(do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): lowerCamelCase_ = '''你好,你是谁''' lowerCamelCase_ = tokenizer.tokenize(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase ) lowerCamelCase_ = tokenizer.prepare_for_model( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , add_special_tokens=UpperCAmelCase ) lowerCamelCase_ = tokenizer.encode_plus(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
29
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : int = logging.get_logger(__name__) __lowerCamelCase : Optional[int] = { "nielsr/canine-s": 2_048, } # Unicode defines 1,114,112 total “codepoints” __lowerCamelCase : int = 1_114_112 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py __lowerCamelCase : Dict = 0 __lowerCamelCase : int = 0xE_0_0_0 __lowerCamelCase : List[Any] = 0xE_0_0_1 __lowerCamelCase : List[Any] = 0xE_0_0_2 __lowerCamelCase : Optional[Any] = 0xE_0_0_3 __lowerCamelCase : List[Any] = 0xE_0_0_4 # Maps special codepoints to human-readable names. __lowerCamelCase : Tuple = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. __lowerCamelCase : Optional[Any] = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class __magic_name__ ( UpperCAmelCase__ ): lowercase : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , UpperCamelCase__ : Any=chr(UpperCamelCase__ ) , UpperCamelCase__ : List[str]=chr(UpperCamelCase__ ) , UpperCamelCase__ : List[str]=chr(UpperCamelCase__ ) , UpperCamelCase__ : Dict=chr(UpperCamelCase__ ) , UpperCamelCase__ : Tuple=chr(UpperCamelCase__ ) , UpperCamelCase__ : Any=chr(UpperCamelCase__ ) , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : Any=20_48 , **UpperCamelCase__ : Any , ) -> List[Any]: '''simple docstring''' UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , model_max_length=UpperCamelCase__ , **UpperCamelCase__ , ) # Creates a mapping for looking up the IDs of special symbols. UpperCAmelCase = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): UpperCAmelCase = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. UpperCAmelCase = { codepoint: name for name, codepoint in self._special_codepoints.items() } UpperCAmelCase = UNICODE_VOCAB_SIZE UpperCAmelCase = len(self._special_codepoints ) @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' return self._unicode_vocab_size def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : str ) -> List[str]: '''simple docstring''' return list(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCamelCase__ : str ) -> int: '''simple docstring''' try: return ord(UpperCamelCase__ ) except TypeError: raise ValueError(F'invalid token: \'{token}\'' ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCamelCase__ : int ) -> str: '''simple docstring''' try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(UpperCamelCase__ ) except TypeError: raise ValueError(F'invalid id: {index}' ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : Optional[int] ) -> Optional[int]: '''simple docstring''' return "".join(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) UpperCAmelCase = [1] + ([0] * len(UpperCamelCase__ )) + [1] if token_ids_a is not None: result += ([0] * len(UpperCamelCase__ )) + [1] return result def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = len(cls + token_ids_a + sep ) * [0] if token_ids_a is not None: result += len(token_ids_a + sep ) * [1] return result def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ) -> List[str]: '''simple docstring''' return ()
714
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCamelCase : List[Any] = logging.get_logger(__name__) class __magic_name__ ( A__ ): lowercase : Tuple =['''pixel_values'''] def __init__( self : Any , UpperCamelCase__ : bool = True , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : float = None , UpperCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase__ : bool = True , UpperCamelCase__ : Union[int, float] = 1 / 2_55 , UpperCamelCase__ : bool = True , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , **UpperCamelCase__ : List[str] , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase__ ) UpperCAmelCase = size if size is not None else {"shortest_edge": 3_84} UpperCAmelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) UpperCAmelCase = do_resize UpperCAmelCase = size # Default value set here for backwards compatibility where the value in config is None UpperCAmelCase = crop_pct if crop_pct is not None else 2_24 / 2_56 UpperCAmelCase = resample UpperCAmelCase = do_rescale UpperCAmelCase = rescale_factor UpperCAmelCase = do_normalize UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Any , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Dict[str, int] , UpperCamelCase__ : float , UpperCamelCase__ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Union[str, Any] , ) -> np.ndarray: '''simple docstring''' UpperCAmelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) UpperCAmelCase = size["shortest_edge"] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct UpperCAmelCase = int(shortest_edge / crop_pct ) UpperCAmelCase = get_resize_output_image_size(UpperCamelCase__ , size=UpperCamelCase__ , default_to_square=UpperCamelCase__ ) UpperCAmelCase = resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=UpperCamelCase__ , size=(shortest_edge, shortest_edge) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( UpperCamelCase__ , size=(shortest_edge, shortest_edge) , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[int, float] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , ) -> List[str]: '''simple docstring''' return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : np.ndarray , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Union[float, List[float]] , UpperCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase__ : Optional[Any] , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , UpperCamelCase__ : ImageInput , UpperCamelCase__ : bool = None , UpperCamelCase__ : Dict[str, int] = None , UpperCamelCase__ : float = None , UpperCamelCase__ : PILImageResampling = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : float = None , UpperCamelCase__ : bool = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[float, List[float]]] = None , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase__ : Any , ) -> PIL.Image.Image: '''simple docstring''' UpperCAmelCase = do_resize if do_resize is not None else self.do_resize UpperCAmelCase = crop_pct if crop_pct is not None else self.crop_pct UpperCAmelCase = resample if resample is not None else self.resample UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase = image_mean if image_mean is not None else self.image_mean UpperCAmelCase = image_std if image_std is not None else self.image_std UpperCAmelCase = size if size is not None else self.size UpperCAmelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) UpperCAmelCase = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCAmelCase = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: UpperCAmelCase = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , crop_pct=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_rescale: UpperCAmelCase = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: UpperCAmelCase = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] UpperCAmelCase = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] UpperCAmelCase = {"pixel_values": images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ )
457
0
from __future__ import annotations import requests def _lowercase ( __lowerCamelCase : List[str] ) -> dict: '''simple docstring''' UpperCamelCase__ : Dict = F'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(__lowerCamelCase ).json() def _lowercase ( __lowerCamelCase : str = 10 ) -> list[dict]: '''simple docstring''' UpperCamelCase__ : str = """https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty""" UpperCamelCase__ : str = requests.get(__lowerCamelCase ).json()[:max_stories] return [get_hackernews_story(__lowerCamelCase ) for story_id in story_ids] def _lowercase ( __lowerCamelCase : Optional[Any] = 10 ) -> str: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = hackernews_top_stories(__lowerCamelCase ) return "\n".join('''* [{title}]({url})'''.format(**__lowerCamelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
344
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: snake_case : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case : set[int] = set() return any( node not in visited and depth_first_search(lowercase ,lowercase ,lowercase ,lowercase ) for node in graph ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> bool: visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase ,lowercase ,lowercase ,lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
587
0
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __A ( enum.Enum ): __A = 0 __A = 1 __A = 2 @add_end_docstrings(lowercase__ ) class __A ( lowercase__ ): __A = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCamelCase =None if self.model.config.prefix is not None: lowerCamelCase =self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCamelCase =self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCamelCase , lowerCamelCase , lowerCamelCase =self._sanitize_parameters(prefix=UpperCAmelCase_ , **self._forward_params ) lowerCamelCase ={**self._preprocess_params, **preprocess_params} lowerCamelCase ={**self._forward_params, **forward_params} def _snake_case ( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ , ): lowerCamelCase ={} if prefix is not None: lowerCamelCase =prefix if prefix: lowerCamelCase =self.tokenizer( UpperCAmelCase_ , padding=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=self.framework ) lowerCamelCase =prefix_inputs["""input_ids"""].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" """ [None, 'hole']""" ) lowerCamelCase =handle_long_generation preprocess_params.update(UpperCAmelCase_ ) lowerCamelCase =generate_kwargs lowerCamelCase ={} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_full_text`""" ) if return_tensors is not None: raise ValueError("""`return_full_text` is mutually exclusive with `return_tensors`""" ) lowerCamelCase =ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("""`return_text` is mutually exclusive with `return_tensors`""" ) lowerCamelCase =ReturnType.TENSORS if return_type is not None: lowerCamelCase =return_type if clean_up_tokenization_spaces is not None: lowerCamelCase =clean_up_tokenization_spaces if stop_sequence is not None: lowerCamelCase =self.tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) lowerCamelCase =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _snake_case ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"""add_space_before_punct_symbol""": True} ) return super()._parse_and_tokenize(*UpperCAmelCase_ , **UpperCAmelCase_ ) def __call__( self , UpperCAmelCase_ , **UpperCAmelCase_ ): return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_ ) def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_="" , UpperCAmelCase_=None , **UpperCAmelCase_ ): lowerCamelCase =self.tokenizer( prefix + prompt_text , padding=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=self.framework ) lowerCamelCase =prompt_text if handle_long_generation == "hole": lowerCamelCase =inputs["""input_ids"""].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCamelCase =generate_kwargs["""max_new_tokens"""] else: lowerCamelCase =generate_kwargs.get("""max_length""" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("""We cannot infer how many new tokens are expected""" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCamelCase =self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( """We cannot use `hole` to handle this generation the number of desired tokens exceeds the""" """ models max length""" ) lowerCamelCase =inputs["""input_ids"""][:, -keep_length:] if "attention_mask" in inputs: lowerCamelCase =inputs["""attention_mask"""][:, -keep_length:] return inputs def _snake_case ( self , UpperCAmelCase_ , **UpperCAmelCase_ ): lowerCamelCase =model_inputs["""input_ids"""] lowerCamelCase =model_inputs.get("""attention_mask""" , UpperCAmelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCamelCase =None lowerCamelCase =None lowerCamelCase =1 else: lowerCamelCase =input_ids.shape[0] lowerCamelCase =model_inputs.pop("""prompt_text""" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCamelCase =generate_kwargs.pop("""prefix_length""" , 0 ) if prefix_length > 0: lowerCamelCase ="""max_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].max_new_tokens is not None ) if not has_max_new_tokens: lowerCamelCase =generate_kwargs.get("""max_length""" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCamelCase ="""min_new_tokens""" in generate_kwargs or ( """generation_config""" in generate_kwargs and generate_kwargs["""generation_config"""].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCamelCase =self.model.generate(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCamelCase =generated_sequence.shape[0] if self.framework == "pt": lowerCamelCase =generated_sequence.reshape(UpperCAmelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCamelCase =tf.reshape(UpperCAmelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=ReturnType.FULL_TEXT , UpperCAmelCase_=True ): lowerCamelCase =model_outputs["""generated_sequence"""][0] lowerCamelCase =model_outputs["""input_ids"""] lowerCamelCase =model_outputs["""prompt_text"""] lowerCamelCase =generated_sequence.numpy().tolist() lowerCamelCase =[] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCamelCase ={"""generated_token_ids""": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCamelCase =self.tokenizer.decode( UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCamelCase =0 else: lowerCamelCase =len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: lowerCamelCase =prompt_text + text[prompt_length:] else: lowerCamelCase =text[prompt_length:] lowerCamelCase ={"""generated_text""": all_text} records.append(UpperCAmelCase_ ) return records
701
from typing import List from .keymap import KEYMAP, get_character def _lowercase ( _UpperCAmelCase ) -> Tuple: def decorator(_UpperCAmelCase ): lowerCamelCase =getattr(_UpperCAmelCase , """handle_key""" , [] ) handle += [key] setattr(_UpperCAmelCase , """handle_key""" , _UpperCAmelCase ) return func return decorator def _lowercase ( *_UpperCAmelCase ) -> Tuple: def decorator(_UpperCAmelCase ): lowerCamelCase =getattr(_UpperCAmelCase , """handle_key""" , [] ) handle += keys setattr(_UpperCAmelCase , """handle_key""" , _UpperCAmelCase ) return func return decorator class __A ( a ): def __new__( cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase =super().__new__(cls , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) if not hasattr(UpperCAmelCase_ , """key_handler""" ): setattr(UpperCAmelCase_ , """key_handler""" , {} ) setattr(UpperCAmelCase_ , """handle_input""" , KeyHandler.handle_input ) for value in attrs.values(): lowerCamelCase =getattr(UpperCAmelCase_ , """handle_key""" , [] ) for key in handled_keys: lowerCamelCase =value return new_cls @staticmethod def _snake_case ( cls ): lowerCamelCase =get_character() if char != KEYMAP["undefined"]: lowerCamelCase =ord(UpperCAmelCase_ ) lowerCamelCase =cls.key_handler.get(UpperCAmelCase_ ) if handler: lowerCamelCase =char return handler(cls ) else: return None def _lowercase ( cls ) -> List[str]: return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
269
0
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""image_processor""", """tokenizer"""] __SCREAMING_SNAKE_CASE = """LayoutLMv3ImageProcessor""" __SCREAMING_SNAKE_CASE = ("""LayoutLMv3Tokenizer""", """LayoutLMv3TokenizerFast""") def __init__( self : str , a_ : Dict=None , a_ : Dict=None , **a_ : Optional[int] ): """simple docstring""" __snake_case = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , a_ , ) __snake_case = kwargs.pop("feature_extractor" ) __snake_case = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(a_ , a_ ) def __call__( self : Any , a_ : Union[str, Any] , a_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , a_ : Union[List[List[int]], List[List[List[int]]]] = None , a_ : Optional[Union[List[int], List[List[int]]]] = None , a_ : bool = True , a_ : Union[bool, str, PaddingStrategy] = False , a_ : Union[bool, str, TruncationStrategy] = None , a_ : Optional[int] = None , a_ : int = 0 , a_ : Optional[int] = None , a_ : Optional[bool] = None , a_ : Optional[bool] = None , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = False , a_ : bool = True , a_ : Optional[Union[str, TensorType]] = None , **a_ : Tuple , ): """simple docstring""" if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor __snake_case = self.image_processor(images=a_ , return_tensors=a_ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(a_ , a_ ): __snake_case = [text] # add batch dimension (as the image processor always adds a batch dimension) __snake_case = features["words"] __snake_case = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=a_ , add_special_tokens=a_ , padding=a_ , truncation=a_ , max_length=a_ , stride=a_ , pad_to_multiple_of=a_ , return_token_type_ids=a_ , return_attention_mask=a_ , return_overflowing_tokens=a_ , return_special_tokens_mask=a_ , return_offsets_mapping=a_ , return_length=a_ , verbose=a_ , return_tensors=a_ , **a_ , ) # add pixel values __snake_case = features.pop("pixel_values" ) if return_overflowing_tokens is True: __snake_case = self.get_overflowing_images(a_ , encoded_inputs["overflow_to_sample_mapping"] ) __snake_case = images return encoded_inputs def A ( self : List[Any] , a_ : int , a_ : int ): """simple docstring""" __snake_case = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(a_ ) != len(a_ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(a_ )} and {len(a_ )}''' ) return images_with_overflow def A ( self : str , *a_ : str , **a_ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def A ( self : str , *a_ : int , **a_ : Tuple ): """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def A ( self : Dict ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def A ( self : int ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , a_ , ) return self.image_processor_class @property def A ( self : Dict ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , a_ , ) return self.image_processor
69
import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _a ( lowercase__ : int = 3 ): '''simple docstring''' if isinstance(lowercase__ , lowercase__ ): raise TypeError('number of qubits must be a integer.' ) if number_of_qubits <= 0: raise ValueError('number of qubits must be > 0.' ) if math.floor(lowercase__ ) != number_of_qubits: raise ValueError('number of qubits must be exact integer.' ) if number_of_qubits > 10: raise ValueError('number of qubits too large to simulate(>10).' ) SCREAMING_SNAKE_CASE__ : Tuple = QuantumRegister(lowercase__ , 'qr' ) SCREAMING_SNAKE_CASE__ : int = ClassicalRegister(lowercase__ , 'cr' ) SCREAMING_SNAKE_CASE__ : Tuple = QuantumCircuit(lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = number_of_qubits for i in range(lowercase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowercase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowercase__ , lowercase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowercase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowercase__ , lowercase__ ) # simulate with 10000 shots SCREAMING_SNAKE_CASE__ : Optional[int] = Aer.get_backend('qasm_simulator' ) SCREAMING_SNAKE_CASE__ : Tuple = execute(lowercase__ , lowercase__ , shots=1_00_00 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
85
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) # TODO: upload to AWS UpperCAmelCase : int = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class lowerCamelCase__ ( A ): """simple docstring""" __a = """retribert""" def __init__( self : int , UpperCamelCase : List[str]=30_522 , UpperCamelCase : Optional[Any]=768 , UpperCamelCase : Dict=8 , UpperCamelCase : str=12 , UpperCamelCase : Optional[int]=3_072 , UpperCamelCase : Union[str, Any]="gelu" , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : int=0.1 , UpperCamelCase : Dict=512 , UpperCamelCase : List[str]=2 , UpperCamelCase : Any=0.02 , UpperCamelCase : List[str]=1e-1_2 , UpperCamelCase : Tuple=True , UpperCamelCase : str=128 , UpperCamelCase : Optional[Any]=0 , **UpperCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase , **UpperCamelCase ) __UpperCAmelCase : Dict = vocab_size __UpperCAmelCase : Optional[Any] = hidden_size __UpperCAmelCase : Dict = num_hidden_layers __UpperCAmelCase : int = num_attention_heads __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : Optional[int] = intermediate_size __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[int] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : Optional[int] = type_vocab_size __UpperCAmelCase : int = initializer_range __UpperCAmelCase : Optional[int] = layer_norm_eps __UpperCAmelCase : int = share_encoders __UpperCAmelCase : Any = projection_dim
299
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase : str = logging.get_logger(__name__) UpperCAmelCase : Optional[int] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } UpperCAmelCase : str = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def lowerCamelCase ( _UpperCamelCase : Union[str, Any] ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = {} with open(_UpperCamelCase , """r""" ) as file: for line_number, line in enumerate(_UpperCamelCase ): __UpperCAmelCase : List[Any] = line.strip() if line: __UpperCAmelCase : List[Any] = line.split() __UpperCAmelCase : List[str] = line_number __UpperCAmelCase : List[str] = words[0] __UpperCAmelCase : Dict = value return result def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Dict , _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split(""".""" ): __UpperCAmelCase : Any = getattr(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : List[str] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCamelCase ): __UpperCAmelCase : Optional[int] = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCAmelCase : Tuple = """param""" if weight_type is not None and weight_type != "param": __UpperCAmelCase : Dict = getattr(_UpperCamelCase , _UpperCamelCase ).shape elif weight_type is not None and weight_type == "param": __UpperCAmelCase : Any = hf_pointer for attribute in hf_param_name.split(""".""" ): __UpperCAmelCase : Union[str, Any] = getattr(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : Optional[Any] = shape_pointer.shape # let's reduce dimension __UpperCAmelCase : Dict = value[0] else: __UpperCAmelCase : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCAmelCase : int = value elif weight_type == "weight_g": __UpperCAmelCase : Optional[int] = value elif weight_type == "weight_v": __UpperCAmelCase : int = value elif weight_type == "bias": __UpperCAmelCase : Any = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): __UpperCAmelCase : Dict = getattr(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : List[str] = value else: __UpperCAmelCase : List[Any] = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : str ) -> int: '''simple docstring''' __UpperCAmelCase : int = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_UpperCamelCase ): __UpperCAmelCase : Tuple = PARAM_MAPPING[full_name.split(""".""" )[-1]] __UpperCAmelCase : int = """param""" if weight_type is not None and weight_type != "param": __UpperCAmelCase : Optional[int] = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCAmelCase : Optional[Any] = """.""".join([key, hf_param_name] ) else: __UpperCAmelCase : List[str] = key __UpperCAmelCase : Tuple = value if """lm_head""" in full_key else value[0] UpperCAmelCase : Dict = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : List[Any] , _UpperCamelCase : Any=None , _UpperCamelCase : str=None ) -> Tuple: '''simple docstring''' __UpperCAmelCase : List[Any] = False for key, mapped_key in MAPPING.items(): __UpperCAmelCase : Optional[Any] = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __UpperCAmelCase : Dict = True if "*" in mapped_key: __UpperCAmelCase : str = name.split(_UpperCamelCase )[0].split(""".""" )[-2] __UpperCAmelCase : Dict = mapped_key.replace("""*""" , _UpperCamelCase ) if "weight_g" in name: __UpperCAmelCase : List[Any] = """weight_g""" elif "weight_v" in name: __UpperCAmelCase : List[str] = """weight_v""" elif "bias" in name: __UpperCAmelCase : Any = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCAmelCase : Dict = """weight""" else: __UpperCAmelCase : Optional[Any] = None if hf_dict is not None: rename_dict(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return is_used return is_used def lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[str] , _UpperCamelCase : str ) -> Any: '''simple docstring''' __UpperCAmelCase : str = [] __UpperCAmelCase : Dict = fairseq_model.state_dict() __UpperCAmelCase : Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __UpperCAmelCase : List[Any] = True else: __UpperCAmelCase : Any = load_wavaveca_layer(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if not is_used: unused_weights.append(_UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] , _UpperCamelCase : List[str] ) -> str: '''simple docstring''' __UpperCAmelCase : int = full_name.split("""conv_layers.""" )[-1] __UpperCAmelCase : Dict = name.split(""".""" ) __UpperCAmelCase : int = int(items[0] ) __UpperCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCAmelCase : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCAmelCase : List[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCAmelCase : int = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCAmelCase : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_UpperCamelCase ) @torch.no_grad() def lowerCamelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Dict=False ) -> List[Any]: '''simple docstring''' if config_path is not None: __UpperCAmelCase : List[str] = WavaVecaConfig.from_pretrained(_UpperCamelCase ) else: __UpperCAmelCase : List[Any] = WavaVecaConfig() if is_seq_class: __UpperCAmelCase : List[Any] = read_txt_into_dict(_UpperCamelCase ) __UpperCAmelCase : str = idalabel __UpperCAmelCase : Dict = WavaVecaForSequenceClassification(_UpperCamelCase ) __UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) feature_extractor.save_pretrained(_UpperCamelCase ) elif is_finetuned: if dict_path: __UpperCAmelCase : Union[str, Any] = Dictionary.load(_UpperCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCAmelCase : Optional[Any] = target_dict.pad_index __UpperCAmelCase : Union[str, Any] = target_dict.bos_index __UpperCAmelCase : Optional[int] = target_dict.eos_index __UpperCAmelCase : str = len(target_dict.symbols ) __UpperCAmelCase : List[Any] = os.path.join(_UpperCamelCase , """vocab.json""" ) if not os.path.isdir(_UpperCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(_UpperCamelCase ) ) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) __UpperCAmelCase : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Union[str, Any] = 1 with open(_UpperCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(_UpperCamelCase , _UpperCamelCase ) __UpperCAmelCase : int = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=_UpperCamelCase , ) __UpperCAmelCase : Union[str, Any] = True if config.feat_extract_norm == """layer""" else False __UpperCAmelCase : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) __UpperCAmelCase : Any = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase ) processor.save_pretrained(_UpperCamelCase ) __UpperCAmelCase : int = WavaVecaForCTC(_UpperCamelCase ) else: __UpperCAmelCase : str = WavaVecaForPreTraining(_UpperCamelCase ) if is_finetuned or is_seq_class: __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __UpperCAmelCase : Tuple = argparse.Namespace(task="""audio_pretraining""" ) __UpperCAmelCase : Dict = fairseq.tasks.setup_task(_UpperCamelCase ) __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_UpperCamelCase ) __UpperCAmelCase : Optional[Any] = model[0].eval() recursively_load_weights(_UpperCamelCase , _UpperCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": UpperCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) UpperCAmelCase : Union[str, Any] = parser.parse_args() UpperCAmelCase : Optional[int] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
299
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCAmelCase =logging.get_logger(__name__) UpperCAmelCase ={"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCAmelCase =[ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] UpperCAmelCase ={ "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } UpperCAmelCase ={f"""funnel-transformer/{name}""": 512 for name in _model_names} UpperCAmelCase ={f"""funnel-transformer/{name}""": {"do_lower_case": True} for name in _model_names} class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = FunnelTokenizer _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = 2 def __init__( self ,lowerCamelCase_=None ,lowerCamelCase_=None ,lowerCamelCase_=True ,lowerCamelCase_="<unk>" ,lowerCamelCase_="<sep>" ,lowerCamelCase_="<pad>" ,lowerCamelCase_="<cls>" ,lowerCamelCase_="<mask>" ,lowerCamelCase_="<s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_=None ,lowerCamelCase_="##" ,**lowerCamelCase_ ,) -> List[Any]: super().__init__( lowerCamelCase_ ,tokenizer_file=lowerCamelCase_ ,do_lower_case=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,clean_text=lowerCamelCase_ ,tokenize_chinese_chars=lowerCamelCase_ ,strip_accents=lowerCamelCase_ ,wordpieces_prefix=lowerCamelCase_ ,**lowerCamelCase_ ,) A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,lowerCamelCase_ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,lowerCamelCase_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,lowerCamelCase_ ) != tokenize_chinese_chars ): A = getattr(lowerCamelCase_ ,normalizer_state.pop("""type""" ) ) A = do_lower_case A = strip_accents A = tokenize_chinese_chars A = normalizer_class(**lowerCamelCase_ ) A = do_lower_case def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=None ) -> List[Any]: A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Tuple[str]: A = self._tokenizer.model.save(lowerCamelCase_ ,name=lowerCamelCase_ ) return tuple(lowerCamelCase_ )
617
"""simple docstring""" from math import pow, sqrt def _A ( *_a : float ): """simple docstring""" A = len(_a ) > 0 and all(value > 0.0 for value in values ) return result def _A ( _a : float , _a : float ): """simple docstring""" return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_a , _a ) else ValueError("""Input Error: Molar mass values must greater than 0.""" ) ) def _A ( _a : float , _a : float , _a : float ): """simple docstring""" return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_a , _a , _a ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _A ( _a : float , _a : float , _a : float ): """simple docstring""" return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_a , _a , _a ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _A ( _a : float , _a : float , _a : float ): """simple docstring""" return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_a , _a , _a ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) ) def _A ( _a : float , _a : float , _a : float ): """simple docstring""" return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_a , _a , _a ) else ValueError( """Input Error: Molar mass and effusion rate values must greater than 0.""" ) )
617
1
import math def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = len(_lowerCamelCase ) _lowerCamelCase : List[str] = int(math.floor(math.sqrt(_lowerCamelCase ) ) ) _lowerCamelCase : int = 0 while arr[min(_lowerCamelCase , _lowerCamelCase ) - 1] < x: _lowerCamelCase : Dict = step step += int(math.floor(math.sqrt(_lowerCamelCase ) ) ) if prev >= n: return -1 while arr[prev] < x: _lowerCamelCase : str = prev + 1 if prev == min(_lowerCamelCase , _lowerCamelCase ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": _lowerCAmelCase : int = input('''Enter numbers separated by a comma:\n''').strip() _lowerCAmelCase : List[Any] = [int(item) for item in user_input.split(''',''')] _lowerCAmelCase : Optional[Any] = int(input('''Enter the number to be searched:\n''')) _lowerCAmelCase : Optional[int] = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
718
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
386
0
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = Mock() __SCREAMING_SNAKE_CASE = conn, Mock() __SCREAMING_SNAKE_CASE = iter([1, None] ) __SCREAMING_SNAKE_CASE = lambda lowerCAmelCase_ : next(lowerCAmelCase_ ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=lowerCAmelCase_ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
"""simple docstring""" import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : """simple docstring""" def __init__( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any]=1_3 , UpperCAmelCase__ : int=7 , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Optional[int]=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Tuple=9_9 , UpperCAmelCase__ : Dict=3_2 , UpperCAmelCase__ : int=5 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : List[Any]=3_7 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Tuple=1_2_8 , UpperCAmelCase__ : Union[str, Any]=3_2 , UpperCAmelCase__ : Any=1_6 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : str=3 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : List[str]=None , ) -> Optional[int]: __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope def UpperCAmelCase_ ( self : str ) -> Any: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE = NezhaModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , ) -> Tuple: __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = NezhaModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] ) -> int: __SCREAMING_SNAKE_CASE = NezhaForMaskedLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any ) -> Tuple: __SCREAMING_SNAKE_CASE = NezhaForNextSentencePrediction(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> List[str]: __SCREAMING_SNAKE_CASE = NezhaForPreTraining(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , next_sentence_label=UpperCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = NezhaForQuestionAnswering(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , start_positions=UpperCAmelCase__ , end_positions=UpperCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = NezhaForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = NezhaForTokenClassification(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict ) -> str: __SCREAMING_SNAKE_CASE = self.num_choices __SCREAMING_SNAKE_CASE = NezhaForMultipleChoice(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ , labels=UpperCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) snake_case__ : Tuple = ( { "feature-extraction": NezhaModel, "fill-mask": NezhaForMaskedLM, "question-answering": NezhaForQuestionAnswering, "text-classification": NezhaForSequenceClassification, "token-classification": NezhaForTokenClassification, "zero-shot": NezhaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : int = True def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any]=False ) -> Dict: __SCREAMING_SNAKE_CASE = super()._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ , return_labels=UpperCAmelCase__ ) if return_labels: if model_class in get_values(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase__ ) return inputs_dict def UpperCAmelCase_ ( self : List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE = NezhaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def UpperCAmelCase_ ( self : int ) -> List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : List[str] ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE = None self.model_tester.create_and_check_model_as_decoder( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[int] ) -> int: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> int: for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = NezhaModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @slow @require_torch_gpu def UpperCAmelCase_ ( self : List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = model_class(config=UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.jit.trace( UpperCAmelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase__ , os.path.join(UpperCAmelCase__ , "bert.pt" ) ) __SCREAMING_SNAKE_CASE = torch.jit.load(os.path.join(UpperCAmelCase__ , "bert.pt" ) , map_location=UpperCAmelCase__ ) loaded(inputs_dict["input_ids"].to(UpperCAmelCase__ ) , inputs_dict["attention_mask"].to(UpperCAmelCase__ ) ) @require_torch class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self : List[Any] ) -> str: __SCREAMING_SNAKE_CASE = NezhaModel.from_pretrained("sijunhe/nezha-cn-base" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor([[[0.0_685, 0.2_441, 0.1_102], [0.0_600, 0.1_906, 0.1_349], [0.0_221, 0.0_819, 0.0_586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE = NezhaForMaskedLM.from_pretrained("sijunhe/nezha-cn-base" ) __SCREAMING_SNAKE_CASE = torch.tensor([[0, 1, 2, 3, 4, 5]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ )[0] __SCREAMING_SNAKE_CASE = torch.Size((1, 6, 2_1_1_2_8) ) self.assertEqual(output.shape , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-2.7_939, -1.7_902, -2.2_189], [-2.8_585, -1.8_908, -2.3_723], [-2.6_499, -1.7_750, -2.2_558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCAmelCase__ , atol=1E-4 ) )
682
1
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets snake_case_ : Optional[int] = datasets.logging.get_logger(__name__) snake_case_ : Tuple = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' snake_case_ : List[str] = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' snake_case_ : Optional[Any] = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' snake_case_ : Any = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/google-research/bleurt''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/google-research/bleurt'''] , reference_urls=['''https://github.com/google-research/bleurt''', '''https://arxiv.org/abs/2004.04696'''] , ) def __UpperCamelCase ( self : List[str] , _a : Optional[Any] ) -> int: """simple docstring""" if self.config_name == "default": logger.warning( '''Using default BLEURT-Base checkpoint for sequence maximum length 128. ''' '''You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').''' ) _SCREAMING_SNAKE_CASE ='''bleurt-base-128''' if self.config_name.lower() in CHECKPOINT_URLS: _SCREAMING_SNAKE_CASE =self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _SCREAMING_SNAKE_CASE =self.config_name.upper() else: raise KeyError( f"{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}" ) # download the model checkpoint specified by self.config_name and set up the scorer _SCREAMING_SNAKE_CASE =dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _SCREAMING_SNAKE_CASE =score.BleurtScorer(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) ) def __UpperCamelCase ( self : int , _a : Optional[int] , _a : List[Any] ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =self.scorer.score(references=UpperCamelCase__ , candidates=UpperCamelCase__ ) return {"scores": scores}
710
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal snake_case_ : Any = datasets.utils.logging.get_logger(__name__) snake_case_ : List[Any] = ['''names''', '''prefix'''] snake_case_ : Dict = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] snake_case_ : Dict = ['''encoding_errors''', '''on_bad_lines'''] snake_case_ : Optional[Any] = ['''date_format'''] @dataclass class A__ ( datasets.BuilderConfig ): UpperCAmelCase = "," UpperCAmelCase = None UpperCAmelCase = "infer" UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = None UpperCAmelCase = "." UpperCAmelCase = None UpperCAmelCase = '"' UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 0 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = None UpperCAmelCase = 10000 UpperCAmelCase = None UpperCAmelCase = "strict" UpperCAmelCase = "error" UpperCAmelCase = None def __UpperCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" if self.delimiter is not None: _SCREAMING_SNAKE_CASE =self.delimiter if self.column_names is not None: _SCREAMING_SNAKE_CASE =self.column_names @property def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE ={ '''sep''': self.sep, '''header''': self.header, '''names''': self.names, '''index_col''': self.index_col, '''usecols''': self.usecols, '''prefix''': self.prefix, '''mangle_dupe_cols''': self.mangle_dupe_cols, '''engine''': self.engine, '''converters''': self.converters, '''true_values''': self.true_values, '''false_values''': self.false_values, '''skipinitialspace''': self.skipinitialspace, '''skiprows''': self.skiprows, '''nrows''': self.nrows, '''na_values''': self.na_values, '''keep_default_na''': self.keep_default_na, '''na_filter''': self.na_filter, '''verbose''': self.verbose, '''skip_blank_lines''': self.skip_blank_lines, '''thousands''': self.thousands, '''decimal''': self.decimal, '''lineterminator''': self.lineterminator, '''quotechar''': self.quotechar, '''quoting''': self.quoting, '''escapechar''': self.escapechar, '''comment''': self.comment, '''encoding''': self.encoding, '''dialect''': self.dialect, '''error_bad_lines''': self.error_bad_lines, '''warn_bad_lines''': self.warn_bad_lines, '''skipfooter''': self.skipfooter, '''doublequote''': self.doublequote, '''memory_map''': self.memory_map, '''float_precision''': self.float_precision, '''chunksize''': self.chunksize, '''encoding_errors''': self.encoding_errors, '''on_bad_lines''': self.on_bad_lines, '''date_format''': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _a ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A__ ( datasets.ArrowBasedBuilder ): UpperCAmelCase = CsvConfig def __UpperCamelCase ( self : Optional[int] ) -> int: """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def __UpperCamelCase ( self : Dict , _a : str ) -> List[str]: """simple docstring""" if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) _SCREAMING_SNAKE_CASE =dl_manager.download_and_extract(self.config.data_files ) if isinstance(_a , (str, list, tuple) ): _SCREAMING_SNAKE_CASE =data_files if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] _SCREAMING_SNAKE_CASE =[] for split_name, files in data_files.items(): if isinstance(_a , _a ): _SCREAMING_SNAKE_CASE =[files] _SCREAMING_SNAKE_CASE =[dl_manager.iter_files(_a ) for file in files] splits.append(datasets.SplitGenerator(name=_a , gen_kwargs={'''files''': files} ) ) return splits def __UpperCamelCase ( self : Tuple , _a : pa.Table ) -> pa.Table: """simple docstring""" if self.config.features is not None: _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if all(not require_storage_cast(_a ) for feature in self.config.features.values() ): # cheaper cast _SCREAMING_SNAKE_CASE =pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_a ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _SCREAMING_SNAKE_CASE =table_cast(_a , _a ) return pa_table def __UpperCamelCase ( self : str , _a : Union[str, Any] ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _SCREAMING_SNAKE_CASE =( { name: dtype.to_pandas_dtype() if not require_storage_cast(_a ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_a ) ): _SCREAMING_SNAKE_CASE =pd.read_csv(_a , iterator=_a , dtype=_a , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_a ): _SCREAMING_SNAKE_CASE =pa.Table.from_pandas(_a ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_a ) except ValueError as e: logger.error(f"Failed to read file '{file}' with error {type(_a )}: {e}" ) raise
191
0
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class lowerCamelCase_ ( UpperCamelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=True , __lowercase=99 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=37 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=16 , __lowercase=2 , __lowercase=0.02 , __lowercase=3 , __lowercase=4 , __lowercase=None , ) -> int: __UpperCamelCase :Dict = parent __UpperCamelCase :Dict = batch_size __UpperCamelCase :Dict = seq_length __UpperCamelCase :Tuple = is_training __UpperCamelCase :Any = use_input_mask __UpperCamelCase :Union[str, Any] = use_token_type_ids __UpperCamelCase :Optional[Any] = use_labels __UpperCamelCase :Optional[int] = vocab_size __UpperCamelCase :Tuple = hidden_size __UpperCamelCase :Optional[Any] = num_hidden_layers __UpperCamelCase :List[Any] = num_attention_heads __UpperCamelCase :Dict = intermediate_size __UpperCamelCase :List[Any] = hidden_act __UpperCamelCase :Tuple = hidden_dropout_prob __UpperCamelCase :Optional[Any] = attention_probs_dropout_prob __UpperCamelCase :List[Any] = max_position_embeddings __UpperCamelCase :List[str] = type_vocab_size __UpperCamelCase :Union[str, Any] = type_sequence_label_size __UpperCamelCase :Optional[Any] = initializer_range __UpperCamelCase :Union[str, Any] = num_labels __UpperCamelCase :Optional[int] = num_choices __UpperCamelCase :int = scope def UpperCamelCase__ ( self) -> str: __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :Dict = None if self.use_input_mask: __UpperCamelCase :str = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :Union[str, Any] = None __UpperCamelCase :Union[str, Any] = None __UpperCamelCase :Dict = None if self.use_labels: __UpperCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :List[Any] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self) -> Optional[Any]: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Any: __UpperCamelCase :str = DistilBertModel(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() __UpperCamelCase :Dict = model(__UpperCamelCase , __UpperCamelCase) __UpperCamelCase :Any = model(__UpperCamelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> List[Any]: __UpperCamelCase :Dict = DistilBertForMaskedLM(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() __UpperCamelCase :int = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :Any = DistilBertForQuestionAnswering(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() __UpperCamelCase :List[str] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , start_positions=__UpperCamelCase , end_positions=__UpperCamelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Dict: __UpperCamelCase :List[Any] = self.num_labels __UpperCamelCase :str = DistilBertForSequenceClassification(__UpperCamelCase) model.to(__UpperCamelCase) model.eval() __UpperCamelCase :List[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> List[str]: __UpperCamelCase :Optional[Any] = self.num_labels __UpperCamelCase :Tuple = DistilBertForTokenClassification(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() __UpperCamelCase :List[str] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Union[str, Any]: __UpperCamelCase :Optional[int] = self.num_choices __UpperCamelCase :List[str] = DistilBertForMultipleChoice(config=__UpperCamelCase) model.to(__UpperCamelCase) model.eval() __UpperCamelCase :Any = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :str = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Optional[int] = model( __UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Tuple = self.prepare_config_and_inputs() (__UpperCamelCase) :Dict = config_and_inputs __UpperCamelCase :Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Optional[Any] = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) a__ : Optional[int] = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) a__ : List[str] = True a__ : Any = True a__ : List[Any] = True a__ : Optional[int] = True def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :str = DistilBertModelTester(self) __UpperCamelCase :Dict = ConfigTester(self , config_class=__UpperCamelCase , dim=37) def UpperCamelCase__ ( self) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCamelCase) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCamelCase) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCamelCase) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCamelCase) def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCamelCase) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCamelCase) @slow def UpperCamelCase__ ( self) -> Optional[Any]: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Optional[int] = DistilBertModel.from_pretrained(__UpperCamelCase) self.assertIsNotNone(__UpperCamelCase) @slow @require_torch_gpu def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __UpperCamelCase :List[Any] = True __UpperCamelCase :Any = model_class(config=__UpperCamelCase) __UpperCamelCase :Any = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase) __UpperCamelCase :Optional[int] = torch.jit.trace( __UpperCamelCase , (inputs_dict['''input_ids'''].to('''cpu'''), inputs_dict['''attention_mask'''].to('''cpu'''))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCamelCase , os.path.join(__UpperCamelCase , '''traced_model.pt''')) __UpperCamelCase :Dict = torch.jit.load(os.path.join(__UpperCamelCase , '''traced_model.pt''') , map_location=__UpperCamelCase) loaded(inputs_dict['''input_ids'''].to(__UpperCamelCase) , inputs_dict['''attention_mask'''].to(__UpperCamelCase)) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = DistilBertModel.from_pretrained('''distilbert-base-uncased''') __UpperCamelCase :int = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]]) __UpperCamelCase :List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): __UpperCamelCase :int = model(__UpperCamelCase , attention_mask=__UpperCamelCase)[0] __UpperCamelCase :Any = torch.Size((1, 11, 768)) self.assertEqual(output.shape , __UpperCamelCase) __UpperCamelCase :str = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __UpperCamelCase , atol=1E-4))
167
import math class a : def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase )-> int: '''simple docstring''' A__ : str =0.0 A__ : Optional[Any] =0.0 for i in range(len(__UpperCamelCase ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> list[list[int | float]]: '''simple docstring''' for i in range(len(__UpperCamelCase ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def SCREAMING_SNAKE_CASE__ ( ) -> None: # Training Examples ( m, n ) A__ : List[Any] =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) A__ : Any =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training A__ : List[str] =SelfOrganizingMap() A__ : Dict =3 A__ : Optional[int] =0.5 for _ in range(snake_case_ ): for j in range(len(snake_case_ ) ): # training sample A__ : str =training_samples[j] # Compute the winning vector A__ : Tuple =self_organizing_map.get_winner(snake_case_, snake_case_ ) # Update the winning vector A__ : Optional[int] =self_organizing_map.update(snake_case_, snake_case_, snake_case_, snake_case_ ) # classify test sample A__ : Optional[int] =[0, 0, 0, 1] A__ : Any =self_organizing_map.get_winner(snake_case_, snake_case_ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
416
0
def snake_case ( UpperCAmelCase : list, UpperCAmelCase : list, UpperCAmelCase : int ): if len(UpperCAmelCase ) != len(UpperCAmelCase ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. A = [p / w for p, w in zip(UpperCAmelCase, UpperCAmelCase )] # Creating a copy of the list and sorting profit/weight in ascending order A = sorted(UpperCAmelCase ) # declaring useful variables A = len(UpperCAmelCase ) A = 0 A = 0 A = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight A = sorted_profit_by_weight[length - i - 1] A = profit_by_weight.index(UpperCAmelCase ) A = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( 'Input profits, weights, and then max_weight (all positive ints) separated by ' 'spaces.' ) lowerCAmelCase_ = [int(x) for x in input('Input profits separated by spaces: ').split()] lowerCAmelCase_ = [int(x) for x in input('Input weights separated by spaces: ').split()] lowerCAmelCase_ = int(input('Max weight allowed: ')) # Function Call calc_profit(profit, weight, max_weight)
706
from collections import deque from .hash_table import HashTable class UpperCamelCase ( snake_case__ ): """simple docstring""" def __init__( self : Any ,*_SCREAMING_SNAKE_CASE : Optional[int] ,**_SCREAMING_SNAKE_CASE : Optional[Any] ) -> int: '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) def A( self : Optional[int] ,_SCREAMING_SNAKE_CASE : Optional[Any] ,_SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: '''simple docstring''' A = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(_SCREAMING_SNAKE_CASE ) A = self.values[key] def A( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return ( sum(self.charge_factor - len(_SCREAMING_SNAKE_CASE ) for slot in self.values ) / self.size_table * self.charge_factor ) def A( self : Dict ,_SCREAMING_SNAKE_CASE : Optional[int] ,_SCREAMING_SNAKE_CASE : str=None ) -> Union[str, Any]: '''simple docstring''' if not ( len(self.values[key] ) == self.charge_factor and self.values.count(_SCREAMING_SNAKE_CASE ) == 0 ): return key return super()._collision_resolution(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
110
0
from __future__ import annotations def UpperCamelCase (lowercase_: list[int] , lowercase_: int , lowercase_: int , lowercase_: int ) -> None: if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): A__ , A__ : Tuple = array[indexa], array[indexa] def UpperCamelCase (lowercase_: list[int] , lowercase_: int , lowercase_: int , lowercase_: int ) -> None: if length > 1: A__ : Tuple = int(length / 2 ) for i in range(lowercase_ , low + middle ): comp_and_swap(lowercase_ , lowercase_ , i + middle , lowercase_ ) bitonic_merge(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) bitonic_merge(lowercase_ , low + middle , lowercase_ , lowercase_ ) def UpperCamelCase (lowercase_: list[int] , lowercase_: int , lowercase_: int , lowercase_: int ) -> None: if length > 1: A__ : Tuple = int(length / 2 ) bitonic_sort(lowercase_ , lowercase_ , lowercase_ , 1 ) bitonic_sort(lowercase_ , low + middle , lowercase_ , 0 ) bitonic_merge(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) if __name__ == "__main__": A_ : Optional[int] = input('Enter numbers separated by a comma:\n').strip() A_ : str = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
456
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class _a (unittest.TestCase , __magic_name__ ): '''simple docstring''' def __A ( self ): A__ : List[str] = load_tool("""text-to-speech""" ) self.tool.setup() def __A ( self ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) A__ : Tuple = self.tool("""hey""" ) A__ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def __A ( self ): # SpeechT5 isn't deterministic torch.manual_seed(0 ) A__ : Any = self.tool("""hey""" ) A__ : Optional[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
456
1
import math def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : str = len(lowerCamelCase__ ) lowercase__ : List[str] = int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) lowercase__ : Tuple = 0 while arr[min(lowerCamelCase__ , lowerCamelCase__ ) - 1] < x: lowercase__ : List[str] = step step += int(math.floor(math.sqrt(lowerCamelCase__ ) ) ) if prev >= n: return -1 while arr[prev] < x: lowercase__ : int = prev + 1 if prev == min(lowerCamelCase__ , lowerCamelCase__ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] lowerCAmelCase__ = int(input('''Enter the number to be searched:\n''')) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print('''Number not found!''') else: print(f'''Number {x} is at index {res}''')
81
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class snake_case__(_UpperCamelCase ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : CLIPSegForImageSegmentation , SCREAMING_SNAKE_CASE : CLIPSegProcessor , SCREAMING_SNAKE_CASE : AutoencoderKL , SCREAMING_SNAKE_CASE : CLIPTextModel , SCREAMING_SNAKE_CASE : CLIPTokenizer , SCREAMING_SNAKE_CASE : UNetaDConditionModel , SCREAMING_SNAKE_CASE : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , SCREAMING_SNAKE_CASE : StableDiffusionSafetyChecker , SCREAMING_SNAKE_CASE : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: lowercase__ : Optional[Any] = ( f"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" f""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) lowercase__ : int = dict(scheduler.config ) lowercase__ : Any = 1 lowercase__ : Union[str, Any] = FrozenDict(SCREAMING_SNAKE_CASE ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: lowercase__ : Optional[Any] = ( f"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , SCREAMING_SNAKE_CASE , standard_warn=SCREAMING_SNAKE_CASE ) lowercase__ : Tuple = dict(scheduler.config ) lowercase__ : Union[str, Any] = True lowercase__ : int = FrozenDict(SCREAMING_SNAKE_CASE ) if safety_checker is None: logger.warning( f"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=SCREAMING_SNAKE_CASE , segmentation_processor=SCREAMING_SNAKE_CASE , vae=SCREAMING_SNAKE_CASE , text_encoder=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , unet=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , safety_checker=SCREAMING_SNAKE_CASE , feature_extractor=SCREAMING_SNAKE_CASE , ) def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase__ : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE ) def snake_case ( self : List[Any] ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) lowercase__ : Union[str, Any] = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self : Optional[Any] ): if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, List[str]] , SCREAMING_SNAKE_CASE : Union[torch.FloatTensor, PIL.Image.Image] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 512 , SCREAMING_SNAKE_CASE : int = 50 , SCREAMING_SNAKE_CASE : float = 7.5 , SCREAMING_SNAKE_CASE : Optional[Union[str, List[str]]] = None , SCREAMING_SNAKE_CASE : Optional[int] = 1 , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : Optional[torch.Generator] = None , SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , SCREAMING_SNAKE_CASE : int = 1 , **SCREAMING_SNAKE_CASE : Optional[Any] , ): lowercase__ : Dict = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) lowercase__ : int = self.segmentation_model(**SCREAMING_SNAKE_CASE ) lowercase__ : int = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase__ : List[str] = self.numpy_to_pil(SCREAMING_SNAKE_CASE )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase__ : int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=SCREAMING_SNAKE_CASE , image=SCREAMING_SNAKE_CASE , mask_image=SCREAMING_SNAKE_CASE , height=SCREAMING_SNAKE_CASE , width=SCREAMING_SNAKE_CASE , num_inference_steps=SCREAMING_SNAKE_CASE , guidance_scale=SCREAMING_SNAKE_CASE , negative_prompt=SCREAMING_SNAKE_CASE , num_images_per_prompt=SCREAMING_SNAKE_CASE , eta=SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , latents=SCREAMING_SNAKE_CASE , output_type=SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE , callback=SCREAMING_SNAKE_CASE , callback_steps=SCREAMING_SNAKE_CASE , )
81
1
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase ( __snake_case ): def _lowerCamelCase ( self ): lowerCAmelCase : int = SMALL_MODEL_IDENTIFIER lowerCAmelCase : Optional[int] = "pt" lowerCAmelCase : Optional[Any] = "tf" def _lowerCamelCase ( self , a_ ): lowerCAmelCase : Tuple = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(a__ ) def _lowerCamelCase ( self , a_ ): lowerCAmelCase : Optional[Any] = TFAutoModel.from_pretrained(self.test_model , from_pt=a__ ) model_tf.save_pretrained(a__ ) def _lowerCamelCase ( self ): lowerCAmelCase : Dict = "mock_framework" # Framework provided - return whatever the user provides lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , a__ ) self.assertEqual(a__ , a__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(a__ ) lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(a__ , a__ ) self.assertEqual(a__ , a__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(a__ ) lowerCAmelCase : Any = FeaturesManager.determine_framework(a__ , a__ ) self.assertEqual(a__ , a__ ) def _lowerCamelCase ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(a__ ) lowerCAmelCase : Any = FeaturesManager.determine_framework(a__ ) self.assertEqual(a__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(a__ ) lowerCAmelCase : Any = FeaturesManager.determine_framework(a__ ) self.assertEqual(a__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(a__ ): lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(a__ ) def _lowerCamelCase ( self ): lowerCAmelCase : Any = MagicMock(return_value=a__ ) with patch("transformers.onnx.features.is_tf_available" , a__ ): lowerCAmelCase : str = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(a__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCAmelCase : str = MagicMock(return_value=a__ ) with patch("transformers.onnx.features.is_torch_available" , a__ ): lowerCAmelCase : int = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(a__ , self.framework_tf ) # Both in environment -> use PyTorch lowerCAmelCase : Optional[int] = MagicMock(return_value=a__ ) lowerCAmelCase : str = MagicMock(return_value=a__ ) with patch("transformers.onnx.features.is_tf_available" , a__ ), patch( "transformers.onnx.features.is_torch_available" , a__ ): lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(a__ , self.framework_pt ) # Both not in environment -> raise error lowerCAmelCase : Dict = MagicMock(return_value=a__ ) lowerCAmelCase : Union[str, Any] = MagicMock(return_value=a__ ) with patch("transformers.onnx.features.is_tf_available" , a__ ), patch( "transformers.onnx.features.is_torch_available" , a__ ): with self.assertRaises(a__ ): lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
525
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _lowerCAmelCase ( ) -> Tuple: """simple docstring""" A = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" A = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" ) return image def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> Dict: """simple docstring""" A = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _lowerCAmelCase ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] ) -> Optional[int]: """simple docstring""" A = dct.pop(UpperCamelCase__ ) A = val def _lowerCAmelCase ( UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] ) -> Tuple: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases A = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) A = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict A = torch.cat((q_bias, torch.zeros_like(UpperCamelCase__ , requires_grad=UpperCamelCase__ ), v_bias) ) A = qkv_bias def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: Tuple ) -> Dict: """simple docstring""" A = 3_64 if """coco""" in model_name else 2_24 A = BlipaVisionConfig(image_size=UpperCamelCase__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: A = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=UpperCamelCase__ ).to_dict() elif "opt-6.7b" in model_name: A = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=UpperCamelCase__ ).to_dict() elif "t5-xl" in model_name: A = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: A = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() A = BlipaConfig(vision_config=UpperCamelCase__ , text_config=UpperCamelCase__ ) return config, image_size @torch.no_grad() def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: Optional[Any]=None , UpperCamelCase__: Tuple=False ) -> List[str]: """simple docstring""" A = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) A = tokenizer("""\n""" , add_special_tokens=UpperCamelCase__ ).input_ids[0] A , A = get_blipa_config(UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) A = BlipaForConditionalGeneration(UpperCamelCase__ ).eval() A = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } A , A = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) A = """cuda""" if torch.cuda.is_available() else """cpu""" A , A , A = load_model_and_preprocess( name=UpperCamelCase__ , model_type=UpperCamelCase__ , is_eval=UpperCamelCase__ , device=UpperCamelCase__ ) original_model.eval() print("""Done!""" ) # update state dict keys A = original_model.state_dict() A = create_rename_keys(UpperCamelCase__ ) for src, dest in rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): A = state_dict.pop(UpperCamelCase__ ) if key.startswith("""Qformer.bert""" ): A = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: A = key.replace("""self""" , """attention""" ) if "opt_proj" in key: A = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: A = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): A = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): A = key.replace("""t5""" , """language""" ) A = val # read in qv biases read_in_q_v_bias(UpperCamelCase__ , UpperCamelCase__ ) A , A = hf_model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert len(UpperCamelCase__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] A = load_demo_image() A = vis_processors["""eval"""](UpperCamelCase__ ).unsqueeze(0 ).to(UpperCamelCase__ ) A = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(UpperCamelCase__ ) # create processor A = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=UpperCamelCase__ , image_std=UpperCamelCase__ ) A = BlipaProcessor(image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) A = processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) # make sure processor creates exact same pixel values assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ) original_model.to(UpperCamelCase__ ) hf_model.to(UpperCamelCase__ ) with torch.no_grad(): if "opt" in model_name: A = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits A = hf_model(UpperCamelCase__ , UpperCamelCase__ ).logits else: A = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits A = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) A = hf_model(UpperCamelCase__ , UpperCamelCase__ , labels=UpperCamelCase__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": A = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=UpperCamelCase__ ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": A = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=UpperCamelCase__ ) else: # cast to same type A = logits.dtype assert torch.allclose(original_logits.to(UpperCamelCase__ ) , UpperCamelCase__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) A = """""" A = tokenizer(UpperCamelCase__ , return_tensors="""pt""" ).input_ids.to(UpperCamelCase__ ) A = original_model.generate({"""image""": original_pixel_values} ) A = hf_model.generate( UpperCamelCase__ , UpperCamelCase__ , do_sample=UpperCamelCase__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , UpperCamelCase__ ) A = input_ids.shape[1] A = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=UpperCamelCase__ ) A = [text.strip() for text in output_text] print("""HF generation:""" , UpperCamelCase__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(UpperCamelCase__ ) hf_model.save_pretrained(UpperCamelCase__ ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() _lowercase : List[str] = [ "blip2-opt-2.7b", "blip2-opt-6.7b", "blip2-opt-2.7b-coco", "blip2-opt-6.7b-coco", "blip2-flan-t5-xl", "blip2-flan-t5-xl-coco", "blip2-flan-t5-xxl", ] parser.add_argument( "--model_name", default="blip2-opt-2.7b", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) _lowercase : Tuple = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
641
0
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(__a ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
720
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowerCamelCase__ ( _lowercase ): '''simple docstring''' return (data["data"], data["target"]) def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = XGBClassifier() classifier.fit(_lowercase , _lowercase ) return classifier def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = load_iris() UpperCAmelCase_, UpperCAmelCase_ : Any = data_handling(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = train_test_split( _lowercase , _lowercase , test_size=0.25 ) UpperCAmelCase_ : Dict = iris['''target_names'''] # Create an XGBoost Classifier from the training data UpperCAmelCase_ : int = xgboost(_lowercase , _lowercase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _lowercase , _lowercase , _lowercase , display_labels=_lowercase , cmap='''Blues''' , normalize='''true''' , ) plt.title('''Normalized Confusion Matrix - IRIS Dataset''' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
300
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class __lowerCamelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' a_ : Optional[int] = "deta" a_ : List[str] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : Tuple , a_ : Any=None , a_ : Optional[int]=9_00 , a_ : Optional[int]=20_48 , a_ : List[Any]=6 , a_ : List[Any]=20_48 , a_ : Optional[Any]=8 , a_ : Any=6 , a_ : Any=10_24 , a_ : Tuple=8 , a_ : Any=0.0 , a_ : Optional[int]=True , a_ : Any="relu" , a_ : int=2_56 , a_ : str=0.1 , a_ : Optional[int]=0.0 , a_ : List[str]=0.0 , a_ : List[str]=0.02 , a_ : Dict=1.0 , a_ : List[Any]=True , a_ : int=False , a_ : Dict="sine" , a_ : Union[str, Any]=5 , a_ : Tuple=4 , a_ : List[str]=4 , a_ : List[str]=True , a_ : Tuple=3_00 , a_ : int=True , a_ : Union[str, Any]=True , a_ : Union[str, Any]=1 , a_ : List[str]=5 , a_ : str=2 , a_ : Tuple=1 , a_ : Any=1 , a_ : Dict=5 , a_ : Any=2 , a_ : str=0.1 , a_ : List[str]=0.25 , **a_ : str , ): if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase_ : str = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(snake_case_ , snake_case_ ): lowerCAmelCase_ : Tuple = backbone_config.pop("model_type" ) lowerCAmelCase_ : Dict = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : Union[str, Any] = config_class.from_dict(snake_case_ ) lowerCAmelCase_ : Union[str, Any] = backbone_config lowerCAmelCase_ : str = num_queries lowerCAmelCase_ : str = max_position_embeddings lowerCAmelCase_ : Union[str, Any] = d_model lowerCAmelCase_ : Dict = encoder_ffn_dim lowerCAmelCase_ : Tuple = encoder_layers lowerCAmelCase_ : str = encoder_attention_heads lowerCAmelCase_ : Optional[int] = decoder_ffn_dim lowerCAmelCase_ : Tuple = decoder_layers lowerCAmelCase_ : str = decoder_attention_heads lowerCAmelCase_ : Union[str, Any] = dropout lowerCAmelCase_ : int = attention_dropout lowerCAmelCase_ : Tuple = activation_dropout lowerCAmelCase_ : List[str] = activation_function lowerCAmelCase_ : Union[str, Any] = init_std lowerCAmelCase_ : str = init_xavier_std lowerCAmelCase_ : Any = encoder_layerdrop lowerCAmelCase_ : Dict = auxiliary_loss lowerCAmelCase_ : Any = position_embedding_type # deformable attributes lowerCAmelCase_ : Dict = num_feature_levels lowerCAmelCase_ : str = encoder_n_points lowerCAmelCase_ : Union[str, Any] = decoder_n_points lowerCAmelCase_ : List[str] = two_stage lowerCAmelCase_ : Any = two_stage_num_proposals lowerCAmelCase_ : Any = with_box_refine lowerCAmelCase_ : Optional[int] = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher lowerCAmelCase_ : Union[str, Any] = class_cost lowerCAmelCase_ : Tuple = bbox_cost lowerCAmelCase_ : Dict = giou_cost # Loss coefficients lowerCAmelCase_ : Tuple = mask_loss_coefficient lowerCAmelCase_ : Optional[int] = dice_loss_coefficient lowerCAmelCase_ : Union[str, Any] = bbox_loss_coefficient lowerCAmelCase_ : Optional[int] = giou_loss_coefficient lowerCAmelCase_ : Any = eos_coefficient lowerCAmelCase_ : int = focal_alpha super().__init__(is_encoder_decoder=snake_case_ , **snake_case_ ) @property def lowerCamelCase ( self : List[str] ): return self.encoder_attention_heads @property def lowerCamelCase ( self : str ): return self.d_model def lowerCamelCase ( self : Optional[Any] ): lowerCAmelCase_ : Any = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.backbone_config.to_dict() lowerCAmelCase_ : str = self.__class__.model_type return output
610
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def A__ ( A__ ) -> List[str]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = image.size _UpperCAmelCase , _UpperCAmelCase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _UpperCAmelCase = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) _UpperCAmelCase = np.array(A__ ).astype(np.floataa ) / 255.0 _UpperCAmelCase = image[None].transpose(0 , 3 , 1 , 2 ) _UpperCAmelCase = torch.from_numpy(A__ ) return 2.0 * image - 1.0 class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , ) -> int: super().__init__() self.register_modules(vqvae=snake_case_ , unet=snake_case_ , scheduler=snake_case_ ) @torch.no_grad() def __call__( self , snake_case_ = None , snake_case_ = 1 , snake_case_ = 100 , snake_case_ = 0.0 , snake_case_ = None , snake_case_ = "pil" , snake_case_ = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = 1 elif isinstance(snake_case_ , torch.Tensor ): _UpperCAmelCase = image.shape[0] else: raise ValueError(F"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(snake_case_ )}""" ) if isinstance(snake_case_ , PIL.Image.Image ): _UpperCAmelCase = preprocess(snake_case_ ) _UpperCAmelCase , _UpperCAmelCase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image _UpperCAmelCase = (batch_size, self.unet.config.in_channels // 2, height, width) _UpperCAmelCase = next(self.unet.parameters() ).dtype _UpperCAmelCase = randn_tensor(snake_case_ , generator=snake_case_ , device=self.device , dtype=snake_case_ ) _UpperCAmelCase = image.to(device=self.device , dtype=snake_case_ ) # set timesteps and move to the correct device self.scheduler.set_timesteps(snake_case_ , device=self.device ) _UpperCAmelCase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler _UpperCAmelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _UpperCAmelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _UpperCAmelCase = {} if accepts_eta: _UpperCAmelCase = eta for t in self.progress_bar(snake_case_ ): # concat latents and low resolution image in the channel dimension. _UpperCAmelCase = torch.cat([latents, image] , dim=1 ) _UpperCAmelCase = self.scheduler.scale_model_input(snake_case_ , snake_case_ ) # predict the noise residual _UpperCAmelCase = self.unet(snake_case_ , snake_case_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase = self.scheduler.step(snake_case_ , snake_case_ , snake_case_ , **snake_case_ ).prev_sample # decode the image latents with the VQVAE _UpperCAmelCase = self.vqvae.decode(snake_case_ ).sample _UpperCAmelCase = torch.clamp(snake_case_ , -1.0 , 1.0 ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _UpperCAmelCase = self.numpy_to_pil(snake_case_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case_ )
426
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowerCAmelCase_ : """simple docstring""" _snake_case : Optional[int] = None _snake_case : Optional[jnp.ndarray] = None _snake_case : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def __a ( cls :Union[str, Any] ): return cls() @dataclass class lowerCAmelCase_ ( lowercase ): """simple docstring""" _snake_case : jnp.ndarray _snake_case : jnp.ndarray _snake_case : KarrasVeSchedulerState class lowerCAmelCase_ ( lowercase , lowercase ): """simple docstring""" @property def __a ( self :Union[str, Any] ): return True @register_to_config def __init__( self :Optional[int] , lowerCamelCase__ :float = 0.02 , lowerCamelCase__ :float = 1_00 , lowerCamelCase__ :float = 1.007 , lowerCamelCase__ :float = 80 , lowerCamelCase__ :float = 0.05 , lowerCamelCase__ :float = 50 , ): pass def __a ( self :Any ): return KarrasVeSchedulerState.create() def __a ( self :int , lowerCamelCase__ :KarrasVeSchedulerState , lowerCamelCase__ :int , lowerCamelCase__ :Tuple = () ): UpperCamelCase__ :Any = jnp.arange(0 , lowerCamelCase__ )[::-1].copy() UpperCamelCase__ :List[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCamelCase__ , schedule=jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) , timesteps=lowerCamelCase__ , ) def __a ( self :Optional[Any] , lowerCamelCase__ :KarrasVeSchedulerState , lowerCamelCase__ :jnp.ndarray , lowerCamelCase__ :float , lowerCamelCase__ :random.KeyArray , ): if self.config.s_min <= sigma <= self.config.s_max: UpperCamelCase__ :Union[str, Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCamelCase__ :Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCamelCase__ :List[Any] = random.split(lowerCamelCase__ , num=1 ) UpperCamelCase__ :Tuple = self.config.s_noise * random.normal(key=lowerCamelCase__ , shape=sample.shape ) UpperCamelCase__ :Optional[Any] = sigma + gamma * sigma UpperCamelCase__ :Dict = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __a ( self :str , lowerCamelCase__ :KarrasVeSchedulerState , lowerCamelCase__ :jnp.ndarray , lowerCamelCase__ :float , lowerCamelCase__ :float , lowerCamelCase__ :jnp.ndarray , lowerCamelCase__ :bool = True , ): UpperCamelCase__ :Dict = sample_hat + sigma_hat * model_output UpperCamelCase__ :Tuple = (sample_hat - pred_original_sample) / sigma_hat UpperCamelCase__ :str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , state=lowerCamelCase__ ) def __a ( self :Optional[int] , lowerCamelCase__ :KarrasVeSchedulerState , lowerCamelCase__ :jnp.ndarray , lowerCamelCase__ :float , lowerCamelCase__ :float , lowerCamelCase__ :jnp.ndarray , lowerCamelCase__ :jnp.ndarray , lowerCamelCase__ :jnp.ndarray , lowerCamelCase__ :bool = True , ): UpperCamelCase__ :List[str] = sample_prev + sigma_prev * model_output UpperCamelCase__ :Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev UpperCamelCase__ :Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , state=lowerCamelCase__ ) def __a ( self :str , lowerCamelCase__ :KarrasVeSchedulerState , lowerCamelCase__ :Tuple , lowerCamelCase__ :Optional[int] , lowerCamelCase__ :Optional[int] ): raise NotImplementedError()
383
from __future__ import annotations def A ( lowercase__ : list[int] ) -> int: if not nums: return 0 UpperCamelCase__ :Dict = nums[0] UpperCamelCase__ :Dict = 0 for num in nums[1:]: UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = ( max_excluding + num, max(lowercase__ , lowercase__ ), ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
383
1
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _a : Optional[Any] = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class _lowercase ( unittest.TestCase ): def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Path , SCREAMING_SNAKE_CASE_ : Union[str, None] = None , SCREAMING_SNAKE_CASE_ : Union[List[str], None] = None , SCREAMING_SNAKE_CASE_ : Union[str, List[str], None] = None , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Any: __snake_case = [file for file in os.listdir(SCREAMING_SNAKE_CASE_ ) if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )] if identifier is not None: __snake_case = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for n_ in n_identifier: __snake_case = [file for file in files if n_ not in file] else: __snake_case = [file for file in files if n_identifier not in file] __snake_case = ignore_files or [] ignore_files.append('__init__.py' ) __snake_case = [file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , SCREAMING_SNAKE_CASE_ ) if only_modules: __snake_case = file.split('.' )[0] try: __snake_case = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = doctest.DocTestSuite(SCREAMING_SNAKE_CASE_ ) __snake_case = unittest.TextTestRunner().run(SCREAMING_SNAKE_CASE_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'{module_identifier} is not a module.' ) else: __snake_case = doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def a ( self : List[Any] ) -> int: __snake_case = Path('src/transformers' ) __snake_case = 'modeling' __snake_case = [ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(SCREAMING_SNAKE_CASE_ , identifier=SCREAMING_SNAKE_CASE_ , ignore_files=SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> str: __snake_case = Path('src/transformers' ) __snake_case = 'tokenization' self.analyze_directory(SCREAMING_SNAKE_CASE_ , identifier=SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = Path('src/transformers' ) __snake_case = 'configuration' self.analyze_directory(SCREAMING_SNAKE_CASE_ , identifier=SCREAMING_SNAKE_CASE_ ) def a ( self : List[Any] ) -> int: __snake_case = Path('src/transformers' ) __snake_case = ['configuration', 'modeling', 'tokenization'] self.analyze_directory(SCREAMING_SNAKE_CASE_ , n_identifier=SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Tuple: __snake_case = Path('docs/source' ) __snake_case = ['favicon.ico'] self.analyze_directory(SCREAMING_SNAKE_CASE_ , ignore_files=SCREAMING_SNAKE_CASE_ , only_modules=SCREAMING_SNAKE_CASE_ )
56
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class A( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" A = CpmAntTokenizer A = False def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" super().setUp() _UpperCamelCase :str = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] _UpperCamelCase :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Any = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) _UpperCamelCase :List[str] = '''今天天气真好!''' _UpperCamelCase :Tuple = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] _UpperCamelCase :Tuple = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Dict = '''今天天气真好!''' _UpperCamelCase :Optional[int] = [tokenizer.bos_token] + tokens _UpperCamelCase :List[str] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :str = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
355
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : str = logging.get_logger(__name__) __a : Tuple = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class _UpperCamelCase ( lowercase__ ): """simple docstring""" __a : Optional[int] = 'mra' def __init__( self , lowerCAmelCase__=5_02_65 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=1 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__="absolute" , lowerCAmelCase__=4 , lowerCAmelCase__="full" , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , **lowerCAmelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = block_per_row __lowercase = approx_mode __lowercase = initial_prior_first_n_blocks __lowercase = initial_prior_diagonal_n_blocks
701
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __a : Optional[Any] = logging.getLogger(__name__) def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser( description='''Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids).''' ) parser.add_argument('''--file_path''' , type=lowercase , default='''data/dump.txt''' , help='''The path to the data.''' ) parser.add_argument('''--tokenizer_type''' , type=lowercase , default='''bert''' , choices=['''bert''', '''roberta''', '''gpt2'''] ) parser.add_argument('''--tokenizer_name''' , type=lowercase , default='''bert-base-uncased''' , help='''The tokenizer to use.''' ) parser.add_argument('''--dump_file''' , type=lowercase , default='''data/dump''' , help='''The dump file prefix.''' ) __lowercase = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": __lowercase = BertTokenizer.from_pretrained(args.tokenizer_name ) __lowercase = tokenizer.special_tokens_map['''cls_token'''] # `[CLS]` __lowercase = tokenizer.special_tokens_map['''sep_token'''] # `[SEP]` elif args.tokenizer_type == "roberta": __lowercase = RobertaTokenizer.from_pretrained(args.tokenizer_name ) __lowercase = tokenizer.special_tokens_map['''cls_token'''] # `<s>` __lowercase = tokenizer.special_tokens_map['''sep_token'''] # `</s>` elif args.tokenizer_type == "gpt2": __lowercase = GPTaTokenizer.from_pretrained(args.tokenizer_name ) __lowercase = tokenizer.special_tokens_map['''bos_token'''] # `<|endoftext|>` __lowercase = tokenizer.special_tokens_map['''eos_token'''] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , '''r''' , encoding='''utf8''' ) as fp: __lowercase = fp.readlines() logger.info('''Start encoding''' ) logger.info(F"{len(lowercase )} examples to process." ) __lowercase = [] __lowercase = 0 __lowercase = 10000 __lowercase = time.time() for text in data: __lowercase = F"{bos} {text.strip()} {sep}" __lowercase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) rslt.append(lowercase ) iter += 1 if iter % interval == 0: __lowercase = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) __lowercase = time.time() logger.info('''Finished binarization''' ) logger.info(F"{len(lowercase )} examples processed." ) __lowercase = F"{args.dump_file}.{args.tokenizer_name}.pickle" __lowercase = tokenizer.vocab_size if vocab_size < (1 << 16): __lowercase = [np.uintaa(lowercase ) for d in rslt] else: __lowercase = [np.intaa(lowercase ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(lowercase , '''wb''' ) as handle: pickle.dump(rslt_ , lowercase , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
522
0
from pathlib import Path import fire from tqdm import tqdm def _UpperCAmelCase ( a : Any="ro" , a : Optional[Any]="en" , a : Any="wmt16" , a : Optional[Any]=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError("""run pip install datasets""" ) snake_case__ = F'''{src_lang}-{tgt_lang}''' print(F'''Converting {dataset}-{pair}''' ) snake_case__ = datasets.load_dataset(a , a ) if save_dir is None: snake_case__ = F'''{dataset}-{pair}''' snake_case__ = Path(a ) save_dir.mkdir(exist_ok=a ) for split in ds.keys(): print(F'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets snake_case__ = """val""" if split == """validation""" else split snake_case__ = save_dir.joinpath(F'''{fn}.source''' ) snake_case__ = save_dir.joinpath(F'''{fn}.target''' ) snake_case__ = src_path.open("""w+""" ) snake_case__ = tgt_path.open("""w+""" ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): snake_case__ = x["""translation"""] src_fp.write(ex[src_lang] + """\n""" ) tgt_fp.write(ex[tgt_lang] + """\n""" ) print(F'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
654
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : Dict = '''wavlm''' def __init__( self : Tuple , UpperCamelCase__ : str=3_2 , UpperCamelCase__ : Any=7_6_8 , UpperCamelCase__ : Any=1_2 , UpperCamelCase__ : Tuple=1_2 , UpperCamelCase__ : str=3_0_7_2 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Optional[int]=0.02 , UpperCamelCase__ : Optional[int]=1E-5 , UpperCamelCase__ : Any="group" , UpperCamelCase__ : List[str]="gelu" , UpperCamelCase__ : Any=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , UpperCamelCase__ : List[str]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase__ : Dict=(1_0, 3, 3, 3, 3, 2, 2) , UpperCamelCase__ : int=False , UpperCamelCase__ : Optional[Any]=1_2_8 , UpperCamelCase__ : Optional[int]=1_6 , UpperCamelCase__ : Optional[Any]=3_2_0 , UpperCamelCase__ : Any=8_0_0 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Optional[Any]=0.05 , UpperCamelCase__ : Optional[Any]=1_0 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Tuple=1_0 , UpperCamelCase__ : Optional[int]=3_2_0 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1_0_0 , UpperCamelCase__ : Dict=2_5_6 , UpperCamelCase__ : Optional[int]=2_5_6 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : Tuple="mean" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Tuple=False , UpperCamelCase__ : Union[str, Any]=2_5_6 , UpperCamelCase__ : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , UpperCamelCase__ : Optional[Any]=(5, 3, 3, 1, 1) , UpperCamelCase__ : Any=(1, 2, 3, 1, 1) , UpperCamelCase__ : Dict=5_1_2 , UpperCamelCase__ : str=8_0 , UpperCamelCase__ : Optional[int]=0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : str=False , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Optional[int]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__) snake_case__ = hidden_size snake_case__ = feat_extract_norm snake_case__ = feat_extract_activation snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = conv_bias snake_case__ = num_buckets snake_case__ = max_bucket_distance snake_case__ = num_conv_pos_embeddings snake_case__ = num_conv_pos_embedding_groups snake_case__ = len(self.conv_dim) snake_case__ = num_hidden_layers snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = num_attention_heads snake_case__ = hidden_dropout snake_case__ = attention_dropout snake_case__ = activation_dropout snake_case__ = feat_proj_dropout snake_case__ = final_dropout snake_case__ = layerdrop snake_case__ = layer_norm_eps snake_case__ = initializer_range snake_case__ = num_ctc_classes snake_case__ = vocab_size snake_case__ = do_stable_layer_norm snake_case__ = use_weighted_layer_sum snake_case__ = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F''' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel)}`.''') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case__ = apply_spec_augment snake_case__ = mask_time_prob snake_case__ = mask_time_length snake_case__ = mask_time_min_masks snake_case__ = mask_feature_prob snake_case__ = mask_feature_length # parameters for pretraining with codevector quantized representations snake_case__ = num_codevectors_per_group snake_case__ = num_codevector_groups snake_case__ = contrastive_logits_temperature snake_case__ = num_negatives snake_case__ = codevector_dim snake_case__ = proj_codevector_dim snake_case__ = diversity_loss_weight # ctc loss snake_case__ = ctc_loss_reduction snake_case__ = ctc_zero_infinity # adapter snake_case__ = add_adapter snake_case__ = adapter_kernel_size snake_case__ = adapter_stride snake_case__ = num_adapter_layers snake_case__ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. snake_case__ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = list(UpperCamelCase__) snake_case__ = xvector_output_dim @property def __magic_name__ ( self : Optional[int]): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1)
654
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : str = logging.get_logger(__name__) A__ : Any = { '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case__ ( SCREAMING_SNAKE_CASE_ ): A__ = '''biogpt''' def __init__( self : List[str] , __a : str=42384 , __a : Tuple=1024 , __a : int=24 , __a : List[str]=16 , __a : Optional[int]=4096 , __a : List[Any]="gelu" , __a : int=0.1 , __a : Optional[int]=0.1 , __a : Optional[Any]=1024 , __a : Union[str, Any]=0.0_2 , __a : int=1e-12 , __a : str=True , __a : Tuple=True , __a : List[Any]=0.0 , __a : Optional[int]=0.0 , __a : List[Any]=1 , __a : List[str]=0 , __a : Optional[Any]=2 , **__a : str , ) -> Optional[int]: '''simple docstring''' __snake_case : Dict = vocab_size __snake_case : Dict = max_position_embeddings __snake_case : Optional[Any] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = intermediate_size __snake_case : List[str] = hidden_act __snake_case : Any = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : Any = initializer_range __snake_case : List[str] = layer_norm_eps __snake_case : List[str] = scale_embedding __snake_case : List[str] = use_cache __snake_case : Union[str, Any] = layerdrop __snake_case : int = activation_dropout super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
124
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device A__ : Optional[int] = False class snake_case__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class snake_case__ ( unittest.TestCase ): def A_ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Any ) -> Tuple: '''simple docstring''' __snake_case : List[str] = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __snake_case : str = torch.manual_seed(0 ) __snake_case : int = pipe.dual_guided( prompt='first prompt' , image=__a , text_to_image_strength=0.7_5 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__a ) __snake_case : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained(__a , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : List[str] = generator.manual_seed(0 ) __snake_case : Tuple = pipe.dual_guided( prompt='first prompt' , image=__a , text_to_image_strength=0.7_5 , generator=__a , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) __snake_case : Optional[Any] = 'cyberpunk 2077' __snake_case : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Tuple = pipe.dual_guided( prompt=__a , image=__a , text_to_image_strength=0.7_5 , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __snake_case : List[Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : List[str] = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __snake_case : Tuple = 'A painting of a squirrel eating a burger ' __snake_case : str = torch.manual_seed(0 ) __snake_case : Optional[Any] = pipe.text_to_image( prompt=__a , generator=__a , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images __snake_case : Dict = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : Optional[int] = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 __snake_case : int = pipe.image_variation(__a , generator=__a , output_type='numpy' ).images __snake_case : Any = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case : str = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
124
1
import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __lowercase = re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex __lowercase = 10 __lowercase = 256 def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < MIN_NUM_TOKENS: return None __UpperCamelCase :List[str] = MinHash(num_perm=SCREAMING_SNAKE_CASE ) for token in set(SCREAMING_SNAKE_CASE ): min_hash.update(token.encode() ) return min_hash def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' return {t for t in NON_ALPHA.split(SCREAMING_SNAKE_CASE ) if len(t.strip() ) > 0} class lowerCamelCase_ : '''simple docstring''' def __init__( self , *, __lowercase = 0.85 , ) -> Union[str, Any]: __UpperCamelCase :Optional[Any] = duplication_jaccard_threshold __UpperCamelCase :Any = NUM_PERM __UpperCamelCase :Any = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) __UpperCamelCase :int = defaultdict(__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase) -> None: __UpperCamelCase :str = self._index.query(__lowercase) if code_key in self._index.keys: print(f"""Duplicate key {code_key}""") return self._index.insert(__lowercase , __lowercase) if len(__lowercase) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__lowercase) break else: self._duplicate_clusters[close_duplicates[0]].add(__lowercase) def UpperCamelCase__ ( self) -> List[List[Dict]]: __UpperCamelCase :Tuple = [] for base, duplicates in self._duplicate_clusters.items(): __UpperCamelCase :List[str] = [base] + list(__lowercase) # reformat the cluster to be a list of dict __UpperCamelCase :List[Any] = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster] duplicate_clusters.append(__lowercase) return duplicate_clusters def UpperCamelCase__ ( self , __lowercase) -> None: __UpperCamelCase :List[Any] = self.get_duplicate_clusters() with open(__lowercase , '''w''') as f: json.dump(__lowercase , __lowercase) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :List[str] = element __UpperCamelCase :Optional[int] = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(SCREAMING_SNAKE_CASE , max_queue_size=10_000 ) , chunksize=100 , ): if data is not None: yield data def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[int] = DuplicationIndex(duplication_jaccard_threshold=SCREAMING_SNAKE_CASE ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(SCREAMING_SNAKE_CASE ) ) , max_queue_size=100 ) ): di.add(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = get_tokens(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = get_tokens(SCREAMING_SNAKE_CASE ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __lowercase = None def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = [] for elementa in cluster: __UpperCamelCase :str = _shared_dataset[elementa['''base_index''']]['''content'''] for elementa in extremes: __UpperCamelCase :Union[str, Any] = _shared_dataset[elementa['''base_index''']]['''content'''] if jaccard_similarity(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) >= jaccard_threshold: elementa["copies"] += 1 break else: __UpperCamelCase :int = 1 extremes.append(SCREAMING_SNAKE_CASE ) return extremes def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' global _shared_dataset __UpperCamelCase :Optional[Any] = dataset __UpperCamelCase :str = [] __UpperCamelCase :List[str] = partial(_find_cluster_extremes_shared , jaccard_threshold=SCREAMING_SNAKE_CASE ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) , total=len(SCREAMING_SNAKE_CASE ) , ): extremes_list.append(SCREAMING_SNAKE_CASE ) return extremes_list def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 0.85 ): '''simple docstring''' __UpperCamelCase :Dict = make_duplicate_clusters(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster} __UpperCamelCase :Optional[Any] = {} __UpperCamelCase :Optional[int] = find_extremes(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for extremes in extremes_clusters: for element in extremes: __UpperCamelCase :int = element __UpperCamelCase :List[Any] = duplicate_indices - set(extreme_dict.keys() ) __UpperCamelCase :Optional[int] = dataset.filter(lambda SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : idx not in remove_indices , with_indices=SCREAMING_SNAKE_CASE ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __UpperCamelCase :Any = element['''base_index'''] in extreme_dict if element["is_extreme"]: __UpperCamelCase :Tuple = extreme_dict[element['''base_index''']]['''copies'''] print(f"""Original dataset size: {len(SCREAMING_SNAKE_CASE )}""" ) print(f"""Number of duplicate clusters: {len(SCREAMING_SNAKE_CASE )}""" ) print(f"""Files in duplicate cluster: {len(SCREAMING_SNAKE_CASE )}""" ) print(f"""Unique files in duplicate cluster: {len(SCREAMING_SNAKE_CASE )}""" ) print(f"""Filtered dataset size: {len(SCREAMING_SNAKE_CASE )}""" ) return ds_filter, duplicate_clusters
167
from __future__ import annotations import numpy as np def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase :Optional[Any] = np.shape(SCREAMING_SNAKE_CASE ) if rows != columns: __UpperCamelCase :Dict = ( '''\'table\' has to be of square shaped array but got a ''' f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = np.zeros((rows, columns) ) __UpperCamelCase :Tuple = np.zeros((rows, columns) ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): __UpperCamelCase :Union[str, Any] = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) __UpperCamelCase :Tuple = (table[i][j] - total) / upper[j][j] __UpperCamelCase :Optional[int] = 1 for j in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :List[str] = sum(lower[i][k] * upper[k][j] for k in range(SCREAMING_SNAKE_CASE ) ) __UpperCamelCase :Dict = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
167
1
'''simple docstring''' import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging A = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Any): lowerCamelCase : str = nn.functional.normalize(UpperCAmelCase__) lowerCamelCase : int = nn.functional.normalize(UpperCAmelCase__) return torch.mm(UpperCAmelCase__ , normalized_text_embeds.t()) class __snake_case ( a__): _lowerCAmelCase = CLIPConfig _lowerCAmelCase = ['''CLIPEncoderLayer'''] def __init__( self, A ): """simple docstring""" super().__init__(A ) lowerCamelCase : Optional[Any] = CLIPVisionModel(config.vision_config ) lowerCamelCase : str = nn.Linear(config.vision_config.hidden_size, config.projection_dim, bias=A ) lowerCamelCase : str = nn.Parameter(torch.ones(17, config.projection_dim ), requires_grad=A ) lowerCamelCase : List[Any] = nn.Parameter(torch.ones(3, config.projection_dim ), requires_grad=A ) lowerCamelCase : Dict = nn.Parameter(torch.ones(17 ), requires_grad=A ) lowerCamelCase : Dict = nn.Parameter(torch.ones(3 ), requires_grad=A ) @torch.no_grad() def UpperCAmelCase_ ( self, A, A ): """simple docstring""" lowerCamelCase : List[str] = self.vision_model(A )[1] # pooled_output lowerCamelCase : int = self.visual_projection(A ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase : List[str] = cosine_distance(A, self.special_care_embeds ).cpu().float().numpy() lowerCamelCase : Tuple = cosine_distance(A, self.concept_embeds ).cpu().float().numpy() lowerCamelCase : int = [] lowerCamelCase : str = image_embeds.shape[0] for i in range(A ): lowerCamelCase : List[Any] = {'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase : Tuple = 0.0 for concept_idx in range(len(special_cos_dist[0] ) ): lowerCamelCase : Union[str, Any] = special_cos_dist[i][concept_idx] lowerCamelCase : str = self.special_care_embeds_weights[concept_idx].item() lowerCamelCase : Dict = round(concept_cos - concept_threshold + adjustment, 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} ) lowerCamelCase : int = 0.01 for concept_idx in range(len(cos_dist[0] ) ): lowerCamelCase : int = cos_dist[i][concept_idx] lowerCamelCase : Union[str, Any] = self.concept_embeds_weights[concept_idx].item() lowerCamelCase : Dict = round(concept_cos - concept_threshold + adjustment, 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(A ) result.append(A ) lowerCamelCase : int = [len(res['bad_concepts'] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def UpperCAmelCase_ ( self, A, A ): """simple docstring""" lowerCamelCase : Tuple = self.vision_model(A )[1] # pooled_output lowerCamelCase : Optional[int] = self.visual_projection(A ) lowerCamelCase : Dict = cosine_distance(A, self.special_care_embeds ) lowerCamelCase : str = cosine_distance(A, self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images lowerCamelCase : Optional[int] = 0.0 lowerCamelCase : int = special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) lowerCamelCase : List[Any] = torch.any(special_scores > 0, dim=1 ) lowerCamelCase : List[Any] = special_care * 0.01 lowerCamelCase : Optional[Any] = special_adjustment.unsqueeze(1 ).expand(-1, cos_dist.shape[1] ) lowerCamelCase : Tuple = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) lowerCamelCase : str = torch.any(concept_scores > 0, dim=1 ) return images, has_nsfw_concepts
705
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def UpperCAmelCase ( UpperCAmelCase__ : str): lowerCamelCase : Union[str, Any] = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4']) lowerCamelCase : Dict = MaskFormerConfig(backbone_config=UpperCAmelCase__) lowerCamelCase : Dict = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok lowerCamelCase : Union[str, Any] = 8_47 lowerCamelCase : Any = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok lowerCamelCase : str = 1_50 lowerCamelCase : Union[str, Any] = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok lowerCamelCase : int = 1_71 lowerCamelCase : List[Any] = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO lowerCamelCase : int = 1_33 lowerCamelCase : List[str] = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok lowerCamelCase : str = 19 lowerCamelCase : Union[str, Any] = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok lowerCamelCase : Union[str, Any] = 65 lowerCamelCase : List[Any] = 'mapillary-vistas-id2label.json' lowerCamelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ , repo_type='dataset') , 'r')) lowerCamelCase : str = {int(UpperCAmelCase__): v for k, v in idalabel.items()} return config def UpperCAmelCase ( UpperCAmelCase__ : List[str]): lowerCamelCase : List[Any] = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight')) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias')) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight')) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''')) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''')) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''')) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''')) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''')) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''')) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''')) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias')) for source_index, target_index in zip(range(3 , 0 , -1) , range(0 , 3)): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''')) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''')) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''')) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''')) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight')) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias')) # Transformer decoder for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''')) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''')) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''')) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''')) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''')) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''')) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''')) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias')) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias')) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight')) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias')) for i in range(3): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''')) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''')) # fmt: on return rename_keys def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any]): lowerCamelCase : List[str] = dct.pop(UpperCAmelCase__) lowerCamelCase : Tuple = val def UpperCAmelCase ( UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]): lowerCamelCase : Union[str, Any] = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): lowerCamelCase : str = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) lowerCamelCase : Union[str, Any] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''') lowerCamelCase : int = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : Dict = in_proj_weight[:dim, :] lowerCamelCase : Dict = in_proj_bias[: dim] lowerCamelCase : List[Any] = in_proj_weight[ dim : dim * 2, : ] lowerCamelCase : Dict = in_proj_bias[ dim : dim * 2 ] lowerCamelCase : List[str] = in_proj_weight[ -dim :, : ] lowerCamelCase : int = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any]): # fmt: off lowerCamelCase : Tuple = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase : Optional[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''') lowerCamelCase : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : List[str] = in_proj_weight[: hidden_size, :] lowerCamelCase : str = in_proj_bias[:config.hidden_size] lowerCamelCase : int = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase : List[str] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase : List[Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase : Optional[int] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) lowerCamelCase : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''') lowerCamelCase : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCamelCase : Dict = in_proj_weight[: hidden_size, :] lowerCamelCase : Any = in_proj_bias[:config.hidden_size] lowerCamelCase : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] lowerCamelCase : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] lowerCamelCase : Union[str, Any] = in_proj_weight[-hidden_size :, :] lowerCamelCase : List[Any] = in_proj_bias[-hidden_size :] # fmt: on def UpperCAmelCase ( ): lowerCamelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase : Tuple = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__).raw) return im @torch.no_grad() def UpperCAmelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False): lowerCamelCase : Optional[Any] = get_maskformer_config(UpperCAmelCase__) # load original state_dict with open(UpperCAmelCase__ , 'rb') as f: lowerCamelCase : Tuple = pickle.load(UpperCAmelCase__) lowerCamelCase : str = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys lowerCamelCase : Optional[Any] = create_rename_keys(UpperCAmelCase__) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) read_in_swin_q_k_v(UpperCAmelCase__ , config.backbone_config) read_in_decoder_q_k_v(UpperCAmelCase__ , UpperCAmelCase__) # update to torch tensors for key, value in state_dict.items(): lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase__) # load 🤗 model lowerCamelCase : str = MaskFormerForInstanceSegmentation(UpperCAmelCase__) model.eval() for name, param in model.named_parameters(): print(UpperCAmelCase__ , param.shape) lowerCamelCase , lowerCamelCase : Optional[Any] = model.load_state_dict(UpperCAmelCase__ , strict=UpperCAmelCase__) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCAmelCase__) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results lowerCamelCase : Union[str, Any] = prepare_img() if "vistas" in model_name: lowerCamelCase : Optional[int] = 65 elif "cityscapes" in model_name: lowerCamelCase : Any = 6_55_35 else: lowerCamelCase : List[Any] = 2_55 lowerCamelCase : str = True if 'ade' in model_name else False lowerCamelCase : List[Any] = MaskFormerImageProcessor(ignore_index=UpperCAmelCase__ , reduce_labels=UpperCAmelCase__) lowerCamelCase : str = image_processor(UpperCAmelCase__ , return_tensors='pt') lowerCamelCase : Dict = model(**UpperCAmelCase__) print('Logits:' , outputs.class_queries_logits[0, :3, :3]) if model_name == "maskformer-swin-tiny-ade": lowerCamelCase : List[str] = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]]) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase__ , atol=1E-4) print('Looks ok!') if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''') Path(UpperCAmelCase__).mkdir(exist_ok=UpperCAmelCase__) model.save_pretrained(UpperCAmelCase__) image_processor.save_pretrained(UpperCAmelCase__) if push_to_hub: print('Pushing model and image processor to the hub...') model.push_to_hub(F'''nielsr/{model_name}''') image_processor.push_to_hub(F'''nielsr/{model_name}''') if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
449
0
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self : int , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=3 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Union[str, Any]=3 , UpperCAmelCase : Optional[Any]=10 , UpperCAmelCase : Optional[int]=[10, 20, 30, 40] , UpperCAmelCase : Optional[Any]=[1, 1, 2, 1] , UpperCAmelCase : int=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[int]="relu" , UpperCAmelCase : Any=3 , UpperCAmelCase : Optional[Any]=None , ) -> str: '''simple docstring''' lowercase : str =parent lowercase : List[Any] =batch_size lowercase : List[str] =image_size lowercase : str =num_channels lowercase : int =embeddings_size lowercase : List[Any] =hidden_sizes lowercase : str =depths lowercase : List[Any] =is_training lowercase : Tuple =use_labels lowercase : Dict =hidden_act lowercase : Optional[int] =num_labels lowercase : Optional[Any] =scope lowercase : List[str] =len(UpperCAmelCase_ ) def A__ ( self : Dict ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase : Any =self.get_config() return config, pixel_values def A__ ( self : List[str] ) -> str: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def A__ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' lowercase : List[Any] =FlaxRegNetModel(config=UpperCAmelCase_ ) lowercase : Dict =model(UpperCAmelCase_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self : List[str] , UpperCAmelCase : int , UpperCAmelCase : Optional[int] ) -> Any: '''simple docstring''' lowercase : str =self.num_labels lowercase : int =FlaxRegNetForImageClassification(config=UpperCAmelCase_ ) lowercase : Optional[Any] =model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self : List[str] ) -> int: '''simple docstring''' lowercase : Union[str, Any] =self.prepare_config_and_inputs() lowercase : Union[str, Any] =config_and_inputs lowercase : Union[str, Any] ={"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () UpperCamelCase_ = False UpperCamelCase_ = False UpperCamelCase_ = False def A__ ( self : Union[str, Any] ) -> None: '''simple docstring''' lowercase : List[Any] =FlaxRegNetModelTester(self ) lowercase : List[Any] =ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def A__ ( self : int ) -> int: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self : Optional[int] ) -> int: '''simple docstring''' return def A__ ( self : Optional[int] ) -> Dict: '''simple docstring''' lowercase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def A__ ( self : List[str] ) -> int: '''simple docstring''' lowercase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def A__ ( self : Optional[int] ) -> str: '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' pass def A__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : Any =model_class(UpperCAmelCase_ ) lowercase : List[Any] =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase : str =[*signature.parameters.keys()] lowercase : Tuple =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) def A__ ( self : int ) -> Optional[int]: '''simple docstring''' def check_hidden_states_output(UpperCAmelCase : List[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : Any ): lowercase : Optional[int] =model_class(UpperCAmelCase_ ) lowercase : Optional[int] =model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) lowercase : int =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase : Optional[int] =self.model_tester.num_stages self.assertEqual(len(UpperCAmelCase_ ) , expected_num_stages + 1 ) lowercase : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase : List[str] =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase : Any =True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def A__ ( self : Dict ) -> Optional[int]: '''simple docstring''' lowercase : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase : int =self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) lowercase : Dict =model_class(UpperCAmelCase_ ) @jax.jit def model_jitted(UpperCAmelCase : List[Any] , **UpperCAmelCase : str ): return model(pixel_values=UpperCAmelCase_ , **UpperCAmelCase_ ) with self.subTest('''JIT Enabled''' ): lowercase : Optional[Any] =model_jitted(**UpperCAmelCase_ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowercase : Union[str, Any] =model_jitted(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) ) for jitted_output, output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( ) -> Any: """simple docstring""" lowercase : Any =Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_flax class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def A__ ( self : List[Any] ) -> int: '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/regnet-y-040''' ) if is_vision_available() else None @slow def A__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowercase : Any =FlaxRegNetForImageClassification.from_pretrained('''facebook/regnet-y-040''' ) lowercase : Optional[int] =self.default_image_processor lowercase : Any =prepare_img() lowercase : Any =image_processor(images=UpperCAmelCase_ , return_tensors='''np''' ) lowercase : Tuple =model(**UpperCAmelCase_ ) # verify the logits lowercase : List[Any] =(1, 1000) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) lowercase : str =jnp.array([-0.4_1_8_0, -1.5_0_5_1, -3.4_8_3_6] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) )
94
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 lowercase_ = jnp.floataa lowercase_ = True def SCREAMING_SNAKE_CASE_ (self : Any) ->List[str]: '''simple docstring''' super().setup() lowerCamelCase__: int =nn.Dense(5 , dtype=self.dtype) def __call__(self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =super().__call__(*UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: int =self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = FlaxBigBirdForNaturalQuestionsModule def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a ) -> Tuple: """simple docstring""" def cross_entropy(__a , __a , __a=None ): lowerCamelCase__: Tuple =logits.shape[-1] lowerCamelCase__: Tuple =(labels[..., None] == jnp.arange(__a )[None]).astype("f4" ) lowerCamelCase__: str =jax.nn.log_softmax(__a , axis=-1 ) lowerCamelCase__: Optional[Any] =-jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase__: Optional[Any] =reduction(__a ) return loss lowerCamelCase__: str =partial(__a , reduction=jnp.mean ) lowerCamelCase__: str =cross_entropy(__a , __a ) lowerCamelCase__: Optional[int] =cross_entropy(__a , __a ) lowerCamelCase__: Optional[Any] =cross_entropy(__a , __a ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = "google/bigbird-roberta-base" lowercase_ = 3000 lowercase_ = 1_0500 lowercase_ = 128 lowercase_ = 3 lowercase_ = 1 lowercase_ = 5 # tx_args lowercase_ = 3E-5 lowercase_ = 0.0 lowercase_ = 2_0000 lowercase_ = 0.0095 lowercase_ = "bigbird-roberta-natural-questions" lowercase_ = "training-expt" lowercase_ = "data/nq-training.jsonl" lowercase_ = "data/nq-validation.jsonl" def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' os.makedirs(self.base_dir , exist_ok=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =os.path.join(self.base_dir , self.save_dir) lowerCamelCase__: List[str] =self.batch_size_per_device * jax.device_count() @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = 4096 # no dynamic padding on TPUs def __call__(self : List[Any] , UpperCAmelCase_ : Optional[Any]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[Any] =self.collate_fn(UpperCAmelCase_) lowerCamelCase__: List[Any] =jax.tree_util.tree_map(UpperCAmelCase_ , UpperCAmelCase_) return batch def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : List[str]) ->List[Any]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__: List[Any] =self.fetch_inputs(features["input_ids"]) lowerCamelCase__: Union[str, Any] ={ "input_ids": jnp.array(UpperCAmelCase_ , dtype=jnp.intaa), "attention_mask": jnp.array(UpperCAmelCase_ , dtype=jnp.intaa), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa), } return batch def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : list) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =[self._fetch_inputs(UpperCAmelCase_) for ids in input_ids] return zip(*UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : list) ->Any: '''simple docstring''' lowerCamelCase__: Optional[Any] =[1 for _ in range(len(UpperCAmelCase_))] while len(UpperCAmelCase_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def lowerCAmelCase_ ( __a , __a , __a=None ) -> str: """simple docstring""" if seed is not None: lowerCamelCase__: Any =dataset.shuffle(seed=__a ) for i in range(len(__a ) // batch_size ): lowerCamelCase__: Any =dataset[i * batch_size : (i + 1) * batch_size] yield dict(__a ) @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase_ ( __a , __a , **__a ) -> List[str]: """simple docstring""" def loss_fn(__a ): lowerCamelCase__: Optional[int] =model_inputs.pop("start_labels" ) lowerCamelCase__: int =model_inputs.pop("end_labels" ) lowerCamelCase__: List[str] =model_inputs.pop("pooled_labels" ) lowerCamelCase__: Optional[int] =state.apply_fn(**__a , params=__a , dropout_rng=__a , train=__a ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[Any] =outputs return state.loss_fn( __a , __a , __a , __a , __a , __a , ) lowerCamelCase__ , lowerCamelCase__: int =jax.random.split(__a ) lowerCamelCase__: Optional[Any] =jax.value_and_grad(__a ) lowerCamelCase__ , lowerCamelCase__: List[str] =grad_fn(state.params ) lowerCamelCase__: Optional[Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase__: List[str] =jax.lax.pmean(__a , "batch" ) lowerCamelCase__: List[str] =state.apply_gradients(grads=__a ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def lowerCAmelCase_ ( __a , **__a ) -> List[Any]: """simple docstring""" lowerCamelCase__: int =model_inputs.pop("start_labels" ) lowerCamelCase__: List[str] =model_inputs.pop("end_labels" ) lowerCamelCase__: int =model_inputs.pop("pooled_labels" ) lowerCamelCase__: Optional[Any] =state.apply_fn(**__a , params=state.params , train=__a ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: List[str] =outputs lowerCamelCase__: Optional[int] =state.loss_fn(__a , __a , __a , __a , __a , __a ) lowerCamelCase__: Optional[Any] =jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class _SCREAMING_SNAKE_CASE ( train_state.TrainState ): '''simple docstring''' lowercase_ = struct.field(pytree_node=__SCREAMING_SNAKE_CASE ) @dataclass class _SCREAMING_SNAKE_CASE : '''simple docstring''' lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = 42 lowercase_ = None def SCREAMING_SNAKE_CASE_ (self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int=None) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Dict =model.params lowerCamelCase__: Tuple =TrainState.create( apply_fn=model.__call__ , params=UpperCAmelCase_ , tx=UpperCAmelCase_ , loss_fn=UpperCAmelCase_ , ) if ckpt_dir is not None: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Any =restore_checkpoint(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Tuple ={ "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase__ , lowerCamelCase__: List[Any] =build_tx(**UpperCAmelCase_) lowerCamelCase__: str =train_state.TrainState( step=UpperCAmelCase_ , apply_fn=model.__call__ , params=UpperCAmelCase_ , tx=UpperCAmelCase_ , opt_state=UpperCAmelCase_ , ) lowerCamelCase__: Tuple =args lowerCamelCase__: Tuple =data_collator lowerCamelCase__: str =lr lowerCamelCase__: Dict =params lowerCamelCase__: List[str] =jax_utils.replicate(UpperCAmelCase_) return state def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Tuple =self.args lowerCamelCase__: Any =len(UpperCAmelCase_) // args.batch_size lowerCamelCase__: List[str] =jax.random.PRNGKey(0) lowerCamelCase__: Optional[Any] =jax.random.split(UpperCAmelCase_ , jax.device_count()) for epoch in range(args.max_epochs): lowerCamelCase__: Union[str, Any] =jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__: str =get_batched_dataset(UpperCAmelCase_ , args.batch_size , seed=UpperCAmelCase_) lowerCamelCase__: Dict =0 for batch in tqdm(UpperCAmelCase_ , total=UpperCAmelCase_ , desc=F"""Running EPOCH-{epoch}"""): lowerCamelCase__: List[str] =self.data_collator(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Optional[int] =self.train_step_fn(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 if i % args.logging_steps == 0: lowerCamelCase__: Optional[int] =jax_utils.unreplicate(state.step) lowerCamelCase__: List[Any] =running_loss.item() / i lowerCamelCase__: Tuple =self.scheduler_fn(state_step - 1) lowerCamelCase__: Union[str, Any] =self.evaluate(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Dict ={ "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(UpperCAmelCase_)) self.logger.log(UpperCAmelCase_ , commit=UpperCAmelCase_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str) ->Any: '''simple docstring''' lowerCamelCase__: List[Any] =get_batched_dataset(UpperCAmelCase_ , self.args.batch_size) lowerCamelCase__: List[str] =len(UpperCAmelCase_) // self.args.batch_size lowerCamelCase__: str =jnp.array(0 , dtype=jnp.floataa) lowerCamelCase__: Optional[Any] =0 for batch in tqdm(UpperCAmelCase_ , total=UpperCAmelCase_ , desc="Evaluating ... "): lowerCamelCase__: int =self.data_collator(UpperCAmelCase_) lowerCamelCase__: str =self.val_step_fn(UpperCAmelCase_ , **UpperCAmelCase_) running_loss += jax_utils.unreplicate(metrics["loss"]) i += 1 return running_loss / i def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]) ->int: '''simple docstring''' lowerCamelCase__: Any =jax_utils.unreplicate(UpperCAmelCase_) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... ") self.model_save_fn(UpperCAmelCase_ , params=state.params) with open(os.path.join(UpperCAmelCase_ , "opt_state.msgpack") , "wb") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(UpperCAmelCase_ , "args.joblib")) joblib.dump(self.data_collator , os.path.join(UpperCAmelCase_ , "data_collator.joblib")) with open(os.path.join(UpperCAmelCase_ , "training_state.json") , "w") as f: json.dump({"step": state.step.item()} , UpperCAmelCase_) print("DONE") def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(__a , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase__: Tuple =from_bytes(state.params , f.read() ) with open(os.path.join(__a , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase__: Optional[int] =from_bytes(state.opt_state , f.read() ) lowerCamelCase__: Any =joblib.load(os.path.join(__a , "args.joblib" ) ) lowerCamelCase__: Union[str, Any] =joblib.load(os.path.join(__a , "data_collator.joblib" ) ) with open(os.path.join(__a , "training_state.json" ) , "r" ) as f: lowerCamelCase__: Optional[Any] =json.load(__a ) lowerCamelCase__: Any =training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def lowerCAmelCase_ ( __a , __a , __a , __a ) -> Optional[int]: """simple docstring""" lowerCamelCase__: int =num_train_steps - warmup_steps lowerCamelCase__: str =optax.linear_schedule(init_value=__a , end_value=__a , transition_steps=__a ) lowerCamelCase__: Optional[Any] =optax.linear_schedule(init_value=__a , end_value=1e-7 , transition_steps=__a ) lowerCamelCase__: List[Any] =optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> str: """simple docstring""" def weight_decay_mask(__a ): lowerCamelCase__: List[str] =traverse_util.flatten_dict(__a ) lowerCamelCase__: List[str] ={k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(__a ) lowerCamelCase__: Optional[Any] =scheduler_fn(__a , __a , __a , __a ) lowerCamelCase__: Tuple =optax.adamw(learning_rate=__a , weight_decay=__a , mask=__a ) return tx, lr
59
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters __UpperCamelCase : Tuple = False __UpperCamelCase : Dict = False def lowercase ( lowerCAmelCase : Namespace): """simple docstring""" return TrainCommand(lowerCAmelCase) class lowerCamelCase__ ( snake_case_ ): """simple docstring""" @staticmethod def _lowerCamelCase ( UpperCAmelCase__ ) -> List[Any]: _A : int = parser.add_parser('''train''' , help='''CLI tool to train a model on a task.''' ) train_parser.add_argument( '''--train_data''' , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='''path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.''' , ) train_parser.add_argument( '''--column_label''' , type=UpperCAmelCase__ , default=0 , help='''Column of the dataset csv file with example labels.''' ) train_parser.add_argument( '''--column_text''' , type=UpperCAmelCase__ , default=1 , help='''Column of the dataset csv file with example texts.''' ) train_parser.add_argument( '''--column_id''' , type=UpperCAmelCase__ , default=2 , help='''Column of the dataset csv file with example ids.''' ) train_parser.add_argument( '''--skip_first_row''' , action='''store_true''' , help='''Skip the first row of the csv file (headers).''' ) train_parser.add_argument('''--validation_data''' , type=UpperCAmelCase__ , default='''''' , help='''path to validation dataset.''' ) train_parser.add_argument( '''--validation_split''' , type=UpperCAmelCase__ , default=0.1 , help='''if validation dataset is not provided, fraction of train dataset to use as validation dataset.''' , ) train_parser.add_argument('''--output''' , type=UpperCAmelCase__ , default='''./''' , help='''path to saved the trained model.''' ) train_parser.add_argument( '''--task''' , type=UpperCAmelCase__ , default='''text_classification''' , help='''Task to train the model on.''' ) train_parser.add_argument( '''--model''' , type=UpperCAmelCase__ , default='''bert-base-uncased''' , help='''Model\'s name or path to stored model.''' ) train_parser.add_argument('''--train_batch_size''' , type=UpperCAmelCase__ , default=3_2 , help='''Batch size for training.''' ) train_parser.add_argument('''--valid_batch_size''' , type=UpperCAmelCase__ , default=6_4 , help='''Batch size for validation.''' ) train_parser.add_argument('''--learning_rate''' , type=UpperCAmelCase__ , default=3e-5 , help='''Learning rate.''' ) train_parser.add_argument('''--adam_epsilon''' , type=UpperCAmelCase__ , default=1e-08 , help='''Epsilon for Adam optimizer.''' ) train_parser.set_defaults(func=UpperCAmelCase__ ) def __init__( self , UpperCAmelCase__ ) -> Tuple: _A : Optional[int] = logging.get_logger('''transformers-cli/training''' ) _A : Tuple = '''tf''' if is_tf_available() else '''torch''' os.makedirs(args.output , exist_ok=UpperCAmelCase__ ) _A : str = args.output _A : List[str] = args.column_label _A : Optional[Any] = args.column_text _A : Union[str, Any] = args.column_id self.logger.info(F"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": _A : int = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(F"""Loading dataset from {args.train_data}""" ) _A : Union[str, Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _A : Optional[Any] = None if args.validation_data: self.logger.info(F"""Loading validation dataset from {args.validation_data}""" ) _A : int = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) _A : Union[str, Any] = args.validation_split _A : Dict = args.train_batch_size _A : Union[str, Any] = args.valid_batch_size _A : Optional[Any] = args.learning_rate _A : Any = args.adam_epsilon def _lowerCamelCase ( self ) -> Union[str, Any]: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowerCamelCase ( self ) -> List[Any]: raise NotImplementedError def _lowerCamelCase ( self ) -> List[str]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
417
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCamelCase : Optional[Any] = { '''configuration_convnext''': ['''CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvNextConfig''', '''ConvNextOnnxConfig'''] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = ['''ConvNextFeatureExtractor'''] __UpperCamelCase : Union[str, Any] = ['''ConvNextImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ '''CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvNextForImageClassification''', '''ConvNextModel''', '''ConvNextPreTrainedModel''', '''ConvNextBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ '''TFConvNextForImageClassification''', '''TFConvNextModel''', '''TFConvNextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys __UpperCamelCase : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
417
1
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=sys.maxsize ): lowercase_ :Optional[Any] = '''bilinear''' lowercase_ :Tuple = max_size lowercase_ :int = short_edge_length def __call__( self , UpperCamelCase_ ): lowercase_ :Any = [] for img in imgs: lowercase_ , lowercase_ :str = img.shape[:2] # later: provide list and randomly choose index for resize lowercase_ :List[str] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img lowercase_ :int = size * 1.0 / min(UpperCamelCase_ , UpperCamelCase_ ) if h < w: lowercase_ , lowercase_ :List[str] = size, scale * w else: lowercase_ , lowercase_ :Optional[int] = scale * h, size if max(UpperCamelCase_ , UpperCamelCase_ ) > self.max_size: lowercase_ :str = self.max_size * 1.0 / max(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Optional[int] = newh * scale lowercase_ :Optional[Any] = neww * scale lowercase_ :Dict = int(neww + 0.5 ) lowercase_ :Optional[Any] = int(newh + 0.5 ) if img.dtype == np.uinta: lowercase_ :int = Image.fromarray(UpperCamelCase_ ) lowercase_ :Tuple = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) lowercase_ :Optional[Any] = np.asarray(UpperCamelCase_ ) else: lowercase_ :Optional[int] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw lowercase_ :int = nn.functional.interpolate( UpperCamelCase_ , (newh, neww) , mode=self.interp_method , align_corners=UpperCamelCase_ ).squeeze(0 ) img_augs.append(UpperCamelCase_ ) return img_augs class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ ): lowercase_ :Optional[int] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) lowercase_ :List[Any] = cfg.INPUT.FORMAT lowercase_ :Tuple = cfg.SIZE_DIVISIBILITY lowercase_ :Dict = cfg.PAD_VALUE lowercase_ :int = cfg.INPUT.MAX_SIZE_TEST lowercase_ :Union[str, Any] = cfg.MODEL.DEVICE lowercase_ :Any = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ :Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) lowercase_ :int = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def UpperCamelCase ( self , UpperCamelCase_ ): lowercase_ :Dict = tuple(max(UpperCamelCase_ ) for s in zip(*[img.shape for img in images] ) ) lowercase_ :Optional[Any] = [im.shape[-2:] for im in images] lowercase_ :List[str] = [ nn.functional.pad( UpperCamelCase_ , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(UpperCamelCase_ , UpperCamelCase_ ) ] return torch.stack(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ ) def __call__( self , UpperCamelCase_ , UpperCamelCase_=False ): with torch.no_grad(): if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Union[str, Any] = [images] if single_image: assert len(UpperCamelCase_ ) == 1 for i in range(len(UpperCamelCase_ ) ): if isinstance(images[i] , torch.Tensor ): images.insert(UpperCamelCase_ , images.pop(UpperCamelCase_ ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( UpperCamelCase_ , torch.as_tensor(img_tensorize(images.pop(UpperCamelCase_ ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge lowercase_ :str = torch.tensor([im.shape[:2] for im in images] ) lowercase_ :str = self.aug(UpperCamelCase_ ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic lowercase_ :List[Any] = [self.normalizer(UpperCamelCase_ ) for x in images] # now pad them to do the following operations lowercase_ , lowercase_ :str = self.pad(UpperCamelCase_ ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad lowercase_ :Union[str, Any] = torch.true_divide(UpperCamelCase_ , UpperCamelCase_ ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def UpperCamelCase ( _a , _a ) -> int: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def UpperCamelCase ( _a , _a ) -> Optional[Any]: '''simple docstring''' assert torch.isfinite(_a ).all(), "Box tensor contains infinite or NaN!" lowercase_ , lowercase_ :int = box_size tensor[:, 0].clamp_(min=0 , max=_a ) tensor[:, 1].clamp_(min=0 , max=_a ) tensor[:, 2].clamp_(min=0 , max=_a ) tensor[:, 3].clamp_(min=0 , max=_a )
257
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class UpperCamelCase ( lowercase__ ): '''simple docstring''' lowercase : Union[str, Any] =(DPMSolverSDEScheduler,) lowercase : Any =10 def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :Union[str, Any] = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**UpperCamelCase_ ) return config def UpperCamelCase ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ ) def UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase_ ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Any = self.scheduler_classes[0] lowercase_ :Tuple = self.get_scheduler_config() lowercase_ :int = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ :Union[str, Any] = self.dummy_model() lowercase_ :Dict = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ :int = sample.to(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :Optional[Any] = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Any = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Tuple = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Dict = output.prev_sample lowercase_ :Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase_ :Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1E-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.scheduler_classes[0] lowercase_ :Union[str, Any] = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase_ :Union[str, Any] = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ :List[str] = self.dummy_model() lowercase_ :Dict = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ :Optional[int] = sample.to(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :Any = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :str = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Optional[int] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :List[str] = output.prev_sample lowercase_ :Union[str, Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase_ :int = torch.mean(torch.abs(UpperCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1E-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1E-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1E-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.scheduler_classes[0] lowercase_ :List[str] = self.get_scheduler_config() lowercase_ :Tuple = scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ ) lowercase_ :Tuple = self.dummy_model() lowercase_ :str = self.dummy_sample_deter.to(UpperCamelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowercase_ :str = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :List[str] = output.prev_sample lowercase_ :Dict = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase_ :Dict = torch.mean(torch.abs(UpperCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1E-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1E-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1E-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Any = self.scheduler_classes[0] lowercase_ :Optional[int] = self.get_scheduler_config() lowercase_ :Tuple = scheduler_class(**UpperCamelCase_ , use_karras_sigmas=UpperCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase_ ) lowercase_ :List[str] = self.dummy_model() lowercase_ :Dict = self.dummy_sample_deter.to(UpperCamelCase_ ) * scheduler.init_noise_sigma lowercase_ :Union[str, Any] = sample.to(UpperCamelCase_ ) for t in scheduler.timesteps: lowercase_ :List[Any] = scheduler.scale_model_input(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :Optional[int] = model(UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowercase_ :int = output.prev_sample lowercase_ :List[Any] = torch.sum(torch.abs(UpperCamelCase_ ) ) lowercase_ :Tuple = torch.mean(torch.abs(UpperCamelCase_ ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1E-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1E-2
257
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case_ = { "configuration_autoformer": [ "AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "AutoformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ "AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "AutoformerForPrediction", "AutoformerModel", "AutoformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int: UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
644
0
'''simple docstring''' def _UpperCAmelCase ( __A : Dict ): if len(_a ) <= 1: return lst a_ : Dict = 1 while i < len(_a ): if lst[i - 1] <= lst[i]: i += 1 else: a_ : List[Any] = lst[i], lst[i - 1] i -= 1 if i == 0: a_ : Any = 1 return lst if __name__ == "__main__": __lowerCAmelCase = input('Enter numbers separated by a comma:\n').strip() __lowerCAmelCase = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
466
import math def UpperCamelCase ( _a ) -> bool: '''simple docstring''' lowercase_ :int = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_a ) def UpperCamelCase ( _a = 1 / 1_2_3_4_5 ) -> int: '''simple docstring''' lowercase_ :Union[str, Any] = 0 lowercase_ :List[str] = 0 lowercase_ :int = 3 while True: lowercase_ :Optional[Any] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_a ): lowercase_ :List[Any] = int(_a ) total_partitions += 1 if check_partition_perfect(_a ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_a ) integer += 1 if __name__ == "__main__": print(f"{solution() = }")
257
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = """▁""" a_ = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } a_ = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } a_ = { """facebook/s2t-small-librispeech-asr""": 1024, } a_ = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] a_ = {"""mustc""": MUSTC_LANGS} class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : Tuple = VOCAB_FILES_NAMES lowerCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : Union[str, Any] = MAX_MODEL_INPUT_SIZES lowerCAmelCase__ : List[str] = ['input_ids', 'attention_mask'] lowerCAmelCase__ : List[int] = [] def __init__( self: str , __lowerCAmelCase: Optional[Any] , __lowerCAmelCase: str , __lowerCAmelCase: int="<s>" , __lowerCAmelCase: Tuple="</s>" , __lowerCAmelCase: List[Any]="<pad>" , __lowerCAmelCase: Union[str, Any]="<unk>" , __lowerCAmelCase: Optional[int]=False , __lowerCAmelCase: Dict=False , __lowerCAmelCase: List[Any]=None , __lowerCAmelCase: List[Any]=None , __lowerCAmelCase: Optional[Dict[str, Any]] = None , **__lowerCAmelCase: List[str] , ) -> None: '''simple docstring''' __UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_upper_case=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , tgt_lang=__lowerCAmelCase , lang_codes=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) __UpperCAmelCase = do_upper_case __UpperCAmelCase = do_lower_case __UpperCAmelCase = load_json(__lowerCAmelCase ) __UpperCAmelCase = {v: k for k, v in self.encoder.items()} __UpperCAmelCase = spm_file __UpperCAmelCase = load_spm(__lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __UpperCAmelCase = lang_codes __UpperCAmelCase = LANGUAGES[lang_codes] __UpperCAmelCase = [F'''<lang:{lang}>''' for lang in self.langs] __UpperCAmelCase = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} __UpperCAmelCase = self.lang_tokens __UpperCAmelCase = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __UpperCAmelCase = {} @property def _UpperCAmelCase ( self: List[Any] ) -> int: '''simple docstring''' return len(self.encoder ) @property def _UpperCAmelCase ( self: List[str] ) -> str: '''simple docstring''' return self._tgt_lang @tgt_lang.setter def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: Optional[int] ) -> None: '''simple docstring''' __UpperCAmelCase = new_tgt_lang self.set_tgt_lang_special_tokens(__lowerCAmelCase ) def _UpperCAmelCase ( self: Tuple , __lowerCAmelCase: str ) -> None: '''simple docstring''' __UpperCAmelCase = self.lang_code_to_id[tgt_lang] __UpperCAmelCase = [lang_code_id] def _UpperCAmelCase ( self: List[Any] , __lowerCAmelCase: str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def _UpperCAmelCase ( self: int , __lowerCAmelCase: List[Any] ) -> List[Any]: '''simple docstring''' return self.encoder.get(__lowerCAmelCase , self.encoder[self.unk_token] ) def _UpperCAmelCase ( self: int , __lowerCAmelCase: int ) -> str: '''simple docstring''' return self.decoder.get(__lowerCAmelCase , self.unk_token ) def _UpperCAmelCase ( self: Tuple , __lowerCAmelCase: List[str] ) -> str: '''simple docstring''' __UpperCAmelCase = [] __UpperCAmelCase = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __UpperCAmelCase = self.sp_model.decode(__lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __UpperCAmelCase = [] else: current_sub_tokens.append(__lowerCAmelCase ) __UpperCAmelCase = self.sp_model.decode(__lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: Union[str, Any] , __lowerCAmelCase: Tuple=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: List[int] , __lowerCAmelCase: Optional[List[int]] = None , __lowerCAmelCase: bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) __UpperCAmelCase = [1] * len(self.prefix_tokens ) __UpperCAmelCase = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCAmelCase )) + ([0] * len(__lowerCAmelCase )) + suffix_ones def _UpperCAmelCase ( self: Union[str, Any] ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Union[str, Any] ) -> Dict: '''simple docstring''' __UpperCAmelCase = self.__dict__.copy() __UpperCAmelCase = None return state def __setstate__( self: Any , __lowerCAmelCase: Dict ) -> None: '''simple docstring''' __UpperCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __UpperCAmelCase = {} __UpperCAmelCase = load_spm(self.spm_file , self.sp_model_kwargs ) def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: str , __lowerCAmelCase: Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __UpperCAmelCase = Path(__lowerCAmelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' __UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) __UpperCAmelCase = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCAmelCase , "wb" ) as fi: __UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (str(__lowerCAmelCase ), str(__lowerCAmelCase )) def __lowerCAmelCase ( A_ : str , A_ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: __UpperCAmelCase = sentencepiece.SentencePieceProcessor(**A_ ) spm.Load(str(A_ ) ) return spm def __lowerCAmelCase ( A_ : str ) -> Union[Dict, List]: with open(A_ , "r" ) as f: return json.load(A_ ) def __lowerCAmelCase ( A_ : Optional[int] , A_ : str ) -> None: with open(A_ , "w" ) as f: json.dump(A_ , A_ , indent=2 )
701
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase__ ( snake_case ): """simple docstring""" @staticmethod @abstractmethod def _UpperCAmelCase ( __lowerCAmelCase: ArgumentParser ) -> Tuple: '''simple docstring''' raise NotImplementedError() @abstractmethod def _UpperCAmelCase ( self: List[str] ) -> List[Any]: '''simple docstring''' raise NotImplementedError()
286
0
"""simple docstring""" import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class a__ ( UpperCamelCase_ ): def __init__( self : List[str] ,a__ : UNetaDModel ,a__ : UNetaDModel ,a__ : DDPMScheduler ,a__ : int ,) -> Dict: """simple docstring""" super().__init__() _lowerCAmelCase:int = value_function _lowerCAmelCase:Any = unet _lowerCAmelCase:Optional[int] = scheduler _lowerCAmelCase:Tuple = env _lowerCAmelCase:str = env.get_dataset() _lowerCAmelCase:Union[str, Any] = {} for key in self.data.keys(): try: _lowerCAmelCase:str = self.data[key].mean() except: # noqa: E722 pass _lowerCAmelCase:Optional[Any] = {} for key in self.data.keys(): try: _lowerCAmelCase:Tuple = self.data[key].std() except: # noqa: E722 pass _lowerCAmelCase:Union[str, Any] = env.observation_space.shape[0] _lowerCAmelCase:Optional[Any] = env.action_space.shape[0] def __UpperCamelCase ( self : Any ,a__ : Dict ,a__ : Any) -> Any: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __UpperCamelCase ( self : str ,a__ : Optional[Any] ,a__ : str) -> List[Any]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __UpperCamelCase ( self : str ,a__ : Optional[Any]) -> Union[str, Any]: """simple docstring""" if type(a__) is dict: return {k: self.to_torch(a__) for k, v in x_in.items()} elif torch.is_tensor(a__): return x_in.to(self.unet.device) return torch.tensor(a__ ,device=self.unet.device) def __UpperCamelCase ( self : Optional[Any] ,a__ : Any ,a__ : List[Any] ,a__ : List[str]) -> Tuple: """simple docstring""" for key, val in cond.items(): _lowerCAmelCase:Any = val.clone() return x_in def __UpperCamelCase ( self : Any ,a__ : List[str] ,a__ : str ,a__ : Optional[int] ,a__ : List[Any]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Optional[Any] = x.shape[0] _lowerCAmelCase:int = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model _lowerCAmelCase:Optional[int] = torch.full((batch_size,) ,a__ ,device=self.unet.device ,dtype=torch.long) for _ in range(a__): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models _lowerCAmelCase:Dict = self.value_function(x.permute(0 ,2 ,1) ,a__).sample _lowerCAmelCase:List[Any] = torch.autograd.grad([y.sum()] ,[x])[0] _lowerCAmelCase:List[str] = self.scheduler._get_variance(a__) _lowerCAmelCase:Dict = torch.exp(0.5 * posterior_variance) _lowerCAmelCase:List[str] = model_std * grad _lowerCAmelCase:Dict = 0 _lowerCAmelCase:Optional[Any] = x.detach() _lowerCAmelCase:List[str] = x + scale * grad _lowerCAmelCase:Tuple = self.reset_xa(a__ ,a__ ,self.action_dim) _lowerCAmelCase:Tuple = self.unet(x.permute(0 ,2 ,1) ,a__).sample.permute(0 ,2 ,1) # TODO: verify deprecation of this kwarg _lowerCAmelCase:int = self.scheduler.step(a__ ,a__ ,a__ ,predict_epsilon=a__)['''prev_sample'''] # apply conditions to the trajectory (set the initial state) _lowerCAmelCase:str = self.reset_xa(a__ ,a__ ,self.action_dim) _lowerCAmelCase:Dict = self.to_torch(a__) return x, y def __call__( self : Optional[Any] ,a__ : Optional[int] ,a__ : Tuple=64 ,a__ : Dict=32 ,a__ : Dict=2 ,a__ : str=0.1) -> int: """simple docstring""" _lowerCAmelCase:Dict = self.normalize(a__ ,'''observations''') _lowerCAmelCase:int = obs[None].repeat(a__ ,axis=0) _lowerCAmelCase:Any = {0: self.to_torch(a__)} _lowerCAmelCase:Optional[int] = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) _lowerCAmelCase:int = randn_tensor(a__ ,device=self.unet.device) _lowerCAmelCase:Optional[Any] = self.reset_xa(a__ ,a__ ,self.action_dim) _lowerCAmelCase:Optional[Any] = self.to_torch(a__) # run the diffusion process _lowerCAmelCase , _lowerCAmelCase:List[str] = self.run_diffusion(a__ ,a__ ,a__ ,a__) # sort output trajectories by value _lowerCAmelCase:List[Any] = y.argsort(0 ,descending=a__).squeeze() _lowerCAmelCase:Any = x[sorted_idx] _lowerCAmelCase:Optional[Any] = sorted_values[:, :, : self.action_dim] _lowerCAmelCase:List[str] = actions.detach().cpu().numpy() _lowerCAmelCase:List[Any] = self.de_normalize(a__ ,key='''actions''') # select the action with the highest value if y is not None: _lowerCAmelCase:Optional[Any] = 0 else: # if we didn't run value guiding, select a random action _lowerCAmelCase:List[Any] = np.random.randint(0 ,a__) _lowerCAmelCase:Any = denorm_actions[selected_index, 0] return denorm_actions
227
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def UpperCAmelCase ( snake_case : List[str] ): _lowerCAmelCase:List[Any] = SwinvaConfig() _lowerCAmelCase:Union[str, Any] = swinva_name.split('''_''' ) _lowerCAmelCase:int = name_split[1] if "to" in name_split[3]: _lowerCAmelCase:List[Any] = int(name_split[3][-3:] ) else: _lowerCAmelCase:Union[str, Any] = int(name_split[3] ) if "to" in name_split[2]: _lowerCAmelCase:Any = int(name_split[2][-2:] ) else: _lowerCAmelCase:Optional[int] = int(name_split[2][6:] ) if model_size == "tiny": _lowerCAmelCase:Optional[Any] = 96 _lowerCAmelCase:Any = (2, 2, 6, 2) _lowerCAmelCase:Any = (3, 6, 12, 24) elif model_size == "small": _lowerCAmelCase:int = 96 _lowerCAmelCase:Union[str, Any] = (2, 2, 18, 2) _lowerCAmelCase:Optional[Any] = (3, 6, 12, 24) elif model_size == "base": _lowerCAmelCase:Tuple = 128 _lowerCAmelCase:str = (2, 2, 18, 2) _lowerCAmelCase:Optional[int] = (4, 8, 16, 32) else: _lowerCAmelCase:List[str] = 192 _lowerCAmelCase:Any = (2, 2, 18, 2) _lowerCAmelCase:Dict = (6, 12, 24, 48) if "to" in swinva_name: _lowerCAmelCase:List[str] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _lowerCAmelCase:str = 21841 _lowerCAmelCase:Dict = '''huggingface/label-files''' _lowerCAmelCase:Union[str, Any] = '''imagenet-22k-id2label.json''' _lowerCAmelCase:List[Any] = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowerCAmelCase:Tuple = {int(snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase:Optional[Any] = idalabel _lowerCAmelCase:str = {v: k for k, v in idalabel.items()} else: _lowerCAmelCase:str = 1000 _lowerCAmelCase:List[Any] = '''huggingface/label-files''' _lowerCAmelCase:Tuple = '''imagenet-1k-id2label.json''' _lowerCAmelCase:str = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='''dataset''' ) , '''r''' ) ) _lowerCAmelCase:str = {int(snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase:str = idalabel _lowerCAmelCase:Optional[int] = {v: k for k, v in idalabel.items()} _lowerCAmelCase:str = img_size _lowerCAmelCase:Optional[int] = num_classes _lowerCAmelCase:Optional[int] = embed_dim _lowerCAmelCase:Any = depths _lowerCAmelCase:Tuple = num_heads _lowerCAmelCase:Dict = window_size return config def UpperCAmelCase ( snake_case : Union[str, Any] ): if "patch_embed.proj" in name: _lowerCAmelCase:Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _lowerCAmelCase:List[str] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _lowerCAmelCase:Dict = '''encoder.''' + name if "attn.proj" in name: _lowerCAmelCase:Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _lowerCAmelCase:str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCAmelCase:List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCAmelCase:Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCAmelCase:Any = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCAmelCase:Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: _lowerCAmelCase:List[Any] = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: _lowerCAmelCase:List[str] = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: _lowerCAmelCase:Optional[Any] = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: _lowerCAmelCase:List[str] = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if name == "norm.weight": _lowerCAmelCase:str = '''layernorm.weight''' if name == "norm.bias": _lowerCAmelCase:Optional[int] = '''layernorm.bias''' if "head" in name: _lowerCAmelCase:str = name.replace('''head''' , '''classifier''' ) else: _lowerCAmelCase:str = '''swinv2.''' + name return name def UpperCAmelCase ( snake_case : Tuple , snake_case : Optional[Any] ): for key in orig_state_dict.copy().keys(): _lowerCAmelCase:List[Any] = orig_state_dict.pop(snake_case ) if "mask" in key: continue elif "qkv" in key: _lowerCAmelCase:str = key.split('''.''' ) _lowerCAmelCase:str = int(key_split[1] ) _lowerCAmelCase:Tuple = int(key_split[3] ) _lowerCAmelCase:List[Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCAmelCase:List[str] = val[:dim, :] _lowerCAmelCase:Tuple = val[dim : dim * 2, :] _lowerCAmelCase:Any = val[-dim:, :] else: _lowerCAmelCase:Optional[int] = val[:dim] _lowerCAmelCase:List[str] = val[ dim : dim * 2 ] _lowerCAmelCase:Any = val[-dim:] else: _lowerCAmelCase:Any = val return orig_state_dict def UpperCAmelCase ( snake_case : str , snake_case : Optional[Any] ): _lowerCAmelCase:List[Any] = timm.create_model(snake_case , pretrained=snake_case ) timm_model.eval() _lowerCAmelCase:Tuple = get_swinva_config(snake_case ) _lowerCAmelCase:Any = SwinvaForImageClassification(snake_case ) model.eval() _lowerCAmelCase:Dict = convert_state_dict(timm_model.state_dict() , snake_case ) model.load_state_dict(snake_case ) _lowerCAmelCase:Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowerCAmelCase:Optional[int] = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swinva_name.replace('''_''' , '''-''' ) ) ) _lowerCAmelCase:Optional[int] = Image.open(requests.get(snake_case , stream=snake_case ).raw ) _lowerCAmelCase:Any = image_processor(images=snake_case , return_tensors='''pt''' ) _lowerCAmelCase:Any = timm_model(inputs['''pixel_values'''] ) _lowerCAmelCase:Optional[int] = model(**snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1e-3 ) print(F'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case ) model.push_to_hub( repo_path_or_name=Path(snake_case , snake_case ) , organization='''nandwalritik''' , commit_message='''Add model''' , ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swinv2_name''', default='''swinv2_tiny_patch4_window8_256''', type=str, help='''Name of the Swinv2 timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase__ = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
227
1
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class A_ ( UpperCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Dict = """roc_bert""" def __init__( self , snake_case=3_0522 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=1E-12 , snake_case=True , snake_case=0 , snake_case="absolute" , snake_case=None , snake_case=True , snake_case=True , snake_case=768 , snake_case=910 , snake_case=512 , snake_case=2_4858 , snake_case=True , **snake_case , ): lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = type_vocab_size lowercase = layer_norm_eps lowercase = use_cache lowercase = enable_pronunciation lowercase = enable_shape lowercase = pronunciation_embed_dim lowercase = pronunciation_vocab_size lowercase = shape_embed_dim lowercase = shape_vocab_size lowercase = concat_input lowercase = position_embedding_type lowercase = classifier_dropout super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase )
710
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = """autoformer""" _UpperCamelCase : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , snake_case = None , snake_case = None , snake_case = "student_t" , snake_case = "nll" , snake_case = 1 , snake_case = [1, 2, 3, 4, 5, 6, 7] , snake_case = True , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = 0 , snake_case = None , snake_case = None , snake_case = 64 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 2 , snake_case = 32 , snake_case = 32 , snake_case = "gelu" , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 0.1 , snake_case = 100 , snake_case = 0.02 , snake_case = True , snake_case=True , snake_case = 10 , snake_case = 25 , snake_case = 3 , **snake_case , ): # time series specific configuration lowercase = prediction_length lowercase = context_length if context_length is not None else prediction_length lowercase = distribution_output lowercase = loss lowercase = input_size lowercase = num_time_features lowercase = lags_sequence lowercase = scaling lowercase = num_dynamic_real_features lowercase = num_static_real_features lowercase = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) lowercase = cardinality else: lowercase = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(snake_case ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) lowercase = embedding_dimension else: lowercase = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowercase = num_parallel_samples # Transformer architecture configuration lowercase = input_size * len(self.lags_sequence ) + self._number_of_features lowercase = d_model lowercase = encoder_attention_heads lowercase = decoder_attention_heads lowercase = encoder_ffn_dim lowercase = decoder_ffn_dim lowercase = encoder_layers lowercase = decoder_layers lowercase = dropout lowercase = attention_dropout lowercase = activation_dropout lowercase = encoder_layerdrop lowercase = decoder_layerdrop lowercase = activation_function lowercase = init_std lowercase = use_cache # Autoformer lowercase = label_length lowercase = moving_average lowercase = autocorrelation_factor super().__init__(is_encoder_decoder=snake_case , **snake_case ) @property def SCREAMING_SNAKE_CASE__ ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
565
0
def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> bool: """simple docstring""" lowerCAmelCase__ = len(snake_case__ ) lowerCAmelCase__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCAmelCase__ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCAmelCase__ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCAmelCase__ = subset[i - 1][j] if arr[i - 1] <= j: lowerCAmelCase__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
193
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent _lowerCAmelCase : List[str] = {"UserAgent": UserAgent().random} def UpperCAmelCase_ ( snake_case__ ) -> dict: """simple docstring""" lowerCAmelCase__ = script.contents[0] lowerCAmelCase__ = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __snake_case : def __init__( self ,a_ ): """simple docstring""" lowerCAmelCase__ = f'https://www.instagram.com/{username}/' lowerCAmelCase__ = self.get_json() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = requests.get(self.url ,headers=a_ ).text lowerCAmelCase__ = BeautifulSoup(a_ ,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): """simple docstring""" return f'{self.__class__.__name__}(\'{self.username}\')' def __str__( self ): """simple docstring""" return f'{self.fullname} ({self.username}) is {self.biography}' @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["username"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["full_name"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["biography"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["business_email"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["external_url"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["edge_followed_by"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["edge_follow"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["edge_owner_to_timeline_media"]["count"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["profile_pic_url_hd"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["is_verified"] @property def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return self.user_data["is_private"] def UpperCAmelCase_ ( snake_case__ = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions lowerCAmelCase__ = InstagramUser(snake_case__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , snake_case__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Optional[int] = InstagramUser("github") print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
193
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _a : """simple docstring""" def __init__( self ,__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : str = parent SCREAMING_SNAKE_CASE : Optional[int] = 13 SCREAMING_SNAKE_CASE : Dict = 7 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Tuple = 99 SCREAMING_SNAKE_CASE : Tuple = 32 SCREAMING_SNAKE_CASE : List[str] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : Union[str, Any] = 37 SCREAMING_SNAKE_CASE : Optional[Any] = 'gelu' SCREAMING_SNAKE_CASE : Any = 0.1 SCREAMING_SNAKE_CASE : Optional[Any] = 0.1 SCREAMING_SNAKE_CASE : Optional[Any] = 512 SCREAMING_SNAKE_CASE : str = 16 SCREAMING_SNAKE_CASE : Union[str, Any] = 2 SCREAMING_SNAKE_CASE : int = 0.02 SCREAMING_SNAKE_CASE : int = 3 SCREAMING_SNAKE_CASE : List[Any] = 4 SCREAMING_SNAKE_CASE : int = None def __a ( self ): SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) SCREAMING_SNAKE_CASE : List[str] = EsmConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,pad_token_id=1 ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self ): ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : int = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[str] = TFEsmModel(config=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = [input_ids, input_mask] SCREAMING_SNAKE_CASE : int = model(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,): SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Dict = TFEsmModel(config=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'encoder_hidden_states': encoder_hidden_states, 'encoder_attention_mask': encoder_attention_mask, } SCREAMING_SNAKE_CASE : str = model(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = [input_ids, input_mask] SCREAMING_SNAKE_CASE : int = model(__SCREAMING_SNAKE_CASE ,encoder_hidden_states=__SCREAMING_SNAKE_CASE ) # Also check the case where encoder outputs are not passed SCREAMING_SNAKE_CASE : List[Any] = model(__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : int = TFEsmForMaskedLM(config=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : str = TFEsmForTokenClassification(config=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Any = {'input_ids': input_ids, 'attention_mask': input_mask} SCREAMING_SNAKE_CASE : Any = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def __a ( self ): SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ( SCREAMING_SNAKE_CASE ) , ) : Optional[int] = config_and_inputs SCREAMING_SNAKE_CASE : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" A = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) A = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) A = False A = False def __a ( self ): SCREAMING_SNAKE_CASE : Dict = TFEsmModelTester(self ) SCREAMING_SNAKE_CASE : Union[str, Any] = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,hidden_size=37 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __a ( self ): SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__SCREAMING_SNAKE_CASE ) def __a ( self ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def __a ( self ): SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def __a ( self ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Dict = TFEsmModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @unittest.skip('Protein models do not support embedding resizing.' ) def __a ( self ): pass @unittest.skip('Protein models do not support embedding resizing.' ) def __a ( self ): pass def __a ( self ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Any = model_class(__SCREAMING_SNAKE_CASE ) assert isinstance(model.get_input_embeddings() ,tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer SCREAMING_SNAKE_CASE : Tuple = model.get_bias() assert isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) for k, v in name.items(): assert isinstance(__SCREAMING_SNAKE_CASE ,tf.Variable ) else: SCREAMING_SNAKE_CASE : List[str] = model.get_output_embeddings() assert x is None SCREAMING_SNAKE_CASE : Dict = model.get_bias() assert name is None @require_tf class _a ( unittest.TestCase ): """simple docstring""" @slow def __a ( self ): SCREAMING_SNAKE_CASE : List[str] = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Optional[Any] = model(__SCREAMING_SNAKE_CASE )[0] SCREAMING_SNAKE_CASE : Tuple = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) ,__SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. SCREAMING_SNAKE_CASE : List[Any] = tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-2 ) ) @slow def __a ( self ): SCREAMING_SNAKE_CASE : Tuple = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' ) SCREAMING_SNAKE_CASE : Any = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) SCREAMING_SNAKE_CASE : List[Any] = model(__SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. SCREAMING_SNAKE_CASE : str = tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
220
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def SCREAMING_SNAKE_CASE_ ( snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : Dict ) -> List[str]: # load base model SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline.from_pretrained(snake_case_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors SCREAMING_SNAKE_CASE : List[str] = load_file(snake_case_ ) SCREAMING_SNAKE_CASE : List[str] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: SCREAMING_SNAKE_CASE : int = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : int = pipeline.text_encoder else: SCREAMING_SNAKE_CASE : Optional[int] = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' ) SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.unet # find the target layer SCREAMING_SNAKE_CASE : Union[str, Any] = layer_infos.pop(0 ) while len(snake_case_ ) > -1: try: SCREAMING_SNAKE_CASE : int = curr_layer.__getattr__(snake_case_ ) if len(snake_case_ ) > 0: SCREAMING_SNAKE_CASE : int = layer_infos.pop(0 ) elif len(snake_case_ ) == 0: break except Exception: if len(snake_case_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: SCREAMING_SNAKE_CASE : List[str] = layer_infos.pop(0 ) SCREAMING_SNAKE_CASE : str = [] if "lora_down" in key: pair_keys.append(key.replace('lora_down' , 'lora_up' ) ) pair_keys.append(snake_case_ ) else: pair_keys.append(snake_case_ ) pair_keys.append(key.replace('lora_up' , 'lora_down' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) SCREAMING_SNAKE_CASE : List[str] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case_ , snake_case_ ).unsqueeze(2 ).unsqueeze(3 ) else: SCREAMING_SNAKE_CASE : Tuple = state_dict[pair_keys[0]].to(torch.floataa ) SCREAMING_SNAKE_CASE : Any = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(snake_case_ , snake_case_ ) # update visited list for item in pair_keys: visited.append(snake_case_ ) return pipeline if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--base_model_path', default=None, type=str, required=True, help='Path to the base model in diffusers format.' ) parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--lora_prefix_unet', default='lora_unet', type=str, help='The prefix of UNet weight in safetensors' ) parser.add_argument( '--lora_prefix_text_encoder', default='lora_te', type=str, help='The prefix of text encoder weight in safetensors', ) parser.add_argument('--alpha', default=0.75, type=float, help='The merging ratio in W = W0 + alpha * deltaW') parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.' ) parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') __UpperCAmelCase = parser.parse_args() __UpperCAmelCase = args.base_model_path __UpperCAmelCase = args.checkpoint_path __UpperCAmelCase = args.dump_path __UpperCAmelCase = args.lora_prefix_unet __UpperCAmelCase = args.lora_prefix_text_encoder __UpperCAmelCase = args.alpha __UpperCAmelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __UpperCAmelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
220
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin __UpperCAmelCase : int = False @skip_mps class lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCAmelCase : int = StableDiffusionAttendAndExcitePipeline UpperCAmelCase : str = False UpperCAmelCase : List[str] = TEXT_TO_IMAGE_PARAMS UpperCAmelCase : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS.union({'token_indices'} ) UpperCAmelCase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase : str = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def snake_case_ ( cls : Any ) -> Tuple: super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def snake_case_ ( cls : str ) -> Dict: super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def snake_case_ ( self : str ) -> int: torch.manual_seed(0 ) _a : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__snake_case , ) _a : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__snake_case , set_alpha_to_one=__snake_case , ) torch.manual_seed(0 ) _a : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) _a : List[Any] = CLIPTextModel(__snake_case ) _a : List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a : Optional[int] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case_ ( self : str , __snake_case : Optional[int] , __snake_case : Optional[Any]=0 ) -> Any: if str(__snake_case ).startswith('''mps''' ): _a : List[str] = torch.manual_seed(__snake_case ) else: _a : Union[str, Any] = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _a : Dict = { '''prompt''': '''a cat and a frog''', '''token_indices''': [2, 5], '''generator''': generator, '''num_inference_steps''': 1, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''max_iter_to_alter''': 2, '''thresholds''': {0: 0.7}, } return inputs def snake_case_ ( self : List[Any] ) -> Optional[Any]: _a : List[Any] = '''cpu''' _a : Optional[int] = self.get_dummy_components() _a : int = self.pipeline_class(**__snake_case ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _a : int = self.get_dummy_inputs(__snake_case ) _a : List[str] = pipe(**__snake_case ).images _a : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3) ) _a : Optional[int] = np.array( [0.63_905_364, 0.62_897_307, 0.48_599_017, 0.5_133_624, 0.5_550_048, 0.45_769_516, 0.50_326_973, 0.5_023_139, 0.45_384_496] ) _a : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__snake_case , 1E-3 ) def snake_case_ ( self : List[Any] ) -> str: super().test_cpu_offload_forward_pass(expected_max_diff=5E-4 ) def snake_case_ ( self : List[str] ) -> Dict: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def snake_case_ ( self : List[Any] ) -> List[str]: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7E-4 ) def snake_case_ ( self : Tuple ) -> Union[str, Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def snake_case_ ( self : Union[str, Any] ) -> Dict: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5E-4 ) def snake_case_ ( self : List[Any] ) -> List[str]: super().test_save_load_local(expected_max_difference=5E-4 ) def snake_case_ ( self : List[Any] ) -> Any: super().test_save_load_optional_components(expected_max_difference=4E-4 ) @require_torch_gpu @slow class lowerCamelCase ( unittest.TestCase ): @classmethod def snake_case_ ( cls : Optional[Any] ) -> List[Any]: super().setUpClass() torch.use_deterministic_algorithms(__snake_case ) @classmethod def snake_case_ ( cls : str ) -> Union[str, Any]: super().tearDownClass() torch.use_deterministic_algorithms(__snake_case ) def snake_case_ ( self : List[str] ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self : Union[str, Any] ) -> Optional[int]: _a : Dict = torch.manual_seed(51 ) _a : List[Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , safety_checker=__snake_case , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _a : Any = '''a painting of an elephant with glasses''' _a : Tuple = [5, 7] _a : Tuple = pipe( prompt=__snake_case , token_indices=__snake_case , guidance_scale=7.5 , generator=__snake_case , num_inference_steps=5 , max_iter_to_alter=5 , output_type='''numpy''' , ).images[0] _a : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-1
471
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) __UpperCAmelCase : Any = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', } __UpperCAmelCase : str = { 'vocab_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'}, 'merges_file': {'ctrl': 'https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'}, } __UpperCAmelCase : Union[str, Any] = { 'ctrl': 256, } __UpperCAmelCase : Tuple = { 'Pregnancy': 168_629, 'Christianity': 7_675, 'Explain': 106_423, 'Fitness': 63_440, 'Saving': 63_163, 'Ask': 27_171, 'Ass': 95_985, 'Joke': 163_509, 'Questions': 45_622, 'Thoughts': 49_605, 'Retail': 52_342, 'Feminism': 164_338, 'Writing': 11_992, 'Atheism': 192_263, 'Netflix': 48_616, 'Computing': 39_639, 'Opinion': 43_213, 'Alone': 44_967, 'Funny': 58_917, 'Gaming': 40_358, 'Human': 4_088, 'India': 1_331, 'Joker': 77_138, 'Diet': 36_206, 'Legal': 11_859, 'Norman': 4_939, 'Tip': 72_689, 'Weight': 52_343, 'Movies': 46_273, 'Running': 23_425, 'Science': 2_090, 'Horror': 37_793, 'Confession': 60_572, 'Finance': 12_250, 'Politics': 16_360, 'Scary': 191_985, 'Support': 12_654, 'Technologies': 32_516, 'Teenage': 66_160, 'Event': 32_769, 'Learned': 67_460, 'Notion': 182_770, 'Wikipedia': 37_583, 'Books': 6_665, 'Extract': 76_050, 'Confessions': 102_701, 'Conspiracy': 75_932, 'Links': 63_674, 'Narcissus': 150_425, 'Relationship': 54_766, 'Relationships': 134_796, 'Reviews': 41_671, 'News': 4_256, 'Translation': 26_820, 'multilingual': 128_406, } def lowerCamelCase_ ( UpperCamelCase_ ): _a : Any = set() _a : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _a : Any = char _a : Dict = set(UpperCamelCase_ ) return pairs class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Optional[Any] = CONTROL_CODES def __init__( self : Union[str, Any] , __snake_case : Dict , __snake_case : int , __snake_case : Optional[Any]="<unk>" , **__snake_case : Tuple ) -> Tuple: super().__init__(unk_token=__snake_case , **__snake_case ) with open(__snake_case , encoding='''utf-8''' ) as vocab_handle: _a : List[str] = json.load(__snake_case ) _a : List[Any] = {v: k for k, v in self.encoder.items()} with open(__snake_case , encoding='''utf-8''' ) as merges_handle: _a : str = merges_handle.read().split('''\n''' )[1:-1] _a : List[str] = [tuple(merge.split() ) for merge in merges] _a : Optional[Any] = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) _a : int = {} @property def snake_case_ ( self : str ) -> Tuple: return len(self.encoder ) def snake_case_ ( self : Optional[Any] ) -> Optional[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Optional[Any] , __snake_case : str ) -> Tuple: if token in self.cache: return self.cache[token] _a : int = tuple(__snake_case ) _a : Any = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) _a : Tuple = get_pairs(__snake_case ) if not pairs: return token while True: _a : List[str] = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _a , _a : Tuple = bigram _a : Tuple = [] _a : Tuple = 0 while i < len(__snake_case ): try: _a : List[Any] = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _a : str = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a : Tuple = tuple(__snake_case ) _a : str = new_word if len(__snake_case ) == 1: break else: _a : Dict = get_pairs(__snake_case ) _a : List[Any] = '''@@ '''.join(__snake_case ) _a : int = word[:-4] _a : List[str] = word return word def snake_case_ ( self : Optional[Any] , __snake_case : Any ) -> Optional[int]: _a : Any = [] _a : Union[str, Any] = re.findall(r'''\S+\n?''' , __snake_case ) for token in words: split_tokens.extend(list(self.bpe(__snake_case ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : int , __snake_case : str ) -> Dict: return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : int , __snake_case : List[Any] ) -> List[str]: return self.decoder.get(__snake_case , self.unk_token ) def snake_case_ ( self : List[str] , __snake_case : Tuple ) -> int: _a : List[str] = ''' '''.join(__snake_case ).replace('''@@ ''' , '''''' ).strip() return out_string def snake_case_ ( self : Any , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a : List[Any] = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _a : str = os.path.join( __snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '''\n''' ) _a : Any = 0 with open(__snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) _a : List[str] = token_index writer.write(''' '''.join(__snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
471
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __SCREAMING_SNAKE_CASE :List[Any] = logging.getLogger(__name__) torch.set_grad_enabled(False) __SCREAMING_SNAKE_CASE :List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' def UpperCAmelCase_ ( __lowercase : str , __lowercase : List[str]=100 , __lowercase : Optional[Any]=" " ) -> List[str]: '''simple docstring''' _UpperCAmelCase = text.split(__lowercase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowercase ) , __lowercase )] def UpperCAmelCase_ ( __lowercase : dict ) -> dict: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(__lowercase ): titles.append(title if title is not None else "" ) texts.append(__lowercase ) return {"title": titles, "text": texts} def UpperCAmelCase_ ( __lowercase : dict , __lowercase : DPRContextEncoder , __lowercase : DPRContextEncoderTokenizerFast ) -> dict: '''simple docstring''' _UpperCAmelCase = ctx_tokenizer( documents["title"] , documents["text"] , truncation=__lowercase , padding="longest" , return_tensors="pt" )["input_ids"] _UpperCAmelCase = ctx_encoder(input_ids.to(device=__lowercase ) , return_dict=__lowercase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase_ ( __lowercase : "RagExampleArguments" , __lowercase : "ProcessingArguments" , __lowercase : "IndexHnswArguments" , ) -> Optional[Any]: '''simple docstring''' logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way _UpperCAmelCase = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words _UpperCAmelCase = dataset.map(__lowercase , batched=__lowercase , num_proc=processing_args.num_proc ) # And compute the embeddings _UpperCAmelCase = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowercase ) _UpperCAmelCase = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) _UpperCAmelCase = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space _UpperCAmelCase = dataset.map( partial(__lowercase , ctx_encoder=__lowercase , ctx_tokenizer=__lowercase ) , batched=__lowercase , batch_size=processing_args.batch_size , features=__lowercase , ) # And finally save your dataset _UpperCAmelCase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(__lowercase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search _UpperCAmelCase = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=__lowercase ) # And save the index _UpperCAmelCase = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(__lowercase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class A_ : _lowerCamelCase : str = field( default=str(Path(lowerCAmelCase_ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , ) _lowerCamelCase : Optional[str] = field( default=lowerCAmelCase_ , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , ) _lowerCamelCase : str = field( default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , ) _lowerCamelCase : str = field( default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={ """help""": ( """The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or""" """ 'facebook/dpr-ctx_encoder-multiset-base'""" ) } , ) _lowerCamelCase : Optional[str] = field( default=str(Path(lowerCAmelCase_ ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , ) @dataclass class A_ : _lowerCamelCase : Optional[int] = field( default=lowerCAmelCase_ , metadata={ """help""": """The number of processes to use to split the documents into passages. Default is single process.""" } , ) _lowerCamelCase : int = field( default=16 , metadata={ """help""": """The batch size to use when computing the passages embeddings using the DPR context encoder.""" } , ) @dataclass class A_ : _lowerCamelCase : int = field( default=7_68 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , ) _lowerCamelCase : int = field( default=1_28 , metadata={ """help""": ( """The number of bi-directional links created for every new element during the HNSW index construction.""" ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __SCREAMING_SNAKE_CASE :Tuple = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE :Optional[int] = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
119
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal __SCREAMING_SNAKE_CASE :List[str] = datasets.utils.logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''names''', '''prefix'''] __SCREAMING_SNAKE_CASE :Dict = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] __SCREAMING_SNAKE_CASE :Union[str, Any] = ['''encoding_errors''', '''on_bad_lines'''] __SCREAMING_SNAKE_CASE :int = ['''date_format'''] @dataclass class A_ ( datasets.BuilderConfig ): _lowerCamelCase : str = "," _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[Union[int, List[int], str]] = "infer" _lowerCamelCase : Optional[List[str]] = None _lowerCamelCase : Optional[List[str]] = None _lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] = None _lowerCamelCase : Optional[Union[List[int], List[str]]] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : bool = True _lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] = None _lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] = None _lowerCamelCase : Optional[list] = None _lowerCamelCase : Optional[list] = None _lowerCamelCase : bool = False _lowerCamelCase : Optional[Union[int, List[int]]] = None _lowerCamelCase : Optional[int] = None _lowerCamelCase : Optional[Union[str, List[str]]] = None _lowerCamelCase : bool = True _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : bool = True _lowerCamelCase : Optional[str] = None _lowerCamelCase : str = "." _lowerCamelCase : Optional[str] = None _lowerCamelCase : str = '"' _lowerCamelCase : int = 0 _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : Optional[str] = None _lowerCamelCase : bool = True _lowerCamelCase : bool = True _lowerCamelCase : int = 0 _lowerCamelCase : bool = True _lowerCamelCase : bool = False _lowerCamelCase : Optional[str] = None _lowerCamelCase : int = 1_00_00 _lowerCamelCase : Optional[datasets.Features] = None _lowerCamelCase : Optional[str] = "strict" _lowerCamelCase : Literal["error", "warn", "skip"] = "error" _lowerCamelCase : Optional[str] = None def lowercase ( self : int ): if self.delimiter is not None: _UpperCAmelCase = self.delimiter if self.column_names is not None: _UpperCAmelCase = self.column_names @property def lowercase ( self : List[Any] ): _UpperCAmelCase = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , snake_case_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class A_ ( datasets.ArrowBasedBuilder ): _lowerCamelCase : Any = CsvConfig def lowercase ( self : Tuple ): return datasets.DatasetInfo(features=self.config.features ) def lowercase ( self : Any , snake_case_ : int ): if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) _UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): _UpperCAmelCase = data_files if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(snake_case_ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={"files": files} ) ) return splits def lowercase ( self : List[str] , snake_case_ : pa.Table ): if self.config.features is not None: _UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(snake_case_ ) for feature in self.config.features.values() ): # cheaper cast _UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=snake_case_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase = table_cast(snake_case_ , snake_case_ ) return pa_table def lowercase ( self : Union[str, Any] , snake_case_ : Any ): _UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(snake_case_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): _UpperCAmelCase = pd.read_csv(snake_case_ , iterator=snake_case_ , dtype=snake_case_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(snake_case_ ): _UpperCAmelCase = pa.Table.from_pandas(snake_case_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case_ ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}' ) raise
119
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType __A : List[str] = logging.get_logger(__name__) class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = 'vision-encoder-decoder' __magic_name__ = True def __init__( self , **snake_case_ ): super().__init__(**snake_case_ ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( F"A configuraton of type {self.model_type} cannot be instantiated because " F"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) _A = kwargs.pop('encoder' ) _A = encoder_config.pop('model_type' ) _A = kwargs.pop('decoder' ) _A = decoder_config.pop('model_type' ) _A = AutoConfig.for_model(snake_case_ , **snake_case_ ) _A = AutoConfig.for_model(snake_case_ , **snake_case_ ) _A = True @classmethod def lowerCAmelCase__ ( cls , snake_case_ , snake_case_ , **snake_case_ ): logger.info('Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' ) _A = True _A = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **snake_case_ ) def lowerCAmelCase__ ( self ): _A = copy.deepcopy(self.__dict__ ) _A = self.encoder.to_dict() _A = self.decoder.to_dict() _A = self.__class__.model_type return output class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = version.parse('1.11' ) @property def lowerCAmelCase__ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase__ ( self ): return 1E-4 @property def lowerCAmelCase__ ( self ): return OrderedDict({'last_hidden_state': {0: 'batch', 1: 'encoder_sequence'}} ) class lowerCamelCase( __snake_case ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): _A = OrderedDict() _A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _A = {0: 'batch', 1: 'past_decoder_sequence + sequence'} _A = {0: 'batch', 1: 'encoder_sequence'} return common_inputs def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = -1 , snake_case_ = -1 , snake_case_ = False , snake_case_ = None , ): import torch _A = OrderedDict() _A = super().generate_dummy_inputs( snake_case_ , batch_size=snake_case_ , seq_length=snake_case_ , is_pair=snake_case_ , framework=snake_case_ ) _A, _A = dummy_input['input_ids'].shape _A = (batch, encoder_sequence, self._config.encoder_hidden_size) _A = dummy_input.pop('input_ids' ) _A = dummy_input.pop('attention_mask' ) _A = torch.zeros(snake_case_ ) return common_inputs class lowerCamelCase( __snake_case ): '''simple docstring''' @property def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self , snake_case_ ): return VisionEncoderDecoderEncoderOnnxConfig(snake_case_ ) def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ = "default" ): _A = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(snake_case_ , snake_case_ )
27
from cva import destroyAllWindows, imread, imshow, waitKey def A_ ( A__ ) -> Tuple: # getting number of pixels in the image a__ , a__ : Any = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A__ ): for j in range(A__ ): a__ : str = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowercase : Dict = imread("""image_data/lena.jpg""", 1) # convert to its negative lowercase : Tuple = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
302
0
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowerCAmelCase__ : Any = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" SCREAMING_SNAKE_CASE = field( default=_lowerCAmelCase ,metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_lowerCAmelCase )} ) SCREAMING_SNAKE_CASE = field( default=_lowerCAmelCase ,metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) SCREAMING_SNAKE_CASE = field( default=128 ,metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } ,) SCREAMING_SNAKE_CASE = field( default=128 ,metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} ,) SCREAMING_SNAKE_CASE = field( default=64 ,metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } ,) SCREAMING_SNAKE_CASE = field( default=30 ,metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } ,) SCREAMING_SNAKE_CASE = field( default=_lowerCAmelCase ,metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) SCREAMING_SNAKE_CASE = field( default=_lowerCAmelCase ,metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) SCREAMING_SNAKE_CASE = field( default=0.0 ,metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) SCREAMING_SNAKE_CASE = field( default=20 ,metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) SCREAMING_SNAKE_CASE = field( default=0 ,metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } ,) SCREAMING_SNAKE_CASE = field(default=1 ,metadata={'''help''': '''multiple threads for converting example to features'''} ) class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE = 'train' SCREAMING_SNAKE_CASE = 'dev' class SCREAMING_SNAKE_CASE__ ( _lowerCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self : Union[str, Any] , UpperCAmelCase_ : SquadDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[str] = "pt" , ): """simple docstring""" __UpperCAmelCase : str = args __UpperCAmelCase : Any = is_language_sensitive __UpperCAmelCase : List[Any] = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowerCAmelCase , _lowerCAmelCase ): try: __UpperCAmelCase : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) __UpperCAmelCase : Optional[Any] = mode # Load data features from cache or dataset file __UpperCAmelCase : Tuple = "v2" if args.version_2_with_negative else "v1" __UpperCAmelCase : Union[str, Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __UpperCAmelCase : Any = cached_features_file + ".lock" with FileLock(_lowerCAmelCase ): if os.path.exists(_lowerCAmelCase ) and not args.overwrite_cache: __UpperCAmelCase : Union[str, Any] = time.time() __UpperCAmelCase : Optional[Any] = torch.load(_lowerCAmelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __UpperCAmelCase : Optional[int] = self.old_features["features"] __UpperCAmelCase : Tuple = self.old_features.get("dataset" , _lowerCAmelCase ) __UpperCAmelCase : int = self.old_features.get("examples" , _lowerCAmelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: __UpperCAmelCase : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: __UpperCAmelCase : List[str] = self.processor.get_train_examples(args.data_dir ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowerCAmelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowerCAmelCase , ) __UpperCAmelCase : Optional[int] = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , _lowerCAmelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : str ): """simple docstring""" return len(self.features ) def __getitem__( self : Any , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : str = self.features[i] __UpperCAmelCase : List[Any] = torch.tensor(feature.input_ids , dtype=torch.long ) __UpperCAmelCase : Optional[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) __UpperCAmelCase : Optional[int] = torch.tensor(feature.token_type_ids , dtype=torch.long ) __UpperCAmelCase : Union[str, Any] = torch.tensor(feature.cls_index , dtype=torch.long ) __UpperCAmelCase : Tuple = torch.tensor(feature.p_mask , dtype=torch.float ) __UpperCAmelCase : Tuple = torch.tensor(feature.is_impossible , dtype=torch.float ) __UpperCAmelCase : Union[str, Any] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __UpperCAmelCase : Any = torch.tensor(feature.start_position , dtype=torch.long ) __UpperCAmelCase : Tuple = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
709
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset lowerCAmelCase__ : int = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self : int , UpperCAmelCase_ : int ): """simple docstring""" super().__init__() __UpperCAmelCase : Optional[Any] = torchvision.models.resnetaaa(pretrained=UpperCAmelCase_ ) __UpperCAmelCase : List[str] = list(model.children() )[:-2] __UpperCAmelCase : int = nn.Sequential(*UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : int ): """simple docstring""" # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 __UpperCAmelCase : Tuple = self.pool(self.model(UpperCAmelCase_ ) ) __UpperCAmelCase : Dict = torch.flatten(UpperCAmelCase_ , start_dim=2 ) __UpperCAmelCase : int = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : List[str] = [json.loads(UpperCAmelCase_ ) for l in open(UpperCAmelCase_ )] __UpperCAmelCase : List[Any] = os.path.dirname(UpperCAmelCase_ ) __UpperCAmelCase : Any = tokenizer __UpperCAmelCase : Union[str, Any] = labels __UpperCAmelCase : Any = len(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = max_seq_length __UpperCAmelCase : Any = transforms def __len__( self : List[str] ): """simple docstring""" return len(self.data ) def __getitem__( self : Tuple , UpperCAmelCase_ : Optional[Any] ): """simple docstring""" __UpperCAmelCase : Dict = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=UpperCAmelCase_ ) ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[str] = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Tuple = sentence[: self.max_seq_length] __UpperCAmelCase : int = torch.zeros(self.n_classes ) __UpperCAmelCase : str = 1 __UpperCAmelCase : int = Image.open(os.path.join(self.data_dir , self.data[index]["img"] ) ).convert("RGB" ) __UpperCAmelCase : Dict = self.transforms(UpperCAmelCase_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = Counter() for row in self.data: label_freqs.update(row["label"] ) return label_freqs def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : str = [len(row["sentence"] ) for row in batch] __UpperCAmelCase , __UpperCAmelCase : Optional[int] = len(_UpperCAmelCase ), max(_UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = torch.zeros(_UpperCAmelCase, _UpperCAmelCase, dtype=torch.long ) __UpperCAmelCase : List[Any] = torch.zeros(_UpperCAmelCase, _UpperCAmelCase, dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_UpperCAmelCase, _UpperCAmelCase ) ): __UpperCAmelCase : str = input_row["sentence"] __UpperCAmelCase : Optional[int] = 1 __UpperCAmelCase : Dict = torch.stack([row["image"] for row in batch] ) __UpperCAmelCase : List[Any] = torch.stack([row["label"] for row in batch] ) __UpperCAmelCase : Tuple = torch.stack([row["image_start_token"] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __UpperCamelCase ( ): return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __UpperCamelCase ( ): return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017], std=[0.12_221_994, 0.12_145_835, 0.14_380_469], ), ] )
329
0
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class __magic_name__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Dict = get_activation("swish" ) self.assertIsInstance(snake_case , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : str = get_activation("silu" ) self.assertIsInstance(snake_case , nn.SiLU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Any = get_activation("mish" ) self.assertIsInstance(snake_case , nn.Mish ) self.assertEqual(act(torch.tensor(-200 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = get_activation("gelu" ) self.assertIsInstance(snake_case , nn.GELU ) self.assertEqual(act(torch.tensor(-100 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
454
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = IFInpaintingPipeline __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} __UpperCamelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return self._get_dummy_components() def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :str , snake_case :List[Any]=0 ): '''simple docstring''' if str(snake_case ).startswith("mps" ): A_ : Optional[Any] = torch.manual_seed(snake_case ) else: A_ : Any = torch.Generator(device=snake_case ).manual_seed(snake_case ) A_ : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) A_ : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) A_ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' self._test_save_load_local() def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
454
1
"""simple docstring""" import os import sys import unittest lowerCamelCase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowerCamelCase : Optional[int] = os.path.join(git_repo_path, """src""", """transformers""") lowerCamelCase : Tuple = """ {0} = None """ lowerCamelCase : int = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ lowerCamelCase : Dict = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class __snake_case( unittest.TestCase ): def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(A_ ) _SCREAMING_SNAKE_CASE = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(A_ , '''tokenizers''' ) _SCREAMING_SNAKE_CASE = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(A_ , '''tensorflow_text''' ) _SCREAMING_SNAKE_CASE = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(A_ , '''sentencepiece_and_tokenizers''' ) _SCREAMING_SNAKE_CASE = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(A_ , '''sentencepiece_and_tensorflow_text''' ) _SCREAMING_SNAKE_CASE = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(A_ , '''sentencepiece_and_tokenizers_and_vision''' ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , A_ ) self.assertIn('''tensorflow_text''' , A_ ) self.assertIn('''sentencepiece_and_tokenizers''' , A_ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(A_ , '''\nCONSTANT = None\n''' ) _SCREAMING_SNAKE_CASE = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( A_ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) _SCREAMING_SNAKE_CASE = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' _SCREAMING_SNAKE_CASE = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(A_ , A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' _SCREAMING_SNAKE_CASE = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , A_ )
168
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCamelCase : str = _symbol_database.Default() lowerCamelCase : Any = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) lowerCamelCase : List[str] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCamelCase : List[str] = None lowerCamelCase : List[str] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCamelCase : Optional[int] = 4_5 lowerCamelCase : Tuple = 1_5_8_1 lowerCamelCase : Optional[int] = 1_5_1_7 lowerCamelCase : List[Any] = 1_5_7_0 lowerCamelCase : Dict = 1_5_8_4 lowerCamelCase : Dict = 1_7_9_3 lowerCamelCase : Optional[Any] = 1_7_9_5 lowerCamelCase : List[Any] = 1_9_1_6 lowerCamelCase : int = 1_8_6_4 lowerCamelCase : int = 1_9_0_5 lowerCamelCase : Dict = 1_9_1_9 lowerCamelCase : str = 2_4_2_9 lowerCamelCase : str = 2_2_0_8 lowerCamelCase : int = 2_4_1_8 lowerCamelCase : Dict = 2_3_2_3 lowerCamelCase : int = 2_4_0_7 # @@protoc_insertion_point(module_scope)
168
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / '''file.csv''' __SCREAMING_SNAKE_CASE : str = textwrap.dedent( '''\ header1,header2 1,2 10,20 ''' ) with open(_lowerCAmelCase , '''w''' ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : int = tmp_path / '''malformed_file.csv''' __SCREAMING_SNAKE_CASE : Dict = textwrap.dedent( '''\ header1,header2 1,2 10,20, ''' ) with open(_lowerCAmelCase , '''w''' ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = tmp_path / '''csv_with_image.csv''' __SCREAMING_SNAKE_CASE : Optional[Any] = textwrap.dedent( F'''\ image {image_file} ''' ) with open(_lowerCAmelCase , '''w''' ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = tmp_path / '''csv_with_label.csv''' __SCREAMING_SNAKE_CASE : List[Any] = textwrap.dedent( '''\ label good bad good ''' ) with open(_lowerCAmelCase , '''w''' ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : str = tmp_path / '''csv_with_int_list.csv''' __SCREAMING_SNAKE_CASE : Optional[int] = textwrap.dedent( '''\ int_list 1 2 3 4 5 6 7 8 9 ''' ) with open(_lowerCAmelCase , '''w''' ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : int = Csv() __SCREAMING_SNAKE_CASE : List[Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match='''Error tokenizing data''' ): for _ in generator: pass assert any( record.levelname == '''ERROR''' and '''Failed to read file''' in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def _UpperCamelCase ( lowercase__ ): with open(_lowerCAmelCase , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Optional[Any] = f.read().splitlines()[1] __SCREAMING_SNAKE_CASE : List[str] = Csv(encoding='''utf-8''' , features=Features({'''image''': Image()} ) ) __SCREAMING_SNAKE_CASE : Optional[int] = csv._generate_tables([[csv_file_with_image]] ) __SCREAMING_SNAKE_CASE : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''image''' ).type == Image()() __SCREAMING_SNAKE_CASE : Optional[Any] = pa_table.to_pydict()['''image'''] assert generated_content == [{"path": image_file, "bytes": None}] def _UpperCamelCase ( lowercase__ ): with open(_lowerCAmelCase , encoding='''utf-8''' ) as f: __SCREAMING_SNAKE_CASE : Tuple = f.read().splitlines()[1:] __SCREAMING_SNAKE_CASE : Optional[Any] = Csv(encoding='''utf-8''' , features=Features({'''label''': ClassLabel(names=['''good''', '''bad'''] )} ) ) __SCREAMING_SNAKE_CASE : List[str] = csv._generate_tables([[csv_file_with_label]] ) __SCREAMING_SNAKE_CASE : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field('''label''' ).type == ClassLabel(names=['''good''', '''bad'''] )() __SCREAMING_SNAKE_CASE : List[str] = pa_table.to_pydict()['''label'''] assert generated_content == [ClassLabel(names=['''good''', '''bad'''] ).straint(_lowerCAmelCase ) for label in labels] def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = Csv(encoding='''utf-8''' , sep=''',''' , converters={'''int_list''': lambda lowercase__ : [int(_lowerCAmelCase ) for i in x.split()]} ) __SCREAMING_SNAKE_CASE : Any = csv._generate_tables([[csv_file_with_int_list]] ) __SCREAMING_SNAKE_CASE : int = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field('''int_list''' ).type ) __SCREAMING_SNAKE_CASE : int = pa_table.to_pydict()['''int_list'''] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
696
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class lowerCAmelCase_ ( A__ ): '''simple docstring''' def __init__( self , snake_case_=None , **snake_case_ ) -> Optional[Any]: warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , snake_case_ , ) super().__init__(args=snake_case_ , **snake_case_ )
465
0
import string from math import logaa def __lowerCAmelCase ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ) -> int: __lowerCAmelCase =document.translate( str.maketrans("""""" , """""" , string.punctuation ) ).replace("""\n""" , """""" ) __lowerCAmelCase =document_without_punctuation.split(""" """ ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def __lowerCAmelCase ( __lowerCamelCase : Dict , __lowerCamelCase : Any ) -> tuple[int, int]: __lowerCAmelCase =corpus.lower().translate( str.maketrans("""""" , """""" , string.punctuation ) ) # strip all punctuation and replace it with '' __lowerCAmelCase =corpus_without_punctuation.split("""\n""" ) __lowerCAmelCase =term.lower() return (len([doc for doc in docs if term in doc] ), len(__snake_case )) def __lowerCAmelCase ( __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]=False ) -> float: if smoothing: if n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("""df must be > 0""" ) elif n == 0: raise ValueError("""log10(0) is undefined.""" ) return round(logaa(n / df ) , 3 ) def __lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ) -> float: return round(tf * idf , 3 )
707
def __lowerCAmelCase ( __lowerCamelCase : int ) -> list: __lowerCAmelCase =int(__lowerCamelCase ) if n_element < 1: __lowerCAmelCase =ValueError("""a should be a positive number""" ) raise my_error __lowerCAmelCase =[1] __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase =(0, 0, 0) __lowerCAmelCase =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowercase_ = input('''Enter the last number (nth term) of the Hamming Number Series: ''') print('''Formula of Hamming Number Series => 2^i * 3^j * 5^k''') lowercase_ = hamming(int(n)) print('''-----------------------------------------------------''') print(F"The list with nth numbers is: {hamming_numbers}") print('''-----------------------------------------------------''')
456
0
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __magic_name__ ( A__, A__, unittest.TestCase ): lowercase : Tuple =VQModel lowercase : Any ='''sample''' @property def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : Any=(32, 32) ) -> Any: '''simple docstring''' UpperCAmelCase = 4 UpperCAmelCase = 3 UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(UpperCamelCase__ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' return (3, 32, 32) @property def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> int: '''simple docstring''' return (3, 32, 32) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[str]: '''simple docstring''' UpperCAmelCase = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 3, } UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> int: '''simple docstring''' UpperCAmelCase , UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) self.assertEqual(len(loading_info["missing_keys"] ) , 0 ) model.to(UpperCamelCase__ ) UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Tuple: '''simple docstring''' UpperCAmelCase = VQModel.from_pretrained("fusing/vqgan-dummy" ) model.to(UpperCamelCase__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) UpperCAmelCase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) UpperCAmelCase = image.to(UpperCamelCase__ ) with torch.no_grad(): UpperCAmelCase = model(UpperCamelCase__ ).sample UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) )
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Any = { "configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = ["VisionEncoderDecoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = ["TFVisionEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ["FlaxVisionEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys __lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
323
1
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : int = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, oder?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] A_ : List[Any] = { '''ru-en''': ['''[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)''', '''39.20'''], '''en-ru''': ['''[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)''', '''33.47'''], '''en-de''': ['''[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)''', '''42.83'''], '''de-en''': ['''[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)''', '''41.35'''], } A_ : List[str] = f'''{src_lang}-{tgt_lang}''' A_ : List[Any] = f''' --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt19 - facebook license: apache-2.0 datasets: - wmt19 metrics: - bleu --- # FSMT ## Model description This is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}. For more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616). The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = "facebook/wmt19-{src_lang}-{tgt_lang}" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "{texts[src_lang]}" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias - The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- {pair} | {scores[pair][0]} | {scores[pair][1]} The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{{..., year={{2020}}, title={{Facebook FAIR\'s WMT19 News Translation Task Submission}}, author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}}, booktitle={{Proc. of WMT}}, }} ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints) ''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) A_ : Tuple = os.path.join(SCREAMING_SNAKE_CASE , '''README.md''' ) print(f'''Generating {path}''' ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write(SCREAMING_SNAKE_CASE ) # make sure we are under the root of the project UpperCamelCase = Path(__file__).resolve().parent.parent.parent UpperCamelCase = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: UpperCamelCase , UpperCamelCase , UpperCamelCase = model_name.split("""-""") UpperCamelCase = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
152
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" snake_case = 42 snake_case = 42 snake_case = None class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" snake_case = 2 @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 0.0_2 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 1.0_0_7 , _SCREAMING_SNAKE_CASE = 80 , _SCREAMING_SNAKE_CASE = 0.0_5 , _SCREAMING_SNAKE_CASE = 50 , )->Optional[Any]: '''simple docstring''' A_ : Tuple = sigma_max # setable values A_ : int = None A_ : np.IntTensor = None A_ : torch.FloatTensor = None # sigma(t_i) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->List[Any]: '''simple docstring''' A_ : int = num_inference_steps A_ : List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A_ : Optional[Any] = torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) A_ : Any = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A_ : Any = torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None )->Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A_ : int = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A_ : Tuple = 0 # sample eps ~ N(0, S_noise^2 * I) A_ : Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=_SCREAMING_SNAKE_CASE ).to(sample.device ) A_ : Any = sigma + gamma * sigma A_ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[KarrasVeOutput, Tuple]: '''simple docstring''' A_ : Dict = sample_hat + sigma_hat * model_output A_ : Optional[int] = (sample_hat - pred_original_sample) / sigma_hat A_ : Dict = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , )->Union[KarrasVeOutput, Tuple]: '''simple docstring''' A_ : Any = sample_prev + sigma_prev * model_output A_ : str = (sample_prev - pred_original_sample) / sigma_prev A_ : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_SCREAMING_SNAKE_CASE , derivative=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' raise NotImplementedError()
152
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = jnp.floataa def a__ ( self ) -> int: UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : Tuple = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = resnets UpperCAmelCase_ : List[str] = attentions if self.add_downsample: UpperCAmelCase_ : Tuple = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> List[Any]: UpperCAmelCase_ : List[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): UpperCAmelCase_ : str = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = attn(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : Any = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = True lowerCAmelCase = jnp.floataa def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = [] for i in range(self.num_layers ): UpperCAmelCase_ : Dict = self.in_channels if i == 0 else self.out_channels UpperCAmelCase_ : List[Any] = FlaxResnetBlockaD( in_channels=_SCREAMING_SNAKE_CASE ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = resnets if self.add_downsample: UpperCAmelCase_ : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> Any: UpperCAmelCase_ : str = () for resnet in self.resnets: UpperCAmelCase_ : Tuple = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) if self.add_downsample: UpperCAmelCase_ : Optional[Any] = self.downsamplers_a(_SCREAMING_SNAKE_CASE ) output_states += (hidden_states,) return hidden_states, output_states class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = jnp.floataa def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Tuple = [] for i in range(self.num_layers ): UpperCAmelCase_ : List[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Optional[int] = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : Any = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = resnets UpperCAmelCase_ : Dict = attentions if self.add_upsample: UpperCAmelCase_ : Tuple = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> Dict: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states UpperCAmelCase_ : int = res_hidden_states_tuple[-1] UpperCAmelCase_ : int = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[str] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Tuple = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = attn(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCAmelCase_ : Dict = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = True lowerCAmelCase = jnp.floataa def a__ ( self ) -> Any: UpperCAmelCase_ : List[Any] = [] for i in range(self.num_layers ): UpperCAmelCase_ : Optional[Any] = self.in_channels if (i == self.num_layers - 1) else self.out_channels UpperCAmelCase_ : Any = self.prev_output_channel if i == 0 else self.out_channels UpperCAmelCase_ : int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = resnets if self.add_upsample: UpperCAmelCase_ : List[str] = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> str: for resnet in self.resnets: # pop res hidden states UpperCAmelCase_ : Optional[Any] = res_hidden_states_tuple[-1] UpperCAmelCase_ : List[str] = res_hidden_states_tuple[:-1] UpperCAmelCase_ : List[str] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) UpperCAmelCase_ : Optional[Any] = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) if self.add_upsample: UpperCAmelCase_ : Tuple = self.upsamplers_a(_SCREAMING_SNAKE_CASE ) return hidden_states class __a( nn.Module ): """simple docstring""" lowerCAmelCase = 42 lowerCAmelCase = 0.0 lowerCAmelCase = 1 lowerCAmelCase = 1 lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = jnp.floataa def a__ ( self ) -> Tuple: # there is always at least one resnet UpperCAmelCase_ : Any = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] UpperCAmelCase_ : int = [] for _ in range(self.num_layers ): UpperCAmelCase_ : Tuple = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = resnets UpperCAmelCase_ : Optional[Any] = attentions def __call__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=True ) -> Any: UpperCAmelCase_ : int = self.resnets[0](_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): UpperCAmelCase_ : Optional[int] = attn(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = resnet(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,deterministic=_SCREAMING_SNAKE_CASE ) return hidden_states
30
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : List[Any] = logging.get_logger(__name__) __lowerCamelCase : List[Any] = { "uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json", } class __magic_name__ ( A__ ): lowercase : Union[str, Any] ='''mra''' def __init__( self : Tuple , UpperCamelCase__ : Any=5_02_65 , UpperCamelCase__ : int=7_68 , UpperCamelCase__ : Union[str, Any]=12 , UpperCamelCase__ : Any=12 , UpperCamelCase__ : Tuple=30_72 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Union[str, Any]=0.1 , UpperCamelCase__ : str=5_12 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : List[Any]=1e-5 , UpperCamelCase__ : Dict="absolute" , UpperCamelCase__ : str=4 , UpperCamelCase__ : Tuple="full" , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : List[Any]=0 , UpperCamelCase__ : Optional[Any]=1 , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : Optional[int]=2 , **UpperCamelCase__ : int , ) -> Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = type_vocab_size UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = block_per_row UpperCAmelCase = approx_mode UpperCAmelCase = initial_prior_first_n_blocks UpperCAmelCase = initial_prior_diagonal_n_blocks
323
0
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right SCREAMING_SNAKE_CASE : int = 50_003 SCREAMING_SNAKE_CASE : Any = 50_002 @require_sentencepiece @require_tokenizers class snake_case_ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Tuple = PLBartTokenizer SCREAMING_SNAKE_CASE_: Optional[Any] = None SCREAMING_SNAKE_CASE_: str = False def _UpperCAmelCase ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A__ = PLBartTokenizer(__a , language_codes='base' , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = PLBartTokenizer(__a , language_codes='base' , keep_accents=__a ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A__ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) A__ = tokenizer.vocab_size A__ = [tokenizer.convert_ids_to_tokens(__a ) for x in range(end - 4 , __a )] self.assertListEqual(__a , ['__java__', '__python__', '__en_XX__', '<mask>'] ) A__ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' A__ = tokenizer(__a ).input_ids self.assertEqual( tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) , __a , ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = PLBartTokenizer(__a , language_codes='multi' , keep_accents=__a ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(__a , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A__ = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) A__ = tokenizer.vocab_size A__ = [tokenizer.convert_ids_to_tokens(__a ) for x in range(end - 7 , __a )] self.assertListEqual( __a , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) A__ = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' A__ = tokenizer(__a ).input_ids self.assertEqual( tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) , __a , ) @require_torch @require_sentencepiece @require_tokenizers class snake_case_ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Tuple = """uclanlp/plbart-python-en_XX""" SCREAMING_SNAKE_CASE_: Optional[Any] = [ """def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])""", """def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""", ] SCREAMING_SNAKE_CASE_: Any = [ """Returns the maximum value of a b c.""", """Sums the values of a b c.""", ] SCREAMING_SNAKE_CASE_: List[str] = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def _UpperCAmelCase ( cls ): """simple docstring""" A__ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) A__ = 1 return cls def _UpperCAmelCase ( self ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0003 ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def _UpperCAmelCase ( self ): """simple docstring""" self.assertIn(__a , self.tokenizer.all_special_ids ) A__ = [EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] A__ = self.tokenizer.decode(__a , skip_special_tokens=__a ) A__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , __a ) A__ = 10 A__ = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __a ) self.assertEqual(len(__a ) , __a ) def _UpperCAmelCase ( self ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_0004, 5_0001] ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = tempfile.mkdtemp() A__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) A__ = PLBartTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors='pt' ) A__ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , __a ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) A__ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors='pt' ) A__ = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=10 , return_tensors='pt' ) A__ = targets['input_ids'] A__ = shift_tokens_right(__a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 5_0003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_0001, } , )
554
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ = "cpu" ,lowerCAmelCase__ = None ): A__ = torch.load(lowerCAmelCase__ ,map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ ,torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) A__ = v.half() if save_path is None: # overwrite src_path A__ = src_path torch.save(lowerCAmelCase__ ,lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
554
1
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a = None , ) -> str: a__ : int = {} if train_file is not None: a__ : int = [train_file] if eval_file is not None: a__ : Union[str, Any] = [eval_file] if test_file is not None: a__ : str = [test_file] a__ : Optional[Any] = datasets.load_dataset("csv" , data_files=__a ) a__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) a__ : str = features_name.pop(__a ) a__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) a__ : str = {label: i for i, label in enumerate(__a )} a__ : Tuple = tokenizer.model_input_names a__ : List[str] = {} if len(__a ) == 1: for k in files.keys(): a__ : Optional[Any] = ds[k].map( lambda __a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__a , max_length=__a , padding="max_length" ) , batched=__a , ) elif len(__a ) == 2: for k in files.keys(): a__ : Dict = ds[k].map( lambda __a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding="max_length" , ) , batched=__a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a__ : str = {k: v for k, v in ex.items() if k in input_names} a__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a__ : Tuple = {k: v for k, v in ex.items() if k in input_names} a__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a__ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) a__ : Optional[Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a__ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" _lowercase = field(metadata={'help': 'Which column contains the label'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the training file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the development file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the test file'} ) _lowercase = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A__ : """simple docstring""" _lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowercase = field(default=A__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a__, a__, a__ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a__, a__, a__, a__ : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a__ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) def compute_metrics(__a ) -> Dict: a__ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a__ : Dict = TFTrainer( model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Dict = trainer.evaluate() a__ : int = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__a ) return results if __name__ == "__main__": main()
37
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase__ ) class a ( UpperCAmelCase__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization UpperCamelCase : str = field(default='text-classification' , metadata={'include_in_asdict_even_if_is_default': True} ) UpperCamelCase : ClassVar[Features] = Features({'text': Value('string' )} ) UpperCamelCase : ClassVar[Features] = Features({'labels': ClassLabel} ) UpperCamelCase : str = "text" UpperCamelCase : str = "labels" def lowerCamelCase__ ( self : str , lowerCAmelCase : List[Any] ) -> Any: '''simple docstring''' if self.label_column not in features: raise ValueError(f'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , lowerCAmelCase ): raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' ) SCREAMING_SNAKE_CASE_: List[str] =copy.deepcopy(self ) SCREAMING_SNAKE_CASE_: int =self.label_schema.copy() SCREAMING_SNAKE_CASE_: Tuple =features[self.label_column] SCREAMING_SNAKE_CASE_: Any =label_schema return task_template @property def lowerCamelCase__ ( self : List[Any] ) -> Dict[str, str]: '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
409
0
from __future__ import annotations lowerCamelCase__ = [True] * 100_0001 lowerCamelCase__ = 2 while i * i <= 100_0000: if seive[i]: for j in range(i * i, 100_0001, i): lowerCamelCase__ = False i += 1 def lowerCAmelCase__ ( a__ ) ->bool: '''simple docstring''' return seive[n] def lowerCAmelCase__ ( a__ ) ->bool: '''simple docstring''' return any(digit in "02468" for digit in str(a__ ) ) def lowerCAmelCase__ ( a__ = 1_000_000 ) ->list[int]: '''simple docstring''' _UpperCamelCase = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(a__ ) and not contains_an_even_digit(a__ ): _UpperCamelCase = str(a__ ) _UpperCamelCase = [int(str_num[j:] + str_num[:j] ) for j in range(len(a__ ) )] if all(is_prime(a__ ) for i in list_nums ): result.append(a__ ) return result def lowerCAmelCase__ ( ) ->int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F"{len(find_circular_primes()) = }")
720
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets lowerCamelCase__ = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' lowerCamelCase__ = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' lowerCamelCase__ = R''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string"), "references": datasets.Value("string"), }) , homepage="https://github.com/hendrycks/math" , codebase_urls=["https://github.com/hendrycks/math"] , ) def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : str) -> Tuple: """simple docstring""" _UpperCamelCase = 0.0 for i, j in zip(lowercase_ , lowercase_): n_correct += 1.0 if math_equivalence.is_equiv(lowercase_ , lowercase_) else 0.0 _UpperCamelCase = n_correct / len(lowercase_) return { "accuracy": accuracy, }
82
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case, unittest.TestCase ): lowerCamelCase_ = PegasusTokenizer lowerCamelCase_ = PegasusTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = True def _UpperCAmelCase ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A : Optional[Any] = PegasusTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self : Tuple ): """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def _UpperCAmelCase ( self : Union[str, Any] , **snake_case_ : Tuple ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _UpperCAmelCase ( self : Optional[int] , snake_case_ : int ): """simple docstring""" return ("This is a test", "This is a test") def _UpperCAmelCase ( self : List[str] ): """simple docstring""" A : List[Any] = '''</s>''' A : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def _UpperCAmelCase ( self : int ): """simple docstring""" A : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(A_ ) , 1103 ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A : str = self.tokenizer_class.from_pretrained(self.tmpdirname ) A : Dict = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) A : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] A : List[str] = py_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : Optional[int] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word A : List[Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' A : Tuple = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] A : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) def _UpperCAmelCase ( self : int ): """simple docstring""" A : int = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 A : Union[str, Any] = '''To ensure a smooth flow of bank resolutions.''' A : str = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] A : Optional[int] = tokenizer([raw_input_str] , return_tensors=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" A : int = ['''This is going to be way too long.''' * 150, '''short example'''] A : str = ['''not super long but more than 5 tokens''', '''tiny'''] A : Tuple = self._large_tokenizer(A_ , padding=A_ , truncation=A_ , return_tensors='''pt''' ) A : List[str] = self._large_tokenizer( text_target=A_ , max_length=5 , padding=A_ , truncation=A_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A_ ) == 2 # input_ids, attention_mask. @slow def _UpperCAmelCase ( self : Any ): """simple docstring""" A : List[str] = {'''input_ids''': [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case, unittest.TestCase ): lowerCamelCase_ = PegasusTokenizer lowerCamelCase_ = PegasusTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = True def _UpperCAmelCase ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A : List[str] = PegasusTokenizer(A_ , offset=0 , mask_token_sent=A_ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def _UpperCAmelCase ( self : Any , **snake_case_ : Optional[Any] ): """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _UpperCAmelCase ( self : Optional[int] , snake_case_ : str ): """simple docstring""" return ("This is a test", "This is a test") def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" A : Optional[int] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) A : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) A : Dict = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) A : Dict = rust_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] A : Dict = py_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) @require_torch def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" A : Union[str, Any] = ['''This is going to be way too long.''' * 1000, '''short example'''] A : Tuple = ['''not super long but more than 5 tokens''', '''tiny'''] A : List[str] = self._large_tokenizer(A_ , padding=A_ , truncation=A_ , return_tensors='''pt''' ) A : List[Any] = self._large_tokenizer( text_target=A_ , max_length=5 , padding=A_ , truncation=A_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A_ ) == 2 # input_ids, attention_mask. def _UpperCAmelCase ( self : str ): """simple docstring""" A : Any = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) A : List[Any] = self._large_tokenizer(A_ ).input_ids self.assertListEqual( A_ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
256
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : Optional[Any] = logging.get_logger(__name__) def a_ ( lowercase__ :List[str] ): __lowerCamelCase = SwinConfig( embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), window_size=12, out_features=["""stage2""", """stage3""", """stage4"""], ) __lowerCamelCase = DetaConfig( backbone_config=lowercase__, num_queries=900, encoder_ffn_dim=2048, decoder_ffn_dim=2048, num_feature_levels=5, assign_first_stage=lowercase__, with_box_refine=lowercase__, two_stage=lowercase__, ) # set labels __lowerCamelCase = """huggingface/label-files""" if "o365" in model_name: __lowerCamelCase = 366 __lowerCamelCase = """object365-id2label.json""" else: __lowerCamelCase = 91 __lowerCamelCase = """coco-detection-id2label.json""" __lowerCamelCase = num_labels __lowerCamelCase = json.load(open(cached_download(hf_hub_url(lowercase__, lowercase__, repo_type="""dataset""" ) ), """r""" ) ) __lowerCamelCase = {int(lowercase__ ): v for k, v in idalabel.items()} __lowerCamelCase = idalabel __lowerCamelCase = {v: k for k, v in idalabel.items()} return config def a_ ( lowercase__ :List[str] ): __lowerCamelCase = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.patch_embed.proj.weight""", """model.backbone.model.embeddings.patch_embeddings.projection.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.proj.bias""", """model.backbone.model.embeddings.patch_embeddings.projection.bias""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.weight""", """model.backbone.model.embeddings.norm.weight""") ) rename_keys.append(("""backbone.0.body.patch_embed.norm.bias""", """model.backbone.model.embeddings.norm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(("""backbone.0.body.norm1.weight""", """model.backbone.model.hidden_states_norms.stage2.weight""") ) rename_keys.append(("""backbone.0.body.norm1.bias""", """model.backbone.model.hidden_states_norms.stage2.bias""") ) rename_keys.append(("""backbone.0.body.norm2.weight""", """model.backbone.model.hidden_states_norms.stage3.weight""") ) rename_keys.append(("""backbone.0.body.norm2.bias""", """model.backbone.model.hidden_states_norms.stage3.bias""") ) rename_keys.append(("""backbone.0.body.norm3.weight""", """model.backbone.model.hidden_states_norms.stage4.weight""") ) rename_keys.append(("""backbone.0.body.norm3.bias""", """model.backbone.model.hidden_states_norms.stage4.bias""") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def a_ ( lowercase__ :Optional[Any], lowercase__ :str, lowercase__ :Optional[int] ): __lowerCamelCase = dct.pop(lowercase__ ) __lowerCamelCase = val def a_ ( lowercase__ :List[Any], lowercase__ :Dict ): __lowerCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCamelCase = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __lowerCamelCase = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:dim, :] __lowerCamelCase = in_proj_bias[: dim] __lowerCamelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCamelCase = in_proj_bias[ dim : dim * 2 ] __lowerCamelCase = in_proj_weight[ -dim :, : ] __lowerCamelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowercase__ :int, lowercase__ :Optional[int] ): # transformer decoder self-attention layers __lowerCamelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __lowerCamelCase = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __lowerCamelCase = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __lowerCamelCase = in_proj_weight[:hidden_size, :] __lowerCamelCase = in_proj_bias[:hidden_size] __lowerCamelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] __lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCamelCase = in_proj_weight[-hidden_size:, :] __lowerCamelCase = in_proj_bias[-hidden_size:] def a_ ( ): __lowerCamelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCamelCase = Image.open(requests.get(lowercase__, stream=lowercase__ ).raw ) return im @torch.no_grad() def a_ ( lowercase__ :Optional[int], lowercase__ :Any, lowercase__ :Dict ): __lowerCamelCase = get_deta_config(lowercase__ ) # load original state dict if model_name == "deta-swin-large": __lowerCamelCase = hf_hub_download(repo_id="""nielsr/deta-checkpoints""", filename="""adet_swin_ft.pth""" ) elif model_name == "deta-swin-large-o365": __lowerCamelCase = hf_hub_download(repo_id="""jozhang97/deta-swin-l-o365""", filename="""deta_swin_pt_o365.pth""" ) else: raise ValueError(f'Model name {model_name} not supported' ) __lowerCamelCase = torch.load(lowercase__, map_location="""cpu""" )["""model"""] # original state dict for name, param in state_dict.items(): print(lowercase__, param.shape ) # rename keys __lowerCamelCase = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__, lowercase__, lowercase__ ) read_in_swin_q_k_v(lowercase__, config.backbone_config ) read_in_decoder_q_k_v(lowercase__, lowercase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __lowerCamelCase = state_dict.pop(lowercase__ ) __lowerCamelCase = val if "input_proj" in key: __lowerCamelCase = state_dict.pop(lowercase__ ) __lowerCamelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __lowerCamelCase = state_dict.pop(lowercase__ ) __lowerCamelCase = val # finally, create HuggingFace model and load state dict __lowerCamelCase = DetaForObjectDetection(lowercase__ ) model.load_state_dict(lowercase__ ) model.eval() __lowerCamelCase = """cuda""" if torch.cuda.is_available() else """cpu""" model.to(lowercase__ ) # load image processor __lowerCamelCase = DetaImageProcessor(format="""coco_detection""" ) # verify our conversion on image __lowerCamelCase = prepare_img() __lowerCamelCase = processor(images=lowercase__, return_tensors="""pt""" ) __lowerCamelCase = encoding["""pixel_values"""] __lowerCamelCase = model(pixel_values.to(lowercase__ ) ) # verify logits print("""Logits:""", outputs.logits[0, :3, :3] ) print("""Boxes:""", outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __lowerCamelCase = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __lowerCamelCase = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __lowerCamelCase = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __lowerCamelCase = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3], expected_logits.to(lowercase__ ), atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3], expected_boxes.to(lowercase__ ), atol=1e-4 ) print("""Everything ok!""" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) processor.save_pretrained(lowercase__ ) # Push to hub if push_to_hub: print("""Pushing model and processor to hub...""" ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": __magic_name__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __magic_name__ : str = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
281
0
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self : str ) -> List[Any]: '''simple docstring''' _lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowercase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) _lowercase : Any = -1 _lowercase : str = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) _lowercase : Any = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) _lowercase : int = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: _lowercase : Union[str, Any] = TextStreamer(UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowercase : Tuple = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowercase ( self : Any ) -> str: '''simple docstring''' _lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowercase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) _lowercase : Dict = -1 _lowercase : Dict = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) _lowercase : List[Any] = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) _lowercase : int = tokenizer.decode(greedy_ids[0] ) _lowercase : Dict = TextIteratorStreamer(UpperCamelCase_ ) _lowercase : Dict = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} _lowercase : Tuple = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() _lowercase : Any = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowercase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowercase : Dict = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) _lowercase : Union[str, Any] = -1 _lowercase : Any = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) _lowercase : Optional[Any] = model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ ) _lowercase : Any = greedy_ids[:, input_ids.shape[1] :] _lowercase : Any = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: _lowercase : List[str] = TextStreamer(UpperCamelCase_ , skip_prompt=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=10 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer _lowercase : Tuple = cs.out[:-1] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowercase ( self : List[Any] ) -> Tuple: '''simple docstring''' _lowercase : Tuple = AutoTokenizer.from_pretrained('''distilgpt2''' ) _lowercase : str = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(UpperCamelCase_ ) _lowercase : str = -1 _lowercase : int = torch.ones((1, 5) , device=UpperCamelCase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: _lowercase : int = TextStreamer(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) model.generate(UpperCamelCase_ , max_new_tokens=1 , do_sample=UpperCamelCase_ , streamer=UpperCamelCase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token _lowercase : Optional[Any] = cs.out[:-1] # Remove the final "\n" _lowercase : List[str] = tokenizer(UpperCamelCase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __lowercase ( self : Any ) -> Optional[Any]: '''simple docstring''' _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) _lowercase : Optional[int] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(UpperCamelCase_ ) _lowercase : Union[str, Any] = -1 _lowercase : Optional[int] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(UpperCamelCase_ ) _lowercase : Optional[int] = TextIteratorStreamer(UpperCamelCase_ , timeout=0.001 ) _lowercase : str = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} _lowercase : Optional[Any] = Thread(target=model.generate , kwargs=UpperCamelCase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(UpperCamelCase_ ): _lowercase : List[str] = '''''' for new_text in streamer: streamer_text += new_text
702
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _lowerCAmelCase ( __A ): '''simple docstring''' def __init__( self : int ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = [] def __lowercase ( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , **UpperCamelCase_ : List[str] ) -> str: '''simple docstring''' self.events.append('''on_init_end''' ) def __lowercase ( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , **UpperCamelCase_ : int ) -> int: '''simple docstring''' self.events.append('''on_train_begin''' ) def __lowercase ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' self.events.append('''on_train_end''' ) def __lowercase ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : str , **UpperCamelCase_ : Any ) -> str: '''simple docstring''' self.events.append('''on_epoch_begin''' ) def __lowercase ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : str , **UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' self.events.append('''on_epoch_end''' ) def __lowercase ( self : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' self.events.append('''on_step_begin''' ) def __lowercase ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : int , UpperCamelCase_ : Any , **UpperCamelCase_ : Optional[Any] ) -> int: '''simple docstring''' self.events.append('''on_step_end''' ) def __lowercase ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' self.events.append('''on_evaluate''' ) def __lowercase ( self : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , **UpperCamelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' self.events.append('''on_predict''' ) def __lowercase ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , **UpperCamelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' self.events.append('''on_save''' ) def __lowercase ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , **UpperCamelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' self.events.append('''on_log''' ) def __lowercase ( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' self.events.append('''on_prediction_step''' ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowercase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = tempfile.mkdtemp() def __lowercase ( self : Dict ) -> str: '''simple docstring''' shutil.rmtree(self.output_dir ) def __lowercase ( self : Optional[int] , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Any=0 , UpperCamelCase_ : Dict=64 , UpperCamelCase_ : Optional[int]=64 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Union[str, Any]=False , **UpperCamelCase_ : str ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = RegressionDataset(length=UpperCamelCase_ ) _lowercase : Any = RegressionDataset(length=UpperCamelCase_ ) _lowercase : int = RegressionModelConfig(a=UpperCamelCase_ , b=UpperCamelCase_ ) _lowercase : int = RegressionPreTrainedModel(UpperCamelCase_ ) _lowercase : int = TrainingArguments(self.output_dir , disable_tqdm=UpperCamelCase_ , report_to=[] , **UpperCamelCase_ ) return Trainer( UpperCamelCase_ , UpperCamelCase_ , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , callbacks=UpperCamelCase_ , ) def __lowercase ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) # Order doesn't matter _lowercase : Tuple = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) _lowercase : Union[str, Any] = sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : cb.__name__ if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else cb.__class__.__name__ ) for cba, cba in zip(UpperCamelCase_ , UpperCamelCase_ ): if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and not isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(UpperCamelCase_ , cba.__class__ ) elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(cba.__class__ , UpperCamelCase_ ) else: self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowercase ( self : List[Any] , UpperCamelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowercase : Optional[Any] = ['''on_init_end''', '''on_train_begin'''] _lowercase : Optional[int] = 0 _lowercase : int = len(trainer.get_eval_dataloader() ) _lowercase : List[Any] = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(UpperCamelCase_ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __lowercase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : Optional[Any] = self.get_trainer() _lowercase : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # Callbacks passed at init are added to the default callbacks _lowercase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _lowercase : Optional[Any] = self.get_trainer(disable_tqdm=UpperCamelCase_ ) _lowercase : Dict = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def __lowercase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _lowercase : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) _lowercase : Dict = self.get_trainer() _lowercase : Dict = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(cb.__class__ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) # We can also add, pop, or remove by instance _lowercase : str = self.get_trainer() _lowercase : str = trainer.callback_handler.callbacks[0] trainer.remove_callback(UpperCamelCase_ ) expected_callbacks.remove(UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) _lowercase : Tuple = self.get_trainer() _lowercase : Dict = trainer.callback_handler.callbacks[0] _lowercase : Optional[int] = trainer.pop_callback(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) trainer.add_callback(UpperCamelCase_ ) expected_callbacks.insert(0 , UpperCamelCase_ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , UpperCamelCase_ ) def __lowercase ( self : Dict ) -> Any: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=UpperCamelCase_ ) _lowercase : List[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _lowercase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # Independent log/save/eval _lowercase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _lowercase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) _lowercase : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _lowercase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) _lowercase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() _lowercase : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) _lowercase : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() _lowercase : List[str] = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # A bit of everything _lowercase : Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() _lowercase : Dict = trainer.callback_handler.callbacks[-2].events self.assertEqual(UpperCamelCase_ , self.get_expected_events(UpperCamelCase_ ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: _lowercase : Union[str, Any] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(UpperCamelCase_ ) in warn_mock.call_args[0][0]
411
0
"""simple docstring""" import argparse import struct import unittest class UpperCamelCase : """simple docstring""" def __init__( self : str , _lowerCamelCase : bytes ): A__ = data # Initialize hash values A__ = [ 0x6A09_E667, 0xBB67_AE85, 0x3C6E_F372, 0xA54F_F53A, 0x510E_527F, 0x9B05_688C, 0x1F83_D9AB, 0x5BE0_CD19, ] # Initialize round constants A__ = [ 0x428A_2F98, 0x7137_4491, 0xB5C0_FBCF, 0xE9B5_DBA5, 0x3956_C25B, 0x59F1_11F1, 0x923F_82A4, 0xAB1C_5ED5, 0xD807_AA98, 0x1283_5B01, 0x2431_85BE, 0x550C_7DC3, 0x72BE_5D74, 0x80DE_B1FE, 0x9BDC_06A7, 0xC19B_F174, 0xE49B_69C1, 0xEFBE_4786, 0x0FC1_9DC6, 0x240C_A1CC, 0x2DE9_2C6F, 0x4A74_84AA, 0x5CB0_A9DC, 0x76F9_88DA, 0x983E_5152, 0xA831_C66D, 0xB003_27C8, 0xBF59_7FC7, 0xC6E0_0BF3, 0xD5A7_9147, 0x06CA_6351, 0x1429_2967, 0x27B7_0A85, 0x2E1B_2138, 0x4D2C_6DFC, 0x5338_0D13, 0x650A_7354, 0x766A_0ABB, 0x81C2_C92E, 0x9272_2C85, 0xA2BF_E8A1, 0xA81A_664B, 0xC24B_8B70, 0xC76C_51A3, 0xD192_E819, 0xD699_0624, 0xF40E_3585, 0x106A_A070, 0x19A4_C116, 0x1E37_6C08, 0x2748_774C, 0x34B0_BCB5, 0x391C_0CB3, 0x4ED8_AA4A, 0x5B9C_CA4F, 0x682E_6FF3, 0x748F_82EE, 0x78A5_636F, 0x84C8_7814, 0x8CC7_0208, 0x90BE_FFFA, 0xA450_6CEB, 0xBEF9_A3F7, 0xC671_78F2, ] A__ = self.preprocessing(self.data ) self.final_hash() @staticmethod def A__ ( _lowerCamelCase : bytes ): A__ = B'''\x80''' + (B'''\x00''' * (6_3 - (len(_lowerCamelCase ) + 8) % 6_4)) A__ = struct.pack('''>Q''' , (len(_lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def A__ ( self : Union[str, Any] ): # Convert into blocks of 64 bytes A__ = [ self.preprocessed_data[x : x + 6_4] for x in range(0 , len(self.preprocessed_data ) , 6_4 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers A__ = list(struct.unpack('''>16L''' , _lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 4_8 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = self.hashes for index in range(0 , 6_4 ): if index > 1_5: # modify the zero-ed indexes at the end of the array A__ = ( self.ror(words[index - 1_5] , 7 ) ^ self.ror(words[index - 1_5] , 1_8 ) ^ (words[index - 1_5] >> 3) ) A__ = ( self.ror(words[index - 2] , 1_7 ) ^ self.ror(words[index - 2] , 1_9 ) ^ (words[index - 2] >> 1_0) ) A__ = ( words[index - 1_6] + sa + words[index - 7] + sa ) % 0x1_0000_0000 # Compression A__ = self.ror(_lowerCamelCase , 6 ) ^ self.ror(_lowerCamelCase , 1_1 ) ^ self.ror(_lowerCamelCase , 2_5 ) A__ = (e & f) ^ ((~e & 0xFFFF_FFFF) & g) A__ = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_0000_0000 A__ = self.ror(_lowerCamelCase , 2 ) ^ self.ror(_lowerCamelCase , 1_3 ) ^ self.ror(_lowerCamelCase , 2_2 ) A__ = (a & b) ^ (a & c) ^ (b & c) A__ = (sa + maj) % 0x1_0000_0000 A__ , A__ , A__ , A__ , A__ , A__ , A__ , A__ = ( g, f, e, ((d + tempa) % 0x1_0000_0000), c, b, a, ((tempa + tempa) % 0x1_0000_0000), ) A__ = [a, b, c, d, e, f, g, h] # Modify final values A__ = [ ((element + mutated_hash_values[index]) % 0x1_0000_0000) for index, element in enumerate(self.hashes ) ] A__ = ''''''.join([hex(_lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def A__ ( self : int , _lowerCamelCase : int , _lowerCamelCase : int ): return 0xFFFF_FFFF & (value << (3_2 - rotations)) | (value >> rotations) class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self : Tuple ): import hashlib A__ = bytes('''Test String''' , '''utf-8''' ) self.assertEqual(SHAaaa(_lowerCamelCase ).hash , hashlib.shaaaa(_lowerCamelCase ).hexdigest() ) def a_ ( ): import doctest doctest.testmod() A__ = argparse.ArgumentParser() parser.add_argument( '''-s''' , '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument( '''-f''' , '''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) A__ = parser.parse_args() A__ = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: A__ = f.read() else: A__ = bytes(__a , '''utf-8''' ) print(SHAaaa(__a ).hash ) if __name__ == "__main__": main()
571
"""simple docstring""" __snake_case : Optional[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def a_ ( __a , __a , __a , __a ): # Return True if there is node that has not iterated. A__ = [False] * len(__a ) A__ = [s] A__ = True while queue: A__ = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(__a ) A__ = True A__ = u return visited[t] def a_ ( __a , __a , __a ): A__ = [-1] * (len(__a )) A__ = 0 A__ = [] A__ = [i[:] for i in graph] # Record original cut, copy. while bfs(__a , __a , __a , __a ): A__ = float('''Inf''' ) A__ = sink while s != source: # Find the minimum value in select path A__ = min(__a , graph[parent[s]][s] ) A__ = parent[s] max_flow += path_flow A__ = sink while v != source: A__ = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow A__ = parent[v] for i in range(len(__a ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
571
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.17.0.dev0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt') __snake_case :Dict =logging.getLogger(__name__) @dataclass class lowerCAmelCase__ : A_ : Optional[str] = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'} ) A_ : Optional[str] = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) A_ : int = field( default=1_0_2_4 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} ) A_ : bool = field( default=_lowerCamelCase , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) A_ : Optional[int] = field( default=_lowerCamelCase , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'A csv or a json file containing the training data.'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'A csv or a json file containing the validation data.'} ) A_ : Optional[str] = field(default=_lowerCamelCase , metadata={'help': 'A csv or a json file containing the test data.'} ) def __UpperCamelCase ( self : Any ) -> List[Any]: if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: A = self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." A = self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class lowerCAmelCase__ : A_ : str = field( default=_lowerCamelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) A_ : Optional[str] = field( default=_lowerCamelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) A_ : bool = field( default=_lowerCamelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) A_ : str = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) A_ : bool = field( default=_lowerCamelCase , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def lowerCamelCase_ ( ) -> List[Any]: '''simple docstring''' A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) A = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase__ ) datasets.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.set_verbosity(lowerCAmelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. A = {'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: A = data_args.train_file.split('.' )[-1] A = data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." A = data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files A = load_dataset('csv' , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files A = load_dataset('json' , data_files=lowerCAmelCase__ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels A = raw_datasets['train'].features['label'].names A = len(lowerCAmelCase__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer A = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=lowerCAmelCase__ , ) A = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: A = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch A = False # Some models have set the order of the labels to use, so let's make sure we do use it. A = {'Refused': 0, 'Entailed': 1} A = {0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) A = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(lowerCAmelCase__ : Any ): # Tokenize the texts def _convert_table_text_to_pandas(lowerCAmelCase__ : Optional[int] ): A = [_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] A = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd A = examples['statement'] A = list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) A = tokenizer(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ) A = examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): A = raw_datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) A = raw_datasets['train'] if data_args.max_train_samples is not None: A = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) A = raw_datasets['validation'] if data_args.max_eval_samples is not None: A = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) A = raw_datasets['test'] if data_args.max_predict_samples is not None: A = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(lowerCAmelCase__ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase__ : EvalPrediction ): A = p.predictions[0] if isinstance(p.predictions , lowerCAmelCase__ ) else p.predictions A = np.argmax(lowerCAmelCase__ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: A = default_data_collator elif training_args.fpaa: A = DataCollatorWithPadding(lowerCAmelCase__ , pad_to_multiple_of=8 ) else: A = None # Initialize our Trainer A = Trainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , data_collator=lowerCAmelCase__ , ) # Training if training_args.do_train: A = None if training_args.resume_from_checkpoint is not None: A = training_args.resume_from_checkpoint elif last_checkpoint is not None: A = last_checkpoint A = trainer.train(resume_from_checkpoint=lowerCAmelCase__ ) A = train_result.metrics A = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCAmelCase__ ) ) A = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCAmelCase__ ) trainer.save_metrics('train' , lowerCAmelCase__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) A = trainer.evaluate(eval_dataset=lowerCAmelCase__ ) A = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCAmelCase__ ) A = min(lowerCAmelCase__ , len(lowerCAmelCase__ ) ) trainer.log_metrics('eval' , lowerCAmelCase__ ) trainer.save_metrics('eval' , lowerCAmelCase__ ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. A = predict_dataset.remove_columns('label' ) A = trainer.predict(lowerCAmelCase__ , metric_key_prefix='predict' ).predictions A = np.argmax(lowerCAmelCase__ , axis=1 ) A = os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(lowerCAmelCase__ , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCAmelCase__ ): A = label_list[item] writer.write(F'''{index}\t{item}\n''' ) A = {'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase__ ) else: trainer.create_model_card(**lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : str ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
224
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :str =logging.get_logger(__name__) __snake_case :List[str] ={ 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : str = 'mgp-str' def __init__( self : Optional[Any] , __UpperCamelCase : int=[32, 128] , __UpperCamelCase : str=4 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : Tuple=27 , __UpperCamelCase : Optional[Any]=38 , __UpperCamelCase : str=50_257 , __UpperCamelCase : Optional[int]=30_522 , __UpperCamelCase : Union[str, Any]=768 , __UpperCamelCase : List[str]=12 , __UpperCamelCase : Optional[Any]=12 , __UpperCamelCase : str=4.0 , __UpperCamelCase : Optional[Any]=True , __UpperCamelCase : int=False , __UpperCamelCase : Tuple=1e-5 , __UpperCamelCase : Dict=0.0 , __UpperCamelCase : Optional[Any]=0.0 , __UpperCamelCase : List[Any]=0.0 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Any=0.0_2 , **__UpperCamelCase : List[str] , ) -> Union[str, Any]: super().__init__(**__UpperCamelCase ) A = image_size A = patch_size A = num_channels A = max_token_length A = num_character_labels A = num_bpe_labels A = num_wordpiece_labels A = hidden_size A = num_hidden_layers A = num_attention_heads A = mlp_ratio A = distilled A = layer_norm_eps A = drop_rate A = qkv_bias A = attn_drop_rate A = drop_path_rate A = output_aa_attentions A = initializer_range
224
1
import math from collections.abc import Callable def snake_case__ ( lowercase , lowercase , lowercase ): lowerCAmelCase_: float = xa lowerCAmelCase_: float = xa while True: if x_n == x_na or function(lowercase ) == function(lowercase ): raise ZeroDivisionError("float division by zero, could not find root" ) lowerCAmelCase_: float = x_na - ( function(lowercase ) / ((function(lowercase ) - function(lowercase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na lowerCAmelCase_: Union[str, Any] = x_na lowerCAmelCase_: Tuple = x_na def snake_case__ ( lowercase ): return math.pow(lowercase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
613
def snake_case__ ( lowercase , lowercase ): lowerCAmelCase_: list[list[str]] = [[] for _ in range(lowercase )] lowerCAmelCase_: Optional[Any] = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(lowercase ) <= key: return input_string for position, character in enumerate(lowercase ): lowerCAmelCase_: Optional[Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase_: Any = min(lowercase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowercase ) lowerCAmelCase_: Optional[int] = ["".join(lowercase ) for row in temp_grid] lowerCAmelCase_: int = "".join(lowercase ) return output_string def snake_case__ ( lowercase , lowercase ): lowerCAmelCase_: Tuple = [] lowerCAmelCase_: str = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string lowerCAmelCase_: list[list[str]] = [[] for _ in range(lowercase )] # generates template for position in range(len(lowercase ) ): lowerCAmelCase_: List[str] = position % (lowest * 2) # puts it in bounds lowerCAmelCase_: Optional[int] = min(lowercase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) lowerCAmelCase_: Optional[Any] = 0 for row in temp_grid: # fills in the characters lowerCAmelCase_: Tuple = input_string[counter : counter + len(lowercase )] grid.append(list(lowercase ) ) counter += len(lowercase ) lowerCAmelCase_: int = "" # reads as zigzag for position in range(len(lowercase ) ): lowerCAmelCase_: str = position % (lowest * 2) # puts it in bounds lowerCAmelCase_: Optional[int] = min(lowercase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def snake_case__ ( lowercase ): lowerCAmelCase_: Dict = {} for key_guess in range(1 , len(lowercase ) ): # tries every key lowerCAmelCase_: int = decrypt(lowercase , lowercase ) return results if __name__ == "__main__": import doctest doctest.testmod()
613
1
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self : List[Any] , lowercase : Optional[Any] , lowercase : str=7 , lowercase : Optional[int]=3 , lowercase : Any=30 , lowercase : Dict=4_00 , lowercase : Tuple=True , lowercase : Tuple=None , lowercase : Union[str, Any]=True , lowercase : int=[0.5, 0.5, 0.5] , lowercase : int=[0.5, 0.5, 0.5] , lowercase : Union[str, Any]=True , lowercase : List[str]=1 / 2_55 , lowercase : Dict=True , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} UpperCAmelCase : int = parent UpperCAmelCase : str = batch_size UpperCAmelCase : List[Any] = num_channels UpperCAmelCase : Tuple = min_resolution UpperCAmelCase : int = max_resolution UpperCAmelCase : Any = do_resize UpperCAmelCase : List[str] = size UpperCAmelCase : Optional[int] = do_normalize UpperCAmelCase : Dict = image_mean UpperCAmelCase : str = image_std UpperCAmelCase : Tuple = do_rescale UpperCAmelCase : Dict = rescale_factor UpperCAmelCase : Optional[Any] = do_pad def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowerCAmelCase ( self : str , lowercase : Optional[int] , lowercase : Tuple=False ): '''simple docstring''' if not batched: UpperCAmelCase : Any = image_inputs[0] if isinstance(__UpperCamelCase , Image.Image ): UpperCAmelCase , UpperCAmelCase : Dict = image.size else: UpperCAmelCase , UpperCAmelCase : Any = image.shape[1], image.shape[2] if w < h: UpperCAmelCase : Union[str, Any] = int(self.size["shortest_edge"] * h / w ) UpperCAmelCase : List[Any] = self.size["shortest_edge"] elif w > h: UpperCAmelCase : Dict = self.size["shortest_edge"] UpperCAmelCase : Tuple = int(self.size["shortest_edge"] * w / h ) else: UpperCAmelCase : Optional[int] = self.size["shortest_edge"] UpperCAmelCase : str = self.size["shortest_edge"] else: UpperCAmelCase : Union[str, Any] = [] for image in image_inputs: UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCAmelCase : Optional[Any] = max(__UpperCamelCase , key=lambda lowercase : item[0] )[0] UpperCAmelCase : List[Any] = max(__UpperCamelCase , key=lambda lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = YolosImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Optional[Any] = YolosImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__UpperCamelCase , "image_mean" ) ) self.assertTrue(hasattr(__UpperCamelCase , "image_std" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "do_resize" ) ) self.assertTrue(hasattr(__UpperCamelCase , "size" ) ) def __lowerCAmelCase ( self : int ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) UpperCAmelCase : Union[str, Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCamelCase ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , __UpperCamelCase ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , Image.Image ) # Test not batched input UpperCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase , UpperCAmelCase : Tuple = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) UpperCAmelCase : Optional[Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , np.ndarray ) # Test not batched input UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase , UpperCAmelCase : int = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : int = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values UpperCAmelCase , UpperCAmelCase : int = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test not batched input UpperCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCAmelCase , UpperCAmelCase : List[str] = self.image_processor_tester.get_expected_values(__UpperCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCAmelCase : Optional[Any] = image_processing(__UpperCamelCase , return_tensors="pt" ).pixel_values UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase : int = self.image_processing_class(do_resize=__UpperCamelCase , do_normalize=__UpperCamelCase , do_rescale=__UpperCamelCase ) # create random PyTorch tensors UpperCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase ) for image in image_inputs: self.assertIsInstance(__UpperCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors UpperCAmelCase : List[str] = image_processing_a.pad(__UpperCamelCase , return_tensors="pt" ) UpperCAmelCase : Tuple = image_processing_a(__UpperCamelCase , return_tensors="pt" ) self.assertTrue( torch.allclose(encoded_images_with_method["pixel_values"] , encoded_images["pixel_values"] , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCAmelCase : Optional[int] = json.loads(f.read() ) UpperCAmelCase : List[Any] = {"image_id": 3_97_69, "annotations": target} # encode them UpperCAmelCase : Union[str, Any] = YolosImageProcessor.from_pretrained("hustvl/yolos-small" ) UpperCAmelCase : Optional[Any] = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="pt" ) # verify pixel values UpperCAmelCase : Union[str, Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , __UpperCamelCase ) UpperCAmelCase : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area UpperCAmelCase : Union[str, Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_12_50.20_61, 48_93_53.84_38, 83_71_22.75_00, 14_79_67.51_56, 16_57_32.34_38] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCamelCase ) ) # verify boxes UpperCAmelCase : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCamelCase ) UpperCAmelCase : Union[str, Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id UpperCAmelCase : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCamelCase ) ) # verify is_crowd UpperCAmelCase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCamelCase ) ) # verify class_labels UpperCAmelCase : List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCamelCase ) ) # verify orig_size UpperCAmelCase : Optional[int] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCamelCase ) ) # verify size UpperCAmelCase : Union[str, Any] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCamelCase ) ) @slow def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCAmelCase : int = json.loads(f.read() ) UpperCAmelCase : List[Any] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} UpperCAmelCase : Dict = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCAmelCase : List[Any] = YolosImageProcessor(format="coco_panoptic" ) UpperCAmelCase : int = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="pt" ) # verify pixel values UpperCAmelCase : Any = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , __UpperCamelCase ) UpperCAmelCase : List[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) ) # verify area UpperCAmelCase : Optional[Any] = torch.tensor([14_79_79.68_75, 16_55_27.04_69, 48_46_38.59_38, 1_12_92.93_75, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , __UpperCamelCase ) ) # verify boxes UpperCAmelCase : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , __UpperCamelCase ) UpperCAmelCase : List[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , __UpperCamelCase , atol=1E-3 ) ) # verify image_id UpperCAmelCase : Union[str, Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , __UpperCamelCase ) ) # verify is_crowd UpperCAmelCase : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , __UpperCamelCase ) ) # verify class_labels UpperCAmelCase : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , __UpperCamelCase ) ) # verify masks UpperCAmelCase : int = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , __UpperCamelCase ) # verify orig_size UpperCAmelCase : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , __UpperCamelCase ) ) # verify size UpperCAmelCase : Optional[int] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , __UpperCamelCase ) )
702
"""simple docstring""" import math def lowercase_ ( _lowercase : int ): '''simple docstring''' return math.sqrt(_lowercase ) * math.sqrt(_lowercase ) == num def lowercase_ ( _lowercase : int ): '''simple docstring''' UpperCAmelCase : List[Any] = 0 UpperCAmelCase : Tuple = n while left <= right: UpperCAmelCase : Tuple = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase : List[str] = mid - 1 else: UpperCAmelCase : Any = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
292
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = 42 class lowerCamelCase (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self : List[str] , __magic_name__ : int = 65_536 , __magic_name__ : Optional[int] = None , __magic_name__ : int = 2 , __magic_name__ : int = 2 , __magic_name__ : int = 0 , __magic_name__ : str = "fourier" , __magic_name__ : bool = True , __magic_name__ : bool = False , __magic_name__ : float = 0.0 , __magic_name__ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __magic_name__ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __magic_name__ : Tuple[str] = "UNetMidBlock1D" , __magic_name__ : str = None , __magic_name__ : Tuple[int] = (32, 32, 64) , __magic_name__ : str = None , __magic_name__ : int = 8 , __magic_name__ : int = 1 , __magic_name__ : bool = False , ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE_ = sample_size # time if time_embedding_type == "fourier": SCREAMING_SNAKE_CASE_ = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__magic_name__ , log=__magic_name__ , flip_sin_to_cos=__magic_name__ ) SCREAMING_SNAKE_CASE_ = 2 * block_out_channels[0] elif time_embedding_type == "positional": SCREAMING_SNAKE_CASE_ = Timesteps( block_out_channels[0] , flip_sin_to_cos=__magic_name__ , downscale_freq_shift=__magic_name__ ) SCREAMING_SNAKE_CASE_ = block_out_channels[0] if use_timestep_embedding: SCREAMING_SNAKE_CASE_ = block_out_channels[0] * 4 SCREAMING_SNAKE_CASE_ = TimestepEmbedding( in_channels=__magic_name__ , time_embed_dim=__magic_name__ , act_fn=__magic_name__ , out_dim=block_out_channels[0] , ) SCREAMING_SNAKE_CASE_ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = nn.ModuleList([] ) SCREAMING_SNAKE_CASE_ = None # down SCREAMING_SNAKE_CASE_ = in_channels for i, down_block_type in enumerate(__magic_name__ ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = block_out_channels[i] if i == 0: input_channel += extra_in_channels SCREAMING_SNAKE_CASE_ = i == len(__magic_name__ ) - 1 SCREAMING_SNAKE_CASE_ = get_down_block( __magic_name__ , num_layers=__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__magic_name__ ) # mid SCREAMING_SNAKE_CASE_ = get_mid_block( __magic_name__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__magic_name__ , add_downsample=__magic_name__ , ) # up SCREAMING_SNAKE_CASE_ = list(reversed(__magic_name__ ) ) SCREAMING_SNAKE_CASE_ = reversed_block_out_channels[0] if out_block_type is None: SCREAMING_SNAKE_CASE_ = out_channels else: SCREAMING_SNAKE_CASE_ = block_out_channels[0] for i, up_block_type in enumerate(__magic_name__ ): SCREAMING_SNAKE_CASE_ = output_channel SCREAMING_SNAKE_CASE_ = ( reversed_block_out_channels[i + 1] if i < len(__magic_name__ ) - 1 else final_upsample_channels ) SCREAMING_SNAKE_CASE_ = i == len(__magic_name__ ) - 1 SCREAMING_SNAKE_CASE_ = get_up_block( __magic_name__ , num_layers=__magic_name__ , in_channels=__magic_name__ , out_channels=__magic_name__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__magic_name__ ) SCREAMING_SNAKE_CASE_ = output_channel # out SCREAMING_SNAKE_CASE_ = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) SCREAMING_SNAKE_CASE_ = get_out_block( out_block_type=__magic_name__ , num_groups_out=__magic_name__ , embed_dim=block_out_channels[0] , out_channels=__magic_name__ , act_fn=__magic_name__ , fc_dim=block_out_channels[-1] // 4 , ) def __A ( self : Optional[int] , __magic_name__ : torch.FloatTensor , __magic_name__ : Union[torch.Tensor, float, int] , __magic_name__ : bool = True , ) -> Union[UNetaDOutput, Tuple]: SCREAMING_SNAKE_CASE_ = timestep if not torch.is_tensor(__magic_name__ ): SCREAMING_SNAKE_CASE_ = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__magic_name__ ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE_ = timesteps[None].to(sample.device ) SCREAMING_SNAKE_CASE_ = self.time_proj(__magic_name__ ) if self.config.use_timestep_embedding: SCREAMING_SNAKE_CASE_ = self.time_mlp(__magic_name__ ) else: SCREAMING_SNAKE_CASE_ = timestep_embed[..., None] SCREAMING_SNAKE_CASE_ = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) SCREAMING_SNAKE_CASE_ = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down SCREAMING_SNAKE_CASE_ = () for downsample_block in self.down_blocks: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = downsample_block(hidden_states=__magic_name__ , temb=__magic_name__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: SCREAMING_SNAKE_CASE_ = self.mid_block(__magic_name__ , __magic_name__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): SCREAMING_SNAKE_CASE_ = down_block_res_samples[-1:] SCREAMING_SNAKE_CASE_ = down_block_res_samples[:-1] SCREAMING_SNAKE_CASE_ = upsample_block(__magic_name__ , res_hidden_states_tuple=__magic_name__ , temb=__magic_name__ ) # 5. post-process if self.out_block: SCREAMING_SNAKE_CASE_ = self.out_block(__magic_name__ , __magic_name__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=__magic_name__ )
140
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Dict = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
140
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : Optional[Any] = '''open-llama''' def __init__(self , _a=100_000 , _a=4_096 , _a=11_008 , _a=32 , _a=32 , _a="silu" , _a=2_048 , _a=0.02 , _a=1e-6 , _a=True , _a=0 , _a=1 , _a=2 , _a=False , _a=True , _a=0.1 , _a=0.1 , _a=True , _a=True , _a=None , **_a , ) -> str: lowercase_ : List[Any] = vocab_size lowercase_ : Union[str, Any] = max_position_embeddings lowercase_ : List[str] = hidden_size lowercase_ : Optional[Any] = intermediate_size lowercase_ : Optional[int] = num_hidden_layers lowercase_ : Any = num_attention_heads lowercase_ : List[Any] = hidden_act lowercase_ : Dict = initializer_range lowercase_ : List[str] = rms_norm_eps lowercase_ : Optional[int] = use_cache lowercase_ : Optional[Any] = kwargs.pop( 'use_memorry_efficient_attention' , _a ) lowercase_ : Optional[Any] = hidden_dropout_prob lowercase_ : str = attention_dropout_prob lowercase_ : List[str] = use_stable_embedding lowercase_ : int = shared_input_output_embedding lowercase_ : Union[str, Any] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a , ) def _lowerCamelCase (self ) -> int: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _a ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) lowercase_ : int = self.rope_scaling.get('type' , _a ) lowercase_ : Optional[int] = self.rope_scaling.get('factor' , _a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_a , _a ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
438
'''simple docstring''' import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig _A = { 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } _A = logging.get_logger(__name__) class UpperCAmelCase__ ( _snake_case ): """simple docstring""" A : List[str] = '''maskformer''' A : List[str] = {'''hidden_size''': '''mask_feature_size'''} A : Dict = ['''resnet''', '''swin'''] A : Optional[Any] = ['''detr'''] def __init__(self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k lowercase_ : List[Any] = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(_a , _a ): lowercase_ : Dict = backbone_config.pop('model_type' ) lowercase_ : Tuple = CONFIG_MAPPING[backbone_model_type] lowercase_ : Tuple = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {",".join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 lowercase_ : str = DetrConfig() else: # verify that the decoder is supported lowercase_ : List[Any] = ( decoder_config.pop('model_type' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {",".join(self.decoders_supported )}''' ) if isinstance(_a , _a ): lowercase_ : List[Any] = CONFIG_MAPPING[decoder_type] lowercase_ : Tuple = config_class.from_dict(_a ) lowercase_ : Optional[Any] = backbone_config lowercase_ : int = decoder_config # main feature dimension for the model lowercase_ : List[Any] = fpn_feature_size lowercase_ : Tuple = mask_feature_size # initializer lowercase_ : Optional[int] = init_std lowercase_ : List[str] = init_xavier_std # Hungarian matcher && loss lowercase_ : int = cross_entropy_weight lowercase_ : Optional[int] = dice_weight lowercase_ : Dict = mask_weight lowercase_ : Tuple = use_auxiliary_loss lowercase_ : int = no_object_weight lowercase_ : Union[str, Any] = output_auxiliary_logits lowercase_ : List[Any] = self.decoder_config.encoder_attention_heads lowercase_ : Tuple = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def _lowerCamelCase (cls , _a , _a , **_a ) -> Union[str, Any]: return cls( backbone_config=_a , decoder_config=_a , **_a , ) def _lowerCamelCase (self ) -> Dict[str, any]: lowercase_ : Optional[int] = copy.deepcopy(self.__dict__ ) lowercase_ : Union[str, Any] = self.backbone_config.to_dict() lowercase_ : Optional[Any] = self.decoder_config.to_dict() lowercase_ : Dict = self.__class__.model_type return output
438
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : int = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = ['OwlViTFeatureExtractor'] UpperCAmelCase_ : Tuple = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys UpperCAmelCase_ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
44
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : Optional[int] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Dict ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : str ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : List[str] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : str ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Dict ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : Optional[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : List[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : List[str] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : str ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : Any , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : Dict , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Dict ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : int , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : Optional[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : Dict , *lowerCamelCase_ : int , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : int , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Any ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : List[Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[Any] ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : Any , *lowerCamelCase_ : Dict , **lowerCamelCase_ : int ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : List[str] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) class UpperCamelCase__ ( metaclass=lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = ['''flax'''] def __init__( self : Tuple , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Tuple ): '''simple docstring''' requires_backends(cls , ["""flax"""] )
379
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase ( unittest.TestCase ): @property def __A ( self ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __A ( self ): _UpperCAmelCase = self.dummy_uncond_unet _UpperCAmelCase = ScoreSdeVeScheduler() _UpperCAmelCase = ScoreSdeVePipeline(unet=_lowercase , scheduler=_lowercase ) sde_ve.to(_lowercase ) sde_ve.set_progress_bar_config(disable=_lowercase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_lowercase ).images _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=_lowercase , return_dict=_lowercase )[ 0 ] _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCAmelCase ( unittest.TestCase ): def __A ( self ): _UpperCAmelCase = 'google/ncsnpp-church-256' _UpperCAmelCase = UNetaDModel.from_pretrained(_lowercase ) _UpperCAmelCase = ScoreSdeVeScheduler.from_pretrained(_lowercase ) _UpperCAmelCase = ScoreSdeVePipeline(unet=_lowercase , scheduler=_lowercase ) sde_ve.to(_lowercase ) sde_ve.set_progress_bar_config(disable=_lowercase ) _UpperCAmelCase = torch.manual_seed(0 ) _UpperCAmelCase = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=_lowercase ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _UpperCAmelCase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
707
"""simple docstring""" import argparse import os import re lowerCAmelCase_ = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict lowerCAmelCase_ = re.compile(r'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings lowerCAmelCase_ = re.compile(r'''\s*\(\s*"(\S[^"]+)"''') def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE = False ) -> Optional[Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE,'r',encoding='utf-8' ) as f: _UpperCAmelCase = f.read() _UpperCAmelCase = content.split('\n' ) _UpperCAmelCase = [] _UpperCAmelCase = 0 while line_idx < len(SCREAMING_SNAKE_CASE ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _UpperCAmelCase = len(re.search(R'^(\s*)\S',lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 _UpperCAmelCase = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _UpperCAmelCase = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _UpperCAmelCase = sorted(SCREAMING_SNAKE_CASE,key=lambda SCREAMING_SNAKE_CASE : _re_identifier.search(SCREAMING_SNAKE_CASE ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(SCREAMING_SNAKE_CASE,'w',encoding='utf-8' ) as f: f.write('\n'.join(SCREAMING_SNAKE_CASE ) ) elif "\n".join(SCREAMING_SNAKE_CASE ) != content: return True def __lowerCamelCase ( SCREAMING_SNAKE_CASE = False ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) for f in os.listdir(SCREAMING_SNAKE_CASE ) if f.endswith('.py' )] _UpperCAmelCase = [sort_auto_mapping(SCREAMING_SNAKE_CASE,overwrite=SCREAMING_SNAKE_CASE ) for fname in fnames] if not overwrite and any(SCREAMING_SNAKE_CASE ): _UpperCAmelCase = [f for f, d in zip(SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {", ".join(SCREAMING_SNAKE_CASE )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase_ = parser.parse_args() sort_all_auto_mappings(not args.check_only)
494
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : str = tempfile.mkdtemp() a_ : Union[str, Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] a_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) a_ : List[str] = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } a_ : List[Any] = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self : Any , **lowercase__ : Dict ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self : Optional[Any] , **lowercase__ : List[Any] ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self : List[str] , **lowercase__ : int ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self : Any ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a_ : Optional[int] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : Dict = self.get_tokenizer() a_ : Any = self.get_rust_tokenizer() a_ : Tuple = self.get_image_processor() a_ : str = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) a_ : str = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) a_ : int = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) a_ : Optional[int] = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : int = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a_ : Tuple = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a_ : int = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 ) a_ : List[str] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' a_ : Optional[int] = self.get_image_processor() a_ : int = self.get_tokenizer() a_ : Dict = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) a_ : Optional[Any] = self.prepare_image_inputs() a_ : Tuple = image_processor(_UpperCAmelCase , return_tensors="""np""" ) a_ : Dict = processor(images=_UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' a_ : List[str] = self.get_image_processor() a_ : str = self.get_tokenizer() a_ : Optional[Any] = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) a_ : Any = """lower newer""" a_ : List[Any] = processor(text=_UpperCAmelCase ) a_ : Optional[Any] = tokenizer(_UpperCAmelCase , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : Union[str, Any] = self.get_image_processor() a_ : Optional[Any] = self.get_tokenizer() a_ : Tuple = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) a_ : List[str] = """lower newer""" a_ : str = self.prepare_image_inputs() a_ : List[Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : List[Any] = self.get_image_processor() a_ : Tuple = self.get_tokenizer() a_ : Optional[Any] = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) a_ : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a_ : str = processor.batch_decode(_UpperCAmelCase ) a_ : Optional[Any] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self : List[Any] ): '''simple docstring''' a_ : List[str] = self.get_image_processor() a_ : List[Any] = self.get_tokenizer() a_ : str = AlignProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) a_ : Any = """lower newer""" a_ : List[Any] = self.prepare_image_inputs() a_ : Tuple = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
442
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' assert x is not None assert y is not None UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = len(SCREAMING_SNAKE_CASE__ ) # declaring the array for storing the dp values UpperCAmelCase__ = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): UpperCAmelCase__ = 1 if x[i - 1] == y[j - 1] else 0 UpperCAmelCase__ = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) UpperCAmelCase__ = """""" UpperCAmelCase__ , UpperCAmelCase__ = m, n while i > 0 and j > 0: UpperCAmelCase__ = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: UpperCAmelCase__ = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": UpperCAmelCase_ = 'AGGTAB' UpperCAmelCase_ = 'GXTXAYB' UpperCAmelCase_ = 4 UpperCAmelCase_ = 'GTAB' UpperCAmelCase_ , UpperCAmelCase_ = longest_common_subsequence(a, b) print('len =', ln, ', sub-sequence =', subseq) import doctest doctest.testmod()
603
0
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = args.log_outputs _SCREAMING_SNAKE_CASE = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric _SCREAMING_SNAKE_CASE = load_metric("""wer""" ) _SCREAMING_SNAKE_CASE = load_metric("""cer""" ) # compute metrics _SCREAMING_SNAKE_CASE = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) _SCREAMING_SNAKE_CASE = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) # print & log results _SCREAMING_SNAKE_CASE = F'WER: {wer_result}\nCER: {cer_result}' print(snake_case__ ) with open(F'{dataset_id}_eval_results.txt' ,"""w""" ) as f: f.write(snake_case__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _SCREAMING_SNAKE_CASE = F'log_{dataset_id}_predictions.txt' _SCREAMING_SNAKE_CASE = F'log_{dataset_id}_targets.txt' with open(snake_case__ ,"""w""" ) as p, open(snake_case__ ,"""w""" ) as t: # mapping function to write output def write_to_file(snake_case__ ,snake_case__ ): p.write(F'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(F'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(snake_case__ ,with_indices=snake_case__ ) def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _SCREAMING_SNAKE_CASE = re.sub(snake_case__ ,"""""" ,text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _SCREAMING_SNAKE_CASE = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: _SCREAMING_SNAKE_CASE = """ """.join(text.split(snake_case__ ) ) return text def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(args.model_id ) _SCREAMING_SNAKE_CASE = feature_extractor.sampling_rate # resample audio _SCREAMING_SNAKE_CASE = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case__ ) ) # load eval pipeline if args.device is None: _SCREAMING_SNAKE_CASE = 0 if torch.cuda.is_available() else -1 _SCREAMING_SNAKE_CASE = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device ) # map function to decode audio def map_to_pred(snake_case__ ): _SCREAMING_SNAKE_CASE = asr( batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s ) _SCREAMING_SNAKE_CASE = prediction["""text"""] _SCREAMING_SNAKE_CASE = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples _SCREAMING_SNAKE_CASE = dataset.map(snake_case__ ,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case__ ,snake_case__ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) UpperCamelCase = parser.parse_args() main(args)
710
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCamelCase ( snake_case__ ,snake_case__=0.999 ,snake_case__="cosine" ,) -> List[Any]: """simple docstring""" if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) _SCREAMING_SNAKE_CASE = [] for i in range(snake_case__ ): _SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps _SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) ,snake_case__ ) ) return torch.tensor(snake_case__ ,dtype=torch.floataa ) class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ): __snake_case : str = [e.name for e in KarrasDiffusionSchedulers] __snake_case : Tuple = 2 @register_to_config def __init__( self: Any , UpperCAmelCase_: int = 1_000 , UpperCAmelCase_: float = 0.0_00_85 , UpperCAmelCase_: float = 0.0_12 , UpperCAmelCase_: str = "linear" , UpperCAmelCase_: Optional[Union[np.ndarray, List[float]]] = None , UpperCAmelCase_: str = "epsilon" , UpperCAmelCase_: Optional[bool] = False , UpperCAmelCase_: Optional[bool] = False , UpperCAmelCase_: float = 1.0 , UpperCAmelCase_: str = "linspace" , UpperCAmelCase_: int = 0 , ): '''simple docstring''' if trained_betas is not None: _SCREAMING_SNAKE_CASE = torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _SCREAMING_SNAKE_CASE = torch.linspace(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _SCREAMING_SNAKE_CASE = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , UpperCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _SCREAMING_SNAKE_CASE = betas_for_alpha_bar(UpperCAmelCase_ , alpha_transform_type="""cosine""" ) elif beta_schedule == "exp": _SCREAMING_SNAKE_CASE = betas_for_alpha_bar(UpperCAmelCase_ , alpha_transform_type="""exp""" ) else: raise NotImplementedError(F'{beta_schedule} does is not implemented for {self.__class__}' ) _SCREAMING_SNAKE_CASE = 1.0 - self.betas _SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = use_karras_sigmas def UpperCamelCase ( self: str , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: int=None ): '''simple docstring''' if schedule_timesteps is None: _SCREAMING_SNAKE_CASE = self.timesteps _SCREAMING_SNAKE_CASE = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _SCREAMING_SNAKE_CASE = 1 if len(UpperCAmelCase_ ) > 1 else 0 else: _SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep _SCREAMING_SNAKE_CASE = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCamelCase ( self: str ): '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: torch.FloatTensor , UpperCAmelCase_: Union[float, torch.FloatTensor] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.index_for_timestep(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.sigmas[step_index] _SCREAMING_SNAKE_CASE = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCamelCase ( self: Tuple , UpperCAmelCase_: int , UpperCAmelCase_: Union[str, torch.device] = None , UpperCAmelCase_: Optional[int] = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = num_inference_steps _SCREAMING_SNAKE_CASE = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _SCREAMING_SNAKE_CASE = np.linspace(0 , num_train_timesteps - 1 , UpperCAmelCase_ , dtype=UpperCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _SCREAMING_SNAKE_CASE = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _SCREAMING_SNAKE_CASE = (np.arange(0 , UpperCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(UpperCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _SCREAMING_SNAKE_CASE = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _SCREAMING_SNAKE_CASE = (np.arange(UpperCAmelCase_ , 0 , -step_ratio )).round().copy().astype(UpperCAmelCase_ ) timesteps -= 1 else: raise ValueError( F'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) _SCREAMING_SNAKE_CASE = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _SCREAMING_SNAKE_CASE = np.log(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = np.interp(UpperCAmelCase_ , np.arange(0 , len(UpperCAmelCase_ ) ) , UpperCAmelCase_ ) if self.config.use_karras_sigmas: _SCREAMING_SNAKE_CASE = self._convert_to_karras(in_sigmas=UpperCAmelCase_ , num_inference_steps=self.num_inference_steps ) _SCREAMING_SNAKE_CASE = np.array([self._sigma_to_t(UpperCAmelCase_ , UpperCAmelCase_ ) for sigma in sigmas] ) _SCREAMING_SNAKE_CASE = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase_ ).to(device=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _SCREAMING_SNAKE_CASE = torch.from_numpy(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(UpperCAmelCase_ ).startswith("""mps""" ): # mps does not support float64 _SCREAMING_SNAKE_CASE = timesteps.to(UpperCAmelCase_ , dtype=torch.floataa ) else: _SCREAMING_SNAKE_CASE = timesteps.to(device=UpperCAmelCase_ ) # empty dt and derivative _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _SCREAMING_SNAKE_CASE = defaultdict(UpperCAmelCase_ ) def UpperCamelCase ( self: int , UpperCAmelCase_: Optional[Any] , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = np.log(UpperCAmelCase_ ) # get distribution _SCREAMING_SNAKE_CASE = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _SCREAMING_SNAKE_CASE = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _SCREAMING_SNAKE_CASE = low_idx + 1 _SCREAMING_SNAKE_CASE = log_sigmas[low_idx] _SCREAMING_SNAKE_CASE = log_sigmas[high_idx] # interpolate sigmas _SCREAMING_SNAKE_CASE = (low - log_sigma) / (low - high) _SCREAMING_SNAKE_CASE = np.clip(UpperCAmelCase_ , 0 , 1 ) # transform interpolation to time range _SCREAMING_SNAKE_CASE = (1 - w) * low_idx + w * high_idx _SCREAMING_SNAKE_CASE = t.reshape(sigma.shape ) return t def UpperCamelCase ( self: int , UpperCAmelCase_: torch.FloatTensor , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = in_sigmas[-1].item() _SCREAMING_SNAKE_CASE = in_sigmas[0].item() _SCREAMING_SNAKE_CASE = 7.0 # 7.0 is the value used in the paper _SCREAMING_SNAKE_CASE = np.linspace(0 , 1 , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sigma_min ** (1 / rho) _SCREAMING_SNAKE_CASE = sigma_max ** (1 / rho) _SCREAMING_SNAKE_CASE = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def UpperCamelCase ( self: List[str] ): '''simple docstring''' return self.dt is None def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCAmelCase_: Union[float, torch.FloatTensor] , UpperCAmelCase_: Union[torch.FloatTensor, np.ndarray] , UpperCAmelCase_: bool = True , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.index_for_timestep(UpperCAmelCase_ ) # advance index counter by 1 _SCREAMING_SNAKE_CASE = timestep.cpu().item() if torch.is_tensor(UpperCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _SCREAMING_SNAKE_CASE = self.sigmas[step_index] _SCREAMING_SNAKE_CASE = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _SCREAMING_SNAKE_CASE = self.sigmas[step_index - 1] _SCREAMING_SNAKE_CASE = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next _SCREAMING_SNAKE_CASE = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _SCREAMING_SNAKE_CASE = sigma_hat if self.state_in_first_order else sigma_next _SCREAMING_SNAKE_CASE = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _SCREAMING_SNAKE_CASE = model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.config.clip_sample: _SCREAMING_SNAKE_CASE = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _SCREAMING_SNAKE_CASE = sigma_next - sigma_hat # store for 2nd order step _SCREAMING_SNAKE_CASE = derivative _SCREAMING_SNAKE_CASE = dt _SCREAMING_SNAKE_CASE = sample else: # 2. 2nd order / Heun's method _SCREAMING_SNAKE_CASE = (sample - pred_original_sample) / sigma_next _SCREAMING_SNAKE_CASE = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _SCREAMING_SNAKE_CASE = self.dt _SCREAMING_SNAKE_CASE = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=UpperCAmelCase_ ) def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: torch.FloatTensor , UpperCAmelCase_: torch.FloatTensor , UpperCAmelCase_: torch.FloatTensor , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(UpperCAmelCase_ ): # mps does not support float64 _SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _SCREAMING_SNAKE_CASE = self.timesteps.to(original_samples.device ) _SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device ) _SCREAMING_SNAKE_CASE = [self.index_for_timestep(UpperCAmelCase_ , UpperCAmelCase_ ) for t in timesteps] _SCREAMING_SNAKE_CASE = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _SCREAMING_SNAKE_CASE = sigma.unsqueeze(-1 ) _SCREAMING_SNAKE_CASE = original_samples + noise * sigma return noisy_samples def __len__( self: str ): '''simple docstring''' return self.config.num_train_timesteps
569
0
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) __UpperCamelCase : str = logging.getLogger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : List[str] ): lowerCAmelCase = np.argmax(_UpperCAmelCase , axis=1 ) return np.sum(outputs == labels ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] ): with open(_UpperCAmelCase , encoding='utf_8' ) as f: lowerCAmelCase = csv.reader(_UpperCAmelCase ) lowerCAmelCase = [] next(_UpperCAmelCase ) # skip the first line for line in tqdm(_UpperCAmelCase ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Dict ): lowerCAmelCase = [] for dataset in encoded_datasets: lowerCAmelCase = len(_UpperCAmelCase ) lowerCAmelCase = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase = np.full((n_batch, 2, input_len) , fill_value=-100 , dtype=np.intaa ) lowerCAmelCase = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(_UpperCAmelCase ): lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase = with_conta lowerCAmelCase = with_conta lowerCAmelCase = len(_UpperCAmelCase ) - 1 lowerCAmelCase = len(_UpperCAmelCase ) - 1 lowerCAmelCase = with_conta lowerCAmelCase = with_conta lowerCAmelCase = mc_label lowerCAmelCase = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(_UpperCAmelCase ) for t in all_inputs ) ) return tensor_datasets def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=_UpperCAmelCase , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=_UpperCAmelCase , default='' ) parser.add_argument('--eval_dataset' , type=_UpperCAmelCase , default='' ) parser.add_argument('--seed' , type=_UpperCAmelCase , default=42 ) parser.add_argument('--num_train_epochs' , type=_UpperCAmelCase , default=3 ) parser.add_argument('--train_batch_size' , type=_UpperCAmelCase , default=8 ) parser.add_argument('--eval_batch_size' , type=_UpperCAmelCase , default=16 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=_UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=_UpperCAmelCase , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=_UpperCAmelCase , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=_UpperCAmelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=_UpperCAmelCase , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=_UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=_UpperCAmelCase , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=_UpperCAmelCase , default=0.01 ) parser.add_argument('--lm_coef' , type=_UpperCAmelCase , default=0.9 ) parser.add_argument('--n_valid' , type=_UpperCAmelCase , default=374 ) parser.add_argument('--server_ip' , type=_UpperCAmelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=_UpperCAmelCase , default='' , help='Can be used for distant debugging.' ) lowerCAmelCase = parser.parse_args() print(_UpperCAmelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCAmelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) lowerCAmelCase = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(_UpperCAmelCase , _UpperCAmelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase = ['_start_', '_delimiter_', '_classify_'] lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(_UpperCAmelCase ) lowerCAmelCase = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(_UpperCAmelCase ) ) model.to(_UpperCAmelCase ) # Load and encode the datasets def tokenize_and_encode(_UpperCAmelCase : Optional[int] ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_UpperCAmelCase ) ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return obj return [tokenize_and_encode(_UpperCAmelCase ) for o in obj] logger.info('Encoding dataset...' ) lowerCAmelCase = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase = (train_dataset, eval_dataset) lowerCAmelCase = tokenize_and_encode(_UpperCAmelCase ) # Compute the max input length for the Transformer lowerCAmelCase = model.config.n_positions // 2 - 2 lowerCAmelCase = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase = min(_UpperCAmelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase = pre_process_datasets(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ) lowerCAmelCase ,lowerCAmelCase = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase = TensorDataset(*_UpperCAmelCase ) lowerCAmelCase = RandomSampler(_UpperCAmelCase ) lowerCAmelCase = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.train_batch_size ) lowerCAmelCase = TensorDataset(*_UpperCAmelCase ) lowerCAmelCase = SequentialSampler(_UpperCAmelCase ) lowerCAmelCase = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase = args.max_steps lowerCAmelCase = args.max_steps // (len(_UpperCAmelCase ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase = len(_UpperCAmelCase ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase = list(model.named_parameters() ) lowerCAmelCase = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] lowerCAmelCase = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] lowerCAmelCase = AdamW(_UpperCAmelCase , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase = get_linear_schedule_with_warmup( _UpperCAmelCase , num_warmup_steps=args.warmup_steps , num_training_steps=_UpperCAmelCase ) if args.do_train: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = tqdm(_UpperCAmelCase , desc='Training' ) for step, batch in enumerate(_UpperCAmelCase ): lowerCAmelCase = tuple(t.to(_UpperCAmelCase ) for t in batch ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = batch lowerCAmelCase = model(_UpperCAmelCase , mc_token_ids=_UpperCAmelCase , lm_labels=_UpperCAmelCase , mc_labels=_UpperCAmelCase ) lowerCAmelCase = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase = 'Training loss: {:.2e} lr: {:.2e}'.format(_UpperCAmelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase = model.module if hasattr(_UpperCAmelCase , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase = os.path.join(args.output_dir , _UpperCAmelCase ) lowerCAmelCase = os.path.join(args.output_dir , _UpperCAmelCase ) torch.save(model_to_save.state_dict() , _UpperCAmelCase ) model_to_save.config.to_json_file(_UpperCAmelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(_UpperCAmelCase ) if args.do_eval: model.eval() lowerCAmelCase ,lowerCAmelCase = 0, 0 lowerCAmelCase ,lowerCAmelCase = 0, 0 for batch in tqdm(_UpperCAmelCase , desc='Evaluating' ): lowerCAmelCase = tuple(t.to(_UpperCAmelCase ) for t in batch ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = batch with torch.no_grad(): lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = model( _UpperCAmelCase , mc_token_ids=_UpperCAmelCase , lm_labels=_UpperCAmelCase , mc_labels=_UpperCAmelCase ) lowerCAmelCase = mc_logits.detach().cpu().numpy() lowerCAmelCase = mc_labels.to('cpu' ).numpy() lowerCAmelCase = accuracy(_UpperCAmelCase , _UpperCAmelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase = eval_loss / nb_eval_steps lowerCAmelCase = eval_accuracy / nb_eval_examples lowerCAmelCase = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} lowerCAmelCase = os.path.join(args.output_dir , 'eval_results.txt' ) with open(_UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , _UpperCAmelCase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
4
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __a ( ) -> Optional[Any]: '''simple docstring''' A__ = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=A , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=A , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=A ) return parser.parse_args() def __a ( ) -> List[str]: '''simple docstring''' A__ = parse_args() # Import training_script as a module. A__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) A__ = script_fpath.stem A__ = importlib.import_module(A ) # Patch sys.argv A__ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
337
0
'''simple docstring''' from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __lowerCamelCase ( _UpperCamelCase : str = "isbn/0140328726" ): '''simple docstring''' UpperCAmelCase_ = olid.strip().strip('''/''' ) # Remove leading/trailing whitespace & slashes if new_olid.count('''/''' ) != 1: UpperCAmelCase_ = F"""{olid} is not a valid Open Library olid""" raise ValueError(snake_case__ ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def __lowerCamelCase ( _UpperCamelCase : dict ): '''simple docstring''' UpperCAmelCase_ = { '''title''': '''Title''', '''publish_date''': '''Publish date''', '''authors''': '''Authors''', '''number_of_pages''': '''Number of pages:''', '''first_sentence''': '''First sentence''', '''isbn_10''': '''ISBN (10)''', '''isbn_13''': '''ISBN (13)''', } UpperCAmelCase_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCAmelCase_ = [ get_openlibrary_data(author['''key'''] )['''name'''] for author in data['''Authors'''] ] UpperCAmelCase_ = data['''First sentence''']['''value'''] for key, value in data.items(): if isinstance(snake_case__ , snake_case__ ): UpperCAmelCase_ = ''', '''.join(snake_case__ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowercase__ : List[Any] = input("\nEnter the ISBN code to search (or \'quit\' to stop): ").strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowercase__ : List[Any] = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print("\n".join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
700
'''simple docstring''' def __lowerCamelCase ( _UpperCamelCase : str , _UpperCamelCase : list[str] ): '''simple docstring''' UpperCAmelCase_ = '''''' for word_or_phrase in separated: if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(_UpperCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
43
0
'''simple docstring''' from __future__ import annotations from typing import TypedDict class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =42 __a =42 def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> list[str]: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter s type must be str.' ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str ) -> BWTTransformDict: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter s type must be str.' ) if not s: raise ValueError('The parameter s must not be empty.' ) __a = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation __a = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def __UpperCAmelCase ( SCREAMING_SNAKE_CASE__: str, SCREAMING_SNAKE_CASE__: int ) -> str: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ): raise TypeError('The parameter bwt_string type must be str.' ) if not bwt_string: raise ValueError('The parameter bwt_string must not be empty.' ) try: __a = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( 'The parameter idx_original_string type must be int or passive' ' of cast to int.' ) if idx_original_string < 0: raise ValueError('The parameter idx_original_string must not be lower than 0.' ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( 'The parameter idx_original_string must be lower than' ' len(bwt_string).' ) __a = [''] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __a = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": __UpperCamelCase : Any = """Provide a string that I will generate its BWT transform: """ __UpperCamelCase : Dict = input(entry_msg).strip() __UpperCamelCase : Optional[int] = bwt_transform(s) print( f"""Burrows Wheeler transform for string '{s}' results """ f"""in '{result["bwt_string"]}'""" ) __UpperCamelCase : Dict = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( f"""Reversing Burrows Wheeler transform for entry '{result["bwt_string"]}' """ f"""we get original string '{original_string}'""" )
448
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __UpperCamelCase : Dict = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): __a =["pixel_values"] def __init__( self , lowerCamelCase = True , lowerCamelCase = 32 , lowerCamelCase=PILImageResampling.BILINEAR , lowerCamelCase = True , **lowerCamelCase , ) ->None: '''simple docstring''' __a = do_resize __a = do_rescale __a = size_divisor __a = resample super().__init__(**lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) ->np.ndarray: '''simple docstring''' __a , __a = get_image_size(lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __a = height // size_divisor * size_divisor __a = width // size_divisor * size_divisor __a = resize(lowerCamelCase , (new_h, new_w) , resample=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) return image def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ) ->np.ndarray: '''simple docstring''' return rescale(image=lowerCamelCase , scale=lowerCamelCase , data_format=lowerCamelCase , **lowerCamelCase ) def __UpperCamelCase ( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase=None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = ChannelDimension.FIRST , **lowerCamelCase , ) ->BatchFeature: '''simple docstring''' __a = do_resize if do_resize is not None else self.do_resize __a = do_rescale if do_rescale is not None else self.do_rescale __a = size_divisor if size_divisor is not None else self.size_divisor __a = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __a = make_list_of_images(lowerCamelCase ) if not valid_images(lowerCamelCase ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __a = [to_numpy_array(lowerCamelCase ) for img in images] if do_resize: __a = [self.resize(lowerCamelCase , size_divisor=lowerCamelCase , resample=lowerCamelCase ) for image in images] if do_rescale: __a = [self.rescale(lowerCamelCase , scale=1 / 255 ) for image in images] __a = [to_channel_dimension_format(lowerCamelCase , lowerCamelCase ) for image in images] __a = {'pixel_values': images} return BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase )
448
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class _lowercase : def __init__( self , _UpperCAmelCase , ): A : Optional[int] = parent A : List[Any] = 13 A : Optional[int] = 7 A : Any = True A : Tuple = True A : List[Any] = False A : Any = True A : Optional[int] = 99 A : int = 32 A : Dict = 2 A : Dict = 4 A : Optional[int] = 37 A : Tuple = '''gelu''' A : Optional[Any] = 0.1 A : Dict = 0.1 A : str = 512 A : List[Any] = 16 A : Dict = 2 A : List[str] = 0.02 A : int = 3 A : Optional[int] = 4 A : Tuple = None def snake_case ( self ): A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : int = None if self.use_input_mask: A : int = random_attention_mask([self.batch_size, self.seq_length] ) A : Tuple = None A : str = None A : List[Any] = None if self.use_labels: A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : Tuple = ids_tensor([self.batch_size] , self.num_choices ) A : Any = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Tuple = TFDistilBertModel(config=UpperCAmelCase__ ) A : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} A : Union[str, Any] = model(UpperCAmelCase__ ) A : Tuple = [input_ids, input_mask] A : int = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Optional[int] = TFDistilBertForMaskedLM(config=UpperCAmelCase__ ) A : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} A : Union[str, Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Union[str, Any] = TFDistilBertForQuestionAnswering(config=UpperCAmelCase__ ) A : List[str] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, } A : Tuple = model(UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Any = self.num_labels A : Optional[int] = TFDistilBertForSequenceClassification(UpperCAmelCase__ ) A : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} A : List[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Dict = self.num_choices A : Tuple = TFDistilBertForMultipleChoice(UpperCAmelCase__ ) A : Dict = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) A : str = tf.tile(tf.expand_dims(UpperCAmelCase__ , 1 ) , (1, self.num_choices, 1) ) A : Tuple = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } A : Optional[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): A : Optional[Any] = self.num_labels A : Any = TFDistilBertForTokenClassification(UpperCAmelCase__ ) A : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} A : List[Any] = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self ): A : List[str] = self.prepare_config_and_inputs() (A) : Union[str, Any] = config_and_inputs A : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class _lowercase ( a , a , unittest.TestCase ): _UpperCamelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _UpperCamelCase = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase = False _UpperCamelCase = False def snake_case ( self ): A : List[Any] = TFDistilBertModelTester(self ) A : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase__ , dim=37 ) def snake_case ( self ): self.config_tester.run_common_tests() def snake_case ( self ): A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*UpperCAmelCase__ ) def snake_case ( self ): A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*UpperCAmelCase__ ) def snake_case ( self ): A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*UpperCAmelCase__ ) def snake_case ( self ): A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*UpperCAmelCase__ ) def snake_case ( self ): A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*UpperCAmelCase__ ) def snake_case ( self ): A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*UpperCAmelCase__ ) @slow def snake_case ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): A : str = TFDistilBertModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_tf class _lowercase ( unittest.TestCase ): @slow def snake_case ( self ): A : Union[str, Any] = TFDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) A : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) A : Tuple = model(UpperCAmelCase__ )[0] A : List[str] = [1, 6, 768] self.assertEqual(output.shape , UpperCAmelCase__ ) A : Dict = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase__ , atol=1E-4 )
718
'''simple docstring''' from __future__ import annotations class _lowercase : def __init__( self , _UpperCAmelCase ): A : str = data A : Node | None = None A : Node | None = None def _lowerCamelCase( UpperCamelCase__ : Node | None ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def _lowerCamelCase( UpperCamelCase__ : Node | None ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def _lowerCamelCase( UpperCamelCase__ : Node ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def _lowerCamelCase( ) -> None: # Main function for testing. A : Optional[int] = Node(1 ) A : Tuple = Node(2 ) A : Dict = Node(3 ) A : List[str] = Node(4 ) A : Union[str, Any] = Node(5 ) A : str = Node(6 ) A : Any = Node(7 ) A : str = Node(8 ) A : Optional[int] = Node(9 ) print(is_full_binary_tree(UpperCamelCase__ ) ) print(depth_of_tree(UpperCamelCase__ ) ) print('''Tree is: ''' ) display(UpperCamelCase__ ) if __name__ == "__main__": main()
537
0
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = '''▁''' __snake_case = {'''vocab_file''': '''prophetnet.tokenizer'''} __snake_case = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } __snake_case = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } __snake_case = { '''microsoft/xprophetnet-large-wiki100-cased''': 5_1_2, } def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = collections.OrderedDict() with open(_lowercase , 'r' , encoding='utf-8' ) as reader: __UpperCamelCase = reader.readlines() for index, token in enumerate(_lowercase ): __UpperCamelCase = token.rstrip('\n' ) __UpperCamelCase = index return vocab class __lowerCamelCase (_a ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["""input_ids""", """attention_mask"""] def __init__( self: str,A_: int,A_: str="[SEP]",A_: List[Any]="[SEP]",A_: str="[SEP]",A_: Any="[UNK]",A_: Optional[int]="[PAD]",A_: List[str]="[CLS]",A_: Dict="[MASK]",A_: Optional[Dict[str, Any]] = None,**A_: str,): '''simple docstring''' __UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_,eos_token=A_,sep_token=A_,unk_token=A_,pad_token=A_,cls_token=A_,mask_token=A_,sp_model_kwargs=self.sp_model_kwargs,**A_,) try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) __UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __UpperCamelCase = {'[PAD]': 0, '[CLS]': 1, '[SEP]': 2, '[UNK]': 3, '[MASK]': 4} for i in range(10 ): __UpperCamelCase = F'''[unused{i}]''' __UpperCamelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __UpperCamelCase = 12 __UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A_ ) def __getstate__( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.__dict__.copy() __UpperCamelCase = None return state def __setstate__( self: List[Any],A_: List[Any] ): '''simple docstring''' __UpperCamelCase = d try: import sentencepiece as spm except ImportError: logger.warning( 'You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece' ' pip install sentencepiece' ) raise # for backward compatibility if not hasattr(self,'sp_model_kwargs' ): __UpperCamelCase = {} __UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def snake_case_ ( self: Any,A_: List[int],A_: Optional[List[int]] = None,A_: bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_,token_ids_a=A_,already_has_special_tokens=A_ ) if token_ids_a is None: return ([0] * len(A_ )) + [1] return ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def snake_case_ ( self: Optional[int],A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' __UpperCamelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self: List[Any],A_: str ): '''simple docstring''' return self.sp_model.encode(A_,out_type=A_ ) def snake_case_ ( self: Any,A_: Optional[int] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCamelCase = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self: str,A_: int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self: Tuple,A_: int ): '''simple docstring''' __UpperCamelCase = ''.join(A_ ).replace(A_,' ' ).strip() return out_string def snake_case_ ( self: Optional[int],A_: str,A_: Optional[str] = None ): '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCamelCase = os.path.join( A_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_,'wb' ) as fi: __UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,) def snake_case_ ( self: Tuple,A_: List[int],A_: Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] __UpperCamelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
1
'''simple docstring''' import re from filelock import FileLock try: import nltk __A =True except (ImportError, ModuleNotFoundError): __A =False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def _UpperCamelCase ( UpperCamelCase__ ): re.sub("""<n>""" , """""" , UpperCamelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCamelCase__ ) )
407
0
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 50 ): '''simple docstring''' lowerCAmelCase_ : Dict = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
701
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : Dict = "http://www.mocksite.com/file1.txt" __A : List[str] = "\"text\": [\"foo\", \"foo\"]" __A : int = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __snake_case : """simple docstring""" lowercase = 2_00 lowercase = {'Content-Length': '100'} lowercase = {} def __lowercase ( self : Union[str, Any] , **lowerCamelCase : Optional[int] ) -> str: return [bytes(lowerCamelCase , """utf-8""" )] def UpperCamelCase_ ( *A__ : List[str] , **A__ : Union[str, Any] ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def UpperCamelCase_ ( A__ : List[Any] , A__ : List[Any] , A__ : str ): '''simple docstring''' import requests monkeypatch.setattr(A__ , """request""" , A__ ) lowerCAmelCase_ : Tuple = URL if issubclass(A__ , A__ ): lowerCAmelCase_ : Optional[Any] = url elif issubclass(A__ , A__ ): lowerCAmelCase_ : Dict = [url] elif issubclass(A__ , A__ ): lowerCAmelCase_ : Tuple = {"""train""": url} lowerCAmelCase_ : List[Any] = """dummy""" lowerCAmelCase_ : str = """downloads""" lowerCAmelCase_ : Dict = tmp_path lowerCAmelCase_ : Any = DownloadConfig( cache_dir=os.path.join(A__ , A__ ) , use_etag=A__ , ) lowerCAmelCase_ : List[Any] = DownloadManager(dataset_name=A__ , download_config=A__ ) lowerCAmelCase_ : int = dl_manager.download(A__ ) lowerCAmelCase_ : Any = urls for downloaded_paths in [downloaded_paths]: if isinstance(A__ , A__ ): lowerCAmelCase_ : str = [downloaded_paths] lowerCAmelCase_ : Any = [urls] elif isinstance(A__ , A__ ): assert "train" in downloaded_paths.keys() lowerCAmelCase_ : Union[str, Any] = downloaded_paths.values() lowerCAmelCase_ : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(A__ , A__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCAmelCase_ : Tuple = Path(A__ ) lowerCAmelCase_ : List[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCAmelCase_ : Optional[Any] = downloaded_path.read_text() assert content == CONTENT lowerCAmelCase_ : Tuple = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowerCAmelCase_ : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : List[Any] , A__ : List[str] ): '''simple docstring''' lowerCAmelCase_ : int = str(A__ ) if issubclass(A__ , A__ ): lowerCAmelCase_ : int = filename elif issubclass(A__ , A__ ): lowerCAmelCase_ : List[str] = [filename] elif issubclass(A__ , A__ ): lowerCAmelCase_ : Union[str, Any] = {"""train""": filename} lowerCAmelCase_ : Optional[int] = """dummy""" lowerCAmelCase_ : str = xz_file.parent lowerCAmelCase_ : List[str] = """extracted""" lowerCAmelCase_ : Union[str, Any] = DownloadConfig( cache_dir=A__ , use_etag=A__ , ) lowerCAmelCase_ : str = DownloadManager(dataset_name=A__ , download_config=A__ ) lowerCAmelCase_ : Union[str, Any] = dl_manager.extract(A__ ) lowerCAmelCase_ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(A__ , A__ ): lowerCAmelCase_ : List[str] = [extracted_paths] lowerCAmelCase_ : Union[str, Any] = [paths] elif isinstance(A__ , A__ ): assert "train" in extracted_paths.keys() lowerCAmelCase_ : Union[str, Any] = extracted_paths.values() lowerCAmelCase_ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(A__ , A__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCAmelCase_ : int = Path(A__ ) lowerCAmelCase_ : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(A__ , etag=A__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCAmelCase_ : Any = extracted_path.read_text() lowerCAmelCase_ : Optional[Any] = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCamelCase_ ( A__ : Dict , A__ : Any ): '''simple docstring''' assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(A__ , start=1 ): lowerCAmelCase_ : int = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = request.getfixturevalue(A__ ) lowerCAmelCase_ : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): _test_jsonl(A__ , A__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def UpperCamelCase_ ( A__ : str , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Tuple = request.getfixturevalue(A__ ) lowerCAmelCase_ : str = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): _test_jsonl(A__ , A__ ) assert num_tar == 1 assert num_jsonl == 2 def UpperCamelCase_ ( A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(A__ ) , start=1 ): assert os.path.basename(A__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
398
0
'''simple docstring''' from __future__ import annotations A_ : str = "Muhammad Umer Farooq" A_ : Optional[Any] = "MIT" A_ : int = "1.0.0" A_ : int = "Muhammad Umer Farooq" A_ : int = "[email protected]" A_ : Dict = "Alpha" import re from html.parser import HTMLParser from urllib import parse import requests class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__() snake_case__ : list[str] = [] snake_case__ : List[Any] = domain def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE ) self.urls.append(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return parse.urlparse(__magic_name__ ).netloc def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]: '''simple docstring''' snake_case__ : List[str] = get_domain_name(__magic_name__ ) # Initialize the parser snake_case__ : Optional[Any] = Parser(__magic_name__ ) try: # Open URL snake_case__ : Any = requests.get(__magic_name__ ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through snake_case__ : List[str] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: snake_case__ : Tuple = requests.get(__magic_name__ ) # Get the valid email. snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(__magic_name__ ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(__magic_name__ ) if __name__ == "__main__": A_ : str = emails_from_url("https://github.com") print(F'{len(emails)} emails found:') print("\n".join(sorted(emails)))
38
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ): snake_case__ : str = parent snake_case__ : Union[str, Any] = batch_size snake_case__ : Union[str, Any] = image_size snake_case__ : Optional[int] = patch_size snake_case__ : List[str] = num_channels snake_case__ : Any = is_training snake_case__ : int = use_labels snake_case__ : str = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : str = backbone_out_indices snake_case__ : List[Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : str = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Dict = initializer_range snake_case__ : Optional[int] = num_labels snake_case__ : str = backbone_featmap_shape snake_case__ : List[Any] = scope snake_case__ : Optional[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) snake_case__ : List[Any] = (image_size // patch_size) ** 2 snake_case__ : Union[str, Any] = num_patches + 1 def __UpperCamelCase ( self ): snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case__ : Union[str, Any] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): snake_case__ : Any = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.num_labels snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): snake_case__ : Any = self.num_labels snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs snake_case__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase__ = ( { '''depth-estimation''': DPTForDepthEstimation, '''feature-extraction''': DPTModel, '''image-segmentation''': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __UpperCamelCase ( self ): snake_case__ : List[Any] = DPTModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def __UpperCamelCase ( self ): snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE ) snake_case__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : List[str] = [*signature.parameters.keys()] snake_case__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : int = True if model_class in get_values(__SCREAMING_SNAKE_CASE ): continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Union[str, Any] = False snake_case__ : str = True if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def __UpperCamelCase ( self ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE ) # Skip the check for the backbone snake_case__ : str = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __UpperCamelCase ( self ): pass @slow def __UpperCamelCase ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = """add""" with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class __snake_case ( unittest.TestCase ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = prepare_img() snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = outputs.predicted_depth # verify the predicted depth snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) ) self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
38
1
'''simple docstring''' from __future__ import annotations def UpperCAmelCase ( lowercase__ : list ): '''simple docstring''' if len(lowercase__ ) == 0: return [] a__ , a__ = min(lowercase__ ), max(lowercase__ ) a__ = int(max_value - min_value ) + 1 a__ = [[] for _ in range(lowercase__ )] for i in my_list: buckets[int(i - min_value )].append(lowercase__ ) return [v for bucket in buckets for v in sorted(lowercase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
721
from __future__ import annotations from collections.abc import MutableSequence class lowerCAmelCase_ : '''simple docstring''' def __init__( self , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if len(lowerCamelCase ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) a__ = list(lowerCamelCase ) a__ = degree def __add__( self , lowerCamelCase ): '''simple docstring''' if self.degree > polynomial_a.degree: a__ = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree , lowerCamelCase ) else: a__ = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree , lowerCamelCase ) def __sub__( self , lowerCamelCase ): '''simple docstring''' return self + polynomial_a * Polynomial(0 , [-1] ) def __neg__( self ): '''simple docstring''' return Polynomial(self.degree , [-c for c in self.coefficients] ) def __mul__( self , lowerCamelCase ): '''simple docstring''' a__ = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree , lowerCamelCase ) def _A ( self , lowerCamelCase ): '''simple docstring''' a__ = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self ): '''simple docstring''' a__ = """""" for i in range(self.degree , -1 , -1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowerCamelCase ) return polynomial def __repr__( self ): '''simple docstring''' return self.__str__() def _A ( self ): '''simple docstring''' a__ = [0] * self.degree for i in range(self.degree ): a__ = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 , lowerCamelCase ) def _A ( self , lowerCamelCase = 0 ): '''simple docstring''' a__ = [0] * (self.degree + 2) a__ = constant for i in range(self.degree + 1 ): a__ = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 , lowerCamelCase ) def __eq__( self , lowerCamelCase ): '''simple docstring''' if not isinstance(lowerCamelCase , lowerCamelCase ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self , lowerCamelCase ): '''simple docstring''' return not self.__eq__(lowerCamelCase )
412
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase = logging.getLogger(__name__) @dataclass class A_ : """simple docstring""" SCREAMING_SNAKE_CASE_ = field( default="""tab_fact""" , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) SCREAMING_SNAKE_CASE_ = field( default="""tab_fact""" , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} , ) SCREAMING_SNAKE_CASE_ = field( default=1_024 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={"""help""": """A csv or a json file containing the training data."""} ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) SCREAMING_SNAKE_CASE_ = field(default=A__ , metadata={"""help""": """A csv or a json file containing the test data."""} ) def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('Need either a GLUE task, a training/validation file or a dataset name.' ) else: lowerCamelCase__ : List[Any] =self.train_file.split('.' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCamelCase__ : List[str] =self.validation_file.split('.' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class A_ : """simple docstring""" SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) SCREAMING_SNAKE_CASE_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) SCREAMING_SNAKE_CASE_ = field( default=A__ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def lowerCAmelCase_ ( ) ->int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ : Optional[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] =parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCamelCase__ : Tuple =training_args.get_process_log_level() logger.setLevel(snake_case_ ) datasets.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.set_verbosity(snake_case_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(f"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. lowerCamelCase__ : str =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ : Union[str, Any] =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCamelCase__ : Union[str, Any] =load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCamelCase__ : List[str] ={'train': data_args.train_file, 'validation': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCamelCase__ : Optional[int] =data_args.train_file.split('.' )[-1] lowerCamelCase__ : List[Any] =data_args.test_file.split('.' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCamelCase__ : Optional[int] =data_args.test_file else: raise ValueError('Need either a GLUE task or a test file for `do_predict`.' ) for key in data_files.keys(): logger.info(f"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('.csv' ): # Loading a dataset from local csv files lowerCamelCase__ : Any =load_dataset('csv' , data_files=snake_case_ , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCamelCase__ : Optional[Any] =load_dataset('json' , data_files=snake_case_ , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCamelCase__ : List[str] =raw_datasets['train'].features['label'].names lowerCamelCase__ : Dict =len(snake_case_ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : List[Any] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowerCamelCase__ : Tuple =TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=snake_case_ , ) lowerCamelCase__ : Optional[Any] =BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowerCamelCase__ : int ='max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCamelCase__ : List[str] =False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCamelCase__ : Tuple ={'Refused': 0, 'Entailed': 1} lowerCamelCase__ : Union[str, Any] ={0: 'Refused', 1: 'Entailed'} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) lowerCamelCase__ : Optional[Any] =min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(snake_case_ : Tuple ): # Tokenize the texts def _convert_table_text_to_pandas(snake_case_ : Optional[int] ): lowerCamelCase__ : Union[str, Any] =[_table_row.split('#' ) for _table_row in _table_text.strip('\n' ).split('\n' )] lowerCamelCase__ : str =pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowerCamelCase__ : Optional[Any] =examples['statement'] lowerCamelCase__ : List[str] =list(map(_convert_table_text_to_pandas , examples['table_text'] ) ) lowerCamelCase__ : str =tokenizer(snake_case_ , snake_case_ , padding=snake_case_ , max_length=snake_case_ , truncation=snake_case_ ) lowerCamelCase__ : int =examples['label'] return result with training_args.main_process_first(desc='dataset map pre-processing' ): lowerCamelCase__ : Tuple =raw_datasets.map( snake_case_ , batched=snake_case_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on dataset' , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) lowerCamelCase__ : Dict =raw_datasets['train'] if data_args.max_train_samples is not None: lowerCamelCase__ : Any =train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) lowerCamelCase__ : Tuple =raw_datasets['validation'] if data_args.max_eval_samples is not None: lowerCamelCase__ : Optional[Any] =eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('--do_predict requires a test dataset' ) lowerCamelCase__ : List[str] =raw_datasets['test'] if data_args.max_predict_samples is not None: lowerCamelCase__ : str =predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(snake_case_ ) ) , 3 ): logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(snake_case_ : EvalPrediction ): lowerCamelCase__ : Tuple =p.predictions[0] if isinstance(p.predictions , snake_case_ ) else p.predictions lowerCamelCase__ : str =np.argmax(snake_case_ , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCamelCase__ : Dict =default_data_collator elif training_args.fpaa: lowerCamelCase__ : str =DataCollatorWithPadding(snake_case_ , pad_to_multiple_of=8 ) else: lowerCamelCase__ : Optional[Any] =None # Initialize our Trainer lowerCamelCase__ : Optional[int] =Trainer( model=snake_case_ , args=snake_case_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=snake_case_ , tokenizer=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: lowerCamelCase__ : Dict =None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ : List[Any] =training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ : str =last_checkpoint lowerCamelCase__ : Any =trainer.train(resume_from_checkpoint=snake_case_ ) lowerCamelCase__ : List[str] =train_result.metrics lowerCamelCase__ : Union[str, Any] =( data_args.max_train_samples if data_args.max_train_samples is not None else len(snake_case_ ) ) lowerCamelCase__ : int =min(snake_case_ , len(snake_case_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , snake_case_ ) trainer.save_metrics('train' , snake_case_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) lowerCamelCase__ : Dict =trainer.evaluate(eval_dataset=snake_case_ ) lowerCamelCase__ : Dict =data_args.max_eval_samples if data_args.max_eval_samples is not None else len(snake_case_ ) lowerCamelCase__ : Any =min(snake_case_ , len(snake_case_ ) ) trainer.log_metrics('eval' , snake_case_ ) trainer.save_metrics('eval' , snake_case_ ) if training_args.do_predict: logger.info('*** Predict ***' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCamelCase__ : Tuple =predict_dataset.remove_columns('label' ) lowerCamelCase__ : Union[str, Any] =trainer.predict(snake_case_ , metric_key_prefix='predict' ).predictions lowerCamelCase__ : Optional[int] =np.argmax(snake_case_ , axis=1 ) lowerCamelCase__ : Dict =os.path.join(training_args.output_dir , 'predict_results_tabfact.txt' ) if trainer.is_world_process_zero(): with open(snake_case_ , 'w' ) as writer: logger.info('***** Predict Results *****' ) writer.write('index\tprediction\n' ) for index, item in enumerate(snake_case_ ): lowerCamelCase__ : Optional[int] =label_list[item] writer.write(f"""{index}\t{item}\n""" ) lowerCamelCase__ : Union[str, Any] ={'finetuned_from': model_args.model_name_or_path, 'tasks': 'text-classification'} if training_args.push_to_hub: trainer.push_to_hub(**snake_case_ ) else: trainer.create_model_card(**snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Tuple ) ->List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
174
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder lowerCAmelCase = """base_with_context""" def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) ->Tuple: lowerCamelCase__ : Any =nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) lowerCamelCase__ : int =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case_ ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : Union[str, Any] =weights[f"""layers_{lyr_num}"""] lowerCamelCase__ : Any =nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowerCamelCase__ : List[Any] =ly_weight['attention'] lowerCamelCase__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ : str =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ : Tuple =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ : Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Any ) ->Union[str, Any]: lowerCamelCase__ : Tuple =nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) lowerCamelCase__ : Optional[int] =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case_ ) for lyr_num, lyr in enumerate(model.encoders ): lowerCamelCase__ : List[Any] =weights[f"""layers_{lyr_num}"""] lowerCamelCase__ : List[str] =ly_weight['attention'] lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) lowerCamelCase__ : Dict =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ : List[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ : str =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ : Dict =nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : List[Any] ) ->Optional[int]: lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) lowerCamelCase__ : Any =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=snake_case_ ) lowerCamelCase__ : Tuple =nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): lowerCamelCase__ : Tuple =weights[f"""layers_{lyr_num}"""] lowerCamelCase__ : List[str] =nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) lowerCamelCase__ : Optional[int] =nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) lowerCamelCase__ : Union[str, Any] =ly_weight['self_attention'] lowerCamelCase__ : Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ : List[Any] =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ : Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ : int =ly_weight['MultiHeadDotProductAttention_0'] lowerCamelCase__ : Any =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) lowerCamelCase__ : Tuple =nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) lowerCamelCase__ : Any =nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) lowerCamelCase__ : Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) lowerCamelCase__ : List[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) lowerCamelCase__ : int =nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) lowerCamelCase__ : List[str] =nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def lowerCAmelCase_ ( snake_case_ : Union[str, Any] ) ->List[Any]: lowerCamelCase__ : Optional[int] =checkpoints.load_tax_checkpoint(args.checkpoint_path ) lowerCamelCase__ : Optional[Any] =jnp.tree_util.tree_map(onp.array , snake_case_ ) lowerCamelCase__ : Dict =[ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] lowerCamelCase__ : Optional[int] =os.path.join(args.checkpoint_path , '..' , 'config.gin' ) lowerCamelCase__ : Optional[int] =inference.parse_training_gin_file(snake_case_ , snake_case_ ) lowerCamelCase__ : Tuple =inference.InferenceModel(args.checkpoint_path , snake_case_ ) lowerCamelCase__ : List[Any] =DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) lowerCamelCase__ : int =SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowerCamelCase__ : Optional[Any] =SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) lowerCamelCase__ : int =TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) lowerCamelCase__ : str =load_notes_encoder(ta_checkpoint['target']['token_encoder'] , snake_case_ ) lowerCamelCase__ : int =load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , snake_case_ ) lowerCamelCase__ : Any =load_decoder(ta_checkpoint['target']['decoder'] , snake_case_ ) lowerCamelCase__ : Any =OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) lowerCamelCase__ : Optional[int] =SpectrogramDiffusionPipeline( notes_encoder=snake_case_ , continuous_encoder=snake_case_ , decoder=snake_case_ , scheduler=snake_case_ , melgan=snake_case_ , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=f"""{MODEL}/checkpoint_500000""", type=str, required=False, help="""Path to the original jax model checkpoint.""", ) lowerCAmelCase = parser.parse_args() main(args)
174
1
'''simple docstring''' def _lowerCAmelCase (_lowercase , _lowercase ): """simple docstring""" return 1 if input_a == input_a else 0 def _lowerCAmelCase (): """simple docstring""" assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
718
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCamelCase_ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase__ ( __lowerCamelCase ): """simple docstring""" UpperCamelCase__ = ['''pixel_values'''] def __init__( self : Any ,a__ : bool = True ,a__ : int = 32 ,a__ : Any=PILImageResampling.BILINEAR ,a__ : bool = True ,**a__ : str ,): a__ = do_resize a__ = do_rescale a__ = size_divisor a__ = resample super().__init__(**a__ ) def lowerCAmelCase_ ( self : List[Any] ,a__ : np.ndarray ,a__ : int ,a__ : Tuple ,a__ : Optional[ChannelDimension] = None ,**a__ : Any ): a__ , a__ = get_image_size(a__ ) # Rounds the height and width down to the closest multiple of size_divisor a__ = height // size_divisor * size_divisor a__ = width // size_divisor * size_divisor a__ = resize(a__ ,(new_h, new_w) ,resample=a__ ,data_format=a__ ,**a__ ) return image def lowerCAmelCase_ ( self : str ,a__ : np.ndarray ,a__ : float ,a__ : Optional[ChannelDimension] = None ,**a__ : Optional[Any] ): return rescale(image=a__ ,scale=a__ ,data_format=a__ ,**a__ ) def lowerCAmelCase_ ( self : int ,a__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] ,a__ : Optional[bool] = None ,a__ : Optional[int] = None ,a__ : str=None ,a__ : Optional[bool] = None ,a__ : Optional[Union[TensorType, str]] = None ,a__ : ChannelDimension = ChannelDimension.FIRST ,**a__ : List[str] ,): a__ = do_resize if do_resize is not None else self.do_resize a__ = do_rescale if do_rescale is not None else self.do_rescale a__ = size_divisor if size_divisor is not None else self.size_divisor a__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) a__ = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. a__ = [to_numpy_array(a__ ) for img in images] if do_resize: a__ = [self.resize(a__ ,size_divisor=a__ ,resample=a__ ) for image in images] if do_rescale: a__ = [self.rescale(a__ ,scale=1 / 2_55 ) for image in images] a__ = [to_channel_dimension_format(a__ ,a__ ) for image in images] a__ = {"pixel_values": images} return BatchFeature(data=a__ ,tensor_type=a__ )
394
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) UpperCAmelCase__ : int = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = None SCREAMING_SNAKE_CASE__ : List[Any] = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) ) SCREAMING_SNAKE_CASE__ : Dict = os.path.abspath("""examples""" ) for item in os.listdir(lowercase__ ): if item not in EXCLUDE_EXAMPLES: SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(lowercase__ , lowercase__ ) if os.path.isfile(lowercase__ ) and ".py" in item_path: with self.subTest( tested_script=lowercase__ , feature_script=lowercase__ , tested_section="""main()""" if parser_only else """training_function()""" , ): SCREAMING_SNAKE_CASE__ : Any = compare_against_test( os.path.join(lowercase__ , lowercase__ ) , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE__ : Any = """\n""".join(lowercase__ ) if special_strings is not None: for string in special_strings: SCREAMING_SNAKE_CASE__ : Optional[Any] = diff.replace(lowercase__ , """""" ) self.assertEqual(lowercase__ , """""" ) def __magic_name__ (self ) -> Dict: """simple docstring""" self.one_complete_example("""complete_nlp_example.py""" , lowercase__ ) self.one_complete_example("""complete_nlp_example.py""" , lowercase__ ) def __magic_name__ (self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) ) SCREAMING_SNAKE_CASE__ : Any = [ """ """ * 16 + """{\n\n""", """ """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""", """ """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""", """ """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""", """ """ * 20 + """\"epoch\": epoch,\n\n""", """ """ * 16 + """},\n\n""", """ """ * 16 + """step=epoch,\n""", """ """ * 12, """ """ * 8 + """for step, batch in enumerate(active_dataloader):\n""", ] self.one_complete_example("""complete_cv_example.py""" , lowercase__ , lowercase__ , lowercase__ ) self.one_complete_example("""complete_cv_example.py""" , lowercase__ , lowercase__ , lowercase__ ) @mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} ) class lowerCAmelCase_ (_a ): """simple docstring""" __UpperCamelCase : List[Any] = False @classmethod def __magic_name__ (cls ) -> int: """simple docstring""" super().setUpClass() SCREAMING_SNAKE_CASE__ : str = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Dict = os.path.join(cls._tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) SCREAMING_SNAKE_CASE__ : List[Any] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __magic_name__ (cls ) -> List[str]: """simple docstring""" super().tearDownClass() shutil.rmtree(cls._tmpdir ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = F''' examples/by_feature/checkpointing.py --checkpointing_steps epoch --output_dir {self.tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) ) def __magic_name__ (self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = F''' examples/by_feature/checkpointing.py --checkpointing_steps 1 --output_dir {self.tmpdir} '''.split() SCREAMING_SNAKE_CASE__ : str = run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )} '''.split() SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) self.assertNotIn("""epoch 0:""" , lowercase__ ) self.assertIn("""epoch 1:""" , lowercase__ ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = F''' examples/by_feature/checkpointing.py --resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )} '''.split() SCREAMING_SNAKE_CASE__ : int = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) if torch.cuda.is_available(): SCREAMING_SNAKE_CASE__ : Any = torch.cuda.device_count() else: SCREAMING_SNAKE_CASE__ : List[str] = 1 if num_processes > 1: self.assertNotIn("""epoch 0:""" , lowercase__ ) self.assertIn("""epoch 1:""" , lowercase__ ) else: self.assertIn("""epoch 0:""" , lowercase__ ) self.assertIn("""epoch 1:""" , lowercase__ ) @slow def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = """ examples/by_feature/cross_validation.py --num_folds 2 """.split() with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command(self._launch_args + testargs , return_stdout=lowercase__ ) SCREAMING_SNAKE_CASE__ : List[Any] = re.findall("""({.+})""" , lowercase__ ) SCREAMING_SNAKE_CASE__ : Tuple = [r for r in results if """accuracy""" in r][-1] SCREAMING_SNAKE_CASE__ : List[str] = ast.literal_eval(lowercase__ ) self.assertGreaterEqual(results["""accuracy"""] , 0.75 ) def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = ["""examples/by_feature/multi_process_metrics.py"""] run_command(self._launch_args + testargs ) @require_trackers @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __magic_name__ (self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdir: SCREAMING_SNAKE_CASE__ : Optional[int] = F''' examples/by_feature/tracking.py --with_tracking --project_dir {tmpdir} '''.split() run_command(self._launch_args + testargs ) self.assertTrue(os.path.exists(os.path.join(lowercase__ , """tracking""" ) ) ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = ["""examples/by_feature/gradient_accumulation.py"""] run_command(self._launch_args + testargs ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = ["""examples/by_feature/local_sgd.py"""] run_command(self._launch_args + testargs )
223
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
303
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( __lowercase): """simple docstring""" lowercase : Tuple = (KDPMaDiscreteScheduler,) lowercase : Optional[Any] = 10 def UpperCamelCase__ ( self , **__A ) -> Dict: _lowerCAmelCase ={ 'num_train_timesteps': 1100, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**__A ) return config def UpperCamelCase__ ( self ) -> str: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=__A ) def UpperCamelCase__ ( self ) -> Union[str, Any]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__A , beta_end=__A ) def UpperCamelCase__ ( self ) -> List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__A ) def UpperCamelCase__ ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__A ) def UpperCamelCase__ ( self ) -> Any: _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config(prediction_type='v_prediction' ) _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def UpperCamelCase__ ( self ) -> List[str]: if torch_device == "mps": return _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter * scheduler.init_noise_sigma _lowerCAmelCase =sample.to(__A ) for i, t in enumerate(scheduler.timesteps ): _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def UpperCamelCase__ ( self ) -> Any: if torch_device == "mps": return _lowerCAmelCase =self.scheduler_classes[0] _lowerCAmelCase =self.get_scheduler_config() _lowerCAmelCase =scheduler_class(**__A ) scheduler.set_timesteps(self.num_inference_steps , device=__A ) _lowerCAmelCase =self.dummy_model() _lowerCAmelCase =self.dummy_sample_deter.to(__A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _lowerCAmelCase =scheduler.scale_model_input(__A , __A ) _lowerCAmelCase =model(__A , __A ) _lowerCAmelCase =scheduler.step(__A , __A , __A ) _lowerCAmelCase =output.prev_sample _lowerCAmelCase =torch.sum(torch.abs(__A ) ) _lowerCAmelCase =torch.mean(torch.abs(__A ) ) if str(__A ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
702
'''simple docstring''' from __future__ import annotations lowercase_ = 10 def UpperCamelCase__ ( a__ ): '''simple docstring''' _lowerCAmelCase =1 _lowerCAmelCase =max(a__ ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase =[[] for _ in range(a__ )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase =int((i / placement) % RADIX ) buckets[tmp].append(a__ ) # put each buckets' contents into list_of_ints _lowerCAmelCase =0 for b in range(a__ ): for i in buckets[b]: _lowerCAmelCase =i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
58
0
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=32 , _lowerCAmelCase=5 , _lowerCAmelCase=4 , _lowerCAmelCase=37 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=4 , ): '''simple docstring''' lowerCAmelCase__ :List[str] = parent lowerCAmelCase__ :Any = batch_size lowerCAmelCase__ :Optional[Any] = seq_length lowerCAmelCase__ :int = is_training lowerCAmelCase__ :Union[str, Any] = use_attention_mask lowerCAmelCase__ :Tuple = use_token_type_ids lowerCAmelCase__ :Tuple = use_labels lowerCAmelCase__ :int = vocab_size lowerCAmelCase__ :str = hidden_size lowerCAmelCase__ :Dict = num_hidden_layers lowerCAmelCase__ :Optional[Any] = num_attention_heads lowerCAmelCase__ :Any = intermediate_size lowerCAmelCase__ :Optional[int] = hidden_act lowerCAmelCase__ :Tuple = hidden_dropout_prob lowerCAmelCase__ :List[Any] = attention_probs_dropout_prob lowerCAmelCase__ :Any = max_position_embeddings lowerCAmelCase__ :Optional[Any] = type_vocab_size lowerCAmelCase__ :Optional[int] = type_sequence_label_size lowerCAmelCase__ :List[Any] = initializer_range lowerCAmelCase__ :Optional[Any] = num_choices def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ :Any = None if self.use_attention_mask: lowerCAmelCase__ :Dict = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ :List[str] = None if self.use_token_type_ids: lowerCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ :Tuple = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :str = config_and_inputs lowerCAmelCase__ :Tuple = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.prepare_config_and_inputs() lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :List[str] = config_and_inputs lowerCAmelCase__ :Union[str, Any] = True lowerCAmelCase__ :List[str] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase__ :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( _A , unittest.TestCase ): """simple docstring""" A = True A = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Any = FlaxRobertaPreLayerNormModelTester(self ) @slow def snake_case_ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCAmelCase__ :Union[str, Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_lowerCAmelCase ) lowerCAmelCase__ :List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowerCAmelCase ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) lowerCAmelCase__ :Optional[Any] = model(_lowerCAmelCase )[0] lowerCAmelCase__ :Tuple = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _lowerCAmelCase ) # compare the actual values for a slice. lowerCAmelCase__ :List[str] = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) ) @slow def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) lowerCAmelCase__ :Tuple = model(_lowerCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase__ :int = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1e-4 ) )
145
from __future__ import annotations def snake_case__ ( UpperCAmelCase : str ): return [ord(UpperCAmelCase ) - 9_6 for elem in plain] def snake_case__ ( UpperCAmelCase : list[int] ): return "".join(chr(elem + 9_6 ) for elem in encoded ) def snake_case__ ( ): lowerCAmelCase__ :Optional[int] = encode(input("-> " ).strip().lower() ) print("Encoded: " , UpperCAmelCase ) print("Decoded:" , decode(UpperCAmelCase ) ) if __name__ == "__main__": main()
145
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __A : Optional[Any] = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
334
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __A : Tuple = False __A : Optional[int] = True __A : Optional[Any] = False if __name__ == "__main__": __A : Any = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __A : List[str] = parser.parse_args() __A : List[Any] = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __A : Optional[int] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __A : List[str] = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __A : List[str] = reader.read() __A : int = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __A : List[str] = UNetaDModel(**config) else: __A : Dict = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __A : Optional[int] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __A : List[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __A : Optional[Any] = config[key] del config[key] __A : Dict = [k.replace("UNetRes", "") for k in config["down_block_types"]] __A : Tuple = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __A : Dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __A : Tuple = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __A : Dict = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __A : List[Any] = param_value __A : Optional[Any] = True if not has_changed: __A : List[Any] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
334
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[Any] ): '''simple docstring''' return 1 if input_a == input_a else 0 def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
135
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = original_name.split('''.''' )[0] lowercase__ = key.split('''.''' ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 2] ) lowercase__ = int(key_list[key_list.index(SCREAMING_SNAKE_CASE ) - 1] ) lowercase__ = orig_block_num - offset lowercase__ = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = OrderedDict() lowercase__ , lowercase__ = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): lowercase__ = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 lowercase__ = key[: key.find('''proj''' )] lowercase__ = key.replace(SCREAMING_SNAKE_CASE , f'patch_embeddings.{total_embed_found}.' ) lowercase__ = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: lowercase__ = '''poolformer.encoder.''' + key if "mlp.fc1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm1''' , '''before_norm''' ) if "norm2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: lowercase__ = replace_key_with_offset(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: lowercase__ = key.replace('''head''' , '''classifier''' ) lowercase__ = value return new_state_dict def _a ( ): """simple docstring""" lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = PoolFormerConfig() # set attributes based on model_name lowercase__ = '''huggingface/label-files''' lowercase__ = model_name[-3:] lowercase__ = 10_00 lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = (1, 10_00) # set config attributes lowercase__ = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} if size == "s12": lowercase__ = [2, 2, 6, 2] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s24": lowercase__ = [4, 4, 12, 4] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 0.9 elif size == "s36": lowercase__ = [6, 6, 18, 6] lowercase__ = [64, 1_28, 3_20, 5_12] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.9 elif size == "m36": lowercase__ = [6, 6, 18, 6] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 elif size == "m48": lowercase__ = [8, 8, 24, 8] lowercase__ = [96, 1_92, 3_84, 7_68] lowercase__ = 4.0 lowercase__ = 1E-6 lowercase__ = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) # Prepare image lowercase__ = prepare_img() lowercase__ = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict lowercase__ = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('''cpu''' ) ) # rename keys lowercase__ = rename_keys(SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowercase__ = PoolFormerForImageClassification(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # Define image processor lowercase__ = PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE ) lowercase__ = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass lowercase__ = model(SCREAMING_SNAKE_CASE ) lowercase__ = outputs.logits # define expected logit slices for different models if size == "s12": lowercase__ = torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": lowercase__ = torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": lowercase__ = torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": lowercase__ = torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": lowercase__ = torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) lowerCAmelCase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
43
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available a : List[str] = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys a : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
1
from collections import defaultdict from math import gcd def lowerCamelCase ( SCREAMING_SNAKE_CASE = 1_500_000 ): '''simple docstring''' __UpperCamelCase :defaultdict = defaultdict(SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , SCREAMING_SNAKE_CASE , 2 ): if gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > 1: continue __UpperCamelCase :Any = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(SCREAMING_SNAKE_CASE , limit + 1 , SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
167
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = None , __lowercase = PILImageResampling.BICUBIC , __lowercase = True , __lowercase = None , __lowercase = True , __lowercase = 1 / 255 , __lowercase = True , __lowercase = None , __lowercase = None , __lowercase = True , **__lowercase , ) -> None: super().__init__(**__lowercase) __UpperCamelCase :str = size if size is not None else {'''shortest_edge''': 224} __UpperCamelCase :Tuple = get_size_dict(__lowercase , default_to_square=__lowercase) __UpperCamelCase :List[Any] = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __UpperCamelCase :Optional[int] = get_size_dict(__lowercase , default_to_square=__lowercase , param_name='''crop_size''') __UpperCamelCase :List[str] = do_resize __UpperCamelCase :Any = size __UpperCamelCase :Dict = resample __UpperCamelCase :List[Any] = do_center_crop __UpperCamelCase :Any = crop_size __UpperCamelCase :Any = do_rescale __UpperCamelCase :Optional[Any] = rescale_factor __UpperCamelCase :List[str] = do_normalize __UpperCamelCase :List[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __UpperCamelCase :int = image_std if image_std is not None else OPENAI_CLIP_STD __UpperCamelCase :Tuple = do_convert_rgb def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = PILImageResampling.BICUBIC , __lowercase = None , **__lowercase , ) -> np.ndarray: __UpperCamelCase :Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""") __UpperCamelCase :Tuple = get_resize_output_image_size(__lowercase , size=size['''shortest_edge'''] , default_to_square=__lowercase) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: __UpperCamelCase :Optional[Any] = get_size_dict(__lowercase) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""") return center_crop(__lowercase , size=(size['''height'''], size['''width''']) , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> List[Any]: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> PIL.Image.Image: __UpperCamelCase :List[Any] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :Optional[int] = size if size is not None else self.size __UpperCamelCase :int = get_size_dict(__lowercase , param_name='''size''' , default_to_square=__lowercase) __UpperCamelCase :str = resample if resample is not None else self.resample __UpperCamelCase :List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase :Dict = crop_size if crop_size is not None else self.crop_size __UpperCamelCase :Dict = get_size_dict(__lowercase , param_name='''crop_size''' , default_to_square=__lowercase) __UpperCamelCase :Dict = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :str = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase :Tuple = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase :Dict = image_mean if image_mean is not None else self.image_mean __UpperCamelCase :List[Any] = image_std if image_std is not None else self.image_std __UpperCamelCase :List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __UpperCamelCase :Tuple = make_list_of_images(__lowercase) if not valid_images(__lowercase): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''') if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''') if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''') if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''') if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''') # PIL RGBA images are converted to RGB if do_convert_rgb: __UpperCamelCase :Optional[int] = [convert_to_rgb(__lowercase) for image in images] # All transformations expect numpy arrays. __UpperCamelCase :Optional[int] = [to_numpy_array(__lowercase) for image in images] if do_resize: __UpperCamelCase :List[Any] = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase) for image in images] if do_center_crop: __UpperCamelCase :List[Any] = [self.center_crop(image=__lowercase , size=__lowercase) for image in images] if do_rescale: __UpperCamelCase :str = [self.rescale(image=__lowercase , scale=__lowercase) for image in images] if do_normalize: __UpperCamelCase :Union[str, Any] = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase) for image in images] __UpperCamelCase :str = [to_channel_dimension_format(__lowercase , __lowercase) for image in images] __UpperCamelCase :Tuple = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase)
167
1
"""simple docstring""" from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder UpperCamelCase = datasets.utils.logging.get_logger(__name__) class lowercase_ (folder_based_builder.FolderBasedBuilderConfig ): A__ : List[Any] = None A__ : str = None class lowercase_ (folder_based_builder.FolderBasedBuilder ): A__ : Any = datasets.Audio() A__ : Any = '''audio''' A__ : List[Any] = AudioFolderConfig A__ : List[Any] = 42 # definition at the bottom of the script A__ : str = AudioClassification(audio_column='''audio''', label_column='''label''' ) UpperCamelCase = [ """.aiff""", """.au""", """.avr""", """.caf""", """.flac""", """.htk""", """.svx""", """.mat4""", """.mat5""", """.mpc2k""", """.ogg""", """.paf""", """.pvf""", """.raw""", """.rf64""", """.sd2""", """.sds""", """.ircam""", """.voc""", """.w64""", """.wav""", """.nist""", """.wavex""", """.wve""", """.xi""", """.mp3""", """.opus""", ] UpperCamelCase = AUDIO_EXTENSIONS
708
"""simple docstring""" def lowerCAmelCase ( UpperCamelCase_: Optional[int] , UpperCamelCase_: str ) -> List[Any]: '''simple docstring''' _a = (boundary[1] - boundary[0]) / steps _a = boundary[0] _a = boundary[1] _a = make_points(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _a = 0.0 y += (h / 2.0) * f(UpperCamelCase_ ) for i in x_i: # print(i) y += h * f(UpperCamelCase_ ) y += (h / 2.0) * f(UpperCamelCase_ ) return y def lowerCAmelCase ( UpperCamelCase_: str , UpperCamelCase_: Any , UpperCamelCase_: Any ) -> str: '''simple docstring''' _a = a + h while x < (b - h): yield x _a = x + h def lowerCAmelCase ( UpperCamelCase_: List[str] ) -> int: # enter your function here '''simple docstring''' _a = (x - 0) * (x - 0) return y def lowerCAmelCase ( ) -> Tuple: '''simple docstring''' _a = 0.0 # Lower bound of integration _a = 1.0 # Upper bound of integration _a = 10.0 # define number of steps or resolution _a = [a, b] # define boundary of integration _a = method_a(UpperCamelCase_ , UpperCamelCase_ ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
612
0
'''simple docstring''' import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() __A = logging.get_logger(__name__) def _A ( lowercase__ ): print("""Loading config file...""" ) def flatten_yaml_as_dict(lowercase__ , lowercase__="" , lowercase__="." ): lowercase__ = [] for k, v in d.items(): lowercase__ = parent_key + sep + k if parent_key else k if isinstance(lowercase__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(lowercase__ , lowercase__ , sep=lowercase__ ).items() ) else: items.append((new_key, v) ) return dict(lowercase__ ) lowercase__ = argparse.Namespace() with open(lowercase__ , """r""" ) as yaml_file: try: lowercase__ = yaml.load(lowercase__ , Loader=yaml.FullLoader ) lowercase__ = flatten_yaml_as_dict(lowercase__ ) for k, v in flat_cfg.items(): setattr(lowercase__ , lowercase__ , lowercase__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(lowercase__ , str(lowercase__ ) ) ) return config def _A ( lowercase__ , lowercase__ ): lowercase__ = MobileViTVaConfig() lowercase__ = False # dataset if task_name.startswith("""imagenet1k_""" ): lowercase__ = 1000 if int(task_name.strip().split("""_""" )[-1] ) == 384: lowercase__ = 384 else: lowercase__ = 256 lowercase__ = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): lowercase__ = 21000 if int(task_name.strip().split("""_""" )[-1] ) == 384: lowercase__ = 384 else: lowercase__ = 256 lowercase__ = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): lowercase__ = 151 lowercase__ = 512 lowercase__ = """ade20k-id2label.json""" lowercase__ = True elif task_name.startswith("""voc_""" ): lowercase__ = 21 lowercase__ = 512 lowercase__ = """pascal-voc-id2label.json""" lowercase__ = True # orig_config lowercase__ = load_orig_config_file(lowercase__ ) assert getattr(lowercase__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" lowercase__ = getattr(lowercase__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(lowercase__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" lowercase__ = getattr(lowercase__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: lowercase__ = getattr(lowercase__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: lowercase__ = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) lowercase__ = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 512 ) lowercase__ = getattr(lowercase__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label lowercase__ = """huggingface/label-files""" lowercase__ = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(lowercase__ ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} return config def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = dct.pop(lowercase__ ) lowercase__ = val def _A ( lowercase__ , lowercase__=False ): if base_model: lowercase__ = """""" else: lowercase__ = """mobilevitv2.""" lowercase__ = [] for k in state_dict.keys(): if k[:8] == "encoder.": lowercase__ = k[8:] else: lowercase__ = k if ".block." in k: lowercase__ = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: lowercase__ = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: lowercase__ = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: lowercase__ = k_new.replace("""conv_1.""" , f'''{model_prefix}conv_stem.''' ) for i in [1, 2]: if f'''layer_{i}.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.''' , f'''{model_prefix}encoder.layer.{i-1}.layer.''' ) if ".exp_1x1." in k: lowercase__ = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: lowercase__ = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if f'''layer_{i}.0.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.0.''' , f'''{model_prefix}encoder.layer.{i-1}.downsampling_layer.''' ) if f'''layer_{i}.1.local_rep.0.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.1.local_rep.0.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_kxk.''' ) if f'''layer_{i}.1.local_rep.1.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.1.local_rep.1.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_1x1.''' ) for i in [3, 4, 5]: if i == 3: lowercase__ = [0, 1] elif i == 4: lowercase__ = [0, 1, 2, 3] elif i == 5: lowercase__ = [0, 1, 2] for j in j_in: if f'''layer_{i}.1.global_rep.{j}.''' in k: lowercase__ = k_new.replace( f'''layer_{i}.1.global_rep.{j}.''' , f'''{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.''' ) if f'''layer_{i}.1.global_rep.{j+1}.''' in k: lowercase__ = k_new.replace( f'''layer_{i}.1.global_rep.{j+1}.''' , f'''{model_prefix}encoder.layer.{i-1}.layernorm.''' ) if f'''layer_{i}.1.conv_proj.''' in k: lowercase__ = k_new.replace(f'''layer_{i}.1.conv_proj.''' , f'''{model_prefix}encoder.layer.{i-1}.conv_projection.''' ) if "pre_norm_attn.0." in k: lowercase__ = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: lowercase__ = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: lowercase__ = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: lowercase__ = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: lowercase__ = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: lowercase__ = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: lowercase__ = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: lowercase__ = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: lowercase__ = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def _A ( lowercase__ ): lowercase__ = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(lowercase__ ) for k in keys_to_ignore: state_dict.pop(lowercase__ , lowercase__ ) def _A ( ): lowercase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" lowercase__ = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lowercase__ = get_mobilevitva_config(lowercase__ , lowercase__ ) # load original state_dict lowercase__ = torch.load(lowercase__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): lowercase__ = MobileViTVaForSemanticSegmentation(lowercase__ ).eval() lowercase__ = False else: lowercase__ = MobileViTVaForImageClassification(lowercase__ ).eval() lowercase__ = False # remove and rename some keys of load the original model lowercase__ = checkpoint remove_unused_keys(lowercase__ ) lowercase__ = create_rename_keys(lowercase__ , base_model=lowercase__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) # load modified state_dict model.load_state_dict(lowercase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase__ = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowercase__ = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase__ = model(**lowercase__ ) # verify classification model if task_name.startswith("""imagenet""" ): lowercase__ = outputs.logits lowercase__ = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant lowercase__ = torch.tensor([-1.63_36e00, -7.32_04e-02, -5.18_83e-01] ) assert torch.allclose(logits[0, :3] , lowercase__ , atol=1e-4 ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(f'''Saving model {task_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="imagenet1k_256", type=str, help=( "Name of the task for which the MobileViTV2 model you'd like to convert is trained on . " "\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n " ), choices=[ "imagenet1k_256", "imagenet1k_384", "imagenet21k_to_1k_256", "imagenet21k_to_1k_384", "ade20k_deeplabv3", "voc_deeplabv3", ], ) parser.add_argument( "--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)." ) parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.") parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) __A = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
325
'''simple docstring''' import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A : def __init__( self , lowerCamelCase__ , lowerCamelCase__=3 , lowerCamelCase__=32 , lowerCamelCase__=3 , lowerCamelCase__=10 , lowerCamelCase__=[10, 20, 30, 40] , lowerCamelCase__=[1, 1, 2, 1] , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__="relu" , lowerCamelCase__=3 , lowerCamelCase__=None , ) -> List[str]: '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = image_size lowercase__ = num_channels lowercase__ = embeddings_size lowercase__ = hidden_sizes lowercase__ = depths lowercase__ = is_training lowercase__ = use_labels lowercase__ = hidden_act lowercase__ = num_labels lowercase__ = scope lowercase__ = len(lowerCamelCase__ ) def A__ ( self ) -> Optional[int]: '''simple docstring''' lowercase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ = self.get_config() return config, pixel_values, labels def A__ ( self ) -> Any: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__ = RegNetModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: '''simple docstring''' lowercase__ = self.num_labels lowercase__ = RegNetForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() lowercase__ = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ = config_and_inputs lowercase__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () lowerCamelCase : Any = ( {"""feature-extraction""": RegNetModel, """image-classification""": RegNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : str = False lowerCamelCase : Optional[int] = False lowerCamelCase : str = False lowerCamelCase : Union[str, Any] = False def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = RegNetModelTester(self ) lowercase__ = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def A__ ( self ) -> List[Any]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A__ ( self ) -> Any: '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def A__ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def A__ ( self ) -> str: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(lowerCamelCase__ ) lowercase__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ = [*signature.parameters.keys()] lowercase__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def A__ ( self ) -> str: '''simple docstring''' lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ = model_class(config=lowerCamelCase__ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def A__ ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowercase__ = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): lowercase__ = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowercase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase__ = layer_type lowercase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def A__ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = RegNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _A ( ): lowercase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def A__ ( self ) -> Dict: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A__ ( self ) -> List[str]: '''simple docstring''' lowercase__ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) lowercase__ = self.default_image_processor lowercase__ = prepare_img() lowercase__ = image_processor(images=lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): lowercase__ = model(**lowerCamelCase__ ) # verify the logits lowercase__ = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowercase__ = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
325
1
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase__ = "\\n Text data.\n Second line of data." lowerCAmelCase__ = "file" @pytest.fixture(scope="session" ) def _lowerCAmelCase( __A ): UpperCAmelCase = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") UpperCAmelCase = bytes(UpperCAmelCase__ , "utf-8" ) with zstd.open(UpperCAmelCase__ , "wb" ) as f: f.write(UpperCAmelCase__ ) return path @pytest.fixture def _lowerCAmelCase( __A ): with open(os.path.join(tmpfs.local_root_dir , UpperCAmelCase__ ) , "w" ) as f: f.write(UpperCAmelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def _lowerCAmelCase( __A , __A , __A , __A , __A , __A ): UpperCAmelCase = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} UpperCAmelCase = input_paths[compression_format] UpperCAmelCase = tmp_path / "cache" UpperCAmelCase = DownloadConfig(cache_dir=UpperCAmelCase__ , extract_compressed_file=UpperCAmelCase__ ) UpperCAmelCase = cached_path(UpperCAmelCase__ , download_config=UpperCAmelCase__ ) with open(UpperCAmelCase__ ) as f: UpperCAmelCase = f.read() with open(UpperCAmelCase__ ) as f: UpperCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = "custom_cache" UpperCAmelCase = "custom_extracted_dir" UpperCAmelCase = tmp_path / "custom_extracted_path" if default_extracted: UpperCAmelCase = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , UpperCAmelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(UpperCAmelCase__ ) ) UpperCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase = xz_file UpperCAmelCase = ( DownloadConfig(extract_compressed_file=UpperCAmelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=UpperCAmelCase__ ) ) UpperCAmelCase = cached_path(UpperCAmelCase__ , download_config=UpperCAmelCase__ ) assert Path(UpperCAmelCase__ ).parent.parts[-2:] == expected def _lowerCAmelCase( __A ): # absolute path UpperCAmelCase = str(Path(UpperCAmelCase__ ).resolve() ) assert cached_path(UpperCAmelCase__ ) == text_file # relative path UpperCAmelCase = str(Path(UpperCAmelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(UpperCAmelCase__ ) == text_file def _lowerCAmelCase( __A ): # absolute path UpperCAmelCase = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(UpperCAmelCase__ ): cached_path(UpperCAmelCase__ ) # relative path UpperCAmelCase = "./__missing_file__.txt" with pytest.raises(UpperCAmelCase__ ): cached_path(UpperCAmelCase__ ) def _lowerCAmelCase( __A ): UpperCAmelCase = get_from_cache(F"tmp://{tmpfs_file}" ) with open(UpperCAmelCase__ ) as f: UpperCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , UpperCAmelCase__ ) def _lowerCAmelCase( ): with pytest.raises(UpperCAmelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , UpperCAmelCase__ ) def _lowerCAmelCase( __A ): UpperCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(UpperCAmelCase__ ): http_get("https://huggingface.co" , temp_file=UpperCAmelCase__ ) with pytest.raises(UpperCAmelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , UpperCAmelCase__ ) def _lowerCAmelCase( __A ): UpperCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(UpperCAmelCase__ ): ftp_get("ftp://huggingface.co" , temp_file=UpperCAmelCase__ ) with pytest.raises(UpperCAmelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , UpperCAmelCase__ ) def _lowerCAmelCase( __A ): UpperCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(UpperCAmelCase__ ): fsspec_get("s3://huggingface.co" , temp_file=UpperCAmelCase__ ) with pytest.raises(UpperCAmelCase__ ): fsspec_head("s3://huggingface.co" )
714
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = 50 # max width of layer names lowerCAmelCase__ = 70 # max width of quantizer names def _lowerCAmelCase( __A ): UpperCAmelCase = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=__A , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=__A , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=__A , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=__A , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=__A , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=__A , type=__A , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=__A , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _lowerCAmelCase( __A ): if args.calibrator == "max": UpperCAmelCase = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) UpperCAmelCase = "histogram" elif args.calibrator == "mse": UpperCAmelCase = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) UpperCAmelCase = QuantDescriptor(num_bits=args.aprec , calib_method=__A ) UpperCAmelCase = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__A ) quant_nn.QuantLinear.set_default_quant_desc_weight(__A ) def _lowerCAmelCase( __A , __A , __A=False , __A=False ): logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__A , ["embeddings"] , which="weight" , _disabled=__A ) if args.quant_disable: set_quantizer_by_name(__A , [""] , _disabled=__A ) if args.quant_disable_keyword: set_quantizer_by_name(__A , args.quant_disable_keyword , _disabled=__A ) if args.quant_disable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_disable_layer_module] , _disabled=__A ) if args.quant_enable_layer_module: set_quantizer_by_name(__A , [r"layer.\d+." + args.quant_enable_layer_module] , _disabled=__A ) if args.recalibrate_weights: recalibrate_weights(__A ) if args.fuse_qkv: fuse_qkv(__A , __A ) if args.clip_gelu: clip_gelu(__A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__A ) def _lowerCAmelCase( __A ): logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _lowerCAmelCase( __A , __A ): logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__A ) def _lowerCAmelCase( __A , __A ): def fusea(__A , __A , __A ): for mod in [qq, qk, qv]: if not hasattr(__A , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return UpperCAmelCase = qq._amax.detach().item() UpperCAmelCase = qk._amax.detach().item() UpperCAmelCase = qv._amax.detach().item() UpperCAmelCase = max(__A , __A , __A ) qq._amax.fill_(__A ) qk._amax.fill_(__A ) qv._amax.fill_(__A ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _lowerCAmelCase( __A , __A ): for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__A ) UpperCAmelCase = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: UpperCAmelCase = mod.weight.shape[0] UpperCAmelCase = mod._weight_quantizer._amax.detach() UpperCAmelCase = torch.ones(__A , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _lowerCAmelCase( __A ): for name, mod in model.named_modules(): if hasattr(__A , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCAmelCase = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCAmelCase = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCAmelCase = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__A , keepdims=__A ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) UpperCAmelCase = amax def _lowerCAmelCase( __A , __A=25 , __A=180 , __A=None ): if ignore is None: UpperCAmelCase = [] elif not isinstance(__A , __A ): UpperCAmelCase = [ignore] UpperCAmelCase = 0 for name, mod in model.named_modules(): if not hasattr(__A , "weight" ): continue UpperCAmelCase = max(__A , len(__A ) ) for name, mod in model.named_modules(): UpperCAmelCase = getattr(__A , "_input_quantizer" , __A ) UpperCAmelCase = getattr(__A , "_weight_quantizer" , __A ) if not hasattr(__A , "weight" ): continue if type(__A ) in ignore: continue if [True for s in ignore if type(__A ) is str and s in name]: continue UpperCAmelCase = F"Act:{input_q.extra_repr()}" UpperCAmelCase = F"Wgt:{weight_q.extra_repr()}" UpperCAmelCase = F"{name:{name_width}} {act_str} {wgt_str}" if len(__A ) <= line_width: logger.info(__A ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _lowerCAmelCase( __A ): UpperCAmelCase = 0 for name, mod in model.named_modules(): if isinstance(__A , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _lowerCAmelCase( __A , __A , __A , __A , __A ): UpperCAmelCase = getattr(__A , __A , __A ) if quantizer_mod is not None: assert hasattr(__A , __A ) setattr(__A , __A , __A ) else: logger.warning(F"{name} has no {quantizer}" ) def _lowerCAmelCase( __A , __A , __A="both" , **__A ): UpperCAmelCase = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(__A , __A , "_input_quantizer" , __A , __A ) if which in ["weight", "both"]: set_quantizer(__A , __A , "_weight_quantizer" , __A , __A ) logger.info(__A ) def _lowerCAmelCase( __A , __A , **__A ): for name, mod in model.named_modules(): if hasattr(__A , "_input_quantizer" ) or hasattr(__A , "_weight_quantizer" ): for n in names: if re.search(__A , __A ): set_quantizers(__A , __A , **__A ) elif name.endswith("_quantizer" ): for n in names: if re.search(__A , __A ): UpperCAmelCase = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(__A , __A , __A ) logger.info(__A )
1
0
# Lint as: python3 import itertools import os import re __SCREAMING_SNAKE_CASE = re.compile(r'([A-Z]+)([A-Z][a-z])') __SCREAMING_SNAKE_CASE = re.compile(r'([a-z\d])([A-Z])') __SCREAMING_SNAKE_CASE = re.compile(r'(?<!_)_(?!_)') __SCREAMING_SNAKE_CASE = re.compile(r'(_{2,})') __SCREAMING_SNAKE_CASE = r'^\w+(\.\w+)*$' __SCREAMING_SNAKE_CASE = r'<>:/\|?*' def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Dict ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =_uppercase_uppercase_re.sub(r'\1_\2' ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[int] =_lowercase_uppercase_re.sub(r'\1_\2' ,lowerCAmelCase_ ) return name.lower() def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Optional[int] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Any =_single_underscore_re.split(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =[_multiple_underscores_re.split(lowerCAmelCase_ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(lowerCAmelCase_ ) if n != '' ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: """simple docstring""" if os.path.basename(lowerCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Any ,lowerCAmelCase_ : List[str] ) -> List[Any]: """simple docstring""" if os.path.basename(lowerCAmelCase_ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re ,lowerCAmelCase_ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(lowerCAmelCase_ )}-{split}""" def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : List[Any] ,lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Optional[Any] ,lowerCAmelCase_ : Tuple=None ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] =filename_prefix_for_split(lowerCAmelCase_ ,lowerCAmelCase_ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" SCREAMING_SNAKE_CASE_ : Optional[int] =os.path.join(lowerCAmelCase_ ,lowerCAmelCase_ ) return F"""{filepath}*""" def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Tuple ,lowerCAmelCase_ : Optional[int] ,lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : List[str]=None ,lowerCAmelCase_ : Tuple=None ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =filename_prefix_for_split(lowerCAmelCase_ ,lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Any =os.path.join(lowerCAmelCase_ ,lowerCAmelCase_ ) if shard_lengths: SCREAMING_SNAKE_CASE_ : str =len(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : List[str] =[F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(lowerCAmelCase_ )] if filetype_suffix: SCREAMING_SNAKE_CASE_ : List[Any] =[filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_ : List[str] =prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
220
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = '▁' __SCREAMING_SNAKE_CASE = {'vocab_file': 'sentencepiece.bpe.model'} __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'facebook/mbart-large-50-one-to-many-mmt': ( 'https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model' ), } } __SCREAMING_SNAKE_CASE = { 'facebook/mbart-large-50-one-to-many-mmt': 1024, } # fmt: off __SCREAMING_SNAKE_CASE = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN', 'af_ZA', 'az_AZ', 'bn_IN', 'fa_IR', 'he_IL', 'hr_HR', 'id_ID', 'ka_GE', 'km_KH', 'mk_MK', 'ml_IN', 'mn_MN', 'mr_IN', 'pl_PL', 'ps_AF', 'pt_XX', 'sv_SE', 'sw_KE', 'ta_IN', 'te_IN', 'th_TH', 'tl_XX', 'uk_UA', 'ur_PK', 'xh_ZA', 'gl_ES', 'sl_SI'] class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = ['input_ids', 'attention_mask'] _lowercase = [] _lowercase = [] def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Tuple =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token SCREAMING_SNAKE_CASE_ : str ={} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE_ : Dict =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE_ : List[Any] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE_ : Tuple ={'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE_ : str =1 SCREAMING_SNAKE_CASE_ : Tuple =len(self.sp_model ) SCREAMING_SNAKE_CASE_ : Tuple ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__UpperCAmelCase ) } SCREAMING_SNAKE_CASE_ : List[str] ={v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE_ : int =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE_ : List[Any] ={v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE_ : Optional[Any] =src_lang if src_lang is not None else 'en_XX' SCREAMING_SNAKE_CASE_ : Any =self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE_ : List[Any] =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __lowerCamelCase ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __lowerCamelCase ( self ): return self._src_lang @src_lang.setter def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Any =None return state def __setstate__( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Any ={} SCREAMING_SNAKE_CASE_ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self ): SCREAMING_SNAKE_CASE_ : List[str] ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self , __UpperCAmelCase ): return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE_ : List[Any] =self.sp_model.PieceToId(__UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __lowerCamelCase ( self , __UpperCAmelCase ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =[] SCREAMING_SNAKE_CASE_ : str ='' SCREAMING_SNAKE_CASE_ : List[str] =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token SCREAMING_SNAKE_CASE_ : Dict =True SCREAMING_SNAKE_CASE_ : Dict =[] else: current_sub_tokens.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE_ : str =os.path.join( __UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict =[1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE_ : List[Any] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE_ : List[str] =src_lang SCREAMING_SNAKE_CASE_ : Dict =self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =self.convert_tokens_to_ids(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : str =tgt_lang_id return inputs def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "en_XX" , __UpperCAmelCase = None , __UpperCAmelCase = "ro_RO" , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Dict =src_lang SCREAMING_SNAKE_CASE_ : List[Any] =tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __lowerCamelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] =self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE_ : List[Any] =[self.cur_lang_code_id] SCREAMING_SNAKE_CASE_ : Optional[Any] =[self.eos_token_id] def __lowerCamelCase ( self , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Any =self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE_ : int =[self.cur_lang_code_id] SCREAMING_SNAKE_CASE_ : Optional[Any] =[self.eos_token_id]
220
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase__ : List[str], UpperCamelCase__ : Any ): '''simple docstring''' UpperCamelCase__ = torch.load(UpperCamelCase__, map_location='''cpu''' ) UpperCamelCase__ = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository UpperCamelCase__ = {} for k, v in state_dict.items(): if "pred_layer" in k: UpperCamelCase__ = v else: UpperCamelCase__ = v UpperCamelCase__ = chkpt['''params'''] UpperCamelCase__ = {n: v for n, v in config.items() if not isinstance(UpperCamelCase__, (torch.FloatTensor, numpy.ndarray) )} UpperCamelCase__ = chkpt['''dico_word2id'''] UpperCamelCase__ = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''', '''''' ): i for s, i in vocab.items()} # Save pytorch-model UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCamelCase__ = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(UpperCamelCase__, UpperCamelCase__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCamelCase__, indent=2 ) + '''\n''' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(UpperCamelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(UpperCamelCase__, indent=2 ) + '''\n''' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xlm_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowercase = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
591
0