code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
class a__ : def __init__( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : Tuple = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" if vertex not in self.adjacency: SCREAMING_SNAKE_CASE_ : Optional[int] = {} self.num_vertices += 1 def __UpperCamelCase ( self : Any,_A : List[Any],_A : Optional[Any],_A : Optional[int] ): """simple docstring""" self.add_vertex(_A ) self.add_vertex(_A ) if head == tail: return SCREAMING_SNAKE_CASE_ : List[Any] = weight SCREAMING_SNAKE_CASE_ : List[str] = weight def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = self.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = edge edges.remove((tail, head, weight) ) for i in range(len(_A ) ): SCREAMING_SNAKE_CASE_ : int = list(edges[i] ) edges.sort(key=lambda _A : e[2] ) for i in range(len(_A ) - 1 ): if edges[i][2] >= edges[i + 1][2]: SCREAMING_SNAKE_CASE_ : Dict = edges[i][2] + 1 for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = edge SCREAMING_SNAKE_CASE_ : Union[str, Any] = weight SCREAMING_SNAKE_CASE_ : List[str] = weight def __str__( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "" for tail in self.adjacency: for head in self.adjacency[tail]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.adjacency[head][tail] string += F'{head} -> {tail} == {weight}\n' return string.rstrip("\n" ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self : Any ): """simple docstring""" return self.adjacency.keys() @staticmethod def __UpperCamelCase ( _A : Union[str, Any]=None,_A : int=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Graph() if vertices is None: SCREAMING_SNAKE_CASE_ : Optional[int] = [] if edges is None: SCREAMING_SNAKE_CASE_ : Tuple = [] for vertex in vertices: g.add_vertex(_A ) for edge in edges: g.add_edge(*_A ) return g class a__ : def __init__( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = {} SCREAMING_SNAKE_CASE_ : int = {} def __len__( self : Optional[Any] ): """simple docstring""" return len(self.parent ) def __UpperCamelCase ( self : Union[str, Any],_A : Tuple ): """simple docstring""" if item in self.parent: return self.find(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = item SCREAMING_SNAKE_CASE_ : Any = 0 return item def __UpperCamelCase ( self : Tuple,_A : Dict ): """simple docstring""" if item not in self.parent: return self.make_set(_A ) if item != self.parent[item]: SCREAMING_SNAKE_CASE_ : List[str] = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self : Tuple,_A : Any,_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.find(_A ) SCREAMING_SNAKE_CASE_ : int = self.find(_A ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: SCREAMING_SNAKE_CASE_ : Tuple = roota return roota if self.rank[roota] < self.rank[roota]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 SCREAMING_SNAKE_CASE_ : int = roota return roota return None @staticmethod def __UpperCamelCase ( _A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = graph.num_vertices SCREAMING_SNAKE_CASE_ : Any = Graph.UnionFind() SCREAMING_SNAKE_CASE_ : Optional[Any] = [] while num_components > 1: SCREAMING_SNAKE_CASE_ : List[str] = {} for vertex in graph.get_vertices(): SCREAMING_SNAKE_CASE_ : List[Any] = -1 SCREAMING_SNAKE_CASE_ : str = graph.get_edges() for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = edge edges.remove((tail, head, weight) ) for edge in edges: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = edge SCREAMING_SNAKE_CASE_ : List[str] = union_find.find(_A ) SCREAMING_SNAKE_CASE_ : Dict = union_find.find(_A ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ : int = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: SCREAMING_SNAKE_CASE_ : Any = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = cheap_edge[vertex] if union_find.find(_A ) != union_find.find(_A ): union_find.union(_A,_A ) mst_edges.append(cheap_edge[vertex] ) SCREAMING_SNAKE_CASE_ : Optional[int] = num_components - 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = Graph.build(edges=_A ) return mst
216
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : Optional[Any] = { '''configuration_timesformer''': ['''TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimesformerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimesformerModel''', '''TimesformerForVideoClassification''', '''TimesformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __lowerCamelCase : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
216
1
"""simple docstring""" import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCamelCase ( _a , unittest.TestCase ): a : Optional[Any] =MgpstrTokenizer a : List[Any] =False a : List[Any] ={} a : Tuple =False def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: super().setUp() # fmt: off UpperCamelCase__ = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on UpperCamelCase__ = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case_ ) + '\n' ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case_ ) -> List[str]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Optional[int]: UpperCamelCase__ = 'tester' UpperCamelCase__ = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: pass def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.get_tokenizers(do_lower_case=snake_case_ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCamelCase__ = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) UpperCamelCase__ = tokenizer.encode([special_token] , add_special_tokens=snake_case_ ) self.assertEqual(len(snake_case_ ) , 1 ) UpperCamelCase__ = tokenizer.decode(snake_case_ , skip_special_tokens=snake_case_ ) self.assertTrue(special_token not in decoded ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): UpperCamelCase__ , UpperCamelCase__ = self.get_input_output_texts(snake_case_ ) UpperCamelCase__ = tokenizer.tokenize(snake_case_ ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(snake_case_ ) UpperCamelCase__ = tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) self.assertListEqual(snake_case_ , snake_case_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(snake_case_ ) self.assertNotEqual(len(snake_case_ ) , 0 ) UpperCamelCase__ = tokenizer.decode(snake_case_ ) self.assertIsInstance(snake_case_ , snake_case_ ) self.assertEqual(text_a.replace(' ' , '' ) , snake_case_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: pass
719
"""simple docstring""" import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __lowerCamelCase ( _a ): def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=32 , snake_case_=5 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.02 , snake_case_=False , snake_case_=True , snake_case_="None" , snake_case_=3 , snake_case_=4 , snake_case_=None , ) -> str: UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = relative_attention UpperCamelCase__ = position_biased_input UpperCamelCase__ = pos_att_type UpperCamelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> Any: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str: UpperCamelCase__ = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ , token_type_ids=snake_case_ )[0] UpperCamelCase__ = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]: UpperCamelCase__ = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = self.num_labels UpperCamelCase__ = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: UpperCamelCase__ = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: UpperCamelCase__ = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ) = config_and_inputs UpperCamelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __lowerCamelCase ( _a , _a , unittest.TestCase ): a : Any =( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) a : Dict =( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) a : Tuple =True a : Union[str, Any] =False a : Tuple =False a : Union[str, Any] =False a : Dict =False def SCREAMING_SNAKE_CASE__ ( self ) -> Any: UpperCamelCase__ = DebertaVaModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCamelCase ( unittest.TestCase ): @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: pass @slow def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: UpperCamelCase__ = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) UpperCamelCase__ = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) UpperCamelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. UpperCamelCase__ = torch.tensor( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1E-4 ) , F'{output[:, 1:4, 1:4]}' )
20
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": UpperCamelCase_ = pd.read_csv("""sample_data.csv""", header=None) UpperCamelCase_ = df.shape[:1][0] # If you're using some other dataset input the target column UpperCamelCase_ = df.iloc[:, 1:2] UpperCamelCase_ = actual_data.values.reshape(len_data, 1) UpperCamelCase_ = MinMaxScaler().fit_transform(actual_data) UpperCamelCase_ = 10 UpperCamelCase_ = 5 UpperCamelCase_ = 20 UpperCamelCase_ = len_data - periods * look_back UpperCamelCase_ = actual_data[:division] UpperCamelCase_ = actual_data[division - look_back :] UpperCamelCase_ , UpperCamelCase_ = [], [] UpperCamelCase_ , UpperCamelCase_ = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) UpperCamelCase_ = np.array(train_x) UpperCamelCase_ = np.array(test_x) UpperCamelCase_ = np.array([list(i.ravel()) for i in train_y]) UpperCamelCase_ = np.array([list(i.ravel()) for i in test_y]) UpperCamelCase_ = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") UpperCamelCase_ = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) UpperCamelCase_ = model.predict(x_test)
92
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : List[Any] = TapasConfig.from_json_file(_UpperCAmelCase ) # set absolute/relative position embeddings parameter lowerCAmelCase : Any = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase : Union[str, Any] = TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase : Any = 4 lowerCAmelCase : List[str] = True # hparam_utils.py hparams lowerCAmelCase : str = 0.6_6_4_6_9_4 lowerCAmelCase : Tuple = 0.2_0_7_9_5_1 lowerCAmelCase : Any = 0.1_2_1_1_9_4 lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Any = True lowerCAmelCase : Any = False lowerCAmelCase : List[Any] = 0.0_3_5_2_5_1_3 lowerCAmelCase : Optional[Any] = TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase : Optional[int] = 4 lowerCAmelCase : List[str] = False # hparam_utils.py hparams lowerCAmelCase : Tuple = 3_6.4_5_1_9 lowerCAmelCase : List[str] = 0.9_0_3_4_2_1 lowerCAmelCase : Optional[Any] = 2_2_2.0_8_8 lowerCAmelCase : List[Any] = True lowerCAmelCase : Optional[Any] = True lowerCAmelCase : str = True lowerCAmelCase : int = 0.7_6_3_1_4_1 lowerCAmelCase : Any = TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "TABFACT": lowerCAmelCase : List[str] = TapasForSequenceClassification(config=_UpperCAmelCase ) elif task == "MLM": lowerCAmelCase : int = TapasForMaskedLM(config=_UpperCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase : List[str] = TapasModel(config=_UpperCAmelCase ) else: raise ValueError(f"Task {task} not supported." ) print(f"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}" ) lowerCAmelCase : int = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt', model_max_length=512 ) tokenizer.save_pretrained(_UpperCAmelCase ) print('Used relative position embeddings:', model.config.reset_position_index_per_cell ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __A : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
343
0
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase : Optional[Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : List[Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : int = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : List[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : int = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase : Union[str, Any] = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[int]: '''simple docstring''' UpperCamelCase : List[str] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase : List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Optional[Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] UpperCamelCase : Optional[int] = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' UpperCamelCase : List[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase : int = "fp16" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' UpperCamelCase : Optional[int] = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] UpperCamelCase : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCamelCase : Optional[int] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] UpperCamelCase : str = "fp16" self.assertTrue(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Dict: '''simple docstring''' UpperCamelCase : int = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] UpperCamelCase : List[str] = "fp16" self.assertFalse(is_safetensors_compatible(lowerCamelCase , variant=lowerCamelCase ) )
716
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class UpperCAmelCase_ ( lowerCamelCase_ ): """simple docstring""" __SCREAMING_SNAKE_CASE = '''timesformer''' def __init__( self , lowerCamelCase=2_24 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=8 , lowerCamelCase=7_68 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=30_72 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-6 , lowerCamelCase=True , lowerCamelCase="divided_space_time" , lowerCamelCase=0 , **lowerCamelCase , ) -> List[Any]: '''simple docstring''' super().__init__(**lowerCamelCase ) UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Optional[Any] = patch_size UpperCamelCase : Dict = num_channels UpperCamelCase : int = num_frames UpperCamelCase : Tuple = hidden_size UpperCamelCase : int = num_hidden_layers UpperCamelCase : Optional[Any] = num_attention_heads UpperCamelCase : Optional[Any] = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : int = hidden_dropout_prob UpperCamelCase : List[str] = attention_probs_dropout_prob UpperCamelCase : Tuple = initializer_range UpperCamelCase : List[Any] = layer_norm_eps UpperCamelCase : Any = qkv_bias UpperCamelCase : int = attention_type UpperCamelCase : int = drop_path_rate
435
0
def lowerCamelCase__ ( _lowercase , _lowercase = " " ): '''simple docstring''' UpperCAmelCase_ : str = [] UpperCAmelCase_ : Any = 0 for index, char in enumerate(_lowercase ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase_ : int = index + 1 elif index + 1 == len(_lowercase ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
30
import unittest import numpy as np def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase , _lowercase = None , ): '''simple docstring''' UpperCAmelCase_ : Dict = np.shape(_lowercase ) UpperCAmelCase_ : Optional[Any] = np.shape(_lowercase ) UpperCAmelCase_ : Tuple = np.shape(_lowercase ) if shape_a[0] != shape_b[0]: UpperCAmelCase_ : Tuple = ( '''Expected the same number of rows for A and B. ''' f'''Instead found A of size {shape_a} and B of size {shape_b}''' ) raise ValueError(_lowercase ) if shape_b[1] != shape_c[1]: UpperCAmelCase_ : List[Any] = ( '''Expected the same number of columns for B and C. ''' f'''Instead found B of size {shape_b} and C of size {shape_c}''' ) raise ValueError(_lowercase ) UpperCAmelCase_ : Dict = pseudo_inv if a_inv is None: try: UpperCAmelCase_ : Any = np.linalg.inv(_lowercase ) except np.linalg.LinAlgError: raise ValueError( '''Input matrix A is not invertible. Cannot compute Schur complement.''' ) return mat_c - mat_b.T @ a_inv @ mat_b class __a( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Any = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : List[str] = np.array([[2, 1], [6, 3]] ) UpperCAmelCase_ : Tuple = schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.block([[a, b], [b.T, c]] ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.linalg.det(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = np.linalg.det(_SCREAMING_SNAKE_CASE ) self.assertAlmostEqual(_SCREAMING_SNAKE_CASE ,det_a * det_s ) def a__ ( self ) -> None: UpperCAmelCase_ : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[int] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : Optional[int] = np.array([[2, 1], [6, 3]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> None: UpperCAmelCase_ : Optional[int] = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCAmelCase_ : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCAmelCase_ : int = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(_SCREAMING_SNAKE_CASE ): schur_complement(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
30
1
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class snake_case ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): '''simple docstring''' def __init__( self : Union[str, Any] , __lowercase : Tuple=None , **__lowercase : List[Any] ): '''simple docstring''' super().__init__(features=__lowercase ) __UpperCAmelCase : Any = torch_tensor_kwargs import torch # noqa import torch at initialization def A_ ( self : List[Any] , __lowercase : Tuple ): '''simple docstring''' import torch if isinstance(__lowercase , __lowercase ) and column: if all( isinstance(__lowercase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__lowercase ) return column def A_ ( self : Optional[int] , __lowercase : Optional[Any] ): '''simple docstring''' import torch if isinstance(__lowercase , (str, bytes, type(__lowercase )) ): return value elif isinstance(__lowercase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : Union[str, Any] = {} if isinstance(__lowercase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Any = {'''dtype''': torch.intaa} elif isinstance(__lowercase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : int = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowercase , PIL.Image.Image ): __UpperCAmelCase : List[Any] = np.asarray(__lowercase ) return torch.tensor(__lowercase , **{**default_dtype, **self.torch_tensor_kwargs} ) def A_ ( self : Optional[Any] , __lowercase : List[Any] ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(__lowercase , '''__array__''' ) and not isinstance(__lowercase , torch.Tensor ): __UpperCAmelCase : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowercase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowercase ) for substruct in data_struct] ) elif isinstance(__lowercase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowercase ) for substruct in data_struct] ) return self._tensorize(__lowercase ) def A_ ( self : Optional[int] , __lowercase : dict ): '''simple docstring''' return map_nested(self._recursive_tensorize , __lowercase , map_list=__lowercase ) def A_ ( self : Dict , __lowercase : pa.Table ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.numpy_arrow_extractor().extract_row(__lowercase ) __UpperCAmelCase : List[Any] = self.python_features_decoder.decode_row(__lowercase ) return self.recursive_tensorize(__lowercase ) def A_ ( self : List[str] , __lowercase : pa.Table ): '''simple docstring''' __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_column(__lowercase ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(__lowercase , pa_table.column_names[0] ) __UpperCAmelCase : int = self.recursive_tensorize(__lowercase ) __UpperCAmelCase : int = self._consolidate(__lowercase ) return column def A_ ( self : Union[str, Any] , __lowercase : pa.Table ): '''simple docstring''' __UpperCAmelCase : Tuple = self.numpy_arrow_extractor().extract_batch(__lowercase ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_batch(__lowercase ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(__lowercase ) for column_name in batch: __UpperCAmelCase : List[Any] = self._consolidate(batch[column_name] ) return batch
374
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowercase__ :int = 'src/transformers' lowercase__ :List[str] = 'docs/source/en/tasks' def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->str: """simple docstring""" with open(UpperCAmelCase_ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __UpperCAmelCase : Union[str, Any] = f.readlines() # Find the start prompt. __UpperCAmelCase : Any = 0 while not lines[start_index].startswith(UpperCAmelCase_ ): start_index += 1 start_index += 1 __UpperCAmelCase : Optional[Any] = start_index while not lines[end_index].startswith(UpperCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowercase__ :Any = direct_transformers_import(TRANSFORMERS_PATH) lowercase__ :List[Any] = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowercase__ :Union[str, Any] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def lowerCamelCase_ ( UpperCAmelCase_ ) ->Union[str, Any]: """simple docstring""" __UpperCAmelCase : List[str] = TASK_GUIDE_TO_MODELS[task_guide] __UpperCAmelCase : Dict = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCAmelCase_ , set() ) __UpperCAmelCase : List[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def lowerCamelCase_ ( UpperCAmelCase_ , UpperCAmelCase_=False ) ->Tuple: """simple docstring""" __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Dict = _find_text_in_file( filename=os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) __UpperCAmelCase : List[str] = get_model_list_for_task(UpperCAmelCase_ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' ''' to fix this.''' ) if __name__ == "__main__": lowercase__ :int = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowercase__ :Optional[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
374
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex A_ : str = logging.getLogger(__name__) class _lowerCAmelCase: """simple docstring""" def __init__( self ): UpperCamelCase_: Optional[int] = False def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not self.initialized: UpperCamelCase_: Optional[Any] = RagRetriever( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) UpperCamelCase_: str = True def _a ( self ): self.retriever.index.init_index() def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_ ,UpperCamelCase_: Any = self.retriever._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return doc_ids, retrieved_doc_embeds class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): if index is not None and index.is_initialized() and len(_lowerCamelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , index=_lowerCamelCase , init_retrieval=_lowerCamelCase , ) UpperCamelCase_: List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for worker in self.retrieval_workers ] ) def _a ( self ): logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , _lowerCamelCase , _lowerCamelCase ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCamelCase_: Union[str, Any] = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCamelCase_ ,UpperCamelCase_: str = ray.get(random_worker.retrieve.remote(_lowerCamelCase , _lowerCamelCase ) ) else: UpperCamelCase_ ,UpperCamelCase_: Dict = self._main_retrieve(_lowerCamelCase , _lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(_lowerCamelCase ) @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): return super(_lowerCamelCase , cls ).get_tokenizers(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase ) @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , **_lowerCamelCase ): UpperCamelCase_: List[str] = kwargs.pop('config' , _lowerCamelCase ) or RagConfig.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: Optional[int] = RagTokenizer.from_pretrained(_lowerCamelCase , config=_lowerCamelCase ) UpperCamelCase_: List[str] = rag_tokenizer.question_encoder UpperCamelCase_: List[Any] = rag_tokenizer.generator if indexed_dataset is not None: UpperCamelCase_: Union[str, Any] = 'custom' UpperCamelCase_: int = CustomHFIndex(config.retrieval_vector_size , _lowerCamelCase ) else: UpperCamelCase_: str = cls._build_index(_lowerCamelCase ) return cls( _lowerCamelCase , question_encoder_tokenizer=_lowerCamelCase , generator_tokenizer=_lowerCamelCase , retrieval_workers=_lowerCamelCase , index=_lowerCamelCase , )
57
'''simple docstring''' _UpperCAmelCase : Any = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
107
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline SCREAMING_SNAKE_CASE__ = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): lowerCamelCase_ : Optional[datasets.Features] = None lowerCamelCase_ : str = "utf-8" lowerCamelCase_ : Optional[str] = None lowerCamelCase_ : Optional[str] = None lowerCamelCase_ : bool = True # deprecated lowerCamelCase_ : Optional[int] = None # deprecated lowerCamelCase_ : int = 1_0 << 2_0 # 10MB lowerCamelCase_ : Optional[bool] = None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): lowerCamelCase_ : List[str] = JsonConfig def _snake_case ( self : int): if self.config.block_size is not None: logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead") SCREAMING_SNAKE_CASE_ :Union[str, Any] = self.config.block_size if self.config.use_threads is not True: logger.warning( "The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.") if self.config.newlines_in_values is not None: raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported") return datasets.DatasetInfo(features=self.config.features) def _snake_case ( self : Dict , UpperCAmelCase : str): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}") SCREAMING_SNAKE_CASE_ :int = dl_manager.download_and_extract(self.config.data_files) if isinstance(A__ , (str, list, tuple)): SCREAMING_SNAKE_CASE_ :Optional[Any] = data_files if isinstance(A__ , A__): SCREAMING_SNAKE_CASE_ :List[str] = [files] SCREAMING_SNAKE_CASE_ :int = [dl_manager.iter_files(A__) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files})] SCREAMING_SNAKE_CASE_ :List[str] = [] for split_name, files in data_files.items(): if isinstance(A__ , A__): SCREAMING_SNAKE_CASE_ :Optional[int] = [files] SCREAMING_SNAKE_CASE_ :Optional[int] = [dl_manager.iter_files(A__) for file in files] splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={"files": files})) return splits def _snake_case ( self : str , UpperCAmelCase : Any): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features) - set(pa_table.column_names): SCREAMING_SNAKE_CASE_ :Optional[Any] = self.config.features.arrow_schema.field(A__).type SCREAMING_SNAKE_CASE_ :str = pa_table.append_column(A__ , pa.array([None] * len(A__) , type=A__)) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE_ :Optional[int] = table_cast(A__ , self.config.features.arrow_schema) return pa_table def _snake_case ( self : List[Any] , UpperCAmelCase : Tuple): for file_idx, file in enumerate(itertools.chain.from_iterable(A__)): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(A__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: SCREAMING_SNAKE_CASE_ :Optional[Any] = json.load(A__) # We keep only the field we are interested in SCREAMING_SNAKE_CASE_ :Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(A__ , (list, tuple)): SCREAMING_SNAKE_CASE_ :Union[str, Any] = set().union(*[row.keys() for row in dataset]) SCREAMING_SNAKE_CASE_ :Any = {col: [row.get(A__) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE_ :Any = dataset SCREAMING_SNAKE_CASE_ :Any = pa.Table.from_pydict(A__) yield file_idx, self._cast_table(A__) # If the file has one json object per line else: with open(A__ , "rb") as f: SCREAMING_SNAKE_CASE_ :List[str] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE_ :List[str] = max(self.config.chunksize // 32 , 16 << 10) SCREAMING_SNAKE_CASE_ :Any = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: SCREAMING_SNAKE_CASE_ :Dict = f.read(self.config.chunksize) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(A__) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE_ :List[Any] = batch.decode(self.config.encoding , errors=A__).encode("utf-8") try: while True: try: SCREAMING_SNAKE_CASE_ :str = paj.read_json( io.BytesIO(A__) , read_options=paj.ReadOptions(block_size=A__)) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(A__ , pa.ArrowInvalid) and "straddling" not in str(A__) or block_size > len(A__) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"Batch of {len(A__)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.") block_size *= 2 except pa.ArrowInvalid as e: try: with open( A__ , encoding=self.config.encoding , errors=self.config.encoding_errors) as f: SCREAMING_SNAKE_CASE_ :Optional[Any] = json.load(A__) except json.JSONDecodeError: logger.error(F"Failed to read file '{file}' with error {type(A__)}: {e}") raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(A__ , A__): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE_ :str = set().union(*[row.keys() for row in dataset]) SCREAMING_SNAKE_CASE_ :List[str] = {col: [row.get(A__) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE_ :int = pa.Table.from_pydict(A__) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"Failed to read file '{file}' with error {type(A__)}: {e}") raise ValueError(F"Not able to read records in the JSON file at {file}.") from None yield file_idx, self._cast_table(A__) break else: logger.error(F"Failed to read file '{file}' with error {type(A__)}: {e}") raise ValueError( F"Not able to read records in the JSON file at {file}. " F"You should probably indicate the field of the JSON file containing your records. " F"This JSON file contain the following fields: {str(list(dataset.keys()))}. " F"Select the correct one and provide it as `field='XXX'` to the dataset loading method. ") from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(A__) batch_idx += 1
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_albert": ["ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "AlbertConfig", "AlbertOnnxConfig"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["AlbertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["AlbertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "AlbertForMaskedLM", "AlbertForMultipleChoice", "AlbertForPreTraining", "AlbertForQuestionAnswering", "AlbertForSequenceClassification", "AlbertForTokenClassification", "AlbertModel", "AlbertPreTrainedModel", "load_tf_weights_in_albert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFAlbertForMaskedLM", "TFAlbertForMultipleChoice", "TFAlbertForPreTraining", "TFAlbertForQuestionAnswering", "TFAlbertForSequenceClassification", "TFAlbertForTokenClassification", "TFAlbertMainLayer", "TFAlbertModel", "TFAlbertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FlaxAlbertForMaskedLM", "FlaxAlbertForMultipleChoice", "FlaxAlbertForPreTraining", "FlaxAlbertForQuestionAnswering", "FlaxAlbertForSequenceClassification", "FlaxAlbertForTokenClassification", "FlaxAlbertModel", "FlaxAlbertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
140
0
from ..utils import DummyObject, requires_backends class lowerCamelCase ( metaclass=_UpperCamelCase ): _lowerCAmelCase : List[Any] = ["""torch""", """scipy"""] def __init__( self , *lowercase__ , **lowercase__): requires_backends(self , ['''torch''', '''scipy''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''torch''', '''scipy''']) @classmethod def A( cls , *lowercase__ , **lowercase__): requires_backends(cls , ['''torch''', '''scipy'''])
462
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class A__ ( unittest.TestCase ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=7 , UpperCamelCase__=3 , UpperCamelCase__=18 , UpperCamelCase__=30 , UpperCamelCase__=400 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=[0.5, 0.5, 0.5] , UpperCamelCase__=[0.5, 0.5, 0.5] , ) -> List[str]: '''simple docstring''' A_ = parent A_ = batch_size A_ = num_channels A_ = image_size A_ = min_resolution A_ = max_resolution A_ = do_resize A_ = size if size is not None else {"""height""": 18, """width""": 20} A_ = do_thumbnail A_ = do_align_axis A_ = do_pad A_ = do_normalize A_ = image_mean A_ = image_std def snake_case_ ( self ) -> Tuple: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class A__ ( _snake_case , unittest.TestCase ): lowercase = DonutImageProcessor if is_vision_available() else None def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = DonutImageProcessingTester(self ) @property def snake_case_ ( self ) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """size""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_thumbnail""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_align_long_axis""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_pad""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(UpperCamelCase__ , """image_std""" ) ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} ) A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) # Previous config had dimensions in (width, height) order A_ = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @is_flaky() def snake_case_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def snake_case_ ( self ) -> int: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) @is_flaky() def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input A_ = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched A_ = image_processing(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
709
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
667
0
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowercase : Union[str, Any] = None lowercase : int = logging.get_logger(__name__) lowercase : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowercase : int = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 lowercase : List[Any] = { """t5-small""": 5_1_2, """t5-base""": 5_1_2, """t5-large""": 5_1_2, """t5-3b""": 5_1_2, """t5-11b""": 5_1_2, } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : int = VOCAB_FILES_NAMES __A : List[str] = PRETRAINED_VOCAB_FILES_MAP __A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Any = ['''input_ids''', '''attention_mask'''] __A : Optional[Any] = TaTokenizer __A : List[int] = [] def __init__( self , lowercase=None , lowercase=None , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=100 , lowercase=None , **lowercase , ) -> List[str]: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: a__ : Tuple = [F'<extra_id_{i}>' for i in range(lowercase)] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens a__ : Optional[int] = len(set(filter(lambda lowercase: bool('extra_id_' in str(lowercase)) , lowercase))) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens') super().__init__( lowercase , tokenizer_file=lowercase , eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , extra_ids=lowercase , additional_special_tokens=lowercase , **lowercase , ) a__ : Optional[int] = vocab_file a__ : Optional[Any] = False if not self.vocab_file else True a__ : Optional[Any] = extra_ids @staticmethod def __lowercase ( lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: a__ : List[str] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , lowercase , ) return max_model_length def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowercase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return a__ : List[Any] = os.path.join( lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowercase): copyfile(self.vocab_file , lowercase) logger.info(F'Copy vocab file to {out_vocab_file}') return (out_vocab_file,) def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: a__ : List[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : str = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos) * [0] return len(token_ids_a + eos + token_ids_a + eos) * [0] def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return list( set(filter(lambda lowercase: bool(re.search(r'<extra_id_\d+>' , lowercase)) is not None , self.additional_special_tokens))) def __lowercase ( self) -> Dict: '''simple docstring''' return [self.convert_tokens_to_ids(lowercase) for token in self.get_sentinel_tokens()]
302
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=30 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=2 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=3 , lowercase=None , ) -> Optional[Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : Any = batch_size a__ : Tuple = image_size a__ : Optional[Any] = patch_size a__ : Optional[Any] = num_channels a__ : Dict = is_training a__ : Optional[int] = use_labels a__ : Optional[Any] = hidden_size a__ : Dict = num_hidden_layers a__ : Union[str, Any] = num_attention_heads a__ : Optional[Any] = intermediate_size a__ : Dict = hidden_act a__ : Tuple = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : List[str] = type_sequence_label_size a__ : Tuple = initializer_range a__ : Any = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : str = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : List[str] = None if self.use_labels: a__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : Dict = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> int: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = TFViTModel(config=lowercase) a__ : int = model(lowercase , training=lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # Test with an image with different size than the one specified in config. a__ : Optional[Any] = self.image_size // 2 a__ : List[str] = pixel_values[:, :, :image_size, :image_size] a__ : Union[str, Any] = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase) a__ : str = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' a__ : Any = self.type_sequence_label_size a__ : Dict = TFViTForImageClassification(lowercase) a__ : Tuple = model(lowercase , labels=lowercase , training=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # Test with an image with different size than the one specified in config. a__ : str = self.image_size // 2 a__ : int = pixel_values[:, :, :image_size, :image_size] a__ : List[str] = model(lowercase , interpolate_pos_encoding=lowercase , training=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images a__ : List[Any] = 1 a__ : Optional[int] = TFViTForImageClassification(lowercase) a__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) a__ : Optional[Any] = model(lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() a__ , a__ , a__ : int = config_and_inputs a__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : List[Any] = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () __A : Optional[int] = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) __A : Optional[int] = False __A : Any = False __A : Tuple = False def __lowercase ( self) -> int: '''simple docstring''' a__ : Optional[int] = TFViTModelTester(self) a__ : str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Any: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Optional[Any]: '''simple docstring''' pass def __lowercase ( self) -> Any: '''simple docstring''' a__ , a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer)) a__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Layer)) def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[Any] = model_class(lowercase) a__ : Optional[int] = inspect.signature(model.call) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : str = [*signature.parameters.keys()] a__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) @slow def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : str = TFViTModel.from_pretrained('google/vit-base-patch16-224') self.assertIsNotNone(lowercase) def A_ ( ) -> Any: a__ : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> int: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') if is_vision_available() else None @slow def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : int = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224') a__ : Optional[int] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Any = image_processor(images=lowercase , return_tensors='tf') # forward pass a__ : Union[str, Any] = model(**lowercase) # verify the logits a__ : Any = tf.TensorShape((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Dict = tf.constant([-0.27_44, 0.82_15, -0.08_36]) tf.debugging.assert_near(outputs.logits[0, :3] , lowercase , atol=1e-4)
302
1
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Union[str, Any] =str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE = 100_0000 ): lowerCAmelCase_ : Optional[int] =0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
717
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = (UniPCMultistepScheduler,) _UpperCamelCase : str = (('''num_inference_steps''', 25),) def __A ( self : Tuple , **UpperCamelCase_ : Tuple ): lowerCAmelCase_ : Dict ={ '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**UpperCamelCase_ ) return config def __A ( self : Any , UpperCamelCase_ : List[Any]=0 , **UpperCamelCase_ : List[Any] ): lowerCAmelCase_ : List[str] =dict(self.forward_default_kwargs ) lowerCAmelCase_ : Optional[int] =kwargs.pop('''num_inference_steps''' , UpperCamelCase_ ) lowerCAmelCase_ : List[str] =self.dummy_sample lowerCAmelCase_ : Optional[Any] =0.1 * sample lowerCAmelCase_ : List[str] =[residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Tuple =self.get_scheduler_config(**UpperCamelCase_ ) lowerCAmelCase_ : Any =scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals lowerCAmelCase_ : Optional[int] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) lowerCAmelCase_ : List[Any] =scheduler_class.from_pretrained(UpperCamelCase_ ) new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals lowerCAmelCase_ : List[Any] =dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] =sample, sample for t in range(UpperCamelCase_ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase_ : List[Any] =scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample lowerCAmelCase_ : str =new_scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __A ( self : Optional[int] , UpperCamelCase_ : str=0 , **UpperCamelCase_ : List[str] ): lowerCAmelCase_ : List[Any] =dict(self.forward_default_kwargs ) lowerCAmelCase_ : Optional[int] =kwargs.pop('''num_inference_steps''' , UpperCamelCase_ ) lowerCAmelCase_ : Any =self.dummy_sample lowerCAmelCase_ : Any =0.1 * sample lowerCAmelCase_ : List[Any] =[residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : List[Any] =self.get_scheduler_config() lowerCAmelCase_ : Union[str, Any] =scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : Union[str, Any] =dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase_ ) lowerCAmelCase_ : str =scheduler_class.from_pretrained(UpperCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : int =dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase_ : int =scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample lowerCAmelCase_ : Optional[Any] =new_scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __A ( self : str , UpperCamelCase_ : Any=None , **UpperCamelCase_ : str ): if scheduler is None: lowerCAmelCase_ : Tuple =self.scheduler_classes[0] lowerCAmelCase_ : List[str] =self.get_scheduler_config(**UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] =scheduler_class(**UpperCamelCase_ ) lowerCAmelCase_ : int =self.scheduler_classes[0] lowerCAmelCase_ : Tuple =self.get_scheduler_config(**UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] =scheduler_class(**UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] =10 lowerCAmelCase_ : Tuple =self.dummy_model() lowerCAmelCase_ : Any =self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Union[str, Any] =model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Dict =scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample return sample def __A ( self : Union[str, Any] ): lowerCAmelCase_ : Dict =dict(self.forward_default_kwargs ) lowerCAmelCase_ : List[Any] =kwargs.pop('''num_inference_steps''' , UpperCamelCase_ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Dict =self.get_scheduler_config() lowerCAmelCase_ : int =scheduler_class(**UpperCamelCase_ ) lowerCAmelCase_ : List[str] =self.dummy_sample lowerCAmelCase_ : List[str] =0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase_ , '''set_timesteps''' ): scheduler.set_timesteps(UpperCamelCase_ ) elif num_inference_steps is not None and not hasattr(UpperCamelCase_ , '''set_timesteps''' ): lowerCAmelCase_ : str =num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ : int =[residual + 0.2, residual + 0.1_5, residual + 0.1_0] lowerCAmelCase_ : Dict =dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase_ : Optional[int] =scheduler.timesteps[5] lowerCAmelCase_ : Optional[int] =scheduler.timesteps[6] lowerCAmelCase_ : List[str] =scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample lowerCAmelCase_ : List[Any] =scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __A ( self : List[Any] ): # make sure that iterating over schedulers with same config names gives same results # for defaults lowerCAmelCase_ : Union[str, Any] =UniPCMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase_ : Union[str, Any] =self.full_loop(scheduler=UpperCamelCase_ ) lowerCAmelCase_ : int =torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 lowerCAmelCase_ : Any =DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Dict =DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Optional[Any] =DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : List[Any] =UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase_ : Optional[int] =self.full_loop(scheduler=UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] =torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __A ( self : Tuple ): for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase_ ) def __A ( self : List[str] ): self.check_over_configs(thresholding=UpperCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , solver_order=UpperCamelCase_ , solver_type=UpperCamelCase_ , ) def __A ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase_ ) def __A ( self : int ): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=UpperCamelCase_ , solver_type=UpperCamelCase_ , prediction_type=UpperCamelCase_ , ) lowerCAmelCase_ : Union[str, Any] =self.full_loop( solver_order=UpperCamelCase_ , solver_type=UpperCamelCase_ , prediction_type=UpperCamelCase_ , ) assert not torch.isnan(UpperCamelCase_ ).any(), "Samples have nan numbers" def __A ( self : Tuple ): self.check_over_configs(lower_order_final=UpperCamelCase_ ) self.check_over_configs(lower_order_final=UpperCamelCase_ ) def __A ( self : List[Any] ): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=UpperCamelCase_ , time_step=0 ) def __A ( self : Any ): lowerCAmelCase_ : Optional[Any] =self.full_loop() lowerCAmelCase_ : int =torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def __A ( self : Tuple ): lowerCAmelCase_ : List[str] =self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase_ : List[str] =torch.mean(torch.abs(UpperCamelCase_ ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def __A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] =self.scheduler_classes[0] lowerCAmelCase_ : Optional[int] =self.get_scheduler_config(thresholding=UpperCamelCase_ , dynamic_thresholding_ratio=0 ) lowerCAmelCase_ : Optional[Any] =scheduler_class(**UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] =10 lowerCAmelCase_ : Union[str, Any] =self.dummy_model() lowerCAmelCase_ : List[Any] =self.dummy_sample_deter.half() scheduler.set_timesteps(UpperCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict =model(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : List[Any] =scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample assert sample.dtype == torch.floataa def __A ( self : List[str] , **UpperCamelCase_ : List[Any] ): for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : int =self.get_scheduler_config(**UpperCamelCase_ ) lowerCAmelCase_ : Optional[int] =scheduler_class(**UpperCamelCase_ ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
305
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP snake_case__ : List[Any] = False try: snake_case__ : int = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class _A : '''simple docstring''' def __init__( self : Dict , lowerCamelCase : str = None , lowerCamelCase : list = [] ): '''simple docstring''' __lowercase = 0 __lowercase = choices __lowercase = prompt if sys.platform == "win32": __lowercase = "*" else: __lowercase = "โž” " def _snake_case ( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : str = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , _lowerCAmelCase ) else: forceWrite(self.choices[index] , _lowerCAmelCase ) def _snake_case ( self : Dict , lowerCamelCase : int ): '''simple docstring''' if index == self.position: forceWrite(f""" {self.arrow_char} """ ) self.write_choice(_lowerCAmelCase ) else: forceWrite(f""" {self.choices[index]}""" ) reset_cursor() def _snake_case ( self : Optional[Any] , lowerCamelCase : Direction , lowerCamelCase : int = 1 ): '''simple docstring''' __lowercase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_lowerCAmelCase ) move_cursor(_lowerCAmelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def _snake_case ( self : Any ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def _snake_case ( self : Tuple ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_lowerCAmelCase )] for number in range(10 )] ) def _snake_case ( self : Union[str, Any] ): '''simple docstring''' __lowercase = int(chr(self.current_selection ) ) __lowercase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _lowerCAmelCase ) else: return else: return def _snake_case ( self : Optional[int] , lowerCamelCase : int = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) __lowercase = default_choice for i in range(len(self.choices ) ): self.print_choice(_lowerCAmelCase ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: __lowercase = int(builtins.input() ) except ValueError: __lowercase = default_choice else: __lowercase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(_lowerCAmelCase , "\n" ) return choice
402
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : List[str] = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) __UpperCamelCase : Tuple = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) __UpperCamelCase : Optional[Any] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) __UpperCamelCase : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) __UpperCamelCase : int = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) __UpperCamelCase : List[Any] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) __UpperCamelCase : List[Any] = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) __UpperCamelCase : List[str] = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) __UpperCamelCase : List[str] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) __UpperCamelCase : int = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) __UpperCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) __UpperCamelCase : str = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) __UpperCamelCase : Optional[int] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) __UpperCamelCase : Dict = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) __UpperCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __UpperCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __UpperCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __UpperCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __UpperCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __UpperCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __UpperCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Tuple = FLAX_MODEL_MAPPING __UpperCamelCase : Tuple = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Union[str, Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING __UpperCamelCase : List[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :List[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING __UpperCamelCase : Dict = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :List[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[int] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __UpperCamelCase : int = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __UpperCamelCase : int = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCamelCase : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __UpperCamelCase : str = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
80
0
_a : List[str] = { 0: '0', 1: '1', 2: '2', 3: '3', 4: '4', 5: '5', 6: '6', 7: '7', 8: '8', 9: '9', 10: 'a', 11: 'b', 12: 'c', 13: 'd', 14: 'e', 15: 'f', } def UpperCamelCase__ ( _A: float ): '''simple docstring''' assert type(_A ) in (int, float) and decimal == int(_A ) __lowerCamelCase = int(_A ) __lowerCamelCase = """""" __lowerCamelCase = False if decimal < 0: __lowerCamelCase = True decimal *= -1 while decimal > 0: __lowerCamelCase , __lowerCamelCase = divmod(_A , 16 ) __lowerCamelCase = values[remainder] + hexadecimal __lowerCamelCase = """0x""" + hexadecimal if negative: __lowerCamelCase = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
571
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class UpperCamelCase_ ( unittest.TestCase ): """simple docstring""" A = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING A = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = TextaTextGenerationPipeline(model=UpperCAmelCase , tokenizer=UpperCAmelCase ) return generator, ["Something to write", "Something else"] def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = generator("""Something there""" ) self.assertEqual(UpperCAmelCase , [{"""generated_text""": ANY(UpperCAmelCase )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) __lowerCamelCase = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ [{"""generated_text""": ANY(UpperCAmelCase )}, {"""generated_text""": ANY(UpperCAmelCase )}], [{"""generated_text""": ANY(UpperCAmelCase )}, {"""generated_text""": ANY(UpperCAmelCase )}], ] , ) __lowerCamelCase = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ [{"""generated_text""": ANY(UpperCAmelCase )}, {"""generated_text""": ANY(UpperCAmelCase )}], [{"""generated_text""": ANY(UpperCAmelCase )}, {"""generated_text""": ANY(UpperCAmelCase )}], ] , ) with self.assertRaises(UpperCAmelCase ): generator(4 ) @require_torch def lowerCamelCase_ ( self ): __lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility __lowerCamelCase = generator("""Something there""" , do_sample=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , [{"""generated_text""": """"""}] ) __lowerCamelCase = 3 __lowerCamelCase = generator( """Something there""" , num_return_sequences=UpperCAmelCase , num_beams=UpperCAmelCase , ) __lowerCamelCase = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = generator("""This is a test""" , do_sample=UpperCAmelCase , num_return_sequences=2 , return_tensors=UpperCAmelCase ) self.assertEqual( UpperCAmelCase , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) __lowerCamelCase = generator.model.config.eos_token_id __lowerCamelCase = """<pad>""" __lowerCamelCase = generator( ["""This is a test""", """This is a second test"""] , do_sample=UpperCAmelCase , num_return_sequences=2 , batch_size=2 , return_tensors=UpperCAmelCase , ) self.assertEqual( UpperCAmelCase , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def lowerCamelCase_ ( self ): __lowerCamelCase = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility __lowerCamelCase = generator("""Something there""" , do_sample=UpperCAmelCase ) self.assertEqual(UpperCAmelCase , [{"""generated_text""": """"""}] )
571
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCamelCase : Any = logging.get_logger(__name__) @add_end_docstrings(__a ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Tuple , *__a : Tuple , **__a : Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) requires_backends(self , """vision""" ) self.check_model_type(SCREAMING_SNAKE_CASE__ ) def __call__( self : Any , __a : Tuple , **__a : Optional[int] ) -> str: """simple docstring""" return super().__call__(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase ( self : Optional[int] , **__a : Optional[int] ) -> Optional[Any]: """simple docstring""" return {}, {}, {} def lowerCAmelCase ( self : List[str] , __a : Dict ) -> Any: """simple docstring""" __lowercase : Optional[int] = load_image(SCREAMING_SNAKE_CASE__ ) __lowercase : Any = image.size __lowercase : Dict = self.image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors=self.framework ) return model_inputs def lowerCAmelCase ( self : int , __a : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase : str = self.model(**SCREAMING_SNAKE_CASE__ ) return model_outputs def lowerCAmelCase ( self : Tuple , __a : Tuple ) -> str: """simple docstring""" __lowercase : Dict = model_outputs.predicted_depth __lowercase : Optional[Any] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=SCREAMING_SNAKE_CASE__ ) __lowercase : str = prediction.squeeze().cpu().numpy() __lowercase : Dict = (output * 255 / np.max(SCREAMING_SNAKE_CASE__ )).astype("""uint8""" ) __lowercase : Optional[Any] = Image.fromarray(SCREAMING_SNAKE_CASE__ ) __lowercase : int = {} __lowercase : Union[str, Any] = predicted_depth __lowercase : List[Any] = depth return output_dict
149
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowerCamelCase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowerCamelCase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCamelCase ( a_ : Any , a_ : Union[str, Any]=False ) -> int: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Dict = create_model( '''HTSAT-tiny''' , '''roberta''' , a_ , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=a_ , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def __lowerCamelCase ( a_ : Optional[int] ) -> int: __SCREAMING_SNAKE_CASE :Dict = {} __SCREAMING_SNAKE_CASE :Any = r'''.*sequential.(\d+).*''' __SCREAMING_SNAKE_CASE :Dict = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __SCREAMING_SNAKE_CASE :str = key.replace(a_ , a_ ) if re.match(a_ , a_ ): # replace sequential layers with list __SCREAMING_SNAKE_CASE :Tuple = re.match(a_ , a_ ).group(1 ) __SCREAMING_SNAKE_CASE :str = key.replace(f'''sequential.{sequential_layer}.''' , f'''layers.{int(a_ )//3}.linear.''' ) elif re.match(a_ , a_ ): __SCREAMING_SNAKE_CASE :Union[str, Any] = int(re.match(a_ , a_ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __SCREAMING_SNAKE_CASE :Union[str, Any] = 1 if projecton_layer == 0 else 2 __SCREAMING_SNAKE_CASE :Tuple = key.replace(f'''_projection.{projecton_layer}.''' , f'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __SCREAMING_SNAKE_CASE :Union[str, Any] = value __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv.size(0 ) // 3 __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv[:qkv_dim] __SCREAMING_SNAKE_CASE :Optional[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] __SCREAMING_SNAKE_CASE :str = mixed_qkv[qkv_dim * 2 :] __SCREAMING_SNAKE_CASE :Dict = query_layer __SCREAMING_SNAKE_CASE :Tuple = key_layer __SCREAMING_SNAKE_CASE :str = value_layer else: __SCREAMING_SNAKE_CASE :Optional[Any] = value return model_state_dict def __lowerCamelCase ( a_ : Optional[int] , a_ : Dict , a_ : Dict , a_ : List[Any]=False ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[int] = init_clap(a_ , enable_fusion=a_ ) clap_model.eval() __SCREAMING_SNAKE_CASE :Optional[Any] = clap_model.state_dict() __SCREAMING_SNAKE_CASE :Tuple = rename_state_dict(a_ ) __SCREAMING_SNAKE_CASE :Any = ClapConfig() __SCREAMING_SNAKE_CASE :Tuple = enable_fusion __SCREAMING_SNAKE_CASE :Dict = ClapModel(a_ ) # ignore the spectrogram embedding layer model.load_state_dict(a_ , strict=a_ ) model.save_pretrained(a_ ) transformers_config.save_pretrained(a_ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowerCamelCase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
498
0
def _lowercase ( lowerCamelCase__ : int = 3, lowerCamelCase__ : int = 7, lowerCamelCase__ : int = 1_000_000 ): _a = 0 _a = 1 for current_denominator in range(1, limit + 1 ): _a = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: _a = current_numerator _a = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
708
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __snake_case : Tuple = "\\n Text data.\n Second line of data." __snake_case : int = "file" @pytest.fixture(scope="session" ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _a = bytes(lowerCamelCase__, "utf-8" ) with zstd.open(lowerCamelCase__, "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture def _lowercase ( lowerCamelCase__ : int ): with open(os.path.join(tmpfs.local_root_dir, lowerCamelCase__ ), "w" ) as f: f.write(lowerCamelCase__ ) return FILE_PATH @pytest.mark.parametrize("compression_format", ["gzip", "xz", "zstd"] ) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int], lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict ): _a = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _a = input_paths[compression_format] _a = tmp_path / "cache" _a = DownloadConfig(cache_dir=lowerCamelCase__, extract_compressed_file=lowerCamelCase__ ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) with open(lowerCamelCase__ ) as f: _a = f.read() with open(lowerCamelCase__ ) as f: _a = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted", [True, False] ) @pytest.mark.parametrize("default_cache_dir", [True, False] ) def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str], lowerCamelCase__ : List[str] ): _a = "custom_cache" _a = "custom_extracted_dir" _a = tmp_path / "custom_extracted_path" if default_extracted: _a = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR", lowerCamelCase__ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH", str(lowerCamelCase__ ) ) _a = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _a = xz_file _a = ( DownloadConfig(extract_compressed_file=lowerCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=lowerCamelCase__ ) ) _a = cached_path(lowerCamelCase__, download_config=lowerCamelCase__ ) assert Path(lowerCamelCase__ ).parent.parts[-2:] == expected def _lowercase ( lowerCamelCase__ : Union[str, Any] ): # absolute path _a = str(Path(lowerCamelCase__ ).resolve() ) assert cached_path(lowerCamelCase__ ) == text_file # relative path _a = str(Path(lowerCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowerCamelCase__ ) == text_file def _lowercase ( lowerCamelCase__ : Dict ): # absolute path _a = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) # relative path _a = "./__missing_file__.txt" with pytest.raises(lowerCamelCase__ ): cached_path(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(lowerCamelCase__ ) as f: _a = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( ): with pytest.raises(lowerCamelCase__ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): http_get("https://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): ftp_get("ftp://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE", lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(lowerCamelCase__ ): fsspec_get("s3://huggingface.co", temp_file=lowerCamelCase__ ) with pytest.raises(lowerCamelCase__ ): fsspec_head("s3://huggingface.co" )
691
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor A = logging.get_logger(__name__) class a__ ( a_ ): def __init__( self : int , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Optional[Any]): """simple docstring""" warnings.warn( "The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use ImageGPTImageProcessor instead." , a_ , ) super().__init__(*a_ , **a_)
77
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class snake_case_ ( a_ ): __lowerCAmelCase = (DEISMultistepScheduler,) __lowerCAmelCase = (("num_inference_steps", 2_5),) def snake_case_ ( self , **a_ ): a_ : Optional[Any] = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**a_ ) return config def snake_case_ ( self , a_=0 , **a_ ): a_ : Union[str, Any] = dict(self.forward_default_kwargs ) a_ : Union[str, Any] = kwargs.pop("num_inference_steps" , a_ ) a_ : List[str] = self.dummy_sample a_ : Union[str, Any] = 0.1 * sample a_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a_ : Any = self.get_scheduler_config(**a_ ) a_ : Dict = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals a_ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) a_ : Dict = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals a_ : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] a_ , a_ : List[str] = sample, sample for t in range(a_ , time_step + scheduler.config.solver_order + 1 ): a_ : Dict = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample a_ : List[str] = new_scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self ): pass def snake_case_ ( self , a_=0 , **a_ ): a_ : List[str] = dict(self.forward_default_kwargs ) a_ : Dict = kwargs.pop("num_inference_steps" , a_ ) a_ : List[str] = self.dummy_sample a_ : str = 0.1 * sample a_ : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a_ : Union[str, Any] = self.get_scheduler_config() a_ : Optional[Any] = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) a_ : Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) a_ : List[Any] = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) a_ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] a_ : Optional[int] = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample a_ : Tuple = new_scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def snake_case_ ( self , a_=None , **a_ ): if scheduler is None: a_ : Optional[Any] = self.scheduler_classes[0] a_ : Dict = self.get_scheduler_config(**a_ ) a_ : Union[str, Any] = scheduler_class(**a_ ) a_ : Optional[int] = self.scheduler_classes[0] a_ : List[str] = self.get_scheduler_config(**a_ ) a_ : Tuple = scheduler_class(**a_ ) a_ : Optional[int] = 1_0 a_ : Optional[Any] = self.dummy_model() a_ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): a_ : str = model(a_ , a_ ) a_ : str = scheduler.step(a_ , a_ , a_ ).prev_sample return sample def snake_case_ ( self ): a_ : Union[str, Any] = dict(self.forward_default_kwargs ) a_ : Tuple = kwargs.pop("num_inference_steps" , a_ ) for scheduler_class in self.scheduler_classes: a_ : List[Any] = self.get_scheduler_config() a_ : str = scheduler_class(**a_ ) a_ : Any = self.dummy_sample a_ : int = 0.1 * sample if num_inference_steps is not None and hasattr(a_ , "set_timesteps" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_ , "set_timesteps" ): a_ : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] a_ : str = dummy_past_residuals[: scheduler.config.solver_order] a_ : str = scheduler.timesteps[5] a_ : Dict = scheduler.timesteps[6] a_ : Dict = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample a_ : Any = scheduler.step(a_ , a_ , a_ , **a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def snake_case_ ( self ): # make sure that iterating over schedulers with same config names gives same results # for defaults a_ : Dict = DEISMultistepScheduler(**self.get_scheduler_config() ) a_ : List[str] = self.full_loop(scheduler=a_ ) a_ : Tuple = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 a_ : int = DPMSolverSinglestepScheduler.from_config(scheduler.config ) a_ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) a_ : Tuple = UniPCMultistepScheduler.from_config(scheduler.config ) a_ : Any = DEISMultistepScheduler.from_config(scheduler.config ) a_ : str = self.full_loop(scheduler=a_ ) a_ : Any = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def snake_case_ ( self ): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a_ ) def snake_case_ ( self ): self.check_over_configs(thresholding=a_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=a_ , prediction_type=a_ , sample_max_value=a_ , algorithm_type="deis" , solver_order=a_ , solver_type=a_ , ) def snake_case_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def snake_case_ ( self ): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=a_ , solver_type=a_ , prediction_type=a_ , algorithm_type=a_ , ) a_ : List[Any] = self.full_loop( solver_order=a_ , solver_type=a_ , prediction_type=a_ , algorithm_type=a_ , ) assert not torch.isnan(a_ ).any(), "Samples have nan numbers" def snake_case_ ( self ): self.check_over_configs(lower_order_final=a_ ) self.check_over_configs(lower_order_final=a_ ) def snake_case_ ( self ): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=a_ , time_step=0 ) def snake_case_ ( self ): a_ : str = self.full_loop() a_ : Dict = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 0.23_916 ) < 1e-3 def snake_case_ ( self ): a_ : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) a_ : Union[str, Any] = torch.mean(torch.abs(a_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def snake_case_ ( self ): a_ : List[str] = self.scheduler_classes[0] a_ : str = self.get_scheduler_config(thresholding=a_ , dynamic_thresholding_ratio=0 ) a_ : Dict = scheduler_class(**a_ ) a_ : int = 1_0 a_ : List[str] = self.dummy_model() a_ : Optional[int] = self.dummy_sample_deter.half() scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.timesteps ): a_ : Optional[int] = model(a_ , a_ ) a_ : Optional[Any] = scheduler.step(a_ , a_ , a_ ).prev_sample assert sample.dtype == torch.floataa
237
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger() @dataclass class __A : """simple docstring""" A_ = 42 A_ = field(default_factory=a ) A_ = field(default_factory=a ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )-> Any: lowercase__ = len(list(m.modules() ) ) == 1 or isinstance(_lowerCamelCase , nn.Convad ) or isinstance(_lowerCamelCase , nn.BatchNormad ) if has_not_submodules: self.traced.append(_lowerCamelCase ) def __call__( self , _lowerCamelCase )-> Union[str, Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(_lowerCamelCase ) [x.remove() for x in self.handles] return self @property def snake_case_( self )-> Optional[Any]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda _lowerCamelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class __A : """simple docstring""" A_ = 42 A_ = 42 A_ = 0 A_ = field(default_factory=a ) A_ = field(default_factory=a ) def __call__( self , _lowerCamelCase )-> List[str]: lowercase__ = Tracker(self.dest )(_lowerCamelCase ).parametrized lowercase__ = Tracker(self.src )(_lowerCamelCase ).parametrized lowercase__ = list(filter(lambda _lowerCamelCase : type(_lowerCamelCase ) not in self.src_skip , _lowerCamelCase ) ) lowercase__ = list(filter(lambda _lowerCamelCase : type(_lowerCamelCase ) not in self.dest_skip , _lowerCamelCase ) ) if len(_lowerCamelCase ) != len(_lowerCamelCase ): raise Exception( f'''Numbers of operations are different. Source module has {len(_lowerCamelCase )} operations while''' f''' destination module has {len(_lowerCamelCase )}.''' ) for dest_m, src_m in zip(_lowerCamelCase , _lowerCamelCase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) def _lowerCAmelCase ( lowercase : str , lowercase : ResNetConfig , lowercase : Path , lowercase : bool = True ) ->Optional[int]: """simple docstring""" print(F'''Converting {name}...''' ) with torch.no_grad(): lowercase__ = timm.create_model(lowercase , pretrained=lowercase ).eval() lowercase__ = ResNetForImageClassification(lowercase ).eval() lowercase__ = ModuleTransfer(src=lowercase , dest=lowercase ) lowercase__ = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(lowercase ) assert torch.allclose(from_model(lowercase ) , our_model(lowercase ).logits ), "The model logits don't match the original one." lowercase__ = F'''resnet{'-'.join(name.split('resnet' ) )}''' print(lowercase ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=lowercase , ) # we can use the convnext one lowercase__ = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=lowercase , ) print(F'''Pushed {checkpoint_name}''' ) def _lowerCAmelCase ( lowercase : Path , lowercase : str = None , lowercase : bool = True ) ->Optional[Any]: """simple docstring""" lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = 1_0_0_0 lowercase__ = (1, num_labels) lowercase__ = '''huggingface/label-files''' lowercase__ = num_labels lowercase__ = json.load(open(hf_hub_download(lowercase , lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(lowercase ): v for k, v in idalabel.items()} lowercase__ = idalabel lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = partial(lowercase , num_labels=lowercase , idalabel=lowercase , labelaid=lowercase ) lowercase__ = { '''resnet18''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet26''': ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet34''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[6_4, 1_2_8, 2_5_6, 5_1_2] , layer_type='''basic''' ), '''resnet50''': ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet101''': ImageNetPreTrainedConfig( depths=[3, 4, 2_3, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), '''resnet152''': ImageNetPreTrainedConfig( depths=[3, 8, 3_6, 3] , hidden_sizes=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , layer_type='''bottleneck''' ), } if model_name: convert_weight_and_push(lowercase , names_to_config[model_name] , lowercase , lowercase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowercase , lowercase , lowercase , lowercase ) return config, expected_shape if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported resnet* architecture," " currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
318
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class __A ( a ): """simple docstring""" A_ = 'xglm' A_ = ['past_key_values'] A_ = { 'num_attention_heads': 'attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'num_layers', } def __init__( self , _lowerCamelCase=2_5_6_0_0_8 , _lowerCamelCase=2_0_4_8 , _lowerCamelCase=1_0_2_4 , _lowerCamelCase=4_0_9_6 , _lowerCamelCase=2_4 , _lowerCamelCase=1_6 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=2 , **_lowerCamelCase , )-> List[str]: lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = ffn_dim lowercase__ = num_layers lowercase__ = attention_heads lowercase__ = activation_function lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = layerdrop lowercase__ = init_std lowercase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowercase__ = use_cache super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
318
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() snake_case = logging.get_logger(__name__) snake_case = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] snake_case = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = torch.load(lowercase , map_location="cpu" ) return sd def lowerCamelCase__ ( lowercase , lowercase , lowercase=rename_keys_prefix ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = OrderedDict() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue SCREAMING_SNAKE_CASE : Union[str, Any] = key for name_pair in rename_keys_prefix: SCREAMING_SNAKE_CASE : Any = new_key.replace(name_pair[0] , name_pair[1] ) SCREAMING_SNAKE_CASE : Dict = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately SCREAMING_SNAKE_CASE : Union[str, Any] = new_d["cls.predictions.bias"] return new_d @torch.no_grad() def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: SCREAMING_SNAKE_CASE : List[Any] = "pretraining" if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = {"visual_embedding_dim": 512} elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : List[Any] = {"visual_embedding_dim": 2048} elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Any = {"visual_embedding_dim": 2048} elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 1024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: SCREAMING_SNAKE_CASE : str = {"visual_embedding_dim": 512} SCREAMING_SNAKE_CASE : Tuple = "multichoice" elif "vqa_advanced" in checkpoint_path: SCREAMING_SNAKE_CASE : List[str] = {"visual_embedding_dim": 2048} SCREAMING_SNAKE_CASE : str = "vqa_advanced" elif "vqa" in checkpoint_path: SCREAMING_SNAKE_CASE : Tuple = {"visual_embedding_dim": 2048, "num_labels": 3129} SCREAMING_SNAKE_CASE : Optional[Any] = "vqa" elif "nlvr" in checkpoint_path: SCREAMING_SNAKE_CASE : int = { "visual_embedding_dim": 1024, "num_labels": 2, } SCREAMING_SNAKE_CASE : Tuple = "nlvr" SCREAMING_SNAKE_CASE : List[Any] = VisualBertConfig(**lowercase ) # Load State Dict SCREAMING_SNAKE_CASE : List[str] = load_state_dict(lowercase ) SCREAMING_SNAKE_CASE : Any = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": SCREAMING_SNAKE_CASE : int = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": SCREAMING_SNAKE_CASE : Tuple = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": SCREAMING_SNAKE_CASE : List[Any] = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": SCREAMING_SNAKE_CASE : Optional[Any] = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") snake_case = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
62
# Function to print upper half of diamond (pyramid) def __UpperCamelCase ( _A ): for i in range(0 , _A ): for _ in range(0 , n - i - 1 ): # printing spaces print(''' ''' , end='''''' ) for _ in range(0 , i + 1 ): # printing stars print('''* ''' , end='''''' ) print() def __UpperCamelCase ( _A ): for i in range(_A , 0 , -1 ): for _ in range(_A , 0 , -1 ): # printing stars print('''* ''' , end='''''' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(''' ''' , end='''''' ) def __UpperCamelCase ( _A ): if n <= 0: print(''' ... .... nothing printing :(''' ) return floyd(_A ) # upper half reverse_floyd(_A ) # lower half if __name__ == "__main__": print(R'''| /\ | |- | |- |--| |\ /| |-''') print(R'''|/ \| |- |_ |_ |__| | \/ | |_''') _A = 1 while K: _A = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) _A = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
431
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __a : Optional[Any] = logging.get_logger(__name__) class A ( lowerCamelCase_ ): _SCREAMING_SNAKE_CASE : str = ['''input_features''', '''is_longer'''] def __init__( self : Union[str, Any] , __UpperCAmelCase : Dict=64 , __UpperCAmelCase : List[Any]=48000 , __UpperCAmelCase : List[str]=480 , __UpperCAmelCase : List[Any]=10 , __UpperCAmelCase : Optional[Any]=1024 , __UpperCAmelCase : Optional[Any]=0.0 , __UpperCAmelCase : Any=False , __UpperCAmelCase : float = 0 , __UpperCAmelCase : float = 14000 , __UpperCAmelCase : int = None , __UpperCAmelCase : str = "fusion" , __UpperCAmelCase : str = "repeatpad" , **__UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" super().__init__( feature_size=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , padding_value=__UpperCAmelCase , return_attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) UpperCamelCase_ = top_db UpperCamelCase_ = truncation UpperCamelCase_ = padding UpperCamelCase_ = fft_window_size UpperCamelCase_ = (fft_window_size >> 1) + 1 UpperCamelCase_ = hop_length UpperCamelCase_ = max_length_s UpperCamelCase_ = max_length_s * sampling_rate UpperCamelCase_ = sampling_rate UpperCamelCase_ = frequency_min UpperCamelCase_ = frequency_max UpperCamelCase_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__UpperCAmelCase , min_frequency=__UpperCAmelCase , max_frequency=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , norm=__UpperCAmelCase , mel_scale='htk' , ) UpperCamelCase_ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__UpperCAmelCase , min_frequency=__UpperCAmelCase , max_frequency=__UpperCAmelCase , sampling_rate=__UpperCAmelCase , norm='slaney' , mel_scale='slaney' , ) def lowercase__ ( self : Tuple ) -> Dict[str, Any]: """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : int , __UpperCAmelCase : np.array , __UpperCAmelCase : Optional[np.array] = None ) -> np.ndarray: """simple docstring""" UpperCamelCase_ = spectrogram( __UpperCAmelCase , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__UpperCAmelCase , log_mel='dB' , ) return log_mel_spectrogram.T def lowercase__ ( self : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase_ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase_ = [0] # randomly choose index for each part UpperCamelCase_ = np.random.choice(ranges[0] ) UpperCamelCase_ = np.random.choice(ranges[1] ) UpperCamelCase_ = np.random.choice(ranges[2] ) UpperCamelCase_ = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase_ = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase_ = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase_ = torch.tensor(mel[None, None, :] ) UpperCamelCase_ = torch.nn.functional.interpolate( __UpperCAmelCase , size=[chunk_frames, 64] , mode='bilinear' , align_corners=__UpperCAmelCase ) UpperCamelCase_ = mel_shrink[0][0].numpy() UpperCamelCase_ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase__ ( self : Optional[int] , __UpperCAmelCase : np.array , __UpperCAmelCase : Any , __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ) -> np.array: """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase_ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase_ = len(__UpperCAmelCase ) - max_length UpperCamelCase_ = np.random.randint(0 , overflow + 1 ) UpperCamelCase_ = waveform[idx : idx + max_length] UpperCamelCase_ = self._np_extract_fbank_features(__UpperCAmelCase , self.mel_filters_slaney )[None, :] elif truncation == "fusion": UpperCamelCase_ = self._np_extract_fbank_features(__UpperCAmelCase , self.mel_filters ) UpperCamelCase_ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase_ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase_ = np.stack([mel, mel, mel, mel] , axis=0 ) UpperCamelCase_ = False else: UpperCamelCase_ = self._random_mel_fusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase_ = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: UpperCamelCase_ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase_ = int(max_length / len(__UpperCAmelCase ) ) UpperCamelCase_ = np.stack(np.tile(__UpperCAmelCase , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": UpperCamelCase_ = int(max_length / len(__UpperCAmelCase ) ) UpperCamelCase_ = np.stack(np.tile(__UpperCAmelCase , __UpperCAmelCase ) ) UpperCamelCase_ = np.pad(__UpperCAmelCase , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": UpperCamelCase_ = self._np_extract_fbank_features(__UpperCAmelCase , self.mel_filters ) UpperCamelCase_ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: UpperCamelCase_ = self._np_extract_fbank_features(__UpperCAmelCase , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : int , __UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCAmelCase : str = None , __UpperCAmelCase : Optional[str] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , **__UpperCAmelCase : Tuple , ) -> BatchFeature: """simple docstring""" UpperCamelCase_ = truncation if truncation is not None else self.truncation UpperCamelCase_ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCamelCase_ = isinstance(__UpperCAmelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase_ = is_batched_numpy or ( isinstance(__UpperCAmelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase_ = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCAmelCase , np.ndarray ): UpperCamelCase_ = np.asarray(__UpperCAmelCase , dtype=np.floataa ) elif isinstance(__UpperCAmelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase_ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase_ = [np.asarray(__UpperCAmelCase )] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase_ = [ self._get_input_mel(__UpperCAmelCase , max_length if max_length else self.nb_max_samples , __UpperCAmelCase , __UpperCAmelCase ) for waveform in raw_speech ] UpperCamelCase_ = [] UpperCamelCase_ = [] for mel, longer in padded_inputs: input_mel.append(__UpperCAmelCase ) is_longer.append(__UpperCAmelCase ) if truncation == "fusion" and sum(__UpperCAmelCase ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase_ = np.random.randint(0 , len(__UpperCAmelCase ) ) UpperCamelCase_ = True if isinstance(input_mel[0] , __UpperCAmelCase ): UpperCamelCase_ = [np.asarray(__UpperCAmelCase , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool UpperCamelCase_ = [[longer] for longer in is_longer] UpperCamelCase_ = {'input_features': input_mel, 'is_longer': is_longer} UpperCamelCase_ = BatchFeature(__UpperCAmelCase ) if return_tensors is not None: UpperCamelCase_ = input_features.convert_to_tensors(__UpperCAmelCase ) return input_features
559
import argparse import hashlib # hashlib is only used inside the Test class import struct class A : def __init__( self : Optional[int] , __UpperCAmelCase : str ) -> Dict: """simple docstring""" UpperCamelCase_ = data UpperCamelCase_ = [0X6745_2301, 0XEFCD_AB89, 0X98BA_DCFE, 0X1032_5476, 0XC3D2_E1F0] @staticmethod def lowercase__ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> Optional[int]: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0XFFFF_FFFF def lowercase__ ( self : str ) -> Dict: """simple docstring""" UpperCamelCase_ = B'\x80' + B'\x00' * (63 - (len(self.data ) + 8) % 64) UpperCamelCase_ = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) ) return padded_data def lowercase__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" UpperCamelCase_ = list(struct.unpack('>16L' , __UpperCAmelCase ) ) + [0] * 64 for i in range(16 , 80 ): UpperCamelCase_ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowercase__ ( self : Any ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.padding() UpperCamelCase_ = self.split_blocks() for block in self.blocks: UpperCamelCase_ = self.expand_block(__UpperCAmelCase ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = self.h for i in range(0 , 80 ): if 0 <= i < 20: UpperCamelCase_ = (b & c) | ((~b) & d) UpperCamelCase_ = 0X5A82_7999 elif 20 <= i < 40: UpperCamelCase_ = b ^ c ^ d UpperCamelCase_ = 0X6ED9_EBA1 elif 40 <= i < 60: UpperCamelCase_ = (b & c) | (b & d) | (c & d) UpperCamelCase_ = 0X8F1B_BCDC elif 60 <= i < 80: UpperCamelCase_ = b ^ c ^ d UpperCamelCase_ = 0XCA62_C1D6 UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = ( self.rotate(__UpperCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0XFFFF_FFFF, a, self.rotate(__UpperCAmelCase , 30 ), c, d, ) UpperCamelCase_ = ( self.h[0] + a & 0XFFFF_FFFF, self.h[1] + b & 0XFFFF_FFFF, self.h[2] + c & 0XFFFF_FFFF, self.h[3] + d & 0XFFFF_FFFF, self.h[4] + e & 0XFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def a_ ( ) -> Tuple: '''simple docstring''' UpperCamelCase_ = B'Test String' assert SHAaHash(__snake_case ).final_hash() == hashlib.shaa(__snake_case ).hexdigest() # noqa: S324 def a_ ( ) -> str: '''simple docstring''' UpperCamelCase_ = argparse.ArgumentParser(description='Process some strings or files' ) parser.add_argument( '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' ) UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: UpperCamelCase_ = f.read() else: UpperCamelCase_ = bytes(__snake_case , 'utf-8' ) print(SHAaHash(__snake_case ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
559
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer a = ["bert-base-uncased", "bert-base-cased"] a = "hf-internal-testing/tiny-bert-tf-only" if is_tf_available(): class __a ( tf.keras.Model ): def __init__( self : str ,lowerCamelCase : Tuple ): '''simple docstring''' super().__init__() __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(lowerCamelCase ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_config(lowerCamelCase ) def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : Dict ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.tokenizer(lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.bert(**lowerCamelCase ) return out["pooler_output"] @require_tf @require_tensorflow_text class __a ( unittest.TestCase ): def UpperCAmelCase__ ( self : Any ): '''simple docstring''' super().setUp() __SCREAMING_SNAKE_CASE = [ BertTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false __SCREAMING_SNAKE_CASE = [TFBertTokenizer.from_pretrained(lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowerCamelCase ,use_fast_bert_tokenizer=lowerCamelCase ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __SCREAMING_SNAKE_CASE = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: ไธ€ ไบŒ ไธ‰ ไธ€ไบŒไธ‰""", """And some much more rare Chinese: ้ฝ‰ ๅ ƒ ้ฝ‰ๅ ƒ""", """Je vais aussi รฉcrire en franรงais pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaฤ‹, ๊ผ""", ] __SCREAMING_SNAKE_CASE = list(zip(self.test_sentences ,self.test_sentences[::-1] ) ) def UpperCAmelCase__ ( self : List[Any] ): '''simple docstring''' for tokenizer, tf_tokenizer in zip(self.tokenizers ,self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): __SCREAMING_SNAKE_CASE = tokenizer(lowerCamelCase ,return_tensors="""tf""" ,padding="""longest""" ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] ,tf.intaa ) == tf_outputs[key] ) ) @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = tf_tokenizer(self.paired_sentences ) __SCREAMING_SNAKE_CASE = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] ,text_pair=[sentence[1] for sentence in self.paired_sentences] ,) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] ,tf.intaa ) == separated_outputs[key] ) ) @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = tf.function(lowerCamelCase ) for test_inputs in (self.test_sentences, self.paired_sentences): __SCREAMING_SNAKE_CASE = tf.constant(lowerCamelCase ) __SCREAMING_SNAKE_CASE = compiled_tokenizer(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf_tokenizer(lowerCamelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def UpperCAmelCase__ ( self : int ): '''simple docstring''' for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE = ModelToSave(tokenizer=lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor(self.test_sentences ) __SCREAMING_SNAKE_CASE = model(lowerCamelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __SCREAMING_SNAKE_CASE = Path(lowerCamelCase ) / """saved.model""" model.save(lowerCamelCase ) __SCREAMING_SNAKE_CASE = tf.keras.models.load_model(lowerCamelCase ) __SCREAMING_SNAKE_CASE = loaded_model(lowerCamelCase ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) ,1E-5 )
109
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowerCAmelCase_ = '\nHuman: <<task>>\n\nAssistant: ' lowerCAmelCase_ = 'huggingface-tools/default-prompts' lowerCAmelCase_ = {'chat': 'chat_prompt_template.txt', 'run': 'run_prompt_template.txt'} def A__ ( A : Dict , A : List[str] , A : List[str]="run"): '''simple docstring''' if prompt_or_repo_id is None: UpperCamelCase : Optional[Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("\\s" , A) is not None: return prompt_or_repo_id UpperCamelCase : int = cached_file( A , PROMPT_FILES[mode] , repo_type="dataset" , user_agent={"agent": agent_name}) with open(A , "r" , encoding="utf-8") as f: return f.read()
173
0
from typing import Any def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): _validation( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) # Creates data structures and fill initial step __lowerCamelCase : dict = {} __lowerCamelCase : dict = {} for state in states_space: __lowerCamelCase : List[str] = observations_space[0] __lowerCamelCase : Union[str, Any] = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __lowerCamelCase : Optional[int] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): __lowerCamelCase : str = observations_space[o] __lowerCamelCase : Tuple = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __lowerCamelCase : Union[str, Any] = '' __lowerCamelCase : Dict = -1 for k_state in states_space: __lowerCamelCase : Dict = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __lowerCamelCase : List[str] = probability __lowerCamelCase : List[str] = k_state # Update probabilities and pointers dicts __lowerCamelCase : Tuple = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __lowerCamelCase : int = arg_max # The final observation __lowerCamelCase : Optional[int] = observations_space[len(SCREAMING_SNAKE_CASE__ ) - 1] # argmax for given final observation __lowerCamelCase : Tuple = '' __lowerCamelCase : Dict = -1 for k_state in states_space: __lowerCamelCase : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: __lowerCamelCase : List[Any] = probability __lowerCamelCase : List[str] = k_state __lowerCamelCase : str = arg_max # Process pointers backwards __lowerCamelCase : str = last_state __lowerCamelCase : Union[str, Any] = [] for o in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , -1 , -1 ): result.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase : Tuple = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): _validate_not_empty( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) _validate_lists(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _validate_dicts( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _validate_list(SCREAMING_SNAKE_CASE__ , 'observations_space' ) _validate_list(SCREAMING_SNAKE_CASE__ , 'states_space' ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): if not isinstance(_object , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = f'{var_name} must be a list' raise ValueError(SCREAMING_SNAKE_CASE__ ) else: for x in _object: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Union[str, Any] = f'{var_name} must be a list of strings' raise ValueError(SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): _validate_dict(SCREAMING_SNAKE_CASE__ , 'initial_probabilities' , SCREAMING_SNAKE_CASE__ ) _validate_nested_dict(SCREAMING_SNAKE_CASE__ , 'transition_probabilities' ) _validate_nested_dict(SCREAMING_SNAKE_CASE__ , 'emission_probabilities' ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _validate_dict(_object , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object.values(): _validate_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = False ): if not isinstance(_object , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : Dict = f'{var_name} must be a dict' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not all(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object ): __lowerCamelCase : Tuple = f'{var_name} all keys must be strings' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not all(isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for x in _object.values() ): __lowerCamelCase : str = 'nested dictionary ' if nested else '' __lowerCamelCase : str = f'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": from doctest import testmod testmod()
230
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if point: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): __lowerCamelCase : List[Any] = ( 'Expected a list of numbers as input, found ' f'{type(SCREAMING_SNAKE_CASE__ ).__name__}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase : Tuple = f'Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}' raise TypeError(SCREAMING_SNAKE_CASE__ ) else: raise ValueError('Missing an input' ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
230
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCamelCase__ : str = None lowerCamelCase__ : List[Any] = logging.get_logger(__name__) lowerCamelCase__ : Any = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ : str = { """vocab_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""", }, """tokenizer_file""": { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json""", }, } lowerCamelCase__ : List[str] = { """xlnet-base-cased""": None, """xlnet-large-cased""": None, } lowerCamelCase__ : str = """โ–""" # Segments (not really needed) lowerCamelCase__ : Dict = 0 lowerCamelCase__ : str = 1 lowerCamelCase__ : int = 2 lowerCamelCase__ : Optional[Any] = 3 lowerCamelCase__ : Dict = 4 class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = 'left' __lowerCAmelCase : Dict = XLNetTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<sep>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<cls>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_=["<eop>", "<eod>"] , **SCREAMING_SNAKE_CASE_ , ): '''simple docstring''' lowercase__ : Optional[int] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else mask_token super().__init__( vocab_file=SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , remove_space=SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowercase__ : Union[str, Any] = 3 lowercase__ : Optional[Any] = do_lower_case lowercase__ : Optional[int] = remove_space lowercase__ : Any = keep_accents lowercase__ : Optional[int] = vocab_file lowercase__ : Optional[Any] = False if not self.vocab_file else True def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ : Optional[int] = [self.sep_token_id] lowercase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' lowercase__ : Any = [self.sep_token_id] lowercase__ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep) * [0] + cls_segment_id return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(SCREAMING_SNAKE_CASE_): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return lowercase__ : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(SCREAMING_SNAKE_CASE_): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_) return (out_vocab_file,)
12
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : BigBirdConfig __lowerCAmelCase : jnp.dtype = jnp.floataa __lowerCAmelCase : bool = True def lowercase__ ( self): '''simple docstring''' super().setup() lowercase__ : Dict = nn.Dense(5 , dtype=self.dtype) def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[str] = super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = self.cls(outputs[2]) return outputs[:2] + (cls_out,) class _snake_case ( UpperCAmelCase_ ): __lowerCAmelCase : Optional[int] = FlaxBigBirdForNaturalQuestionsModule def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' def cross_entropy(lowercase_ , lowercase_ , lowercase_=None ): lowercase__ : int = logits.shape[-1] lowercase__ : List[str] = (labels[..., None] == jnp.arange(lowercase_ )[None]).astype("""f4""" ) lowercase__ : int = jax.nn.log_softmax(lowercase_ , axis=-1 ) lowercase__ : Any = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowercase__ : Optional[int] = reduction(lowercase_ ) return loss lowercase__ : int = partial(lowercase_ , reduction=jnp.mean ) lowercase__ : Tuple = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : List[Any] = cross_entropy(lowercase_ , lowercase_ ) lowercase__ : Union[str, Any] = cross_entropy(lowercase_ , lowercase_ ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class _snake_case : __lowerCAmelCase : str = "google/bigbird-roberta-base" __lowerCAmelCase : int = 3_000 __lowerCAmelCase : int = 10_500 __lowerCAmelCase : int = 128 __lowerCAmelCase : int = 3 __lowerCAmelCase : int = 1 __lowerCAmelCase : int = 5 # tx_args __lowerCAmelCase : float = 3e-5 __lowerCAmelCase : float = 0.0 __lowerCAmelCase : int = 20_000 __lowerCAmelCase : float = 0.0_095 __lowerCAmelCase : str = "bigbird-roberta-natural-questions" __lowerCAmelCase : str = "training-expt" __lowerCAmelCase : str = "data/nq-training.jsonl" __lowerCAmelCase : str = "data/nq-validation.jsonl" def lowercase__ ( self): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=SCREAMING_SNAKE_CASE_) lowercase__ : Any = os.path.join(self.base_dir , self.save_dir) lowercase__ : str = self.batch_size_per_device * jax.device_count() @dataclass class _snake_case : __lowerCAmelCase : int __lowerCAmelCase : int = 4_096 # no dynamic padding on TPUs def __call__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = self.collate_fn(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = jax.tree_util.tree_map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ , lowercase__ : str = self.fetch_inputs(features["""input_ids"""]) lowercase__ : str = { """input_ids""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """attention_mask""": jnp.array(SCREAMING_SNAKE_CASE_ , dtype=jnp.intaa), """start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa), """end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa), """pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa), } return batch def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : List[Any] = [self._fetch_inputs(SCREAMING_SNAKE_CASE_) for ids in input_ids] return zip(*SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = [1 for _ in range(len(SCREAMING_SNAKE_CASE_))] while len(SCREAMING_SNAKE_CASE_) < self.max_length: input_ids.append(self.pad_id) attention_mask.append(0) return input_ids, attention_mask def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=None ) -> Optional[Any]: '''simple docstring''' if seed is not None: lowercase__ : Any = dataset.shuffle(seed=lowercase_ ) for i in range(len(lowercase_ ) // batch_size ): lowercase__ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowercase_ ) @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , lowercase_ , **lowercase_ ) -> int: '''simple docstring''' def loss_fn(lowercase_ ): lowercase__ : Dict = model_inputs.pop("""start_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""end_labels""" ) lowercase__ : List[Any] = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=lowercase_ , dropout_rng=lowercase_ , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Any = outputs return state.loss_fn( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) lowercase__ , lowercase__ : Optional[int] = jax.random.split(lowercase_ ) lowercase__ : Tuple = jax.value_and_grad(lowercase_ ) lowercase__ , lowercase__ : Optional[int] = grad_fn(state.params ) lowercase__ : Tuple = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) lowercase__ : Any = jax.lax.pmean(lowercase_ , """batch""" ) lowercase__ : str = state.apply_gradients(grads=lowercase_ ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="""batch""" ) def UpperCamelCase ( lowercase_ , **lowercase_ ) -> str: '''simple docstring''' lowercase__ : Tuple = model_inputs.pop("""start_labels""" ) lowercase__ : List[str] = model_inputs.pop("""end_labels""" ) lowercase__ : int = model_inputs.pop("""pooled_labels""" ) lowercase__ : List[Any] = state.apply_fn(**lowercase_ , params=state.params , train=lowercase_ ) lowercase__ , lowercase__ , lowercase__ : Optional[int] = outputs lowercase__ : Optional[Any] = state.loss_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : List[str] = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" ) return metrics class _snake_case ( train_state.TrainState ): __lowerCAmelCase : Callable = struct.field(pytree_node=UpperCAmelCase_ ) @dataclass class _snake_case : __lowerCAmelCase : Args __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : Callable __lowerCAmelCase : wandb __lowerCAmelCase : Callable = None def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : List[str] = model.params lowercase__ : Dict = TrainState.create( apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , loss_fn=SCREAMING_SNAKE_CASE_ , ) if ckpt_dir is not None: lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ : str = restore_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : str = { """lr""": args.lr, """init_lr""": args.init_lr, """warmup_steps""": args.warmup_steps, """num_train_steps""": num_train_steps, """weight_decay""": args.weight_decay, } lowercase__ , lowercase__ : Any = build_tx(**SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = train_state.TrainState( step=SCREAMING_SNAKE_CASE_ , apply_fn=model.__call__ , params=SCREAMING_SNAKE_CASE_ , tx=SCREAMING_SNAKE_CASE_ , opt_state=SCREAMING_SNAKE_CASE_ , ) lowercase__ : Optional[Any] = args lowercase__ : Union[str, Any] = data_collator lowercase__ : str = lr lowercase__ : Union[str, Any] = params lowercase__ : Dict = jax_utils.replicate(SCREAMING_SNAKE_CASE_) return state def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = self.args lowercase__ : List[str] = len(SCREAMING_SNAKE_CASE_) // args.batch_size lowercase__ : int = jax.random.PRNGKey(0) lowercase__ : Union[str, Any] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count()) for epoch in range(args.max_epochs): lowercase__ : Tuple = jnp.array(0 , dtype=jnp.floataa) lowercase__ : List[str] = get_batched_dataset(SCREAMING_SNAKE_CASE_ , args.batch_size , seed=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc=f'Running EPOCH-{epoch}'): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ , lowercase__ , lowercase__ : List[Any] = self.train_step_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 if i % args.logging_steps == 0: lowercase__ : List[str] = jax_utils.unreplicate(state.step) lowercase__ : str = running_loss.item() / i lowercase__ : Tuple = self.scheduler_fn(state_step - 1) lowercase__ : Tuple = self.evaluate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = { """step""": state_step.item(), """eval_loss""": eval_loss.item(), """tr_loss""": tr_loss, """lr""": lr.item(), } tqdm.write(str(SCREAMING_SNAKE_CASE_)) self.logger.log(SCREAMING_SNAKE_CASE_ , commit=SCREAMING_SNAKE_CASE_) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + f'-e{epoch}-s{i}' , state=SCREAMING_SNAKE_CASE_) def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = get_batched_dataset(SCREAMING_SNAKE_CASE_ , self.args.batch_size) lowercase__ : Tuple = len(SCREAMING_SNAKE_CASE_) // self.args.batch_size lowercase__ : Union[str, Any] = jnp.array(0 , dtype=jnp.floataa) lowercase__ : Optional[Any] = 0 for batch in tqdm(SCREAMING_SNAKE_CASE_ , total=SCREAMING_SNAKE_CASE_ , desc="""Evaluating ... """): lowercase__ : Tuple = self.data_collator(SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.val_step_fn(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) running_loss += jax_utils.unreplicate(metrics["""loss"""]) i += 1 return running_loss / i def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Tuple = jax_utils.unreplicate(SCREAMING_SNAKE_CASE_) print(f'SAVING CHECKPOINT IN {save_dir}' , end=""" ... """) self.model_save_fn(SCREAMING_SNAKE_CASE_ , params=state.params) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """opt_state.msgpack""") , """wb""") as f: f.write(to_bytes(state.opt_state)) joblib.dump(self.args , os.path.join(SCREAMING_SNAKE_CASE_ , """args.joblib""")) joblib.dump(self.data_collator , os.path.join(SCREAMING_SNAKE_CASE_ , """data_collator.joblib""")) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """training_state.json""") , """w""") as f: json.dump({"""step""": state.step.item()} , SCREAMING_SNAKE_CASE_) print("""DONE""") def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' print(F'RESTORING CHECKPOINT FROM {save_dir}' , end=""" ... """ ) with open(os.path.join(lowercase_ , """flax_model.msgpack""" ) , """rb""" ) as f: lowercase__ : Optional[Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowercase_ , """opt_state.msgpack""" ) , """rb""" ) as f: lowercase__ : Dict = from_bytes(state.opt_state , f.read() ) lowercase__ : Any = joblib.load(os.path.join(lowercase_ , """args.joblib""" ) ) lowercase__ : Optional[int] = joblib.load(os.path.join(lowercase_ , """data_collator.joblib""" ) ) with open(os.path.join(lowercase_ , """training_state.json""" ) , """r""" ) as f: lowercase__ : int = json.load(lowercase_ ) lowercase__ : Optional[Any] = training_state["""step"""] print("""DONE""" ) return params, opt_state, step, args, data_collator def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Optional[int] = num_train_steps - warmup_steps lowercase__ : int = optax.linear_schedule(init_value=lowercase_ , end_value=lowercase_ , transition_steps=lowercase_ ) lowercase__ : Optional[int] = optax.linear_schedule(init_value=lowercase_ , end_value=1E-7 , transition_steps=lowercase_ ) lowercase__ : Any = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' def weight_decay_mask(lowercase_ ): lowercase__ : Dict = traverse_util.flatten_dict(lowercase_ ) lowercase__ : int = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()} return traverse_util.unflatten_dict(lowercase_ ) lowercase__ : Optional[int] = scheduler_fn(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) lowercase__ : int = optax.adamw(learning_rate=lowercase_ , weight_decay=lowercase_ , mask=lowercase_ ) return tx, lr
12
1
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase : Tuple = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 6_5_5_3_6, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_8_0_0_0, 'sample_size': 1_3_1_0_7_2, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_6_0_0_0, 'sample_size': 6_5_5_3_6, }, } def __a ( A__ , A__ ) -> Optional[Any]: return torch.atana(A__ , A__ ) / math.pi * 2 def __a ( A__ ) -> List[str]: lowerCAmelCase = torch.sin(t * math.pi / 2 ) ** 2 lowerCAmelCase = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(A__ , A__ ) class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" pass class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" super().__init__() lowerCAmelCase = DiffusionAttnUnetaD(SCREAMING_SNAKE_CASE , n_attn_layers=4 ) lowerCAmelCase = deepcopy(self.diffusion ) lowerCAmelCase = torch.quasirandom.SobolEngine(1 , scramble=SCREAMING_SNAKE_CASE ) def __a ( A__ ) -> Dict: lowerCAmelCase = MODELS_MAP[model_name]["url"] os.system(f"wget {url} ./" ) return f"./{model_name}.ckpt" lowercase : List[Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowercase : int = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowercase : Optional[Any] = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowercase : List[Any] = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowercase : Optional[Any] = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowercase : Union[str, Any] = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def __a ( A__ ) -> str: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(f"ResConvBlock error with {name}" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __a ( A__ ) -> List[Any]: for key, value in ATTN_MAP.items(): if name.startswith(A__ ) and not isinstance(A__ , A__ ): return name.replace(A__ , A__ ) elif name.startswith(A__ ): return [name.replace(A__ , A__ ) for v in value] raise ValueError(f"Attn error with {name}" ) def __a ( A__ , A__=13 ) -> str: lowerCAmelCase = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) lowerCAmelCase = 0 if string.startswith("net.3." ): depth += 1 lowerCAmelCase = string[6:] elif string.startswith("net." ): lowerCAmelCase = string[4:] while string.startswith("main.7." ): depth += 1 lowerCAmelCase = string[7:] if string.startswith("main." ): lowerCAmelCase = string[5:] # mid block if string[:2].isdigit(): lowerCAmelCase = string[:2] lowerCAmelCase = string[2:] else: lowerCAmelCase = string[0] lowerCAmelCase = string[1:] if depth == max_depth: lowerCAmelCase = MID_NUM_TO_LAYER[layer_num] lowerCAmelCase = "mid_block" elif depth > 0 and int(A__ ) < 7: lowerCAmelCase = DOWN_NUM_TO_LAYER[layer_num] lowerCAmelCase = f"down_blocks.{depth}" elif depth > 0 and int(A__ ) > 7: lowerCAmelCase = UP_NUM_TO_LAYER[layer_num] lowerCAmelCase = f"up_blocks.{max_depth - depth - 1}" elif depth == 0: lowerCAmelCase = DEPTH_0_TO_LAYER[layer_num] lowerCAmelCase = f"up_blocks.{max_depth - 1}" if int(A__ ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(f"Naming error with {input_string} and string_left: {string_left}." ) lowerCAmelCase = string_left[1:] if "resnets" in new_layer: lowerCAmelCase = convert_resconv_naming(A__ ) elif "attentions" in new_layer: lowerCAmelCase = convert_attn_naming(A__ ) lowerCAmelCase = new_string_left if not isinstance(A__ , A__ ): lowerCAmelCase = prefix + "." + new_layer + "." + string_left else: lowerCAmelCase = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def __a ( A__ ) -> str: lowerCAmelCase = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue lowerCAmelCase = rename(A__ ) # check if we need to transform from Conv => Linear for attention if isinstance(A__ , A__ ): lowerCAmelCase = transform_conv_attns(A__ , A__ , A__ ) else: lowerCAmelCase = v return new_state_dict def __a ( A__ , A__ , A__ ) -> Any: if len(A__ ) == 1: if len(v.shape ) == 3: # weight lowerCAmelCase = v[:, :, 0] else: # bias lowerCAmelCase = v else: # qkv matrices lowerCAmelCase = v.shape[0] lowerCAmelCase = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape, :, 0] else: lowerCAmelCase = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __a ( A__ ) -> Dict: lowerCAmelCase = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"Make sure to provide one of the official model names {MODELS_MAP.keys()}" lowerCAmelCase = download(A__ ) lowerCAmelCase = MODELS_MAP[model_name]["sample_rate"] lowerCAmelCase = MODELS_MAP[model_name]["sample_size"] lowerCAmelCase = Object() lowerCAmelCase = sample_size lowerCAmelCase = sample_rate lowerCAmelCase = 0 lowerCAmelCase = UNetaDModel(sample_size=A__ , sample_rate=A__ ) lowerCAmelCase = diffusers_model.state_dict() lowerCAmelCase = DiffusionUncond(A__ ) orig_model.load_state_dict(torch.load(args.model_path , map_location=A__ )["state_dict"] ) lowerCAmelCase = orig_model.diffusion_ema.eval() lowerCAmelCase = orig_model.state_dict() lowerCAmelCase = rename_orig_weights(A__ ) lowerCAmelCase = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) lowerCAmelCase = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(A__ ) == 0, f"Problem with {renamed_minus_diffusers}" assert all(k.endswith("kernel" ) for k in list(A__ ) ), f"Problem with {diffusers_minus_renamed}" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}" if key == "time_proj.weight": lowerCAmelCase = value.squeeze() lowerCAmelCase = value diffusers_model.load_state_dict(A__ ) lowerCAmelCase = 100 lowerCAmelCase = 33 lowerCAmelCase = IPNDMScheduler(num_train_timesteps=A__ ) lowerCAmelCase = torch.manual_seed(A__ ) lowerCAmelCase = torch.randn([1, 2, config.sample_size] , generator=A__ ).to(A__ ) lowerCAmelCase = torch.linspace(1 , 0 , steps + 1 , device=A__ )[:-1] lowerCAmelCase = get_crash_schedule(A__ ) lowerCAmelCase = DanceDiffusionPipeline(unet=A__ , scheduler=A__ ) lowerCAmelCase = torch.manual_seed(33 ) lowerCAmelCase = pipe(num_inference_steps=A__ , generator=A__ ).audios lowerCAmelCase = sampling.iplms_sample(A__ , A__ , A__ , {} ) lowerCAmelCase = generated.clamp(-1 , 1 ) lowerCAmelCase = (generated - audio).abs().sum() lowerCAmelCase = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , A__ ) print("Diff max" , A__ ) assert diff_max < 1e-3, f"Diff max: {diff_max} is too much :-/" print(f"Conversion for {model_name} successful!" ) if __name__ == "__main__": lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowercase : Tuple = parser.parse_args() main(args)
159
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def __a ( A__ ) -> Any: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if "encoder.embeddings" not in key else 0 for key, param in state_dict.items() ) def __a ( A__ , A__ ) -> List[str]: lowerCAmelCase = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCAmelCase = key.replace("heads.cmd.mim_head.cls.predictions" , "mmm_image_head" ) lowerCAmelCase = key.replace("heads.cmd.mlm_head.cls.predictions" , "mmm_text_head" ) lowerCAmelCase = key.replace("heads.cmd.itm_head.cls" , "itm_head" ) lowerCAmelCase = key.replace("heads.cmd.itm_head.pooler" , "itm_head.pooler" ) lowerCAmelCase = key.replace("heads.cmd.clip_head.logit_scale" , "flava.logit_scale" ) lowerCAmelCase = key.replace("heads.fairseq_mlm.cls.predictions" , "mlm_head" ) lowerCAmelCase = key.replace("heads.imagenet.mim_head.cls.predictions" , "mim_head" ) lowerCAmelCase = key.replace("mm_text_projection" , "flava.text_to_mm_projection" ) lowerCAmelCase = key.replace("mm_image_projection" , "flava.image_to_mm_projection" ) lowerCAmelCase = key.replace("image_encoder.module" , "flava.image_model" ) lowerCAmelCase = key.replace("text_encoder.module" , "flava.text_model" ) lowerCAmelCase = key.replace("mm_encoder.module.encoder.cls_token" , "flava.multimodal_model.cls_token" ) lowerCAmelCase = key.replace("mm_encoder.module" , "flava.multimodal_model" ) lowerCAmelCase = key.replace("text_projection" , "flava.text_projection" ) lowerCAmelCase = key.replace("image_projection" , "flava.image_projection" ) lowerCAmelCase = value.float() for key, value in codebook_state_dict.items(): lowerCAmelCase = value return upgrade @torch.no_grad() def __a ( A__ , A__ , A__ , A__=None ) -> str: if config_path is not None: lowerCAmelCase = FlavaConfig.from_pretrained(A__ ) else: lowerCAmelCase = FlavaConfig() lowerCAmelCase = FlavaForPreTraining(A__ ).eval() lowerCAmelCase = convert_dalle_checkpoint(A__ , A__ , save_checkpoint=A__ ) if os.path.exists(A__ ): lowerCAmelCase = torch.load(A__ , map_location="cpu" ) else: lowerCAmelCase = torch.hub.load_state_dict_from_url(A__ , map_location="cpu" ) lowerCAmelCase = upgrade_state_dict(A__ , A__ ) hf_model.load_state_dict(A__ ) lowerCAmelCase = hf_model.state_dict() lowerCAmelCase = count_parameters(A__ ) lowerCAmelCase = count_parameters(A__ ) + count_parameters(A__ ) assert torch.allclose(A__ , A__ , atol=1e-3 ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": lowercase : Any = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--codebook_path', default=None, type=str, help='Path to flava codebook checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowercase : List[Any] = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
159
1
from manim import * class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ : int = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ : List[Any] = [mem.copy() for i in range(6 )] lowerCamelCase_ : Tuple = [mem.copy() for i in range(6 )] lowerCamelCase_ : List[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Tuple = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Optional[int] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Optional[Any] = Text("CPU" , font_size=24 ) lowerCamelCase_ : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) lowerCamelCase_ : str = [mem.copy() for i in range(1 )] lowerCamelCase_ : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Dict = Text("GPU" , font_size=24 ) lowerCamelCase_ : int = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.align_to(a_ , a_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(a_ ) lowerCamelCase_ : Tuple = [mem.copy() for i in range(6 )] lowerCamelCase_ : Tuple = VGroup(*a_ ).arrange(a_ , buff=0 ) lowerCamelCase_ : Union[str, Any] = Text("Model" , font_size=24 ) lowerCamelCase_ : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.play( Create(a_ , run_time=1 ) , Create(a_ , run_time=1 ) , Create(a_ , run_time=1 ) , ) lowerCamelCase_ : Optional[int] = MarkupText( F"""First, an empty model skeleton is loaded\ninto <span fgcolor='{YELLOW}'>memory</span> without using much RAM.""" , font_size=24 , ) lowerCamelCase_ : List[str] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ : Tuple = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>โ—</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=2.5 ) , Write(a_ ) , Write(a_ ) ) self.add(a_ ) lowerCamelCase_ : Optional[int] = [] lowerCamelCase_ : int = [] lowerCamelCase_ : Tuple = [] for i, rect in enumerate(a_ ): lowerCamelCase_ : Any = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 ) cpu_target.move_to(a_ ) cpu_target.generate_target() lowerCamelCase_ : int = 0.46 / 4 lowerCamelCase_ : List[Any] = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=a_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=a_ , buff=0.0 ) cpu_targs.append(a_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(a_ ) ) second_animations.append(MoveToTarget(a_ , run_time=1.5 ) ) self.play(*a_ ) self.play(*a_ ) self.wait()
250
import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[str] = CanineTokenizer __UpperCAmelCase : int = False def _UpperCamelCase ( self ): super().setUp() lowerCamelCase_ : int = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): return CanineTokenizer.from_pretrained("google/canine-s" ) def _UpperCamelCase ( self , **a_ ): lowerCamelCase_ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname , **a_ ) lowerCamelCase_ : Dict = 1024 return tokenizer @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.canine_tokenizer lowerCamelCase_ : str = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off lowerCamelCase_ : Dict = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on lowerCamelCase_ : List[Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) lowerCamelCase_ : List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : Any = self.canine_tokenizer lowerCamelCase_ : Tuple = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] lowerCamelCase_ : Union[str, Any] = tokenizer(a_ , padding=a_ , return_tensors="pt" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("input_ids" , a_ ) self.assertIn("attention_mask" , a_ ) self.assertIn("token_type_ids" , a_ ) @require_torch def _UpperCamelCase ( self ): lowerCamelCase_ : int = self.canine_tokenizer lowerCamelCase_ : Tuple = [ "What's the weater?", "It's about 25 degrees.", ] lowerCamelCase_ : Optional[Any] = tokenizer( text_target=a_ , max_length=32 , padding="max_length" , truncation=a_ , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) def _UpperCamelCase ( self ): # safety check on max_len default value so we are sure the test works lowerCamelCase_ : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : Optional[int] = tempfile.mkdtemp() lowerCamelCase_ : Dict = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Optional[int] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Union[str, Any] = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : List[Any] = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) shutil.rmtree(a_ ) lowerCamelCase_ : List[Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase_ : List[Any] = tempfile.mkdtemp() lowerCamelCase_ : Tuple = " He is very happy, UNwant\u00E9d,running" lowerCamelCase_ : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: lowerCamelCase_ : List[str] = chr(0Xe007 ) additional_special_tokens.append(a_ ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) tokenizer.save_pretrained(a_ ) lowerCamelCase_ : Any = tokenizer.__class__.from_pretrained(a_ ) lowerCamelCase_ : Any = after_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) self.assertIn(a_ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) lowerCamelCase_ : int = tokenizer.__class__.from_pretrained(a_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ ,lowerCamelCase_ : str = self.get_clean_sequence(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Tuple = 0Xe005 lowerCamelCase_ : Dict = chr(a_ ) tokenizer.add_special_tokens({"cls_token": special_token} ) lowerCamelCase_ : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(len(a_ ) , 1 ) lowerCamelCase_ : List[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=a_ ) lowerCamelCase_ : List[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertEqual(a_ , input_encoded + special_token_id ) lowerCamelCase_ : Optional[int] = tokenizer.decode(a_ , skip_special_tokens=a_ ) self.assertTrue(special_token not in decoded ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Optional[int] = chr(0Xe005 ) lowerCamelCase_ : str = chr(0Xe006 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=a_ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"additional_special_tokens": [SPECIAL_TOKEN_2]} ) lowerCamelCase_ : Tuple = tokenizer.tokenize(a_ ) lowerCamelCase_ : List[Any] = tokenizer.tokenize(a_ ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(len(a_ ) , 1 ) self.assertEqual(token_a[0] , a_ ) self.assertEqual(token_a[0] , a_ ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # a special token for Canine can be defined as follows: lowerCamelCase_ : List[str] = 0Xe006 lowerCamelCase_ : Any = chr(a_ ) lowerCamelCase_ : str = AddedToken(a_ , lstrip=a_ ) tokenizer.add_special_tokens({"additional_special_tokens": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(a_ ) tokenizer.from_pretrained(a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(a_ ) with open(os.path.join(a_ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : List[Any] = json.load(a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: lowerCamelCase_ : int = json.load(a_ ) # a special token for Canine can be defined as follows: lowerCamelCase_ : Any = 0Xe006 lowerCamelCase_ : List[Any] = chr(a_ ) lowerCamelCase_ : Any = [new_token_a] lowerCamelCase_ : Optional[Any] = [new_token_a] with open(os.path.join(a_ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) with open(os.path.join(a_ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(a_ , a_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase_ : str = tokenizer_class.from_pretrained(a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) lowerCamelCase_ : Optional[int] = 0Xe007 lowerCamelCase_ : List[str] = chr(a_ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase_ : int = [AddedToken(a_ , lstrip=a_ )] lowerCamelCase_ : Dict = tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , extra_ids=0 ) self.assertIn(a_ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Union[str, Any] = "hello world" if self.space_between_special_tokens: lowerCamelCase_ : int = "[CLS] hello world [SEP]" else: lowerCamelCase_ : int = input lowerCamelCase_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Any = tokenizer.decode(a_ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(a_ , [output, output.lower()] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): lowerCamelCase_ : Tuple = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] lowerCamelCase_ : Optional[int] = "a" lowerCamelCase_ : Dict = ord(a_ ) for attr in attributes_list: setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , attr + "_id" , a_ ) self.assertEqual(getattr(a_ , a_ ) , a_ ) self.assertEqual(getattr(a_ , attr + "_id" ) , a_ ) setattr(a_ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [] ) lowerCamelCase_ : Optional[int] = 0Xe006 lowerCamelCase_ : List[str] = chr(a_ ) setattr(a_ , "additional_special_tokens_ids" , [additional_special_token_id] ) self.assertListEqual(getattr(a_ , "additional_special_tokens" ) , [additional_special_token] ) self.assertListEqual(getattr(a_ , "additional_special_tokens_ids" ) , [additional_special_token_id] ) def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass def _UpperCamelCase ( self ): pass
250
1
"""simple docstring""" def _A ( _a : int , _a : int ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def _A ( ): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
255
"""simple docstring""" from itertools import count def _A ( _a : int = 5_0 ): """simple docstring""" A = [1] * min_block_length for n in count(_a ): fill_count_functions.append(1 ) for block_length in range(_a , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(f"""{solution() = }""")
255
1
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : int = BlenderbotSmallTokenizer UpperCAmelCase__ : Any = False def snake_case_ ( self ) -> Any: super().setUp() UpperCamelCase : Dict = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] UpperCamelCase : int = dict(zip(SCREAMING_SNAKE_CASE_, range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase : List[str] = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] UpperCamelCase : int = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} UpperCamelCase : List[Any] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file, 'w', encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.merges_file, 'w', encoding='utf-8' ) as fp: fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> Tuple: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname, **SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCamelCase : List[str] = 'adapt act apte' UpperCamelCase : List[Any] = 'adapt act apte' return input_text, output_text def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : Union[str, Any] = BlenderbotSmallTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map ) UpperCamelCase : List[Any] = 'adapt act apte' UpperCamelCase : List[Any] = ['adapt', 'act', 'ap@@', 'te'] UpperCamelCase : Optional[int] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCamelCase : Union[str, Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> int: UpperCamelCase : Dict = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) assert tok('sam' ).input_ids == [1384] UpperCamelCase : List[str] = 'I am a small frog.' UpperCamelCase : Optional[Any] = tok([src_text], padding=SCREAMING_SNAKE_CASE_, truncation=SCREAMING_SNAKE_CASE_ )['input_ids'] UpperCamelCase : int = tok.batch_decode(SCREAMING_SNAKE_CASE_, skip_special_tokens=SCREAMING_SNAKE_CASE_, clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def snake_case_ ( self ) -> List[Any]: UpperCamelCase : str = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) UpperCamelCase : Tuple = 'I am a small frog .' UpperCamelCase : List[str] = '.' UpperCamelCase : str = tok(SCREAMING_SNAKE_CASE_ )['input_ids'] UpperCamelCase : List[Any] = tok(SCREAMING_SNAKE_CASE_ )['input_ids'] assert encoded[-1] == encoded_dot[0]
40
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : str = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : str = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
649
0
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCamelCase ( pl.LightningModule ): def __init__( self , __lowerCamelCase ) -> int: '''simple docstring''' super().__init__() snake_case: List[Any] = model snake_case: Optional[Any] = 2 snake_case: Optional[Any] = nn.Linear(self.model.config.hidden_size , self.num_labels ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' pass def a_ (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str )-> Optional[Any]: # load longformer model from model identifier snake_case: List[str] = LongformerModel.from_pretrained(_lowerCAmelCase ) snake_case: str = LightningModel(_lowerCAmelCase ) snake_case: Optional[Any] = torch.load(_lowerCAmelCase , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model snake_case: List[str] = LongformerForQuestionAnswering.from_pretrained(_lowerCAmelCase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(_lowerCAmelCase ) print(F"Conversion successful. Model saved under {pytorch_dump_folder_path}" ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--longformer_model', default=None, type=str, required=True, help='model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.', ) parser.add_argument( '--longformer_question_answering_ckpt_path', default=None, type=str, required=True, help='Path the official PyTorch Lightning Checkpoint.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
164
from __future__ import annotations def a_ (_lowerCAmelCase : int )-> list[int]: snake_case: List[str] = 2 snake_case: Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_lowerCAmelCase ) if n > 1: factors.append(_lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
164
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) snake_case_ = DetaConfig( backbone_config=SCREAMING_SNAKE_CASE__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=SCREAMING_SNAKE_CASE__ , with_box_refine=SCREAMING_SNAKE_CASE__ , two_stage=SCREAMING_SNAKE_CASE__ , ) # set labels snake_case_ = '''huggingface/label-files''' if "o365" in model_name: snake_case_ = 366 snake_case_ = '''object365-id2label.json''' else: snake_case_ = 91 snake_case_ = '''coco-detection-id2label.json''' snake_case_ = num_labels snake_case_ = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='''dataset''' ) ) , '''r''' ) ) snake_case_ = {int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): snake_case_ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.reduction.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.weight''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.0.body.layers.{i}.downsample.norm.bias''', F'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', F'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', F'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', F'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', F'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', F'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', F'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', F'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.weight''', F'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', F'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', F'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', F'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.weight''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.weight''', F'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm2.bias''', F'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = dct.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): snake_case_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) snake_case_ = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) snake_case_ = state_dict.pop(F'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[:dim, :] snake_case_ = in_proj_bias[: dim] snake_case_ = in_proj_weight[ dim : dim * 2, : ] snake_case_ = in_proj_bias[ dim : dim * 2 ] snake_case_ = in_proj_weight[ -dim :, : ] snake_case_ = in_proj_bias[-dim :] # fmt: on def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # transformer decoder self-attention layers snake_case_ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention snake_case_ = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) snake_case_ = state_dict.pop(F'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[:hidden_size, :] snake_case_ = in_proj_bias[:hidden_size] snake_case_ = in_proj_weight[ hidden_size : hidden_size * 2, : ] snake_case_ = in_proj_bias[hidden_size : hidden_size * 2] snake_case_ = in_proj_weight[-hidden_size:, :] snake_case_ = in_proj_bias[-hidden_size:] def __SCREAMING_SNAKE_CASE (): snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): snake_case_ = get_deta_config(SCREAMING_SNAKE_CASE__ ) # load original state dict if model_name == "deta-swin-large": snake_case_ = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": snake_case_ = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(F'''Model name {model_name} not supported''' ) snake_case_ = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(SCREAMING_SNAKE_CASE__ , param.shape ) # rename keys snake_case_ = create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) read_in_swin_q_k_v(SCREAMING_SNAKE_CASE__ , config.backbone_config ) read_in_decoder_q_k_v(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val if "input_proj" in key: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: snake_case_ = state_dict.pop(SCREAMING_SNAKE_CASE__ ) snake_case_ = val # finally, create HuggingFace model and load state dict snake_case_ = DetaForObjectDetection(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() snake_case_ = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(SCREAMING_SNAKE_CASE__ ) # load image processor snake_case_ = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image snake_case_ = prepare_img() snake_case_ = processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) snake_case_ = encoding['''pixel_values'''] snake_case_ = model(pixel_values.to(SCREAMING_SNAKE_CASE__ ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": snake_case_ = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) snake_case_ = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": snake_case_ = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) snake_case_ = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(SCREAMING_SNAKE_CASE__ ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(F'''jozhang97/{model_name}''' ) processor.push_to_hub(F'''jozhang97/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the ๐Ÿค— hub.''' ) lowerCAmelCase_ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
39
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase_ : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __a ): snake_case : Optional[int] = ["""audio_values""", """audio_mask"""] def __init__(self , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=1 , lowerCAmelCase__=[1_6, 1_6] , lowerCAmelCase__=1_2_8 , lowerCAmelCase__=4_4_1_0_0 , lowerCAmelCase__=8_6 , lowerCAmelCase__=2_0_4_8 , lowerCAmelCase__=0.0 , **lowerCAmelCase__ , ): super().__init__( feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCAmelCase : Union[str, Any] = spectrogram_length _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Optional[Any] = patch_size _UpperCAmelCase : List[Any] = feature_size // self.patch_size[1] _UpperCAmelCase : List[str] = n_fft _UpperCAmelCase : int = sampling_rate // hop_length_to_sampling_rate _UpperCAmelCase : Optional[Any] = sampling_rate _UpperCAmelCase : List[Any] = padding_value _UpperCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCAmelCase__ , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=lowerCAmelCase__ , norm="""slaney""" , mel_scale="""slaney""" , ).T def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Dict = spectrogram( lowerCAmelCase__ , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=8_0.0 , ) _UpperCAmelCase : Tuple = log_spec[:, :-1] _UpperCAmelCase : Union[str, Any] = log_spec - 2_0.0 _UpperCAmelCase : List[Any] = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__(self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , **lowerCAmelCase__ , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" F" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _UpperCAmelCase : List[str] = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) _UpperCAmelCase : Tuple = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Dict = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): _UpperCAmelCase : Dict = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : List[str] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Any = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCAmelCase : Dict = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCAmelCase__ ): _UpperCAmelCase : Optional[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _UpperCAmelCase : Union[str, Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCAmelCase : Optional[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _UpperCAmelCase : Optional[Any] = np.array(lowerCAmelCase__ ).astype(np.floataa ) # convert into correct format for padding _UpperCAmelCase : Optional[int] = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCAmelCase : Dict = np.ones([len(lowerCAmelCase__ ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _UpperCAmelCase : Dict = padded_audio_features * self.padding_value for i in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase : List[Any] = audio_features[i] _UpperCAmelCase : Tuple = feature # return as BatchFeature if return_attention_mask: _UpperCAmelCase : List[Any] = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: _UpperCAmelCase : List[Any] = {"""audio_values""": padded_audio_features} _UpperCAmelCase : List[str] = BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) return encoded_inputs
414
0
"""simple docstring""" from __future__ import annotations from random import choice def snake_case__ ( _SCREAMING_SNAKE_CASE ) ->List[str]: return choice(lowerCamelCase_ ) def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: UpperCAmelCase__ = random_pivot(lowerCamelCase_ ) # partition based on pivot # linear time UpperCAmelCase__ = [e for e in lst if e < pivot] UpperCAmelCase__ = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCamelCase_ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCamelCase_ ) < k - 1: return kth_number(lowerCamelCase_ , k - len(lowerCamelCase_ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
712
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[str]: UpperCAmelCase__ = old_name if "patch_embed" in old_name: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = old_name.split(""".""" ) if layer == "0": UpperCAmelCase__ = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": UpperCAmelCase__ = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": UpperCAmelCase__ = old_name.replace("""3""" , """convolution2""" ) else: UpperCAmelCase__ = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = r"""\b\d{2}\b""" if bool(re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): UpperCAmelCase__ = re.search(r"""\d\.\d\d.""" , _SCREAMING_SNAKE_CASE ).group() else: UpperCAmelCase__ = re.search(r"""\d\.\d.""" , _SCREAMING_SNAKE_CASE ).group() if int(match[0] ) < 6: UpperCAmelCase__ = old_name.replace(_SCREAMING_SNAKE_CASE , """""" ) UpperCAmelCase__ = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) UpperCAmelCase__ = """intermediate_stages.""" + trimmed_name else: UpperCAmelCase__ = old_name.replace(_SCREAMING_SNAKE_CASE , """""" ) if int(match[2] ) < num_meta4D_last_stage: UpperCAmelCase__ = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: UpperCAmelCase__ = str(int(match[2] ) - num_meta4D_last_stage ) UpperCAmelCase__ = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: UpperCAmelCase__ = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: UpperCAmelCase__ = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: UpperCAmelCase__ = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: UpperCAmelCase__ = trimmed_name.replace("""fc2""" , """linear_out""" ) UpperCAmelCase__ = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , _SCREAMING_SNAKE_CASE ): UpperCAmelCase__ = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: UpperCAmelCase__ = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): UpperCAmelCase__ = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): UpperCAmelCase__ = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: UpperCAmelCase__ = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: UpperCAmelCase__ = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: UpperCAmelCase__ = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: UpperCAmelCase__ = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": UpperCAmelCase__ = new_name.replace("""norm""" , """layernorm""" ) UpperCAmelCase__ = """efficientformer.""" + new_name else: UpperCAmelCase__ = """efficientformer.encoder.""" + new_name return new_name def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->str: for key in checkpoint.copy().keys(): UpperCAmelCase__ = checkpoint.pop(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = val return checkpoint def snake_case__ ( ) ->Optional[Any]: UpperCAmelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase__ = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return image def snake_case__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: UpperCAmelCase__ = torch.load(_SCREAMING_SNAKE_CASE , map_location="""cpu""" )["""model"""] UpperCAmelCase__ = EfficientFormerConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = EfficientFormerForImageClassificationWithTeacher(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) UpperCAmelCase__ = config.depths[-1] - config.num_metaad_blocks + 1 UpperCAmelCase__ = convert_torch_checkpoint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image UpperCAmelCase__ = prepare_img() UpperCAmelCase__ = 2_5_6 UpperCAmelCase__ = 2_2_4 UpperCAmelCase__ = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) UpperCAmelCase__ = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values # original processing pipeline UpperCAmelCase__ = Compose( [ Resize(_SCREAMING_SNAKE_CASE , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_SCREAMING_SNAKE_CASE ), ToTensor(), Normalize(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), ] ) UpperCAmelCase__ = image_transforms(_SCREAMING_SNAKE_CASE ).unsqueeze(0 ) assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ = outputs.logits UpperCAmelCase__ = (1, 1_0_0_0) if "l1" in model_name: UpperCAmelCase__ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :1_0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: UpperCAmelCase__ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :1_0] , _SCREAMING_SNAKE_CASE , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: UpperCAmelCase__ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add model""" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add image processor""" , use_temp_dir=_SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": a : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to EfficientFormer pytorch checkpoint.''', ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for EfficientFormer model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) parser.set_defaults(push_to_hub=True) a : Optional[int] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
422
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A__ ( _UpperCamelCase ): """simple docstring""" _lowercase = (UnCLIPScheduler,) def _UpperCamelCase( self : List[Any] , **lowerCamelCase__ : List[Any] ): a__ : Tuple = { """num_train_timesteps""": 1_000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**lowerCamelCase__ ) return config def _UpperCamelCase( self : int ): for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=lowerCamelCase__ ) def _UpperCamelCase( self : Tuple ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCamelCase__ ) def _UpperCamelCase( self : Any ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase__ ) def _UpperCamelCase( self : str ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCamelCase__ ) def _UpperCamelCase( self : int ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCamelCase__ , prev_timestep=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : str = self.scheduler_classes[0] a__ : Optional[int] = self.get_scheduler_config(variance_type="fixed_small_log" ) a__ : int = scheduler_class(**lowerCamelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.054_9625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.999_4987 ) ) < 1E-5 def _UpperCamelCase( self : Optional[Any] ): a__ : Any = self.scheduler_classes[0] a__ : Dict = self.get_scheduler_config(variance_type="learned_range" ) a__ : Any = scheduler_class(**lowerCamelCase__ ) a__ : List[str] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCamelCase__ ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowerCamelCase__ ) - -5.799_8052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowerCamelCase__ ) - -0.001_0011 < 1E-5 def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = self.scheduler_classes[0] a__ : Tuple = self.get_scheduler_config() a__ : Dict = scheduler_class(**lowerCamelCase__ ) a__ : Union[str, Any] = scheduler.timesteps a__ : Optional[int] = self.dummy_model() a__ : str = self.dummy_sample_deter a__ : Tuple = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase__ ): # 1. predict noise residual a__ : List[Any] = model(lowerCamelCase__ , lowerCamelCase__ ) # 2. predict previous mean of sample x_t-1 a__ : Optional[int] = scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ ).prev_sample a__ : Tuple = pred_prev_sample a__ : Union[str, Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) a__ : Dict = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1E-2 assert abs(result_mean.item() - 0.328_4743 ) < 1E-3 def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.scheduler_classes[0] a__ : Dict = self.get_scheduler_config() a__ : str = scheduler_class(**lowerCamelCase__ ) scheduler.set_timesteps(25 ) a__ : Optional[int] = scheduler.timesteps a__ : Optional[Any] = self.dummy_model() a__ : int = self.dummy_sample_deter a__ : Union[str, Any] = torch.manual_seed(0 ) for i, t in enumerate(lowerCamelCase__ ): # 1. predict noise residual a__ : List[str] = model(lowerCamelCase__ , lowerCamelCase__ ) if i + 1 == timesteps.shape[0]: a__ : int = None else: a__ : Optional[Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 a__ : str = scheduler.step( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , prev_timestep=lowerCamelCase__ , generator=lowerCamelCase__ ).prev_sample a__ : Dict = pred_prev_sample a__ : Optional[Any] = torch.sum(torch.abs(lowerCamelCase__ ) ) a__ : Any = torch.mean(torch.abs(lowerCamelCase__ ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1E-2 assert abs(result_mean.item() - 0.336_2038 ) < 1E-3 def _UpperCamelCase( self : List[Any] ): pass def _UpperCamelCase( self : Any ): pass
37
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __magic_name__ : str = ProphetNetTokenizer __magic_name__ : Dict = False def lowerCamelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" super().setUp() __UpperCamelCase : Optional[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __UpperCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase__ ( self : Tuple , lowerCAmelCase : int ) -> List[str]: """simple docstring""" __UpperCamelCase : Union[str, Any] = """UNwant\u00E9d,running""" __UpperCamelCase : List[str] = """unwanted, running""" return input_text, output_text def lowerCamelCase__ ( self : List[Any] ) -> int: """simple docstring""" __UpperCamelCase : Optional[int] = self.tokenizer_class(self.vocab_file ) __UpperCamelCase : List[str] = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , [9, 6, 7, 12, 10, 11] ) def lowerCamelCase__ ( self : str ) -> List[Any]: """simple docstring""" __UpperCamelCase : List[str] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCamelCase__ ( self : int ) -> Tuple: """simple docstring""" __UpperCamelCase : Any = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : Dict ) -> List[str]: """simple docstring""" __UpperCamelCase : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHรคLLo!how \n Are yoU? """ ) , ["""hรคllo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCamelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __UpperCamelCase : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHรคLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __UpperCamelCase : Dict = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHรคLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __UpperCamelCase : List[str] = BasicTokenizer(do_lower_case=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" __UpperCamelCase : Tuple = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHรคLLo!how \n Are yoU? """ ) , ["""HรคLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __UpperCamelCase : List[Any] = BasicTokenizer(do_lower_case=lowerCAmelCase , strip_accents=lowerCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHรคLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __UpperCamelCase : int = BasicTokenizer(do_lower_case=lowerCAmelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __UpperCamelCase : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __UpperCamelCase : List[Any] = {} for i, token in enumerate(lowerCAmelCase ): __UpperCamelCase : Dict = i __UpperCamelCase : Any = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) @require_torch def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __UpperCamelCase : str = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __UpperCamelCase : int = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] __UpperCamelCase : Optional[int] = [1037, 2146, 20423, 2005, 7680, 7849, 3989, 1012, 102] __UpperCamelCase : Optional[int] = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) __UpperCamelCase : int = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def lowerCamelCase__ ( self : int ) -> List[Any]: """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCamelCase__ ( self : Dict ) -> Optional[int]: """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) @slow def lowerCamelCase__ ( self : str ) -> Tuple: """simple docstring""" __UpperCamelCase : List[str] = self.tokenizer_class.from_pretrained("""microsoft/prophetnet-large-uncased""" ) __UpperCamelCase : Optional[int] = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase ) __UpperCamelCase : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase ) __UpperCamelCase : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
279
0
from ..utils import DummyObject, requires_backends class A__ ( metaclass=_snake_case ): """simple docstring""" __A : Union[str, Any] = ["""transformers""", """torch""", """note_seq"""] def __init__( self , *lowercase , **lowercase) -> List[str]: '''simple docstring''' requires_backends(self , ['transformers', 'torch', 'note_seq']) @classmethod def __lowercase ( cls , *lowercase , **lowercase) -> Tuple: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq']) @classmethod def __lowercase ( cls , *lowercase , **lowercase) -> int: '''simple docstring''' requires_backends(cls , ['transformers', 'torch', 'note_seq'])
721
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : Optional[int] = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : List[Any] = '''vit_msn''' def __init__( self , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1e-06 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=True , **lowercase , ) -> Dict: '''simple docstring''' super().__init__(**lowercase) a__ : Tuple = hidden_size a__ : Optional[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : Optional[Any] = intermediate_size a__ : Optional[Any] = hidden_act a__ : int = hidden_dropout_prob a__ : Optional[int] = attention_probs_dropout_prob a__ : List[Any] = initializer_range a__ : Optional[int] = layer_norm_eps a__ : List[str] = image_size a__ : Optional[int] = patch_size a__ : List[str] = num_channels a__ : Dict = qkv_bias
392
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase( __lowerCamelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase( unittest.TestCase ): @property def __lowerCAmelCase ( self : Dict ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' __a : int = ort.SessionOptions() __a : str = False return options def __lowerCAmelCase ( self : str ): '''simple docstring''' __a : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __a : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __a : str = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a : int = 'A red cat sitting on a park bench' __a : Union[str, Any] = np.random.RandomState(0 ) __a : Any = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) __a : Dict = output.images __a : List[str] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __a : Dict = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' __a : List[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __a : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __a : Optional[int] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) __a : Union[str, Any] = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = 'A red cat sitting on a park bench' __a : Optional[int] = np.random.RandomState(0 ) __a : List[str] = pipe( prompt=SCREAMING_SNAKE_CASE__ , image=SCREAMING_SNAKE_CASE__ , mask_image=SCREAMING_SNAKE_CASE__ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=SCREAMING_SNAKE_CASE__ , output_type='np' , ) __a : Tuple = output.images __a : Union[str, Any] = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) __a : Optional[Any] = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
47
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A__ : Optional[int] = logging.get_logger(__name__) def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Tuple ) -> Any: try: with open(lowerCamelCase__ , "rb" ) as flax_state_f: lowerCamelCase_ : int =from_bytes(lowerCamelCase__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCamelCase__ ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(lowerCamelCase__ , lowerCamelCase__ ) def _snake_case ( lowerCamelCase__ : str , lowerCamelCase__ : Optional[Any] ) -> Tuple: try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights lowerCamelCase_ : Dict =flatten_dict(jax.tree_util.tree_map(lambda lowerCamelCase__ : x.dtype == jnp.bfloataa , lowerCamelCase__ ) ).values() if any(lowerCamelCase__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) lowerCamelCase_ : Optional[Any] =jax.tree_util.tree_map( lambda lowerCamelCase__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] ="" lowerCamelCase_ : str =flatten_dict(lowerCamelCase__ , sep="." ) lowerCamelCase_ : Dict =pt_model.state_dict() # keep track of unexpected & missing keys lowerCamelCase_ : Optional[Any] =[] lowerCamelCase_ : Union[str, Any] =set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase_ : str =flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCamelCase_ : Any =flax_key_tuple_array[:-1] + ["weight"] lowerCamelCase_ : List[str] =jnp.transpose(lowerCamelCase__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCamelCase_ : Dict =flax_key_tuple_array[:-1] + ["weight"] lowerCamelCase_ : Optional[int] =flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCamelCase_ : List[str] =flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCamelCase__ ): lowerCamelCase_ : Optional[int] =( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) lowerCamelCase_ : str =".".join(lowerCamelCase__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCamelCase_ : Optional[int] =np.asarray(lowerCamelCase__ ) if not isinstance(lowerCamelCase__ , np.ndarray ) else flax_tensor lowerCamelCase_ : Union[str, Any] =torch.from_numpy(lowerCamelCase__ ) # remove from missing keys missing_keys.remove(lowerCamelCase__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCamelCase__ ) pt_model.load_state_dict(lowerCamelCase__ ) # re-transform missing_keys to list lowerCamelCase_ : Dict =list(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(lowerCamelCase__ ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) return pt_model
153
0
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE : '''simple docstring''' UpperCamelCase_ : Optional[Any] = LEDConfig UpperCamelCase_ : int = {} UpperCamelCase_ : Union[str, Any] = '''gelu''' def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Union[str, Any]=20 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Tuple=1 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : Tuple=4 , ): SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : List[str] = seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = is_training SCREAMING_SNAKE_CASE : Dict = use_labels SCREAMING_SNAKE_CASE : List[Any] = vocab_size SCREAMING_SNAKE_CASE : Tuple = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : str = eos_token_id SCREAMING_SNAKE_CASE : List[Any] = pad_token_id SCREAMING_SNAKE_CASE : List[str] = bos_token_id SCREAMING_SNAKE_CASE : Dict = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after SCREAMING_SNAKE_CASE : Any = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests SCREAMING_SNAKE_CASE : str = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE : int = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) SCREAMING_SNAKE_CASE : List[str] = prepare_led_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.concat( [tf.zeros_like(UpperCAmelCase_ )[:, :-1], tf.ones_like(UpperCAmelCase_ )[:, -1:]] , axis=-1 , ) SCREAMING_SNAKE_CASE : Optional[int] = global_attention_mask return config, inputs_dict def _A ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE : Dict = TFLEDModel(config=UpperCAmelCase_ ).get_decoder() SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE : Tuple = input_ids[:1, :] SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE : Optional[int] = 1 # first forward pass SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE : List[str] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE : Tuple = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE : Optional[int] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Optional[Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : List[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1E-3 ) def lowerCamelCase__ ( lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE : Dict = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : Dict = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () UpperCamelCase_ : Optional[Any] = (TFLEDForConditionalGeneration,) if is_tf_available() else () UpperCamelCase_ : str = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) UpperCamelCase_ : int = True UpperCamelCase_ : str = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : str = False def _A ( self : Dict ): SCREAMING_SNAKE_CASE : List[str] = TFLEDModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=UpperCAmelCase_ ) def _A ( self : List[Any] ): self.config_tester.run_common_tests() def _A ( self : Any ): SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Union[str, Any] = tf.zeros_like(inputs_dict["attention_mask"] ) SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Optional[int] = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict["global_attention_mask"] , ) SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.seq_length SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCAmelCase_ : str ): SCREAMING_SNAKE_CASE : Dict = outputs.decoder_attentions self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE : Optional[int] = [t.numpy() for t in outputs.encoder_attentions] SCREAMING_SNAKE_CASE : Optional[Any] = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCAmelCase_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : Any = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : List[str] = len(UpperCAmelCase_ ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[int] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_decoder_attentions_output(UpperCAmelCase_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Optional[Any] = model_class(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCAmelCase_ ) ) self.assertEqual(model.config.output_hidden_states , UpperCAmelCase_ ) check_encoder_attentions_output(UpperCAmelCase_ ) @unittest.skip("LED keeps using potentially symbolic tensors in conditionals and breaks tracing." ) def _A ( self : int ): pass def _A ( self : str ): # TODO: Head-masking not yet implement pass def lowerCamelCase__ ( lowercase ): """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) snake_case = 1e-4 @slow @require_tf class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : str = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ).led # change to intended input here SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : int = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : List[Any] = prepare_led_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = model(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : int = (1, 1024, 768) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here SCREAMING_SNAKE_CASE : List[str] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-3 ) def _A ( self : List[str] ): SCREAMING_SNAKE_CASE : str = TFLEDForConditionalGeneration.from_pretrained("allenai/led-base-16384" ) # change to intended input here SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : str = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]] ) SCREAMING_SNAKE_CASE : Tuple = prepare_led_inputs_dict(model.config , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = model(**UpperCAmelCase_ )[0] SCREAMING_SNAKE_CASE : Dict = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , UpperCAmelCase_ ) # change to expected output here SCREAMING_SNAKE_CASE : Optional[int] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-3 , rtol=1E-3 )
714
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case = logging.get_logger(__name__) snake_case = { """nvidia/segformer-b0-finetuned-ade-512-512""": ( """https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json""" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : str = '''segformer''' def __init__( self : List[Any] , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Optional[Any]=4 , UpperCAmelCase_ : List[str]=[2, 2, 2, 2] , UpperCAmelCase_ : Optional[int]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : int=[7, 3, 3, 3] , UpperCAmelCase_ : str=[4, 2, 2, 2] , UpperCAmelCase_ : List[str]=[1, 2, 5, 8] , UpperCAmelCase_ : List[Any]=[4, 4, 4, 4] , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[Any]=1E-6 , UpperCAmelCase_ : List[str]=256 , UpperCAmelCase_ : Dict=255 , **UpperCAmelCase_ : Dict , ): super().__init__(**UpperCAmelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : Any = num_encoder_blocks SCREAMING_SNAKE_CASE : Tuple = depths SCREAMING_SNAKE_CASE : Any = sr_ratios SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : int = patch_sizes SCREAMING_SNAKE_CASE : Optional[int] = strides SCREAMING_SNAKE_CASE : Tuple = mlp_ratios SCREAMING_SNAKE_CASE : Any = num_attention_heads SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Tuple = classifier_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = drop_path_rate SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : Any = decoder_hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.get("reshape_last_stage" , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Dict = version.parse('''1.11''' ) @property def _A ( self : Optional[Any] ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _A ( self : List[str] ): return 1E-4 @property def _A ( self : Any ): return 12
488
0
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : str = len(__UpperCamelCase ) UpperCAmelCase__ : str = [[0] * n for i in range(__UpperCamelCase )] for i in range(__UpperCamelCase ): UpperCAmelCase__ : int = y_points[i] for i in range(2 , __UpperCamelCase ): for j in range(__UpperCamelCase , __UpperCamelCase ): UpperCAmelCase__ : Optional[Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowerCAmelCase : Optional[int] = 2 class lowerCAmelCase__ : def __init__( self : Any , *, # begin keyword-only arguments snake_case__ : List[str]="<s>" , snake_case__ : str="<pad>" , snake_case__ : List[str]="</s>" , snake_case__ : Any="<unk>" , snake_case__ : List[Any]=None , ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : str = bos, unk, pad, eos UpperCAmelCase__ : str = [] UpperCAmelCase__ : Tuple = [] UpperCAmelCase__ : Optional[int] = {} UpperCAmelCase__ : Optional[int] = self.add_symbol(snake_case__ ) UpperCAmelCase__ : Tuple = self.add_symbol(snake_case__ ) UpperCAmelCase__ : str = self.add_symbol(snake_case__ ) UpperCAmelCase__ : Optional[int] = self.add_symbol(snake_case__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(snake_case__ ) UpperCAmelCase__ : List[str] = len(self.symbols ) def __eq__( self : List[Any] , snake_case__ : str ): '''simple docstring''' return self.indices == other.indices def __getitem__( self : Dict , snake_case__ : Union[str, Any] ): '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : int ): '''simple docstring''' return len(self.symbols ) def __contains__( self : Dict , snake_case__ : Optional[Any] ): '''simple docstring''' return sym in self.indices @classmethod def __a ( cls : Optional[int] , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : Dict = cls() d.add_from_file(snake_case__ ) return d def __a ( self : Optional[Any] , snake_case__ : str , snake_case__ : Dict=1 , snake_case__ : Dict=False ): '''simple docstring''' if word in self.indices and not overwrite: UpperCAmelCase__ : List[Any] = self.indices[word] UpperCAmelCase__ : Dict = self.count[idx] + n return idx else: UpperCAmelCase__ : Optional[Any] = len(self.symbols ) UpperCAmelCase__ : List[str] = idx self.symbols.append(snake_case__ ) self.count.append(snake_case__ ) return idx def __a ( self : Union[str, Any] , snake_case__ : List[Any] ): '''simple docstring''' return 0 def __a ( self : Any , snake_case__ : Dict ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(snake_case__ ) ) return UpperCAmelCase__ : Optional[int] = f.readlines() UpperCAmelCase__ : Dict = self._load_meta(snake_case__ ) for line in lines[indices_start_line:]: try: UpperCAmelCase__ , UpperCAmelCase__ : str = line.rstrip().rsplit(" " , 1 ) if field == "#fairseq:overwrite": UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ , UpperCAmelCase__ : str = line.rsplit(" " , 1 ) else: UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Any = int(snake_case__ ) UpperCAmelCase__ : List[Any] = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(snake_case__ ) ) self.add_symbol(snake_case__ , n=snake_case__ , overwrite=snake_case__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> Tuple: '''simple docstring''' UpperCAmelCase__ : Optional[int] = dict((re.sub(r"@@$" , "" , snake_case ), v) if k.endswith("@@" ) else (re.sub(r"$" , "</w>" , snake_case ), v) for k, v in d.items() ) UpperCAmelCase__ : Optional[int] = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f'{k}</w>'] UpperCAmelCase__ : List[str] = d[k] # restore return da def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[int] , snake_case : int )-> Union[str, Any]: '''simple docstring''' if not os.path.exists(snake_case ): raise ValueError(f'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(snake_case , exist_ok=snake_case ) print(f'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models UpperCAmelCase__ : Dict = os.path.join(snake_case , "checkpoint.pt" ) if not os.path.isfile(snake_case ): raise ValueError(f'path to the file {checkpoint_file} does not exist!' ) UpperCAmelCase__ : Optional[int] = torch.load(snake_case , map_location="cpu" ) UpperCAmelCase__ : Optional[int] = chkpt["cfg"]["model"] # dicts UpperCAmelCase__ : Optional[int] = os.path.join(snake_case , "dict.txt" ) if not os.path.isfile(snake_case ): raise ValueError(f'path to the file {dict_file} does not exist!' ) UpperCAmelCase__ : Dict = Dictionary.load(snake_case ) UpperCAmelCase__ : Optional[Any] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : List[str] = len(snake_case ) UpperCAmelCase__ : Tuple = os.path.join(snake_case , VOCAB_FILES_NAMES["vocab_file"] ) print(f'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # merges_file (bpecodes) UpperCAmelCase__ : List[Any] = os.path.join(snake_case , "bpecodes" ) if not os.path.isfile(snake_case ): raise ValueError(f'path to the file {bpecodes_file} does not exist!' ) UpperCAmelCase__ : int = os.path.join(snake_case , VOCAB_FILES_NAMES["merges_file"] ) shutil.copyfile(snake_case , snake_case ) # model config UpperCAmelCase__ : List[Any] = os.path.join(snake_case , "config.json" ) UpperCAmelCase__ : Any = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-1_2, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(f'Generating {biogpt_model_config_file}' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # tokenizer config UpperCAmelCase__ : List[Any] = os.path.join(snake_case , snake_case ) UpperCAmelCase__ : str = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(f'Generating {biogpt_tokenizer_config_file}' ) with open(snake_case , "w" , encoding="utf-8" ) as f: f.write(json.dumps(snake_case , ensure_ascii=snake_case , indent=snake_case ) ) # model UpperCAmelCase__ : Union[str, Any] = chkpt["model"] # remove unneeded keys UpperCAmelCase__ : Union[str, Any] = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(snake_case , snake_case ) UpperCAmelCase__ : Union[str, Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("output_projection.weight" ): UpperCAmelCase__ : int = model_state_dict.pop(snake_case ) else: UpperCAmelCase__ : Tuple = model_state_dict.pop(snake_case ) UpperCAmelCase__ : Any = BioGptConfig.from_pretrained(snake_case ) UpperCAmelCase__ : List[Any] = BioGptForCausalLM(snake_case ) # check that it loads ok model_new.load_state_dict(snake_case ) # save UpperCAmelCase__ : Union[str, Any] = os.path.join(snake_case , snake_case ) print(f'Generating {pytorch_weights_dump_path}' ) torch.save(snake_case , snake_case ) print("Conversion is done!" ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _lowerCAmelCase : List[str] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
438
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Optional[int] = {'''configuration_vit''': ['''VIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTConfig''', '''ViTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = ['''ViTFeatureExtractor'''] __lowerCamelCase : Dict = ['''ViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[str] = [ '''VIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTForImageClassification''', '''ViTForMaskedImageModeling''', '''ViTModel''', '''ViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''TFViTForImageClassification''', '''TFViTModel''', '''TFViTPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Tuple = [ '''FlaxViTForImageClassification''', '''FlaxViTModel''', '''FlaxViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __lowerCamelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
501
import functools def lowercase__ ( __A: list[int] ,__A: list[int] ): '''simple docstring''' if not isinstance(__A ,__A ) or not all(isinstance(__A ,__A ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(__A ) != 3 or not all(isinstance(__A ,__A ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(__A ) == 0: return 0 if min(__A ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(__A ) >= 3_6_6: raise ValueError('''All days elements should be less than 366''' ) __magic_name__ : Tuple = set(__A ) @functools.cache def dynamic_programming(__A: int ) -> int: if index > 3_6_5: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) ,costs[1] + dynamic_programming(index + 7 ) ,costs[2] + dynamic_programming(index + 3_0 ) ,) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
501
1
lowerCamelCase : int = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): if moles < 0 or kelvin < 0 or volume < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError("Invalid inputs. Enter positive value." ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
367
import numpy as np def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case = 1E-12 , __snake_case = 100 , ): assert np.shape(__snake_case )[0] == np.shape(__snake_case )[1] # Ensure proper dimensionality. assert np.shape(__snake_case )[0] == np.shape(__snake_case )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(__snake_case ) == np.iscomplexobj(__snake_case ) __lowerCAmelCase = np.iscomplexobj(__snake_case ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(__snake_case , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(__snake_case , __snake_case ) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(__snake_case ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(__snake_case , np.dot(__snake_case , __snake_case ) ) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_ ) return lambda_, vector def __lowerCAmelCase ( ): __lowerCAmelCase = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) __lowerCAmelCase = np.array([41, 4, 20] ) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa ) __lowerCAmelCase = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(__snake_case , __snake_case ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(__snake_case ) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(__snake_case ) - np.abs(__snake_case ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
367
1
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __magic_name__ : Any = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( __UpperCamelCase ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ['''audio_values''', '''audio_mask'''] def __init__( self , lowerCamelCase=2_048 , lowerCamelCase=1 , lowerCamelCase=[16, 16] , lowerCamelCase=128 , lowerCamelCase=44_100 , lowerCamelCase=86 , lowerCamelCase=2_048 , lowerCamelCase=0.0 , **lowerCamelCase , ): super().__init__( feature_size=lowerCamelCase , sampling_rate=lowerCamelCase , padding_value=lowerCamelCase , **lowerCamelCase , ) lowercase = spectrogram_length lowercase = num_channels lowercase = patch_size lowercase = feature_size // self.patch_size[1] lowercase = n_fft lowercase = sampling_rate // hop_length_to_sampling_rate lowercase = sampling_rate lowercase = padding_value lowercase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowerCamelCase , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=lowerCamelCase , norm="slaney" , mel_scale="slaney" , ).T def UpperCamelCase( self , lowerCamelCase ): lowercase = spectrogram( lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) lowercase = log_spec[:, :-1] lowercase = log_spec - 20.0 lowercase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , lowerCamelCase , lowerCamelCase = None , lowerCamelCase = True , lowerCamelCase = None , lowerCamelCase = False , lowerCamelCase = False , **lowerCamelCase , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase = isinstance(lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowercase = is_batched_numpy or ( isinstance(lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase , np.ndarray ): lowercase = np.asarray(lowerCamelCase , dtype=np.floataa ) elif isinstance(lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowercase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , lowerCamelCase ): lowercase = [np.asarray(lowerCamelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowercase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowercase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowercase = np.array(lowerCamelCase ).astype(np.floataa ) # convert into correct format for padding lowercase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowercase = np.ones([len(lowerCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowercase = padded_audio_features * self.padding_value for i in range(len(lowerCamelCase ) ): lowercase = audio_features[i] lowercase = feature # return as BatchFeature if return_attention_mask: lowercase = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowercase = {"audio_values": padded_audio_features} lowercase = BatchFeature(data=lowerCamelCase , tensor_type=lowerCamelCase ) return encoded_inputs
706
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated __magic_name__ : Union[str, Any] = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ __magic_name__ : int = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = bytestream.read(rows * cols * num_images ) _snake_case = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) _snake_case = data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.one_hot on tensors." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = labels_dense.shape[0] _snake_case = numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes _snake_case = numpy.zeros((num_labels, num_classes) ) _snake_case = 1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , "Please use tf.data to implement this functionality." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=10 ): '''simple docstring''' print("Extracting" , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) _snake_case = _readaa(SCREAMING_SNAKE_CASE__ ) _snake_case = bytestream.read(SCREAMING_SNAKE_CASE__ ) _snake_case = numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class __SCREAMING_SNAKE_CASE : '''simple docstring''' @deprecated( lowerCamelCase , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=dtypes.floataa , lowerCamelCase=True , lowerCamelCase=None , ): _snake_case , _snake_case = random_seed.get_seed(lowerCamelCase ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) _snake_case = dtypes.as_dtype(lowerCamelCase ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype ) if fake_data: _snake_case = 10_000 _snake_case = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'''images.shape: {images.shape} labels.shape: {labels.shape}''' _snake_case = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 _snake_case = images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. _snake_case = images.astype(numpy.floataa ) _snake_case = numpy.multiply(lowerCamelCase , 1.0 / 255.0 ) _snake_case = images _snake_case = labels _snake_case = 0 _snake_case = 0 @property def UpperCamelCase( self ): return self._images @property def UpperCamelCase( self ): return self._labels @property def UpperCamelCase( self ): return self._num_examples @property def UpperCamelCase( self ): return self._epochs_completed def UpperCamelCase( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=True ): if fake_data: _snake_case = [1] * 784 _snake_case = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(lowerCamelCase )], [fake_label for _ in range(lowerCamelCase )], ) _snake_case = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) _snake_case = self.images[perma] _snake_case = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch _snake_case = self._num_examples - start _snake_case = self._images[start : self._num_examples] _snake_case = self._labels[start : self._num_examples] # Shuffle the data if shuffle: _snake_case = numpy.arange(self._num_examples ) numpy.random.shuffle(lowerCamelCase ) _snake_case = self.images[perm] _snake_case = self.labels[perm] # Start next epoch _snake_case = 0 _snake_case = batch_size - rest_num_examples _snake_case = self._index_in_epoch _snake_case = self._images[start:end] _snake_case = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size _snake_case = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , "Please write your own downloading logic." ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) _snake_case = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: _snake_case = f.size() print("Successfully downloaded" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , "bytes." ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , "Please use alternatives such as:" " tensorflow_datasets.load('mnist')" ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=dtypes.floataa , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=50_00 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=DEFAULT_SOURCE_URL , ): '''simple docstring''' if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) _snake_case = fake() _snake_case = fake() _snake_case = fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check _snake_case = DEFAULT_SOURCE_URL _snake_case = "train-images-idx3-ubyte.gz" _snake_case = "train-labels-idx1-ubyte.gz" _snake_case = "t10k-images-idx3-ubyte.gz" _snake_case = "t10k-labels-idx1-ubyte.gz" _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_images(SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_images(SCREAMING_SNAKE_CASE__ ) _snake_case = _maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , "rb" ) as f: _snake_case = _extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): _snake_case = ( "Validation size should be between 0 and " f'''{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) _snake_case = train_images[:validation_size] _snake_case = train_labels[:validation_size] _snake_case = train_images[validation_size:] _snake_case = train_labels[validation_size:] _snake_case = {"dtype": dtype, "reshape": reshape, "seed": seed} _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _snake_case = _DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
368
0
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __UpperCAmelCase ( __lowerCAmelCase ): A__ : List[Any] = '''Wav2Vec2FeatureExtractor''' A__ : Any = '''AutoTokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ =self.feature_extractor lowerCamelCase__ =False @classmethod def _a ( cls , _lowerCamelCase , **_lowerCamelCase ): try: return super().from_pretrained(_lowerCamelCase , **_lowerCamelCase ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , _lowerCamelCase , ) lowerCamelCase__ =WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ =WavaVecaCTCTokenizer.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) return cls(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCamelCase__ =kwargs.pop("raw_speech" ) else: lowerCamelCase__ =kwargs.pop("audio" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("sampling_rate" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("text" , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ =args[0] lowerCamelCase__ =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCamelCase__ =self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: lowerCamelCase__ =self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ =encodings["input_ids"] return inputs def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ =kwargs.pop("input_features" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("labels" , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ =args[0] lowerCamelCase__ =args[1:] if input_features is not None: lowerCamelCase__ =self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if labels is not None: lowerCamelCase__ =self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase__ =labels["input_ids"] return input_features def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def _a ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCamelCase__ =True lowerCamelCase__ =self.tokenizer yield lowerCamelCase__ =self.feature_extractor lowerCamelCase__ =False
530
"""simple docstring""" from __future__ import annotations from typing import Any class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 ): lowerCamelCase__ , lowerCamelCase__ =row, column lowerCamelCase__ =[[default_value for c in range(_lowerCamelCase )] for r in range(_lowerCamelCase )] def __str__( self ): lowerCamelCase__ =F'''Matrix consist of {self.row} rows and {self.column} columns\n''' # Make string identifier lowerCamelCase__ =0 for row_vector in self.array: for obj in row_vector: lowerCamelCase__ =max(_lowerCamelCase , len(str(_lowerCamelCase ) ) ) lowerCamelCase__ =F'''%{max_element_length}s''' # Make string and return def single_line(_lowerCamelCase ) -> str: nonlocal string_format_identifier lowerCamelCase__ ="[" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(_lowerCamelCase ) for row_vector in self.array ) return s def __repr__( self ): return str(self ) def _a ( self , _lowerCamelCase ): if not (isinstance(_lowerCamelCase , (list, tuple) ) and len(_lowerCamelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , _lowerCamelCase ): assert self.validate_indicies(_lowerCamelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , _lowerCamelCase , _lowerCamelCase ): assert self.validate_indicies(_lowerCamelCase ) lowerCamelCase__ =value def __add__( self , _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert self.row == another.row and self.column == another.column # Add lowerCamelCase__ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ =self[r, c] + another[r, c] return result def __neg__( self ): lowerCamelCase__ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ =-self[r, c] return result def __sub__( self , _lowerCamelCase ): return self + (-another) def __mul__( self , _lowerCamelCase ): if isinstance(_lowerCamelCase , (int, float) ): # Scalar multiplication lowerCamelCase__ =Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ =self[r, c] * another return result elif isinstance(_lowerCamelCase , _lowerCamelCase ): # Matrix multiplication assert self.column == another.row lowerCamelCase__ =Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: lowerCamelCase__ =F'''Unsupported type given for another ({type(_lowerCamelCase )})''' raise TypeError(_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): lowerCamelCase__ =self[r, c] return result def _a ( self , _lowerCamelCase , _lowerCamelCase ): assert isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowerCamelCase__ =v.transpose() lowerCamelCase__ =(v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowerCamelCase_ ( ) -> None: '''simple docstring''' lowerCamelCase__ =Matrix(3 , 3 , 0 ) for i in range(3 ): lowerCamelCase__ =1 print(F'''a^(-1) is {ainv}''' ) # u, v lowerCamelCase__ =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =1, 2, -3 lowerCamelCase__ =Matrix(3 , 1 , 0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =4, -2, 5 print(F'''u is {u}''' ) print(F'''v is {v}''' ) print(F'''uv^T is {u * v.transpose()}''' ) # Sherman Morrison print(F'''(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowerCAmelCase , __lowerCAmelCase )}''' ) def lowerCamelCase_ ( ) -> None: '''simple docstring''' import doctest doctest.testmod() testa()
530
1
'''simple docstring''' import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class snake_case__ ( TensorFormatter[Mapping, "torch.Tensor", Mapping]): def __init__( self : List[str] , _A : str=None , **_A : Dict ) -> Optional[Any]: super().__init__(features=_A ) UpperCAmelCase_ : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def A ( self : List[str] , _A : List[str] ) -> List[Any]: import torch if isinstance(_A , _A ) and column: if all( isinstance(_A , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(_A ) return column def A ( self : int , _A : str ) -> Optional[int]: import torch if isinstance(_A , (str, bytes, type(_A )) ): return value elif isinstance(_A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCAmelCase_ : int = {} if isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): UpperCAmelCase_ : Optional[Any] = {'''dtype''': torch.intaa} elif isinstance(_A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCAmelCase_ : Optional[int] = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_A , PIL.Image.Image ): UpperCAmelCase_ : Optional[int] = np.asarray(_A ) return torch.tensor(_A , **{**default_dtype, **self.torch_tensor_kwargs} ) def A ( self : Any , _A : List[Any] ) -> Union[str, Any]: import torch # support for torch, tf, jax etc. if hasattr(_A , '''__array__''' ) and not isinstance(_A , torch.Tensor ): UpperCAmelCase_ : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_A , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) elif isinstance(_A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_A ) for substruct in data_struct] ) return self._tensorize(_A ) def A ( self : List[Any] , _A : dict ) -> Any: return map_nested(self._recursive_tensorize , _A , map_list=_A ) def A ( self : Optional[Any] , _A : pa.Table ) -> Mapping: UpperCAmelCase_ : List[str] = self.numpy_arrow_extractor().extract_row(_A ) UpperCAmelCase_ : List[Any] = self.python_features_decoder.decode_row(_A ) return self.recursive_tensorize(_A ) def A ( self : Any , _A : pa.Table ) -> "torch.Tensor": UpperCAmelCase_ : int = self.numpy_arrow_extractor().extract_column(_A ) UpperCAmelCase_ : Any = self.python_features_decoder.decode_column(_A , pa_table.column_names[0] ) UpperCAmelCase_ : str = self.recursive_tensorize(_A ) UpperCAmelCase_ : Union[str, Any] = self._consolidate(_A ) return column def A ( self : List[str] , _A : pa.Table ) -> Mapping: UpperCAmelCase_ : Optional[int] = self.numpy_arrow_extractor().extract_batch(_A ) UpperCAmelCase_ : Tuple = self.python_features_decoder.decode_batch(_A ) UpperCAmelCase_ : Dict = self.recursive_tensorize(_A ) for column_name in batch: UpperCAmelCase_ : int = self._consolidate(batch[column_name] ) return batch
706
'''simple docstring''' class snake_case__ : def __init__( self : Dict , _A : int ) -> Tuple: UpperCAmelCase_ : List[str] = n UpperCAmelCase_ : Optional[Any] = [None] * self.n UpperCAmelCase_ : List[str] = 0 # index of the first element UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : List[Any] = 0 def __len__( self : Optional[int] ) -> int: return self.size def A ( self : List[Any] ) -> bool: return self.size == 0 def A ( self : str ) -> Dict: return False if self.is_empty() else self.array[self.front] def A ( self : Any , _A : int ) -> List[str]: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) UpperCAmelCase_ : Dict = data UpperCAmelCase_ : List[str] = (self.rear + 1) % self.n self.size += 1 return self def A ( self : Optional[int] ) -> str: if self.size == 0: raise Exception('''UNDERFLOW''' ) UpperCAmelCase_ : Dict = self.array[self.front] UpperCAmelCase_ : str = None UpperCAmelCase_ : Dict = (self.front + 1) % self.n self.size -= 1 return temp
216
0
_lowerCamelCase : Union[str, Any] = [0, 2, 4, 6, 8] _lowerCamelCase : List[Any] = [1, 3, 5, 7, 9] def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> int: """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 A__ = 0 for digit in range(10 ): A__ = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , lowercase_ , lowercase_ ) return result A__ = 0 for digita in range(10 ): A__ = digita if (remainder + digita) % 2 == 0: A__ = ODD_DIGITS else: A__ = EVEN_DIGITS for digita in other_parity_digits: A__ = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , lowercase_ , lowercase_ , ) return result def SCREAMING_SNAKE_CASE ( lowercase_ = 9 ) -> int: """simple docstring""" A__ = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(lowercase_ , 0 , [0] * length , lowercase_ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
87
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = "informer" SCREAMING_SNAKE_CASE__ : Optional[int] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self: Tuple , _lowerCamelCase: Optional[int] = None , _lowerCamelCase: Optional[int] = None , _lowerCamelCase: str = "student_t" , _lowerCamelCase: str = "nll" , _lowerCamelCase: int = 1 , _lowerCamelCase: List[int] = None , _lowerCamelCase: Optional[Union[str, bool]] = "mean" , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: int = 0 , _lowerCamelCase: Optional[List[int]] = None , _lowerCamelCase: Optional[List[int]] = None , _lowerCamelCase: int = 64 , _lowerCamelCase: int = 32 , _lowerCamelCase: int = 32 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: int = 2 , _lowerCamelCase: bool = True , _lowerCamelCase: str = "gelu" , _lowerCamelCase: float = 0.05 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: float = 0.1 , _lowerCamelCase: int = 1_00 , _lowerCamelCase: float = 0.02 , _lowerCamelCase: List[str]=True , _lowerCamelCase: str = "prob" , _lowerCamelCase: int = 5 , _lowerCamelCase: bool = True , **_lowerCamelCase: Tuple , ): # time series specific configuration SCREAMING_SNAKE_CASE_ = prediction_length SCREAMING_SNAKE_CASE_ = context_length or prediction_length SCREAMING_SNAKE_CASE_ = distribution_output SCREAMING_SNAKE_CASE_ = loss SCREAMING_SNAKE_CASE_ = input_size SCREAMING_SNAKE_CASE_ = num_time_features SCREAMING_SNAKE_CASE_ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE_ = scaling SCREAMING_SNAKE_CASE_ = num_dynamic_real_features SCREAMING_SNAKE_CASE_ = num_static_real_features SCREAMING_SNAKE_CASE_ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(_lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = cardinality else: SCREAMING_SNAKE_CASE_ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(_lowerCamelCase ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) SCREAMING_SNAKE_CASE_ = embedding_dimension else: SCREAMING_SNAKE_CASE_ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE_ = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE_ = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = use_cache # Informer SCREAMING_SNAKE_CASE_ = attention_type SCREAMING_SNAKE_CASE_ = sampling_factor SCREAMING_SNAKE_CASE_ = distil super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase ) @property def _A ( self: List[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
234
0
import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self ): A : str = """| <pad> <unk> <s> </s> a b c d e f g h i j k""".split() A : Tuple = dict(zip(lowerCamelCase__, range(len(lowerCamelCase__ ) ) ) ) A : int = { """unk_token""": """<unk>""", """bos_token""": """<s>""", """eos_token""": """</s>""", } A : Dict = { """feature_size""": 1, """padding_value""": 0.0, """sampling_rate""": 1_6000, """return_attention_mask""": False, """do_normalize""": True, } A : Dict = tempfile.mkdtemp() A : List[str] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["""vocab_file"""] ) A : List[Any] = os.path.join(self.tmpdirname, lowerCamelCase__ ) with open(self.vocab_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) with open(self.feature_extraction_file, """w""", encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + """\n""" ) # load decoder from hub A : int = """hf-internal-testing/ngram-beam-search-decoder""" def _lowerCAmelCase ( self, **lowerCamelCase__ ): A : Union[str, Any] = self.add_kwargs_tokens_map.copy() kwargs.update(lowerCamelCase__ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname, **lowerCamelCase__ ) def _lowerCAmelCase ( self, **lowerCamelCase__ ): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name, **lowerCamelCase__ ) def _lowerCAmelCase ( self ): shutil.rmtree(self.tmpdirname ) def _lowerCAmelCase ( self ): A : List[Any] = self.get_tokenizer() A : Optional[int] = self.get_feature_extractor() A : Union[str, Any] = self.get_decoder() A : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__, decoder=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) A : Dict = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer, lowerCamelCase__ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor, lowerCamelCase__ ) # decoder self.assertEqual(processor.decoder._alphabet.labels, decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set, decoder.model_container[decoder._model_key]._unigram_set, ) self.assertIsInstance(processor.decoder, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : List[Any] = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match A : str = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname, alpha=5.0, beta=3.0, score_boundary=-7.0, unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha, 5.0 ) self.assertEqual(processor.language_model.beta, 3.0 ) self.assertEqual(processor.language_model.score_boundary, -7.0 ) self.assertEqual(processor.language_model.unk_score_offset, 3 ) def _lowerCAmelCase ( self ): A : Tuple = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(["""xx"""] ) with self.assertRaisesRegex(lowerCamelCase__, """include""" ): WavaVecaProcessorWithLM( tokenizer=lowerCamelCase__, feature_extractor=self.get_feature_extractor(), decoder=self.get_decoder() ) def _lowerCAmelCase ( self ): A : List[Any] = self.get_feature_extractor() A : Any = self.get_tokenizer() A : Dict = self.get_decoder() A : Dict = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__, decoder=lowerCamelCase__ ) A : Union[str, Any] = floats_list((3, 1000) ) A : int = feature_extractor(lowerCamelCase__, return_tensors="""np""" ) A : Union[str, Any] = processor(lowerCamelCase__, return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2 ) def _lowerCAmelCase ( self ): A : int = self.get_feature_extractor() A : List[Any] = self.get_tokenizer() A : str = self.get_decoder() A : int = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__, decoder=lowerCamelCase__ ) A : List[str] = """This is a test string""" A : Optional[Any] = processor(text=lowerCamelCase__ ) A : str = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key], encoded_processor[key] ) def _lowerCAmelCase ( self, lowerCamelCase__=(2, 10, 16), lowerCamelCase__=77 ): np.random.seed(lowerCamelCase__ ) return np.random.rand(*lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : int = self.get_feature_extractor() A : Optional[Any] = self.get_tokenizer() A : str = self.get_decoder() A : List[Any] = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__, decoder=lowerCamelCase__ ) A : str = self._get_dummy_logits(shape=(10, 16), seed=13 ) A : Tuple = processor.decode(lowerCamelCase__ ) A : List[Any] = decoder.decode_beams(lowerCamelCase__ )[0] self.assertEqual(decoded_decoder[0], decoded_processor.text ) self.assertEqual("""</s> <s> </s>""", decoded_processor.text ) self.assertEqual(decoded_decoder[-2], decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1], decoded_processor.lm_score ) @parameterized.expand([[None], ["""fork"""], ["""spawn"""]] ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[Any] = self.get_feature_extractor() A : List[str] = self.get_tokenizer() A : str = self.get_decoder() A : int = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__, decoder=lowerCamelCase__ ) A : List[str] = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: A : Dict = processor.batch_decode(lowerCamelCase__ ) else: with get_context(lowerCamelCase__ ).Pool() as pool: A : Dict = processor.batch_decode(lowerCamelCase__, lowerCamelCase__ ) A : Optional[int] = list(lowerCamelCase__ ) with get_context("""fork""" ).Pool() as p: A : List[str] = decoder.decode_beams_batch(lowerCamelCase__, lowerCamelCase__ ) A , A , A : int = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(lowerCamelCase__, decoded_processor.text ) self.assertListEqual(["""<s> <s> </s>""", """<s> <s> <s>"""], decoded_processor.text ) self.assertListEqual(lowerCamelCase__, decoded_processor.logit_score ) self.assertListEqual(lowerCamelCase__, decoded_processor.lm_score ) def _lowerCAmelCase ( self ): A : Tuple = self.get_feature_extractor() A : Union[str, Any] = self.get_tokenizer() A : Any = self.get_decoder() A : Tuple = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__, decoder=lowerCamelCase__ ) A : Optional[int] = self._get_dummy_logits() A : Tuple = 15 A : List[Any] = -20.0 A : Any = -4.0 A : Union[str, Any] = processor.batch_decode( lowerCamelCase__, beam_width=lowerCamelCase__, beam_prune_logp=lowerCamelCase__, token_min_logp=lowerCamelCase__, ) A : str = decoded_processor_out.text A : List[Any] = list(lowerCamelCase__ ) with get_context("""fork""" ).Pool() as pool: A : int = decoder.decode_beams_batch( lowerCamelCase__, lowerCamelCase__, beam_width=lowerCamelCase__, beam_prune_logp=lowerCamelCase__, token_min_logp=lowerCamelCase__, ) A : Any = [d[0][0] for d in decoded_decoder_out] A : Tuple = [d[0][2] for d in decoded_decoder_out] A : str = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) self.assertListEqual(["""</s> <s> <s>""", """<s> <s> <s>"""], lowerCamelCase__ ) self.assertTrue(np.array_equal(lowerCamelCase__, decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-20.054, -18.447], lowerCamelCase__, atol=1e-3 ) ) self.assertTrue(np.array_equal(lowerCamelCase__, decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-15.554, -13.9474], lowerCamelCase__, atol=1e-3 ) ) def _lowerCAmelCase ( self ): A : int = self.get_feature_extractor() A : List[str] = self.get_tokenizer() A : List[str] = self.get_decoder() A : Tuple = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__, decoder=lowerCamelCase__ ) A : Dict = self._get_dummy_logits() A : List[Any] = 2.0 A : Tuple = 5.0 A : Any = -20.0 A : List[str] = True A : Optional[int] = processor.batch_decode( lowerCamelCase__, alpha=lowerCamelCase__, beta=lowerCamelCase__, unk_score_offset=lowerCamelCase__, lm_score_boundary=lowerCamelCase__, ) A : Optional[int] = decoded_processor_out.text A : Optional[Any] = list(lowerCamelCase__ ) decoder.reset_params( alpha=lowerCamelCase__, beta=lowerCamelCase__, unk_score_offset=lowerCamelCase__, lm_score_boundary=lowerCamelCase__, ) with get_context("""fork""" ).Pool() as pool: A : str = decoder.decode_beams_batch( lowerCamelCase__, lowerCamelCase__, ) A : Optional[Any] = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) self.assertListEqual(["""<s> </s> <s> </s> </s>""", """</s> </s> <s> </s> </s>"""], lowerCamelCase__ ) A : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha, 2.0 ) self.assertEqual(lm_model.beta, 5.0 ) self.assertEqual(lm_model.unk_score_offset, -20.0 ) self.assertEqual(lm_model.score_boundary, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Optional[int] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) A : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] A : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() A : Union[str, Any] = os.listdir(lowerCamelCase__ ) A : Any = ["""alphabet.json""", """language_model"""] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Any = snapshot_download("""hf-internal-testing/processor_with_lm""" ) A : List[Any] = WavaVecaProcessorWithLM.from_pretrained(lowerCamelCase__ ) A : Any = processor.decoder.model_container[processor.decoder._model_key] A : str = Path(language_model._kenlm_model.path.decode("""utf-8""" ) ).parent.parent.absolute() A : int = os.listdir(lowerCamelCase__ ) A : List[Any] = os.listdir(lowerCamelCase__ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Dict = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) A : int = AutoProcessor.from_pretrained("""hf-internal-testing/processor_with_lm""" ) A : Union[str, Any] = floats_list((3, 1000) ) A : Optional[int] = processor_wavaveca(lowerCamelCase__, return_tensors="""np""" ) A : List[Any] = processor_auto(lowerCamelCase__, return_tensors="""np""" ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum(), input_auto[key].sum(), delta=1e-2 ) A : List[str] = self._get_dummy_logits() A : Dict = processor_wavaveca.batch_decode(lowerCamelCase__ ) A : Union[str, Any] = processor_auto.batch_decode(lowerCamelCase__ ) self.assertListEqual(decoded_wavaveca.text, decoded_auto.text ) def _lowerCAmelCase ( self ): A : Optional[int] = self.get_feature_extractor() A : Optional[Any] = self.get_tokenizer() A : Tuple = self.get_decoder() A : str = WavaVecaProcessorWithLM(tokenizer=lowerCamelCase__, feature_extractor=lowerCamelCase__, decoder=lowerCamelCase__ ) self.assertListEqual( processor.model_input_names, feature_extractor.model_input_names, msg="""`processor` and `feature_extractor` model input names do not match""", ) @staticmethod def _lowerCAmelCase ( lowerCamelCase__, lowerCamelCase__ ): A : str = [d[key] for d in offsets] return retrieved_list def _lowerCAmelCase ( self ): A : List[Any] = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) A : Dict = self._get_dummy_logits()[0] A : Tuple = processor.decode(lowerCamelCase__, output_word_offsets=lowerCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCamelCase__, lowerCamelCase__ ) ) self.assertEqual(""" """.join(self.get_from_offsets(outputs["""word_offsets"""], """word""" ) ), outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""], """word""" ), ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""], """start_offset""" ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""], """end_offset""" ), [1, 3, 5] ) def _lowerCAmelCase ( self ): A : int = WavaVecaProcessorWithLM.from_pretrained("""hf-internal-testing/processor_with_lm""" ) A : Tuple = self._get_dummy_logits() A : int = processor.batch_decode(lowerCamelCase__, output_word_offsets=lowerCamelCase__ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ), 4 ) self.assertTrue("""text""" in outputs ) self.assertTrue("""word_offsets""" in outputs ) self.assertTrue(isinstance(lowerCamelCase__, lowerCamelCase__ ) ) self.assertListEqual( [""" """.join(self.get_from_offsets(lowerCamelCase__, """word""" ) ) for o in outputs["""word_offsets"""]], outputs.text ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0], """word""" ), ["""<s>""", """<s>""", """</s>"""] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0], """start_offset""" ), [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs["""word_offsets"""][0], """end_offset""" ), [1, 3, 5] ) @slow @require_torch @require_torchaudio def _lowerCAmelCase ( self ): import torch A : Optional[Any] = load_dataset("""common_voice""", """en""", split="""train""", streaming=lowerCamelCase__ ) A : int = ds.cast_column("""audio""", datasets.Audio(sampling_rate=1_6000 ) ) A : int = iter(lowerCamelCase__ ) A : Dict = next(lowerCamelCase__ ) A : Union[str, Any] = AutoProcessor.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) A : List[Any] = WavaVecaForCTC.from_pretrained("""patrickvonplaten/wav2vec2-base-100h-with-lm""" ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train A : Dict = processor(sample["""audio"""]["""array"""], return_tensors="""pt""" ).input_values with torch.no_grad(): A : Tuple = model(lowerCamelCase__ ).logits.cpu().numpy() A : List[str] = processor.decode(logits[0], output_word_offsets=lowerCamelCase__ ) A : Any = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate A : Union[str, Any] = [ { """start_time""": d["""start_offset"""] * time_offset, """end_time""": d["""end_offset"""] * time_offset, """word""": d["""word"""], } for d in output["""word_offsets"""] ] A : Optional[Any] = """WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL""" # output words self.assertEqual(""" """.join(self.get_from_offsets(lowerCamelCase__, """word""" ) ), lowerCamelCase__ ) self.assertEqual(""" """.join(self.get_from_offsets(lowerCamelCase__, """word""" ) ), output.text ) # output times A : str = torch.tensor(self.get_from_offsets(lowerCamelCase__, """start_time""" ) ) A : Optional[Any] = torch.tensor(self.get_from_offsets(lowerCamelCase__, """end_time""" ) ) # fmt: off A : Union[str, Any] = torch.tensor([1.4199, 1.6599, 2.2599, 3.0, 3.24, 3.5999, 3.7999, 4.0999, 4.26, 4.94, 5.28, 5.6599, 5.78, 5.94, 6.32, 6.5399, 6.6599] ) A : Optional[int] = torch.tensor([1.5399, 1.8999, 2.9, 3.16, 3.5399, 3.72, 4.0199, 4.1799, 4.76, 5.1599, 5.5599, 5.6999, 5.86, 6.1999, 6.38, 6.6199, 6.94] ) # fmt: on self.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=0.01 ) ) self.assertTrue(torch.allclose(lowerCamelCase__, lowerCamelCase__, atol=0.01 ) )
520
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __lowerCamelCase : str = DistilBertTokenizer __lowerCamelCase : Union[str, Any] = DistilBertTokenizerFast __lowerCamelCase : List[Any] = True @slow def _lowerCAmelCase ( self ): A : List[Any] = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) A : List[Any] = tokenizer.encode("""sequence builders""", add_special_tokens=lowerCamelCase__ ) A : Optional[int] = tokenizer.encode("""multi-sequence build""", add_special_tokens=lowerCamelCase__ ) A : List[str] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) A : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__, lowerCamelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
520
1
from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case_ : '''simple docstring''' __UpperCamelCase = 42 # [batch_size x 3] __UpperCamelCase = 42 # [batch_size x 3] __UpperCamelCase = 42 # [batch_size x 3] __UpperCamelCase = 42 # [batch_size x 3] __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __UpperCAmelCase ( self ) -> Dict: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def __UpperCAmelCase ( self ) -> Tuple: return torch.from_numpy(np.array([self.width, self.height], dtype=np.floataa ) ) def __UpperCAmelCase ( self ) -> List[str]: return torch.from_numpy(np.array([self.x_fov, self.y_fov], dtype=np.floataa ) ) def __UpperCAmelCase ( self ) -> torch.Tensor: UpperCAmelCase__ =torch.arange(self.height * self.width ) UpperCAmelCase__ =torch.stack( [ pixel_indices % self.width, torch.div(A_, self.width, rounding_mode="trunc" ), ], axis=1, ) return coords @property def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ , *UpperCAmelCase__ =self.shape UpperCAmelCase__ =int(np.prod(A_ ) ) UpperCAmelCase__ =self.get_image_coords() UpperCAmelCase__ =torch.broadcast_to(coords.unsqueeze(0 ), [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase__ =self.get_camera_rays(A_ ) UpperCAmelCase__ =rays.view(A_, inner_batch_size * self.height * self.width, 2, 3 ) return rays def __UpperCAmelCase ( self, A_ ) -> torch.Tensor: UpperCAmelCase__ , *UpperCAmelCase__ , UpperCAmelCase__ =coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase__ =coords.view(A_, -1, 2 ) UpperCAmelCase__ =self.resolution() UpperCAmelCase__ =self.fov() UpperCAmelCase__ =(flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase__ =fracs * torch.tan(fov / 2 ) UpperCAmelCase__ =fracs.view(A_, -1, 2 ) UpperCAmelCase__ =( self.z.view(A_, 1, 3 ) + self.x.view(A_, 1, 3 ) * fracs[:, :, :1] + self.y.view(A_, 1, 3 ) * fracs[:, :, 1:] ) UpperCAmelCase__ =directions / directions.norm(dim=-1, keepdim=A_ ) UpperCAmelCase__ =torch.stack( [ torch.broadcast_to(self.origin.view(A_, 1, 3 ), [batch_size, directions.shape[1], 3] ), directions, ], dim=2, ) return rays.view(A_, *A_, 2, 3 ) def __UpperCAmelCase ( self, A_, A_ ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin, x=self.x, y=self.y, z=self.z, width=A_, height=A_, x_fov=self.x_fov, y_fov=self.y_fov, ) def _UpperCAmelCase ( A ): '''simple docstring''' UpperCAmelCase__ =[] UpperCAmelCase__ =[] UpperCAmelCase__ =[] UpperCAmelCase__ =[] for theta in np.linspace(0 , 2 * np.pi , num=20 ): UpperCAmelCase__ =np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase__ =-z * 4 UpperCAmelCase__ =np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase__ =np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
625
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class snake_case_ ( a ): '''simple docstring''' __UpperCamelCase = 'EncodecFeatureExtractor' __UpperCamelCase = ('T5Tokenizer', 'T5TokenizerFast') def __init__( self, A_, A_ ) -> Optional[int]: super().__init__(A_, A_ ) UpperCAmelCase__ =self.feature_extractor UpperCAmelCase__ =False def __UpperCAmelCase ( self, A_=None, A_=None, A_=True ) -> Union[str, Any]: return self.tokenizer.get_decoder_prompt_ids(task=A_, language=A_, no_timestamps=A_ ) def __call__( self, *A_, **A_ ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*A_, **A_ ) UpperCAmelCase__ =kwargs.pop("audio", A_ ) UpperCAmelCase__ =kwargs.pop("sampling_rate", A_ ) UpperCAmelCase__ =kwargs.pop("text", A_ ) if len(A_ ) > 0: UpperCAmelCase__ =args[0] UpperCAmelCase__ =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: UpperCAmelCase__ =self.tokenizer(A_, **A_ ) if audio is not None: UpperCAmelCase__ =self.feature_extractor(A_, *A_, sampling_rate=A_, **A_ ) if audio is None: return inputs elif text is None: return audio_inputs else: UpperCAmelCase__ =audio_inputs["input_values"] if "padding_mask" in audio_inputs: UpperCAmelCase__ =audio_inputs["padding_mask"] return inputs def __UpperCAmelCase ( self, *A_, **A_ ) -> Dict: UpperCAmelCase__ =kwargs.pop("audio", A_ ) UpperCAmelCase__ =kwargs.pop("padding_mask", A_ ) if len(A_ ) > 0: UpperCAmelCase__ =args[0] UpperCAmelCase__ =args[1:] if audio_values is not None: return self._decode_audio(A_, padding_mask=A_ ) else: return self.tokenizer.batch_decode(*A_, **A_ ) def __UpperCAmelCase ( self, *A_, **A_ ) -> int: return self.tokenizer.decode(*A_, **A_ ) def __UpperCAmelCase ( self, A_, A_ = None ) -> List[np.ndarray]: UpperCAmelCase__ =to_numpy(A_ ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =audio_values.shape if padding_mask is None: return list(A_ ) UpperCAmelCase__ =to_numpy(A_ ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) UpperCAmelCase__ =seq_len - padding_mask.shape[-1] UpperCAmelCase__ =1 - self.feature_extractor.padding_value UpperCAmelCase__ =np.pad(A_, ((0, 0), (0, difference)), "constant", constant_values=A_ ) UpperCAmelCase__ =audio_values.tolist() for i in range(A_ ): UpperCAmelCase__ =np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] UpperCAmelCase__ =sliced_audio.reshape(A_, -1 ) return audio_values
625
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def __magic_name__ ( __a : List[Any] , __a : List[Any]=10 ): UpperCamelCase__ = [] for _ in range(__a ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def __magic_name__ ( __a : Any , __a : Union[str, Any]=10 ): UpperCamelCase__ = [] for step in range(__a ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ = os.path.join(__a , """schedule.bin""" ) torch.save(scheduler.state_dict() , __a ) UpperCamelCase__ = torch.load(__a ) scheduler.load_state_dict(__a ) return lrs @require_torch class __A( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for a, b in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertAlmostEqual(UpperCamelCase__ , UpperCamelCase__ , delta=UpperCamelCase__ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase__ ) UpperCamelCase__ = torch.tensor([0.4, 0.2, -0.5] ) UpperCamelCase__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCamelCase__ = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_00 ): UpperCamelCase__ = criterion(UpperCamelCase__ , UpperCamelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def UpperCAmelCase_ (self ): UpperCamelCase__ = torch.tensor([0.1, -0.2, -0.1] , requires_grad=UpperCamelCase__ ) UpperCamelCase__ = torch.tensor([0.4, 0.2, -0.5] ) UpperCamelCase__ = nn.MSELoss() # No warmup, constant schedule, no gradient clipping UpperCamelCase__ = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=UpperCamelCase__ , weight_decay=0.0 , relative_step=UpperCamelCase__ , scale_parameter=UpperCamelCase__ , warmup_init=UpperCamelCase__ , ) for _ in range(10_00 ): UpperCamelCase__ = criterion(UpperCamelCase__ , UpperCamelCase__ ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __A( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = nn.Linear(50 , 50 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for a, b in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertAlmostEqual(UpperCamelCase__ , UpperCamelCase__ , delta=UpperCamelCase__ , msg=UpperCamelCase__ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) UpperCamelCase__ = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): UpperCamelCase__ , UpperCamelCase__ = data UpperCamelCase__ = scheduler_func(self.optimizer , **UpperCamelCase__ ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) UpperCamelCase__ = unwrap_schedule(UpperCamelCase__ , self.num_steps ) self.assertListAlmostEqual( UpperCamelCase__ , UpperCamelCase__ , tol=1E-2 , msg=F"failed for {scheduler_func} in normal scheduler" , ) UpperCamelCase__ = scheduler_func(self.optimizer , **UpperCamelCase__ ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(UpperCamelCase__ ) # wrap to test picklability of the schedule UpperCamelCase__ = unwrap_and_save_reload_schedule(UpperCamelCase__ , self.num_steps ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ , msg=F"failed for {scheduler_func} in save and reload" ) class __A: """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = fn def __call__(self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ): return self.fn(*UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = list(map(self , scheduler.lr_lambdas ) )
710
from sklearn.metrics import matthews_corrcoef import datasets lowerCamelCase_ = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' lowerCamelCase_ = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' lowerCamelCase_ = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A( datasets.Metric ): """simple docstring""" def UpperCAmelCase_ (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): return { "matthews_correlation": float(matthews_corrcoef(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , sample_weight=SCREAMING_SNAKE_CASE_ ) ), }
86
0
'''simple docstring''' from __future__ import annotations __lowerCamelCase = [] def a__ ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : int, UpperCamelCase_ : int ): for i in range(len(UpperCamelCase_ ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase_ ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase_, -1, -1 ), range(UpperCamelCase_, -1, -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase_, -1, -1 ), range(UpperCamelCase_, len(UpperCamelCase_ ) ) ): if board[i][j] == 1: return False return True def a__ ( UpperCamelCase_ : list[list[int]], UpperCamelCase_ : int ): if row >= len(UpperCamelCase_ ): solution.append(UpperCamelCase_ ) printboard(UpperCamelCase_ ) print() return True for i in range(len(UpperCamelCase_ ) ): if is_safe(UpperCamelCase_, UpperCamelCase_, UpperCamelCase_ ): UpperCAmelCase__ :Optional[Any] = 1 solve(UpperCamelCase_, row + 1 ) UpperCAmelCase__ :Optional[int] = 0 return False def a__ ( UpperCamelCase_ : list[list[int]] ): for i in range(len(UpperCamelCase_ ) ): for j in range(len(UpperCamelCase_ ) ): if board[i][j] == 1: print('''Q''', end=''' ''' ) else: print('''.''', end=''' ''' ) print() # n=int(input("The no. of queens")) __lowerCamelCase = 8 __lowerCamelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print('''The total no. of solutions are :''', len(solution))
467
'''simple docstring''' import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class UpperCAmelCase : def __init__( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple=9_9 , __lowerCamelCase : int=1_3 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Dict=9 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : List[Any]=3_2 , __lowerCamelCase : int=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Tuple=3_7 , __lowerCamelCase : Any=8 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Any=0.0_02 , __lowerCamelCase : List[str]=1 , __lowerCamelCase : str=0 , __lowerCamelCase : str=0 , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , ): UpperCAmelCase__ :Tuple = parent UpperCAmelCase__ :str = batch_size UpperCAmelCase__ :int = encoder_seq_length UpperCAmelCase__ :Optional[int] = decoder_seq_length # For common tests UpperCAmelCase__ :int = self.decoder_seq_length UpperCAmelCase__ :List[Any] = is_training UpperCAmelCase__ :Any = use_attention_mask UpperCAmelCase__ :Tuple = use_labels UpperCAmelCase__ :Optional[int] = vocab_size UpperCAmelCase__ :Optional[Any] = hidden_size UpperCAmelCase__ :Optional[Any] = num_hidden_layers UpperCAmelCase__ :Tuple = num_attention_heads UpperCAmelCase__ :str = d_ff UpperCAmelCase__ :Tuple = relative_attention_num_buckets UpperCAmelCase__ :int = dropout_rate UpperCAmelCase__ :Dict = initializer_factor UpperCAmelCase__ :int = eos_token_id UpperCAmelCase__ :Tuple = pad_token_id UpperCAmelCase__ :Tuple = decoder_start_token_id UpperCAmelCase__ :List[str] = None UpperCAmelCase__ :List[str] = decoder_layers def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): return TaConfig.from_pretrained('''google/umt5-base''' ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , ): if attention_mask is None: UpperCAmelCase__ :Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCAmelCase__ :Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCAmelCase__ :List[str] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=__lowerCamelCase ) if decoder_head_mask is None: UpperCAmelCase__ :Optional[Any] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=__lowerCamelCase ) if cross_attn_head_mask is None: UpperCAmelCase__ :List[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=__lowerCamelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[int] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCAmelCase__ :List[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCAmelCase__ :int = input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ :Tuple = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCAmelCase__ :Dict = self.get_config() UpperCAmelCase__ :Union[str, Any] = config.num_attention_heads UpperCAmelCase__ :Dict = self.prepare_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, input_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ , UpperCAmelCase__ :int = self.prepare_config_and_inputs() return config, inputs_dict def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , ): UpperCAmelCase__ :str = UMTaModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCAmelCase__ :Optional[int] = model( input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , ) UpperCAmelCase__ :List[Any] = model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) UpperCAmelCase__ :Dict = result.last_hidden_state UpperCAmelCase__ :Tuple = result.past_key_values UpperCAmelCase__ :Dict = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(__lowerCamelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , ): UpperCAmelCase__ :Tuple = UMTaModel(config=__lowerCamelCase ).get_decoder().to(__lowerCamelCase ).eval() # first forward pass UpperCAmelCase__ :Dict = model(__lowerCamelCase , use_cache=__lowerCamelCase ) UpperCAmelCase__ :Any = model(__lowerCamelCase ) UpperCAmelCase__ :List[str] = model(__lowerCamelCase , use_cache=__lowerCamelCase ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) ) self.parent.assertTrue(len(__lowerCamelCase ) == len(__lowerCamelCase ) + 1 ) UpperCAmelCase__ , UpperCAmelCase__ :int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase__ :int = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCAmelCase__ :Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase__ :Union[str, Any] = model(__lowerCamelCase )['''last_hidden_state'''] UpperCAmelCase__ :str = model(__lowerCamelCase , past_key_values=__lowerCamelCase )['''last_hidden_state'''] # select random slice UpperCAmelCase__ :Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase__ :Any = output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase__ :Union[str, Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __SCREAMING_SNAKE_CASE ( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : str , ): UpperCAmelCase__ :Optional[Any] = UMTaModel(config=__lowerCamelCase ).to(__lowerCamelCase ).half().eval() UpperCAmelCase__ :Any = model(**__lowerCamelCase )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(__lowerCamelCase ).any().item() ) @require_torch class UpperCAmelCase ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): UpperCAmelCase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase = ( { "conversational": UMTaForConditionalGeneration, "feature-extraction": UMTaModel, "summarization": UMTaForConditionalGeneration, "text2text-generation": UMTaForConditionalGeneration, "translation": UMTaForConditionalGeneration, "question-answering": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = True UpperCAmelCase = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase = [0.8, 0.9] def __SCREAMING_SNAKE_CASE ( self : str ): UpperCAmelCase__ :Optional[Any] = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __SCREAMING_SNAKE_CASE ( self : int ): UpperCAmelCase__ :int = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ :Optional[int] = UMTaModel(config_and_inputs[0] ).to(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( __lowerCamelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=__lowerCamelCase , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __SCREAMING_SNAKE_CASE ( self : List[str] ): UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*__lowerCamelCase ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): UpperCAmelCase__ :Tuple = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] UpperCAmelCase__ :Optional[int] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase__ :int = config_and_inputs[0] UpperCAmelCase__ :Optional[Any] = UMTaForConditionalGeneration(__lowerCamelCase ).eval() model.to(__lowerCamelCase ) UpperCAmelCase__ :List[str] = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=__lowerCamelCase ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ), } for attn_name, (name, mask) in zip(__lowerCamelCase , head_masking.items() ): UpperCAmelCase__ :Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCAmelCase__ :Optional[Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=__lowerCamelCase ) UpperCAmelCase__ :Union[str, Any] = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=__lowerCamelCase , return_dict_in_generate=__lowerCamelCase , **__lowerCamelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCAmelCase__ :List[Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): pass @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __SCREAMING_SNAKE_CASE ( self : Any ): UpperCAmelCase__ :Optional[Any] = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=__lowerCamelCase ).to(__lowerCamelCase ) UpperCAmelCase__ :List[str] = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=__lowerCamelCase , legacy=__lowerCamelCase ) UpperCAmelCase__ :Dict = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] UpperCAmelCase__ :Optional[Any] = tokenizer(__lowerCamelCase , return_tensors='''pt''' , padding=__lowerCamelCase ).input_ids # fmt: off UpperCAmelCase__ :List[Any] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase__ :Dict = model.generate(input_ids.to(__lowerCamelCase ) ) UpperCAmelCase__ :str = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ ๐Ÿ’ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํ”ผํ•ด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] UpperCAmelCase__ :Dict = tokenizer.batch_decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
467
1
'''simple docstring''' def lowerCAmelCase ( UpperCamelCase__ : list[int] ): """simple docstring""" __UpperCAmelCase = [] if len(UpperCamelCase__ ) == 1: return [nums.copy()] for _ in range(len(UpperCamelCase__ ) ): __UpperCAmelCase = nums.pop(0 ) __UpperCAmelCase = permute(UpperCamelCase__ ) for perm in permutations: perm.append(UpperCamelCase__ ) result.extend(UpperCamelCase__ ) nums.append(UpperCamelCase__ ) return result def lowerCAmelCase ( UpperCamelCase__ : List[str] ): """simple docstring""" def backtrack(UpperCamelCase__ : str ): if start == len(UpperCamelCase__ ) - 1: output.append(nums[:] ) else: for i in range(UpperCamelCase__ , len(UpperCamelCase__ ) ): __UpperCAmelCase , __UpperCAmelCase = nums[i], nums[start] backtrack(start + 1 ) __UpperCAmelCase , __UpperCAmelCase = nums[i], nums[start] # backtrack __UpperCAmelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function __lowerCAmelCase : Dict = permutea([1, 2, 3]) print(res) doctest.testmod()
702
'''simple docstring''' from pathlib import Path import fire def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int ): """simple docstring""" __UpperCAmelCase = Path(UpperCamelCase__ ) __UpperCAmelCase = Path(UpperCamelCase__ ) dest_dir.mkdir(exist_ok=UpperCamelCase__ ) for path in src_dir.iterdir(): __UpperCAmelCase = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCAmelCase = dest_dir.joinpath(path.name ) print(UpperCamelCase__ ) dest_path.open('''w''' ).write('''\n'''.join(UpperCamelCase__ ) ) if __name__ == "__main__": fire.Fire(minify)
654
0
'''simple docstring''' import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) -> List[str]: '''simple docstring''' if openai_config_file == "": snake_case_ = OpenAIGPTConfig() else: snake_case_ = OpenAIGPTConfig.from_json_file(__UpperCAmelCase ) snake_case_ = OpenAIGPTModel(__UpperCAmelCase ) # Load weights from numpy load_tf_weights_in_openai_gpt(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) # Save pytorch-model snake_case_ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case_ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"Save PyTorch model to {pytorch_weights_dump_path}" ) torch.save(model.state_dict(), __UpperCAmelCase ) print(F"Save configuration file to {pytorch_config_dump_path}" ) with open(__UpperCAmelCase, '''w''', encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) a : Dict = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
640
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def __magic_name__ ( __UpperCAmelCase ) -> str: '''simple docstring''' if "img_encoder.pos_embed" in name: snake_case_ = name.replace('''img_encoder.pos_embed''', '''vision_model.embeddings.position_embeddings''' ) if "img_encoder.patch_embed.proj" in name: snake_case_ = name.replace('''img_encoder.patch_embed.proj''', '''vision_model.embeddings.patch_embeddings.projection''' ) if "img_encoder.patch_embed.norm" in name: snake_case_ = name.replace('''img_encoder.patch_embed.norm''', '''vision_model.embeddings.layernorm''' ) if "img_encoder.layers" in name: snake_case_ = name.replace('''img_encoder.layers''', '''vision_model.encoder.stages''' ) if "blocks" in name and "res" not in name: snake_case_ = name.replace('''blocks''', '''layers''' ) if "attn" in name and "pre_assign" not in name: snake_case_ = name.replace('''attn''', '''self_attn''' ) if "proj" in name and "self_attn" in name and "text" not in name: snake_case_ = name.replace('''proj''', '''out_proj''' ) if "pre_assign_attn.attn.proj" in name: snake_case_ = name.replace('''pre_assign_attn.attn.proj''', '''pre_assign_attn.attn.out_proj''' ) if "norm1" in name: snake_case_ = name.replace('''norm1''', '''layer_norm1''' ) if "norm2" in name and "pre_assign" not in name: snake_case_ = name.replace('''norm2''', '''layer_norm2''' ) if "img_encoder.norm" in name: snake_case_ = name.replace('''img_encoder.norm''', '''vision_model.layernorm''' ) # text encoder if "text_encoder.token_embedding" in name: snake_case_ = name.replace('''text_encoder.token_embedding''', '''text_model.embeddings.token_embedding''' ) if "text_encoder.positional_embedding" in name: snake_case_ = name.replace('''text_encoder.positional_embedding''', '''text_model.embeddings.position_embedding.weight''' ) if "text_encoder.transformer.resblocks." in name: snake_case_ = name.replace('''text_encoder.transformer.resblocks.''', '''text_model.encoder.layers.''' ) if "ln_1" in name: snake_case_ = name.replace('''ln_1''', '''layer_norm1''' ) if "ln_2" in name: snake_case_ = name.replace('''ln_2''', '''layer_norm2''' ) if "c_fc" in name: snake_case_ = name.replace('''c_fc''', '''fc1''' ) if "c_proj" in name: snake_case_ = name.replace('''c_proj''', '''fc2''' ) if "text_encoder" in name: snake_case_ = name.replace('''text_encoder''', '''text_model''' ) if "ln_final" in name: snake_case_ = name.replace('''ln_final''', '''final_layer_norm''' ) # projection layers if "img_projector.linear_hidden." in name: snake_case_ = name.replace('''img_projector.linear_hidden.''', '''visual_projection.''' ) if "img_projector.linear_out." in name: snake_case_ = name.replace('''img_projector.linear_out.''', '''visual_projection.3.''' ) if "text_projector.linear_hidden" in name: snake_case_ = name.replace('''text_projector.linear_hidden''', '''text_projection''' ) if "text_projector.linear_out" in name: snake_case_ = name.replace('''text_projector.linear_out''', '''text_projection.3''' ) return name def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(__UpperCAmelCase ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('''.''' ) snake_case_ ,snake_case_ = int(key_split[2] ), int(key_split[4] ) snake_case_ = config.vision_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors snake_case_ = key.split('''.''' ) snake_case_ = int(key_split[3] ) snake_case_ = config.text_config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[ dim : dim * 2, : ] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = rename_key(__UpperCAmelCase ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): snake_case_ = val.squeeze_() else: snake_case_ = val return orig_state_dict def __magic_name__ ( ) -> Union[str, Any]: '''simple docstring''' snake_case_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case_ = Image.open(requests.get(__UpperCAmelCase, stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase="groupvit-gcc-yfcc", __UpperCAmelCase=False ) -> List[str]: '''simple docstring''' snake_case_ = GroupViTConfig() snake_case_ = GroupViTModel(__UpperCAmelCase ).eval() snake_case_ = torch.load(__UpperCAmelCase, map_location='''cpu''' )['''model'''] snake_case_ = convert_state_dict(__UpperCAmelCase, __UpperCAmelCase ) snake_case_ ,snake_case_ = model.load_state_dict(__UpperCAmelCase, strict=__UpperCAmelCase ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(__UpperCAmelCase ) == 0) # verify result snake_case_ = CLIPProcessor.from_pretrained('''openai/clip-vit-base-patch32''' ) snake_case_ = prepare_img() snake_case_ = processor(text=['''a photo of a cat''', '''a photo of a dog'''], images=__UpperCAmelCase, padding=__UpperCAmelCase, return_tensors='''pt''' ) with torch.no_grad(): snake_case_ = model(**__UpperCAmelCase ) if model_name == "groupvit-gcc-yfcc": snake_case_ = torch.tensor([[1_3.3_5_2_3, 6.3_6_2_9]] ) elif model_name == "groupvit-gcc-redcaps": snake_case_ = torch.tensor([[1_6.1_8_7_3, 8.6_2_3_0]] ) else: raise ValueError(F"Model name {model_name} not supported." ) assert torch.allclose(outputs.logits_per_image, __UpperCAmelCase, atol=1e-3 ) processor.save_pretrained(__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) print('''Successfully saved processor and model to''', __UpperCAmelCase ) if push_to_hub: print('''Pushing to the hub...''' ) processor.push_to_hub(__UpperCAmelCase, organization='''nielsr''' ) model.push_to_hub(__UpperCAmelCase, organization='''nielsr''' ) if __name__ == "__main__": a : Optional[int] = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to dump the processor and PyTorch model.' ) parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to GroupViT checkpoint') parser.add_argument( '--model_name', default='groupvit-gccy-fcc', type=str, help='Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the ๐Ÿค— hub using the provided `model_name`.', ) a : str = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
640
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = DiTPipeline SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS SCREAMING_SNAKE_CASE__ = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } SCREAMING_SNAKE_CASE__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ = False def __lowerCAmelCase ( self ): torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_lowerCAmelCase , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=1_000 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=_lowerCAmelCase , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=0 ): if str(_lowerCAmelCase ).startswith('''mps''' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ): _lowerCAmelCase = '''cpu''' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) _lowerCAmelCase = pipe(**_lowerCAmelCase ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1E-3 ) def __lowerCAmelCase ( self ): self._test_inference_batch_single_identical(relax_max_difference=_lowerCAmelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): def __lowerCAmelCase ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ): _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def __lowerCAmelCase ( self ): _lowerCAmelCase = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) _lowerCAmelCase = ['''vase''', '''umbrella'''] _lowerCAmelCase = pipe.get_label_ids(_lowerCAmelCase ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(_lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
664
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DeiTFeatureExtractor"] UpperCAmelCase_ = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
664
1
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class __a( _a ): """simple docstring""" @slow @require_torch def a__ ( self ) -> Tuple: UpperCAmelCase_ : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained('''prajjwal1/bert-tiny''' ,'''prajjwal1/bert-tiny''' ) UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase_ : Optional[int] = bertabert.config.encoder.vocab_size UpperCAmelCase_ : Any = tokenizer.sep_token_id UpperCAmelCase_ : Optional[int] = tokenizer.cls_token_id UpperCAmelCase_ : List[Any] = 128 UpperCAmelCase_ : int = datasets.load_dataset('''cnn_dailymail''' ,'''3.0.0''' ,split='''train[:1%]''' ) UpperCAmelCase_ : str = datasets.load_dataset('''cnn_dailymail''' ,'''3.0.0''' ,split='''validation[:1%]''' ) UpperCAmelCase_ : str = train_dataset.select(range(32 ) ) UpperCAmelCase_ : int = val_dataset.select(range(16 ) ) UpperCAmelCase_ : Optional[Any] = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCAmelCase_ : List[str] = tokenizer(batch['''article'''] ,padding='''max_length''' ,truncation=_SCREAMING_SNAKE_CASE ,max_length=512 ) UpperCAmelCase_ : str = tokenizer(batch['''highlights'''] ,padding='''max_length''' ,truncation=_SCREAMING_SNAKE_CASE ,max_length=128 ) UpperCAmelCase_ : List[str] = inputs.input_ids UpperCAmelCase_ : Optional[Any] = inputs.attention_mask UpperCAmelCase_ : Optional[Any] = outputs.input_ids UpperCAmelCase_ : Optional[int] = outputs.input_ids.copy() UpperCAmelCase_ : Any = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['''labels'''] ] UpperCAmelCase_ : Dict = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[str] = pred.label_ids UpperCAmelCase_ : Dict = pred.predictions # all unnecessary tokens are removed UpperCAmelCase_ : List[str] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE ,skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset UpperCAmelCase_ : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=_SCREAMING_SNAKE_CASE ,batch_size=_SCREAMING_SNAKE_CASE ,remove_columns=['''article''', '''highlights'''] ,) train_dataset.set_format( type='''torch''' ,columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] ,) # same for validation dataset UpperCAmelCase_ : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=_SCREAMING_SNAKE_CASE ,batch_size=_SCREAMING_SNAKE_CASE ,remove_columns=['''article''', '''highlights'''] ,) val_dataset.set_format( type='''torch''' ,columns=['''input_ids''', '''attention_mask''', '''decoder_input_ids''', '''decoder_attention_mask''', '''labels'''] ,) UpperCAmelCase_ : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : List[Any] = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE ,per_device_train_batch_size=_SCREAMING_SNAKE_CASE ,per_device_eval_batch_size=_SCREAMING_SNAKE_CASE ,predict_with_generate=_SCREAMING_SNAKE_CASE ,evaluation_strategy='''steps''' ,do_train=_SCREAMING_SNAKE_CASE ,do_eval=_SCREAMING_SNAKE_CASE ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer UpperCAmelCase_ : int = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE ,args=_SCREAMING_SNAKE_CASE ,compute_metrics=_compute_metrics ,train_dataset=_SCREAMING_SNAKE_CASE ,eval_dataset=_SCREAMING_SNAKE_CASE ,tokenizer=_SCREAMING_SNAKE_CASE ,) # start training trainer.train()
30
import requests def _snake_case (__lowercase , __lowercase): UpperCamelCase_ = {'Content-Type': 'application/json'} UpperCamelCase_ = requests.post(__lowercase , json={'text': message_body} , headers=__lowercase) if response.status_code != 200: UpperCamelCase_ = ( 'Request to slack returned an error ' f"""{response.status_code}, the response is:\n{response.text}""" ) raise ValueError(__lowercase) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
23
0
"""simple docstring""" def snake_case__ ( _snake_case : int = 50 ): """simple docstring""" UpperCamelCase__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
304
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :int , lowerCamelCase_ :TransformeraDModel , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :KarrasDiffusionSchedulers , lowerCamelCase_ :Optional[Dict[int, str]] = None , ) -> int: """simple docstring""" super().__init__() self.register_modules(transformer=lowerCamelCase_ , vae=lowerCamelCase_ , scheduler=lowerCamelCase_ ) # create a imagenet -> id dictionary for easier use UpperCamelCase__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCamelCase__ = int(lowerCamelCase_ ) UpperCamelCase__ = dict(sorted(self.labels.items() ) ) def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase__ = list(lowerCamelCase_ ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :float = 4.0 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :int = 5_0 , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" UpperCamelCase__ = len(lowerCamelCase_ ) UpperCamelCase__ = self.transformer.config.sample_size UpperCamelCase__ = self.transformer.config.in_channels UpperCamelCase__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCamelCase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCamelCase__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCamelCase__ = torch.tensor(lowerCamelCase_ , device=self.device ).reshape(-1 ) UpperCamelCase__ = torch.tensor([1_0_0_0] * batch_size , device=self.device ) UpperCamelCase__ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCamelCase__ = latent_model_input[: len(lowerCamelCase_ ) // 2] UpperCamelCase__ = torch.cat([half, half] , dim=0 ) UpperCamelCase__ = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = t if not torch.is_tensor(lowerCamelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCamelCase__ = latent_model_input.device.type == "mps" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase__ = torch.floataa if is_mps else torch.floataa else: UpperCamelCase__ = torch.intaa if is_mps else torch.intaa UpperCamelCase__ = torch.tensor([timesteps] , dtype=lowerCamelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCamelCase__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCamelCase__ = self.transformer( lowerCamelCase_ , timestep=lowerCamelCase_ , class_labels=lowerCamelCase_ ).sample # perform guidance if guidance_scale > 1: UpperCamelCase__ , UpperCamelCase__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCamelCase__ , UpperCamelCase__ = torch.split(lowerCamelCase_ , len(lowerCamelCase_ ) // 2 , dim=0 ) UpperCamelCase__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCamelCase__ = torch.cat([half_eps, half_eps] , dim=0 ) UpperCamelCase__ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCamelCase__ , UpperCamelCase__ = torch.split(lowerCamelCase_ , lowerCamelCase_ , dim=1 ) else: UpperCamelCase__ = noise_pred # compute previous image: x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample if guidance_scale > 1: UpperCamelCase__ , UpperCamelCase__ = latent_model_input.chunk(2 , dim=0 ) else: UpperCamelCase__ = latent_model_input UpperCamelCase__ = 1 / self.vae.config.scaling_factor * latents UpperCamelCase__ = self.vae.decode(lowerCamelCase_ ).sample UpperCamelCase__ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase__ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCamelCase_ )
304
1
"""simple docstring""" import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def UpperCamelCase ( _A ) -> List[Any]: monkeypatch.setattr("""datasets.utils.deprecation_utils._emitted_deprecation_warnings""" , set() ) @pytest.fixture def UpperCamelCase ( _A ) -> Tuple: class UpperCamelCase : def __init__( self :Optional[int] , __magic_name__ :int ) ->Tuple: lowercase : Dict = metric_id class UpperCamelCase : _SCREAMING_SNAKE_CASE : Union[str, Any] = [MetricMock(__snake_case ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __snake_case ( self :List[Any] ) ->Union[str, Any]: return self._metrics monkeypatch.setattr("""datasets.inspect.huggingface_hub""" , HfhMock() ) @pytest.mark.parametrize( """func, args""" , [(load_metric, ("""metrics/mse""",)), (list_metrics, ()), (inspect_metric, ("""metrics/mse""", """tmp_path"""))] ) def UpperCamelCase ( _A , _A , _A , _A , _A ) -> List[Any]: if "tmp_path" in args: lowercase : Dict = tuple(arg if arg != """tmp_path""" else tmp_path for arg in args ) with pytest.warns(_A , match="""https://huggingface.co/docs/evaluate""" ): func(*_A )
264
"""simple docstring""" def UpperCamelCase ( _A , _A ) -> int: lowercase : int = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowercase : List[Any] = n - k # Calculate C(n,k) for i in range(_A ): result *= n - i result //= i + 1 return result def UpperCamelCase ( _A ) -> int: return binomial_coefficient(2 * node_count , _A ) // (node_count + 1) def UpperCamelCase ( _A ) -> int: if n < 0: raise ValueError("""factorial() not defined for negative values""" ) lowercase : Union[str, Any] = 1 for i in range(1 , n + 1 ): result *= i return result def UpperCamelCase ( _A ) -> int: return catalan_number(_A ) * factorial(_A ) if __name__ == "__main__": _lowerCAmelCase = int(input('Enter the number of nodes: ').strip() or 0) if node_count <= 0: raise ValueError('We need some nodes to work with.') print( F'Given {node_count} nodes, there are {binary_tree_count(node_count)} ' F'binary trees and {catalan_number(node_count)} binary search trees.' )
264
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) snake_case__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } snake_case__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowerCamelCase__ ( a : Optional[int] ) -> Optional[int]: """simple docstring""" a__ :Optional[Any] = {} with open(__lowerCAmelCase , "r" ) as file: for line_number, line in enumerate(__lowerCAmelCase ): a__ :Tuple = line.strip() if line: a__ :int = line.split() a__ :Union[str, Any] = line_number a__ :Tuple = words[0] a__ :Tuple = value return result def lowerCamelCase__ ( a : Tuple , a : Tuple , a : str , a : Dict , a : List[str] ) -> Union[str, Any]: """simple docstring""" for attribute in key.split("." ): a__ :int = getattr(__lowerCAmelCase , __lowerCAmelCase ) a__ :Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): a__ :Any = PARAM_MAPPING[full_name.split("." )[-1]] a__ :Optional[Any] = "param" if weight_type is not None and weight_type != "param": a__ :List[str] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape elif weight_type is not None and weight_type == "param": a__ :Optional[Any] = hf_pointer for attribute in hf_param_name.split("." ): a__ :str = getattr(__lowerCAmelCase , __lowerCAmelCase ) a__ :int = shape_pointer.shape # let's reduce dimension a__ :int = value[0] else: a__ :int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a__ :Tuple = value elif weight_type == "weight_g": a__ :Optional[int] = value elif weight_type == "weight_v": a__ :int = value elif weight_type == "bias": a__ :Union[str, Any] = value elif weight_type == "param": for attribute in hf_param_name.split("." ): a__ :Optional[int] = getattr(__lowerCAmelCase , __lowerCAmelCase ) a__ :List[Any] = value else: a__ :List[Any] = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def lowerCamelCase__ ( a : int , a : Optional[Any] , a : str , a : List[Any] , a : Union[str, Any] ) -> Any: """simple docstring""" a__ :Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCAmelCase ): a__ :Optional[int] = PARAM_MAPPING[full_name.split("." )[-1]] a__ :List[str] = "param" if weight_type is not None and weight_type != "param": a__ :int = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a__ :Optional[int] = ".".join([key, hf_param_name] ) else: a__ :Tuple = key a__ :str = value if "lm_head" in full_key else value[0] snake_case__ = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowerCamelCase__ ( a : List[str] , a : Union[str, Any] , a : List[Any]=None , a : Optional[int]=None ) -> Optional[Any]: """simple docstring""" a__ :Union[str, Any] = False for key, mapped_key in MAPPING.items(): a__ :Union[str, Any] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a__ :Union[str, Any] = True if "*" in mapped_key: a__ :Optional[Any] = name.split(__lowerCAmelCase )[0].split("." )[-2] a__ :Any = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: a__ :List[Any] = "weight_g" elif "weight_v" in name: a__ :Optional[int] = "weight_v" elif "bias" in name: a__ :Dict = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a__ :Any = "weight" else: a__ :List[str] = None if hf_dict is not None: rename_dict(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return is_used return is_used def lowerCamelCase__ ( a : Tuple , a : Any , a : Any ) -> int: """simple docstring""" a__ :Any = [] a__ :Tuple = fairseq_model.state_dict() a__ :int = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a__ :Dict = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) a__ :Tuple = True else: a__ :Optional[Any] = load_wavaveca_layer(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCamelCase__ ( a : Optional[int] , a : Optional[int] , a : int , a : Optional[Any] , a : Optional[Any] ) -> Dict: """simple docstring""" a__ :List[Any] = full_name.split("conv_layers." )[-1] a__ :List[str] = name.split("." ) a__ :List[Any] = int(items[0] ) a__ :Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a__ :Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a__ :Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) a__ :List[str] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) a__ :Dict = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def lowerCamelCase__ ( a : int , a : Optional[Any] , a : List[str]=None , a : Tuple=None , a : List[str]=True , a : Optional[int]=False ) -> Dict: """simple docstring""" if config_path is not None: a__ :str = WavaVecaConfig.from_pretrained(__lowerCAmelCase ) else: a__ :int = WavaVecaConfig() if is_seq_class: a__ :Dict = read_txt_into_dict(__lowerCAmelCase ) a__ :Dict = idalabel a__ :int = WavaVecaForSequenceClassification(__lowerCAmelCase ) a__ :Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) feature_extractor.save_pretrained(__lowerCAmelCase ) elif is_finetuned: if dict_path: a__ :List[str] = Dictionary.load(__lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a__ :Optional[int] = target_dict.pad_index a__ :Optional[Any] = target_dict.bos_index a__ :Union[str, Any] = target_dict.eos_index a__ :Optional[Any] = len(target_dict.symbols ) a__ :int = os.path.join(__lowerCAmelCase , "vocab.json" ) if not os.path.isdir(__lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCAmelCase ) ) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) a__ :Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched a__ :Tuple = 0 a__ :Tuple = 1 with open(__lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(__lowerCAmelCase , __lowerCAmelCase ) a__ :Union[str, Any] = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__lowerCAmelCase , ) a__ :int = True if config.feat_extract_norm == "layer" else False a__ :Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) a__ :int = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) a__ :Any = WavaVecaForCTC(__lowerCAmelCase ) else: a__ :Dict = WavaVecaForPreTraining(__lowerCAmelCase ) if is_finetuned or is_seq_class: a__ , a__ , a__ :List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: a__ :Tuple = argparse.Namespace(task="audio_pretraining" ) a__ :Optional[int] = fairseq.tasks.setup_task(__lowerCAmelCase ) a__ , a__ , a__ :List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCAmelCase ) a__ :Optional[int] = model[0].eval() recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) snake_case__ = parser.parse_args() snake_case__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
712
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version snake_case__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.14.0''', '''To fix: pip install -r examples/pytorch/audio-classification/requirements.txt''') def lowerCamelCase__ ( a : np.ndarray , a : float , a : int = 16_000 ) -> List[str]: """simple docstring""" a__ :Optional[int] = int(round(sample_rate * max_length ) ) if len(a ) <= sample_length: return wav a__ :Optional[Any] = randint(0 , len(a ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase_ : lowerCamelCase_ = field(default=_a ,metadata={'help': 'Name of a dataset from the datasets package'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'A file containing the training audio paths and labels.'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'A file containing the validation audio paths and labels.'}) lowerCamelCase_ = field( default='train' ,metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } ,) lowerCamelCase_ = field( default='validation' ,metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } ,) lowerCamelCase_ = field( default='audio' ,metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} ,) lowerCamelCase_ = field( default='label' ,metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''}) lowerCamelCase_ = field( default=_a ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) lowerCamelCase_ = field( default=_a ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) lowerCamelCase_ = field( default=20 ,metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} ,) @dataclass class lowerCAmelCase_ : lowerCamelCase_ = field( default='facebook/wav2vec2-base' ,metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ,) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'}) lowerCamelCase_ = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Name or path of preprocessor config.'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Whether to freeze the feature encoder layers of the model.'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Whether to generate an attention mask in the feature extractor.'}) lowerCamelCase_ = field( default=_a ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Whether to freeze the feature extractor layers of the model.'}) lowerCamelCase_ = field( default=_a ,metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} ,) def _snake_case ( self : Optional[Any] ) ->Dict: """simple docstring""" if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( "The argument `--freeze_feature_extractor` is deprecated and " "will be removed in a future version. Use `--freeze_feature_encoder`" "instead. Setting `freeze_feature_encoder==True`." , __A , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( "The argument `--freeze_feature_extractor` is deprecated and " "should not be used in combination with `--freeze_feature_encoder`." "Only make use of `--freeze_feature_encoder`." ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ :Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ :int = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__ , a__ , a__ :Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_audio_classification" , a , a ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a__ :Union[str, Any] = training_args.get_process_log_level() logger.setLevel(a ) transformers.utils.logging.set_verbosity(a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. a__ :List[str] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a__ :List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to train from scratch." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Initialize our dataset and prepare it for the audio classification task. a__ :List[str] = DatasetDict() a__ :int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) a__ :List[str] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' "Make sure to set `--audio_column_name` to the correct audio column - one of " F'''{', '.join(raw_datasets['train'].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' "Make sure to set `--label_column_name` to the correct text column - one of " F'''{', '.join(raw_datasets['train'].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy a__ :str = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. a__ :List[Any] = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) a__ :Optional[Any] = feature_extractor.model_input_names[0] def train_transforms(a : Union[str, Any] ): a__ :List[str] = [] for audio in batch[data_args.audio_column_name]: a__ :List[Any] = random_subsample( audio["array"] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(a ) a__ :Dict = feature_extractor(a , sampling_rate=feature_extractor.sampling_rate ) a__ :Dict = {model_input_name: inputs.get(a )} a__ :Union[str, Any] = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(a : Optional[int] ): a__ :Any = [audio["array"] for audio in batch[data_args.audio_column_name]] a__ :int = feature_extractor(a , sampling_rate=feature_extractor.sampling_rate ) a__ :int = {model_input_name: inputs.get(a )} a__ :Dict = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. a__ :Union[str, Any] = raw_datasets["train"].features[data_args.label_column_name].names a__ , a__ :str = {}, {} for i, label in enumerate(a ): a__ :Tuple = str(a ) a__ :List[str] = label # Load the accuracy metric from the datasets package a__ :Optional[int] = evaluate.load("accuracy" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(a : List[Any] ): a__ :str = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=a , references=eval_pred.label_ids ) a__ :Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(a ) , labelaid=a , idalabel=a , finetuning_task="audio-classification" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a__ :Any = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: a__ :Tuple = ( raw_datasets["train"].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(a , output_all_columns=a ) if training_args.do_eval: if data_args.max_eval_samples is not None: a__ :Optional[int] = ( raw_datasets["eval"].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(a , output_all_columns=a ) # Initialize our trainer a__ :List[str] = Trainer( model=a , args=a , train_dataset=raw_datasets["train"] if training_args.do_train else None , eval_dataset=raw_datasets["eval"] if training_args.do_eval else None , compute_metrics=a , tokenizer=a , ) # Training if training_args.do_train: a__ :Tuple = None if training_args.resume_from_checkpoint is not None: a__ :List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: a__ :Any = last_checkpoint a__ :Any = trainer.train(resume_from_checkpoint=a ) trainer.save_model() trainer.log_metrics("train" , train_result.metrics ) trainer.save_metrics("train" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: a__ :int = trainer.evaluate() trainer.log_metrics("eval" , a ) trainer.save_metrics("eval" , a ) # Write model card and (optionally) push to hub a__ :str = { "finetuned_from": model_args.model_name_or_path, "tasks": "audio-classification", "dataset": data_args.dataset_name, "tags": ["audio-classification"], } if training_args.push_to_hub: trainer.push_to_hub(**a ) else: trainer.create_model_card(**a ) if __name__ == "__main__": main()
373
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = (KDPMaDiscreteScheduler,) SCREAMING_SNAKE_CASE_ = 10 def UpperCamelCase( self , **SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' lowerCamelCase_ = { 'num_train_timesteps': 1100, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCamelCase( self ) -> Any: '''simple docstring''' for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2 assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def UpperCamelCase( self ) -> int: '''simple docstring''' if torch_device == "mps": return lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase_ = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def UpperCamelCase( self ) -> str: '''simple docstring''' if torch_device == "mps": return lowerCamelCase_ = self.scheduler_classes[0] lowerCamelCase_ = self.get_scheduler_config() lowerCamelCase_ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = self.dummy_model() lowerCamelCase_ = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase_ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = output.prev_sample lowerCamelCase_ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if str(SCREAMING_SNAKE_CASE_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
42
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> np.ndarray: # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: lowerCamelCase_ = ksize + 1 lowerCamelCase_ = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(__UpperCamelCase ): for x in range(__UpperCamelCase ): # distance from center lowerCamelCase_ = x - ksize // 2 lowerCamelCase_ = y - ksize // 2 # degree to radiant lowerCamelCase_ = theta / 1_80 * np.pi lowerCamelCase_ = np.cos(_theta ) lowerCamelCase_ = np.sin(_theta ) # get kernel x lowerCamelCase_ = cos_theta * px + sin_theta * py # get kernel y lowerCamelCase_ = -sin_theta * px + cos_theta * py # fill kernel lowerCamelCase_ = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image A_ = imread("../image_data/lena.jpg") # turn image in gray scale value A_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges A_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: A_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) A_ = out / out.max() * 255 A_ = out.astype(np.uinta) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
42
1
"""simple docstring""" from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[str], lowerCamelCase : Callable, lowerCamelCase : Optional[Features] = None, lowerCamelCase : str = None, lowerCamelCase : bool = False, lowerCamelCase : bool = False, lowerCamelCase : Optional[dict] = None, lowerCamelCase : Optional[int] = None, **lowerCamelCase : Optional[int], )-> Optional[int]: super().__init__( features=lowerCamelCase, cache_dir=lowerCamelCase, keep_in_memory=lowerCamelCase, streaming=lowerCamelCase, num_proc=lowerCamelCase, **lowerCamelCase, ) lowerCamelCase__ : Union[str, Any] =Generator( cache_dir=lowerCamelCase, features=lowerCamelCase, generator=lowerCamelCase, gen_kwargs=lowerCamelCase, **lowerCamelCase, ) def snake_case ( self : Union[str, Any] )-> Optional[int]: # Build iterable dataset if self.streaming: lowerCamelCase__ : Any =self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: lowerCamelCase__ : List[str] =None lowerCamelCase__ : List[str] =None lowerCamelCase__ : Dict =None lowerCamelCase__ : Optional[Any] =None self.builder.download_and_prepare( download_config=lowerCamelCase, download_mode=lowerCamelCase, verification_mode=lowerCamelCase, base_path=lowerCamelCase, num_proc=self.num_proc, ) lowerCamelCase__ : Dict =self.builder.as_dataset( split='''train''', verification_mode=lowerCamelCase, in_memory=self.keep_in_memory ) return dataset
715
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = StableUnCLIPImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def snake_case ( self : List[str] )-> str: lowerCamelCase__ : Dict =32 lowerCamelCase__ : Optional[Any] =embedder_hidden_size # image encoding components lowerCamelCase__ : Dict =CLIPImageProcessor(crop_size=32, size=32 ) torch.manual_seed(0 ) lowerCamelCase__ : List[Any] =CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase, projection_dim=lowerCamelCase, num_hidden_layers=5, num_attention_heads=4, image_size=32, intermediate_size=37, patch_size=1, ) ) # regular denoising components torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] =StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) lowerCamelCase__ : Dict =DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] =CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) lowerCamelCase__ : Tuple =CLIPTextModel( CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=lowerCamelCase, projection_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) ) torch.manual_seed(0 ) lowerCamelCase__ : Dict =UNetaDConditionModel( sample_size=32, in_channels=4, out_channels=4, down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D'''), up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D'''), block_out_channels=(32, 64), attention_head_dim=(2, 4), class_embed_type='''projection''', projection_class_embeddings_input_dim=embedder_projection_dim * 2, cross_attention_dim=lowerCamelCase, layers_per_block=1, upcast_attention=lowerCamelCase, use_linear_projection=lowerCamelCase, ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] =DDIMScheduler( beta_schedule='''scaled_linear''', beta_start=0.00_085, beta_end=0.012, prediction_type='''v_prediction''', set_alpha_to_one=lowerCamelCase, steps_offset=1, ) torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] =AutoencoderKL() lowerCamelCase__ : int ={ # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def snake_case ( self : str, lowerCamelCase : Dict, lowerCamelCase : Any=0, lowerCamelCase : str=True )-> List[str]: if str(lowerCamelCase ).startswith('''mps''' ): lowerCamelCase__ : List[Any] =torch.manual_seed(lowerCamelCase ) else: lowerCamelCase__ : Any =torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) lowerCamelCase__ : Dict =floats_tensor((1, 3, 32, 32), rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: lowerCamelCase__ : int =input_image * 0.5 + 0.5 lowerCamelCase__ : Dict =input_image.clamp(0, 1 ) lowerCamelCase__ : List[str] =input_image.cpu().permute(0, 2, 3, 1 ).float().numpy() lowerCamelCase__ : Dict =DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def snake_case ( self : List[str] )-> Optional[Any]: lowerCamelCase__ : Dict ='''cpu''' # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : str =self.get_dummy_components() lowerCamelCase__ : int =StableUnCLIPImgaImgPipeline(**lowerCamelCase ) lowerCamelCase__ : Any =sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) lowerCamelCase__ : Dict =self.get_dummy_inputs(lowerCamelCase ) inputs.update({'''image_embeds''': None} ) lowerCamelCase__ : Any =sd_pipe(**lowerCamelCase ).images lowerCamelCase__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ : Union[str, Any] =np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def snake_case ( self : int )-> Tuple: lowerCamelCase__ : Tuple =torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def snake_case ( self : int )-> Optional[Any]: lowerCamelCase__ : List[Any] =torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available(), reason='''XFormers attention is only available with CUDA and `xformers` installed''', ) def snake_case ( self : List[str] )-> List[str]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : List[Any] )-> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self : Optional[int] )-> int: lowerCamelCase__ : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) lowerCamelCase__ : Optional[int] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) lowerCamelCase__ : Optional[Any] =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''', torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase__ : int =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase__ : Any =pipe(lowerCamelCase, '''anime turle''', generator=lowerCamelCase, output_type='''np''' ) lowerCamelCase__ : List[Any] =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase ) def snake_case ( self : Optional[int] )-> Tuple: lowerCamelCase__ : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) lowerCamelCase__ : str =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) lowerCamelCase__ : Optional[int] =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''', torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase__ : str =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowerCamelCase__ : Tuple =pipe(lowerCamelCase, '''anime turle''', generator=lowerCamelCase, output_type='''np''' ) lowerCamelCase__ : Tuple =output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase, lowerCamelCase ) def snake_case ( self : Optional[int] )-> List[str]: lowerCamelCase__ : int =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__ : Any =StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''', torch_dtype=torch.floataa ) lowerCamelCase__ : Optional[Any] =pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCamelCase__ : List[Any] =pipe( lowerCamelCase, '''anime turtle''', num_inference_steps=2, output_type='''np''', ) lowerCamelCase__ : Optional[int] =torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
625
0
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class lowercase__: """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=1_3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=7 , SCREAMING_SNAKE_CASE_ : Dict=6 , SCREAMING_SNAKE_CASE_ : int=1_7 , SCREAMING_SNAKE_CASE_ : str=2_3 , SCREAMING_SNAKE_CASE_ : Dict=1_1 , SCREAMING_SNAKE_CASE_ : List[str]=True , ) -> Any: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = act_dim lowercase_ = state_dim lowercase_ = hidden_size lowercase_ = max_length lowercase_ = is_training def _lowercase ( self : str ) -> Optional[Any]: lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = floats_tensor((self.batch_size, self.seq_length, 1) ) lowercase_ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1_0_0_0 ) lowercase_ = random_attention_mask((self.batch_size, self.seq_length) ) lowercase_ = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def _lowercase ( self : int ) -> List[Any]: return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , ) -> Dict: lowercase_ = DecisionTransformerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowercase_ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def _lowercase ( self : Union[str, Any] ) -> Dict: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = { '''states''': states, '''actions''': actions, '''rewards''': rewards, '''returns_to_go''': returns_to_go, '''timesteps''': timesteps, '''attention_mask''': attention_mask, } return config, inputs_dict @require_torch class lowercase__( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :Dict = (DecisionTransformerModel,) if is_torch_available() else () a :int = () a :Optional[Any] = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids a :List[str] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features a :Optional[int] = False a :Optional[int] = False a :Union[str, Any] = False a :Optional[Any] = False a :Optional[int] = False a :Optional[Any] = False a :Any = False a :Union[str, Any] = False a :Tuple = False def _lowercase ( self : Union[str, Any] ) -> Optional[int]: lowercase_ = DecisionTransformerModelTester(self ) lowercase_ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , hidden_size=3_7 ) def _lowercase ( self : Any ) -> str: self.config_tester.run_common_tests() def _lowercase ( self : Dict ) -> int: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def _lowercase ( self : List[str] ) -> Union[str, Any]: for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = DecisionTransformerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Optional[Any] ) -> int: lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = [ '''states''', '''actions''', '''rewards''', '''returns_to_go''', '''timesteps''', '''attention_mask''', ] self.assertListEqual(arg_names[: len(SCREAMING_SNAKE_CASE_ )] , SCREAMING_SNAKE_CASE_ ) @require_torch class lowercase__( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : Optional[Any] ) -> str: lowercase_ = 2 # number of steps of autoregressive prediction we will perform lowercase_ = 1_0 # defined by the RL environment, may be normalized lowercase_ = DecisionTransformerModel.from_pretrained('''edbeeching/decision-transformer-gym-hopper-expert''' ) lowercase_ = model.to(SCREAMING_SNAKE_CASE_ ) lowercase_ = model.config torch.manual_seed(0 ) lowercase_ = torch.randn(1 , 1 , config.state_dim ).to(device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) # env.reset() lowercase_ = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=SCREAMING_SNAKE_CASE_ ) lowercase_ = torch.tensor(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) lowercase_ = state lowercase_ = torch.zeros(1 , 0 , config.act_dim , device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) lowercase_ = torch.zeros(1 , 0 , device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ) lowercase_ = torch.tensor(0 , device=SCREAMING_SNAKE_CASE_ , dtype=torch.long ).reshape(1 , 1 ) for step in range(SCREAMING_SNAKE_CASE_ ): lowercase_ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=SCREAMING_SNAKE_CASE_ )] , dim=1 ) lowercase_ = torch.cat([rewards, torch.zeros(1 , 1 , device=SCREAMING_SNAKE_CASE_ )] , dim=1 ) lowercase_ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): lowercase_ , lowercase_ , lowercase_ = model( states=SCREAMING_SNAKE_CASE_ , actions=SCREAMING_SNAKE_CASE_ , rewards=SCREAMING_SNAKE_CASE_ , returns_to_go=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=SCREAMING_SNAKE_CASE_ , dtype=torch.floataa ), 1.0, False, {}, ) lowercase_ = action_pred[0, -1] lowercase_ = torch.cat([states, state] , dim=1 ) lowercase_ = returns_to_go[0, -1] - reward lowercase_ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) lowercase_ = torch.cat( [timesteps, torch.ones((1, 1) , device=SCREAMING_SNAKE_CASE_ , dtype=torch.long ) * (step + 1)] , dim=1 )
97
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class lowerCamelCase__ : def _UpperCAmelCase ( self , snake_case , snake_case , snake_case ) -> Dict: """simple docstring""" return None class lowerCamelCase__ : def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case ) -> List[str]: """simple docstring""" return None class lowerCamelCase__ ( unittest.TestCase ): __UpperCAmelCase = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , """tf""" , 1_2 , **snake_case ) @require_torch @slow def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case , """pt""" , 1_2 , **snake_case ) @require_torch @slow def _UpperCAmelCase ( self ) -> Dict: """simple docstring""" from transformers import BertModel lowercase : str = ["""[UNK]""", """[SEP]""", """[CLS]""", """[PAD]""", """[MASK]""", """some""", """other""", """words"""] with NamedTemporaryFile(mode="""w+t""" ) as vocab_file: vocab_file.write("""\n""".join(snake_case ) ) vocab_file.flush() lowercase : Any = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: lowercase : Any = BertModel(BertConfig(vocab_size=len(snake_case ) ) ) model.save_pretrained(snake_case ) self._test_export(snake_case , """pt""" , 1_2 , snake_case ) @require_tf @slow def _UpperCAmelCase ( self ) -> int: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase : int = self._test_export(snake_case , """tf""" , 1_2 , **snake_case ) lowercase : str = quantize(Path(snake_case ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) @require_torch @slow def _UpperCAmelCase ( self ) -> Any: """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: lowercase : int = self._test_export(snake_case , """pt""" , 1_2 , **snake_case ) lowercase : Dict = quantize(snake_case ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case ).stat().st_size: self.fail("""Quantized model is bigger than initial ONNX model""" ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case , snake_case=None , **snake_case ) -> List[str]: """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: lowercase : Union[str, Any] = Path(snake_case ).joinpath("""model.onnx""" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case , snake_case , snake_case , snake_case , snake_case , **snake_case ) return path except Exception as e: self.fail(snake_case ) @require_torch @require_tokenizers @slow def _UpperCAmelCase ( self ) -> List[Any]: """simple docstring""" from transformers import BertModel lowercase : List[Any] = BertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowercase : int = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(snake_case , snake_case , """pt""" ) @require_tf @require_tokenizers @slow def _UpperCAmelCase ( self ) -> int: """simple docstring""" from transformers import TFBertModel lowercase : Dict = TFBertModel(BertConfig.from_pretrained("""lysandre/tiny-bert-random""" ) ) lowercase : Any = BertTokenizerFast.from_pretrained("""lysandre/tiny-bert-random""" ) self._test_infer_dynamic_axis(snake_case , snake_case , """tf""" ) def _UpperCAmelCase ( self , snake_case , snake_case , snake_case ) -> List[Any]: """simple docstring""" lowercase : Tuple = FeatureExtractionPipeline(snake_case , snake_case ) lowercase : str = ["""input_ids""", """token_type_ids""", """attention_mask""", """output_0""", """output_1"""] lowercase , lowercase , lowercase , lowercase : Dict = infer_shapes(snake_case , snake_case ) # Assert all variables are present self.assertEqual(len(snake_case ) , len(snake_case ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , snake_case ) self.assertSequenceEqual(variable_names[3:] , snake_case ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: """batch""", 1: """sequence"""} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["""output_0"""] , {0: """batch""", 1: """sequence"""} ) self.assertDictEqual(shapes["""output_1"""] , {0: """batch"""} ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" lowercase : Union[str, Any] = ["""input_ids""", """attention_mask""", """token_type_ids"""] lowercase : List[Any] = {"""input_ids""": [1, 2, 3, 4], """attention_mask""": [0, 0, 0, 0], """token_type_ids""": [1, 1, 1, 1]} lowercase , lowercase : int = ensure_valid_input(FuncContiguousArgs() , snake_case , snake_case ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case ) , 3 ) # Should have exactly the same input names self.assertEqual(set(snake_case ) , set(snake_case ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case , (tokens["""input_ids"""], tokens["""token_type_ids"""], tokens["""attention_mask"""]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) lowercase , lowercase : List[Any] = ensure_valid_input(FuncNonContiguousArgs() , snake_case , snake_case ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case ) , 1 ) self.assertEqual(len(snake_case ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["""input_ids"""] ) self.assertEqual(ordered_input_names[0] , """input_ids""" ) def _UpperCAmelCase ( self ) -> str: """simple docstring""" lowercase : Optional[int] = generate_identified_filename(Path("""/home/something/my_fake_model.onnx""" ) , """-test""" ) self.assertEqual("""/home/something/my_fake_model-test.onnx""" , generated.as_posix() )
607
0
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def A__ ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : int = 1_6000 ): lowerCamelCase__ = int(round(sample_rate * max_length ) ) if len(__lowerCAmelCase ) <= sample_length: return wav lowerCamelCase__ = randint(0 , len(__lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = field(default=a ,metadata={'help': 'Name of a dataset from the datasets package'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'A file containing the training audio paths and labels.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'A file containing the validation audio paths and labels.'} ) _UpperCamelCase = field( default='train' ,metadata={ 'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\'' } ,) _UpperCamelCase = field( default='validation' ,metadata={ 'help': ( 'The name of the training data set split to use (via the datasets library). Defaults to \'validation\'' ) } ,) _UpperCamelCase = field( default='audio' ,metadata={'help': 'The name of the dataset column containing the audio data. Defaults to \'audio\''} ,) _UpperCamelCase = field( default='label' ,metadata={'help': 'The name of the dataset column containing the labels. Defaults to \'label\''} ) _UpperCamelCase = field( default=a ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } ,) _UpperCamelCase = field( default=a ,metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } ,) _UpperCamelCase = field( default=20 ,metadata={'help': 'Audio clips will be randomly cut to this length during training if the value is set.'} ,) @dataclass class UpperCamelCase__ : '''simple docstring''' _UpperCamelCase = field( default='facebook/wav2vec2-base' ,metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ,) _UpperCamelCase = field( default=a ,metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Where do you want to store the pretrained models downloaded from the Hub'} ) _UpperCamelCase = field( default='main' ,metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} ,) _UpperCamelCase = field( default=a ,metadata={'help': 'Name or path of preprocessor config.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Whether to freeze the feature encoder layers of the model.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Whether to generate an attention mask in the feature extractor.'} ) _UpperCamelCase = field( default=a ,metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } ,) _UpperCamelCase = field( default=a ,metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} ) _UpperCamelCase = field( default=a ,metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} ,) def UpperCamelCase_ ( self ): if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" ,_lowerCAmelCase ,) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def A__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , __lowerCAmelCase , __lowerCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCamelCase__ = training_args.get_process_log_level() logger.setLevel(__lowerCAmelCase ) transformers.utils.logging.set_verbosity(__lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. lowerCamelCase__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCamelCase__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. lowerCamelCase__ = DatasetDict() lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'''{", ".join(raw_datasets["train"].column_names )}.''' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'''--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ''' """Make sure to set `--label_column_name` to the correct text column - one of """ F'''{", ".join(raw_datasets["train"].column_names )}.''' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy lowerCamelCase__ = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. lowerCamelCase__ = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) lowerCamelCase__ = feature_extractor.model_input_names[0] def train_transforms(__lowerCAmelCase : Any ): lowerCamelCase__ = [] for audio in batch[data_args.audio_column_name]: lowerCamelCase__ = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(__lowerCAmelCase ) lowerCamelCase__ = feature_extractor(__lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ = {model_input_name: inputs.get(__lowerCAmelCase )} lowerCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(__lowerCAmelCase : Any ): lowerCamelCase__ = [audio["""array"""] for audio in batch[data_args.audio_column_name]] lowerCamelCase__ = feature_extractor(__lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) lowerCamelCase__ = {model_input_name: inputs.get(__lowerCAmelCase )} lowerCamelCase__ = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. lowerCamelCase__ = raw_datasets["""train"""].features[data_args.label_column_name].names lowerCamelCase__ , lowerCamelCase__ = {}, {} for i, label in enumerate(__lowerCAmelCase ): lowerCamelCase__ = str(__lowerCAmelCase ) lowerCamelCase__ = label # Load the accuracy metric from the datasets package lowerCamelCase__ = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(__lowerCAmelCase : List[Any] ): lowerCamelCase__ = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=__lowerCAmelCase , references=eval_pred.label_ids ) lowerCamelCase__ = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel=__lowerCAmelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) lowerCamelCase__ = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: lowerCamelCase__ = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(__lowerCAmelCase , output_all_columns=__lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCamelCase__ = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(__lowerCAmelCase , output_all_columns=__lowerCAmelCase ) # Initialize our trainer lowerCamelCase__ = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) # Training if training_args.do_train: lowerCamelCase__ = None if training_args.resume_from_checkpoint is not None: lowerCamelCase__ = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCamelCase__ = last_checkpoint lowerCamelCase__ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: lowerCamelCase__ = trainer.evaluate() trainer.log_metrics("""eval""" , __lowerCAmelCase ) trainer.save_metrics("""eval""" , __lowerCAmelCase ) # Write model card and (optionally) push to hub lowerCamelCase__ = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**__lowerCAmelCase ) else: trainer.create_model_card(**__lowerCAmelCase ) if __name__ == "__main__": main()
715
'''simple docstring''' import numpy # List of input, output pairs UpperCamelCase : List[Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) UpperCamelCase : Optional[int] = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) UpperCamelCase : int = [2, 4, 1, 5] UpperCamelCase : int = len(train_data) UpperCamelCase : Dict = 0.009 def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : str="train" ): return calculate_hypothesis_value(__lowerCAmelCase , __lowerCAmelCase ) - output( __lowerCAmelCase , __lowerCAmelCase ) def A__ ( __lowerCAmelCase : Any ): lowerCamelCase__ = 0 for i in range(len(__lowerCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A__ ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A__ ( __lowerCAmelCase : int , __lowerCAmelCase : Dict ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A__ ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any]=m ): lowerCamelCase__ = 0 for i in range(__lowerCAmelCase ): if index == -1: summation_value += _error(__lowerCAmelCase ) else: summation_value += _error(__lowerCAmelCase ) * train_data[i][0][index] return summation_value def A__ ( __lowerCAmelCase : List[Any] ): lowerCamelCase__ = summation_of_cost_derivative(__lowerCAmelCase , __lowerCAmelCase ) / m return cost_derivative_value def A__ ( ): global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ = 0.00_0002 lowerCamelCase__ = 0 lowerCamelCase__ = 0 while True: j += 1 lowerCamelCase__ = [0, 0, 0, 0] for i in range(0 , len(__lowerCAmelCase ) ): lowerCamelCase__ = get_cost_derivative(i - 1 ) lowerCamelCase__ = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __lowerCAmelCase , __lowerCAmelCase , atol=__lowerCAmelCase , rtol=__lowerCAmelCase , ): break lowerCamelCase__ = temp_parameter_vector print(("""Number of iterations:""", j) ) def A__ ( ): for i in range(len(__lowerCAmelCase ) ): print(("""Actual output value:""", output(__lowerCAmelCase , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(__lowerCAmelCase , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print('\nTesting gradient descent for a linear hypothesis function.\n') test_gradient_descent()
9
0
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE_ : Dict = 5 # Realm tok SCREAMING_SNAKE_CASE_ : Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.join(lowerCAmelCase__ , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) SCREAMING_SNAKE_CASE_ : str = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = RealmConfig(num_block_records=self.num_block_records ) return config def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = np.array( [ b'This is the first record', b'This is the second record', b'This is the third record', b'This is the fourth record', b'This is the fifth record', b'This is a longer longer longer record', ] , dtype=lowerCAmelCase__ , ) return block_records def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.get_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_retriever() SCREAMING_SNAKE_CASE_ : List[str] = retriever.tokenizer SCREAMING_SNAKE_CASE_ : Any = np.array([0, 3] , dtype='long' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer(['Test question'] ).input_ids SCREAMING_SNAKE_CASE_ : int = tokenizer( ['the fourth'] , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ).input_ids SCREAMING_SNAKE_CASE_ : Any = config.reader_seq_len SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = retriever( lowerCAmelCase__ , lowerCAmelCase__ , answer_ids=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors='np' ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(len(lowerCAmelCase__ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 1_0) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 1_0) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 1_0) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_dummy_retriever() SCREAMING_SNAKE_CASE_ : Tuple = retriever.tokenizer SCREAMING_SNAKE_CASE_ : Optional[Any] = np.array([0, 3, 5] , dtype='long' ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer(['Test question'] ).input_ids SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ).input_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = config.reader_seq_len SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = retriever( lowerCAmelCase__ , lowerCAmelCase__ , answer_ids=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors='np' ) self.assertEqual([False, True, True] , lowerCAmelCase__ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , lowerCAmelCase__ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , lowerCAmelCase__ ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path SCREAMING_SNAKE_CASE_ : Optional[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , b'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) SCREAMING_SNAKE_CASE_ : Optional[Any] = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , b'This is the first record' )
101
'''simple docstring''' from __future__ import annotations def __snake_case ( lowercase : list[float] , lowercase : list[float] ): snake_case_ = sorted(numsa + numsa ) snake_case_ , snake_case_ = divmod(len(lowercase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = [float(x) for x in input('''Enter the elements of first array: ''').split()] lowercase__ = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
508
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = {"""configuration_ibert""": ["""IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """IBertConfig""", """IBertOnnxConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """IBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """IBertForMaskedLM""", """IBertForMultipleChoice""", """IBertForQuestionAnswering""", """IBertForSequenceClassification""", """IBertForTokenClassification""", """IBertModel""", """IBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
239
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__(self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[2, 2, 3, 2] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=10 , lowerCAmelCase__=0.02 , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=None , ): '''simple docstring''' _UpperCamelCase : str = parent _UpperCamelCase : Any = batch_size _UpperCamelCase : str = image_size _UpperCamelCase : Any = num_channels _UpperCamelCase : Union[str, Any] = num_stages _UpperCamelCase : Any = hidden_sizes _UpperCamelCase : Optional[Any] = depths _UpperCamelCase : Union[str, Any] = is_training _UpperCamelCase : Any = use_labels _UpperCamelCase : List[Any] = intermediate_size _UpperCamelCase : Optional[int] = hidden_act _UpperCamelCase : int = num_labels _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : Dict = out_features _UpperCamelCase : Any = out_indices _UpperCamelCase : Any = scope def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase : Optional[int] = None if self.use_labels: _UpperCamelCase : int = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase : str = self.get_config() return config, pixel_values, labels def lowercase_ (self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : str = ConvNextVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[Any] = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : int = ConvNextVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Optional[int] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' _UpperCamelCase : Tuple = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : str = model(lowerCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _UpperCamelCase : int = None _UpperCamelCase : List[str] = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _UpperCamelCase : Any = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[str] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[int] = config_and_inputs _UpperCamelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = config_and_inputs _UpperCamelCase : Union[str, Any] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCAmelCase = ( {"""feature-extraction""": ConvNextVaModel, """image-classification""": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : int = ConvNextVaModelTester(self ) _UpperCamelCase : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def lowercase_ (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ (self ): '''simple docstring''' return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def lowercase_ (self ): '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def lowercase_ (self ): '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def lowercase_ (self ): '''simple docstring''' pass def lowercase_ (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase , _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Dict = True if model_class.__name__ in [ *get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ ), ]: continue _UpperCamelCase : Dict = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() _UpperCamelCase : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCamelCase : str = model(**lowerCAmelCase__ ).loss loss.backward() def lowercase_ (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: _UpperCamelCase , _UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_with_labels() _UpperCamelCase : Tuple = False _UpperCamelCase : Union[str, Any] = True if ( model_class.__name__ in [*get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue _UpperCamelCase : Any = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.train() _UpperCamelCase : List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _UpperCamelCase : Dict = model(**lowerCAmelCase__ ).loss loss.backward() def lowercase_ (self ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Optional[int] = model_class(lowerCAmelCase__ ) _UpperCamelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase : List[Any] = [*signature.parameters.keys()] _UpperCamelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): _UpperCamelCase : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _UpperCamelCase : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _UpperCamelCase : Dict = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase : Any = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def lowercase_ (self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase : Union[str, Any] = ConvNextVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __lowerCAmelCase ( ) -> List[str]: _UpperCamelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase_ (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : List[str] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowerCAmelCase__ ) _UpperCamelCase : Optional[int] = self.default_image_processor _UpperCamelCase : Dict = prepare_img() _UpperCamelCase : str = preprocessor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _UpperCamelCase : Optional[int] = model(**lowerCAmelCase__ ) # verify the logits _UpperCamelCase : str = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _UpperCamelCase : Tuple = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
239
1
'''simple docstring''' from ....utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : Optional[int],__A : int,__A : List[Any]=None,__A : Any=2_0_4_8 ): _lowerCamelCase : List[str] = config.__dict__ _lowerCamelCase : Union[str, Any] = modal_hidden_size if num_labels: _lowerCamelCase : List[Any] = num_labels
44
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[int]=False ): """simple docstring""" _lowerCamelCase : List[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCamelCase : Optional[int] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any]=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCamelCase : int = "" else: _lowerCamelCase : int = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCamelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _lowerCamelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _lowerCamelCase : List[str] = in_proj_bias[: config.hidden_size] _lowerCamelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCamelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCamelCase : Any = in_proj_weight[ -config.hidden_size :, : ] _lowerCamelCase : List[str] = in_proj_bias[-config.hidden_size :] def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : List[str] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_lowerCAmelCase , _lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = dct.pop(_lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = val def A_ ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : str = ViTConfig() _lowerCamelCase : List[str] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Optional[Any] = int(vit_name[-12:-10] ) _lowerCamelCase : str = int(vit_name[-9:-6] ) else: _lowerCamelCase : List[Any] = 1000 _lowerCamelCase : str = "huggingface/label-files" _lowerCamelCase : Any = "imagenet-1k-id2label.json" _lowerCamelCase : int = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Optional[Any] = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} _lowerCamelCase : List[str] = int(vit_name[-6:-4] ) _lowerCamelCase : str = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowerCamelCase : List[Any] = 192 _lowerCamelCase : Optional[int] = 768 _lowerCamelCase : Union[str, Any] = 12 _lowerCamelCase : Optional[Any] = 3 elif vit_name[9:].startswith("small" ): _lowerCamelCase : Optional[Any] = 384 _lowerCamelCase : Optional[Any] = 1536 _lowerCamelCase : int = 12 _lowerCamelCase : List[str] = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowerCamelCase : List[str] = 768 _lowerCamelCase : Optional[Any] = 2304 _lowerCamelCase : List[Any] = 8 _lowerCamelCase : List[Any] = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowerCamelCase : List[Any] = 1024 _lowerCamelCase : Optional[Any] = 4096 _lowerCamelCase : List[Any] = 24 _lowerCamelCase : Union[str, Any] = 16 elif vit_name[4:].startswith("huge" ): _lowerCamelCase : str = 1280 _lowerCamelCase : List[Any] = 5120 _lowerCamelCase : List[str] = 32 _lowerCamelCase : List[str] = 16 # load original model from timm _lowerCamelCase : int = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowerCamelCase : Any = timm_model.state_dict() if base_model: remove_classification_head_(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowerCamelCase : int = ViTModel(_lowerCAmelCase ).eval() else: _lowerCamelCase : List[str] = ViTForImageClassification(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowerCamelCase : Union[str, Any] = DeiTImageProcessor(size=config.image_size ) else: _lowerCamelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) _lowerCamelCase : Optional[int] = encoding["pixel_values"] _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) if base_model: _lowerCamelCase : int = timm_model.forward_features(_lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _lowerCamelCase : Union[str, Any] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1E-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCAmelCase_ : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
44
1
def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' lowercase = [int(__snake_case ) for i in ip_va_address.split('.' ) if i.isdigit()] return len(__snake_case ) == 4 and all(0 <= int(__snake_case ) <= 2_54 for octet in octets ) if __name__ == "__main__": _UpperCamelCase : List[str] = input().strip() _UpperCamelCase : List[str] = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
707
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCamelCase : Tuple = '\\n Text data.\n Second line of data.' _UpperCamelCase : Tuple = 'file' @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') lowercase = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , __snake_case ) , 'w' ) as f: f.write(__snake_case ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Any , __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' lowercase = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} lowercase = input_paths[compression_format] lowercase = tmp_path / 'cache' lowercase = DownloadConfig(cache_dir=__snake_case , extract_compressed_file=__snake_case ) lowercase = cached_path(__snake_case , download_config=__snake_case ) with open(__snake_case ) as f: lowercase = f.read() with open(__snake_case ) as f: lowercase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : int , __snake_case : Optional[Any] ): '''simple docstring''' lowercase = 'custom_cache' lowercase = 'custom_extracted_dir' lowercase = tmp_path / 'custom_extracted_path' if default_extracted: lowercase = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , __snake_case ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__snake_case ) ) lowercase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase = xz_file lowercase = ( DownloadConfig(extract_compressed_file=__snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__snake_case ) ) lowercase = cached_path(__snake_case , download_config=__snake_case ) assert Path(__snake_case ).parent.parts[-2:] == expected def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = str(Path(__snake_case ).resolve() ) assert cached_path(__snake_case ) == text_file # relative path lowercase = str(Path(__snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__snake_case ) == text_file def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(__snake_case ): cached_path(__snake_case ) # relative path lowercase = './__missing_file__.txt' with pytest.raises(__snake_case ): cached_path(__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ): '''simple docstring''' lowercase = get_from_cache(f'tmp://{tmpfs_file}' ) with open(__snake_case ) as f: lowercase = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' with pytest.raises(__snake_case ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): '''simple docstring''' lowercase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): http_get('https://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] ): '''simple docstring''' lowercase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): ftp_get('ftp://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): '''simple docstring''' lowercase = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): fsspec_get('s3://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): fsspec_head('s3://huggingface.co' )
134
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __UpperCamelCase : def __init__( self : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : List[Any]=7 , _lowerCAmelCase : int=True , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Tuple=99 , _lowerCAmelCase : Any=36 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : List[str]=37 , _lowerCAmelCase : List[Any]="gelu" , _lowerCAmelCase : int=0.1 , _lowerCAmelCase : Any=0.1 , _lowerCAmelCase : str=512 , _lowerCAmelCase : Any=16 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : Dict=6 , _lowerCAmelCase : str=6 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=4 , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=1000 , ) -> Any: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = num_channels __lowercase = image_size __lowercase = patch_size __lowercase = text_seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = coordinate_size __lowercase = shape_size __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowercase = text_seq_length __lowercase = (image_size // patch_size) ** 2 + 1 __lowercase = self.text_seq_length + self.image_seq_length def _a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowercase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowercase = bbox[i, j, 3] __lowercase = bbox[i, j, 1] __lowercase = t if bbox[i, j, 2] < bbox[i, j, 0]: __lowercase = bbox[i, j, 2] __lowercase = bbox[i, j, 0] __lowercase = t __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowercase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self : str , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Any ) -> int: """simple docstring""" __lowercase = LayoutLMvaModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # text + image __lowercase = model(UpperCamelCase__ , pixel_values=UpperCamelCase__ ) __lowercase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __lowercase = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , token_type_ids=UpperCamelCase__ ) __lowercase = model(UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowercase = model(UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowercase = model(pixel_values=UpperCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _a ( self : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str ) -> List[str]: """simple docstring""" __lowercase = self.num_labels __lowercase = LayoutLMvaForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str ) -> str: """simple docstring""" __lowercase = self.num_labels __lowercase = LayoutLMvaForTokenClassification(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _a ( self : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = LayoutLMvaForQuestionAnswering(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() __lowercase = model( UpperCamelCase__ , bbox=UpperCamelCase__ , pixel_values=UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( __lowercase ) = config_and_inputs __lowercase = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class __UpperCamelCase ( __snake_case , __snake_case , unittest.TestCase ): __snake_case :List[str] = False __snake_case :Union[str, Any] = False __snake_case :List[str] = False __snake_case :str = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __snake_case :str = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def _a ( self : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ) -> Any: """simple docstring""" return True def _a ( self : int ) -> Optional[Any]: """simple docstring""" __lowercase = LayoutLMvaModelTester(self ) __lowercase = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def _a ( self : List[str] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple=False ) -> Optional[Any]: """simple docstring""" __lowercase = copy.deepcopy(UpperCamelCase__ ) if model_class in get_values(UpperCamelCase__ ): __lowercase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(UpperCamelCase__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCamelCase__ ): __lowercase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in get_values(UpperCamelCase__ ): __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: __lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) elif model_class in [ *get_values(UpperCamelCase__ ), ]: __lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=UpperCamelCase__ , ) return inputs_dict def _a ( self : Dict ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def _a ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _a ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase = type self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _a ( self : str ) -> Optional[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def _a ( self : Tuple ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) def _a ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) @slow def _a ( self : Union[str, Any] ) -> List[str]: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = LayoutLMvaModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def snake_case ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class __UpperCamelCase ( unittest.TestCase ): @cached_property def _a ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=UpperCamelCase__ ) if is_vision_available() else None @slow def _a ( self : Union[str, Any] ) -> int: """simple docstring""" __lowercase = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(UpperCamelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=UpperCamelCase__ , return_tensors="""pt""" ).pixel_values.to(UpperCamelCase__ ) __lowercase = torch.tensor([[1, 2]] ) __lowercase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __lowercase = model( input_ids=input_ids.to(UpperCamelCase__ ) , bbox=bbox.to(UpperCamelCase__ ) , pixel_values=pixel_values.to(UpperCamelCase__ ) , ) # verify the logits __lowercase = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , UpperCamelCase__ ) __lowercase = torch.tensor( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
80
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: while second != 0: __lowerCAmelCase: int = first & second first ^= second __lowerCAmelCase: Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() __A = int(input("Enter the first number: ").strip()) __A = int(input("Enter the second number: ").strip()) print(F'''{add(first, second) = }''')
346
0
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : int = ProphetNetTokenizer lowerCAmelCase : Tuple = False def __A ( self ): super().setUp() A__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __A ( self , UpperCAmelCase__ ): A__ = "UNwant\u00E9d,running" A__ = "unwanted, running" return input_text, output_text def __A ( self ): A__ = self.tokenizer_class(self.vocab_file ) A__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(UpperCAmelCase__ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , [9, 6, 7, 12, 10, 11] ) def __A ( self ): A__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __A ( self ): A__ = BasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __A ( self ): A__ = BasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHรคLLo!how \n Are yoU? " ) , ["hรคllo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __A ( self ): A__ = BasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHรคLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __A ( self ): A__ = BasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHรคLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __A ( self ): A__ = BasicTokenizer(do_lower_case=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __A ( self ): A__ = BasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHรคLLo!how \n Are yoU? " ) , ["HรคLLo", "!", "how", "Are", "yoU", "?"] ) def __A ( self ): A__ = BasicTokenizer(do_lower_case=UpperCAmelCase__ , strip_accents=UpperCAmelCase__ ) self.assertListEqual( tokenizer.tokenize(" \tHรคLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __A ( self ): A__ = BasicTokenizer(do_lower_case=UpperCAmelCase__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __A ( self ): A__ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] A__ = {} for i, token in enumerate(UpperCAmelCase__ ): A__ = i A__ = WordpieceTokenizer(vocab=UpperCAmelCase__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __A ( self ): A__ = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) A__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] A__ = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] A__ = tokenizer(UpperCAmelCase__ , padding=UpperCAmelCase__ , return_tensors="pt" ) self.assertIsInstance(UpperCAmelCase__ , UpperCAmelCase__ ) A__ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __A ( self ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __A ( self ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __A ( self ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __A ( self ): A__ = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) A__ = tokenizer.encode("sequence builders" , add_special_tokens=UpperCAmelCase__ ) A__ = tokenizer.encode("multi-sequence build" , add_special_tokens=UpperCAmelCase__ ) A__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ ) A__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase__ , UpperCAmelCase__ ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
232
def UpperCamelCase ( _A : list[int] , _A : int )-> bool: """simple docstring""" A__ = len(_A ) A__ = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): A__ = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): A__ = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: A__ = subset[i - 1][j] if arr[i - 1] <= j: A__ = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
232
1
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping UpperCAmelCase = tuple[int, int] class lowercase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: _lowerCamelCase : set[int] = vertices _lowerCamelCase : dict[EdgeT, int] = { (min(SCREAMING_SNAKE_CASE), max(SCREAMING_SNAKE_CASE)): weight for edge, weight in edges.items() } def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) -> None: self.vertices.add(edge[0]) self.vertices.add(edge[1]) _lowerCamelCase : Optional[int] = weight def UpperCamelCase_ ( self) -> Graph: _lowerCamelCase : Graph = Graph({min(self.vertices)} , {}) _lowerCamelCase : EdgeT _lowerCamelCase : int _lowerCamelCase : EdgeT _lowerCamelCase : int while len(subgraph.vertices) < len(self.vertices): _lowerCamelCase : List[str] = max(self.edges.values()) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _lowerCamelCase : int = edge _lowerCamelCase : List[Any] = weight subgraph.add_edge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE) return subgraph def _snake_case ( __snake_case : str = "p107_network.txt" ): """simple docstring""" _lowerCamelCase : str = os.path.abspath(os.path.dirname(__snake_case ) ) _lowerCamelCase : str = os.path.join(__snake_case , __snake_case ) _lowerCamelCase : dict[EdgeT, int] = {} _lowerCamelCase : list[str] _lowerCamelCase : int _lowerCamelCase : int with open(__snake_case ) as f: _lowerCamelCase : Optional[Any] = f.read().strip().split("""\n""" ) _lowerCamelCase : List[str] = [line.split(""",""" ) for line in data] for edgea in range(1 , len(__snake_case ) ): for edgea in range(__snake_case ): if adjaceny_matrix[edgea][edgea] != "-": _lowerCamelCase : int = int(adjaceny_matrix[edgea][edgea] ) _lowerCamelCase : Graph = Graph(set(range(len(__snake_case ) ) ) , __snake_case ) _lowerCamelCase : Graph = graph.prims_algorithm() _lowerCamelCase : int = sum(graph.edges.values() ) _lowerCamelCase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
88
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCamelCase_ : int = 16 lowerCamelCase_ : str = 32 def A__ ( lowerCamelCase ) -> int: return int(x / 2**20 ) class _UpperCamelCase : '''simple docstring''' def __enter__( self : int ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero UpperCamelCase_: str = torch.cuda.memory_allocated() return self def __exit__( self : List[Any] , *snake_case_ : Union[str, Any] ): gc.collect() torch.cuda.empty_cache() UpperCamelCase_: List[str] = torch.cuda.memory_allocated() UpperCamelCase_: int = torch.cuda.max_memory_allocated() UpperCamelCase_: Optional[int] = bamb(self.end - self.begin ) UpperCamelCase_: Tuple = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def A__ ( lowerCamelCase , lowerCamelCase = 16 , lowerCamelCase = "bert-base-cased" , lowerCamelCase = 3_20 , lowerCamelCase = 1_60 , ) -> Dict: UpperCamelCase_: str = AutoTokenizer.from_pretrained(lowerCamelCase ) UpperCamelCase_: List[str] = load_dataset( """glue""" , """mrpc""" , split={"""train""": F'''train[:{n_train}]''', """validation""": F'''validation[:{n_val}]'''} ) def tokenize_function(lowerCamelCase ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase_: Optional[Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase , max_length=lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase_: Dict = datasets.map( lowerCamelCase , batched=lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCamelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase_: int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase , padding="""max_length""" , max_length=1_28 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. UpperCamelCase_: List[str] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) UpperCamelCase_: Optional[Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCamelCase , collate_fn=lowerCamelCase , batch_size=lowerCamelCase ) return train_dataloader, eval_dataloader def A__ ( lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: # Initialize accelerator UpperCamelCase_: Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase_: str = config["""lr"""] UpperCamelCase_: Any = int(config["""num_epochs"""] ) UpperCamelCase_: Tuple = int(config["""seed"""] ) UpperCamelCase_: Dict = int(config["""batch_size"""] ) UpperCamelCase_: Dict = args.model_name_or_path set_seed(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_: int = get_dataloaders(lowerCamelCase , lowerCamelCase , lowerCamelCase , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase_: Any = AutoModelForSequenceClassification.from_pretrained(lowerCamelCase , return_dict=lowerCamelCase ) # Instantiate optimizer UpperCamelCase_: Tuple = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase_: List[Any] = optimizer_cls(params=model.parameters() , lr=lowerCamelCase ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase_: Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCamelCase_: List[Any] = 1 UpperCamelCase_: Optional[int] = (len(lowerCamelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase_: List[Any] = get_linear_schedule_with_warmup( optimizer=lowerCamelCase , num_warmup_steps=0 , num_training_steps=lowerCamelCase , ) else: UpperCamelCase_: Dict = DummyScheduler(lowerCamelCase , total_num_steps=lowerCamelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_, UpperCamelCase_: str = accelerator.prepare( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # We need to keep track of how many total steps we have iterated over UpperCamelCase_: str = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase_: Dict = 0 # Now we train the model UpperCamelCase_: Dict = {} for epoch in range(lowerCamelCase , lowerCamelCase ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(lowerCamelCase ): UpperCamelCase_: Union[str, Any] = model(**lowerCamelCase ) UpperCamelCase_: str = outputs.loss UpperCamelCase_: List[str] = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) UpperCamelCase_: Optional[Any] = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(lowerCamelCase , lowerCamelCase ) def A__ ( ) -> Optional[Any]: UpperCamelCase_: Any = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCamelCase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCamelCase , ) parser.add_argument( """--output_dir""" , type=lowerCamelCase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=lowerCamelCase , default=lowerCamelCase , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=lowerCamelCase , default=3_20 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=lowerCamelCase , default=1_60 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCamelCase , default=1 , help="""Number of train epochs.""" , ) UpperCamelCase_: Optional[int] = parser.parse_args() UpperCamelCase_: Union[str, Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": main()
548
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) # pylint: disable=invalid-name __SCREAMING_SNAKE_CASE ="\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def lowercase__( __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=8 ): lowercase_ : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowercase_ : Any = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict=5_12 , __SCREAMING_SNAKE_CASE : Optional[Any]=5_12 ): lowercase_ : Optional[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowercase_ : int = np.array(pil_image.convert('RGB' ) ) lowercase_ : Dict = arr.astype(np.floataa ) / 127.5 - 1 lowercase_ : str = np.transpose(__SCREAMING_SNAKE_CASE , [2, 0, 1] ) lowercase_ : List[Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE ).unsqueeze(0 ) return image class UpperCamelCase ( lowercase_ ): def __init__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,) -> str: '''simple docstring''' super().__init__() self.register_modules( unet=__UpperCamelCase ,scheduler=__UpperCamelCase ,movq=__UpperCamelCase ,) lowercase_ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Any: '''simple docstring''' lowercase_ : List[str] = min(int(num_inference_steps * strength ) ,__UpperCamelCase ) lowercase_ : Any = max(num_inference_steps - init_timestep ,0 ) lowercase_ : str = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _UpperCAmelCase ( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase=None ) -> Optional[Any]: '''simple docstring''' if not isinstance(__UpperCamelCase ,(torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__UpperCamelCase )}''' ) lowercase_ : Optional[int] = image.to(device=__UpperCamelCase ,dtype=__UpperCamelCase ) lowercase_ : Dict = batch_size * num_images_per_prompt if image.shape[1] == 4: lowercase_ : Optional[Any] = image else: if isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Dict = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(__UpperCamelCase ) ] lowercase_ : Union[str, Any] = torch.cat(__UpperCamelCase ,dim=0 ) else: lowercase_ : Optional[Any] = self.movq.encode(__UpperCamelCase ).latent_dist.sample(__UpperCamelCase ) lowercase_ : List[str] = self.movq.config.scaling_factor * init_latents lowercase_ : Any = torch.cat([init_latents] ,dim=0 ) lowercase_ : List[Any] = init_latents.shape lowercase_ : Any = randn_tensor(__UpperCamelCase ,generator=__UpperCamelCase ,device=__UpperCamelCase ,dtype=__UpperCamelCase ) # get latents lowercase_ : Tuple = self.scheduler.add_noise(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : int = init_latents return latents def _UpperCAmelCase ( self ,__UpperCamelCase=0 ) -> List[str]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowercase_ : Optional[Any] = torch.device(f'''cuda:{gpu_id}''' ) lowercase_ : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCamelCase ,__UpperCamelCase ) def _UpperCAmelCase ( self ,__UpperCamelCase=0 ) -> int: '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' ,'0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) lowercase_ : List[str] = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('cpu' ,silence_dtype_warnings=__UpperCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowercase_ : int = None for cpu_offloaded_model in [self.unet, self.movq]: lowercase_ : Tuple = cpu_offload_with_hook(__UpperCamelCase ,__UpperCamelCase ,prev_module_hook=__UpperCamelCase ) # We'll offload the last model manually. lowercase_ : Tuple = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' if not hasattr(self.unet ,'_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCamelCase ,'_hf_hook' ) and hasattr(module._hf_hook ,'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCamelCase ) def __call__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = 512 ,__UpperCamelCase = 512 ,__UpperCamelCase = 100 ,__UpperCamelCase = 4.0 ,__UpperCamelCase = 0.3 ,__UpperCamelCase = 1 ,__UpperCamelCase = None ,__UpperCamelCase = "pil" ,__UpperCamelCase = True ,) -> Any: '''simple docstring''' lowercase_ : Optional[int] = self._execution_device lowercase_ : int = guidance_scale > 1.0 if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Union[str, Any] = torch.cat(__UpperCamelCase ,dim=0 ) lowercase_ : Union[str, Any] = image_embeds.shape[0] if isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Tuple = torch.cat(__UpperCamelCase ,dim=0 ) if do_classifier_free_guidance: lowercase_ : Tuple = image_embeds.repeat_interleave(__UpperCamelCase ,dim=0 ) lowercase_ : List[str] = negative_image_embeds.repeat_interleave(__UpperCamelCase ,dim=0 ) lowercase_ : int = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to(dtype=self.unet.dtype ,device=__UpperCamelCase ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ): lowercase_ : Union[str, Any] = [image] if not all(isinstance(__UpperCamelCase ,(PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( f'''Input is in incorrect format: {[type(__UpperCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) lowercase_ : Optional[int] = torch.cat([prepare_image(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) for i in image] ,dim=0 ) lowercase_ : List[str] = image.to(dtype=image_embeds.dtype ,device=__UpperCamelCase ) lowercase_ : Optional[Any] = self.movq.encode(__UpperCamelCase )['latents'] lowercase_ : List[Any] = latents.repeat_interleave(__UpperCamelCase ,dim=0 ) self.scheduler.set_timesteps(__UpperCamelCase ,device=__UpperCamelCase ) lowercase_ : Any = self.get_timesteps(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) lowercase_ : int = timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowercase_ : Any = downscale_height_and_width(__UpperCamelCase ,__UpperCamelCase ,self.movq_scale_factor ) lowercase_ : str = self.prepare_latents( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,image_embeds.dtype ,__UpperCamelCase ,__UpperCamelCase ) for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance lowercase_ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase_ : Tuple = {'image_embeds': image_embeds} lowercase_ : Dict = self.unet( sample=__UpperCamelCase ,timestep=__UpperCamelCase ,encoder_hidden_states=__UpperCamelCase ,added_cond_kwargs=__UpperCamelCase ,return_dict=__UpperCamelCase ,)[0] if do_classifier_free_guidance: lowercase_ : List[Any] = noise_pred.split(latents.shape[1] ,dim=1 ) lowercase_ : int = noise_pred.chunk(2 ) lowercase_ : Tuple = variance_pred.chunk(2 ) lowercase_ : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowercase_ : Union[str, Any] = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowercase_ : Any = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowercase_ : Union[str, Any] = self.scheduler.step( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,generator=__UpperCamelCase ,)[0] # post-processing lowercase_ : Any = self.movq.decode(__UpperCamelCase ,force_not_quantize=__UpperCamelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowercase_ : Union[str, Any] = image * 0.5 + 0.5 lowercase_ : int = image.clamp(0 ,1 ) lowercase_ : Dict = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowercase_ : List[Any] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
700
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib __SCREAMING_SNAKE_CASE ={ "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } __SCREAMING_SNAKE_CASE =logging.WARNING def lowercase__( ): lowercase_ : List[Any] = os.getenv('DATASETS_VERBOSITY' , __SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option DATASETS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def lowercase__( ): return __name__.split('.' )[0] def lowercase__( ): return logging.getLogger(_get_library_name() ) def lowercase__( ): # Apply our default configuration to the library root logger. lowercase_ : Optional[int] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase__( ): lowercase_ : int = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase__( __SCREAMING_SNAKE_CASE : Optional[str] = None ): if name is None: lowercase_ : Union[str, Any] = _get_library_name() return logging.getLogger(__SCREAMING_SNAKE_CASE ) def lowercase__( ): return _get_library_root_logger().getEffectiveLevel() def lowercase__( __SCREAMING_SNAKE_CASE : int ): _get_library_root_logger().setLevel(__SCREAMING_SNAKE_CASE ) def lowercase__( ): return set_verbosity(__SCREAMING_SNAKE_CASE ) def lowercase__( ): return set_verbosity(__SCREAMING_SNAKE_CASE ) def lowercase__( ): return set_verbosity(__SCREAMING_SNAKE_CASE ) def lowercase__( ): return set_verbosity(__SCREAMING_SNAKE_CASE ) def lowercase__( ): lowercase_ : Tuple = False def lowercase__( ): lowercase_ : Any = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class UpperCamelCase : def __init__( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> int: # pylint: disable=unused-argument '''simple docstring''' lowercase_ : Optional[Any] = args[0] if args else None def __iter__( self ) -> Union[str, Any]: '''simple docstring''' return iter(self._iterator ) def __getattr__( self ,__UpperCamelCase ) -> List[Any]: '''simple docstring''' def empty_fn(*__UpperCamelCase ,**__UpperCamelCase ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> Optional[int]: '''simple docstring''' return self def __exit__( self ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) -> Dict: '''simple docstring''' return __SCREAMING_SNAKE_CASE =True class UpperCamelCase : def __call__( self ,*__UpperCamelCase ,__UpperCamelCase=False ,**__UpperCamelCase ) -> Tuple: '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*__UpperCamelCase ,**__UpperCamelCase ) else: return EmptyTqdm(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ,*__UpperCamelCase ,**__UpperCamelCase ) -> str: '''simple docstring''' lowercase_ : Tuple = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*__UpperCamelCase ,**__UpperCamelCase ) def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() __SCREAMING_SNAKE_CASE =_tqdm_cls() def lowercase__( ): global _tqdm_active return bool(_tqdm_active ) def lowercase__( ): global _tqdm_active lowercase_ : Union[str, Any] = True def lowercase__( ): global _tqdm_active lowercase_ : Optional[int] = False
477
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = 'Wav2Vec2FeatureExtractor' SCREAMING_SNAKE_CASE__ = 'AutoTokenizer' def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) a :Any = self.feature_extractor a :int = False @classmethod def SCREAMING_SNAKE_CASE__ ( cls , _lowerCamelCase , **_lowerCamelCase ): try: return super().from_pretrained(_lowerCamelCase , **_lowerCamelCase ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _lowerCamelCase , ) a :Tuple = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) a :List[str] = WavaVecaCTCTokenizer.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) return cls(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) a :Optional[Any] = kwargs.pop('''raw_speech''' ) else: a :Optional[int] = kwargs.pop('''audio''' , _lowerCamelCase ) a :int = kwargs.pop('''sampling_rate''' , _lowerCamelCase ) a :Dict = kwargs.pop('''text''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: a :Optional[int] = args[0] a :int = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: a :Union[str, Any] = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: a :List[Any] = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: a :Tuple = encodings['''input_ids'''] return inputs def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCamelCase , **_lowerCamelCase ) a :List[str] = kwargs.pop('''input_features''' , _lowerCamelCase ) a :List[Any] = kwargs.pop('''labels''' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: a :List[Any] = args[0] a :int = args[1:] if input_features is not None: a :Optional[Any] = self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if labels is not None: a :List[Any] = self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: a :str = labels['''input_ids'''] return input_features def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self ): warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) a :Tuple = True a :int = self.tokenizer yield a :Optional[Any] = self.feature_extractor a :Tuple = False
445
import datasets snake_case : int = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' snake_case : Tuple = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' snake_case : Union[str, Any] = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def __lowerCamelCase ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase ): return {"accuracy": simple_accuracy(_lowerCamelCase , _lowerCamelCase )}
445
1
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : '''simple docstring''' def __init__( self: int , _lowerCamelCase: List[str] , _lowerCamelCase: List[Any]=3 , _lowerCamelCase: Union[str, Any]=32 , _lowerCamelCase: List[Any]=3 , _lowerCamelCase: Tuple=10 , _lowerCamelCase: Optional[Any]=[10, 20, 30, 40] , _lowerCamelCase: List[str]=[1, 1, 2, 1] , _lowerCamelCase: str=True , _lowerCamelCase: List[Any]=True , _lowerCamelCase: str="relu" , _lowerCamelCase: Optional[Any]=3 , _lowerCamelCase: Union[str, Any]=None , ): SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = batch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = embeddings_size SCREAMING_SNAKE_CASE_ = hidden_sizes SCREAMING_SNAKE_CASE_ = depths SCREAMING_SNAKE_CASE_ = is_training SCREAMING_SNAKE_CASE_ = use_labels SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = scope SCREAMING_SNAKE_CASE_ = len(_lowerCamelCase ) def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE_ = self.get_config() return config, pixel_values, labels def _A ( self: Tuple ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _A ( self: Tuple , _lowerCamelCase: List[str] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: int ): SCREAMING_SNAKE_CASE_ = RegNetModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _A ( self: Union[str, Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = RegNetForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _A ( self: Dict ): SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : List[str] = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[int] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Tuple = False def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = RegNetModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _A ( self: List[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _A ( self: List[Any] ): return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def _A ( self: Union[str, Any] ): pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def _A ( self: Optional[Any] ): pass def _A ( self: List[str] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _A ( self: Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ = model_class(config=_lowerCamelCase ) for name, module in model.named_modules(): if isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def _A ( self: Dict ): def check_hidden_states_output(_lowerCamelCase: str , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Dict ): SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) SCREAMING_SNAKE_CASE_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE_ = self.model_tester.num_stages self.assertEqual(len(_lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE_ = layer_type SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE_ = True check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _A ( self: List[str] ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ = RegNetModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def a (): SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase): '''simple docstring''' @cached_property def _A ( self: str ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _A ( self: Optional[Any] ): SCREAMING_SNAKE_CASE_ = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE_ = self.default_image_processor SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(**_lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE_ = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
705
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": __SCREAMING_SNAKE_CASE ="""%20""".join(argv[1:]) if len(argv) > 1 else quote(str(input("""Search: """))) print("""Googling.....""") __SCREAMING_SNAKE_CASE =f"""https://www.google.com/search?q={query}&num=100""" __SCREAMING_SNAKE_CASE =requests.get( url, headers={"""User-Agent""": str(UserAgent().random)}, ) try: __SCREAMING_SNAKE_CASE =( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """yuRUbf"""}) .find("""a""") .get("""href""") ) except AttributeError: __SCREAMING_SNAKE_CASE =parse_qs( BeautifulSoup(res.text, """html.parser""") .find("""div""", attrs={"""class""": """kCrYT"""}) .find("""a""") .get("""href""") )["""url"""][0] webbrowser.open(link)
89
0
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowercase ( a__ : str , a__ : List[str] ) -> Union[str, Any]: assert isinstance(a__ , a__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( a__ : int , a__ : List[Any] , a__ : int ) -> List[Any]: _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase = JsonDatasetReader(a__ , cache_dir=a__ , keep_in_memory=a__ ).read() _check_json_dataset(a__ , a__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase ( a__ : Optional[int] , a__ : int , a__ : List[Any] ) -> Optional[Any]: _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = features.copy() if features else default_expected_features _UpperCamelCase = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = JsonDatasetReader(a__ , features=a__ , cache_dir=a__ ).read() _check_json_dataset(a__ , a__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''}, ] , ) def lowercase ( a__ : Dict , a__ : Any , a__ : Any ) -> Union[str, Any]: _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_3''': '''float64''', '''col_1''': '''string''', '''col_2''': '''int64'''} _UpperCamelCase = features.copy() if features else default_expected_features _UpperCamelCase = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = JsonDatasetReader(a__ , features=a__ , cache_dir=a__ ).read() assert isinstance(a__ , a__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def lowercase ( a__ : Any , a__ : str ) -> List[str]: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} _UpperCamelCase = {'''col_2''': '''int64''', '''col_3''': '''float64''', '''col_1''': '''string'''} _UpperCamelCase = features.copy() _UpperCamelCase = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = JsonDatasetReader(a__ , features=a__ , cache_dir=a__ ).read() assert isinstance(a__ , a__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase ( a__ : Tuple , a__ : int , a__ : List[str] ) -> int: _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = JsonDatasetReader(a__ , cache_dir=a__ , split=a__ ).read() _check_json_dataset(a__ , a__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def lowercase ( a__ : Optional[Any] , a__ : List[str] , a__ : int ) -> List[Any]: if issubclass(a__ , a__ ): _UpperCamelCase = jsonl_path elif issubclass(a__ , a__ ): _UpperCamelCase = [jsonl_path] _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = JsonDatasetReader(a__ , cache_dir=a__ ).read() _check_json_dataset(a__ , a__ ) def lowercase ( a__ : Dict , a__ : Dict , a__ : str=("train",) ) -> Dict: assert isinstance(a__ , a__ ) for split in splits: _UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowercase ( a__ : Optional[int] , a__ : Any , a__ : Any ) -> Dict: _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _UpperCamelCase = JsonDatasetReader({'''train''': jsonl_path} , cache_dir=a__ , keep_in_memory=a__ ).read() _check_json_datasetdict(a__ , a__ ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowercase ( a__ : Optional[int] , a__ : Optional[int] , a__ : Dict ) -> Union[str, Any]: _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = features.copy() if features else default_expected_features _UpperCamelCase = ( Features({feature: Value(a__ ) for feature, dtype in features.items()} ) if features is not None else None ) _UpperCamelCase = JsonDatasetReader({'''train''': jsonl_path} , features=a__ , cache_dir=a__ ).read() _check_json_datasetdict(a__ , a__ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def lowercase ( a__ : Union[str, Any] , a__ : Any , a__ : Dict ) -> int: if split: _UpperCamelCase = {split: jsonl_path} else: _UpperCamelCase = '''train''' _UpperCamelCase = {'''train''': jsonl_path, '''test''': jsonl_path} _UpperCamelCase = tmp_path / '''cache''' _UpperCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} _UpperCamelCase = JsonDatasetReader(a__ , cache_dir=a__ ).read() _check_json_datasetdict(a__ , a__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowercase ( a__ : int ) -> List[Any]: return json.load(a__ ) def lowercase ( a__ : Optional[int] ) -> Optional[int]: return [json.loads(a__ ) for line in buffer] class UpperCAmelCase_ : @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _UpperCamelCase ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase ).write() buffer.seek(0 ) _UpperCamelCase = load_json_function(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert isinstance(exported_content[0] , __UpperCamelCase ) assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _UpperCamelCase ( self : Any , __UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : int ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , orient=__UpperCamelCase ).write() buffer.seek(0 ) _UpperCamelCase = load_json(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize('''lines, load_json_function''' , [(True, load_json_lines), (False, load_json)] ) def _UpperCamelCase ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : List[Any] ) -> Optional[int]: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) _UpperCamelCase = load_json_function(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) assert isinstance(exported_content[0] , __UpperCamelCase ) assert len(__UpperCamelCase ) == 10 @pytest.mark.parametrize( '''orient, container, keys, len_at''' , [ ('''records''', list, {'''tokens''', '''labels''', '''answers''', '''id'''}, None), ('''split''', dict, {'''columns''', '''data'''}, '''data'''), ('''index''', dict, set('''0123456789''' ), None), ('''columns''', dict, {'''tokens''', '''labels''', '''answers''', '''id'''}, '''tokens'''), ('''values''', list, None, None), ('''table''', dict, {'''schema''', '''data'''}, '''data'''), ] , ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : List[str] ) -> List[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , lines=__UpperCamelCase , orient=__UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) _UpperCamelCase = load_json(__UpperCamelCase ) assert isinstance(__UpperCamelCase , __UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(__UpperCamelCase , '''keys''' ) and not hasattr(exported_content[0] , '''keys''' ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(__UpperCamelCase ) == 10 def _UpperCamelCase ( self : Any , __UpperCamelCase : Optional[int] ) -> Optional[int]: with pytest.raises(__UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , num_proc=0 ) @pytest.mark.parametrize('''compression, extension''' , [('''gzip''', '''gz'''), ('''bz2''', '''bz2'''), ('''xz''', '''xz''')] ) def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : Any ) -> Dict: _UpperCamelCase = tmp_path_factory.mktemp('''data''' ) / F'''test.json.{extension}''' _UpperCamelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(__UpperCamelCase , __UpperCamelCase , compression=__UpperCamelCase ).write() with fsspec.open(__UpperCamelCase , '''rb''' , compression='''infer''' ) as f: _UpperCamelCase = f.read() with fsspec.open(__UpperCamelCase , '''rb''' , compression='''infer''' ) as f: _UpperCamelCase = f.read() assert exported_content == original_content
420
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def lowercase ( a__ : dict , a__ : str , a__ : set , a__ : set , a__ : dict , a__ : dict , a__ : PriorityQueue , a__ : dict , a__ : float | int , ) -> float | int: for nxt, d in graph[v]: if nxt in visited_forward: continue _UpperCamelCase = cst_fwd.get(a__ , np.inf ) _UpperCamelCase = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _UpperCamelCase = new_cost_f _UpperCamelCase = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _UpperCamelCase = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowercase ( a__ : str , a__ : str , a__ : dict , a__ : dict ) -> int: _UpperCamelCase = -1 _UpperCamelCase = set() _UpperCamelCase = set() _UpperCamelCase = {source: 0} _UpperCamelCase = {destination: 0} _UpperCamelCase = {source: None} _UpperCamelCase = {destination: None} _UpperCamelCase = PriorityQueue() _UpperCamelCase = PriorityQueue() _UpperCamelCase = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _UpperCamelCase , _UpperCamelCase = queue_forward.get() visited_forward.add(a__ ) _UpperCamelCase , _UpperCamelCase = queue_backward.get() visited_backward.add(a__ ) _UpperCamelCase = pass_and_relaxation( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) _UpperCamelCase = pass_and_relaxation( a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _UpperCamelCase = shortest_distance return shortest_path_distance UpperCAmelCase = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } UpperCAmelCase = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
420
1
from manim import * class lowerCamelCase ( A_ ): def UpperCAmelCase(self : Tuple ) -> Any: snake_case = Rectangle(height=0.5 , width=0.5 ) snake_case = Rectangle(height=0.25 , width=0.25 ) snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) snake_case = [mem.copy() for i in range(6 )] snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*_A ).arrange(_A , buff=0 ) snake_case = VGroup(*_A ).arrange(_A , buff=0 ) snake_case = VGroup(_A , _A ).arrange(_A , buff=0 ) snake_case = Text("CPU" , font_size=2_4 ) snake_case = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_A ) snake_case = [mem.copy() for i in range(4 )] snake_case = VGroup(*_A ).arrange(_A , buff=0 ) snake_case = Text("GPU" , font_size=2_4 ) snake_case = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) gpu.move_to([-1, -1, 0] ) self.add(_A ) snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*_A ).arrange(_A , buff=0 ) snake_case = Text("Model" , font_size=2_4 ) snake_case = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) model.move_to([3, -1.0, 0] ) self.add(_A ) snake_case = [] snake_case = [] snake_case = [] for i, rect in enumerate(_A ): rect.set_stroke(_A ) snake_case = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(_A , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=_A ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=_A , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=_A , buff=0.0 ) self.add(_A ) model_cpu_arr.append(_A ) self.add(*_A , *_A , *_A ) snake_case = [mem.copy() for i in range(6 )] snake_case = VGroup(*_A ).arrange(_A , buff=0 ) snake_case = Text("Loaded Checkpoint" , font_size=2_4 ) snake_case = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) checkpoint.move_to([3, 0.5, 0] ) self.add(_A ) snake_case = [] snake_case = [] for i, rect in enumerate(_A ): snake_case = fill.copy().set_fill(_A , opacity=0.7 ) target.move_to(_A ) ckpt_arr.append(_A ) snake_case = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(_A ) self.add(*_A , *_A ) snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) snake_case = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>โ—</span> Empty Model' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_A , _A ) snake_case = MarkupText( f'<span fgcolor=\'{BLUE}\'>โ—</span> Checkpoint' , font_size=1_8 , ) blue_text.next_to(_A , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_A ) snake_case = MarkupText( f'Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) snake_case = [meta_mem.copy() for i in range(6 )] snake_case = [meta_mem.copy() for i in range(6 )] snake_case = VGroup(*_A ).arrange(_A , buff=0 ) snake_case = VGroup(*_A ).arrange(_A , buff=0 ) snake_case = VGroup(_A , _A ).arrange(_A , buff=0 ) snake_case = Text("Disk" , font_size=2_4 ) snake_case = Group(_A , _A ).arrange(_A , buff=0.5 , aligned_edge=_A ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(_A , run_time=3 ) , Write(_A , run_time=1 ) , Create(_A , run_time=1 ) ) snake_case = [] for i, rect in enumerate(_A ): snake_case = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(_A , run_time=1.5 ) ) self.play(*_A ) self.play(FadeOut(_A ) ) snake_case = MarkupText(f'Then, the checkpoint is removed from memory\nthrough garbage collection.' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(_A , run_time=3 ) ) self.play( FadeOut(_A , _A , *_A , *_A ) , ) self.wait()
294
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _A = { # 1536-bit 5: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 2048-bit 14: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AACAA68FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 3072-bit 15: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 4096-bit 16: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199" + "FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 6144-bit 17: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08" + "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B" + "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9" + "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6" + "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8" + "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C" + "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718" + "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D" + "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D" + "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226" + "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC" + "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26" + "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB" + "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2" + "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127" + "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406" + "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918" + "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151" + "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03" + "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F" + "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B" + "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632" + "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E" + "6DCC4024FFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, # 8192-bit 18: { "prime": int( "FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1" + "29024E088A67CC74020BBEA63B139B22514A08798E3404DD" + "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245" + "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED" + "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D" + "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F" + "83655D23DCA3AD961C62F356208552BB9ED529077096966D" + "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B" + "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9" + "DE2BCBF6955817183995497CEA956AE515D2261898FA0510" + "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64" + "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7" + "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B" + "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C" + "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31" + "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7" + "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA" + "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6" + "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED" + "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9" + "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492" + "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD" + "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831" + "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B" + "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF" + "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6" + "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3" + "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA" + "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328" + "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C" + "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE" + "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4" + "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300" + "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568" + "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9" + "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B" + "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A" + "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36" + "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1" + "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92" + "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47" + "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71" + "60C980DD98EDD3DFFFFFFFFFFFFFFFFF", base=16, ), "generator": 2, }, } class lowerCamelCase : def __init__(self : Any , _A : int = 1_4 ) -> None: if group not in primes: raise ValueError("Unsupported Group" ) snake_case = primes[group]["prime"] snake_case = primes[group]["generator"] snake_case = int(hexlify(urandom(3_2 ) ) , base=1_6 ) def UpperCAmelCase(self : Any ) -> str: return hex(self.__private_key )[2:] def UpperCAmelCase(self : Tuple ) -> str: snake_case = pow(self.generator , self.__private_key , self.prime ) return hex(_A )[2:] def UpperCAmelCase(self : Optional[int] , _A : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(_A , (self.prime - 1) // 2 , self.prime ) == 1 ) def UpperCAmelCase(self : List[Any] , _A : str ) -> str: snake_case = int(_A , base=1_6 ) if not self.is_valid_public_key(_A ): raise ValueError("Invalid public key" ) snake_case = pow(_A , self.__private_key , self.prime ) return shaaaa(str(_A ).encode() ).hexdigest() @staticmethod def UpperCAmelCase(_A : int , _A : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(_A , (prime - 1) // 2 , _A ) == 1 ) @staticmethod def UpperCAmelCase(_A : str , _A : str , _A : int = 1_4 ) -> str: snake_case = int(_A , base=1_6 ) snake_case = int(_A , base=1_6 ) snake_case = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(_A , _A ): raise ValueError("Invalid public key" ) snake_case = pow(_A , _A , _A ) return shaaaa(str(_A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
294
1
'''simple docstring''' lowerCAmelCase : List[Any] = range(2, 20 + 1) lowerCAmelCase : Union[str, Any] = [10**k for k in range(ks[-1] + 1)] lowerCAmelCase : dict[int, dict[int, list[list[int]]]] = {} def A_( A : Any , A : Dict , A : str , A : str): UpperCamelCase = sum(a_i[j] for j in range(A , len(A))) UpperCamelCase = sum(a_i[j] * base[j] for j in range(min(len(A) , A))) UpperCamelCase , UpperCamelCase = 0, 0 UpperCamelCase = n - i UpperCamelCase = memo.get(A) if sub_memo is not None: UpperCamelCase = sub_memo.get(A) if jumps is not None and len(A) > 0: # find and make the largest jump without going over UpperCamelCase = -1 for _k in range(len(A) - 1 , -1 , -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCamelCase = _k break if max_jump >= 0: UpperCamelCase , UpperCamelCase , UpperCamelCase = jumps[max_jump] # since the difference between jumps is cached, add c UpperCamelCase = diff + c for j in range(min(A , len(A))): UpperCamelCase , UpperCamelCase = divmod(A , 10) if new_c > 0: add(A , A , A) else: UpperCamelCase = [] else: UpperCamelCase = {c: []} UpperCamelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCamelCase , UpperCamelCase = next_term(A , k - 1 , i + dn , A) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCamelCase , UpperCamelCase = compute(A , A , i + dn , A) diff += _diff dn += terms_jumped UpperCamelCase = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCamelCase = 0 while j < len(A): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k)) return (diff, dn) def A_( A : int , A : Optional[int] , A : str , A : List[str]): if i >= n: return 0, i if k > len(A): a_i.extend([0 for _ in range(k - len(A))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCamelCase = i UpperCamelCase , UpperCamelCase , UpperCamelCase = 0, 0, 0 for j in range(len(A)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCamelCase = ds_c + ds_b diff += addend UpperCamelCase = 0 for j in range(A): UpperCamelCase = a_i[j] + addend UpperCamelCase , UpperCamelCase = divmod(A , 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A) return diff, i - start_i def A_( A : str , A : Dict , A : Tuple): for j in range(A , len(A)): UpperCamelCase = digits[j] + addend if s >= 10: UpperCamelCase , UpperCamelCase = divmod(A , 10) UpperCamelCase = addend // 10 + quotient else: UpperCamelCase = s UpperCamelCase = addend // 10 if addend == 0: break while addend > 0: UpperCamelCase , UpperCamelCase = divmod(A , 10) digits.append(A) def A_( A : int = 10**15): UpperCamelCase = [1] UpperCamelCase = 1 UpperCamelCase = 0 while True: UpperCamelCase , UpperCamelCase = next_term(A , 20 , i + dn , A) dn += terms_jumped if dn == n - i: break UpperCamelCase = 0 for j in range(len(A)): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f"""{solution() = }""")
3
'''simple docstring''' import numpy as np def A_( A : str , A : Optional[Any] , A : Tuple , A : Optional[int] , A : str): UpperCamelCase = int(np.ceil((x_end - xa) / h)) UpperCamelCase = np.zeros((n + 1,)) UpperCamelCase = ya UpperCamelCase = xa for k in range(A): UpperCamelCase = f(A , y[k]) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + 0.5 * h , y[k] + 0.5 * h * ka) UpperCamelCase = f(x + h , y[k] + h * ka) UpperCamelCase = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
3
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE ={ """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json""", # See all REALM models at https://huggingface.co/models?filter=realm } class __magic_name__ ( __UpperCAmelCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = "realm" def __init__( self: Tuple , _lowerCamelCase: Union[str, Any]=3_05_22 , _lowerCamelCase: Tuple=7_68 , _lowerCamelCase: str=1_28 , _lowerCamelCase: str=12 , _lowerCamelCase: int=12 , _lowerCamelCase: Union[str, Any]=8 , _lowerCamelCase: Optional[Any]=30_72 , _lowerCamelCase: str="gelu_new" , _lowerCamelCase: str=0.1 , _lowerCamelCase: Union[str, Any]=0.1 , _lowerCamelCase: Optional[int]=5_12 , _lowerCamelCase: Union[str, Any]=2 , _lowerCamelCase: int=0.02 , _lowerCamelCase: Tuple=1E-12 , _lowerCamelCase: List[Any]=2_56 , _lowerCamelCase: Any=10 , _lowerCamelCase: Optional[Any]=1E-3 , _lowerCamelCase: Any=5 , _lowerCamelCase: List[str]=3_20 , _lowerCamelCase: List[str]=13_35_37_18 , _lowerCamelCase: str=50_00 , _lowerCamelCase: str=1 , _lowerCamelCase: str=0 , _lowerCamelCase: Dict=2 , **_lowerCamelCase: Tuple , ): super().__init__(pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase ) # Common config SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = retriever_proj_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_candidates SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = layer_norm_eps # Reader config SCREAMING_SNAKE_CASE_ = span_hidden_size SCREAMING_SNAKE_CASE_ = max_span_width SCREAMING_SNAKE_CASE_ = reader_layer_norm_eps SCREAMING_SNAKE_CASE_ = reader_beam_size SCREAMING_SNAKE_CASE_ = reader_seq_len # Retrieval config SCREAMING_SNAKE_CASE_ = num_block_records SCREAMING_SNAKE_CASE_ = searcher_beam_size
702
import requests def a (_lowerCAmelCase , _lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = {'''Content-Type''': '''application/json'''} SCREAMING_SNAKE_CASE_ = requests.post(_lowerCAmelCase , json={'''text''': message_body} , headers=_lowerCAmelCase ) if response.status_code != 2_0_0: SCREAMING_SNAKE_CASE_ = ( '''Request to slack returned an error ''' F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
89
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase): __SCREAMING_SNAKE_CASE : Any = StableDiffusionInstructPixaPixPipeline __SCREAMING_SNAKE_CASE : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width', 'cross_attention_kwargs'} __SCREAMING_SNAKE_CASE : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS def UpperCAmelCase__ ( self : Dict ): torch.manual_seed(0 ) _UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _UpperCAmelCase = PNDMScheduler(skip_prk_steps=UpperCamelCase_ ) torch.manual_seed(0 ) _UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) _UpperCAmelCase = CLIPTextModel(UpperCamelCase_ ) _UpperCAmelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) _UpperCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def UpperCAmelCase__ ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : int=0 ): _UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) _UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCAmelCase = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert("RGB" ) if str(UpperCamelCase_ ).startswith("mps" ): _UpperCAmelCase = torch.manual_seed(UpperCamelCase_ ) else: _UpperCAmelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _UpperCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) _UpperCAmelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase_ ) _UpperCAmelCase = sd_pipe(**UpperCamelCase_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self : Dict ): _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) _UpperCAmelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase_ ) _UpperCAmelCase = 'french fries' _UpperCAmelCase = sd_pipe(**UpperCamelCase_ , negative_prompt=UpperCamelCase_ ) _UpperCAmelCase = output.images _UpperCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self : Optional[Any] ): _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) _UpperCAmelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase_ ) _UpperCAmelCase = [inputs['prompt']] * 2 _UpperCAmelCase = np.array(inputs["image"] ).astype(np.floataa ) / 255.0 _UpperCAmelCase = torch.from_numpy(UpperCamelCase_ ).unsqueeze(0 ).to(UpperCamelCase_ ) _UpperCAmelCase = image / 2 + 0.5 _UpperCAmelCase = image.permute(0 , 3 , 1 , 2 ) _UpperCAmelCase = image.repeat(2 , 1 , 1 , 1 ) _UpperCAmelCase = sd_pipe(**UpperCamelCase_ ).images _UpperCAmelCase = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) _UpperCAmelCase = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" ) _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) _UpperCAmelCase = sd_pipe.to(UpperCamelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _UpperCAmelCase = self.get_dummy_inputs(UpperCamelCase_ ) _UpperCAmelCase = sd_pipe(**UpperCamelCase_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1] _UpperCAmelCase = [round(UpperCamelCase_ , 4 ) for x in image_slice.flatten().tolist()] print(",".join([str(UpperCamelCase_ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) _UpperCAmelCase = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCAmelCase__ ( self : Optional[int] ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def UpperCAmelCase__ ( self : Union[str, Any] ): _UpperCAmelCase = self.get_dummy_components() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline(**UpperCamelCase_ ) _UpperCAmelCase = VaeImageProcessor(do_resize=UpperCamelCase_ , do_normalize=UpperCamelCase_ ) _UpperCAmelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _UpperCAmelCase = pipe(**self.get_dummy_inputs_by_type(UpperCamelCase_ , input_image_type="pt" ) )[0] _UpperCAmelCase = components['vae'] _UpperCAmelCase = self.get_dummy_inputs_by_type(UpperCamelCase_ , input_image_type="pt" ) for image_param in self.image_latents_params: if image_param in inputs.keys(): _UpperCAmelCase = vae.encode(inputs[image_param] ).latent_dist.mode() _UpperCAmelCase = pipe(**UpperCamelCase_ )[0] _UpperCAmelCase = np.abs(out - out_latents_inputs ).max() self.assertLess(UpperCamelCase_ , 1e-4 , "passing latents as image input generate different result from passing image" ) @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): def UpperCAmelCase__ ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Dict , __UpperCamelCase : int=0 ): _UpperCAmelCase = torch.manual_seed(UpperCamelCase_ ) _UpperCAmelCase = load_image( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg" ) _UpperCAmelCase = { 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def UpperCAmelCase__ ( self : List[Any] ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**UpperCamelCase_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase__ ( self : Any ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase_ ) _UpperCAmelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**UpperCamelCase_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase_ ) _UpperCAmelCase = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**UpperCamelCase_ ).images _UpperCAmelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _UpperCAmelCase = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def UpperCAmelCase__ ( self : Tuple ): _UpperCAmelCase = 0 def callback_fn(__UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : torch.FloatTensor ) -> None: _UpperCAmelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: _UpperCAmelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) _UpperCAmelCase = latents[0, -3:, -3:, -1] _UpperCAmelCase = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 _UpperCAmelCase = False _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() _UpperCAmelCase = self.get_inputs() pipe(**UpperCamelCase_ , callback=UpperCamelCase_ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def UpperCAmelCase__ ( self : Dict ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( "timbrooks/instruct-pix2pix" , safety_checker=UpperCamelCase_ , torch_dtype=torch.floataa ) _UpperCAmelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCAmelCase = self.get_inputs() _UpperCAmelCase = pipe(**UpperCamelCase_ ) _UpperCAmelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def UpperCAmelCase__ ( self : int ): _UpperCAmelCase = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 _UpperCAmelCase = inputs['image'].resize((504, 504) ) _UpperCAmelCase = 'timbrooks/instruct-pix2pix' _UpperCAmelCase = StableDiffusionInstructPixaPixPipeline.from_pretrained( UpperCamelCase_ , safety_checker=UpperCamelCase_ , ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) pipe.enable_attention_slicing() _UpperCAmelCase = pipe(**UpperCamelCase_ ) _UpperCAmelCase = output.images[0] _UpperCAmelCase = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) _UpperCAmelCase = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3
684
'''simple docstring''' def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :list[list[str]] = [[] for _ in range(UpperCAmelCase__ )] SCREAMING_SNAKE_CASE__ :Any = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(UpperCAmelCase__ ) <= key: return input_string for position, character in enumerate(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ :Dict = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Tuple = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :int = [''.join(UpperCAmelCase__ ) for row in temp_grid] SCREAMING_SNAKE_CASE__ :str = ''.join(UpperCAmelCase__ ) return output_string def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : int ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[Any] = [] SCREAMING_SNAKE_CASE__ :str = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string SCREAMING_SNAKE_CASE__ :list[list[str]] = [[] for _ in range(UpperCAmelCase__ )] # generates template for position in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE__ :Optional[int] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Dict = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) SCREAMING_SNAKE_CASE__ :Any = 0 for row in temp_grid: # fills in the characters SCREAMING_SNAKE_CASE__ :int = input_string[counter : counter + len(UpperCAmelCase__ )] grid.append(list(UpperCAmelCase__ ) ) counter += len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ :Tuple = '' # reads as zigzag for position in range(len(UpperCAmelCase__ ) ): SCREAMING_SNAKE_CASE__ :Union[str, Any] = position % (lowest * 2) # puts it in bounds SCREAMING_SNAKE_CASE__ :Any = min(UpperCAmelCase__ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCamelCase ( UpperCAmelCase__ : str ) -> dict[int, str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = {} for key_guess in range(1 , len(UpperCAmelCase__ ) ): # tries every key SCREAMING_SNAKE_CASE__ :List[str] = decrypt(UpperCAmelCase__ , UpperCAmelCase__ ) return results if __name__ == "__main__": import doctest doctest.testmod()
209
0
"""simple docstring""" import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple ="""""" __UpperCAmelCase : str =( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __UpperCAmelCase : str =None # compression type in fsspec. ex: "gzip" __UpperCAmelCase : str =None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , __a = "" , __a = None , __a = None , **__a ): super().__init__(self , **__a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __lowerCAmelCase = fsspec.open( __a , mode="rb" , protocol=__a , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __lowerCAmelCase = os.path.basename(self.file.path.split("::" )[0] ) __lowerCAmelCase = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) __lowerCAmelCase = None @classmethod def snake_case ( cls , __a ): # compressed file paths are always relative to the archive root return super()._strip_protocol(__a ).lstrip("/" ) def snake_case ( self ): if self.dir_cache is None: __lowerCAmelCase = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} __lowerCAmelCase = {f["name"]: f} def snake_case ( self , __a ): return self.file.open().read() def snake_case ( self , __a , __a = "rb" , __a=None , __a=True , __a=None , **__a , ): __lowerCAmelCase = self._strip_protocol(__a ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""bz2""" __UpperCAmelCase : Any ="""bz2""" __UpperCAmelCase : List[Any] =""".bz2""" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple ="""gzip""" __UpperCAmelCase : Union[str, Any] ="""gzip""" __UpperCAmelCase : Dict =""".gz""" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""lz4""" __UpperCAmelCase : Any ="""lz4""" __UpperCAmelCase : List[str] =""".lz4""" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] ="""xz""" __UpperCAmelCase : int ="""xz""" __UpperCAmelCase : List[str] =""".xz""" class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] ="""zstd""" __UpperCAmelCase : Optional[Any] ="""zstd""" __UpperCAmelCase : str =""".zst""" def __init__( self , __a , __a = "rb" , __a = None , __a = None , __a = DEFAULT_BLOCK_SIZE , **__a , ): super().__init__( fo=__a , mode=__a , target_protocol=__a , target_options=__a , block_size=__a , **__a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __lowerCAmelCase = self.file.__enter__ class _UpperCamelCase : '''simple docstring''' def __init__( self , __a ): __lowerCAmelCase = file_ def __enter__( self ): self._file.__enter__() return self def __exit__( self , *__a , **__a ): self._file.__exit__(*__a , **__a ) def __iter__( self ): return iter(self._file ) def snake_case ( self ): return next(self._file ) def __getattr__( self , __a ): return getattr(self._file , __a ) def fixed_enter(*__a , **__a ): return WrappedFile(_enter(*__a , **__a ) ) __lowerCAmelCase = fixed_enter
282
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A : Dict = 1_6 A : Optional[int] = 3_2 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase = 16 ): '''simple docstring''' __lowerCAmelCase = AutoTokenizer.from_pretrained("bert-base-cased" ) __lowerCAmelCase = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCamelCase ): # max_length=None => use the model max length (it's actually the default) __lowerCAmelCase = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __lowerCAmelCase = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCAmelCase = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCamelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __lowerCAmelCase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __lowerCAmelCase = 16 elif accelerator.mixed_precision != "no": __lowerCAmelCase = 8 else: __lowerCAmelCase = None return tokenizer.pad( _UpperCamelCase , padding="longest" , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. __lowerCAmelCase = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) __lowerCAmelCase = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders A : List[Any] = mocked_dataloaders # noqa: F811 def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if os.environ.get("TESTING_MOCKED_DATALOADERS" , _UpperCamelCase ) == "1": __lowerCAmelCase = 2 # Initialize accelerator __lowerCAmelCase = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCAmelCase = config["lr"] __lowerCAmelCase = int(config["num_epochs"] ) __lowerCAmelCase = int(config["seed"] ) __lowerCAmelCase = int(config["batch_size"] ) __lowerCAmelCase = evaluate.load("glue" , "mrpc" ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCamelCase ) def inner_training_loop(_UpperCamelCase ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCAmelCase = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __lowerCAmelCase = model.to(accelerator.device ) # Instantiate optimizer __lowerCAmelCase = AdamW(params=model.parameters() , lr=_UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase = get_dataloaders(_UpperCamelCase , _UpperCamelCase ) # Instantiate scheduler __lowerCAmelCase = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __lowerCAmelCase = model(**_UpperCamelCase ) __lowerCAmelCase = outputs.loss accelerator.backward(_UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCAmelCase = model(**_UpperCamelCase ) __lowerCAmelCase = outputs.logits.argmax(dim=-1 ) __lowerCAmelCase , __lowerCAmelCase = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) __lowerCAmelCase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"epoch {epoch}:" , _UpperCamelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=_UpperCamelCase , default=_UpperCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = {"lr": 2e-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
282
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 1 lowercase = 3 lowercase = (32, 32) lowercase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(snake_case ) return image @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) lowercase = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=snake_case , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) lowercase = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet_upscale lowercase = DDPMScheduler() lowercase = DDIMScheduler(prediction_type='v_prediction' ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionUpscalePipeline( unet=snake_case , low_res_scheduler=snake_case , scheduler=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , max_noise_level=350 , ) lowercase = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) lowercase = 'A painting of a squirrel eating a burger' lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , image=snake_case , generator=snake_case , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowercase = output.images lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , image=snake_case , generator=snake_case , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=snake_case , )[0] lowercase = image[0, -3:, -3:, -1] lowercase = image_from_tuple[0, -3:, -3:, -1] lowercase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowercase = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase = self.dummy_cond_unet_upscale lowercase = DDPMScheduler() lowercase = DDIMScheduler(prediction_type='v_prediction' ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowercase = StableDiffusionUpscalePipeline( unet=snake_case , low_res_scheduler=snake_case , scheduler=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , max_noise_level=350 , ) lowercase = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) lowercase = 'A painting of a squirrel eating a burger' lowercase = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowercase = output.images assert image.shape[0] == 2 lowercase = torch.Generator(device=snake_case ).manual_seed(0 ) lowercase = sd_pipe( [prompt] , image=snake_case , generator=snake_case , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) lowercase = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.dummy_cond_unet_upscale lowercase = DDPMScheduler() lowercase = DDIMScheduler(prediction_type='v_prediction' ) lowercase = self.dummy_vae lowercase = self.dummy_text_encoder lowercase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) lowercase = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase = Image.fromarray(np.uinta(snake_case ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowercase = unet.half() lowercase = text_encoder.half() # make sure here that pndm scheduler skips prk lowercase = StableDiffusionUpscalePipeline( unet=snake_case , low_res_scheduler=snake_case , scheduler=snake_case , vae=snake_case , text_encoder=snake_case , tokenizer=snake_case , max_noise_level=350 , ) lowercase = sd_pipe.to(snake_case ) sd_pipe.set_progress_bar_config(disable=snake_case ) lowercase = 'A painting of a squirrel eating a burger' lowercase = torch.manual_seed(0 ) lowercase = sd_pipe( [prompt] , image=snake_case , generator=snake_case , num_inference_steps=2 , output_type='np' , ).images lowercase = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowercase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) lowercase = 'stabilityai/stable-diffusion-x4-upscaler' lowercase = StableDiffusionUpscalePipeline.from_pretrained(snake_case ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() lowercase = 'a cat sitting on a park bench' lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=snake_case , image=snake_case , generator=snake_case , output_type='np' , ) lowercase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def SCREAMING_SNAKE_CASE__ ( self ): lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowercase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) lowercase = 'stabilityai/stable-diffusion-x4-upscaler' lowercase = StableDiffusionUpscalePipeline.from_pretrained( snake_case , torch_dtype=torch.floataa , ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing() lowercase = 'a cat sitting on a park bench' lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=snake_case , image=snake_case , generator=snake_case , output_type='np' , ) lowercase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def SCREAMING_SNAKE_CASE__ ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) lowercase = 'stabilityai/stable-diffusion-x4-upscaler' lowercase = StableDiffusionUpscalePipeline.from_pretrained( snake_case , torch_dtype=torch.floataa , ) pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase = 'a cat sitting on a park bench' lowercase = torch.manual_seed(0 ) lowercase = pipe( prompt=snake_case , image=snake_case , generator=snake_case , num_inference_steps=5 , output_type='np' , ) lowercase = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
84
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ ): UpperCamelCase__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): UpperCamelCase__ : Any = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): UpperCamelCase__ : Optional[Any] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase__ : Union[str, Any] = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] UpperCamelCase__ : Tuple = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(UpperCamelCase__ )-1}''' ) if "norm" in key: UpperCamelCase__ : Dict = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase__ : int = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] UpperCamelCase__ : Tuple = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(UpperCamelCase__ )-1}''' ) if "layer_norm1" in key: UpperCamelCase__ : Tuple = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: UpperCamelCase__ : Union[str, Any] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase__ : Optional[Any] = key[key.find('''block''' ) + len('''block''' )] UpperCamelCase__ : str = key.replace(f'''block{idx}''' , f'''block.{int(UpperCamelCase__ )-1}''' ) if "attn.q" in key: UpperCamelCase__ : Dict = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: UpperCamelCase__ : Any = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: UpperCamelCase__ : List[Any] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: UpperCamelCase__ : int = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: UpperCamelCase__ : str = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: UpperCamelCase__ : List[str] = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: UpperCamelCase__ : Union[str, Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) UpperCamelCase__ : Optional[int] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase__ : str = key[key.find('''linear_c''' ) + len('''linear_c''' )] UpperCamelCase__ : Tuple = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(UpperCamelCase__ )-1}''' ) if "bot_conv" in key: UpperCamelCase__ : List[Any] = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: UpperCamelCase__ : str = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: UpperCamelCase__ : Tuple = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: UpperCamelCase__ : List[Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: UpperCamelCase__ : Tuple = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: UpperCamelCase__ : int = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: UpperCamelCase__ : List[str] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): UpperCamelCase__ : Tuple = key.replace('''module.last_layer_depth''' , '''head.head''' ) UpperCamelCase__ : List[str] = value return new_state_dict def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase__ : Optional[Any] = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.weight''' ) UpperCamelCase__ : int = state_dict.pop(f'''glpn.encoder.block.{i}.{j}.attention.self.kv.bias''' ) # next, add keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase__ : Tuple = kv_bias[: config.hidden_sizes[i]] UpperCamelCase__ : Tuple = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase__ : Optional[Any] = kv_bias[config.hidden_sizes[i] :] def SCREAMING_SNAKE_CASE_ ( ): UpperCamelCase__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Any = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) return image @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False , UpperCamelCase__=None ): UpperCamelCase__ : Any = GLPNConfig(hidden_sizes=[6_4, 1_2_8, 3_2_0, 5_1_2] , decoder_hidden_size=6_4 , depths=[3, 8, 2_7, 3] ) # load image processor (only resize + rescale) UpperCamelCase__ : str = GLPNImageProcessor() # prepare image UpperCamelCase__ : List[str] = prepare_img() UpperCamelCase__ : List[str] = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict UpperCamelCase__ : Tuple = torch.load(UpperCamelCase__ , map_location=torch.device('''cpu''' ) ) # rename keys UpperCamelCase__ : Optional[Any] = rename_keys(UpperCamelCase__ ) # key and value matrices need special treatment read_in_k_v(UpperCamelCase__ , UpperCamelCase__ ) # create HuggingFace model and load state dict UpperCamelCase__ : str = GLPNForDepthEstimation(UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # forward pass UpperCamelCase__ : Union[str, Any] = model(UpperCamelCase__ ) UpperCamelCase__ : Optional[int] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: UpperCamelCase__ : Tuple = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: UpperCamelCase__ : Union[str, Any] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(f'''Unknown model name: {model_name}''' ) UpperCamelCase__ : Optional[Any] = torch.Size([1, 4_8_0, 6_4_0] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCamelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCamelCase__ , ) if __name__ == "__main__": lowerCamelCase =argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) lowerCamelCase =parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
285
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : int = """sew-d""" def __init__( self: Dict , snake_case: List[Any]=32 , snake_case: str=768 , snake_case: Union[str, Any]=12 , snake_case: Tuple=12 , snake_case: Tuple=3_072 , snake_case: Any=2 , snake_case: List[Any]=512 , snake_case: int=256 , snake_case: Union[str, Any]=True , snake_case: Optional[int]=True , snake_case: Any=("p2c", "c2p") , snake_case: Any="layer_norm" , snake_case: List[str]="gelu_python" , snake_case: List[str]=0.1 , snake_case: str=0.1 , snake_case: List[Any]=0.1 , snake_case: Union[str, Any]=0.0 , snake_case: List[str]=0.1 , snake_case: List[str]=0.0_2 , snake_case: Optional[Any]=1E-7 , snake_case: Optional[int]=1E-5 , snake_case: Any="group" , snake_case: Union[str, Any]="gelu" , snake_case: Optional[Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case: str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case: Optional[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case: Optional[Any]=False , snake_case: List[Any]=128 , snake_case: Optional[Any]=16 , snake_case: Union[str, Any]=True , snake_case: Union[str, Any]=0.0_5 , snake_case: Optional[Any]=10 , snake_case: List[str]=2 , snake_case: Optional[Any]=0.0 , snake_case: List[Any]=10 , snake_case: Dict=0 , snake_case: Dict="mean" , snake_case: Optional[Any]=False , snake_case: Dict=False , snake_case: List[Any]=256 , snake_case: Any=0 , snake_case: Optional[Any]=1 , snake_case: Union[str, Any]=2 , **snake_case: Optional[Any] , ) -> int: super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) snake_case_ :str = hidden_size snake_case_ :Union[str, Any] = feat_extract_norm snake_case_ :Union[str, Any] = feat_extract_activation snake_case_ :List[Any] = list(snake_case ) snake_case_ :List[str] = list(snake_case ) snake_case_ :Dict = list(snake_case ) snake_case_ :Union[str, Any] = conv_bias snake_case_ :List[str] = num_conv_pos_embeddings snake_case_ :Union[str, Any] = num_conv_pos_embedding_groups snake_case_ :Union[str, Any] = len(self.conv_dim ) snake_case_ :List[Any] = num_hidden_layers snake_case_ :str = intermediate_size snake_case_ :Any = squeeze_factor snake_case_ :str = max_position_embeddings snake_case_ :Union[str, Any] = position_buckets snake_case_ :Union[str, Any] = share_att_key snake_case_ :Union[str, Any] = relative_attention snake_case_ :Tuple = norm_rel_ebd snake_case_ :Optional[int] = list(snake_case ) snake_case_ :Optional[Any] = hidden_act snake_case_ :Any = num_attention_heads snake_case_ :Optional[Any] = hidden_dropout snake_case_ :int = attention_dropout snake_case_ :int = activation_dropout snake_case_ :Dict = feat_proj_dropout snake_case_ :Optional[int] = final_dropout snake_case_ :Optional[Any] = layer_norm_eps snake_case_ :Tuple = feature_layer_norm_eps snake_case_ :List[Any] = initializer_range snake_case_ :Optional[int] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case_ :Tuple = apply_spec_augment snake_case_ :List[Any] = mask_time_prob snake_case_ :int = mask_time_length snake_case_ :Optional[Any] = mask_time_min_masks snake_case_ :List[str] = mask_feature_prob snake_case_ :Optional[int] = mask_feature_length snake_case_ :Optional[Any] = mask_feature_min_masks # ctc loss snake_case_ :List[Any] = ctc_loss_reduction snake_case_ :str = ctc_zero_infinity # sequence classification snake_case_ :str = use_weighted_layer_sum snake_case_ :Dict = classifier_proj_size @property def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[Any]: return functools.reduce(operator.mul , self.conv_stride , 1 )
310
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class lowerCamelCase : '''simple docstring''' def __init__( self: Any , snake_case: Dict=2 , snake_case: Union[str, Any]=3 , snake_case: Dict=64 , snake_case: Union[str, Any]=None ) -> Union[str, Any]: snake_case_ :List[Any] = np.random.default_rng(snake_case ) snake_case_ :Optional[Any] = length snake_case_ :str = rng.normal(size=(length,) ).astype(np.floataa ) snake_case_ :Optional[int] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self: Any ) -> Union[str, Any]: return self.length def __getitem__( self: Optional[int] , snake_case: Union[str, Any] ) -> Optional[Any]: return {"x": self.x[i], "y": self.y[i]} class lowerCamelCase ( torch.nn.Module ): '''simple docstring''' def __init__( self: int , snake_case: Optional[Any]=0 , snake_case: Tuple=0 , snake_case: List[Any]=False ) -> Optional[int]: super().__init__() snake_case_ :str = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case_ :Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case_ :Tuple = True def lowerCAmelCase_ ( self: Optional[Any] , snake_case: Optional[Any]=None ) -> List[str]: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case_ :Union[str, Any] = False return x * self.a[0] + self.b[0] class lowerCamelCase ( torch.nn.Module ): '''simple docstring''' def __init__( self: str , snake_case: List[Any]=0 , snake_case: Tuple=0 , snake_case: List[str]=False ) -> int: super().__init__() snake_case_ :int = torch.nn.Parameter(torch.tensor(snake_case ).float() ) snake_case_ :List[str] = torch.nn.Parameter(torch.tensor(snake_case ).float() ) snake_case_ :List[Any] = True def lowerCAmelCase_ ( self: Tuple , snake_case: Optional[int]=None ) -> Union[str, Any]: if self.first_batch: print(f"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case_ :List[str] = False return x * self.a + self.b def A_ ( _lowercase, _lowercase = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer snake_case_ :Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""" ) snake_case_ :Optional[int] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} snake_case_ :Union[str, Any] = load_dataset("""csv""", data_files=_lowercase ) snake_case_ :List[str] = datasets["""train"""].unique("""label""" ) snake_case_ :Any = {v: i for i, v in enumerate(_lowercase )} def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) snake_case_ :Dict = tokenizer( examples["""sentence1"""], examples["""sentence2"""], truncation=_lowercase, max_length=_lowercase, padding="""max_length""" ) if "label" in examples: snake_case_ :Union[str, Any] = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ :Any = datasets.map( _lowercase, batched=_lowercase, remove_columns=["""sentence1""", """sentence2""", """label"""], ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase, padding="""max_length""", max_length=128, return_tensors="""pt""" ) return tokenizer.pad(_lowercase, padding="""longest""", return_tensors="""pt""" ) # Instantiate dataloaders. snake_case_ :str = DataLoader(tokenized_datasets["""train"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=2 ) snake_case_ :Any = DataLoader(tokenized_datasets["""validation"""], shuffle=_lowercase, collate_fn=_lowercase, batch_size=1 ) return train_dataloader, eval_dataloader
310
1
'''simple docstring''' import collections import os import re from pathlib import Path __lowercase = '''src/transformers''' # Matches is_xxx_available() __lowercase = re.compile(R'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __lowercase = re.compile(R'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowercase = re.compile(R'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __lowercase = re.compile(R'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __lowercase = re.compile(R'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowercase = re.compile(R'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __lowercase = re.compile(R'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], __lowercase = re.compile(R'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __lowercase = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __lowercase = re.compile(R'''^\s*try:''') # Catches a line with else: __lowercase = re.compile(R'''^\s*else:''') def snake_case__ ( _A: str ) -> Dict: '''simple docstring''' if _re_test_backend.search(_A ) is None: return None lowerCAmelCase = [b[0] for b in _re_backend.findall(_A )] backends.sort() return "_and_".join(_A ) def snake_case__ ( _A: List[str] ) -> Dict: '''simple docstring''' with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCAmelCase = f.readlines() lowerCAmelCase = 0 while line_index < len(_A ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_A ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_A ): lowerCAmelCase = _re_one_line_import_struct.search(_A ).groups()[0] lowerCAmelCase = re.findall(r"""\[([^\]]+)\]""" , _A ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue lowerCAmelCase = _re_import_struct_key_value.search(_A ) if single_line_import_search is not None: lowerCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_A ) > 0] objects.extend(_A ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): lowerCAmelCase = lines[line_index] if _re_import_struct_add_one.search(_A ) is not None: objects.append(_re_import_struct_add_one.search(_A ).groups()[0] ) elif _re_import_struct_add_many.search(_A ) is not None: lowerCAmelCase = _re_import_struct_add_many.search(_A ).groups()[0].split(""", """ ) lowerCAmelCase = [obj[1:-1] for obj in imports if len(_A ) > 0] objects.extend(_A ) elif _re_between_brackets.search(_A ) is not None: lowerCAmelCase = _re_between_brackets.search(_A ).groups()[0].split(""", """ ) lowerCAmelCase = [obj[1:-1] for obj in imports if len(_A ) > 0] objects.extend(_A ) elif _re_quote_object.search(_A ) is not None: objects.append(_re_quote_object.search(_A ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase = [] while ( line_index < len(_A ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): lowerCAmelCase = lines[line_index] lowerCAmelCase = _re_import.search(_A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_A ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): lowerCAmelCase = lines[line_index] lowerCAmelCase = _re_import.search(_A ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case__ ( _A: int , _A: List[str] ) -> int: '''simple docstring''' def find_duplicates(_A: int ): return [k for k, v in collections.Counter(_A ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase = [] for key in import_dict_objects.keys(): lowerCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"Duplicate _import_structure definitions for: {duplicate_imports}" ) lowerCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase = """base imports""" if key == """none""" else f"{key} backend" errors.append(f"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f" {a} in _import_structure but not in TYPE_HINT." ) return errors def snake_case__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: lowerCAmelCase = os.path.join(_A , """__init__.py""" ) lowerCAmelCase = parse_init(_A ) if objects is not None: lowerCAmelCase = analyze_results(*_A ) if len(_A ) > 0: lowerCAmelCase = f"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(_A ) ) if len(_A ) > 0: raise ValueError("""\n\n""".join(_A ) ) def snake_case__ ( ) -> Tuple: '''simple docstring''' lowerCAmelCase = [] for path, directories, files in os.walk(_A ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_A ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_A ) / folder).glob("""*.py""" ) ) ) == 0: continue lowerCAmelCase = str((Path(_A ) / folder).relative_to(_A ) ) lowerCAmelCase = short_path.replace(os.path.sep , """.""" ) submodules.append(_A ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase = str((Path(_A ) / fname).relative_to(_A ) ) lowerCAmelCase = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_A ) return submodules __lowercase = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def snake_case__ ( ) -> List[Any]: '''simple docstring''' from transformers.utils import direct_transformers_import lowerCAmelCase = direct_transformers_import(_A ) lowerCAmelCase = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_A , """__init__.py""" ) , """r""" ) as f: lowerCAmelCase = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , _A ) ) ) lowerCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_A ) > 0: lowerCAmelCase = """\n""".join(f"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
370
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class a__( unittest.TestCase ): '''simple docstring''' def a_ ( self): """simple docstring""" lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] lowerCAmelCase = DisjunctiveConstraint(__lowerCAmelCase) self.assertTrue(isinstance(dc.token_ids , __lowerCAmelCase)) with self.assertRaises(__lowerCAmelCase): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]])) with self.assertRaises(__lowerCAmelCase): DisjunctiveConstraint([torch.LongTensor([1, 2, 4]), torch.LongTensor([1, 2, 3, 4, 5])]) def a_ ( self): """simple docstring""" lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__lowerCAmelCase): DisjunctiveConstraint(__lowerCAmelCase) # fails here def a_ ( self): """simple docstring""" lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] lowerCAmelCase = DisjunctiveConstraint(__lowerCAmelCase) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(1) lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowerCAmelCase) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(2) lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__lowerCAmelCase) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(3) lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__lowerCAmelCase) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3]) def a_ ( self): """simple docstring""" lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCAmelCase = DisjunctiveConstraint(__lowerCAmelCase) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1]) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2]) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(4) self.assertTrue(not dc.completed) self.assertTrue(dc.current_seq == [1, 2, 4]) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5]) dc.reset() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(1) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 3) self.assertTrue(dc.current_seq == [1]) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(2) self.assertTrue(not dc.completed) self.assertTrue(dc.remaining() == 2) self.assertTrue(dc.current_seq == [1, 2]) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = dc.update(5) self.assertTrue(dc.completed) # Completed! self.assertTrue(dc.remaining() == 0) self.assertTrue(dc.current_seq == [1, 2, 5])
370
1
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ = 6 ) -> None: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None self.create_linked_list(lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> None: SCREAMING_SNAKE_CASE = Node() SCREAMING_SNAKE_CASE = current_node SCREAMING_SNAKE_CASE = current_node SCREAMING_SNAKE_CASE = current_node for _ in range(1 , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE = Node() SCREAMING_SNAKE_CASE = current_node SCREAMING_SNAKE_CASE = previous_node SCREAMING_SNAKE_CASE = current_node SCREAMING_SNAKE_CASE = self.front SCREAMING_SNAKE_CASE = previous_node def __A ( self ) -> bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __A ( self ) -> Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __A ( self , lowerCAmelCase__ ) -> None: if self.rear is None: return self.check_is_full() if not self.is_empty(): SCREAMING_SNAKE_CASE = self.rear.next if self.rear: SCREAMING_SNAKE_CASE = data def __A ( self ) -> Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: SCREAMING_SNAKE_CASE = self.front.data SCREAMING_SNAKE_CASE = None return data SCREAMING_SNAKE_CASE = self.front SCREAMING_SNAKE_CASE = old_front.next SCREAMING_SNAKE_CASE = old_front.data SCREAMING_SNAKE_CASE = None return data def __A ( self ) -> None: if self.is_empty(): raise Exception('Empty Queue' ) def __A ( self ) -> None: if self.rear and self.rear.next == self.front: raise Exception('Full Queue' ) class lowerCAmelCase : '''simple docstring''' def __init__( self ) -> None: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
327
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" UpperCAmelCase = int(number**0.5 ) return number == sq * sq def __snake_case ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]: """simple docstring""" UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den UpperCAmelCase = x_den * y_den * z_den UpperCAmelCase = gcd(__lowerCamelCase , __lowerCamelCase ) top //= hcf bottom //= hcf return top, bottom def __snake_case ( SCREAMING_SNAKE_CASE_ : int = 35 ) -> str: """simple docstring""" UpperCAmelCase = set() UpperCAmelCase = 42 UpperCAmelCase = Fraction(0 ) UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 UpperCAmelCase = x_num * y_den + x_den * y_num UpperCAmelCase = x_den * y_den UpperCAmelCase = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): UpperCAmelCase = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=-1 UpperCAmelCase = x_num * y_num UpperCAmelCase = x_den * y_num + x_num * y_den UpperCAmelCase = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) # n=2 UpperCAmelCase = x_num * x_num * y_num * y_num UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(__lowerCamelCase ) and is_sq(__lowerCamelCase ): UpperCAmelCase = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase = int(sqrt(__lowerCamelCase ) ) UpperCAmelCase = gcd(__lowerCamelCase , __lowerCamelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: UpperCAmelCase = add_three( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) unique_s.add(__lowerCamelCase ) for num, den in unique_s: total += Fraction(__lowerCamelCase , __lowerCamelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"""{solution() = }""")
51
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) lowerCAmelCase : int ={ '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class a_ ( _lowerCAmelCase ): __A = "swin2sr" __A = { "hidden_size": "embed_dim", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[Any] , lowercase : Union[str, Any]=64 , lowercase : Optional[int]=1 , lowercase : List[Any]=3 , lowercase : Tuple=180 , lowercase : Optional[Any]=[6, 6, 6, 6, 6, 6] , lowercase : Optional[Any]=[6, 6, 6, 6, 6, 6] , lowercase : List[Any]=8 , lowercase : Union[str, Any]=2.0 , lowercase : List[Any]=True , lowercase : Optional[int]=0.0 , lowercase : List[Any]=0.0 , lowercase : Optional[int]=0.1 , lowercase : str="gelu" , lowercase : str=False , lowercase : Optional[Any]=0.02 , lowercase : List[Any]=1e-5 , lowercase : int=2 , lowercase : Union[str, Any]=1.0 , lowercase : List[Any]="1conv" , lowercase : Optional[int]="pixelshuffle" , **lowercase : Optional[int] , ): """simple docstring""" super().__init__(**lowercase ) lowercase_ :str = image_size lowercase_ :int = patch_size lowercase_ :Tuple = num_channels lowercase_ :str = embed_dim lowercase_ :int = depths lowercase_ :Tuple = len(lowercase ) lowercase_ :Tuple = num_heads lowercase_ :Any = window_size lowercase_ :List[str] = mlp_ratio lowercase_ :int = qkv_bias lowercase_ :int = hidden_dropout_prob lowercase_ :Optional[int] = attention_probs_dropout_prob lowercase_ :int = drop_path_rate lowercase_ :Tuple = hidden_act lowercase_ :Tuple = use_absolute_embeddings lowercase_ :int = layer_norm_eps lowercase_ :List[Any] = initializer_range lowercase_ :Tuple = upscale lowercase_ :Any = img_range lowercase_ :Optional[Any] = resi_connection lowercase_ :Optional[int] = upsampler
172
0
"""simple docstring""" from collections.abc import Sequence def __lowercase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : float ): '''simple docstring''' return sum(c * (x**i) for i, c in enumerate(lowerCamelCase_ ) ) def __lowercase ( lowerCamelCase_ : Sequence[float] , lowerCamelCase_ : float ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 0.0 for coeff in reversed(lowerCamelCase_ ): SCREAMING_SNAKE_CASE__ = result * x + coeff return result if __name__ == "__main__": _lowerCamelCase = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCamelCase = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
700
"""simple docstring""" import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _lowerCamelCase = datasets.logging.get_logger(__name__) _lowerCamelCase = '\\n@inproceedings{bleurt,\n title={BLEURT: Learning Robust Metrics for Text Generation},\n author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},\n booktitle={ACL},\n year={2020},\n url={https://arxiv.org/abs/2004.04696}\n}\n' _lowerCamelCase = '\\nBLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)\nand then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune\nit for your specific application (the latter is expected to perform better).\n\nSee the project\'s README at https://github.com/google-research/bleurt#readme for more information.\n' _lowerCamelCase = '\nBLEURT score.\n\nArgs:\n `predictions` (list of str): prediction/candidate sentences\n `references` (list of str): reference sentences\n `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.\n\nReturns:\n \'scores\': List of scores.\nExamples:\n\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> bleurt = datasets.load_metric("bleurt")\n >>> results = bleurt.compute(predictions=predictions, references=references)\n >>> print([round(v, 2) for v in results["scores"]])\n [1.03, 1.04]\n' _lowerCamelCase = { 'bleurt-tiny-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip', 'bleurt-tiny-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip', 'bleurt-base-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip', 'bleurt-base-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip', 'bleurt-large-128': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip', 'bleurt-large-512': 'https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip', 'BLEURT-20-D3': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip', 'BLEURT-20-D6': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip', 'BLEURT-20-D12': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip', 'BLEURT-20': 'https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase_ ( datasets.Metric ): """simple docstring""" def lowerCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): # check that config name specifies a valid BLEURT model if self.config_name == "default": logger.warning( "Using default BLEURT-Base checkpoint for sequence maximum length 128. " "You can use a bigger model for better results with e.g.: datasets.load_metric('bleurt', 'bleurt-large-512')." ) SCREAMING_SNAKE_CASE__ = "bleurt-base-128" if self.config_name.lower() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE__ = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: SCREAMING_SNAKE_CASE__ = self.config_name.upper() else: raise KeyError( f'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer SCREAMING_SNAKE_CASE__ = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) SCREAMING_SNAKE_CASE__ = score.BleurtScorer(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = self.scorer.score(references=UpperCAmelCase__ , candidates=UpperCAmelCase__ ) return {"scores": scores}
112
0
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ): '''simple docstring''' @register_to_config def __init__( self : Any , __lowerCamelCase : int = 128 , __lowerCamelCase : int = 256 , __lowerCamelCase : float = 2_000.0 , __lowerCamelCase : int = 768 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 2048 , __lowerCamelCase : float = 0.1 , ): super().__init__() SCREAMING_SNAKE_CASE = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(p=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaLayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(p=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ): SCREAMING_SNAKE_CASE = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def _snake_case ( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE = self.position_encoding(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings SCREAMING_SNAKE_CASE = self.dropout(__lowerCamelCase ) # decoder: No padding present. SCREAMING_SNAKE_CASE = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE = self.decoder_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.post_dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.spec_out(__lowerCamelCase ) return spec_out class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=1e-6 ): super().__init__() SCREAMING_SNAKE_CASE = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def _snake_case ( self : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , ): SCREAMING_SNAKE_CASE = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE = TaLayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) SCREAMING_SNAKE_CASE = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(__lowerCamelCase ) def _snake_case ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[Any]=None , ): # pre_self_attention_layer_norm SCREAMING_SNAKE_CASE = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block SCREAMING_SNAKE_CASE = self.attention(__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): super().__init__() SCREAMING_SNAKE_CASE = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(__lowerCamelCase ) def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=None , ): SCREAMING_SNAKE_CASE = self.layer_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ): super().__init__() SCREAMING_SNAKE_CASE = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) SCREAMING_SNAKE_CASE = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(__lowerCamelCase ) def _snake_case ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple=None ): SCREAMING_SNAKE_CASE = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE = self.film(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE = self.DenseReluDense(__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE = nn.Dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE = NewGELUActivation() def _snake_case ( self : str , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.act(self.wi_a(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = self.wi_a(__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE = self.dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE = self.wo(__lowerCamelCase ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=1e-6 ): super().__init__() SCREAMING_SNAKE_CASE = nn.Parameter(torch.ones(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE = eps def _snake_case ( self : List[str] , __lowerCamelCase : str ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 SCREAMING_SNAKE_CASE = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) SCREAMING_SNAKE_CASE = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def _snake_case ( self : str , __lowerCamelCase : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(__lowerCamelCase , 3.0 )) )) class _SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ): super().__init__() SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple ): SCREAMING_SNAKE_CASE = self.scale_bias(__lowerCamelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.chunk(__lowerCamelCase , 2 , -1 ) SCREAMING_SNAKE_CASE = x * (1 + scale) + shift return x
16
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: def count_of_possible_combinations(UpperCamelCase__ ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: def count_of_possible_combinations_with_dp_array( UpperCamelCase__ , UpperCamelCase__ ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowerCamelCase = sum( count_of_possible_combinations_with_dp_array(target - item , UpperCamelCase__ ) for item in array ) __lowerCamelCase = answer return answer __lowerCamelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(UpperCamelCase__ , UpperCamelCase__ ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: __lowerCamelCase = [0] * (target + 1) __lowerCamelCase = 1 for i in range(1 , target + 1 ): for j in range(UpperCamelCase__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase =3 __UpperCAmelCase =5 __UpperCAmelCase =[1, 2, 5] print(combination_sum_iv(n, array, target))
546
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCamelCase__ : List[str] = TypeVar('''T''') class lowerCamelCase_ ( Generic[T] ): def __init__( self : Any , _A : T ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = data UpperCAmelCase__ : Node[T] | None = None def __str__( self : str ): '''simple docstring''' return f"""{self.data}""" class lowerCamelCase_ ( Generic[T] ): def __init__( self : Any ): '''simple docstring''' UpperCAmelCase__ : Node[T] | None = None def __iter__( self : str ): '''simple docstring''' UpperCAmelCase__ : str = self.top while node: yield node.data UpperCAmelCase__ : int = node.next def __str__( self : Optional[int] ): '''simple docstring''' return "->".join([str(_A ) for item in self] ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(tuple(iter(self ) ) ) def lowercase_ ( self : List[str] ): '''simple docstring''' return self.top is None def lowercase_ ( self : Union[str, Any] , _A : T ): '''simple docstring''' UpperCAmelCase__ : Tuple = Node(_A ) if not self.is_empty(): UpperCAmelCase__ : int = self.top UpperCAmelCase__ : List[Any] = node def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' if self.is_empty(): raise IndexError('''pop from empty stack''' ) assert isinstance(self.top , _A ) UpperCAmelCase__ : Optional[int] = self.top UpperCAmelCase__ : List[Any] = self.top.next return pop_node.data def lowercase_ ( self : Optional[int] ): '''simple docstring''' if self.is_empty(): raise IndexError('''peek from empty stack''' ) assert self.top is not None return self.top.data def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = None if __name__ == "__main__": from doctest import testmod testmod()
708
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : Optional[Any] = args.pruning_method UpperCAmelCase__ : List[str] = args.threshold UpperCAmelCase__ : str = args.model_name_or_path.rstrip('''/''' ) UpperCAmelCase__ : List[str] = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) UpperCAmelCase__ : str = torch.load(os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) ) UpperCAmelCase__ : Optional[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: UpperCAmelCase__ : Dict = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: UpperCAmelCase__ : Union[str, Any] = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: UpperCAmelCase__ : Dict = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": UpperCAmelCase__ : str = MagnitudeBinarizer.apply(inputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue UpperCAmelCase__ : Optional[Any] = name[:-6] UpperCAmelCase__ : Tuple = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ : Optional[Any] = TopKBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Any = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue UpperCAmelCase__ : Dict = name[:-6] UpperCAmelCase__ : Union[str, Any] = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ : Optional[Any] = ThresholdBinarizer.apply(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue UpperCAmelCase__ : int = name[:-6] UpperCAmelCase__ : Dict = model[F"""{prefix_}mask_scores"""] UpperCAmelCase__ , UpperCAmelCase__ : Any = -0.1, 1.1 UpperCAmelCase__ : List[str] = torch.sigmoid(lowerCAmelCase__ ) UpperCAmelCase__ : Any = s * (r - l) + l UpperCAmelCase__ : Tuple = s_bar.clamp(min=0.0 , max=1.0 ) UpperCAmelCase__ : Union[str, Any] = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('''Unknown pruning method''' ) if target_model_path is None: UpperCAmelCase__ : List[str] = os.path.join( os.path.dirname(lowerCAmelCase__ ) , F"""bertarized_{os.path.basename(lowerCAmelCase__ )}""" ) if not os.path.isdir(lowerCAmelCase__ ): shutil.copytree(lowerCAmelCase__ , lowerCAmelCase__ ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , '''pytorch_model.bin''' ) ) print('''\nPruned model saved! See you later!''' ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) UpperCamelCase__ = parser.parse_args() main(args)
312
0
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __magic_name__ : int = 16 __magic_name__ : List[str] = 32 def a_ ( __lowerCAmelCase , __lowerCAmelCase = 16 ): lowerCAmelCase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase__ = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__lowerCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowercase_ , max_length=lowercase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( lowercase_ , batched=lowercase_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__lowerCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( lowercase_ , padding='''longest''' , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ , drop_last=lowercase_ ) lowerCAmelCase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowercase_ , collate_fn=lowercase_ , batch_size=lowercase_ , drop_last=(accelerator.mixed_precision == '''fp8''') , ) return train_dataloader, eval_dataloader def a_ ( __lowerCAmelCase , __lowerCAmelCase ): # Initialize accelerator lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config["""lr"""] lowerCAmelCase__ = int(config['''num_epochs'''] ) lowerCAmelCase__ = int(config['''seed'''] ) lowerCAmelCase__ = int(config['''batch_size'''] ) lowerCAmelCase__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(lowercase_ ) lowerCAmelCase__ = get_dataloaders(lowercase_ , lowercase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowercase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=lowercase_ ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=lowercase_ , num_warmup_steps=1_00 , num_training_steps=(len(lowercase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ = accelerator.prepare( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) # Now we train the model for epoch in range(lowercase_ ): model.train() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**lowercase_ ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(lowercase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**lowercase_ ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowercase_ , references=lowercase_ , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , lowercase_ ) def a_ ( ): lowerCAmelCase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowercase_ , default=lowercase_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowercase_ , lowercase_ ) if __name__ == "__main__": main()
615
import collections import os import re from pathlib import Path A_ : List[str] = 'src/transformers' # Matches is_xxx_available() A_ : Any = re.compile(r'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} A_ : Optional[int] = re.compile(r'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] A_ : Dict = re.compile(r'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available A_ : Dict = re.compile(r'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") A_ : Tuple = re.compile(r'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] A_ : List[Any] = re.compile(r'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", A_ : Dict = re.compile(r'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], A_ : Tuple = re.compile(r'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo A_ : Union[str, Any] = re.compile(r'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: A_ : Any = re.compile(r'^\s*try:') # Catches a line with else: A_ : Optional[Any] = re.compile(r'^\s*else:') def UpperCamelCase (lowercase_: Optional[Any] ) -> Any: if _re_test_backend.search(lowercase_ ) is None: return None A__ : Optional[int] = [b[0] for b in _re_backend.findall(lowercase_ )] backends.sort() return "_and_".join(lowercase_ ) def UpperCamelCase (lowercase_: Any ) -> Dict: with open(lowercase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: A__ : Optional[Any] = f.readlines() A__ : Optional[Any] = 0 while line_index < len(lowercase_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(lowercase_ ): return None # First grab the objects without a specific backend in _import_structure A__ : List[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: A__ : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(lowercase_ ): A__ : str = _re_one_line_import_struct.search(lowercase_ ).groups()[0] A__ : Union[str, Any] = re.findall(r"""\[([^\]]+)\]""" , lowercase_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue A__ : int = _re_import_struct_key_value.search(lowercase_ ) if single_line_import_search is not None: A__ : int = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 A__ : str = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. A__ : Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): A__ : Any = lines[line_index] if _re_import_struct_add_one.search(lowercase_ ) is not None: objects.append(_re_import_struct_add_one.search(lowercase_ ).groups()[0] ) elif _re_import_struct_add_many.search(lowercase_ ) is not None: A__ : Any = _re_import_struct_add_many.search(lowercase_ ).groups()[0].split(""", """ ) A__ : int = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_between_brackets.search(lowercase_ ) is not None: A__ : Any = _re_between_brackets.search(lowercase_ ).groups()[0].split(""", """ ) A__ : Any = [obj[1:-1] for obj in imports if len(lowercase_ ) > 0] objects.extend(lowercase_ ) elif _re_quote_object.search(lowercase_ ) is not None: objects.append(_re_quote_object.search(lowercase_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 A__ : List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend A__ : Any = [] while ( line_index < len(lowercase_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): A__ : Dict = lines[line_index] A__ : Any = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 A__ : List[str] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(lowercase_ ): # If the line is an if is_backend_available, we grab all objects associated. A__ : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: A__ : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 A__ : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): A__ : Union[str, Any] = lines[line_index] A__ : List[str] = _re_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 A__ : Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCamelCase (lowercase_: Optional[Any] , lowercase_: Union[str, Any] ) -> List[Any]: def find_duplicates(lowercase_: Tuple ): return [k for k, v in collections.Counter(lowercase_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] A__ : str = [] for key in import_dict_objects.keys(): A__ : Optional[int] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) A__ : Tuple = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): A__ : Tuple = """base imports""" if key == """none""" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def UpperCamelCase () -> str: A__ : str = [] for root, _, files in os.walk(lowercase_ ): if "__init__.py" in files: A__ : Tuple = os.path.join(lowercase_ , """__init__.py""" ) A__ : Union[str, Any] = parse_init(lowercase_ ) if objects is not None: A__ : List[Any] = analyze_results(*lowercase_ ) if len(lowercase_ ) > 0: A__ : int = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("""\n""".join(lowercase_ ) ) if len(lowercase_ ) > 0: raise ValueError("""\n\n""".join(lowercase_ ) ) def UpperCamelCase () -> Dict: A__ : int = [] for path, directories, files in os.walk(lowercase_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(lowercase_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(lowercase_ ) / folder).glob("""*.py""" ) ) ) == 0: continue A__ : Union[str, Any] = str((Path(lowercase_ ) / folder).relative_to(lowercase_ ) ) A__ : List[str] = short_path.replace(os.path.sep , """.""" ) submodules.append(lowercase_ ) for fname in files: if fname == "__init__.py": continue A__ : Any = str((Path(lowercase_ ) / fname).relative_to(lowercase_ ) ) A__ : Union[str, Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(lowercase_ ) return submodules A_ : str = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def UpperCamelCase () -> str: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import A__ : Any = direct_transformers_import(lowercase_ ) A__ : List[str] = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(lowercase_ , """__init__.py""" ) , """r""" ) as f: A__ : str = f.read() import_structure_keys.update(set(re.findall(r"""import_structure\[\"([^\"]*)\"\]""" , lowercase_ ) ) ) A__ : Union[str, Any] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(lowercase_ ) > 0: A__ : Dict = """\n""".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" f"""{list_of_modules}\n""" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
456
0
import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def _snake_case ( *snake_case , **snake_case ) -> int: """simple docstring""" pass def _A ( lowerCamelCase ): a__ : int = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _A ( lowerCamelCase ): a__ : int = np.array(lowerCamelCase ) a__ : List[str] = npimg.shape return {"hash": hashimage(lowerCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class __lowerCAmelCase ( unittest.TestCase ): _UpperCamelCase : Dict = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) _UpperCamelCase : Dict = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def _snake_case ( self , snake_case , snake_case , snake_case ) -> Union[str, Any]: """simple docstring""" a__ : Dict = MaskGenerationPipeline(model=snake_case , image_processor=snake_case ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _snake_case ( self , snake_case , snake_case ) -> List[str]: """simple docstring""" pass @require_tf @unittest.skip("Image segmentation not implemented in TF" ) def _snake_case ( self ) -> List[str]: """simple docstring""" pass @slow @require_torch def _snake_case ( self ) -> Any: """simple docstring""" a__ : Optional[int] = pipeline("mask-generation" , model="facebook/sam-vit-huge" ) a__ : Dict = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg" , points_per_batch=256 ) # Shortening by hashing a__ : Dict = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.021}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_053}, {"mask": {"hash": "e2d0b7a0b7", "shape": (480, 640)}, "scores": 0.9_967}, {"mask": {"hash": "453c7844bd", "shape": (480, 640)}, "scores": 0.993}, {"mask": {"hash": "3d44f2926d", "shape": (480, 640)}, "scores": 0.9_909}, {"mask": {"hash": "64033ddc3f", "shape": (480, 640)}, "scores": 0.9_879}, {"mask": {"hash": "801064ff79", "shape": (480, 640)}, "scores": 0.9_834}, {"mask": {"hash": "6172f276ef", "shape": (480, 640)}, "scores": 0.9_716}, {"mask": {"hash": "b49e60e084", "shape": (480, 640)}, "scores": 0.9_612}, {"mask": {"hash": "a811e775fd", "shape": (480, 640)}, "scores": 0.9_599}, {"mask": {"hash": "a6a8ebcf4b", "shape": (480, 640)}, "scores": 0.9_552}, {"mask": {"hash": "9d8257e080", "shape": (480, 640)}, "scores": 0.9_532}, {"mask": {"hash": "32de6454a8", "shape": (480, 640)}, "scores": 0.9_516}, {"mask": {"hash": "af3d4af2c8", "shape": (480, 640)}, "scores": 0.9_499}, {"mask": {"hash": "3c6db475fb", "shape": (480, 640)}, "scores": 0.9_483}, {"mask": {"hash": "c290813fb9", "shape": (480, 640)}, "scores": 0.9_464}, {"mask": {"hash": "b6f0b8f606", "shape": (480, 640)}, "scores": 0.943}, {"mask": {"hash": "92ce16bfdf", "shape": (480, 640)}, "scores": 0.943}, {"mask": {"hash": "c749b25868", "shape": (480, 640)}, "scores": 0.9_408}, {"mask": {"hash": "efb6cab859", "shape": (480, 640)}, "scores": 0.9_335}, {"mask": {"hash": "1ff2eafb30", "shape": (480, 640)}, "scores": 0.9_326}, {"mask": {"hash": "788b798e24", "shape": (480, 640)}, "scores": 0.9_262}, {"mask": {"hash": "abea804f0e", "shape": (480, 640)}, "scores": 0.8_999}, {"mask": {"hash": "7b9e8ddb73", "shape": (480, 640)}, "scores": 0.8_986}, {"mask": {"hash": "cd24047c8a", "shape": (480, 640)}, "scores": 0.8_984}, {"mask": {"hash": "6943e6bcbd", "shape": (480, 640)}, "scores": 0.8_873}, {"mask": {"hash": "b5f47c9191", "shape": (480, 640)}, "scores": 0.8_871} ] , ) # fmt: on @require_torch @slow def _snake_case ( self ) -> Dict: """simple docstring""" a__ : Any = "facebook/sam-vit-huge" a__ : List[Any] = pipeline("mask-generation" , model=snake_case ) a__ : Dict = image_segmenter( "http://images.cocodataset.org/val2017/000000039769.jpg" , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing a__ : str = [] for i, o in enumerate(outputs["masks"] ): new_outupt += [{"mask": mask_to_test_readable(snake_case ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {"mask": {"hash": "115ad19f5f", "shape": (480, 640)}, "scores": 1.0_444}, {"mask": {"hash": "6affa964c6", "shape": (480, 640)}, "scores": 1.0_210}, {"mask": {"hash": "dfe28a0388", "shape": (480, 640)}, "scores": 1.0_167}, {"mask": {"hash": "c0a5f4a318", "shape": (480, 640)}, "scores": 1.0_132}, {"mask": {"hash": "fe8065c197", "shape": (480, 640)}, "scores": 1.0_053}, ] , )
629
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Any = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Optional[int] = """mobilenet_v2""" def __init__( self , snake_case=3 , snake_case=224 , snake_case=1.0 , snake_case=8 , snake_case=8 , snake_case=6 , snake_case=32 , snake_case=True , snake_case=True , snake_case="relu6" , snake_case=True , snake_case=0.8 , snake_case=0.02 , snake_case=0.001 , snake_case=255 , **snake_case , ) -> int: """simple docstring""" super().__init__(**snake_case ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) a__ : str = num_channels a__ : Dict = image_size a__ : Any = depth_multiplier a__ : str = depth_divisible_by a__ : Optional[int] = min_depth a__ : Dict = expand_ratio a__ : str = output_stride a__ : Optional[int] = first_layer_is_expansion a__ : Union[str, Any] = finegrained_output a__ : Union[str, Any] = hidden_act a__ : str = tf_padding a__ : List[Any] = classifier_dropout_prob a__ : List[Any] = initializer_range a__ : Optional[Any] = layer_norm_eps a__ : str = semantic_loss_ignore_index class __lowerCAmelCase ( _UpperCamelCase ): _UpperCamelCase : Any = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _snake_case ( self ) -> float: """simple docstring""" return 1E-4
629
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE :Union[str, Any] = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[Any] = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE :Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
283
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = DownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' def lowerCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" snake_case_ = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ResnetDownsampleBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' def lowerCAmelCase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" snake_case_ = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' def lowerCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case_ = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = CrossAttnDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' def lowerCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" snake_case_ = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SimpleCrossAttnDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" snake_case_ = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SkipDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_skip_sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] ) -> int: """simple docstring""" snake_case_ = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnSkipDownBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : Any ) -> Dict: """simple docstring""" return super().get_dummy_input(include_skip_sample=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" snake_case_ = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = DownEncoderBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case_ = { "in_channels": 3_2, "out_channels": 3_2, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" snake_case_ = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnDownEncoderBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'down' @property def lowerCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase__ ( self : int ) -> Dict: """simple docstring""" snake_case_ = { "in_channels": 3_2, "out_channels": 3_2, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" snake_case_ = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetMidBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'mid' def lowerCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" snake_case_ = { "in_channels": 3_2, "temb_channels": 1_2_8, } snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case_ = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetMidBlockaDCrossAttn # noqa F405 _SCREAMING_SNAKE_CASE = 'mid' def lowerCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" snake_case_ = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UNetMidBlockaDSimpleCrossAttn # noqa F405 _SCREAMING_SNAKE_CASE = 'mid' @property def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case_ = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : str ) -> Any: """simple docstring""" snake_case_ = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = ResnetUpsampleBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : str ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" snake_case_ = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = CrossAttnUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : List[str] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case_ = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SimpleCrossAttnUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase , include_encoder_hidden_states=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple ) -> Any: """simple docstring""" snake_case_ , snake_case_ = super().prepare_init_args_and_inputs_for_common() snake_case_ = 3_2 return init_dict, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" snake_case_ = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) @unittest.skipIf(torch_device == "mps" , "MPS result is not consistent" ) def lowerCAmelCase__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" snake_case_ = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = SkipUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" snake_case_ = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnSkipUpBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" snake_case_ = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = UpDecoderBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase__ ( self : Any ) -> Any: """simple docstring""" snake_case_ = {"in_channels": 3_2, "out_channels": 3_2} snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" snake_case_ = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(_lowerCAmelCase ) class __lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = AttnUpDecoderBlockaD # noqa F405 _SCREAMING_SNAKE_CASE = 'up' @property def lowerCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_temb=_lowerCAmelCase ) def lowerCAmelCase__ ( self : int ) -> Dict: """simple docstring""" snake_case_ = {"in_channels": 3_2, "out_channels": 3_2} snake_case_ = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case_ = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(_lowerCAmelCase )
283
1
"""simple docstring""" def lowercase ( __UpperCamelCase ) -> int: if not grid or not grid[0]: raise TypeError('''The grid does not contain the appropriate information''' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __magic_name__ = grid[0] for row_n in range(1 , len(__UpperCamelCase ) ): __magic_name__ = grid[row_n] __magic_name__ = fill_row(__UpperCamelCase , __UpperCamelCase ) __magic_name__ = grid[row_n] return grid[-1][-1] def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(__UpperCamelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __lowerCamelCase = "hf-internal-testing/tiny-random-bert" __lowerCamelCase = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __lowerCamelCase = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class _lowercase ( unittest.TestCase ): def lowerCAmelCase__ ( self ): __magic_name__ = cached_file(UpperCamelCase_ , UpperCamelCase_ ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(UpperCamelCase_ ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) ) with open(os.path.join(UpperCamelCase_ , '''refs''' , '''main''' ) ) as f: __magic_name__ = f.read() self.assertEqual(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''snapshots''' , UpperCamelCase_ , UpperCamelCase_ ) ) self.assertTrue(os.path.isfile(UpperCamelCase_ ) ) # File is cached at the same place the second time. __magic_name__ = cached_file(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) # Using a specific revision to test the full commit hash. __magic_name__ = cached_file(UpperCamelCase_ , UpperCamelCase_ , revision='''9b8c223''' ) self.assertEqual(UpperCamelCase_ , os.path.join(UpperCamelCase_ , '''snapshots''' , UpperCamelCase_ , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self ): with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid model identifier''' ): __magic_name__ = cached_file('''tiny-random-bert''' , UpperCamelCase_ ) with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid git identifier''' ): __magic_name__ = cached_file(UpperCamelCase_ , UpperCamelCase_ , revision='''aaaa''' ) with self.assertRaisesRegex(UpperCamelCase_ , '''does not appear to have a file named''' ): __magic_name__ = cached_file(UpperCamelCase_ , '''conf''' ) def lowerCAmelCase__ ( self ): with self.assertRaisesRegex(UpperCamelCase_ , '''does not appear to have a file named''' ): __magic_name__ = cached_file(UpperCamelCase_ , '''conf''' ) with open(os.path.join(UpperCamelCase_ , '''refs''' , '''main''' ) ) as f: __magic_name__ = f.read() self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase_ , '''.no_exist''' , UpperCamelCase_ , '''conf''' ) ) ) __magic_name__ = cached_file(UpperCamelCase_ , '''conf''' , _raise_exceptions_for_missing_entries=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) __magic_name__ = cached_file(UpperCamelCase_ , '''conf''' , local_files_only=UpperCamelCase_ , _raise_exceptions_for_missing_entries=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) __magic_name__ = mock.Mock() __magic_name__ = 500 __magic_name__ = {} __magic_name__ = HTTPError __magic_name__ = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=UpperCamelCase_ ) as mock_head: __magic_name__ = cached_file(UpperCamelCase_ , '''conf''' , _raise_exceptions_for_connection_errors=UpperCamelCase_ ) self.assertIsNone(UpperCamelCase_ ) # This check we did call the fake head request mock_head.assert_called() def lowerCAmelCase__ ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , UpperCamelCase_ ) ) def lowerCAmelCase__ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , UpperCamelCase_ ) # The function raises if the revision does not exist. with self.assertRaisesRegex(UpperCamelCase_ , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , UpperCamelCase_ , revision='''ahaha''' ) __magic_name__ = get_file_from_repo('''bert-base-cased''' , UpperCamelCase_ ) # The name is the cached name which is not very easy to test, so instead we load the content. __magic_name__ = json.loads(open(UpperCamelCase_ , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 768 ) def lowerCAmelCase__ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: __magic_name__ = Path(UpperCamelCase_ ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(UpperCamelCase_ , '''a.txt''' ) , str(UpperCamelCase_ ) ) self.assertIsNone(get_file_from_repo(UpperCamelCase_ , '''b.txt''' ) )
190
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class a : def __init__( self , _snake_case , _snake_case=13 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=2 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=16 , _snake_case=2 , _snake_case=0.02 , _snake_case=3 , _snake_case=4 , _snake_case=None , _snake_case=10_00 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope lowerCAmelCase = range_bbox def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: lowerCAmelCase = bbox[i, j, 3] lowerCAmelCase = bbox[i, j, 1] lowerCAmelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: lowerCAmelCase = bbox[i, j, 2] lowerCAmelCase = bbox[i, j, 0] lowerCAmelCase = t lowerCAmelCase = tf.convert_to_tensor(_snake_case ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , token_type_ids=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForMaskedLM(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForSequenceClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = self.num_labels lowerCAmelCase = TFLayoutLMForTokenClassification(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering(config=_snake_case ) lowerCAmelCase = model(_snake_case , _snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) ,( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class a ( a__ , a__ , unittest.TestCase ): snake_case__ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) snake_case__ = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) snake_case__ = False snake_case__ = True snake_case__ = 1_0 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=_snake_case , hidden_size=37 ) def UpperCamelCase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase = TFLayoutLMModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def UpperCamelCase__ ( self ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE (): # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off lowerCAmelCase = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 lowerCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) lowerCAmelCase = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class a ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the sequence output on [0, :3, :3] lowerCAmelCase = tf.convert_to_tensor( [[0.1_785, -0.1_947, -0.0_425], [-0.3_254, -0.2_807, 0.2_553], [-0.5_391, -0.3_322, 0.3_364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _snake_case , atol=1E-3 ) ) # test the pooled output on [1, :3] lowerCAmelCase = tf.convert_to_tensor([-0.6_580, -0.0_214, 0.8_552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _snake_case , atol=1E-3 ) ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar lowerCAmelCase = outputs.loss lowerCAmelCase = (2,) self.assertEqual(loss.shape , _snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = (2, 2) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model( input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case , labels=_snake_case ) # test the shape of the logits lowerCAmelCase = outputs.logits lowerCAmelCase = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _snake_case ) @slow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = prepare_layoutlm_batch_inputs() # forward pass lowerCAmelCase = model(input_ids=_snake_case , bbox=_snake_case , attention_mask=_snake_case , token_type_ids=_snake_case ) # test the shape of the logits lowerCAmelCase = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _snake_case ) self.assertEqual(outputs.end_logits.shape , _snake_case )
4
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a ( a__ , unittest.TestCase ): snake_case__ = DanceDiffusionPipeline snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } snake_case__ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS snake_case__ = False snake_case__ = False def UpperCamelCase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=_snake_case , use_timestep_embedding=_snake_case , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) lowerCAmelCase = IPNDMScheduler() lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, } return components def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = DanceDiffusionPipeline(**_snake_case ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = self.get_dummy_inputs(_snake_case ) lowerCAmelCase = pipe(**_snake_case ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowerCAmelCase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_local() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def UpperCamelCase__ ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() def UpperCamelCase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class a ( unittest.TestCase ): def UpperCamelCase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = torch_device lowerCAmelCase = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) lowerCAmelCase = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = pipe(generator=_snake_case , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowerCAmelCase = output.audios lowerCAmelCase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowerCAmelCase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Dict = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] SCREAMING_SNAKE_CASE__ : Dict = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :Union[str, Any] = torch.load(lowerCAmelCase_, map_location='''cpu''' ) return sd def __lowercase ( snake_case, snake_case, snake_case=rename_keys_prefix ): """simple docstring""" __magic_name__ :Union[str, Any] = OrderedDict() __magic_name__ :Tuple = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __magic_name__ :Dict = key for name_pair in rename_keys_prefix: __magic_name__ :Optional[Any] = new_key.replace(name_pair[0], name_pair[1] ) __magic_name__ :List[str] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __magic_name__ :Dict = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def __lowercase ( snake_case, snake_case ): """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: __magic_name__ :str = '''pretraining''' if "vcr" in checkpoint_path: __magic_name__ :List[str] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: __magic_name__ :Optional[int] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: __magic_name__ :Tuple = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: __magic_name__ :Dict = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: __magic_name__ :str = {'''visual_embedding_dim''': 5_1_2} __magic_name__ :Optional[int] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: __magic_name__ :int = {'''visual_embedding_dim''': 2_0_4_8} __magic_name__ :Dict = '''vqa_advanced''' elif "vqa" in checkpoint_path: __magic_name__ :Optional[int] = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} __magic_name__ :Dict = '''vqa''' elif "nlvr" in checkpoint_path: __magic_name__ :int = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } __magic_name__ :Optional[Any] = '''nlvr''' __magic_name__ :str = VisualBertConfig(**lowerCAmelCase_ ) # Load State Dict __magic_name__ :Union[str, Any] = load_state_dict(lowerCAmelCase_ ) __magic_name__ :Tuple = get_new_dict(lowerCAmelCase_, lowerCAmelCase_ ) if model_type == "pretraining": __magic_name__ :List[str] = VisualBertForPreTraining(lowerCAmelCase_ ) elif model_type == "vqa": __magic_name__ :Union[str, Any] = VisualBertForQuestionAnswering(lowerCAmelCase_ ) elif model_type == "nlvr": __magic_name__ :Optional[Any] = VisualBertForVisualReasoning(lowerCAmelCase_ ) elif model_type == "multichoice": __magic_name__ :Optional[int] = VisualBertForMultipleChoice(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) # Save Checkpoints Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE__ : int = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
703
from ...processing_utils import ProcessorMixin class lowerCamelCase_ ( lowerCamelCase ): a__ = '''WhisperFeatureExtractor''' a__ = '''WhisperTokenizer''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :int = self.feature_extractor __magic_name__ :int = False def A ( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=__lowerCAmelCase , language=__lowerCAmelCase , no_timestamps=__lowerCAmelCase ) def __call__( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__lowerCAmelCase , **__lowerCAmelCase ) __magic_name__ :List[Any] = kwargs.pop('''audio''' , __lowerCAmelCase ) __magic_name__ :Any = kwargs.pop('''sampling_rate''' , __lowerCAmelCase ) __magic_name__ :str = kwargs.pop('''text''' , __lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: __magic_name__ :Any = args[0] __magic_name__ :Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __magic_name__ :Optional[int] = self.feature_extractor(__lowerCAmelCase , *__lowerCAmelCase , sampling_rate=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None: __magic_name__ :Optional[int] = self.tokenizer(__lowerCAmelCase , **__lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: __magic_name__ :str = encodings['''input_ids'''] return inputs def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , __lowerCAmelCase , __lowerCAmelCase="np" ): """simple docstring""" return self.tokenizer.get_prompt_ids(__lowerCAmelCase , return_tensors=__lowerCAmelCase )
180
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = ['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
95
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ (__A ): def __init__( self : List[Any] , lowerCAmelCase_ : TransformeraDModel , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : KarrasDiffusionSchedulers , lowerCAmelCase_ : Optional[Dict[int, str]] = None , ) -> List[Any]: super().__init__() self.register_modules(transformer=lowerCAmelCase_ , vae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) # create a imagenet -> id dictionary for easier use UpperCAmelCase_ : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCAmelCase_ : Union[str, Any] = int(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = dict(sorted(self.labels.items() ) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, List[str]] ) -> List[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : str = list(lowerCAmelCase_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase_ ) UpperCAmelCase_ : int = self.transformer.config.sample_size UpperCAmelCase_ : Optional[Any] = self.transformer.config.in_channels UpperCAmelCase_ : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase_ : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase_ : List[Any] = torch.tensor(lowerCAmelCase_ , device=self.device ).reshape(-1 ) UpperCAmelCase_ : Optional[Any] = torch.tensor([1_000] * batch_size , device=self.device ) UpperCAmelCase_ : int = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase_ : Optional[Any] = latent_model_input[: len(lowerCAmelCase_ ) // 2] UpperCAmelCase_ : int = torch.cat([half, half] , dim=0 ) UpperCAmelCase_ : Optional[int] = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = t if not torch.is_tensor(lowerCAmelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase_ : List[Any] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase_ : int = torch.intaa if is_mps else torch.intaa UpperCAmelCase_ : Optional[int] = torch.tensor([timesteps] , dtype=lowerCAmelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase_ : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase_ : List[Any] = self.transformer( lowerCAmelCase_ , timestep=lowerCAmelCase_ , class_labels=lowerCAmelCase_ ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.split(lowerCAmelCase_ , len(lowerCAmelCase_ ) // 2 , dim=0 ) UpperCAmelCase_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase_ : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = torch.split(lowerCAmelCase_ , lowerCAmelCase_ , dim=1 ) else: UpperCAmelCase_ : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase_ : Optional[int] = latent_model_input UpperCAmelCase_ : Dict = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase_ : Dict = self.vae.decode(lowerCAmelCase_ ).sample UpperCAmelCase_ : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase_ )
95
1
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=True , lowercase_="pt" ) -> Any: '''simple docstring''' snake_case_ = {"""add_prefix_space""": True} if isinstance(lowercase_ , lowercase_ ) and not line.startswith(""" """ ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=lowercase_ , padding="""max_length""" if pad_to_max_length else None , truncation=lowercase_ , return_tensors=lowercase_ , add_special_tokens=lowercase_ , **lowercase_ , ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=None , ) -> List[Any]: '''simple docstring''' snake_case_ = input_ids.ne(lowercase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCamelCase ( __snake_case ): def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase="train" , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase="" , ) -> Optional[int]: super().__init__() snake_case_ = Path(lowerCamelCase ).joinpath(type_path + """.source""" ) snake_case_ = Path(lowerCamelCase ).joinpath(type_path + """.target""" ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, f'''found empty line in {self.src_file}''' snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self ) -> Any: return len(self.src_lens ) def __getitem__( self , lowerCamelCase ) -> Dict[str, torch.Tensor]: snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase ).rstrip("""\n""" ) snake_case_ = linecache.getline(str(self.tgt_file ) , lowerCamelCase ).rstrip("""\n""" ) assert source_line, f'''empty source line for index {index}''' assert tgt_line, f'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer snake_case_ = encode_line(lowerCamelCase , lowerCamelCase , self.max_source_length , """right""" ) snake_case_ = encode_line(lowerCamelCase , lowerCamelCase , self.max_target_length , """right""" ) snake_case_ = source_inputs["""input_ids"""].squeeze() snake_case_ = target_inputs["""input_ids"""].squeeze() snake_case_ = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase_ ( lowerCamelCase ) -> Dict: return [len(lowerCamelCase ) for x in Path(lowerCamelCase ).open().readlines()] def lowerCAmelCase_ ( self , lowerCamelCase ) -> Dict[str, torch.Tensor]: snake_case_ = torch.stack([x["""input_ids"""] for x in batch] ) snake_case_ = torch.stack([x["""attention_mask"""] for x in batch] ) snake_case_ = torch.stack([x["""decoder_input_ids"""] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(lowerCamelCase , lowerCamelCase ) snake_case_ , snake_case_ = trim_batch(lowerCamelCase , lowerCamelCase , attention_mask=lowerCamelCase ) snake_case_ = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch lowerCamelCase_ = getLogger(__name__) def UpperCamelCase( lowercase_ ) -> Tuple: '''simple docstring''' return list(itertools.chain.from_iterable(lowercase_ ) ) def UpperCamelCase( lowercase_ ) -> None: '''simple docstring''' snake_case_ = get_git_info() save_json(lowercase_ , os.path.join(lowercase_ , """git_log.json""" ) ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_=4 , **lowercase_ ) -> str: '''simple docstring''' with open(lowercase_ , """w""" ) as f: json.dump(lowercase_ , lowercase_ , indent=lowercase_ , **lowercase_ ) def UpperCamelCase( lowercase_ ) -> Any: '''simple docstring''' with open(lowercase_ ) as f: return json.load(lowercase_ ) def UpperCamelCase( ) -> int: '''simple docstring''' snake_case_ = git.Repo(search_parent_directories=lowercase_ ) snake_case_ = { """repo_id""": str(lowercase_ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def UpperCamelCase( lowercase_ , lowercase_ ) -> List: '''simple docstring''' return list(map(lowercase_ , lowercase_ ) ) def UpperCamelCase( lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' with open(lowercase_ , """wb""" ) as f: return pickle.dump(lowercase_ , lowercase_ ) def UpperCamelCase( lowercase_ ) -> Union[str, Any]: '''simple docstring''' def remove_articles(lowercase_ ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowercase_ ) def white_space_fix(lowercase_ ): return " ".join(text.split() ) def remove_punc(lowercase_ ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' snake_case_ = normalize_answer(lowercase_ ).split() snake_case_ = normalize_answer(lowercase_ ).split() snake_case_ = Counter(lowercase_ ) & Counter(lowercase_ ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(lowercase_ ) snake_case_ = 1.0 * num_same / len(lowercase_ ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' return normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) def UpperCamelCase( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' assert len(lowercase_ ) == len(lowercase_ ) snake_case_ = 0 for hypo, pred in zip(lowercase_ , lowercase_ ): em += exact_match_score(lowercase_ , lowercase_ ) if len(lowercase_ ) > 0: em /= len(lowercase_ ) return {"em": em} def UpperCamelCase( lowercase_ ) -> List[Any]: '''simple docstring''' return model_prefix.startswith("""rag""" ) def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> List[str]: '''simple docstring''' snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = """dropout_rate""" for p in extra_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): if not hasattr(lowercase_ , lowercase_ ) and not hasattr(lowercase_ , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(lowercase_ ) ) delattr(lowercase_ , lowercase_ ) continue snake_case_ = p if hasattr(lowercase_ , lowercase_ ) else equivalent_param[p] setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) delattr(lowercase_ , lowercase_ ) return hparams, config
161
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''sayakpaul/vit-msn-base''': '''https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json''', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __lowerCamelCase ( __snake_case ): lowerCamelCase_ : Tuple = 'vit_msn' def __init__( self , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1e-06 , lowerCamelCase=224 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=True , **lowerCamelCase , ) -> Optional[int]: super().__init__(**lowerCamelCase ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = qkv_bias
161
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case__ : str = logging.get_logger(__name__) snake_case__ : List[str] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = """xlm-roberta""" def __init__( self , _UpperCAmelCase=30522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-12 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ) -> List[str]: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = classifier_dropout class _a ( UpperCAmelCase__ ): """simple docstring""" @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": UpperCamelCase_ = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase_ = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
23
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _lowercase : def __init__( self ): snake_case__ : List[str] ="""""" snake_case__ : List[Any] ="""""" snake_case__ : Optional[int] =[] snake_case__ : Tuple =0 snake_case__ : Optional[Any] =2_5_6 snake_case__ : Optional[Any] =0 snake_case__ : str =0 snake_case__ : Any =0 snake_case__ : Dict =0 def lowercase__ ( self , a ): snake_case__ : List[str] =cva.imread(a , 0 ) snake_case__ : Optional[Any] =copy.deepcopy(self.img ) snake_case__ , snake_case__ , snake_case__ : Any =plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] , label="""x""" ) snake_case__ : Tuple =np.sum(a ) for i in range(len(a ) ): snake_case__ : Union[str, Any] =x[i] / self.k self.sk += prk snake_case__ : Tuple =(self.L - 1) * self.sk if self.rem != 0: snake_case__ : int =int(last % last ) snake_case__ : List[Any] =int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(a ) snake_case__ : List[Any] =int(np.ma.count(self.img ) / self.img[1].size ) snake_case__ : Union[str, Any] =self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): snake_case__ : Optional[int] =self.img[j][i] if num != self.last_list[num]: snake_case__ : Any =self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def lowercase__ ( self ): plt.hist(self.img.ravel() , 2_5_6 , [0, 2_5_6] ) def lowercase__ ( self ): cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5_0_0_0 ) cva.destroyAllWindows() if __name__ == "__main__": __lowerCamelCase : Optional[Any] = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") __lowerCamelCase : List[Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
385
0
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class UpperCAmelCase_ ( unittest.TestCase ): def __init__( self , lowercase_): snake_case_ : Dict = parent def snake_case__ ( self): return {} def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : Union[str, Any] = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" snake_case_ : Optional[int] = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class UpperCAmelCase_ ( snake_case__ , unittest.TestCase ): UpperCAmelCase_ = MarkupLMFeatureExtractor if is_bsa_available() else None def snake_case__ ( self): snake_case_ : Union[str, Any] = MarkupLMFeatureExtractionTester(self) @property def snake_case__ ( self): return self.feature_extract_tester.prepare_feat_extract_dict() def snake_case__ ( self): snake_case_ : Union[str, Any] = self.feature_extraction_class() # Test not batched input snake_case_ : Optional[int] = get_html_strings()[0] snake_case_ : int = feature_extractor(lowercase_) # fmt: off snake_case_ : Tuple = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] snake_case_ : Any = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , lowercase_) self.assertEqual(encoding.xpaths , lowercase_) # Test batched snake_case_ : Dict = get_html_strings() snake_case_ : Optional[int] = feature_extractor(lowercase_) # fmt: off snake_case_ : str = expected_nodes + [["My First Heading", "My first paragraph."]] snake_case_ : List[Any] = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes) , 2) self.assertEqual(len(encoding.xpaths) , 2) self.assertEqual(encoding.nodes , lowercase_) self.assertEqual(encoding.xpaths , lowercase_)
701
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase a_ = logging.get_logger(__name__) a_ = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class UpperCAmelCase_ ( snake_case__ ): UpperCAmelCase_ = """longformer""" def __init__( self , lowercase_ = 5_12 , lowercase_ = 2 , lowercase_ = 1 , lowercase_ = 0 , lowercase_ = 2 , lowercase_ = 3_05_22 , lowercase_ = 7_68 , lowercase_ = 12 , lowercase_ = 12 , lowercase_ = 30_72 , lowercase_ = "gelu" , lowercase_ = 0.1 , lowercase_ = 0.1 , lowercase_ = 5_12 , lowercase_ = 2 , lowercase_ = 0.02 , lowercase_ = 1E-12 , lowercase_ = False , **lowercase_ , ): super().__init__(pad_token_id=lowercase_ , **lowercase_) snake_case_ : Dict = attention_window snake_case_ : Tuple = sep_token_id snake_case_ : Optional[Any] = bos_token_id snake_case_ : str = eos_token_id snake_case_ : Optional[int] = vocab_size snake_case_ : Dict = hidden_size snake_case_ : Optional[Any] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Union[str, Any] = hidden_act snake_case_ : Union[str, Any] = intermediate_size snake_case_ : Union[str, Any] = hidden_dropout_prob snake_case_ : Optional[Any] = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : str = type_vocab_size snake_case_ : Tuple = initializer_range snake_case_ : List[str] = layer_norm_eps snake_case_ : Tuple = onnx_export class UpperCAmelCase_ ( snake_case__ ): def __init__( self , lowercase_ , lowercase_ = "default" , lowercase_ = None): super().__init__(lowercase_ , lowercase_ , lowercase_) snake_case_ : Dict = True @property def snake_case__ ( self): if self.task == "multiple-choice": snake_case_ : Tuple = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case_ : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ]) @property def snake_case__ ( self): snake_case_ : Union[str, Any] = super().outputs if self.task == "default": snake_case_ : str = {0: "batch"} return outputs @property def snake_case__ ( self): return 1E-4 @property def snake_case__ ( self): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def snake_case__ ( self , lowercase_ , lowercase_ = -1 , lowercase_ = -1 , lowercase_ = False , lowercase_ = None , ): snake_case_ : Optional[Any] = super().generate_dummy_inputs( preprocessor=lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly snake_case_ : Any = torch.zeros_like(inputs["input_ids"]) # make every second token global snake_case_ : Tuple = 1 return inputs
92
0
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( __a , unittest.TestCase ): lowerCAmelCase__ = LayoutLMTokenizer lowerCAmelCase__ = LayoutLMTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def lowercase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() UpperCAmelCase__ : Tuple = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] UpperCAmelCase__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowercase_ ( self : List[str] , **_A : List[str] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_A ) def lowercase_ ( self : List[str] , _A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = '''UNwant\u00E9d,running''' UpperCAmelCase__ : Any = '''unwanted, running''' return input_text, output_text def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file ) UpperCAmelCase__ : Optional[int] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [7, 4, 5, 10, 8, 9] ) def lowercase_ ( self : Tuple ): '''simple docstring''' pass
75
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'ctrl' lowerCAmelCase__ = ['past_key_values'] lowerCAmelCase__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[Any] , _A : Dict=246_534 , _A : Optional[Any]=256 , _A : Dict=1_280 , _A : List[str]=8_192 , _A : Tuple=48 , _A : Optional[Any]=16 , _A : List[Any]=0.1 , _A : List[Any]=0.1 , _A : List[str]=1e-6 , _A : Optional[int]=0.0_2 , _A : Tuple=True , **_A : Optional[Any] , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = vocab_size UpperCAmelCase__ : Any = n_positions UpperCAmelCase__ : Optional[Any] = n_embd UpperCAmelCase__ : List[str] = n_layer UpperCAmelCase__ : Any = n_head UpperCAmelCase__ : int = dff UpperCAmelCase__ : str = resid_pdrop UpperCAmelCase__ : Tuple = embd_pdrop UpperCAmelCase__ : int = layer_norm_epsilon UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Union[str, Any] = use_cache super().__init__(**_A )
75
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __UpperCAmelCase = TypeVar('T') class A__ ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] , A_ : T ): '''simple docstring''' _lowerCAmelCase : List[Any] = data _lowerCAmelCase : Node[T] | None = None def __str__( self : Any ): '''simple docstring''' return F'''{self.data}''' class A__ ( Generic[T] ): """simple docstring""" def __init__( self : List[Any] ): '''simple docstring''' _lowerCAmelCase : Node[T] | None = None def __iter__( self : Optional[int] ): '''simple docstring''' _lowerCAmelCase : Any = self.top while node: yield node.data _lowerCAmelCase : Union[str, Any] = node.next def __str__( self : int ): '''simple docstring''' return "->".join([str(A_ ) for item in self] ) def __len__( self : str ): '''simple docstring''' return len(tuple(iter(self ) ) ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' return self.top is None def __magic_name__ ( self : Optional[int] , A_ : T ): '''simple docstring''' _lowerCAmelCase : Any = Node(A_ ) if not self.is_empty(): _lowerCAmelCase : str = self.top _lowerCAmelCase : Optional[Any] = node def __magic_name__ ( self : str ): '''simple docstring''' if self.is_empty(): raise IndexError("pop from empty stack" ) assert isinstance(self.top , A_ ) _lowerCAmelCase : Optional[int] = self.top _lowerCAmelCase : Optional[Any] = self.top.next return pop_node.data def __magic_name__ ( self : List[Any] ): '''simple docstring''' if self.is_empty(): raise IndexError("peek from empty stack" ) assert self.top is not None return self.top.data def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' _lowerCAmelCase : Tuple = None if __name__ == "__main__": from doctest import testmod testmod()
503
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
503
1
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A ( A_ , unittest.TestCase ): UpperCamelCase_ : Optional[int] =GPTSanJapaneseTokenizer UpperCamelCase_ : Union[str, Any] =False UpperCamelCase_ : Optional[Any] ={'''do_clean_text''': False, '''add_prefix_space''': False} def _A (self ): super().setUp() # fmt: off __lowercase= ['ใ“ใ‚“', 'ใ“ใ‚“ใซ', 'ใซใกใฏ', 'ใฐใ‚“ใฏ', 'ไธ–็•Œ,ใ”บ็•Œ', 'ใ€', 'ใ€‚', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on __lowercase= {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # ๐Ÿ˜€ __lowercase= {'unk_token': '<unk>'} __lowercase= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowercase= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(lowerCAmelCase ) ) def _A (self , **lowerCAmelCase ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def _A (self , lowerCAmelCase ): __lowercase= 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' __lowercase= 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€' return input_text, output_text def _A (self , lowerCAmelCase ): __lowercase, __lowercase= self.get_input_output_texts(lowerCAmelCase ) __lowercase= tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) __lowercase= tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase ) return text, ids def _A (self ): pass # TODO add if relevant def _A (self ): pass # TODO add if relevant def _A (self ): pass # TODO add if relevant def _A (self ): __lowercase= self.get_tokenizer() # Testing tokenization __lowercase= 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ€€ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚' __lowercase= ['ใ“ใ‚“', 'ใซใกใฏ', 'ใ€', 'ไธ–็•Œ', 'ใ€‚', '<SP>', 'ใ“ใ‚“', 'ใฐใ‚“ใฏ', 'ใ€', 'ใ”บ็•Œ', 'ใ€‚'] __lowercase= tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Testing conversion to ids without special tokens __lowercase= [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __lowercase= tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Testing conversion to ids with special tokens __lowercase= tokens + [tokenizer.unk_token] __lowercase= [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] __lowercase= tokenizer.convert_tokens_to_ids(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) def _A (self ): __lowercase= self.get_tokenizer() # Testing tokenization __lowercase= 'ใ“ใ‚“ใซใกใฏใ€<|bagoftoken|>ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€<|bagoftoken|>ใ”บ็•Œใ€‚' __lowercase= 'ใ“ใ‚“ใซใกใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚' __lowercase= tokenizer.encode(lowerCAmelCase ) __lowercase= tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) @slow def _A (self ): __lowercase= self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __lowercase= 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚' __lowercase= 'ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' __lowercase= 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€' __lowercase= tokenizer.encode(prefix_text + input_text ) __lowercase= tokenizer.encode('' , prefix_text=prefix_text + input_text ) __lowercase= tokenizer.encode(lowerCAmelCase , prefix_text=lowerCAmelCase ) __lowercase= tokenizer.decode(lowerCAmelCase ) __lowercase= tokenizer.decode(lowerCAmelCase ) __lowercase= tokenizer.decode(lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(lowerCAmelCase , lowerCAmelCase ) @slow def _A (self ): __lowercase= self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __lowercase= 'ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚' __lowercase= 'ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€' __lowercase= len(tokenizer.encode(lowerCAmelCase ) ) - 2 __lowercase= len(tokenizer.encode(lowerCAmelCase ) ) - 2 __lowercase= [1] + [0] * (len_prefix + len_text + 1) __lowercase= [1] * (len_prefix + len_text + 1) + [0] __lowercase= [1] + [1] * (len_prefix) + [0] * (len_text + 1) __lowercase= tokenizer(prefix_text + input_text ).token_type_ids __lowercase= tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids __lowercase= tokenizer(lowerCAmelCase , prefix_text=lowerCAmelCase ).token_type_ids self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) @slow def _A (self ): __lowercase= self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __lowercase= tokenizer.encode('ใ‚ใƒณใ„ใƒฏ' ) __lowercase= tokenizer.encode('' , prefix_text='ใ‚ใƒณใ„ใƒฏ' ) __lowercase= tokenizer.encode('ใ„ใƒฏ' , prefix_text='ใ‚ใƒณ' ) self.assertEqual(tokenizer.decode(lowerCAmelCase ) , tokenizer.decode(lowerCAmelCase ) ) self.assertEqual(tokenizer.decode(lowerCAmelCase ) , tokenizer.decode(lowerCAmelCase ) ) self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) self.assertNotEqual(lowerCAmelCase , lowerCAmelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _A (self ): __lowercase= self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __lowercase= [['ๆญฆ็”ฐไฟก็Ž„', 'ใฏใ€'], ['็น”็”ฐไฟก้•ท', 'ใฎ้…ไธ‹ใฎใ€']] __lowercase= tokenizer(lowerCAmelCase , padding=lowerCAmelCase ) __lowercase= tokenizer.batch_encode_plus(lowerCAmelCase , padding=lowerCAmelCase ) # fmt: off __lowercase= [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] __lowercase= [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __lowercase= [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , lowerCAmelCase ) self.assertListEqual(x_token.token_type_ids , lowerCAmelCase ) self.assertListEqual(x_token.attention_mask , lowerCAmelCase ) self.assertListEqual(x_token_a.input_ids , lowerCAmelCase ) self.assertListEqual(x_token_a.token_type_ids , lowerCAmelCase ) self.assertListEqual(x_token_a.attention_mask , lowerCAmelCase ) def _A (self ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def _A (self ): # tokenizer has no padding token pass
230
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowerCAmelCase = logging.get_logger(__name__) def _lowerCamelCase( lowercase__ , lowercase__ ) -> Tuple: '''simple docstring''' __lowercase= set() __lowercase= [] def parse_line(lowercase__ ): for line in fp: if isinstance(lowercase__ , lowercase__ ): __lowercase= line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(lowercase__ ) > 0: __lowercase= '\n'.join(lowercase__ ) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets ): selected_warnings.add(lowercase__ ) buffer.clear() continue else: __lowercase= line.strip() buffer.append(lowercase__ ) if from_gh: for filename in os.listdir(lowercase__ ): __lowercase= os.path.join(lowercase__ , lowercase__ ) if not os.path.isdir(lowercase__ ): # read the file if filename != "warnings.txt": continue with open(lowercase__ ) as fp: parse_line(lowercase__ ) else: try: with zipfile.ZipFile(lowercase__ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase__ ): # read the file if filename != "warnings.txt": continue with z.open(lowercase__ ) as fp: parse_line(lowercase__ ) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def _lowerCamelCase( lowercase__ , lowercase__ ) -> List[Any]: '''simple docstring''' __lowercase= set() __lowercase= [os.path.join(lowercase__ , lowercase__ ) for p in os.listdir(lowercase__ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(lowercase__ , lowercase__ ) ) return selected_warnings if __name__ == "__main__": def _lowerCamelCase( lowercase__ ) -> List[str]: '''simple docstring''' return values.split(',' ) lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) lowerCAmelCase = parser.parse_args() lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowerCAmelCase = extract_warnings(args.output_dir, args.targets) lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
230
1
from __future__ import annotations import queue class _UpperCamelCase : """simple docstring""" def __init__( self , a__ ) -> Dict: A = data A = None A = None def _lowerCAmelCase ( ) -> TreeNode: """simple docstring""" print("""\n********Press N to stop entering at any point of time********\n""" ) A = input("""Enter the value of the root node: """ ).strip().lower() A = queue.Queue() A = TreeNode(int(UpperCamelCase__ ) ) q.put(UpperCamelCase__ ) while not q.empty(): A = q.get() A = f'Enter the left node of {node_found.data}: ' A = input(UpperCamelCase__ ).strip().lower() or """n""" if check == "n": return tree_node A = TreeNode(int(UpperCamelCase__ ) ) A = left_node q.put(UpperCamelCase__ ) A = f'Enter the right node of {node_found.data}: ' A = input(UpperCamelCase__ ).strip().lower() or """n""" if check == "n": return tree_node A = TreeNode(int(UpperCamelCase__ ) ) A = right_node q.put(UpperCamelCase__ ) raise def _lowerCAmelCase ( UpperCamelCase__: Dict ) -> None: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def _lowerCAmelCase ( UpperCamelCase__: Optional[int] ) -> None: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] ) -> None: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def _lowerCAmelCase ( UpperCamelCase__: Dict ) -> None: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not node: return A = queue.Queue() q.put(UpperCamelCase__ ) while not q.empty(): A = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> None: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not node: return A = queue.Queue() q.put(UpperCamelCase__ ) while not q.empty(): A = [] while not q.empty(): A = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(UpperCamelCase__ ) def _lowerCAmelCase ( UpperCamelCase__: Dict ) -> None: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not node: return A = [] A = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(UpperCamelCase__ ) A = n.left # end of while means current node doesn't have left child A = stack.pop() # start to traverse its right child A = n.right def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> None: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not node: return A = [] A = node while n or stack: while n: stack.append(UpperCamelCase__ ) A = n.left A = stack.pop() print(n.data , end=""",""" ) A = n.right def _lowerCAmelCase ( UpperCamelCase__: Dict ) -> None: """simple docstring""" if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not node: return A , A = [], [] A = node stacka.append(UpperCamelCase__ ) while stacka: # to find the reversed order of post order, store it in stack2 A = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(UpperCamelCase__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def _lowerCAmelCase ( UpperCamelCase__: Union[str, Any] = "" , UpperCamelCase__: Optional[int]=50 , UpperCamelCase__: str="*" ) -> str: """simple docstring""" if not s: return "\n" + width * char A , A = divmod(width - len(UpperCamelCase__ ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowercase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
720
from __future__ import annotations from typing import Any class _UpperCamelCase : """simple docstring""" def __init__( self , a__ , a__ , a__ = 0 ) -> None: A , A = row, column A = [[default_value for c in range(a__ )] for r in range(a__ )] def __str__( self ) -> str: A = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier A = 0 for row_vector in self.array: for obj in row_vector: A = max(a__ , len(str(a__ ) ) ) A = f'%{max_element_length}s' # Make string and return def single_line(a__ ) -> str: nonlocal string_format_identifier A = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a__ ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def _UpperCAmelCase ( self , a__ ) -> bool: if not (isinstance(a__ , (list, tuple) ) and len(a__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , a__ ) -> Any: assert self.validate_indicies(a__ ) return self.array[loc[0]][loc[1]] def __setitem__( self , a__ , a__ ) -> None: assert self.validate_indicies(a__ ) A = value def __add__( self , a__ ) -> Matrix: assert isinstance(a__ , a__ ) assert self.row == another.row and self.column == another.column # Add A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A = -self[r, c] return result def __sub__( self , a__ ) -> Matrix: return self + (-another) def __mul__( self , a__ ) -> Matrix: if isinstance(a__ , (int, float) ): # Scalar multiplication A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A = self[r, c] * another return result elif isinstance(a__ , a__ ): # Matrix multiplication assert self.column == another.row A = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: A = f'Unsupported type given for another ({type(a__ )})' raise TypeError(a__ ) def _UpperCAmelCase ( self ) -> Matrix: A = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): A = self[r, c] return result def _UpperCAmelCase ( self , a__ , a__ ) -> Any: assert isinstance(a__ , a__ ) and isinstance(a__ , a__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate A = v.transpose() A = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _lowerCAmelCase ( ) -> None: """simple docstring""" A = Matrix(3 , 3 , 0 ) for i in range(3 ): A = 1 print(f'a^(-1) is {ainv}' ) # u, v A = Matrix(3 , 1 , 0 ) A , A , A = 1, 2, -3 A = Matrix(3 , 1 , 0 ) A , A , A = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCamelCase__ , UpperCamelCase__ )}' ) def _lowerCAmelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
546
0
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
42
"""simple docstring""" import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE_ = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def A__ ( A__ ) -> str: '''simple docstring''' re.sub("<n>" , "" , A__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A__ ) )
426
0
def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> float: """simple docstring""" _validate_point(snake_case__ ) _validate_point(snake_case__ ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(snake_case__ , snake_case__ ) ) ) def UpperCAmelCase_ ( snake_case__ ) -> None: """simple docstring""" if point: if isinstance(snake_case__ , snake_case__ ): for item in point: if not isinstance(snake_case__ , (int, float) ): lowerCAmelCase__ = ( 'Expected a list of numbers as input, found ' f'{type(snake_case__ ).__name__}' ) raise TypeError(snake_case__ ) else: lowerCAmelCase__ = f'Expected a list of numbers as input, found {type(snake_case__ ).__name__}' raise TypeError(snake_case__ ) else: raise ValueError('Missing an input' ) def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> float: """simple docstring""" _validate_point(snake_case__ ) _validate_point(snake_case__ ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(snake_case__ , snake_case__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
604
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) lowerCAmelCase__ = { 'input_ids': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] ,dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] ,dtype=tf.intaa ), } lowerCAmelCase__ = model(a_ )['last_hidden_state'] lowerCAmelCase__ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape ,a_ ) # compare the actual values for a slice. lowerCAmelCase__ = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
604
1
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class a__ : def __init__( self , A , A=13 , A=7 , A=6 , A=17 , A=23 , A=11 , A=True , ) -> Optional[int]: '''simple docstring''' a = parent a = batch_size a = seq_length a = act_dim a = state_dim a = hidden_size a = max_length a = is_training def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) a = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) a = floats_tensor((self.batch_size, self.seq_length, 1) ) a = floats_tensor((self.batch_size, self.seq_length, 1) ) a = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) a = random_attention_mask((self.batch_size, self.seq_length) ) a = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def lowerCAmelCase_ ( self , A , A , A , A , A , A , A , ) -> Union[str, Any]: '''simple docstring''' a = DecisionTransformerModel(config=__lowercase ) model.to(__lowercase ) model.eval() a = model(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class a__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): a : Optional[int] = (DecisionTransformerModel,) if is_torch_available() else () a : List[str] = () a : Optional[Any] = {'feature-extraction': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids a : Optional[int] = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features a : Optional[Any] = False a : Optional[Any] = False a : List[Any] = False a : Any = False a : Any = False a : str = False a : Tuple = False a : int = False a : int = False def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' a = DecisionTransformerModelTester(self ) a = ConfigTester(self , config_class=__lowercase , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = DecisionTransformerModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowercase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(__lowercase )] , __lowercase ) @require_torch class a__ ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = 2 # number of steps of autoregressive prediction we will perform a = 10 # defined by the RL environment, may be normalized a = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert" ) a = model.to(__lowercase ) a = model.config torch.manual_seed(0 ) a = torch.randn(1 , 1 , config.state_dim ).to(device=__lowercase , dtype=torch.floataa ) # env.reset() a = torch.tensor( [[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=__lowercase ) a = torch.tensor(__lowercase , device=__lowercase , dtype=torch.floataa ).reshape(1 , 1 , 1 ) a = state a = torch.zeros(1 , 0 , config.act_dim , device=__lowercase , dtype=torch.floataa ) a = torch.zeros(1 , 0 , device=__lowercase , dtype=torch.floataa ) a = torch.tensor(0 , device=__lowercase , dtype=torch.long ).reshape(1 , 1 ) for step in range(__lowercase ): a = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__lowercase )] , dim=1 ) a = torch.cat([rewards, torch.zeros(1 , 1 , device=__lowercase )] , dim=1 ) a = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): a , a , a = model( states=__lowercase , actions=__lowercase , rewards=__lowercase , returns_to_go=__lowercase , timesteps=__lowercase , attention_mask=__lowercase , return_dict=__lowercase , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4 ) ) a , a , a , a = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=__lowercase , dtype=torch.floataa ), 1.0, False, {}, ) a = action_pred[0, -1] a = torch.cat([states, state] , dim=1 ) a = returns_to_go[0, -1] - reward a = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) a = torch.cat( [timesteps, torch.ones((1, 1) , device=__lowercase , dtype=torch.long ) * (step + 1)] , dim=1 )
515
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Dict =GPTSanJapaneseTokenizer __lowerCamelCase : List[Any] =False __lowerCamelCase : List[str] ={'do_clean_text': False, 'add_prefix_space': False} def UpperCamelCase_ ( self : str ): '''simple docstring''' super().setUp() # fmt: off __a = ["""ใ“ใ‚“""", """ใ“ใ‚“ใซ""", """ใซใกใฏ""", """ใฐใ‚“ใฏ""", """ไธ–็•Œ,ใ”บ็•Œ""", """ใ€""", """ใ€‚""", """<BR>""", """<SP>""", """<TAB>""", """<URL>""", """<EMAIL>""", """<TEL>""", """<DATE>""", """<PRICE>""", """<BLOCK>""", """<KIGOU>""", """<U2000U2BFF>""", """<|emoji1|>""", """<unk>""", """<|bagoftoken|>""", """<|endoftext|>"""] # fmt: on __a = {"""emoji""": {"""\ud83d\ude00""": """<|emoji1|>"""}, """emoji_inv""": {"""<|emoji1|>""": """\ud83d\ude00"""}} # ๐Ÿ˜€ __a = {"""unk_token""": """<unk>"""} __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file , """w""" ) as emoji_writer: emoji_writer.write(json.dumps(__lowercase ) ) def UpperCamelCase_ ( self : Dict , **__lowercase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__lowercase ) def UpperCamelCase_ ( self : Any , __lowercase : str ): '''simple docstring''' __a = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€""" __a = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ \nใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€""" return input_text, output_text def UpperCamelCase_ ( self : Optional[Any] , __lowercase : Union[str, Any] ): '''simple docstring''' __a , __a = self.get_input_output_texts(__lowercase ) __a = tokenizer.encode(__lowercase , add_special_tokens=__lowercase ) __a = tokenizer.decode(__lowercase , clean_up_tokenization_spaces=__lowercase ) return text, ids def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' __a = self.get_tokenizer() # Testing tokenization __a = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ€€ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚""" __a = ["""ใ“ใ‚“""", """ใซใกใฏ""", """ใ€""", """ไธ–็•Œ""", """ใ€‚""", """<SP>""", """ใ“ใ‚“""", """ใฐใ‚“ใฏ""", """ใ€""", """ใ”บ็•Œ""", """ใ€‚"""] __a = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids without special tokens __a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) # Testing conversion to ids with special tokens __a = tokens + [tokenizer.unk_token] __a = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] __a = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual(__lowercase , __lowercase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' __a = self.get_tokenizer() # Testing tokenization __a = """ใ“ใ‚“ใซใกใฏใ€<|bagoftoken|>ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€<|bagoftoken|>ใ”บ็•Œใ€‚""" __a = """ใ“ใ‚“ใซใกใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ใ€ใ€ใ€ไธ–็•Œใ€‚""" __a = tokenizer.encode(__lowercase ) __a = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __a = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚""" __a = """ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€""" __a = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚ใ“ใ‚“ใฐใ‚“ใฏใ€ไธ–็•Œใ€‚๐Ÿ˜€""" __a = tokenizer.encode(prefix_text + input_text ) __a = tokenizer.encode("""""" , prefix_text=prefix_text + input_text ) __a = tokenizer.encode(__lowercase , prefix_text=__lowercase ) __a = tokenizer.decode(__lowercase ) __a = tokenizer.decode(__lowercase ) __a = tokenizer.decode(__lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) self.assertEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization __a = """ใ“ใ‚“ใซใกใฏใ€ไธ–็•Œใ€‚""" __a = """ใ“ใ‚“ใฐใ‚“ใฏใ€ใ”บ็•Œใ€‚๐Ÿ˜€""" __a = len(tokenizer.encode(__lowercase ) ) - 2 __a = len(tokenizer.encode(__lowercase ) ) - 2 __a = [1] + [0] * (len_prefix + len_text + 1) __a = [1] * (len_prefix + len_text + 1) + [0] __a = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __a = tokenizer(prefix_text + input_text ).token_type_ids __a = tokenizer("""""" , prefix_text=prefix_text + input_text ).token_type_ids __a = tokenizer(__lowercase , prefix_text=__lowercase ).token_type_ids self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) self.assertListEqual(__lowercase , __lowercase ) @slow def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __a = tokenizer.encode("""ใ‚ใƒณใ„ใƒฏ""" ) __a = tokenizer.encode("""""" , prefix_text="""ใ‚ใƒณใ„ใƒฏ""" ) __a = tokenizer.encode("""ใ„ใƒฏ""" , prefix_text="""ใ‚ใƒณ""" ) self.assertEqual(tokenizer.decode(__lowercase ) , tokenizer.decode(__lowercase ) ) self.assertEqual(tokenizer.decode(__lowercase ) , tokenizer.decode(__lowercase ) ) self.assertNotEqual(__lowercase , __lowercase ) self.assertNotEqual(__lowercase , __lowercase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) __a = [["""ๆญฆ็”ฐไฟก็Ž„""", """ใฏใ€"""], ["""็น”็”ฐไฟก้•ท""", """ใฎ้…ไธ‹ใฎใ€"""]] __a = tokenizer(__lowercase , padding=__lowercase ) __a = tokenizer.batch_encode_plus(__lowercase , padding=__lowercase ) # fmt: off __a = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] __a = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __a = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __lowercase ) self.assertListEqual(x_token.token_type_ids , __lowercase ) self.assertListEqual(x_token.attention_mask , __lowercase ) self.assertListEqual(x_token_a.input_ids , __lowercase ) self.assertListEqual(x_token_a.token_type_ids , __lowercase ) self.assertListEqual(x_token_a.attention_mask , __lowercase ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # tokenizer has no padding token pass
225
0
'''simple docstring''' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> None: UpperCamelCase = len(__UpperCamelCase ) print("""The following activities are selected:""" ) # The first activity is always selected UpperCamelCase = 0 print(__UpperCamelCase , end=""",""" ) # Consider rest of the activities for j in range(__UpperCamelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(__UpperCamelCase , end=""",""" ) UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE__ = [1, 3, 0, 5, 8, 5] SCREAMING_SNAKE_CASE__ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
def snake_case_ ( _SCREAMING_SNAKE_CASE = 5_0 ): __lowercase = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
402
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Optional[int] = logging.get_logger(__name__) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: __lowercase = 1_0_2_4 __lowercase = 4_0_9_6 __lowercase = 2_4 __lowercase = 1_6 __lowercase = [5, 1_1, 1_7, 2_3] __lowercase = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] __lowercase = (1, 3_8_4, 3_8_4) if "nyu" or "midas" in checkpoint_url: __lowercase = 7_6_8 __lowercase = [1, 1, 1, 0.5] __lowercase = [2_5_6, 5_1_2, 7_6_8, 7_6_8] __lowercase = 1_5_0 __lowercase = 1_6 __lowercase = (1, 3_8_4, 3_8_4) __lowercase = False __lowercase = "project" if "ade" in checkpoint_url: __lowercase = True __lowercase = 7_6_8 __lowercase = [1, 1, 1, 0.5] __lowercase = 1_5_0 __lowercase = 1_6 __lowercase = "huggingface/label-files" __lowercase = "ade20k-id2label.json" __lowercase = json.load(open(cached_download(hf_hub_url(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} __lowercase = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __lowercase = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __lowercase = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __lowercase = name.replace("patch_embed" , "" ) if "pos_embed" in name: __lowercase = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __lowercase = name.replace("proj" , "projection" ) if "blocks" in name: __lowercase = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __lowercase = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __lowercase = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __lowercase = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __lowercase = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __lowercase = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __lowercase = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __lowercase = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __lowercase = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: __lowercase = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __lowercase = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __lowercase = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __lowercase = name.replace("conv1" , "convolution1" ) if "conv2" in name: __lowercase = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __lowercase = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __lowercase = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __lowercase = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __lowercase = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __lowercase = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __lowercase = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __lowercase = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __lowercase = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __lowercase = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __lowercase = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __lowercase = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __lowercase = name.replace("pretrained" , "dpt" ) if "bn" in name: __lowercase = name.replace("bn" , "batch_norm" ) if "head" in name: __lowercase = name.replace("head" , "head.head" ) if "encoder.norm" in name: __lowercase = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __lowercase = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: __lowercase = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: __lowercase = name.replace(".." , "." ) if "stem.conv" in name: __lowercase = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __lowercase = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: __lowercase = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: __lowercase = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: __lowercase = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: __lowercase = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: __lowercase = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) __lowercase = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowercase = in_proj_weight[: config.hidden_size, :] __lowercase = in_proj_bias[: config.hidden_size] __lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __lowercase = in_proj_weight[ -config.hidden_size :, : ] __lowercase = in_proj_bias[-config.hidden_size :] def snake_case_ ( ): __lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowercase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase , __lowercase = get_dpt_config(_SCREAMING_SNAKE_CASE ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __lowercase = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) # rename keys for key in state_dict.copy().keys(): __lowercase = state_dict.pop(_SCREAMING_SNAKE_CASE ) __lowercase = val # read in qkv matrices read_in_q_k_v(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # load HuggingFace model __lowercase = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) if "ade" in checkpoint_url else DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # Check outputs on an image __lowercase = 4_8_0 if "ade" in checkpoint_url else 3_8_4 __lowercase = DPTImageProcessor(size=_SCREAMING_SNAKE_CASE ) __lowercase = prepare_img() __lowercase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" ) # forward pass __lowercase = model(**_SCREAMING_SNAKE_CASE ).logits if "ade" in checkpoint_url else model(**_SCREAMING_SNAKE_CASE ).predicted_depth if show_prediction: __lowercase = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_SCREAMING_SNAKE_CASE , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_5_5 ).show() if pytorch_dump_folder_path is not None: Path(_SCREAMING_SNAKE_CASE ).mkdir(exist_ok=_SCREAMING_SNAKE_CASE ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=False, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) parser.add_argument( """--show_prediction""", action="""store_true""", ) snake_case__ : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
402
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[int] = logging.get_logger(__name__) snake_case_ : List[str] = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class __lowerCamelCase ( lowercase ): lowerCamelCase__: str = '''open-llama''' def __init__( self , __snake_case=1_0_0_0_0_0 , __snake_case=4_0_9_6 , __snake_case=1_1_0_0_8 , __snake_case=3_2 , __snake_case=3_2 , __snake_case="silu" , __snake_case=2_0_4_8 , __snake_case=0.02 , __snake_case=1e-6 , __snake_case=True , __snake_case=0 , __snake_case=1 , __snake_case=2 , __snake_case=False , __snake_case=True , __snake_case=0.1 , __snake_case=0.1 , __snake_case=True , __snake_case=True , __snake_case=None , **__snake_case , ) -> Optional[Any]: """simple docstring""" UpperCAmelCase: List[Any] = vocab_size UpperCAmelCase: str = max_position_embeddings UpperCAmelCase: List[Any] = hidden_size UpperCAmelCase: Optional[Any] = intermediate_size UpperCAmelCase: Union[str, Any] = num_hidden_layers UpperCAmelCase: Union[str, Any] = num_attention_heads UpperCAmelCase: Dict = hidden_act UpperCAmelCase: Tuple = initializer_range UpperCAmelCase: Union[str, Any] = rms_norm_eps UpperCAmelCase: Optional[int] = use_cache UpperCAmelCase: Dict = kwargs.pop( "use_memorry_efficient_attention" , __snake_case ) UpperCAmelCase: Optional[int] = hidden_dropout_prob UpperCAmelCase: Any = attention_dropout_prob UpperCAmelCase: Optional[Any] = use_stable_embedding UpperCAmelCase: Tuple = shared_input_output_embedding UpperCAmelCase: Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , tie_word_embeddings=__snake_case , **__snake_case , ) def A__ ( self ) -> List[str]: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __snake_case ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'got {self.rope_scaling}' ) UpperCAmelCase: Union[str, Any] = self.rope_scaling.get("type" , __snake_case ) UpperCAmelCase: Any = self.rope_scaling.get("factor" , __snake_case ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(__snake_case , __snake_case ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
166
def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Union[str, Any] ): '''simple docstring''' UpperCAmelCase: Optional[Any] = "" for i in table: res += inp[i - 1] return res def __UpperCAmelCase ( snake_case_ : Optional[Any] ): '''simple docstring''' return data[1:] + data[0] def __UpperCAmelCase ( snake_case_ : Any , snake_case_ : Optional[int] ): '''simple docstring''' UpperCAmelCase: Optional[int] = "" for i in range(len(snake_case_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def __UpperCAmelCase ( snake_case_ : int , snake_case_ : Tuple ): '''simple docstring''' UpperCAmelCase: List[str] = int("0b" + data[0] + data[-1] , 2 ) UpperCAmelCase: List[Any] = int("0b" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def __UpperCAmelCase ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Optional[Any] ): '''simple docstring''' UpperCAmelCase: Tuple = message[:4] UpperCAmelCase: List[str] = message[4:] UpperCAmelCase: str = apply_table(snake_case_ , snake_case_ ) UpperCAmelCase: Dict = xor(snake_case_ , snake_case_ ) UpperCAmelCase: Dict = apply_sbox(snake_case_ , temp[:4] ) # noqa: E741 UpperCAmelCase: Any = apply_sbox(snake_case_ , temp[4:] ) UpperCAmelCase: List[Any] = "0" * (2 - len(snake_case_ )) + l # noqa: E741 UpperCAmelCase: Any = "0" * (2 - len(snake_case_ )) + r UpperCAmelCase: Union[str, Any] = apply_table(l + r , snake_case_ ) UpperCAmelCase: List[Any] = xor(snake_case_ , snake_case_ ) return temp + right if __name__ == "__main__": snake_case_ : List[Any] = input('Enter 10 bit key: ') snake_case_ : List[Any] = input('Enter 8 bit message: ') snake_case_ : Dict = [6, 3, 7, 4, 8, 5, 1_0, 9] snake_case_ : Optional[int] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] snake_case_ : Union[str, Any] = [2, 4, 3, 1] snake_case_ : Union[str, Any] = [2, 6, 3, 1, 4, 8, 5, 7] snake_case_ : Optional[int] = [4, 1, 3, 5, 7, 2, 8, 6] snake_case_ : Union[str, Any] = [4, 1, 2, 3, 2, 3, 4, 1] snake_case_ : List[str] = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] snake_case_ : Optional[Any] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation snake_case_ : Optional[int] = apply_table(key, paa_table) snake_case_ : Dict = temp[:5] snake_case_ : Union[str, Any] = temp[5:] snake_case_ : str = left_shift(left) snake_case_ : Dict = left_shift(right) snake_case_ : Tuple = apply_table(left + right, pa_table) snake_case_ : Dict = left_shift(left) snake_case_ : int = left_shift(right) snake_case_ : List[str] = left_shift(left) snake_case_ : List[Any] = left_shift(right) snake_case_ : Optional[int] = apply_table(left + right, pa_table) # encryption snake_case_ : List[Any] = apply_table(message, IP) snake_case_ : Any = function(expansion, sa, sa, keya, temp) snake_case_ : int = temp[4:] + temp[:4] snake_case_ : int = function(expansion, sa, sa, keya, temp) snake_case_ : Optional[int] = apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption snake_case_ : Tuple = apply_table(CT, IP) snake_case_ : List[str] = function(expansion, sa, sa, keya, temp) snake_case_ : int = temp[4:] + temp[:4] snake_case_ : Tuple = function(expansion, sa, sa, keya, temp) snake_case_ : Tuple = apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
166
1