code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(snake_case , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(snake_case , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(snake_case , 'num_attention_heads' ) ) class lowercase : '''simple docstring''' def __init__( self : Optional[int] , snake_case : str , snake_case : List[str]=13 , snake_case : List[Any]=32 , snake_case : Tuple=2 , snake_case : Union[str, Any]=3 , snake_case : List[str]=640 , snake_case : List[Any]=4 , snake_case : List[Any]="silu" , snake_case : int=3 , snake_case : Tuple=32 , snake_case : List[str]=0.1 , snake_case : List[Any]=0.1 , snake_case : int=0.1 , snake_case : Optional[Any]=0.02 , snake_case : List[str]=True , snake_case : Union[str, Any]=True , snake_case : int=10 , snake_case : List[str]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = parent SCREAMING_SNAKE_CASE : List[Any] = batch_size SCREAMING_SNAKE_CASE : Tuple = image_size SCREAMING_SNAKE_CASE : str = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : Optional[int] = last_hidden_size SCREAMING_SNAKE_CASE : Tuple = num_attention_heads SCREAMING_SNAKE_CASE : str = hidden_act SCREAMING_SNAKE_CASE : Any = conv_kernel_size SCREAMING_SNAKE_CASE : Any = output_stride SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = classifier_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = use_labels SCREAMING_SNAKE_CASE : Any = is_training SCREAMING_SNAKE_CASE : Union[str, Any] = num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : Dict = scope def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase_ ( self : str , snake_case : List[Any] , snake_case : List[Any] , snake_case : List[str] , snake_case : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = MobileViTModel(config=snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : Optional[int] = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self : Any , snake_case : Optional[int] , snake_case : int , snake_case : Any , snake_case : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels SCREAMING_SNAKE_CASE : List[str] = MobileViTForImageClassification(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : Dict , snake_case : List[str] , snake_case : Any , snake_case : Dict , snake_case : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_labels SCREAMING_SNAKE_CASE : Union[str, Any] = MobileViTForSemanticSegmentation(snake_case ) model.to(snake_case ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = model(snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) SCREAMING_SNAKE_CASE : Optional[int] = model(snake_case , labels=snake_case ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = config_and_inputs SCREAMING_SNAKE_CASE : Union[str, Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase): '''simple docstring''' UpperCAmelCase : List[str] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase : Any = ( { 'feature-extraction': MobileViTModel, 'image-classification': MobileViTForImageClassification, 'image-segmentation': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : Optional[Any] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : int = False def lowerCamelCase_ ( self : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = MobileViTModelTester(self ) SCREAMING_SNAKE_CASE : Optional[int] = MobileViTConfigTester(self , config_class=snake_case , has_text_modality=snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Dict = model_class(snake_case ) SCREAMING_SNAKE_CASE : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : int = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowerCamelCase_ ( self : int ): '''simple docstring''' pass def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' def check_hidden_states_output(snake_case : Tuple , snake_case : str , snake_case : int ): SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) SCREAMING_SNAKE_CASE : List[str] = outputs.hidden_states SCREAMING_SNAKE_CASE : List[Any] = 5 self.assertEqual(len(snake_case ) , snake_case ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. SCREAMING_SNAKE_CASE : Optional[int] = 2 for i in range(len(snake_case ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(snake_case , snake_case , snake_case ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case ) @slow def lowerCamelCase_ ( self : int ): '''simple docstring''' for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : List[Any] = MobileViTModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __a ( ) -> int: SCREAMING_SNAKE_CASE : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase): '''simple docstring''' @cached_property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(snake_case ) SCREAMING_SNAKE_CASE : Tuple = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : str = model(**snake_case ) # verify the logits SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case ) SCREAMING_SNAKE_CASE : int = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[Any] = model.to(snake_case ) SCREAMING_SNAKE_CASE : List[str] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : List[Any] = prepare_img() SCREAMING_SNAKE_CASE : Optional[int] = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**snake_case ) SCREAMING_SNAKE_CASE : str = outputs.logits # verify the logits SCREAMING_SNAKE_CASE : int = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , snake_case ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=snake_case , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case , atol=1E-4 ) ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Optional[Any] = model.to(snake_case ) SCREAMING_SNAKE_CASE : int = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) SCREAMING_SNAKE_CASE : Any = prepare_img() SCREAMING_SNAKE_CASE : Any = image_processor(images=snake_case , return_tensors='pt' ).to(snake_case ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**snake_case ) SCREAMING_SNAKE_CASE : Any = outputs.logits.detach().cpu() SCREAMING_SNAKE_CASE : Dict = image_processor.post_process_semantic_segmentation(outputs=snake_case , target_sizes=[(50, 60)] ) SCREAMING_SNAKE_CASE : Dict = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , snake_case ) SCREAMING_SNAKE_CASE : str = image_processor.post_process_semantic_segmentation(outputs=snake_case ) SCREAMING_SNAKE_CASE : Dict = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , snake_case )
352
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _lowerCamelCase : List[str] = 0 _lowerCamelCase : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _lowerCamelCase : Tuple = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _lowerCamelCase : Union[str, Any] = tuple[int, int] class lowercase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case : int , snake_case : int , snake_case : int , snake_case : int , snake_case : int , snake_case : Node | None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = pos_x SCREAMING_SNAKE_CASE : str = pos_y SCREAMING_SNAKE_CASE : Any = (pos_y, pos_x) SCREAMING_SNAKE_CASE : List[str] = goal_x SCREAMING_SNAKE_CASE : Optional[Any] = goal_y SCREAMING_SNAKE_CASE : int = g_cost SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : List[Any] = self.calculate_heuristic() SCREAMING_SNAKE_CASE : str = self.g_cost + self.h_cost def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.pos_x - self.goal_x SCREAMING_SNAKE_CASE : str = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(snake_case ) + abs(snake_case ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Any , snake_case : Node ): '''simple docstring''' return self.f_cost < other.f_cost class lowercase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case : TPosition , snake_case : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case ) SCREAMING_SNAKE_CASE : int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , snake_case ) SCREAMING_SNAKE_CASE : Any = [self.start] SCREAMING_SNAKE_CASE : list[Node] = [] SCREAMING_SNAKE_CASE : int = False def lowerCamelCase_ ( self : str ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(snake_case ) self.closed_nodes.append(snake_case ) SCREAMING_SNAKE_CASE : int = self.get_successors(snake_case ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(snake_case ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case ) else: self.open_nodes.append(snake_case ) return [self.start.pos] def lowerCamelCase_ ( self : str , snake_case : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [] for action in delta: SCREAMING_SNAKE_CASE : Optional[Any] = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case , snake_case , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case , ) ) return successors def lowerCamelCase_ ( self : Optional[int] , snake_case : Node | None ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = node SCREAMING_SNAKE_CASE : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Dict = current_node.parent path.reverse() return path class lowercase : '''simple docstring''' def __init__( self : str , snake_case : TPosition , snake_case : TPosition ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = AStar(snake_case , snake_case ) SCREAMING_SNAKE_CASE : Optional[int] = AStar(snake_case , snake_case ) SCREAMING_SNAKE_CASE : str = False def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() SCREAMING_SNAKE_CASE : Dict = self.fwd_astar.open_nodes.pop(0 ) SCREAMING_SNAKE_CASE : Any = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( snake_case , snake_case ) self.fwd_astar.closed_nodes.append(snake_case ) self.bwd_astar.closed_nodes.append(snake_case ) SCREAMING_SNAKE_CASE : str = current_bwd_node SCREAMING_SNAKE_CASE : int = current_fwd_node SCREAMING_SNAKE_CASE : str = { self.fwd_astar: self.fwd_astar.get_successors(snake_case ), self.bwd_astar: self.bwd_astar.get_successors(snake_case ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(snake_case ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : List[Any] = astar.open_nodes.pop( astar.open_nodes.index(snake_case ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(snake_case ) else: astar.open_nodes.append(snake_case ) return [self.fwd_astar.start.pos] def lowerCamelCase_ ( self : str , snake_case : Node , snake_case : Node ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.fwd_astar.retrace_path(snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = self.bwd_astar.retrace_path(snake_case ) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE : Union[str, Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _lowerCamelCase : Tuple = (0, 0) _lowerCamelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _lowerCamelCase : Union[str, Any] = time.time() _lowerCamelCase : List[str] = AStar(init, goal) _lowerCamelCase : Optional[int] = a_star.search() _lowerCamelCase : str = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") _lowerCamelCase : Optional[Any] = time.time() _lowerCamelCase : Union[str, Any] = BidirectionalAStar(init, goal) _lowerCamelCase : List[Any] = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
352
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCAmelCase : List[Any] = {"configuration_deit": ["DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DeiTConfig", "DeiTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = ["DeiTFeatureExtractor"] _lowerCAmelCase : Union[str, Any] = ["DeiTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ "DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "DeiTForImageClassification", "DeiTForImageClassificationWithTeacher", "DeiTForMaskedImageModeling", "DeiTModel", "DeiTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ "TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDeiTForImageClassification", "TFDeiTForImageClassificationWithTeacher", "TFDeiTForMaskedImageModeling", "TFDeiTModel", "TFDeiTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : Union[str, Any] = { "configuration_bert": ["BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BertConfig", "BertOnnxConfig"], "tokenization_bert": ["BasicTokenizer", "BertTokenizer", "WordpieceTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["BertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = [ "BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "BertForMaskedLM", "BertForMultipleChoice", "BertForNextSentencePrediction", "BertForPreTraining", "BertForQuestionAnswering", "BertForSequenceClassification", "BertForTokenClassification", "BertLayer", "BertLMHeadModel", "BertModel", "BertPreTrainedModel", "load_tf_weights_in_bert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ "TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBertEmbeddings", "TFBertForMaskedLM", "TFBertForMultipleChoice", "TFBertForNextSentencePrediction", "TFBertForPreTraining", "TFBertForQuestionAnswering", "TFBertForSequenceClassification", "TFBertForTokenClassification", "TFBertLMHeadModel", "TFBertMainLayer", "TFBertModel", "TFBertPreTrainedModel", ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : str = ["TFBertTokenizer"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ "FlaxBertForCausalLM", "FlaxBertForMaskedLM", "FlaxBertForMultipleChoice", "FlaxBertForNextSentencePrediction", "FlaxBertForPreTraining", "FlaxBertForQuestionAnswering", "FlaxBertForSequenceClassification", "FlaxBertForTokenClassification", "FlaxBertModel", "FlaxBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys _lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __a : """simple docstring""" def __init__( self , snake_case , snake_case=12 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=32 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=0.02 , snake_case=0 , snake_case=None , ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : List[Any] = batch_size lowerCAmelCase__ : Union[str, Any] = seq_length lowerCAmelCase__ : Optional[Any] = is_training lowerCAmelCase__ : List[Any] = use_input_mask lowerCAmelCase__ : int = use_labels lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Dict = hidden_size lowerCAmelCase__ : Union[str, Any] = projection_dim lowerCAmelCase__ : Optional[Any] = num_hidden_layers lowerCAmelCase__ : int = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : int = dropout lowerCAmelCase__ : List[Any] = attention_dropout lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Optional[Any] = scope lowerCAmelCase__ : List[Any] = bos_token_id def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ : Optional[Any] = None if self.use_input_mask: lowerCAmelCase__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: lowerCAmelCase__ : str = input_mask.numpy() lowerCAmelCase__ , lowerCAmelCase__ : int = input_mask.shape lowerCAmelCase__ : Optional[int] = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case ): lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : List[str] = 0 lowerCAmelCase__ : str = self.get_config() return config, input_ids, tf.convert_to_tensor(snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def SCREAMING_SNAKE_CASE_ ( self , snake_case , snake_case , snake_case ): """simple docstring""" lowerCAmelCase__ : Optional[int] = TFBlipTextModel(config=snake_case ) lowerCAmelCase__ : int = model(snake_case , attention_mask=snake_case , training=snake_case ) lowerCAmelCase__ : int = model(snake_case , training=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = config_and_inputs lowerCAmelCase__ : Any = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __a ( __magic_name__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Any = (TFBlipTextModel,) if is_tf_available() else () __UpperCamelCase : str = False __UpperCamelCase : Tuple = False __UpperCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = BlipTextModelTester(self ) lowerCAmelCase__ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Union[str, Any] = TFBlipTextModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def SCREAMING_SNAKE_CASE_ ( self , snake_case=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=snake_case )
453
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> list: lowerCAmelCase__ : List[str] = len(lowercase__ ) lowerCAmelCase__ : Dict = [] for i in range(len(lowercase__ ) - pat_len + 1 ): lowerCAmelCase__ : Union[str, Any] = True for j in range(lowercase__ ): if s[i + j] != pattern[j]: lowerCAmelCase__ : int = False break if match_found: position.append(lowercase__ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
453
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class a ( lowercase_ ): """simple docstring""" __lowerCAmelCase = '''cvt''' def __init__( self , snake_case_=3 , snake_case_=[7, 3, 3] , snake_case_=[4, 2, 2] , snake_case_=[2, 1, 1] , snake_case_=[64, 192, 384] , snake_case_=[1, 3, 6] , snake_case_=[1, 2, 10] , snake_case_=[4.0, 4.0, 4.0] , snake_case_=[0.0, 0.0, 0.0] , snake_case_=[0.0, 0.0, 0.0] , snake_case_=[0.0, 0.0, 0.1] , snake_case_=[True, True, True] , snake_case_=[False, False, True] , snake_case_=["dw_bn", "dw_bn", "dw_bn"] , snake_case_=[3, 3, 3] , snake_case_=[1, 1, 1] , snake_case_=[2, 2, 2] , snake_case_=[1, 1, 1] , snake_case_=[1, 1, 1] , snake_case_=0.0_2 , snake_case_=1e-1_2 , **snake_case_ , ): '''simple docstring''' super().__init__(**snake_case_ ) __UpperCAmelCase: Union[str, Any] = num_channels __UpperCAmelCase: Union[str, Any] = patch_sizes __UpperCAmelCase: Dict = patch_stride __UpperCAmelCase: Any = patch_padding __UpperCAmelCase: Any = embed_dim __UpperCAmelCase: int = num_heads __UpperCAmelCase: List[str] = depth __UpperCAmelCase: List[Any] = mlp_ratio __UpperCAmelCase: Optional[int] = attention_drop_rate __UpperCAmelCase: List[Any] = drop_rate __UpperCAmelCase: Any = drop_path_rate __UpperCAmelCase: List[str] = qkv_bias __UpperCAmelCase: Optional[Any] = cls_token __UpperCAmelCase: Optional[int] = qkv_projection_method __UpperCAmelCase: List[str] = kernel_qkv __UpperCAmelCase: Any = padding_kv __UpperCAmelCase: Union[str, Any] = stride_kv __UpperCAmelCase: Optional[Any] = padding_q __UpperCAmelCase: Optional[Any] = stride_q __UpperCAmelCase: Union[str, Any] = initializer_range __UpperCAmelCase: Union[str, Any] = layer_norm_eps
720
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class a : """simple docstring""" def __init__( self , snake_case_ = None ): '''simple docstring''' if components is None: __UpperCAmelCase: List[Any] = [] __UpperCAmelCase: Tuple = list(snake_case_ ) def __len__( self ): '''simple docstring''' return len(self.__components ) def __str__( self ): '''simple docstring''' return "(" + ",".join(map(snake_case_ , self.__components ) ) + ")" def __add__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = len(self ) if size == len(snake_case_ ): __UpperCAmelCase: str = [self.__components[i] + other.component(snake_case_ ) for i in range(snake_case_ )] return Vector(snake_case_ ) else: raise Exception("""must have the same size""" ) def __sub__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Dict = len(self ) if size == len(snake_case_ ): __UpperCAmelCase: Dict = [self.__components[i] - other.component(snake_case_ ) for i in range(snake_case_ )] return Vector(snake_case_ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , snake_case_ ): '''simple docstring''' ... @overload def __mul__( self , snake_case_ ): '''simple docstring''' ... def __mul__( self , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , (float, int) ): __UpperCAmelCase: str = [c * other for c in self.__components] return Vector(snake_case_ ) elif isinstance(snake_case_ , snake_case_ ) and len(self ) == len(snake_case_ ): __UpperCAmelCase: Dict = len(self ) __UpperCAmelCase: List[str] = [self.__components[i] * other.component(snake_case_ ) for i in range(snake_case_ )] return sum(snake_case_ ) else: # error case raise Exception("""invalid operand!""" ) def lowercase_ ( self ): '''simple docstring''' return Vector(self.__components ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) __UpperCAmelCase: List[str] = value def lowercase_ ( self ): '''simple docstring''' if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __UpperCAmelCase: Optional[Any] = [c**2 for c in self.__components] return math.sqrt(sum(snake_case_ ) ) def lowercase_ ( self , snake_case_ , snake_case_ = False ): '''simple docstring''' __UpperCAmelCase: List[Any] = self * other __UpperCAmelCase: Any = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase__ ( _lowercase : int ) -> Vector: assert isinstance(_lowercase , _lowercase ) return Vector([0] * dimension ) def UpperCamelCase__ ( _lowercase : int , _lowercase : int ) -> Vector: assert isinstance(_lowercase , _lowercase ) and (isinstance(_lowercase , _lowercase )) __UpperCAmelCase: int = [0] * dimension __UpperCAmelCase: int = 1 return Vector(_lowercase ) def UpperCamelCase__ ( _lowercase : float , _lowercase : Vector , _lowercase : Vector ) -> Vector: assert ( isinstance(_lowercase , _lowercase ) and isinstance(_lowercase , _lowercase ) and (isinstance(_lowercase , (int, float) )) ) return x * scalar + y def UpperCamelCase__ ( _lowercase : int , _lowercase : int , _lowercase : int ) -> Vector: random.seed(_lowercase ) __UpperCAmelCase: str = [random.randint(_lowercase , _lowercase ) for _ in range(_lowercase )] return Vector(_lowercase ) class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[str] = matrix __UpperCAmelCase: Dict = w __UpperCAmelCase: Tuple = h def __str__( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , snake_case_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __UpperCAmelCase: List[str] = [] for i in range(self.__height ): __UpperCAmelCase: List[Any] = [ self.__matrix[i][j] + other.component(snake_case_ , snake_case_ ) for j in range(self.__width ) ] matrix.append(snake_case_ ) return Matrix(snake_case_ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , snake_case_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): __UpperCAmelCase: int = [] for i in range(self.__height ): __UpperCAmelCase: Any = [ self.__matrix[i][j] - other.component(snake_case_ , snake_case_ ) for j in range(self.__width ) ] matrix.append(snake_case_ ) return Matrix(snake_case_ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , snake_case_ ): '''simple docstring''' ... @overload def __mul__( self , snake_case_ ): '''simple docstring''' ... def __mul__( self , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): # matrix-vector if len(snake_case_ ) == self.__width: __UpperCAmelCase: Optional[Any] = zero_vector(self.__height ) for i in range(self.__height ): __UpperCAmelCase: Dict = [ self.__matrix[i][j] * other.component(snake_case_ ) for j in range(self.__width ) ] ans.change_component(snake_case_ , sum(snake_case_ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(snake_case_ , (int, float) ): # matrix-scalar __UpperCAmelCase: Dict = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(snake_case_ , self.__width , self.__height ) return None def lowercase_ ( self ): '''simple docstring''' return self.__height def lowercase_ ( self ): '''simple docstring''' return self.__width def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCAmelCase: int = value else: raise Exception("""change_component: indices out of bounds""" ) def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __UpperCAmelCase: int = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(snake_case_ ) ): __UpperCAmelCase: Optional[Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(snake_case_ , self.__width - 1 , self.__height - 1 ).determinant() def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(snake_case_ , snake_case_ ) else: raise Exception("""Indices out of bounds""" ) def lowercase_ ( self ): '''simple docstring''' if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCAmelCase: Any = [ self.__matrix[0][y] * self.cofactor(0 , snake_case_ ) for y in range(self.__width ) ] return sum(snake_case_ ) def UpperCamelCase__ ( _lowercase : int ) -> Matrix: __UpperCAmelCase: list[list[float]] = [[0] * n for _ in range(_lowercase )] return Matrix(_lowercase , _lowercase , _lowercase ) def UpperCamelCase__ ( _lowercase : int , _lowercase : int , _lowercase : int , _lowercase : int ) -> Matrix: random.seed(_lowercase ) __UpperCAmelCase: list[list[float]] = [ [random.randint(_lowercase , _lowercase ) for _ in range(_lowercase )] for _ in range(_lowercase ) ] return Matrix(_lowercase , _lowercase , _lowercase )
466
0
import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() lowerCamelCase : Dict =logging.get_logger('''transformers.models.speecht5''') lowerCamelCase : Any ={ '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } lowerCamelCase : Union[str, Any] ={ '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } lowerCamelCase : int ={ '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } lowerCamelCase : List[str] ={ '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } lowerCamelCase : List[str] ={ '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } lowerCamelCase : Optional[int] ={ '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } lowerCamelCase : List[str] ={ '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } lowerCamelCase : Any ={ '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } lowerCamelCase : int ={ **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } lowerCamelCase : Any ={ **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase : Optional[int] ={ **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } lowerCamelCase : Any =[] lowerCamelCase : Dict =[ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] lowerCamelCase : Any =IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] lowerCamelCase : Tuple =IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] lowerCamelCase : Any =IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: for attribute in key.split("." ): UpperCamelCase__ : Optional[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ) if weight_type is not None: UpperCamelCase__ : Optional[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ).shape else: UpperCamelCase__ : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[int] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Optional[int] = value elif weight_type == "running_mean": UpperCamelCase__ : str = value elif weight_type == "running_var": UpperCamelCase__ : Tuple = value elif weight_type == "num_batches_tracked": UpperCamelCase__ : str = value else: UpperCamelCase__ : Any = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: UpperCamelCase__ : Dict = [] if task == "s2t": UpperCamelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase__ : Optional[Any] = MAPPING_S2T UpperCamelCase__ : List[Any] = IGNORE_KEYS_S2T elif task == "t2s": UpperCamelCase__ : List[str] = None UpperCamelCase__ : int = MAPPING_T2S UpperCamelCase__ : int = IGNORE_KEYS_T2S elif task == "s2s": UpperCamelCase__ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCamelCase__ : Tuple = MAPPING_S2S UpperCamelCase__ : List[Any] = IGNORE_KEYS_S2S else: raise ValueError(f'Unsupported task: {task}' ) for name, value in fairseq_dict.items(): if should_ignore(__lowerCAmelCase , __lowerCAmelCase ): logger.info(f'{name} was ignored' ) continue UpperCamelCase__ : Tuple = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) UpperCamelCase__ : int = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = key.split(".*." ) if prefix in name and suffix in name: UpperCamelCase__ : Optional[Any] = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCamelCase__ : List[str] = True if "*" in mapped_key: UpperCamelCase__ : Optional[int] = name.split(__lowerCAmelCase )[0].split("." )[-2] UpperCamelCase__ : str = mapped_key.replace("*" , __lowerCAmelCase ) if "weight_g" in name: UpperCamelCase__ : List[str] = "weight_g" elif "weight_v" in name: UpperCamelCase__ : Dict = "weight_v" elif "bias" in name: UpperCamelCase__ : List[Any] = "bias" elif "weight" in name: UpperCamelCase__ : List[Any] = "weight" elif "running_mean" in name: UpperCamelCase__ : Optional[int] = "running_mean" elif "running_var" in name: UpperCamelCase__ : Dict = "running_var" elif "num_batches_tracked" in name: UpperCamelCase__ : Dict = "num_batches_tracked" else: UpperCamelCase__ : Optional[Any] = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) continue if not is_used: unused_weights.append(__lowerCAmelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: UpperCamelCase__ : Union[str, Any] = full_name.split("conv_layers." )[-1] UpperCamelCase__ : Any = name.split("." ) UpperCamelCase__ : List[str] = int(items[0] ) UpperCamelCase__ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : Any = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCAmelCase ) @torch.no_grad() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Dict: if config_path is not None: UpperCamelCase__ : List[Any] = SpeechTaConfig.from_pretrained(__lowerCAmelCase ) else: UpperCamelCase__ : List[Any] = SpeechTaConfig() if task == "s2t": UpperCamelCase__ : List[str] = config.max_text_positions UpperCamelCase__ : Optional[int] = SpeechTaForSpeechToText(__lowerCAmelCase ) elif task == "t2s": UpperCamelCase__ : Optional[int] = 1876 UpperCamelCase__ : int = 600 UpperCamelCase__ : Any = config.max_speech_positions UpperCamelCase__ : Union[str, Any] = SpeechTaForTextToSpeech(__lowerCAmelCase ) elif task == "s2s": UpperCamelCase__ : List[Any] = 1876 UpperCamelCase__ : Optional[int] = config.max_speech_positions UpperCamelCase__ : Union[str, Any] = SpeechTaForSpeechToSpeech(__lowerCAmelCase ) else: raise ValueError(f'Unknown task name: {task}' ) if vocab_path: UpperCamelCase__ : Optional[int] = SpeechTaTokenizer(__lowerCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken("<mask>" , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) UpperCamelCase__ : Optional[Any] = SpeechTaFeatureExtractor() UpperCamelCase__ : int = SpeechTaProcessor(tokenizer=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) processor.save_pretrained(__lowerCAmelCase ) UpperCamelCase__ : Tuple = torch.load(__lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , __lowerCAmelCase , __lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(__lowerCAmelCase ) model.push_to_hub(__lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase : Tuple =argparse.ArgumentParser() parser.add_argument( '''--task''', default='''s2t''', type=str, help='''Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--vocab_path''', default=None, type=str, help='''Path to SentencePiece model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowerCamelCase : Optional[int] =parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
228
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __a ( A__ ): _lowerCAmelCase : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
228
1
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)] ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : List[Any] = GenerationConfig( do_sample=__lowerCAmelCase ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ,config_name=__lowerCAmelCase ) lowerCAmelCase__ : Any = GenerationConfig.from_pretrained(__lowerCAmelCase ,config_name=__lowerCAmelCase ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample ,__lowerCAmelCase ) self.assertEqual(loaded_config.temperature ,0.7 ) self.assertEqual(loaded_config.length_penalty ,1.0 ) self.assertEqual(loaded_config.bad_words_ids ,[[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k ,50 ) self.assertEqual(loaded_config.max_length ,20 ) self.assertEqual(loaded_config.max_time ,__lowerCAmelCase ) def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = AutoConfig.from_pretrained('''gpt2''' ) lowerCAmelCase__ : int = GenerationConfig.from_model_config(__lowerCAmelCase ) lowerCAmelCase__ : int = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__lowerCAmelCase ,__lowerCAmelCase ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id ,default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id ,model_config.eos_token_id ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : int = GenerationConfig() lowerCAmelCase__ : Union[str, Any] = { '''max_new_tokens''': 10_24, '''foo''': '''bar''', } lowerCAmelCase__ : Tuple = copy.deepcopy(__lowerCAmelCase ) lowerCAmelCase__ : List[Any] = generation_config.update(**__lowerCAmelCase ) # update_kwargs was not modified (no side effects) self.assertEqual(__lowerCAmelCase ,__lowerCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens ,10_24 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__lowerCAmelCase ,{'''foo''': '''bar'''} ) def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : str = GenerationConfig() lowerCAmelCase__ : List[str] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''' ) as tmp_dir: generation_config.save_pretrained(__lowerCAmelCase ) lowerCAmelCase__ : Optional[Any] = GenerationConfig.from_pretrained(__lowerCAmelCase ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo ,'''bar''' ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_model_config(__lowerCAmelCase ) assert not hasattr(__lowerCAmelCase ,'''foo''' ) # no new kwargs should be initialized if from config def lowerCAmelCase__ (self ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Dict = GenerationConfig() self.assertEqual(default_config.temperature ,1.0 ) self.assertEqual(default_config.do_sample ,__lowerCAmelCase ) self.assertEqual(default_config.num_beams ,1 ) lowerCAmelCase__ : int = GenerationConfig( do_sample=__lowerCAmelCase ,temperature=0.7 ,length_penalty=1.0 ,bad_words_ids=[[1, 2, 3], [4, 5]] ,) self.assertEqual(config.temperature ,0.7 ) self.assertEqual(config.do_sample ,__lowerCAmelCase ) self.assertEqual(config.num_beams ,1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__lowerCAmelCase ) lowerCAmelCase__ : str = GenerationConfig.from_pretrained(__lowerCAmelCase ,temperature=1.0 ) self.assertEqual(loaded_config.temperature ,1.0 ) self.assertEqual(loaded_config.do_sample ,__lowerCAmelCase ) self.assertEqual(loaded_config.num_beams ,1 ) # default value @is_staging_test class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @classmethod def lowerCAmelCase__ (cls ) -> Any: """simple docstring""" lowerCAmelCase__ : Optional[Any] = TOKEN HfFolder.save_token(__lowerCAmelCase ) @classmethod def lowerCAmelCase__ (cls ) -> Optional[Any]: """simple docstring""" try: delete_repo(token=cls._token ,repo_id='''test-generation-config''' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='''valid_org/test-generation-config-org''' ) except HTTPError: pass def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : str = GenerationConfig( do_sample=__lowerCAmelCase ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('''test-generation-config''' ,use_auth_token=self._token ) lowerCAmelCase__ : Optional[Any] = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id='''test-generation-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase ,repo_id='''test-generation-config''' ,push_to_hub=__lowerCAmelCase ,use_auth_token=self._token ) lowerCAmelCase__ : Tuple = GenerationConfig.from_pretrained(f"""{USER}/test-generation-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) def lowerCAmelCase__ (self ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Any = GenerationConfig( do_sample=__lowerCAmelCase ,temperature=0.7 ,length_penalty=1.0 ,) config.push_to_hub('''valid_org/test-generation-config-org''' ,use_auth_token=self._token ) lowerCAmelCase__ : List[Any] = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) ) # Reset repo delete_repo(token=self._token ,repo_id='''valid_org/test-generation-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __lowerCAmelCase ,repo_id='''valid_org/test-generation-config-org''' ,push_to_hub=__lowerCAmelCase ,use_auth_token=self._token ) lowerCAmelCase__ : str = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__lowerCAmelCase ,getattr(__lowerCAmelCase ,__lowerCAmelCase ) )
707
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __snake_case : Optional[int] =(3, 9, -1_1, 0, 7, 5, 1, -1) __snake_case : str =(4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class lowerCamelCase__ : '''simple docstring''' snake_case_ =42 snake_case_ =42 class lowerCamelCase__ : '''simple docstring''' def __init__(self ,__lowerCamelCase ) -> None: """simple docstring""" lowerCAmelCase__ : Node | None = None for i in sorted(__lowerCamelCase ,reverse=__lowerCamelCase ): lowerCAmelCase__ : Dict = Node(__lowerCamelCase ,self.head ) def __iter__(self ) -> Iterator[int]: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.head while node: yield node.data lowerCAmelCase__ : Dict = node.next_node def __len__(self ) -> int: """simple docstring""" return sum(1 for _ in self ) def __str__(self ) -> str: """simple docstring""" return " -> ".join([str(__lowerCamelCase ) for node in self] ) def lowerCAmelCase__ ( lowerCamelCase_ : SortedLinkedList ,lowerCamelCase_ : SortedLinkedList): '''simple docstring''' return SortedLinkedList(list(lowerCamelCase_) + list(lowerCamelCase_)) if __name__ == "__main__": import doctest doctest.testmod() __snake_case : Any =SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
90
0
"""simple docstring""" from __future__ import annotations def snake_case_ ( A_ : float, A_ : float, A_ : float, ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
83
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC SCREAMING_SNAKE_CASE :Union[str, Any] = parse(importlib.metadata.version('''torch''')) def _lowerCAmelCase ( lowerCAmelCase_ :Union[str, Version] , lowerCAmelCase_ :str , lowerCAmelCase_ :str )->Any: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'''`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}''' ) snake_case_ = STR_OPERATION_TO_FUNC[operation] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): snake_case_ = parse(importlib.metadata.version(lowerCAmelCase_ ) ) return operation(lowerCAmelCase_ , parse(lowerCAmelCase_ ) ) def _lowerCAmelCase ( lowerCAmelCase_ :str , lowerCAmelCase_ :str )->Any: '''simple docstring''' return compare_versions(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
283
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE( snake_case_ : List[str] ) ->int: '''simple docstring''' _lowercase : List[Any] = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): _lowercase : Optional[Any] = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): _lowercase : Dict = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _lowercase : Any = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] _lowercase : Dict = key.replace(F"patch_embed{idx}" , F"patch_embeddings.{int(snake_case_ )-1}" ) if "norm" in key: _lowercase : List[Any] = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _lowercase : Dict = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] _lowercase : Optional[Any] = key.replace(F"layer_norm{idx}" , F"layer_norm.{int(snake_case_ )-1}" ) if "layer_norm1" in key: _lowercase : Dict = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: _lowercase : Optional[int] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 _lowercase : str = key[key.find('''block''' ) + len('''block''' )] _lowercase : Optional[int] = key.replace(F"block{idx}" , F"block.{int(snake_case_ )-1}" ) if "attn.q" in key: _lowercase : Optional[int] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: _lowercase : Dict = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: _lowercase : str = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: _lowercase : Union[str, Any] = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: _lowercase : List[str] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: _lowercase : int = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: _lowercase : List[str] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) _lowercase : Tuple = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _lowercase : Optional[Any] = key[key.find('''linear_c''' ) + len('''linear_c''' )] _lowercase : int = key.replace(F"linear_c{idx}" , F"linear_c.{int(snake_case_ )-1}" ) if "bot_conv" in key: _lowercase : int = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: _lowercase : Optional[Any] = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: _lowercase : List[Any] = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: _lowercase : List[str] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: _lowercase : Dict = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: _lowercase : int = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: _lowercase : Union[str, Any] = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): _lowercase : Tuple = key.replace('''module.last_layer_depth''' , '''head.head''' ) _lowercase : List[str] = value return new_state_dict def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : Union[str, Any] ) ->Tuple: '''simple docstring''' # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _lowercase : Optional[Any] = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.weight" ) _lowercase : Tuple = state_dict.pop(F"glpn.encoder.block.{i}.{j}.attention.self.kv.bias" ) # next, add keys and values (in that order) to the state dict _lowercase : List[str] = kv_weight[ : config.hidden_sizes[i], : ] _lowercase : Any = kv_bias[: config.hidden_sizes[i]] _lowercase : Any = kv_weight[ config.hidden_sizes[i] :, : ] _lowercase : Any = kv_bias[config.hidden_sizes[i] :] def _SCREAMING_SNAKE_CASE( ) ->Dict: '''simple docstring''' _lowercase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase : List[str] = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) return image @torch.no_grad() def _SCREAMING_SNAKE_CASE( snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Any=False , snake_case_ : Optional[int]=None ) ->str: '''simple docstring''' _lowercase : Dict = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) _lowercase : List[str] = GLPNImageProcessor() # prepare image _lowercase : int = prepare_img() _lowercase : Any = image_processor(images=snake_case_ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict _lowercase : str = torch.load(snake_case_ , map_location=torch.device('''cpu''' ) ) # rename keys _lowercase : str = rename_keys(snake_case_ ) # key and value matrices need special treatment read_in_k_v(snake_case_ , snake_case_ ) # create HuggingFace model and load state dict _lowercase : Tuple = GLPNForDepthEstimation(snake_case_ ) model.load_state_dict(snake_case_ ) model.eval() # forward pass _lowercase : str = model(snake_case_ ) _lowercase : str = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: _lowercase : List[str] = torch.tensor( [[4.4_1_4_7, 4.0_8_7_3, 4.0_6_7_3], [3.7_8_9_0, 3.2_8_8_1, 3.1_5_2_5], [3.7_6_7_4, 3.5_4_2_3, 3.4_9_1_3]] ) elif "kitti" in model_name: _lowercase : Optional[Any] = torch.tensor( [[3.4_2_9_1, 2.7_8_6_5, 2.5_1_5_1], [3.2_8_4_1, 2.7_0_2_1, 2.3_5_0_2], [3.1_1_4_7, 2.4_6_2_5, 2.2_4_8_1]] ) else: raise ValueError(F"Unknown model name: {model_name}" ) _lowercase : int = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , snake_case_ , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(snake_case_ , snake_case_ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=snake_case_ , ) image_processor.push_to_hub( repo_path_or_name=Path(snake_case_ , snake_case_ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=snake_case_ , ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) lowerCamelCase__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
709
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Dict , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Union[str, Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Optional[int] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : str , *UpperCamelCase_ : int , **UpperCamelCase_ : int ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[Any] , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[str] , *UpperCamelCase_ : str , **UpperCamelCase_ : List[str] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Union[str, Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Any , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Tuple ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[Any] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Any ) -> int: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[int] , *UpperCamelCase_ : str , **UpperCamelCase_ : str ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Optional[int] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Any , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Tuple , *UpperCamelCase_ : int , **UpperCamelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Union[str, Any] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Any ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : str , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[Any] ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Dict , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : int ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[Any] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : List[str] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Union[str, Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Any , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Dict ) -> str: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : List[str] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[str] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[int] , *UpperCamelCase_ : int , **UpperCamelCase_ : int ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Optional[Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : Optional[int] ) -> int: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : List[str] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Dict ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : int , *UpperCamelCase_ : Any , **UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : int , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : str , *UpperCamelCase_ : Dict , **UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : List[Any] , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Tuple ) -> Any: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : int , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : Union[str, Any] ) -> int: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : str , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Tuple , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] ) class _lowerCAmelCase ( metaclass=__A ): '''simple docstring''' snake_case_ = ['flax'] def __init__( self : Dict , *UpperCamelCase_ : Any , **UpperCamelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['''flax'''] ) @classmethod def __lowercase ( cls : Dict , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[str] ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''flax'''] ) @classmethod def __lowercase ( cls : Optional[int] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Optional[int] ) -> Dict: '''simple docstring''' requires_backends(cls , ['''flax'''] )
411
0
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True lowercase = 4 lowercase = (1 << p) - 1 for _ in range(p - 2 ): lowercase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
84
def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: A__ : Tuple =1 for i in range(1, num + 1 ): fact *= i return fact def SCREAMING_SNAKE_CASE__ ( snake_case_ ) -> int: A__ : Optional[Any] =0 while number > 0: A__ : List[Any] =number % 1_0 sum_of_digits += last_digit A__ : str =number // 1_0 # Removing the last_digit from the given number return sum_of_digits def SCREAMING_SNAKE_CASE__ ( snake_case_ = 1_0_0 ) -> int: A__ : List[str] =factorial(snake_case_ ) A__ : str =split_and_add(snake_case_ ) return result if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
416
0
lowercase_: Optional[Any] = {str(digit): digit**5 for digit in range(10)} def _lowercase ( UpperCAmelCase_): """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_lowerCamelCase)) def _lowercase ( ): """simple docstring""" return sum( number for number in range(1_000 , 1_000_000) if number == digits_fifth_powers_sum(_lowerCamelCase)) if __name__ == "__main__": print(solution())
716
def _lowercase ( UpperCAmelCase_): """simple docstring""" snake_case__ : Any = 1 snake_case__ : Dict = 2 while i * i <= n: snake_case__ : Dict = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _lowercase ( ): """simple docstring""" snake_case__ : int = 1 snake_case__ : str = 1 while True: i += 1 t_num += i if count_divisors(UpperCAmelCase_) > 500: break return t_num if __name__ == "__main__": print(solution())
127
0
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def a ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , A__=None , ) -> Dict: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : Dict = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ : Dict = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=A__ ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=A__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class lowercase : def __init__( self : Tuple , _lowercase : List[str] , _lowercase : Union[str, Any]=13 , _lowercase : Optional[Any]=7 , _lowercase : int=True , _lowercase : str=False , _lowercase : Tuple=99 , _lowercase : Dict=16 , _lowercase : List[str]=2 , _lowercase : Optional[int]=4 , _lowercase : Any=4 , _lowercase : Any="relu" , _lowercase : List[str]=0.1 , _lowercase : Any=0.1 , _lowercase : List[str]=0.0 , _lowercase : Tuple=0.0 , _lowercase : Optional[int]=20 , _lowercase : Any=2 , _lowercase : Union[str, Any]=1 , _lowercase : int=0 , ): SCREAMING_SNAKE_CASE__ : List[Any] = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : List[str] = seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = is_training SCREAMING_SNAKE_CASE__ : Union[str, Any] = use_labels SCREAMING_SNAKE_CASE__ : Dict = vocab_size SCREAMING_SNAKE_CASE__ : List[str] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : List[Any] = hidden_act SCREAMING_SNAKE_CASE__ : str = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple = decoder_layerdrop SCREAMING_SNAKE_CASE__ : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE__ : int = eos_token_id SCREAMING_SNAKE_CASE__ : List[Any] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = bos_token_id def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Any = self.eos_token_id # Eos Token SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Any = self.get_config() SCREAMING_SNAKE_CASE__ : Tuple = prepare_mam_aaa_inputs_dict(_lowercase , _lowercase , _lowercase ) return config, inputs_dict def lowercase__ ( self : Optional[int] ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self : Tuple , _lowercase : str , _lowercase : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = MaMaaaModel(config=_lowercase ).get_decoder().to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[int] = inputs_dict['''attention_mask'''] SCREAMING_SNAKE_CASE__ : Tuple = inputs_dict['''head_mask'''] # first forward pass SCREAMING_SNAKE_CASE__ : Tuple = model(_lowercase , attention_mask=_lowercase , head_mask=_lowercase , use_cache=_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Any = model(_lowercase , attention_mask=_lowercase )['''last_hidden_state'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_lowercase , attention_mask=_lowercase , past_key_values=_lowercase )[ '''last_hidden_state''' ] # select random slice SCREAMING_SNAKE_CASE__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1E-2 ) ) def lowercase__ ( self : Any , _lowercase : Dict , _lowercase : str ): SCREAMING_SNAKE_CASE__ : List[Any] = MaMaaaModel(config=_lowercase ).to(_lowercase ).eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowercase ) SCREAMING_SNAKE_CASE__ : str = outputs.encoder_last_hidden_state SCREAMING_SNAKE_CASE__ : List[str] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : Any = model.get_encoder() encoder.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = MaMaaaEncoder.from_pretrained(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE__ : int = model.get_decoder() decoder.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ : int = MaMaaaDecoder.from_pretrained(_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : int = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=_lowercase , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowerCamelCase : str = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowerCamelCase : Dict = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowerCamelCase : List[str] = True lowerCamelCase : Tuple = True lowerCamelCase : Any = False lowerCamelCase : int = False def lowercase__ ( self : List[str] , _lowercase : Tuple , _lowercase : Any , _lowercase : Tuple , _lowercase : str , _lowercase : List[Any] ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[Any] = MaMaaaModelTester(self ) SCREAMING_SNAKE_CASE__ : Tuple = ConfigTester(self , config_class=_lowercase ) def lowercase__ ( self : List[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = model_class(_lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowercase ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = model_class.from_pretrained(_lowercase , output_loading_info=_lowercase ) self.assertEqual(info['''missing_keys'''] , [] ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): SCREAMING_SNAKE_CASE__ : Dict = model_class(_lowercase ) model.to(_lowercase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = copy.deepcopy(self._prepare_for_class(_lowercase , _lowercase ) ) if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE__ : int = inputs['''input_ids'''] del inputs["input_ids"] else: SCREAMING_SNAKE_CASE__ : int = inputs['''input_ids'''] SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs.get('''decoder_input_ids''' , _lowercase ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , _lowercase ) SCREAMING_SNAKE_CASE__ : str = model.get_input_embeddings() if not self.is_encoder_decoder: SCREAMING_SNAKE_CASE__ : List[str] = wte(_lowercase ) else: SCREAMING_SNAKE_CASE__ : Union[str, Any] = wte(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = wte(_lowercase ) with torch.no_grad(): model(**_lowercase )[0] def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Union[str, Any] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE__ : List[Any] = input_ids.ne(1 ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = MaMaaaForConditionalGeneration(_lowercase ).eval().to(_lowercase ) if torch_device == "cuda": model.half() model.generate(_lowercase , attention_mask=_lowercase ) model.generate(num_beams=4 , do_sample=_lowercase , early_stopping=_lowercase , num_return_sequences=3 ) def a ( A__ ) -> List[str]: '''simple docstring''' return torch.tensor(A__ , dtype=torch.long , device=A__ ) a_ :int = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class lowercase ( unittest.TestCase ): @cached_property def lowercase__ ( self : List[Any] ): return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : List[str] = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : int = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) SCREAMING_SNAKE_CASE__ : Tuple = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = prepare_mam_aaa_inputs_dict(model.config , _lowercase , _lowercase ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_lowercase )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size((1, 11, 10_24) ) self.assertEqual(output.shape , _lowercase ) # change to expected output here SCREAMING_SNAKE_CASE__ : List[str] = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=_lowercase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : int = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(_lowercase ) # change to intended input SCREAMING_SNAKE_CASE__ : Any = _long_tensor([[12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38, 2]] ) SCREAMING_SNAKE_CASE__ : List[str] = _long_tensor([[2, 12_80_28, 98, 12, 3_05_27, 27_32, 1_59, 77_55, 6_19_04, 3_91_44, 38]] ) SCREAMING_SNAKE_CASE__ : Optional[int] = prepare_mam_aaa_inputs_dict(model.config , _lowercase , _lowercase ) with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Optional[Any] = model(**_lowercase )[0] SCREAMING_SNAKE_CASE__ : Optional[int] = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _lowercase ) # change to expected output here SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=_lowercase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowercase , atol=_lowercase ) ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : int = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) SCREAMING_SNAKE_CASE__ : int = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_lowercase , padding=_lowercase , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE__ : Tuple = model.generate( input_ids=dct['''input_ids'''].to(_lowercase ) , attention_mask=dct['''attention_mask'''].to(_lowercase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_lowercase , skip_special_tokens=_lowercase ) assert generated == expected_en
35
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE ( __a ): """simple docstring""" __A = "dandelin/vilt-b32-finetuned-vqa" __A = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __A = "image_qa" __A = AutoProcessor __A = AutoModelForVisualQuestionAnswering __A = ["image", "text"] __A = ["text"] def __init__( self : List[Any] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : str ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) def a ( self : int , __lowerCAmelCase : "Image" , __lowerCAmelCase : str ): """simple docstring""" return self.pre_processor(__lowerCAmelCase , __lowerCAmelCase , return_tensors='pt' ) def a ( self : Dict , __lowerCAmelCase : Tuple ): """simple docstring""" with torch.no_grad(): return self.model(**__lowerCAmelCase ).logits def a ( self : Tuple , __lowerCAmelCase : str ): """simple docstring""" _lowerCAmelCase = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
309
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=1 / 255 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE=True , ) -> Dict: """simple docstring""" # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p UpperCamelCase = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std UpperCamelCase = do_pad def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Dict: """simple docstring""" if not batched: UpperCamelCase = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE , Image.Image ): UpperCamelCase , UpperCamelCase = image.size else: UpperCamelCase , UpperCamelCase = image.shape[1], image.shape[2] if w < h: UpperCamelCase = int(self.size["shortest_edge"] * h / w ) UpperCamelCase = self.size["shortest_edge"] elif w > h: UpperCamelCase = self.size["shortest_edge"] UpperCamelCase = int(self.size["shortest_edge"] * w / h ) else: UpperCamelCase = self.size["shortest_edge"] UpperCamelCase = self.size["shortest_edge"] else: UpperCamelCase = [] for image in image_inputs: UpperCamelCase , UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[0] )[0] UpperCamelCase = max(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __UpperCAmelCase ( snake_case__ , unittest.TestCase ): """simple docstring""" lowercase = DetrImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = DetrImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_mean" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "image_std" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_rescale" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "rescale_factor" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_pad" ) ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE ) UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) UpperCamelCase = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase = image_processing(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values UpperCamelCase , UpperCamelCase = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" # prepare image and target UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"image_id": 39769, "annotations": target} # encode them UpperCamelCase = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) UpperCamelCase = image_processing(images=SCREAMING_SNAKE_CASE , annotations=SCREAMING_SNAKE_CASE , return_tensors="pt" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , SCREAMING_SNAKE_CASE ) ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , SCREAMING_SNAKE_CASE ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" # prepare image, target and masks_path UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = {"file_name": "000000039769.png", "image_id": 39769, "segments_info": target} UpperCamelCase = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them UpperCamelCase = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) UpperCamelCase = image_processing(images=SCREAMING_SNAKE_CASE , annotations=SCREAMING_SNAKE_CASE , masks_path=SCREAMING_SNAKE_CASE , return_tensors="pt" ) # verify pixel values UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape , SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) ) # verify area UpperCamelCase = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , SCREAMING_SNAKE_CASE ) ) # verify boxes UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , SCREAMING_SNAKE_CASE ) UpperCamelCase = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # verify image_id UpperCamelCase = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , SCREAMING_SNAKE_CASE ) ) # verify is_crowd UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , SCREAMING_SNAKE_CASE ) ) # verify class_labels UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , SCREAMING_SNAKE_CASE ) ) # verify masks UpperCamelCase = 822873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , SCREAMING_SNAKE_CASE ) # verify orig_size UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , SCREAMING_SNAKE_CASE ) ) # verify size UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , SCREAMING_SNAKE_CASE ) )
414
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def __magic_name__ ( lowercase_ = "isbn/0140328726" ) -> dict: '''simple docstring''' UpperCamelCase = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: UpperCamelCase = f'''{olid} is not a valid Open Library olid''' raise ValueError(lowercase_ ) return requests.get(f'''https://openlibrary.org/{new_olid}.json''' ).json() def __magic_name__ ( lowercase_ ) -> dict: '''simple docstring''' UpperCamelCase = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } UpperCamelCase = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} UpperCamelCase = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] UpperCamelCase = data["First sentence"]["value"] for key, value in data.items(): if isinstance(lowercase_ , lowercase_ ): UpperCamelCase = ", ".join(lowercase_ ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __a : Optional[Any] = input("""\nEnter the ISBN code to search (or 'quit' to stop): """).strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (1_0, 1_3) or not isbn.isdigit(): print(F'Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.') continue print(F'\nSearching Open Library for ISBN: {isbn}...\n') try: __a : Any = summarize_book(get_openlibrary_data(F'isbn/{isbn}')) print("""\n""".join(F'{key}: {value}' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'Sorry, there are no results for ISBN: {isbn}.')
414
1
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case_ ( __UpperCamelCase , unittest.TestCase ): """simple docstring""" snake_case__ = ConsistencyModelPipeline snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case__ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt snake_case__ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def UpperCAmelCase__ (self: Any ) -> Any: '''simple docstring''' __a : Optional[Any] = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet" , ) return unet @property def UpperCAmelCase__ (self: int ) -> Union[str, Any]: '''simple docstring''' __a : int = UNetaDModel.from_pretrained( "diffusers/consistency-models-test" , subfolder="test_unet_class_cond" , ) return unet def UpperCAmelCase__ (self: Tuple , __UpperCAmelCase: Union[str, Any]=False ) -> int: '''simple docstring''' if class_cond: __a : List[Any] = self.dummy_cond_unet else: __a : Optional[int] = self.dummy_uncond_unet # Default to CM multistep sampler __a : Optional[int] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __a : int = { "unet": unet, "scheduler": scheduler, } return components def UpperCAmelCase__ (self: int , __UpperCAmelCase: Optional[int] , __UpperCAmelCase: Tuple=0 ) -> Optional[Any]: '''simple docstring''' if str(__UpperCAmelCase ).startswith("mps" ): __a : Tuple = torch.manual_seed(__UpperCAmelCase ) else: __a : List[str] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __a : Optional[Any] = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def UpperCAmelCase__ (self: Optional[int] ) -> Optional[int]: '''simple docstring''' __a : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator __a : int = self.get_dummy_components() __a : List[str] = ConsistencyModelPipeline(**__UpperCAmelCase ) __a : Optional[int] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Any = self.get_dummy_inputs(__UpperCAmelCase ) __a : Union[str, Any] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 32, 32, 3) __a : Any = image[0, -3:, -3:, -1] __a : Optional[Any] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ (self: List[Any] ) -> Optional[int]: '''simple docstring''' __a : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator __a : List[str] = self.get_dummy_components(class_cond=__UpperCAmelCase ) __a : Optional[Any] = ConsistencyModelPipeline(**__UpperCAmelCase ) __a : str = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase ) __a : Tuple = 0 __a : List[Any] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 32, 32, 3) __a : str = image[0, -3:, -3:, -1] __a : Union[str, Any] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ (self: Optional[int] ) -> Optional[Any]: '''simple docstring''' __a : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator __a : Optional[int] = self.get_dummy_components() __a : List[Any] = ConsistencyModelPipeline(**__UpperCAmelCase ) __a : Dict = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs(__UpperCAmelCase ) __a : Union[str, Any] = 1 __a : Optional[int] = None __a : Optional[Any] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 32, 32, 3) __a : List[str] = image[0, -3:, -3:, -1] __a : int = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ (self: Union[str, Any] ) -> Any: '''simple docstring''' __a : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator __a : Optional[Any] = self.get_dummy_components(class_cond=__UpperCAmelCase ) __a : Dict = ConsistencyModelPipeline(**__UpperCAmelCase ) __a : Optional[int] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Optional[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __a : List[str] = 1 __a : int = None __a : Tuple = 0 __a : List[str] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 32, 32, 3) __a : List[str] = image[0, -3:, -3:, -1] __a : Any = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ (self: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ (self: Optional[Any] , __UpperCAmelCase: int=0 , __UpperCAmelCase: Union[str, Any]=False , __UpperCAmelCase: int="cpu" , __UpperCAmelCase: List[str]=torch.floataa , __UpperCAmelCase: List[Any]=(1, 3, 64, 64) ) -> Optional[int]: '''simple docstring''' __a : Tuple = torch.manual_seed(__UpperCAmelCase ) __a : List[str] = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: __a : Optional[int] = self.get_fixed_latents(seed=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase , shape=__UpperCAmelCase ) __a : List[str] = latents return inputs def UpperCAmelCase__ (self: List[str] , __UpperCAmelCase: int=0 , __UpperCAmelCase: int="cpu" , __UpperCAmelCase: Any=torch.floataa , __UpperCAmelCase: List[Any]=(1, 3, 64, 64) ) -> str: '''simple docstring''' if type(__UpperCAmelCase ) == str: __a : Optional[Any] = torch.device(__UpperCAmelCase ) __a : Union[str, Any] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __a : Optional[Any] = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) return latents def UpperCAmelCase__ (self: Optional[Any] ) -> str: '''simple docstring''' __a : Optional[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __a : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __a : List[Any] = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Tuple = self.get_inputs() __a : Union[str, Any] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 64, 64, 3) __a : List[Any] = image[0, -3:, -3:, -1] __a : Optional[int] = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def UpperCAmelCase__ (self: Union[str, Any] ) -> List[Any]: '''simple docstring''' __a : str = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __a : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __a : int = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : List[Any] = self.get_inputs() __a : Union[str, Any] = 1 __a : Dict = None __a : int = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 64, 64, 3) __a : int = image[0, -3:, -3:, -1] __a : int = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def UpperCAmelCase__ (self: str ) -> Optional[Any]: '''simple docstring''' __a : List[Any] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __a : Tuple = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __a : List[str] = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Optional[Any] = self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase ): __a : List[str] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 64, 64, 3) __a : List[Any] = image[0, -3:, -3:, -1] __a : Union[str, Any] = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def UpperCAmelCase__ (self: List[Any] ) -> str: '''simple docstring''' __a : Optional[int] = UNetaDModel.from_pretrained("diffusers/consistency_models" , subfolder="diffusers_cd_imagenet64_l2" ) __a : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __a : Union[str, Any] = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Tuple = self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase ) __a : str = 1 __a : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase ): __a : Optional[Any] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 64, 64, 3) __a : Union[str, Any] = image[0, -3:, -3:, -1] __a : Optional[int] = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
351
from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case_ ( __UpperCamelCase ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase__ (__UpperCAmelCase: ArgumentParser ) -> Tuple: '''simple docstring''' raise NotImplementedError() @abstractmethod def UpperCAmelCase__ (self: List[str] ) -> List[str]: '''simple docstring''' raise NotImplementedError()
351
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int class lowercase : '''simple docstring''' def __init__( self : Union[str, Any] , snake_case : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = [[] for _ in range(A_ )] SCREAMING_SNAKE_CASE : int = size def __getitem__( self : Optional[int] , snake_case : int ): '''simple docstring''' return iter(self._graph[vertex] ) @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return self._size def lowerCamelCase_ ( self : Any , snake_case : int , snake_case : int , snake_case : int ): '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(A_ , A_ ) ) def lowerCamelCase_ ( self : Union[str, Any] , snake_case : int , snake_case : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = deque([start_vertex] ) SCREAMING_SNAKE_CASE : Optional[int] = [None] * self.size SCREAMING_SNAKE_CASE : Optional[int] = 0 while queue: SCREAMING_SNAKE_CASE : List[str] = queue.popleft() SCREAMING_SNAKE_CASE : Any = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: SCREAMING_SNAKE_CASE : Optional[Any] = current_distance + edge.weight SCREAMING_SNAKE_CASE : Tuple = distances[edge.destination_vertex] if ( isinstance(A_ , A_ ) and new_distance >= dest_vertex_distance ): continue SCREAMING_SNAKE_CASE : Any = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
700
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _lowerCamelCase : Dict = logging.get_logger(__name__) @dataclass class lowercase : '''simple docstring''' UpperCAmelCase : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys())}) UpperCAmelCase : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'}) UpperCAmelCase : int = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCAmelCase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={'help': 'Overwrite the cached training and evaluation sets'}) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.task_name.lower() class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : List[Any] = 'train' UpperCAmelCase : Optional[Any] = 'dev' UpperCAmelCase : Optional[int] = 'test' class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' UpperCAmelCase : GlueDataTrainingArguments UpperCAmelCase : str UpperCAmelCase : List[InputFeatures] def __init__( self : Union[str, Any] , snake_case : GlueDataTrainingArguments , snake_case : PreTrainedTokenizerBase , snake_case : Optional[int] = None , snake_case : Union[str, Split] = Split.train , snake_case : Optional[str] = None , ): '''simple docstring''' warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , snake_case , ) SCREAMING_SNAKE_CASE : Tuple = args SCREAMING_SNAKE_CASE : int = glue_processors[args.task_name]() SCREAMING_SNAKE_CASE : str = glue_output_modes[args.task_name] if isinstance(snake_case , snake_case ): try: SCREAMING_SNAKE_CASE : Any = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) SCREAMING_SNAKE_CASE : Any = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = label_list[2], label_list[1] SCREAMING_SNAKE_CASE : List[Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE : Union[str, Any] = cached_features_file + '.lock' with FileLock(snake_case ): if os.path.exists(snake_case ) and not args.overwrite_cache: SCREAMING_SNAKE_CASE : Optional[int] = time.time() SCREAMING_SNAKE_CASE : int = torch.load(snake_case ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(f'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: SCREAMING_SNAKE_CASE : str = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: SCREAMING_SNAKE_CASE : Dict = self.processor.get_test_examples(args.data_dir ) else: SCREAMING_SNAKE_CASE : str = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = examples[:limit_length] SCREAMING_SNAKE_CASE : Optional[Any] = glue_convert_examples_to_features( snake_case , snake_case , max_length=args.max_seq_length , label_list=snake_case , output_mode=self.output_mode , ) SCREAMING_SNAKE_CASE : Tuple = time.time() torch.save(self.features , snake_case ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : int ): '''simple docstring''' return len(self.features ) def __getitem__( self : Dict , snake_case : Optional[int] ): '''simple docstring''' return self.features[i] def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.label_list
308
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase__ ={ "configuration_groupvit": [ "GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GroupViTConfig", "GroupViTOnnxConfig", "GroupViTTextConfig", "GroupViTVisionConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ =[ "GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ =[ "TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFGroupViTModel", "TFGroupViTPreTrainedModel", "TFGroupViTTextModel", "TFGroupViTVisionModel", ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys UpperCAmelCase__ =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
616
"""simple docstring""" from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging UpperCAmelCase__ =logging.get_logger(__name__) UpperCAmelCase__ ={ "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCamelCase__ ( _a ): a : Tuple = """gptj""" a : Union[str, Any] = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , A_ : Optional[int]=5_0_4_0_0 , A_ : Optional[Any]=2_0_4_8 , A_ : Optional[Any]=4_0_9_6 , A_ : Any=2_8 , A_ : Union[str, Any]=1_6 , A_ : int=6_4 , A_ : int=None , A_ : str="gelu_new" , A_ : str=0.0 , A_ : Optional[Any]=0.0 , A_ : Dict=0.0 , A_ : Dict=1e-5 , A_ : Optional[int]=0.02 , A_ : List[str]=True , A_ : List[Any]=5_0_2_5_6 , A_ : Optional[int]=5_0_2_5_6 , A_ : List[Any]=False , **A_ : int , ): '''simple docstring''' __lowercase = vocab_size __lowercase = n_positions __lowercase = n_embd __lowercase = n_layer __lowercase = n_head __lowercase = n_inner __lowercase = rotary_dim __lowercase = activation_function __lowercase = resid_pdrop __lowercase = embd_pdrop __lowercase = attn_pdrop __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id super().__init__( bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ ) class lowerCamelCase__ ( _a ): def __init__( self : int , A_ : PretrainedConfig , A_ : str = "default" , A_ : List[PatchingSpec] = None , A_ : bool = False , ): '''simple docstring''' super().__init__(A_ , task=A_ , patching_specs=A_ , use_past=A_ ) if not getattr(self._config , """pad_token_id""" , A_ ): # TODO: how to do that better? __lowercase = 0 @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' __lowercase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction="""inputs""" ) __lowercase = {0: """batch""", 1: """past_sequence + sequence"""} else: __lowercase = {0: """batch""", 1: """sequence"""} return common_inputs @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' return self._config.n_layer @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' return self._config.n_head def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , A_ : PreTrainedTokenizer , A_ : int = -1 , A_ : int = -1 , A_ : bool = False , A_ : Optional[TensorType] = None , ): '''simple docstring''' __lowercase = super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() __lowercase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __lowercase , __lowercase = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase = [ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] __lowercase = common_inputs["""attention_mask"""] if self.use_past: __lowercase = ordered_inputs["""attention_mask"""].dtype __lowercase = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return 1_3
616
1
'''simple docstring''' def __snake_case ( lowercase : float ): return 10 - x * x def __snake_case ( lowercase : float , lowercase : float ): # Bolzano theory in order to find if there is a root between a and b if equation(lowercase ) * equation(lowercase ) >= 0: raise ValueError("Wrong space!" ) snake_case_ = a while (b - a) >= 0.01: # Find middle point snake_case_ = (a + b) / 2 # Check if middle point is root if equation(lowercase ) == 0.0: break # Decide the side to repeat the steps if equation(lowercase ) * equation(lowercase ) < 0: snake_case_ = c else: snake_case_ = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
710
'''simple docstring''' from __future__ import annotations def __snake_case ( lowercase : list ): if len(lowercase ) == 0: return [] snake_case_ , snake_case_ = min(lowercase ), max(lowercase ) snake_case_ = int(max_value - min_value ) + 1 snake_case_ = [[] for _ in range(lowercase )] for i in my_list: buckets[int(i - min_value )].append(lowercase ) return [v for bucket in buckets for v in sorted(lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
420
0
def __A(lowerCAmelCase ) -> list[int]: """simple docstring""" _UpperCamelCase = len(lowerCAmelCase ) for i in range(lowerCAmelCase ): for j in range(i + 1 , lowerCAmelCase ): if numbers[j] < numbers[i]: _UpperCamelCase , _UpperCamelCase = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCamelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ = [int(item) for item in user_input.split(",")] print(exchange_sort(unsorted))
612
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowerCamelCase__ = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Tuple = "facebook/nllb-200-distilled-600M" UpperCamelCase_ : Optional[Any] = ( "This is a tool that translates text from a language to another. It takes three inputs: `text`, which should " "be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, " "which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in " "plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`." ) UpperCamelCase_ : Any = "translator" UpperCamelCase_ : Union[str, Any] = AutoTokenizer UpperCamelCase_ : Union[str, Any] = AutoModelForSeqaSeqLM UpperCamelCase_ : Any = LANGUAGE_CODES UpperCamelCase_ : Optional[int] = ["text", "text", "text"] UpperCamelCase_ : Optional[Any] = ["text"] def A_ ( self , a , a , a ) -> str: '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) _UpperCamelCase = self.lang_to_code[src_lang] _UpperCamelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( a , return_tensors="""pt""" , src_lang=a , tgt_lang=a ) def A_ ( self , a ) -> Any: '''simple docstring''' return self.model.generate(**a ) def A_ ( self , a ) -> Optional[Any]: '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=a )
612
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 'xmod' def __init__( self : Dict ,lowercase__ : str=3_0_5_2_2 ,lowercase__ : List[Any]=7_6_8 ,lowercase__ : List[Any]=1_2 ,lowercase__ : Optional[Any]=1_2 ,lowercase__ : Tuple=3_0_7_2 ,lowercase__ : List[str]="gelu" ,lowercase__ : Dict=0.1 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[Any]=5_1_2 ,lowercase__ : List[Any]=2 ,lowercase__ : int=0.0_2 ,lowercase__ : int=1e-1_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[str]=0 ,lowercase__ : Dict=2 ,lowercase__ : List[str]="absolute" ,lowercase__ : Dict=True ,lowercase__ : Any=None ,lowercase__ : Optional[Any]=False ,lowercase__ : List[str]=2 ,lowercase__ : List[str]=False ,lowercase__ : Union[str, Any]=True ,lowercase__ : Optional[Any]=True ,lowercase__ : Any=("en_XX",) ,lowercase__ : int=None ,**lowercase__ : str ,): super().__init__(pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = classifier_dropout __lowercase = pre_norm __lowercase = adapter_reduction_factor __lowercase = adapter_layer_norm __lowercase = adapter_reuse_layer_norm __lowercase = ln_before_adapter __lowercase = list(lowercase__ ) __lowercase = default_language class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): if self.task == "multiple-choice": __lowercase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
624
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowercase_ : """simple docstring""" def __init__( self : Union[str, Any] ,lowercase__ : Union[str, Any] ,lowercase__ : List[Any]=1_3 ,lowercase__ : Union[str, Any]=7 ,lowercase__ : List[Any]=True ,lowercase__ : str=True ,lowercase__ : Any=True ,lowercase__ : Union[str, Any]=True ,lowercase__ : Tuple=9_9 ,lowercase__ : List[str]=[1, 1, 2] ,lowercase__ : List[Any]=1 ,lowercase__ : List[Any]=3_2 ,lowercase__ : int=4 ,lowercase__ : Tuple=8 ,lowercase__ : Tuple=3_7 ,lowercase__ : str="gelu_new" ,lowercase__ : Dict=0.1 ,lowercase__ : Optional[int]=0.1 ,lowercase__ : Optional[Any]=0.0 ,lowercase__ : Tuple=5_1_2 ,lowercase__ : Any=3 ,lowercase__ : List[str]=0.0_2 ,lowercase__ : List[Any]=3 ,lowercase__ : List[Any]=4 ,lowercase__ : Optional[Any]=None ,lowercase__ : Tuple=False ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = block_sizes __lowercase = num_decoder_layers __lowercase = d_model __lowercase = n_head __lowercase = d_head __lowercase = d_inner __lowercase = hidden_act __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = 2 __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = initializer_std # Used in the tests to check the size of the first attention layer __lowercase = n_head # Used in the tests to check the size of the first hidden state __lowercase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[str] ,lowercase__ : Union[str, Any] ,lowercase__ : int ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : List[str] ,): __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : int ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Dict ,): __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : List[Any] ,lowercase__ : Optional[int] ,lowercase__ : Dict ,lowercase__ : int ,lowercase__ : List[str] ,): __lowercase = TFFunnelForPreTraining(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,): __lowercase = TFFunnelForMaskedLM(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Tuple ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,): __lowercase = self.num_labels __lowercase = TFFunnelForSequenceClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[str] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Tuple ,): __lowercase = self.num_choices __lowercase = TFFunnelForMultipleChoice(config=lowercase__ ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[str] ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Any ,lowercase__ : Union[str, Any] ,): __lowercase = self.num_labels __lowercase = TFFunnelForTokenClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Dict ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : Tuple ,lowercase__ : Any ,): __lowercase = TFFunnelForQuestionAnswering(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Any = False def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = TFFunnelModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Dict = False SCREAMING_SNAKE_CASE : List[str] = False def SCREAMING_SNAKE_CASE ( self : str ): __lowercase = TFFunnelModelTester(self ,base=lowercase__ ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
624
1
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase : def __init__( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : int=True , __lowerCamelCase : Any=9_9 , __lowerCamelCase : Tuple=3_2 , __lowerCamelCase : str=5 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : List[str]=3_7 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : int=5_1_2 , __lowerCamelCase : Dict=1_6 , __lowerCamelCase : str=2 , __lowerCamelCase : Optional[int]=0.0_2 , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Union[str, Any]=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=__lowerCamelCase , ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): """simple docstring""" _snake_case = FalconModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) _snake_case = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : str , ): """simple docstring""" _snake_case = True _snake_case = FalconModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , ) _snake_case = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , ) _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : str , ): """simple docstring""" _snake_case = FalconForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : str , ): """simple docstring""" _snake_case = True _snake_case = True _snake_case = FalconForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # first forward pass _snake_case = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase , ) _snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) _snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) _snake_case = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['''hidden_states'''][0] _snake_case = model( __lowerCamelCase , attention_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , output_hidden_states=__lowerCamelCase , )['''hidden_states'''][0] # select random slice _snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() _snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() _snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-3 ) ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) A__ : Tuple = (FalconForCausalLM,) if is_torch_available() else () A__ : Optional[Any] = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) A__ : List[Any] = False A__ : List[Any] = False def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = FalconModelTester(self ) _snake_case = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def __UpperCAmelCase ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case , *_snake_case = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: _snake_case = alibi self.model_tester.create_and_check_model(__lowerCamelCase , *__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = input_dict['''input_ids'''] _snake_case = input_ids.ne(1 ).to(__lowerCamelCase ) _snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = '''single_label_classification''' _snake_case = input_dict['''input_ids'''] _snake_case = input_ids.ne(1 ).to(__lowerCamelCase ) _snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _snake_case = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = input_dict['''input_ids'''] _snake_case = FalconForCausalLM(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , use_cache=__lowerCamelCase ) _snake_case = input_ids.shape[0] _snake_case = model._convert_to_rw_cache(result.past_key_values ) _snake_case = model._convert_cache_to_standard_format(__lowerCamelCase , __lowerCamelCase ) for layer in range(len(__lowerCamelCase ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = 3 _snake_case = '''multi_label_classification''' _snake_case = input_dict['''input_ids'''] _snake_case = input_ids.ne(1 ).to(__lowerCamelCase ) _snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _snake_case = FalconForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(__lowerCamelCase , '''use_cache''' ): return _snake_case = model_class(__lowerCamelCase ).to(__lowerCamelCase ) if "use_cache" not in inputs: _snake_case = True _snake_case = model(**__lowerCamelCase ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return _snake_case = ( getattr(__lowerCamelCase , '''decoder_layers''' , __lowerCamelCase ) or getattr(__lowerCamelCase , '''num_decoder_layers''' , __lowerCamelCase ) or config.num_hidden_layers ) _snake_case = getattr(__lowerCamelCase , '''num_kv_heads''' , config.num_attention_heads ) _snake_case = getattr(__lowerCamelCase , '''d_model''' , config.hidden_size ) _snake_case = embed_dim // num_attention_heads _snake_case = outputs['''past_key_values'''] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) _snake_case , _snake_case = inputs['''input_ids'''].shape for i in range(__lowerCamelCase ): if config.new_decoder_architecture: _snake_case = config.num_attention_heads elif config.multi_query: _snake_case = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) _snake_case = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''' ) model.eval() model.to(__lowerCamelCase ) _snake_case = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCamelCase ) _snake_case = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) _snake_case = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=1_9 ) _snake_case = tokenizer.batch_decode(__lowerCamelCase )[0] self.assertEqual(__lowerCamelCase , __lowerCamelCase ) @slow def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: _snake_case = AutoTokenizer.from_pretrained(__lowerCamelCase ) _snake_case = FalconForCausalLM.from_pretrained(__lowerCamelCase ) model.eval() model.to(__lowerCamelCase ) _snake_case = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCamelCase ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=4 ) model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=4 ) model.generate(**__lowerCamelCase , num_beams=2 , max_new_tokens=4 ) @slow def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: _snake_case = AutoTokenizer.from_pretrained(__lowerCamelCase ) _snake_case = FalconForCausalLM.from_pretrained(__lowerCamelCase ) model.eval() model.to(device=__lowerCamelCase ) _snake_case = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(__lowerCamelCase ) # Test results are the same with and without cache _snake_case = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=2_0 , use_cache=__lowerCamelCase ) _snake_case = model.generate(**__lowerCamelCase , do_sample=__lowerCamelCase , max_new_tokens=2_0 , use_cache=__lowerCamelCase ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
103
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ) -> list[int]: """simple docstring""" A : Optional[int] = int(_lowerCAmelCase ) # Initialize Result A : int = [] # Traverse through all denomination for denomination in reversed(_lowerCAmelCase ): # Find denominations while int(_lowerCAmelCase ) >= int(_lowerCAmelCase ): total_value -= int(_lowerCAmelCase ) answer.append(_lowerCAmelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": SCREAMING_SNAKE_CASE_:List[Any] = [] SCREAMING_SNAKE_CASE_:Dict = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): SCREAMING_SNAKE_CASE_:Optional[int] = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) SCREAMING_SNAKE_CASE_:Optional[Any] = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter SCREAMING_SNAKE_CASE_:Tuple = [1, 2, 5, 10, 20, 50, 100, 500, 2_000] SCREAMING_SNAKE_CASE_:Optional[Any] = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F"""Following is minimal change for {value}: """) SCREAMING_SNAKE_CASE_:str = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
662
0
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase ( __UpperCamelCase : list[float] , __UpperCamelCase : Any ): '''simple docstring''' print(F'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(__UpperCamelCase ): print(F'{i}\t\t{d}' ) def __lowerCAmelCase ( __UpperCamelCase : list[dict[str, int]] , __UpperCamelCase : list[float] , __UpperCamelCase : int ): '''simple docstring''' for j in range(__UpperCamelCase ): snake_case_ : Any = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: return True return False def __lowerCAmelCase ( __UpperCamelCase : list[dict[str, int]] , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : str = [float("""inf""" )] * vertex_count snake_case_ : List[str] = 0.0 for _ in range(vertex_count - 1 ): for j in range(__UpperCamelCase ): snake_case_ : Tuple = (graph[j][k] for k in ["""src""", """dst""", """weight"""]) if distance[u] != float("""inf""" ) and distance[u] + w < distance[v]: snake_case_ : Optional[Any] = distance[u] + w snake_case_ : Tuple = check_negative_cycle(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if negative_cycle_exists: raise Exception("""Negative cycle found""" ) return distance if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : List[str] = int(input('''Enter number of vertices: ''').strip()) __lowerCAmelCase : List[Any] = int(input('''Enter number of edges: ''').strip()) __lowerCAmelCase : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) __lowerCAmelCase : Dict = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) __lowerCAmelCase : List[str] = {'''src''': src, '''dst''': dest, '''weight''': weight} __lowerCAmelCase : List[Any] = int(input('''\nEnter shortest path source:''').strip()) __lowerCAmelCase : Union[str, Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
719
"""simple docstring""" import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=1_3 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=9_9 , _lowercase=3_2 , _lowercase=5 , _lowercase=4 , _lowercase=3_7 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=5_1_2 , _lowercase=1_6 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[str]: '''simple docstring''' snake_case_ : Tuple = parent snake_case_ : List[str] = batch_size snake_case_ : int = seq_length snake_case_ : List[Any] = is_training snake_case_ : Optional[int] = use_attention_mask snake_case_ : Optional[Any] = use_token_type_ids snake_case_ : Union[str, Any] = use_labels snake_case_ : str = vocab_size snake_case_ : List[str] = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : int = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : Union[str, Any] = hidden_act snake_case_ : List[str] = hidden_dropout_prob snake_case_ : Any = attention_probs_dropout_prob snake_case_ : List[str] = max_position_embeddings snake_case_ : Union[str, Any] = type_vocab_size snake_case_ : str = type_sequence_label_size snake_case_ : Dict = initializer_range snake_case_ : str = num_choices def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : Tuple = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Optional[int] = None if self.use_token_type_ids: snake_case_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' snake_case_ : str = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = True _lowerCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerModelTester(self ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' for model_class_name in self.all_model_classes: snake_case_ : Tuple = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowercase ) snake_case_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case_ : Tuple = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case_ : Dict = model(_lowercase )[0] snake_case_ : Optional[int] = 5_0_0_0_0 snake_case_ : Union[str, Any] = (1, 6, vocab_size) self.assertEqual(output.shape , _lowercase ) snake_case_ : Dict = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowercase , atol=1E-4 ) )
21
0
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _lowercase = logging.get_logger(__name__) _lowercase = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _lowercase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class UpperCAmelCase_ : '''simple docstring''' _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Model type selected in the list: ''' + ''', '''.join(_SCREAMING_SNAKE_CASE )} ) _lowercase : str = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''The input data dir. Should contain the .json files for the SQuAD task.'''} ) _lowercase : int = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowercase : int = field( default=1_2_8 , metadata={'''help''': '''When splitting up a long document into chunks, how much stride to take between chunks.'''} , ) _lowercase : int = field( default=6_4 , metadata={ '''help''': ( '''The maximum number of tokens for the question. Questions longer than this will ''' '''be truncated to this length.''' ) } , ) _lowercase : int = field( default=3_0 , metadata={ '''help''': ( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ) } , ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) _lowercase : bool = field( default=_SCREAMING_SNAKE_CASE , metadata={'''help''': '''If true, the SQuAD examples contain some that do not have an answer.'''} ) _lowercase : float = field( default=0.0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=2_0 , metadata={'''help''': '''If null_score - best_non_null is greater than the threshold predict null.'''} ) _lowercase : int = field( default=0 , metadata={ '''help''': ( '''language id of input for language-specific xlm models (see''' ''' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)''' ) } , ) _lowercase : int = field(default=1 , metadata={'''help''': '''multiple threads for converting example to features'''} ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = '''train''' _lowercase : Union[str, Any] = '''dev''' class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : SquadDataTrainingArguments _lowercase : List[SquadFeatures] _lowercase : Split _lowercase : bool def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = False , _lowercase = None , _lowercase = "pt" , ): """simple docstring""" _lowerCAmelCase = args _lowerCAmelCase = is_language_sensitive _lowerCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_lowercase , _lowercase ): try: _lowerCAmelCase = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase = mode # Load data features from cache or dataset file _lowerCAmelCase = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: _lowerCAmelCase = time.time() _lowerCAmelCase = torch.load(_lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase = self.old_features["""features"""] _lowerCAmelCase = self.old_features.get("""dataset""" , _lowercase ) _lowerCAmelCase = self.old_features.get("""examples""" , _lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_lowercase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_lowercase , ) _lowerCAmelCase = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , _lowercase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): """simple docstring""" return len(self.features ) def __getitem__( self , _lowercase ): """simple docstring""" _lowerCAmelCase = self.features[i] _lowerCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
5
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
315
0
import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py a ="""src/transformers""" # This is to make sure the transformers module imported is the one in the repo. a =importlib.util.spec_from_file_location( """transformers""", os.path.join(PATH_TO_TRANSFORMERS, """__init__.py"""), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) a =spec.loader.load_module() a =transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` a =re.compile("""\[(.+?)\]\((https://huggingface\.co/.+?)\)""") a ={ """CLIPConfigMixin""", """DecisionTransformerConfigMixin""", """EncoderDecoderConfigMixin""", """RagConfigMixin""", """SpeechEncoderDecoderConfigMixin""", """VisionEncoderDecoderConfigMixin""", """VisionTextDualEncoderConfigMixin""", } def SCREAMING_SNAKE_CASE__ ( ) -> Optional[int]: __lowerCamelCase : int = [] for config_class in list(CONFIG_MAPPING.values() ): __lowerCamelCase : int = False # source code of `config_class` __lowerCamelCase : List[str] = inspect.getsource(lowerCamelCase__ ) __lowerCamelCase : str = _re_checkpoint.findall(lowerCamelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` __lowerCamelCase : List[Any] = checkpoint # verify the checkpoint name corresponds to the checkpoint link __lowerCamelCase : List[str] = F"https://huggingface.co/{ckpt_name}" if ckpt_link == ckpt_link_from_name: __lowerCamelCase : List[str] = True break __lowerCamelCase : Optional[Any] = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: __lowerCamelCase : Tuple = '\n'.join(sorted(lowerCamelCase__ ) ) raise ValueError(F"The following configurations don't contain any valid checkpoint:\n{message}" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
702
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a ={ """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a =[ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys a =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
337
0
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowerCAmelCase : str = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: lowerCAmelCase : Tuple = json.load(f) @require_torch class __magic_name__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self , _a ): """simple docstring""" return FSMTTokenizer.from_pretrained(_a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCamelCase = f'facebook/wmt19-{pair}' lowerCamelCase = self.get_tokenizer(_a ) lowerCamelCase = self.get_model(_a ) lowerCamelCase = bleu_data[pair]["""src"""] lowerCamelCase = bleu_data[pair]["""tgt"""] lowerCamelCase = tokenizer(_a , return_tensors="""pt""" , truncation=_a , padding="""longest""" ).to(_a ) lowerCamelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCamelCase = tokenizer.batch_decode( _a , skip_special_tokens=_a , clean_up_tokenization_spaces=_a ) lowerCamelCase = calculate_bleu(_a , _a ) print(_a ) self.assertGreaterEqual(scores["""bleu"""] , _a )
543
"""simple docstring""" from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def a__ ( snake_case__ ) -> Dict[str, torch.Tensor]: lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = [] for rt in rc.restypes: lowerCamelCase = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) lowerCamelCase = {name: i for i, name in enumerate(snake_case__ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) lowerCamelCase = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowerCamelCase = torch.tensor( snake_case__ , dtype=torch.intaa , device=protein["""aatype"""].device , ) lowerCamelCase = torch.tensor( snake_case__ , dtype=torch.floataa , device=protein["""aatype"""].device , ) lowerCamelCase = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein lowerCamelCase = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase = restype_atomaa_mask[protein_aatype] lowerCamelCase = residx_atomaa_mask lowerCamelCase = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back lowerCamelCase = restype_atomaa_to_atomaa[protein_aatype] lowerCamelCase = residx_atomaa_to_atomaa.long() # create the corresponding mask lowerCamelCase = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): lowerCamelCase = rc.restype_atoa[restype_letter] lowerCamelCase = rc.residue_atoms[restype_name] for atom_name in atom_names: lowerCamelCase = rc.atom_order[atom_name] lowerCamelCase = 1 lowerCamelCase = restype_atomaa_mask[protein_aatype] lowerCamelCase = residx_atomaa_mask return protein def a__ ( snake_case__ ) -> Dict[str, np.ndarray]: lowerCamelCase = tree_map(lambda snake_case__ : torch.tensor(snake_case__ , device=batch["""aatype"""].device ) , snake_case__ , np.ndarray ) lowerCamelCase = tensor_tree_map(lambda snake_case__ : np.array(snake_case__ ) , make_atomaa_masks(snake_case__ ) ) return out
543
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Dict = {'''configuration_mbart''': ['''MBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MBartConfig''', '''MBartOnnxConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ['''MBartTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = ['''MBartTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ '''MBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MBartForCausalLM''', '''MBartForConditionalGeneration''', '''MBartForQuestionAnswering''', '''MBartForSequenceClassification''', '''MBartModel''', '''MBartPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ '''TFMBartForConditionalGeneration''', '''TFMBartModel''', '''TFMBartPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ '''FlaxMBartForConditionalGeneration''', '''FlaxMBartForQuestionAnswering''', '''FlaxMBartForSequenceClassification''', '''FlaxMBartModel''', '''FlaxMBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys lowerCAmelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase__ ( UpperCamelCase__ ): def __init__( self ) -> List[str]: # test for the above condition self.test() def UpperCAmelCase_ ( self ) -> Dict: __lowerCAmelCase = 0 __lowerCAmelCase = False while not completed: if counter == 1: self.reset() __lowerCAmelCase = self.advance() if not self.does_advance(UpperCamelCase ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.update(UpperCamelCase ) counter += 1 if counter > 1_0000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def UpperCAmelCase_ ( self ) -> Dict: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase_ ( self , UpperCamelCase ) -> Optional[int]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase_ ( self , UpperCamelCase ) -> Any: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase_ ( self ) -> int: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase_ ( self ) -> int: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def UpperCAmelCase_ ( self , UpperCamelCase=False ) -> str: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class UpperCAmelCase__ ( UpperCamelCase__ ): def __init__( self , UpperCamelCase ) -> Dict: super(UpperCamelCase , self ).__init__() if not isinstance(UpperCamelCase , UpperCamelCase ) or len(UpperCamelCase ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(UpperCamelCase , UpperCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __lowerCAmelCase = token_ids __lowerCAmelCase = len(self.token_ids ) __lowerCAmelCase = -1 # the index of the currently fulfilled step __lowerCAmelCase = False def UpperCAmelCase_ ( self ) -> Optional[int]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase_ ( self , UpperCamelCase ) -> str: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def UpperCAmelCase_ ( self , UpperCamelCase ) -> int: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCamelCase )}''' ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if self.does_advance(UpperCamelCase ): self.fulfilled_idx += 1 __lowerCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): __lowerCAmelCase = True __lowerCAmelCase = completed else: # failed to make progress. __lowerCAmelCase = True self.reset() return stepped, completed, reset def UpperCAmelCase_ ( self ) -> Union[str, Any]: __lowerCAmelCase = False __lowerCAmelCase = 0 def UpperCAmelCase_ ( self ) -> Optional[int]: return self.seqlen - (self.fulfilled_idx + 1) def UpperCAmelCase_ ( self , UpperCamelCase=False ) -> Optional[Any]: __lowerCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: __lowerCAmelCase = self.seqlen __lowerCAmelCase = self.fulfilled_idx __lowerCAmelCase = self.completed return new_constraint class UpperCAmelCase__ : def __init__( self , UpperCamelCase , UpperCamelCase=True ) -> Optional[int]: __lowerCAmelCase = max([len(UpperCamelCase ) for one in nested_token_ids] ) __lowerCAmelCase = {} for token_ids in nested_token_ids: __lowerCAmelCase = root for tidx, token_id in enumerate(UpperCamelCase ): if token_id not in level: __lowerCAmelCase = {} __lowerCAmelCase = level[token_id] if no_subsets and self.has_subsets(UpperCamelCase , UpperCamelCase ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" F''' {nested_token_ids}.''' ) __lowerCAmelCase = root def UpperCAmelCase_ ( self , UpperCamelCase ) -> int: __lowerCAmelCase = self.trie for current_token in current_seq: __lowerCAmelCase = start[current_token] __lowerCAmelCase = list(start.keys() ) return next_tokens def UpperCAmelCase_ ( self , UpperCamelCase ) -> str: __lowerCAmelCase = self.next_tokens(UpperCamelCase ) return len(UpperCamelCase ) == 0 def UpperCAmelCase_ ( self , UpperCamelCase ) -> Optional[int]: __lowerCAmelCase = list(root.values() ) if len(UpperCamelCase ) == 0: return 1 else: return sum([self.count_leaves(UpperCamelCase ) for nn in next_nodes] ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: __lowerCAmelCase = self.count_leaves(UpperCamelCase ) return len(UpperCamelCase ) != leaf_count class UpperCAmelCase__ ( UpperCamelCase__ ): def __init__( self , UpperCamelCase ) -> List[Any]: super(UpperCamelCase , self ).__init__() if not isinstance(UpperCamelCase , UpperCamelCase ) or len(UpperCamelCase ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(UpperCamelCase , UpperCamelCase ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(UpperCamelCase , UpperCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __lowerCAmelCase = DisjunctiveTrie(UpperCamelCase ) __lowerCAmelCase = nested_token_ids __lowerCAmelCase = self.trie.max_height __lowerCAmelCase = [] __lowerCAmelCase = False def UpperCAmelCase_ ( self ) -> List[Any]: __lowerCAmelCase = self.trie.next_tokens(self.current_seq ) if len(UpperCamelCase ) == 0: return None else: return token_list def UpperCAmelCase_ ( self , UpperCamelCase ) -> List[str]: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase )}''' ) __lowerCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def UpperCAmelCase_ ( self , UpperCamelCase ) -> int: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCamelCase )}''' ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False if self.does_advance(UpperCamelCase ): self.current_seq.append(UpperCamelCase ) __lowerCAmelCase = True else: __lowerCAmelCase = True self.reset() __lowerCAmelCase = self.trie.reached_leaf(self.current_seq ) __lowerCAmelCase = completed return stepped, completed, reset def UpperCAmelCase_ ( self ) -> Dict: __lowerCAmelCase = False __lowerCAmelCase = [] def UpperCAmelCase_ ( self ) -> int: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def UpperCAmelCase_ ( self , UpperCamelCase=False ) -> Union[str, Any]: __lowerCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: __lowerCAmelCase = self.seqlen __lowerCAmelCase = self.current_seq __lowerCAmelCase = self.completed return new_constraint class UpperCAmelCase__ : def __init__( self , UpperCamelCase ) -> Union[str, Any]: __lowerCAmelCase = constraints # max # of steps required to fulfill a given constraint __lowerCAmelCase = max([c.seqlen for c in constraints] ) __lowerCAmelCase = len(UpperCamelCase ) __lowerCAmelCase = False self.init_state() def UpperCAmelCase_ ( self ) -> Union[str, Any]: __lowerCAmelCase = [] __lowerCAmelCase = None __lowerCAmelCase = [constraint.copy(stateful=UpperCamelCase ) for constraint in self.constraints] def UpperCAmelCase_ ( self ) -> Optional[int]: __lowerCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def UpperCAmelCase_ ( self ) -> List[str]: __lowerCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __lowerCAmelCase = constraint.advance() if isinstance(UpperCamelCase , UpperCamelCase ): token_list.append(UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ): token_list.extend(UpperCamelCase ) else: __lowerCAmelCase = self.inprogress_constraint.advance() if isinstance(UpperCamelCase , UpperCamelCase ): token_list.append(UpperCamelCase ) elif isinstance(UpperCamelCase , UpperCamelCase ): token_list.extend(UpperCamelCase ) if len(UpperCamelCase ) == 0: return None else: return token_list def UpperCAmelCase_ ( self , UpperCamelCase ) -> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __lowerCAmelCase , __lowerCAmelCase = self.add(UpperCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def UpperCAmelCase_ ( self , UpperCamelCase ) -> Dict: if not isinstance(UpperCamelCase , UpperCamelCase ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) __lowerCAmelCase , __lowerCAmelCase = False, False if self.completed: __lowerCAmelCase = True __lowerCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self.inprogress_constraint.update(UpperCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCamelCase ) ) __lowerCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __lowerCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! __lowerCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCamelCase ): __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = pending_constraint.update(UpperCamelCase ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(UpperCamelCase ) __lowerCAmelCase = None if not complete and stepped: __lowerCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __lowerCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __lowerCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def UpperCAmelCase_ ( self , UpperCamelCase=True ) -> str: __lowerCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __lowerCAmelCase = [ constraint.copy(stateful=UpperCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __lowerCAmelCase = self.inprogress_constraint.copy(stateful=UpperCamelCase ) __lowerCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
39
1
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class __lowerCAmelCase ( nn.Module): '''simple docstring''' __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self : Optional[int] ): A__ : List[str] =[] A__ : Any =[] for i in range(self.num_layers ): A__ : List[str] =self.in_channels if i == 0 else self.out_channels A__ : str =FlaxResnetBlockaD( in_channels=UpperCamelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) A__ : Optional[int] =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase__ ) A__ : Optional[int] =resnets A__ : List[Any] =attentions if self.add_downsample: A__ : Any =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=True ): A__ : str =() for resnet, attn in zip(self.resnets , self.attentions ): A__ : Dict =resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) A__ : Tuple =attn(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) output_states += (hidden_states,) if self.add_downsample: A__ : Tuple =self.downsamplers_a(UpperCamelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module): '''simple docstring''' __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self : List[str] ): A__ : List[str] =[] for i in range(self.num_layers ): A__ : List[str] =self.in_channels if i == 0 else self.out_channels A__ : List[Any] =FlaxResnetBlockaD( in_channels=UpperCamelCase__ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) A__ : Optional[Any] =resnets if self.add_downsample: A__ : Optional[int] =FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str]=True ): A__ : Optional[int] =() for resnet in self.resnets: A__ : List[Any] =resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) output_states += (hidden_states,) if self.add_downsample: A__ : str =self.downsamplers_a(UpperCamelCase__ ) output_states += (hidden_states,) return hidden_states, output_states class __lowerCAmelCase ( nn.Module): '''simple docstring''' __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self : Optional[int] ): A__ : List[Any] =[] A__ : Optional[int] =[] for i in range(self.num_layers ): A__ : Any =self.in_channels if (i == self.num_layers - 1) else self.out_channels A__ : Any =self.prev_output_channel if i == 0 else self.out_channels A__ : str =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) A__ : Dict =FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase__ ) A__ : Dict =resnets A__ : Dict =attentions if self.add_upsample: A__ : List[str] =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states A__ : Optional[int] =res_hidden_states_tuple[-1] A__ : Dict =res_hidden_states_tuple[:-1] A__ : Optional[int] =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) A__ : List[str] =resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) A__ : str =attn(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) if self.add_upsample: A__ : List[str] =self.upsamplers_a(UpperCamelCase__ ) return hidden_states class __lowerCAmelCase ( nn.Module): '''simple docstring''' __magic_name__ : int __magic_name__ : int __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : bool = True __magic_name__ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self : Optional[int] ): A__ : str =[] for i in range(self.num_layers ): A__ : Any =self.in_channels if (i == self.num_layers - 1) else self.out_channels A__ : int =self.prev_output_channel if i == 0 else self.out_channels A__ : str =FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) A__ : Union[str, Any] =resnets if self.add_upsample: A__ : List[Any] =FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any]=True ): for resnet in self.resnets: # pop res hidden states A__ : Union[str, Any] =res_hidden_states_tuple[-1] A__ : Dict =res_hidden_states_tuple[:-1] A__ : Optional[int] =jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) A__ : Tuple =resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) if self.add_upsample: A__ : Optional[int] =self.upsamplers_a(UpperCamelCase__ ) return hidden_states class __lowerCAmelCase ( nn.Module): '''simple docstring''' __magic_name__ : int __magic_name__ : float = 0.0 __magic_name__ : int = 1 __magic_name__ : int = 1 __magic_name__ : bool = False __magic_name__ : bool = False __magic_name__ : jnp.dtype = jnp.floataa def _UpperCAmelCase ( self : Union[str, Any] ): # there is always at least one resnet A__ : int =[ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] A__ : str =[] for _ in range(self.num_layers ): A__ : Tuple =FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase__ ) A__ : Tuple =FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase__ ) A__ : Tuple =resnets A__ : Tuple =attentions def __call__( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str=True ): A__ : Optional[int] =self.resnets[0](UpperCamelCase__ , UpperCamelCase__ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): A__ : Dict =attn(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) A__ : Dict =resnet(UpperCamelCase__ , UpperCamelCase__ , deterministic=UpperCamelCase__ ) return hidden_states
656
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A : Any = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
656
1
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _A ( __a , unittest.TestCase ): __a = RoCBertTokenizer __a = None __a = False __a = True __a = filter_non_english def _lowerCamelCase ( self ) -> str: super().setUp() lowerCamelCase__ = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] lowerCamelCase__ = {} lowerCamelCase__ = {} for i, value in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = i lowerCamelCase__ = i lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase__ = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) , [5, 6, 2, 5, 7, 8] ) def _lowerCamelCase ( self ) -> List[Any]: lowerCamelCase__ = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _lowerCamelCase ( self ) -> Optional[int]: lowerCamelCase__ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCamelCase ( self ) -> Optional[int]: lowerCamelCase__ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _lowerCamelCase ( self ) -> str: lowerCamelCase__ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCamelCase ( self ) -> Optional[int]: lowerCamelCase__ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE__ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase__ = {} for i, token in enumerate(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = i lowerCamelCase__ = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE__ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _lowerCamelCase ( self ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _lowerCamelCase ( self ) -> Union[str, Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _lowerCamelCase ( self ) -> Optional[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _lowerCamelCase ( self ) -> Any: lowerCamelCase__ = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: lowerCamelCase__ = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def _lowerCamelCase ( self ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowerCamelCase__ = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , return_token_type_ids=SCREAMING_SNAKE_CASE__ , return_offsets_mapping=SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE__ , "do_lower_case" ) else False lowerCamelCase__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = ["的", "人", "有"] lowerCamelCase__ = "".join(SCREAMING_SNAKE_CASE__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase__ = True lowerCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = False lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase__ = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE__ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @slow def _lowerCamelCase ( self ) -> int: lowerCamelCase__ = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) lowerCamelCase__ = tokenizer.encode("你好" , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode("你是谁" , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _lowerCamelCase ( self ) -> Optional[int]: lowerCamelCase__ = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): lowerCamelCase__ = "你好,你是谁" lowerCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
274
"""simple docstring""" def UpperCAmelCase__ ( ) -> int: """simple docstring""" return 1 def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else five_pence(x - 5 ) + two_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(A__ ) def UpperCAmelCase__ ( A__ ) -> int: """simple docstring""" return 0 if x < 0 else two_pound(x - 200 ) + one_pound(A__ ) def UpperCAmelCase__ ( A__ = 200 ) -> int: """simple docstring""" return two_pound(A__ ) if __name__ == "__main__": print(solution(int(input().strip())))
274
1
'''simple docstring''' import pytest lowerCAmelCase_ : Optional[Any] = """__dummy_dataset1__""" lowerCAmelCase_ : List[str] = """\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n""" @pytest.fixture def __A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __A ( ) -> int: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) -> Any: '''simple docstring''' _UpperCamelCase : List[Any] = dataset_loading_script_name _UpperCamelCase : str = tmp_path / "datasets" / script_name script_dir.mkdir(parents=lowerCAmelCase__ ) _UpperCamelCase : Dict = script_dir / f'''{script_name}.py''' with open(lowerCAmelCase__ ,"w" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ )
435
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
711
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
87
0
'''simple docstring''' import numpy as np import qiskit def _a ( _lowerCamelCase = 8 , _lowerCamelCase = None ) -> str: """simple docstring""" __snake_case : Any = np.random.default_rng(seed=_lowerCamelCase ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __snake_case : Optional[int] = 6 * key_len # Measurement basis for Alice's qubits. __snake_case : str = rng.integers(2 , size=_lowerCamelCase ) # The set of states Alice will prepare. __snake_case : Any = rng.integers(2 , size=_lowerCamelCase ) # Measurement basis for Bob's qubits. __snake_case : Any = rng.integers(2 , size=_lowerCamelCase ) # Quantum Circuit to simulate BB84 __snake_case : Dict = qiskit.QuantumCircuit(_lowerCamelCase , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if alice_state[index] == 1: bbaa_circ.x(_lowerCamelCase ) if alice_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_lowerCamelCase ): if bob_basis[index] == 1: bbaa_circ.h(_lowerCamelCase ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __snake_case : int = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __snake_case : Any = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1 , seed_simulator=_lowerCamelCase ) # Returns the result of measurement. __snake_case : str = job.result().get_counts(_lowerCamelCase ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __snake_case : Any = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __snake_case : Any = gen_key[:key_len] if len(_lowerCamelCase ) >= key_len else gen_key.ljust(_lowerCamelCase , """0""" ) return key if __name__ == "__main__": print(f"""The generated key is : {bbaa(8, seed=0)}""") from doctest import testmod testmod()
26
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase__ = get_logger(__name__) lowerCAmelCase__ = Path(__file__).parent / """model_card_template.md""" lowerCAmelCase__ = uuida().hex lowerCAmelCase__ = os.getenv("""HF_HUB_OFFLINE""", """""").upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase__ = os.getenv("""DISABLE_TELEMETRY""", """""").upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[Dict, str, None] = None ) -> str: '''simple docstring''' A__ = F'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F'; torch/{_torch_version}' if is_flax_available(): ua += F'; jax/{_jax_version}' ua += F'; flax/{_flax_version}' if is_onnx_available(): ua += F'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): ua += "; " + "; ".join(F'{k}/{v}' for k, v in user_agent.items() ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): ua += "; " + user_agent return ua def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Optional[str] = None , SCREAMING_SNAKE_CASE_: Optional[str] = None ) -> Optional[int]: '''simple docstring''' if token is None: A__ = HfFolder.get_token() if organization is None: A__ = whoami(SCREAMING_SNAKE_CASE_ )["name"] return F'{username}/{model_id}' else: return F'{organization}/{model_id}' def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: List[str] ) -> Optional[Any]: '''simple docstring''' if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(SCREAMING_SNAKE_CASE_ , "local_rank" ) and args.local_rank not in [-1, 0]: return A__ = args.hub_token if hasattr(SCREAMING_SNAKE_CASE_ , "hub_token" ) else None A__ = get_full_repo_name(SCREAMING_SNAKE_CASE_ , token=SCREAMING_SNAKE_CASE_ ) A__ = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=SCREAMING_SNAKE_CASE_ , model_name=SCREAMING_SNAKE_CASE_ , repo_name=SCREAMING_SNAKE_CASE_ , dataset_name=args.dataset_name if hasattr(SCREAMING_SNAKE_CASE_ , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(SCREAMING_SNAKE_CASE_ , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE_ , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(SCREAMING_SNAKE_CASE_ , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(SCREAMING_SNAKE_CASE_ , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(SCREAMING_SNAKE_CASE_ , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(SCREAMING_SNAKE_CASE_ , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(SCREAMING_SNAKE_CASE_ , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(SCREAMING_SNAKE_CASE_ , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(SCREAMING_SNAKE_CASE_ , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(SCREAMING_SNAKE_CASE_ , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) A__ = os.path.join(args.output_dir , "README.md" ) model_card.save(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[str] , SCREAMING_SNAKE_CASE_: Optional[str] = None ) -> List[str]: '''simple docstring''' if resolved_file is None or commit_hash is not None: return commit_hash A__ = str(Path(SCREAMING_SNAKE_CASE_ ).as_posix() ) A__ = re.search(R"snapshots/([^/]+)/" , SCREAMING_SNAKE_CASE_ ) if search is None: return None A__ = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(SCREAMING_SNAKE_CASE_ ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase__ = os.path.expanduser( os.getenv("""HF_HOME""", os.path.join(os.getenv("""XDG_CACHE_HOME""", """~/.cache"""), """huggingface""")) ) lowerCAmelCase__ = os.path.join(hf_cache_home, """diffusers""") def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[str] = None , SCREAMING_SNAKE_CASE_: Optional[str] = None ) -> None: '''simple docstring''' if new_cache_dir is None: A__ = DIFFUSERS_CACHE if old_cache_dir is None: A__ = old_diffusers_cache A__ = Path(SCREAMING_SNAKE_CASE_ ).expanduser() A__ = Path(SCREAMING_SNAKE_CASE_ ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): A__ = new_cache_dir / old_blob_path.relative_to(SCREAMING_SNAKE_CASE_ ) new_blob_path.parent.mkdir(parents=SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) os.replace(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) try: os.symlink(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase__ = os.path.join(DIFFUSERS_CACHE, """version_diffusers_cache.txt""") if not os.path.isfile(cache_version_file): lowerCAmelCase__ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase__ = int(f.read()) except ValueError: lowerCAmelCase__ = 0 if cache_version < 1: lowerCAmelCase__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( """The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your """ """existing cached models. This is a one-time operation, you can interrupt it or run it """ """later by calling `diffusers.utils.hub_utils.move_cache()`.""" ) try: move_cache() except Exception as e: lowerCAmelCase__ = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( f"""There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease """ """file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole """ """message and we will do our best to help.""" ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, """w""") as f: f.write("""1""") except Exception: logger.warning( f"""There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure """ """the directory exists and can be written to.""" ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Optional[str] = None ) -> str: '''simple docstring''' if variant is not None: A__ = weights_name.split("." ) A__ = splits[:-1] + [variant] + splits[-1:] A__ = ".".join(SCREAMING_SNAKE_CASE_ ) return weights_name def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[int] , *, SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Optional[int]=None , ) -> Optional[int]: '''simple docstring''' A__ = str(SCREAMING_SNAKE_CASE_ ) if os.path.isfile(SCREAMING_SNAKE_CASE_ ): return pretrained_model_name_or_path elif os.path.isdir(SCREAMING_SNAKE_CASE_ ): if os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): # Load from a PyTorch checkpoint A__ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ): A__ = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return model_file else: raise EnvironmentError( F'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.' ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(SCREAMING_SNAKE_CASE_ ).base_version ) >= version.parse("0.20.0" ) ): try: A__ = hf_hub_download( SCREAMING_SNAKE_CASE_ , filename=_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , user_agent=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , revision=revision or commit_hash , ) warnings.warn( F'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , SCREAMING_SNAKE_CASE_ , ) return model_file except: # noqa: E722 warnings.warn( F'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}\' so that the correct variant file can be added.' , SCREAMING_SNAKE_CASE_ , ) try: # 2. Load model file as usual A__ = hf_hub_download( SCREAMING_SNAKE_CASE_ , filename=SCREAMING_SNAKE_CASE_ , cache_dir=SCREAMING_SNAKE_CASE_ , force_download=SCREAMING_SNAKE_CASE_ , proxies=SCREAMING_SNAKE_CASE_ , resume_download=SCREAMING_SNAKE_CASE_ , local_files_only=SCREAMING_SNAKE_CASE_ , use_auth_token=SCREAMING_SNAKE_CASE_ , user_agent=SCREAMING_SNAKE_CASE_ , subfolder=SCREAMING_SNAKE_CASE_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' "this model name. Check the model page at " F'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.' ) except EntryNotFoundError: raise EnvironmentError( F'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.' ) except HTTPError as err: raise EnvironmentError( F'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}' ) except ValueError: raise EnvironmentError( F'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' F' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' F' directory containing a file named {weights_name} or' " \nCheckout your internet connection or see how to run the library in" " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'." ) except EnvironmentError: raise EnvironmentError( F'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' "'https://huggingface.co/models', make sure you don't have a local directory with the same name. " F'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' F'containing a file named {weights_name}' )
514
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCamelCase ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , ): """simple docstring""" _SCREAMING_SNAKE_CASE : int = size if size is not None else {"height": 18, "width": 18} _SCREAMING_SNAKE_CASE : Optional[int] = parent _SCREAMING_SNAKE_CASE : Any = batch_size _SCREAMING_SNAKE_CASE : List[str] = num_channels _SCREAMING_SNAKE_CASE : List[str] = image_size _SCREAMING_SNAKE_CASE : Any = min_resolution _SCREAMING_SNAKE_CASE : Tuple = max_resolution _SCREAMING_SNAKE_CASE : List[Any] = do_resize _SCREAMING_SNAKE_CASE : Optional[int] = size _SCREAMING_SNAKE_CASE : List[str] = apply_ocr def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): A__ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = LayoutLMvaImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "apply_ocr" ) ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) _SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input _SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , snake_case__ ) self.assertIsInstance(encoding.boxes , snake_case__ ) # Test batched _SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _SCREAMING_SNAKE_CASE : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input _SCREAMING_SNAKE_CASE : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _SCREAMING_SNAKE_CASE : Optional[int] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _SCREAMING_SNAKE_CASE : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input _SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _SCREAMING_SNAKE_CASE : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = LayoutLMvaImageProcessor() from datasets import load_dataset _SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) _SCREAMING_SNAKE_CASE : Dict = Image.open(ds[0]["file"] ).convert("RGB" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(snake_case__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _SCREAMING_SNAKE_CASE : Tuple = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 _SCREAMING_SNAKE_CASE : Dict = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , snake_case__ ) self.assertListEqual(encoding.boxes , snake_case__ ) # with apply_OCR = False _SCREAMING_SNAKE_CASE : int = LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) _SCREAMING_SNAKE_CASE : int = image_processing(snake_case__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
295
"""simple docstring""" from __future__ import annotations lowercase_ : List[str] = '''#''' class UpperCamelCase : def __init__( self ): """simple docstring""" _SCREAMING_SNAKE_CASE : dict = {} def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = self._trie for char in text: if char not in trie: _SCREAMING_SNAKE_CASE : List[str] = {} _SCREAMING_SNAKE_CASE : List[str] = trie[char] _SCREAMING_SNAKE_CASE : Optional[Any] = True def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[Any] = self._trie for char in prefix: if char in trie: _SCREAMING_SNAKE_CASE : str = trie[char] else: return [] return self._elements(snake_case__ ) def __SCREAMING_SNAKE_CASE ( self , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = [] for c, v in d.items(): _SCREAMING_SNAKE_CASE : int = [" "] if c == END else [(c + s) for s in self._elements(snake_case__ )] result.extend(snake_case__ ) return tuple(snake_case__ ) lowercase_ : Union[str, Any] = Trie() lowercase_ : Optional[Any] = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def _lowerCAmelCase ( lowerCamelCase__ : str ) -> tuple: _SCREAMING_SNAKE_CASE : Dict = trie.find_word(lowerCamelCase__ ) return tuple(string + word for word in suffixes ) def _lowerCAmelCase ( ) -> None: print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
295
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { '''configuration_nezha''': ['''NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NezhaConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ '''NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NezhaForNextSentencePrediction''', '''NezhaForMaskedLM''', '''NezhaForPreTraining''', '''NezhaForMultipleChoice''', '''NezhaForQuestionAnswering''', '''NezhaForSequenceClassification''', '''NezhaForTokenClassification''', '''NezhaModel''', '''NezhaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
209
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ = { '''configuration_efficientnet''': [ '''EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientNetConfig''', '''EfficientNetOnnxConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''EfficientNetImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ '''EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientNetForImageClassification''', '''EfficientNetModel''', '''EfficientNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientnet import ( EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientNetConfig, EfficientNetOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientnet import EfficientNetImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientnet import ( EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientNetForImageClassification, EfficientNetModel, EfficientNetPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
279
0
from math import factorial def UpperCamelCase ( _a = 1_0_0 ) -> int: '''simple docstring''' return sum(map(_a , str(factorial(_a ) ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
714
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , ): lowercase_ :Dict = parent lowercase_ :Optional[Any] = 13 lowercase_ :Optional[Any] = 7 lowercase_ :List[Any] = 30 lowercase_ :int = self.seq_length + self.mem_len lowercase_ :Any = 15 lowercase_ :Optional[Any] = True lowercase_ :List[Any] = True lowercase_ :Any = 99 lowercase_ :Optional[int] = [10, 50, 80] lowercase_ :Union[str, Any] = 32 lowercase_ :List[Any] = 32 lowercase_ :Tuple = 4 lowercase_ :Tuple = 8 lowercase_ :List[Any] = 128 lowercase_ :Any = 2 lowercase_ :Tuple = 2 lowercase_ :Dict = None lowercase_ :Optional[Any] = 1 lowercase_ :Optional[int] = 0 lowercase_ :List[str] = 3 lowercase_ :Optional[int] = self.vocab_size - 1 lowercase_ :List[Any] = 0.01 def UpperCamelCase ( self ): lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :int = None if self.use_labels: lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ :int = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def UpperCamelCase ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Any = TFTransfoXLModel(UpperCamelCase_ ) lowercase_ , lowercase_ :List[Any] = model(UpperCamelCase_ ).to_tuple() lowercase_ :Dict = {'''input_ids''': input_ids_a, '''mems''': mems_a} lowercase_ , lowercase_ :int = model(UpperCamelCase_ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :Any = TFTransfoXLLMHeadModel(UpperCamelCase_ ) lowercase_ , lowercase_ :int = model(UpperCamelCase_ ).to_tuple() lowercase_ :Optional[int] = {'''input_ids''': input_ids_a, '''labels''': lm_labels} lowercase_ , lowercase_ :Optional[int] = model(UpperCamelCase_ ).to_tuple() lowercase_ , lowercase_ :Tuple = model([input_ids_a, mems_a] ).to_tuple() lowercase_ :Union[str, Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} lowercase_ , lowercase_ :Union[str, Any] = model(UpperCamelCase_ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowercase_ :int = TFTransfoXLForSequenceClassification(UpperCamelCase_ ) lowercase_ :int = model(UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase ( self ): lowercase_ :str = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) :Tuple = config_and_inputs lowercase_ :Dict = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ): '''simple docstring''' lowercase : str =( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) lowercase : Dict =() if is_tf_available() else () lowercase : List[str] =( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented lowercase : Optional[int] =False lowercase : Tuple =False lowercase : Dict =False lowercase : Dict =False def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = TFTransfoXLModelTester(self ) lowercase_ :str = ConfigTester(self , config_class=UpperCamelCase_ , d_embed=37 ) def UpperCamelCase ( self ): self.config_tester.run_common_tests() def UpperCamelCase ( self ): self.model_tester.set_seed() lowercase_ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*UpperCamelCase_ ) def UpperCamelCase ( self ): self.model_tester.set_seed() lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCamelCase_ ) def UpperCamelCase ( self ): lowercase_ , lowercase_ :Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ :List[str] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: lowercase_ :Dict = model_class(UpperCamelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: lowercase_ :str = model.get_output_embeddings() assert isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) lowercase_ :Optional[int] = model.get_bias() assert name is None else: lowercase_ :List[Any] = model.get_output_embeddings() assert x is None lowercase_ :Dict = model.get_bias() assert name is None def UpperCamelCase ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def UpperCamelCase ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :Dict = TFTransfoXLModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' ) def UpperCamelCase ( self ): pass @require_tf class UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Skip test until #12651 is resolved.''' ) @slow def UpperCamelCase ( self ): lowercase_ :Any = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' ) # fmt: off lowercase_ :List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off lowercase_ :List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> lowercase_ :Any = model.generate(UpperCamelCase_ , max_length=200 , do_sample=UpperCamelCase_ ) self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase_ )
441
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger a_ = """<<<<<<< This should probably be modified because it mentions: """ a_ = """======= >>>>>>> """ a_ = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] a_ = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def __lowerCAmelCase ( A_ : Namespace ) -> Optional[int]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class UpperCAmelCase__ ( snake_case ): """simple docstring""" @staticmethod def _UpperCAmelCase ( __lowerCAmelCase: ArgumentParser ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=__lowerCAmelCase , required=__lowerCAmelCase , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=__lowerCAmelCase ) def __init__( self: Optional[int] , __lowerCAmelCase: str , __lowerCAmelCase: str , *__lowerCAmelCase: int ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = get_logger("datasets-cli/converting" ) __UpperCAmelCase = tfds_path __UpperCAmelCase = datasets_directory def _UpperCAmelCase ( self: Any ) -> List[str]: '''simple docstring''' if os.path.isdir(self._tfds_path ): __UpperCAmelCase = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): __UpperCAmelCase = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) __UpperCAmelCase = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) __UpperCAmelCase = [] __UpperCAmelCase = [] __UpperCAmelCase = {} if os.path.isdir(self._tfds_path ): __UpperCAmelCase = os.listdir(__lowerCAmelCase ) else: __UpperCAmelCase = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) __UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if not os.path.isfile(__lowerCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(__lowerCAmelCase , encoding="utf-8" ) as f: __UpperCAmelCase = f.readlines() __UpperCAmelCase = [] __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = [] for line in lines: __UpperCAmelCase = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: __UpperCAmelCase = "import datasets\n" elif "import tensorflow" in out_line: # order is important here __UpperCAmelCase = "" continue elif "from absl import logging" in out_line: __UpperCAmelCase = "from datasets import logging\n" elif "getLogger" in out_line: __UpperCAmelCase = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): __UpperCAmelCase = True __UpperCAmelCase = list(filter(lambda __lowerCAmelCase : e in out_line , __lowerCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(__lowerCAmelCase ) + "\n" ) out_lines.append(__lowerCAmelCase ) out_lines.append(__lowerCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: __UpperCAmelCase = re.sub(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: __UpperCAmelCase = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , __lowerCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) __UpperCAmelCase = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: __UpperCAmelCase = True out_lines.append(__lowerCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset __UpperCAmelCase = f_name.replace(".py" , "" ) __UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(__lowerCAmelCase ) if needs_manual_update: with_manual_update.append(__lowerCAmelCase ) with open(__lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.writelines(__lowerCAmelCase ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: __UpperCAmelCase = os.path.basename(__lowerCAmelCase ) __UpperCAmelCase = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(__lowerCAmelCase , __lowerCAmelCase ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
221
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCAmelCase__ : """simple docstring""" lowerCAmelCase__ : int lowerCAmelCase__ : TreeNode | None = None lowerCAmelCase__ : TreeNode | None = None a_ = namedtuple("""CoinsDistribResult""", """moves excess""") def __lowerCAmelCase ( A_ : TreeNode | None ) -> int: if root is None: return 0 # Validation def count_nodes(A_ : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A_ : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A_ ) != count_coins(A_ ): raise ValueError("The nodes number should be same as the number of coins" ) # Main calculation def get_distrib(A_ : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __UpperCAmelCase , __UpperCAmelCase = get_distrib(node.left ) __UpperCAmelCase , __UpperCAmelCase = get_distrib(node.right ) __UpperCAmelCase = 1 - left_distrib_excess __UpperCAmelCase = 1 - right_distrib_excess __UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(A_ ) + abs(A_ ) ) __UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A_ , A_ ) return get_distrib(A_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
221
1
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase__( __UpperCamelCase: Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) SCREAMING_SNAKE_CASE : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) SCREAMING_SNAKE_CASE : List[str] = 0.0_1 with locka.acquire(): with pytest.raises(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = time.time() locka.acquire(__UpperCamelCase ) assert time.time() - _start > timeout def lowercase__( __UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = 'a' * 10_00 + '.lock' SCREAMING_SNAKE_CASE : str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__UpperCamelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 2_55 SCREAMING_SNAKE_CASE : Optional[Any] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__UpperCamelCase ): locka.acquire(0 )
714
'''simple docstring''' from __future__ import annotations import math def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: int ,__UpperCamelCase: bool ,__UpperCamelCase: list[int] ,__UpperCamelCase: float ): """simple docstring""" if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(__UpperCamelCase ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 ,node_index * 2 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,) return min( minimax(depth + 1 ,node_index * 2 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,minimax(depth + 1 ,node_index * 2 + 1 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ,) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] SCREAMING_SNAKE_CASE : List[Any] = math.log(len(__UpperCamelCase ) ,2 ) print('Optimal value : ' ,end='' ) print(minimax(0 ,0 ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
508
0
from collections.abc import Callable import numpy as np def lowerCamelCase_ ( lowerCAmelCase__ : Callable , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> np.array: '''simple docstring''' A = int(np.ceil((x_end - xa) / step_size ) ) A = np.zeros((n + 1,) ) A = ya A = xa for k in range(lowerCAmelCase__ ): A = y[k] + step_size * ode_func(lowerCAmelCase__ , y[k] ) A = y[k] + ( (step_size / 2) * (ode_func(lowerCAmelCase__ , y[k] ) + ode_func(x + step_size , lowerCAmelCase__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
106
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( _A , unittest.TestCase ): """simple docstring""" A = FunnelTokenizer A = FunnelTokenizerFast A = True A = True def snake_case_ ( self ): '''simple docstring''' super().setUp() lowerCAmelCase__ :str = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase__ :List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def snake_case_ ( self , **_lowerCAmelCase ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case_ ( self , **_lowerCAmelCase ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Tuple = "UNwant\u00E9d,running" lowerCAmelCase__ :Dict = "unwanted, running" return input_text, output_text def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :List[str] = self.tokenizer_class(self.vocab_file ) lowerCAmelCase__ :Any = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_lowerCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def snake_case_ ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = self.get_tokenizers(do_lower_case=_lowerCAmelCase ) for tokenizer in tokenizers: lowerCAmelCase__ :List[str] = tokenizer("UNwant\u00E9d,running" ) lowerCAmelCase__ :Tuple = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCAmelCase__ :List[str] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
145
0
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ = 100 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = n * (n + 1) * (2 * n + 1) / 6 __SCREAMING_SNAKE_CASE = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"{solution() = }")
715
"""simple docstring""" import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCamelCase_ : """simple docstring""" @staticmethod def UpperCAmelCase_ ( *UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: pass @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ ( unittest.TestCase): """simple docstring""" snake_case__ : List[Any] = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] ) -> str: __SCREAMING_SNAKE_CASE = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __SCREAMING_SNAKE_CASE = [ { "image": Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "question": "How many cats are there?", }, { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "question": "How many cats are there?", }, ] return vqa_pipeline, examples def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ) -> Any: __SCREAMING_SNAKE_CASE = vqa_pipeline(UpperCAmelCase__ , top_k=1 ) self.assertEqual( UpperCAmelCase__ , [ [{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}], [{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}], ] , ) @require_torch def UpperCAmelCase_ ( self : Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE = pipeline("visual-question-answering" , model="hf-internal-testing/tiny-vilt-random-vqa" ) __SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" __SCREAMING_SNAKE_CASE = "How many cats are there?" __SCREAMING_SNAKE_CASE = vqa_pipeline(image=UpperCAmelCase__ , question="How many cats are there?" , top_k=2 ) self.assertEqual( UpperCAmelCase__ , [{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( UpperCAmelCase__ , [{"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ )}] ) @slow @require_torch def UpperCAmelCase_ ( self : Tuple ) -> Any: __SCREAMING_SNAKE_CASE = pipeline("visual-question-answering" , model="dandelin/vilt-b32-finetuned-vqa" ) __SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png" __SCREAMING_SNAKE_CASE = "How many cats are there?" __SCREAMING_SNAKE_CASE = vqa_pipeline(image=UpperCAmelCase__ , question=UpperCAmelCase__ , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}] ) __SCREAMING_SNAKE_CASE = vqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__ , decimals=4 ) , [[{"score": 0.8_799, "answer": "2"}, {"score": 0.296, "answer": "1"}]] * 2 , ) @require_tf @unittest.skip("Visual question answering not implemented in TF" ) def UpperCAmelCase_ ( self : str ) -> Optional[Any]: pass
553
0
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> float: if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(__snake_case ) * abs(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
108
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case="shi-labs/oneformer_demo" ) -> Any: with open(hf_hub_download(__snake_case , __snake_case , repo_type="""dataset""" ) , """r""" ) as f: _UpperCAmelCase = json.load(__snake_case ) _UpperCAmelCase = {} _UpperCAmelCase = [] _UpperCAmelCase = [] for key, info in class_info.items(): _UpperCAmelCase = info["""name"""] class_names.append(info["""name"""] ) if info["isthing"]: thing_ids.append(int(__snake_case ) ) _UpperCAmelCase = thing_ids _UpperCAmelCase = class_names return metadata class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any]=7 , lowerCamelCase : str=3 , lowerCamelCase : Union[str, Any]=30 , lowerCamelCase : Optional[int]=400 , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : int=True , lowerCamelCase : List[str]=True , lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase : Tuple=10 , lowerCamelCase : str=False , lowerCamelCase : Union[str, Any]=255 , lowerCamelCase : Tuple="shi-labs/oneformer_demo" , lowerCamelCase : Tuple="ade20k_panoptic.json" , lowerCamelCase : Optional[Any]=10 , ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = min_resolution _UpperCAmelCase = max_resolution _UpperCAmelCase = do_resize _UpperCAmelCase = {"""shortest_edge""": 32, """longest_edge""": 1333} if size is None else size _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean _UpperCAmelCase = image_std _UpperCAmelCase = class_info_file _UpperCAmelCase = prepare_metadata(lowerCamelCase , lowerCamelCase ) _UpperCAmelCase = num_text _UpperCAmelCase = repo_path # for the post_process_functions _UpperCAmelCase = 2 _UpperCAmelCase = 10 _UpperCAmelCase = 10 _UpperCAmelCase = 3 _UpperCAmelCase = 4 _UpperCAmelCase = num_labels _UpperCAmelCase = do_reduce_labels _UpperCAmelCase = ignore_index def lowerCamelCase ( self : int ) -> Union[str, Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def lowerCamelCase ( self : Any , lowerCamelCase : int , lowerCamelCase : Tuple=False ) -> Any: """simple docstring""" if not batched: _UpperCAmelCase = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): _UpperCAmelCase , _UpperCAmelCase = image.size else: _UpperCAmelCase , _UpperCAmelCase = image.shape[1], image.shape[2] if w < h: _UpperCAmelCase = int(self.size["""shortest_edge"""] * h / w ) _UpperCAmelCase = self.size["""shortest_edge"""] elif w > h: _UpperCAmelCase = self.size["""shortest_edge"""] _UpperCAmelCase = int(self.size["""shortest_edge"""] * w / h ) else: _UpperCAmelCase = self.size["""shortest_edge"""] _UpperCAmelCase = self.size["""shortest_edge"""] else: _UpperCAmelCase = [] for image in image_inputs: _UpperCAmelCase , _UpperCAmelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCAmelCase = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] _UpperCAmelCase = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string _lowerCamelCase = image_processing_class def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = OneFormerImageProcessorTester(self ) @property def lowerCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return self.image_processing_tester.prepare_image_processor_dict() def lowerCamelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(lowerCamelCase , """ignore_index""" ) ) self.assertTrue(hasattr(lowerCamelCase , """class_info_file""" ) ) self.assertTrue(hasattr(lowerCamelCase , """num_text""" ) ) self.assertTrue(hasattr(lowerCamelCase , """repo_path""" ) ) self.assertTrue(hasattr(lowerCamelCase , """metadata""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_reduce_labels""" ) ) def lowerCamelCase ( self : Tuple ) -> Any: """simple docstring""" pass def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input _UpperCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) _UpperCAmelCase = image_processor( lowerCamelCase , ["""semantic"""] * len(lowerCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input _UpperCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) _UpperCAmelCase = image_processor( lowerCamelCase , ["""semantic"""] * len(lowerCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : List[str] ) -> Tuple: """simple docstring""" # Initialize image_processor _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input _UpperCAmelCase = image_processor(image_inputs[0] , ["""semantic"""] , return_tensors="""pt""" ).pixel_values _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCAmelCase , _UpperCAmelCase = self.image_processing_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) _UpperCAmelCase = image_processor( lowerCamelCase , ["""semantic"""] * len(lowerCamelCase ) , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def lowerCamelCase ( self : Tuple , lowerCamelCase : Tuple=False , lowerCamelCase : Union[str, Any]=False , lowerCamelCase : Union[str, Any]="np" ) -> str: """simple docstring""" _UpperCAmelCase = self.image_processing_class(**self.image_processor_dict ) # prepare image and target _UpperCAmelCase = self.image_processing_tester.num_labels _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase ) if with_segmentation_maps: _UpperCAmelCase = num_labels if is_instance_map: _UpperCAmelCase = list(range(lowerCamelCase ) ) * 2 _UpperCAmelCase = dict(enumerate(lowerCamelCase ) ) _UpperCAmelCase = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": _UpperCAmelCase = [Image.fromarray(lowerCamelCase ) for annotation in annotations] _UpperCAmelCase = image_processor( lowerCamelCase , ["""semantic"""] * len(lowerCamelCase ) , lowerCamelCase , return_tensors="""pt""" , instance_id_to_semantic_id=lowerCamelCase , pad_and_return_pixel_mask=lowerCamelCase , ) return inputs def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" pass def lowerCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" def common(lowerCamelCase : List[Any]=False , lowerCamelCase : List[Any]=None ): _UpperCAmelCase = self.comm_get_image_processor_inputs( with_segmentation_maps=lowerCamelCase , is_instance_map=lowerCamelCase , segmentation_type=lowerCamelCase ) _UpperCAmelCase = inputs["""mask_labels"""] _UpperCAmelCase = inputs["""class_labels"""] _UpperCAmelCase = inputs["""pixel_values"""] _UpperCAmelCase = inputs["""text_inputs"""] # check the batch_size for mask_label, class_label, text_input in zip(lowerCamelCase , lowerCamelCase , lowerCamelCase ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(lowerCamelCase ) , self.image_processing_tester.num_text ) common() common(is_instance_map=lowerCamelCase ) common(is_instance_map=lowerCamelCase , segmentation_type="""pil""" ) common(is_instance_map=lowerCamelCase , segmentation_type="""pil""" ) def lowerCamelCase ( self : int ) -> List[Any]: """simple docstring""" _UpperCAmelCase = np.zeros((20, 50) ) _UpperCAmelCase = 1 _UpperCAmelCase = 1 _UpperCAmelCase = 1 _UpperCAmelCase = binary_mask_to_rle(lowerCamelCase ) self.assertEqual(len(lowerCamelCase ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def lowerCamelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase = fature_extractor.post_process_semantic_segmentation(lowerCamelCase ) self.assertEqual(len(lowerCamelCase ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) _UpperCAmelCase = [(1, 4) for i in range(self.image_processing_tester.batch_size )] _UpperCAmelCase = fature_extractor.post_process_semantic_segmentation(lowerCamelCase , target_sizes=lowerCamelCase ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def lowerCamelCase ( self : Dict ) -> Any: """simple docstring""" _UpperCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase = image_processor.post_process_instance_segmentation(lowerCamelCase , threshold=0 ) self.assertTrue(len(lowerCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , lowerCamelCase ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def lowerCamelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="""ade20k_panoptic.json""" , num_text=self.image_processing_tester.num_text , repo_path="""shi-labs/oneformer_demo""" , ) _UpperCAmelCase = self.image_processing_tester.get_fake_oneformer_outputs() _UpperCAmelCase = image_processor.post_process_panoptic_segmentation(lowerCamelCase , threshold=0 ) self.assertTrue(len(lowerCamelCase ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("""segmentation""" in el ) self.assertTrue("""segments_info""" in el ) self.assertEqual(type(el["""segments_info"""] ) , lowerCamelCase ) self.assertEqual( el["""segmentation"""].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
108
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ ="""new-model""" if is_tf_available(): class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ =NewModelConfig @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE = "bert-base-cased" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Any: __SCREAMING_SNAKE_CASE = "bert-base-cased" __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Dict: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> List[str]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> int: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Optional[int]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(_a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Any: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) @slow @require_tensorflow_probability def __lowerCAmelCase ( self ) -> Dict: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: __SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(_a ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained( _a, output_loading_info=_a ) self.assertIsNotNone(_a ) self.assertIsInstance(_a, _a ) def __lowerCAmelCase ( self ) -> int: __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsInstance(_a, _a ) self.assertEqual(model.num_parameters(), 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_a ), 1_44_10 ) def __lowerCAmelCase ( self ) -> Tuple: __SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(_a ) self.assertIsInstance(_a, _a ) self.assertEqual(model.num_parameters(), 1_44_10 ) self.assertEqual(model.num_parameters(only_trainable=_a ), 1_44_10 ) def __lowerCAmelCase ( self ) -> List[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(_a, _a ) __SCREAMING_SNAKE_CASE = copy.deepcopy(model.config ) __SCREAMING_SNAKE_CASE = ["FunnelBaseModel"] __SCREAMING_SNAKE_CASE = TFAutoModel.from_config(_a ) self.assertIsInstance(_a, _a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a ) __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a ) self.assertIsInstance(_a, _a ) def __lowerCAmelCase ( self ) -> str: try: AutoConfig.register("new-model", _a ) __SCREAMING_SNAKE_CASE = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(_a ): auto_class.register(_a, _a ) auto_class.register(_a, _a ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_a ): auto_class.register(_a, _a ) # Now that the config is registered, it can be used as any other config with the auto-API __SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config() __SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() ) __SCREAMING_SNAKE_CASE = auto_class.from_config(_a ) self.assertIsInstance(_a, _a ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a ) __SCREAMING_SNAKE_CASE = auto_class.from_pretrained(_a ) self.assertIsInstance(_a, _a ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def __lowerCAmelCase ( self ) -> List[str]: with self.assertRaisesRegex( _a, "bert-base is not a local folder and is not a valid model identifier" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("bert-base" ) def __lowerCAmelCase ( self ) -> Tuple: with self.assertRaisesRegex( _a, r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(_a, revision="aaaaaa" ) def __lowerCAmelCase ( self ) -> Dict: with self.assertRaisesRegex( _a, "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin", ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def __lowerCAmelCase ( self ) -> Optional[int]: with self.assertRaisesRegex(_a, "Use `from_pt=True` to load this model" ): __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def __lowerCAmelCase ( self ) -> List[Any]: # Make sure we have cached the model. __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 ) # With a sharded checkpoint __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: __SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count, 0 ) self.assertEqual(counter.head_request_count, 1 ) self.assertEqual(counter.other_request_count, 0 )
712
def _A ( __snake_case :int ) -> bool: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError("check_bouncy() accepts only integer arguments" ) __SCREAMING_SNAKE_CASE = str(__snake_case ) __SCREAMING_SNAKE_CASE = "".join(sorted(__snake_case ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _A ( __snake_case :float = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 while True: if check_bouncy(__snake_case ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
214
0
"""simple docstring""" import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') UpperCAmelCase__ = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) UpperCAmelCase__ = requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) UpperCAmelCase__ = BeautifulSoup(res.text, 'html.parser') UpperCAmelCase__ = list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(F"https://google.com{link.get('href')}")
224
def __lowerCAmelCase( _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('check_bouncy() accepts only integer arguments' ) _A = str(_SCREAMING_SNAKE_CASE ) _A = ''.join(sorted(_SCREAMING_SNAKE_CASE ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def __lowerCAmelCase( _SCREAMING_SNAKE_CASE = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError('solution() only accepts values from 0 to 100' ) _A = 0 _A = 1 while True: if check_bouncy(_SCREAMING_SNAKE_CASE ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(f"{solution(99)}")
27
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast A : List[str] = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' __UpperCAmelCase : int =1_0_0_0_0 __UpperCAmelCase : Optional[List[str]] =None __UpperCAmelCase : Optional[datasets.Features] =None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCAmelCase : List[str] =ParquetConfig def snake_case ( self ): return datasets.DatasetInfo(features=self.config.features ) def snake_case ( self , __a ): if not self.config.data_files: raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}" ) __lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): __lowerCAmelCase = data_files if isinstance(__a , __a ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): __lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __lowerCAmelCase = [dl_manager.iter_files(__a ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(__a ): with open(__a , "rb" ) as f: __lowerCAmelCase = datasets.Features.from_arrow_schema(pq.read_schema(__a ) ) break splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={"files": files} ) ) return splits def snake_case ( self , __a ): if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __lowerCAmelCase = table_cast(__a , self.info.features.arrow_schema ) return pa_table def snake_case ( self , __a ): __lowerCAmelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'" ) for file_idx, file in enumerate(itertools.chain.from_iterable(__a ) ): with open(__a , "rb" ) as f: __lowerCAmelCase = pq.ParquetFile(__a ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __lowerCAmelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"{file_idx}_{batch_idx}", self._cast_table(__a ) except ValueError as e: logger.error(f"Failed to read file \'{file}\' with error {type(__a )}: {e}" ) raise
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : Optional[int] = logging.get_logger(__name__) A : List[str] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""bit""" __UpperCAmelCase : Optional[int] =["""preactivation""", """bottleneck"""] __UpperCAmelCase : List[str] =["""SAME""", """VALID"""] def __init__( self , __a=3 , __a=64 , __a=[2_56, 5_12, 10_24, 20_48] , __a=[3, 4, 6, 3] , __a="preactivation" , __a="relu" , __a=None , __a=32 , __a=0.0 , __a=False , __a=32 , __a=1 , __a=None , __a=None , **__a , ): super().__init__(**__a ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowerCAmelCase = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) __lowerCAmelCase = num_channels __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = layer_type __lowerCAmelCase = hidden_act __lowerCAmelCase = global_padding __lowerCAmelCase = num_groups __lowerCAmelCase = drop_path_rate __lowerCAmelCase = embedding_dynamic_padding __lowerCAmelCase = output_stride __lowerCAmelCase = width_factor __lowerCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__a ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
282
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
395
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip snake_case__ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCamelCase__ ( a : Any ) -> Optional[int]: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCamelCase__ ( a : Dict , a : str , a : Optional[Any] ) -> Tuple: """simple docstring""" return max(metric_fn(a , a ) for gt in ground_truths ) def lowerCamelCase__ ( a : int , a : str , a : Optional[Any] ) -> Tuple: """simple docstring""" a__ :List[str] = [line.strip() for line in open(a , "r" ).readlines()] a__ :Tuple = [] if args.gold_data_mode == "qa": a__ :Optional[Any] = pd.read_csv(a , sep="\t" , header=a ) for answer_list in data[1]: a__ :Union[str, Any] = ast.literal_eval(a ) answers.append(a ) else: a__ :int = [line.strip() for line in open(a , "r" ).readlines()] a__ :int = [[reference] for reference in references] a__ :Tuple = 0 for prediction, ground_truths in zip(a , a ): total += 1 em += metric_max_over_ground_truths(a , a , a ) fa += metric_max_over_ground_truths(a , a , a ) a__ :Optional[int] = 1_0_0.0 * em / total a__ :str = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def lowerCamelCase__ ( a : Optional[int] , a : Tuple , a : int ) -> Dict: """simple docstring""" a__ :List[Any] = args.k a__ :str = [line.strip() for line in open(a , "r" ).readlines()] a__ :Any = [line.strip() for line in open(a , "r" ).readlines()] a__ :Optional[int] = 0 for hypo, reference in zip(a , a ): a__ :Optional[Any] = set(hypo.split("\t" )[:k] ) a__ :int = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a__ :List[Any] = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def lowerCamelCase__ ( a : Optional[int] , a : Tuple , a : Optional[Any] ) -> Dict: """simple docstring""" def strip_title(a : Any ): if title.startswith("\"" ): a__ :Optional[Any] = title[1:] if title.endswith("\"" ): a__ :Any = title[:-1] return title a__ :int = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a , return_tensors="pt" , padding=a , truncation=a , )["input_ids"].to(args.device ) a__ :Dict = rag_model.rag.question_encoder(a ) a__ :Optional[int] = question_enc_outputs[0] a__ :Optional[Any] = rag_model.retriever( a , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a__ :int = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a__ :Any = [] for docs in all_docs: a__ :Tuple = [strip_title(a ) for title in docs["title"]] provenance_strings.append("\t".join(a ) ) return provenance_strings def lowerCamelCase__ ( a : Union[str, Any] , a : Union[str, Any] , a : str ) -> str: """simple docstring""" with torch.no_grad(): a__ :str = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( a , return_tensors="pt" , padding=a , truncation=a ) a__ :Tuple = inputs_dict.input_ids.to(args.device ) a__ :int = inputs_dict.attention_mask.to(args.device ) a__ :int = rag_model.generate( # rag_model overwrites generate a , attention_mask=a , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=a , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a__ :Optional[int] = rag_model.retriever.generator_tokenizer.batch_decode(a , skip_special_tokens=a ) if args.print_predictions: for q, a in zip(a , a ): logger.info("Q: {} - A: {}".format(a , a ) ) return answers def lowerCamelCase__ ( ) -> List[Any]: """simple docstring""" a__ :List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=a , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=a , choices=["exact", "compressed", "legacy"] , type=a , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=a , type=a , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=a , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=a , type=a , required=a , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=a , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=a , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=a , type=a , required=a , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=a , type=a , required=a , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=a , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=a , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=a , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=a , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=a , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=a , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a__ :Tuple = parser.parse_args() a__ :str = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def lowerCamelCase__ ( a : int ) -> List[Any]: """simple docstring""" a__ :Optional[int] = {} if args.model_type is None: a__ :Dict = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a__ :Union[str, Any] = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a__ :Union[str, Any] = args.n_docs if args.index_name is not None: a__ :Tuple = args.index_name if args.index_path is not None: a__ :Any = args.index_path else: a__ :Optional[Any] = BartForConditionalGeneration a__ :Optional[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , a ) a__ :List[Any] = get_scores if args.eval_mode == "e2e" else get_precision_at_k a__ :Optional[Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(a , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(a ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a__ :Dict = RagRetriever.from_pretrained(a , **a ) a__ :Any = model_class.from_pretrained(a , retriever=a , **a ) model.retriever.init_retrieval() else: a__ :int = model_class.from_pretrained(a , **a ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a__ :str = [] for line in tqdm(a ): questions.append(line.strip() ) if len(a ) == args.eval_batch_size: a__ :Union[str, Any] = evaluate_batch_fn(a , a , a ) preds_file.write("\n".join(a ) + "\n" ) preds_file.flush() a__ :Optional[Any] = [] if len(a ) > 0: a__ :List[str] = evaluate_batch_fn(a , a , a ) preds_file.write("\n".join(a ) ) preds_file.flush() score_fn(a , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": snake_case__ = get_args() main(args)
395
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _A = logging.get_logger(__name__) class UpperCAmelCase__ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : List[Any] = 1 @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "generated" def __init__( self , *A_ , **A_ ) -> Dict: super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _a ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , ) -> Union[str, Any]: __UpperCamelCase ={} if truncation is not None: __UpperCamelCase =truncation __UpperCamelCase =generate_kwargs __UpperCamelCase ={} if return_tensors is not None and return_type is None: __UpperCamelCase =ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __UpperCamelCase =return_type if clean_up_tokenization_spaces is not None: __UpperCamelCase =clean_up_tokenization_spaces if stop_sequence is not None: __UpperCamelCase =self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __UpperCamelCase =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self , A_ , A_ , A_ ) -> Tuple: return True def _a ( self , *A_ , A_ ) -> Any: __UpperCamelCase =self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) __UpperCamelCase =([prefix + arg for arg in args[0]],) __UpperCamelCase =True elif isinstance(args[0] , A_ ): __UpperCamelCase =(prefix + args[0],) __UpperCamelCase =False else: raise ValueError( f' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' ) __UpperCamelCase =self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ ) -> Union[str, Any]: __UpperCamelCase =super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def _a ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ ) -> Union[str, Any]: __UpperCamelCase =self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def _a ( self , A_ , **A_ ) -> str: if self.framework == "pt": __UpperCamelCase , __UpperCamelCase =model_inputs['input_ids'].shape elif self.framework == "tf": __UpperCamelCase , __UpperCamelCase =tf.shape(model_inputs['input_ids'] ).numpy() __UpperCamelCase =generate_kwargs.get('min_length' , self.model.config.min_length ) __UpperCamelCase =generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) __UpperCamelCase =self.model.generate(**A_ , **A_ ) __UpperCamelCase =output_ids.shape[0] if self.framework == "pt": __UpperCamelCase =output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __UpperCamelCase =tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _a ( self , A_ , A_=ReturnType.TEXT , A_=False ) -> List[str]: __UpperCamelCase =[] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __UpperCamelCase ={f'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: __UpperCamelCase ={ f'{self.return_name}_text': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[str] = "summary" def __call__( self , *A_ , **A_ ) -> Union[str, Any]: return super().__call__(*A_ , **A_ ) def _a ( self , A_ , A_ , A_ ) -> bool: if max_length < min_length: logger.warning(f'Your min_length={min_length} must be inferior than your max_length={max_length}.' ) if input_length < max_length: logger.warning( f'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' ) @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "translation" def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: if input_length > 0.9 * max_length: logger.warning( f'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def _a ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None ) -> Dict: if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def _a ( self , A_=None , A_=None , **A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =super()._sanitize_parameters(**A_ ) if src_lang is not None: __UpperCamelCase =src_lang if tgt_lang is not None: __UpperCamelCase =tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __UpperCamelCase =kwargs.get('task' , self.task ) __UpperCamelCase =task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY __UpperCamelCase =items[1] __UpperCamelCase =items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ ) -> int: return super().__call__(*A_ , **A_ )
682
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING UpperCamelCase__ : str = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase) class _a (_lowerCamelCase): """simple docstring""" def __init__( self , **A__ ) -> Union[str, Any]: super().__init__(**A__ ) if self.framework == "tf": raise ValueError(F"The {self.__class__} is only available in PyTorch." ) requires_backends(self , """vision""" ) self.check_model_type(A__ ) def __call__( self , A__ , A__ = None , **A__ , ) -> Tuple: if "text_queries" in kwargs: _SCREAMING_SNAKE_CASE = kwargs.pop("""text_queries""" ) if isinstance(A__ , (str, Image.Image) ): _SCREAMING_SNAKE_CASE = {"""image""": image, """candidate_labels""": candidate_labels} else: _SCREAMING_SNAKE_CASE = image _SCREAMING_SNAKE_CASE = super().__call__(A__ , **A__ ) return results def UpperCamelCase ( self , **A__ ) -> Tuple: _SCREAMING_SNAKE_CASE = {} if "threshold" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""threshold"""] if "top_k" in kwargs: _SCREAMING_SNAKE_CASE = kwargs["""top_k"""] return {}, {}, postprocess_params def UpperCamelCase ( self , A__ ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = load_image(inputs["""image"""] ) _SCREAMING_SNAKE_CASE = inputs["""candidate_labels"""] if isinstance(A__ , A__ ): _SCREAMING_SNAKE_CASE = candidate_labels.split(""",""" ) _SCREAMING_SNAKE_CASE = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(A__ ): _SCREAMING_SNAKE_CASE = self.tokenizer(A__ , return_tensors=self.framework ) _SCREAMING_SNAKE_CASE = self.image_processor(A__ , return_tensors=self.framework ) yield { "is_last": i == len(A__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def UpperCamelCase ( self , A__ ) -> Optional[int]: _SCREAMING_SNAKE_CASE = model_inputs.pop("""target_size""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""candidate_label""" ) _SCREAMING_SNAKE_CASE = model_inputs.pop("""is_last""" ) _SCREAMING_SNAKE_CASE = self.model(**A__ ) _SCREAMING_SNAKE_CASE = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def UpperCamelCase ( self , A__ , A__=0.1 , A__=None ) -> List[Any]: _SCREAMING_SNAKE_CASE = [] for model_output in model_outputs: _SCREAMING_SNAKE_CASE = model_output["""candidate_label"""] _SCREAMING_SNAKE_CASE = BaseModelOutput(A__ ) _SCREAMING_SNAKE_CASE = self.image_processor.post_process_object_detection( outputs=A__ , threshold=A__ , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): _SCREAMING_SNAKE_CASE = outputs["""scores"""][index].item() _SCREAMING_SNAKE_CASE = self._get_bounding_box(outputs["""boxes"""][index][0] ) _SCREAMING_SNAKE_CASE = {"""score""": score, """label""": label, """box""": box} results.append(A__ ) _SCREAMING_SNAKE_CASE = sorted(A__ , key=lambda A__ : x["score"] , reverse=A__ ) if top_k: _SCREAMING_SNAKE_CASE = results[:top_k] return results def UpperCamelCase ( self , A__ ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = box.int().tolist() _SCREAMING_SNAKE_CASE = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
591
'''simple docstring''' class _a : """simple docstring""" def __init__( self , A__ ) -> List[Any]: # we need a list not a string, so do something to change the type _SCREAMING_SNAKE_CASE = arr.split(""",""" ) def UpperCamelCase ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE = [int(self.array[0] )] * len(self.array ) _SCREAMING_SNAKE_CASE = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _SCREAMING_SNAKE_CASE = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _SCREAMING_SNAKE_CASE = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": UpperCamelCase__ : Optional[Any] = input("please input some numbers:") UpperCamelCase__ : List[Any] = SubArray(whole_array) UpperCamelCase__ : str = array.solve_sub_array() print(("the results is:", re))
591
1
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class a ( unittest.TestCase ): def __init__( self : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]=13 , lowerCamelCase_ : Tuple=7 , lowerCamelCase_ : Dict=True , lowerCamelCase_ : Dict=True , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Union[str, Any]=True , lowerCamelCase_ : Tuple=99 , lowerCamelCase_ : int=32 , lowerCamelCase_ : int=5 , lowerCamelCase_ : List[str]=4 , lowerCamelCase_ : Dict=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Dict=0.1 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : int=5_12 , lowerCamelCase_ : Optional[int]=16 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : Dict=0.02 , lowerCamelCase_ : Any=4 , ) -> Any: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_attention_mask __a = use_token_type_ids __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = type_sequence_label_size __a = initializer_range __a = num_choices def lowerCAmelCase_ ( self : int ) -> List[Any]: __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = None if self.use_attention_mask: __a = random_attention_mask([self.batch_size, self.seq_length] ) __a = None if self.use_token_type_ids: __a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self : Optional[Any] ) -> Any: __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: __a = self.prepare_config_and_inputs() __a , __a , __a , __a = config_and_inputs __a = True __a = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __a = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class a ( A_ , unittest.TestCase ): A_ : Union[str, Any] = True A_ : Dict = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self : Any ) -> Optional[int]: __a = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowerCAmelCase_ ( self : Union[str, Any] ) -> Any: for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_ ) __a = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase_ ) @require_flax class a ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : Dict ) -> Optional[int]: __a = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_ ) __a = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __a = model(lowerCamelCase_ )[0] __a = [1, 11, 5_02_65] self.assertEqual(list(output.shape ) , lowerCamelCase_ ) # compare the actual values for a slice. __a = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) ) @slow def lowerCAmelCase_ ( self : Optional[Any] ) -> Tuple: __a = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase_ ) __a = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa ) __a = model(lowerCamelCase_ )[0] # compare the actual values for a slice. __a = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) )
704
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class a ( A_ ): A_ : str = '''open-llama''' def __init__( self : Tuple , lowerCamelCase_ : Tuple=10_00_00 , lowerCamelCase_ : Union[str, Any]=40_96 , lowerCamelCase_ : Any=1_10_08 , lowerCamelCase_ : Union[str, Any]=32 , lowerCamelCase_ : Optional[Any]=32 , lowerCamelCase_ : Tuple="silu" , lowerCamelCase_ : Dict=20_48 , lowerCamelCase_ : Optional[Any]=0.02 , lowerCamelCase_ : List[Any]=1E-6 , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Tuple=0 , lowerCamelCase_ : Any=1 , lowerCamelCase_ : Any=2 , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : str=0.1 , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Any=True , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : int , ) -> List[Any]: __a = vocab_size __a = max_position_embeddings __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = initializer_range __a = rms_norm_eps __a = use_cache __a = kwargs.pop( """use_memorry_efficient_attention""" , lowerCamelCase_ ) __a = hidden_dropout_prob __a = attention_dropout_prob __a = use_stable_embedding __a = shared_input_output_embedding __a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , tie_word_embeddings=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCamelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F"""got {self.rope_scaling}""" ) __a = self.rope_scaling.get("""type""" , lowerCamelCase_ ) __a = self.rope_scaling.get("""factor""" , lowerCamelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
173
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse('3.8'): import importlib_metadata else: import importlib.metadata as importlib_metadata SCREAMING_SNAKE_CASE_ = '' if version.parse(importlib_metadata.version('jiwer')) < version.parse('2.3.0'): class snake_case_ ( tr.AbstractTransform ): """simple docstring""" def __init__( self , lowerCamelCase_ = " ") -> List[str]: UpperCamelCase = sentence_delimiter def UpperCAmelCase__ ( self , lowerCamelCase_) -> Tuple: return list(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> Optional[Any]: UpperCamelCase = [] for sent_idx, sentence in enumerate(lowerCamelCase_): chars.extend(self.process_string(lowerCamelCase_)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase_) - 1: chars.append(self.sentence_delimiter) return chars SCREAMING_SNAKE_CASE_ = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: SCREAMING_SNAKE_CASE_ = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) SCREAMING_SNAKE_CASE_ = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' SCREAMING_SNAKE_CASE_ = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n' SCREAMING_SNAKE_CASE_ = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_ ( datasets.Metric ): """simple docstring""" def UpperCAmelCase__ ( self) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence'''), '''references''': datasets.Value('''string''' , id='''sequence'''), }) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False) -> List[Any]: if concatenate_texts: return jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , )["wer"] UpperCamelCase = 0 UpperCamelCase = 0 for prediction, reference in zip(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = jiwer.compute_measures( lowerCamelCase_ , lowerCamelCase_ , truth_transform=lowerCamelCase_ , hypothesis_transform=lowerCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
34
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCamelCase_ , **lowerCamelCase_) -> None: warnings.warn( '''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use MobileViTImageProcessor instead.''' , lowerCamelCase_ , ) super().__init__(*lowerCamelCase_ , **lowerCamelCase_)
34
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class snake_case_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: List[str] = CycleDiffusionPipeline SCREAMING_SNAKE_CASE_: Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } SCREAMING_SNAKE_CASE_: Optional[Any] = PipelineTesterMixin.required_optional_params - {"""latents"""} SCREAMING_SNAKE_CASE_: Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) SCREAMING_SNAKE_CASE_: List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE_: List[str] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) A__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1000 , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) A__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) A__ = CLIPTextModel(__a ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A__ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _UpperCAmelCase ( self , __a , __a=0 ): """simple docstring""" A__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) A__ = image / 2 + 0.5 if str(__a ).startswith('mps' ): A__ = torch.manual_seed(__a ) else: A__ = torch.Generator(device=__a ).manual_seed(__a ) A__ = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def _UpperCAmelCase ( self ): """simple docstring""" A__ = 'cpu' # ensure determinism for the device-dependent torch.Generator A__ = self.get_dummy_components() A__ = CycleDiffusionPipeline(**__a ) A__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) A__ = self.get_dummy_inputs(__a ) A__ = pipe(**__a ) A__ = output.images A__ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A__ = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.get_dummy_components() for name, module in components.items(): if hasattr(__a , 'half' ): A__ = module.half() A__ = CycleDiffusionPipeline(**__a ) A__ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) A__ = self.get_dummy_inputs(__a ) A__ = pipe(**__a ) A__ = output.images A__ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) A__ = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def _UpperCAmelCase ( self ): """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def _UpperCAmelCase ( self ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def _UpperCAmelCase ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _UpperCAmelCase ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _UpperCAmelCase ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): """simple docstring""" A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) A__ = init_image.resize((512, 512) ) A__ = 'CompVis/stable-diffusion-v1-4' A__ = DDIMScheduler.from_pretrained(__a , subfolder='scheduler' ) A__ = CycleDiffusionPipeline.from_pretrained( __a , scheduler=__a , safety_checker=__a , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() A__ = 'A black colored car' A__ = 'A blue colored car' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__a , source_prompt=__a , image=__a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__a , output_type='np' , ) A__ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5E-1 def _UpperCAmelCase ( self ): """simple docstring""" A__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) A__ = init_image.resize((512, 512) ) A__ = 'CompVis/stable-diffusion-v1-4' A__ = DDIMScheduler.from_pretrained(__a , subfolder='scheduler' ) A__ = CycleDiffusionPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() A__ = 'A black colored car' A__ = 'A blue colored car' A__ = torch.manual_seed(0 ) A__ = pipe( prompt=__a , source_prompt=__a , image=__a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__a , output_type='np' , ) A__ = output.images assert np.abs(image - expected_image ).max() < 2E-2
554
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ = None ): A__ = word_bank or [] # create a table A__ = len(lowerCAmelCase__ ) + 1 A__ = [] for _ in range(lowerCAmelCase__ ): table.append([] ) # seed value A__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCAmelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCAmelCase__ )] == word: A__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCAmelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCAmelCase__ )]: combination.reverse() return table[len(lowerCAmelCase__ )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
554
1
'''simple docstring''' from math import sqrt def _UpperCAmelCase ( __A : List[Any] ): a_ : List[str] = 0 for i in range(1 , int(sqrt(lowerCAmelCase_ ) + 1 ) ): if n % i == 0 and i != sqrt(lowerCAmelCase_ ): total += i + n // i elif i == sqrt(lowerCAmelCase_ ): total += i return total - n def _UpperCAmelCase ( __A : Union[str, Any] = 1_00_00 ): a_ : str = sum( i for i in range(1 , lowerCAmelCase_ ) if sum_of_divisors(sum_of_divisors(lowerCAmelCase_ ) ) == i and sum_of_divisors(lowerCAmelCase_ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
466
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Optional[Any] = 256 class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = ['''melgan'''] def __init__(self : Optional[Any] , A__ : SpectrogramNotesEncoder , A__ : SpectrogramContEncoder , A__ : TaFilmDecoder , A__ : DDPMScheduler , A__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN lowercase = math.log(1e-5 ) # Matches MelGAN training. lowercase = 4.0 # Largest value for most examples lowercase = 1_2_8 self.register_modules( notes_encoder=A__ , continuous_encoder=A__ , decoder=A__ , scheduler=A__ , melgan=A__ , ) def UpperCAmelCase__ (self : Union[str, Any] , A__ : Any , A__ : Tuple=(-1.0, 1.0) , A__ : Any=False ) -> Any: lowercase , lowercase = output_range if clip: lowercase = torch.clip(A__ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCAmelCase__ (self : Tuple , A__ : Any , A__ : List[str]=(-1.0, 1.0) , A__ : Any=False ) -> str: lowercase , lowercase = input_range lowercase = torch.clip(A__ , A__ , A__ ) if clip else outputs # Scale to [0, 1]. lowercase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCAmelCase__ (self : List[str] , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[Any] ) -> Dict: lowercase = input_tokens > 0 lowercase , lowercase = self.notes_encoder( encoder_input_tokens=A__ , encoder_inputs_mask=A__ ) lowercase , lowercase = self.continuous_encoder( encoder_inputs=A__ , encoder_inputs_mask=A__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCAmelCase__ (self : int , A__ : int , A__ : Optional[int] , A__ : List[Any] ) -> str: lowercase = noise_time if not torch.is_tensor(A__ ): lowercase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A__ ) and len(timesteps.shape ) == 0: lowercase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase = self.decoder( encodings_and_masks=A__ , decoder_input_tokens=A__ , decoder_noise_time=A__ ) return logits @torch.no_grad() def __call__(self : int , A__ : List[List[int]] , A__ : Optional[torch.Generator] = None , A__ : int = 1_0_0 , A__ : bool = True , A__ : str = "numpy" , A__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A__ )}.' ) lowercase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) for i, encoder_input_tokens in enumerate(A__ ): if i == 0: lowercase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase = ones lowercase = self.scale_features( A__ , output_range=[-1.0, 1.0] , clip=A__ ) lowercase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A__ , continuous_mask=A__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase = self.decode( encodings_and_masks=A__ , input_tokens=A__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase = self.scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample lowercase = self.scale_to_features(A__ , input_range=[-1.0, 1.0] ) lowercase = mel[:1] lowercase = mel.cpu().float().numpy() lowercase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ , A__ ) logger.info("Generated segment" , A__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": lowercase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A__ )
310
0
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _a ( __a , __a , __a , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionControlNetImgaImgPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowercase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase_ = CLIPTextModel(lowercase_ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : List[Any]=0 ): '''simple docstring''' if str(lowercase_ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(lowercase_ ) else: lowercase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ = 2 lowercase_ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ) lowercase_ = floats_tensor(control_image.shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert("""RGB""" ).resize((64, 64) ) lowercase_ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowerCamelCase__ ( self : int ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : str ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class _a ( __a , __a , unittest.TestCase ): """simple docstring""" A_ = StableDiffusionControlNetImgaImgPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowercase_ : Tuple ): if isinstance(lowercase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) lowercase_ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowercase_ ) torch.manual_seed(0 ) lowercase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=lowercase_ , set_alpha_to_one=lowercase_ , ) torch.manual_seed(0 ) lowercase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase_ = CLIPTextModel(lowercase_ ) lowercase_ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowercase_ = MultiControlNetModel([controlneta, controlneta] ) lowercase_ = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : str=0 ): '''simple docstring''' if str(lowercase_ ).startswith("""mps""" ): lowercase_ = torch.manual_seed(lowercase_ ) else: lowercase_ = torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) lowercase_ = 2 lowercase_ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowercase_ , device=torch.device(lowercase_ ) , ), ] lowercase_ = floats_tensor(control_image[0].shape , rng=random.Random(lowercase_ ) ).to(lowercase_ ) lowercase_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase_ = Image.fromarray(np.uinta(lowercase_ ) ).convert("""RGB""" ).resize((64, 64) ) lowercase_ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) lowercase_ = 1_0.0 lowercase_ = 4 lowercase_ = self.get_dummy_inputs(lowercase_ ) lowercase_ = steps lowercase_ = scale lowercase_ = pipe(**lowercase_ )[0] lowercase_ = self.get_dummy_inputs(lowercase_ ) lowercase_ = steps lowercase_ = scale lowercase_ = pipe(**lowercase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowercase_ = self.get_dummy_inputs(lowercase_ ) lowercase_ = steps lowercase_ = scale lowercase_ = pipe(**lowercase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowercase_ = self.get_dummy_inputs(lowercase_ ) lowercase_ = steps lowercase_ = scale lowercase_ = pipe(**lowercase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.get_dummy_components() lowercase_ = self.pipeline_class(**lowercase_ ) pipe.to(lowercase_ ) pipe.set_progress_bar_config(disable=lowercase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowercase_ ) except NotImplementedError: pass @slow @require_torch_gpu class _a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) lowercase_ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase_ , controlnet=lowercase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowercase_ ) lowercase_ = torch.Generator(device="""cpu""" ).manual_seed(0 ) lowercase_ = """evil space-punk bird""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) lowercase_ = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) lowercase_ = pipe( lowercase_ , lowercase_ , control_image=lowercase_ , generator=lowercase_ , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) lowercase_ = output.images[0] assert image.shape == (512, 512, 3) lowercase_ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9e-2
603
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) class _a ( __a ): """simple docstring""" A_ = ['''pixel_values'''] def __init__( self : int , lowercase_ : bool = True , lowercase_ : Dict[str, int] = None , lowercase_ : float = None , lowercase_ : PILImageResampling = PILImageResampling.BILINEAR , lowercase_ : bool = True , lowercase_ : Union[int, float] = 1 / 255 , lowercase_ : bool = True , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , **lowercase_ : Optional[Any] , ): '''simple docstring''' super().__init__(**lowercase_ ) lowercase_ = size if size is not None else {"""shortest_edge""": 384} lowercase_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase_ = do_resize lowercase_ = size # Default value set here for backwards compatibility where the value in config is None lowercase_ = crop_pct if crop_pct is not None else 224 / 256 lowercase_ = resample lowercase_ = do_rescale lowercase_ = rescale_factor lowercase_ = do_normalize lowercase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : np.ndarray , lowercase_ : Dict[str, int] , lowercase_ : float , lowercase_ : PILImageResampling = PILImageResampling.BICUBIC , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Optional[int] , ): '''simple docstring''' lowercase_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) if "shortest_edge" not in size: raise ValueError(F"""Size dictionary must contain 'shortest_edge' key. Got {size.keys()}""" ) lowercase_ = size["""shortest_edge"""] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct lowercase_ = int(shortest_edge / crop_pct ) lowercase_ = get_resize_output_image_size(lowercase_ , size=lowercase_ , default_to_square=lowercase_ ) lowercase_ = resize(image=lowercase_ , size=lowercase_ , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=lowercase_ , size=(shortest_edge, shortest_edge) , data_format=lowercase_ , **lowercase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( lowercase_ , size=(shortest_edge, shortest_edge) , resample=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : str , lowercase_ : np.ndarray , lowercase_ : Union[int, float] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Dict , ): '''simple docstring''' return rescale(lowercase_ , scale=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : List[Any] , lowercase_ : np.ndarray , lowercase_ : Union[float, List[float]] , lowercase_ : Union[float, List[float]] , lowercase_ : Optional[Union[str, ChannelDimension]] = None , **lowercase_ : Tuple , ): '''simple docstring''' return normalize(lowercase_ , mean=lowercase_ , std=lowercase_ , data_format=lowercase_ , **lowercase_ ) def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : ImageInput , lowercase_ : bool = None , lowercase_ : Dict[str, int] = None , lowercase_ : float = None , lowercase_ : PILImageResampling = None , lowercase_ : bool = None , lowercase_ : float = None , lowercase_ : bool = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[float, List[float]]] = None , lowercase_ : Optional[Union[str, TensorType]] = None , lowercase_ : ChannelDimension = ChannelDimension.FIRST , **lowercase_ : List[str] , ): '''simple docstring''' lowercase_ = do_resize if do_resize is not None else self.do_resize lowercase_ = crop_pct if crop_pct is not None else self.crop_pct lowercase_ = resample if resample is not None else self.resample lowercase_ = do_rescale if do_rescale is not None else self.do_rescale lowercase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ = do_normalize if do_normalize is not None else self.do_normalize lowercase_ = image_mean if image_mean is not None else self.image_mean lowercase_ = image_std if image_std is not None else self.image_std lowercase_ = size if size is not None else self.size lowercase_ = get_size_dict(lowercase_ , default_to_square=lowercase_ ) lowercase_ = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowercase_ = [to_numpy_array(lowercase_ ) for image in images] if do_resize: lowercase_ = [self.resize(image=lowercase_ , size=lowercase_ , crop_pct=lowercase_ , resample=lowercase_ ) for image in images] if do_rescale: lowercase_ = [self.rescale(image=lowercase_ , scale=lowercase_ ) for image in images] if do_normalize: lowercase_ = [self.normalize(image=lowercase_ , mean=lowercase_ , std=lowercase_ ) for image in images] lowercase_ = [to_channel_dimension_format(lowercase_ , lowercase_ ) for image in images] lowercase_ = {"""pixel_values""": images} return BatchFeature(data=lowercase_ , tensor_type=lowercase_ )
603
1
import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Dict: '''simple docstring''' with open(UpperCamelCase_ ) as metadata_file: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = LukeConfig(use_entity_aware_attention=UpperCamelCase_ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase_ , map_location='cpu' )['module'] # Load the entity vocab file SCREAMING_SNAKE_CASE__ = load_original_entity_vocab(UpperCamelCase_ ) # add an entry for [MASK2] SCREAMING_SNAKE_CASE__ = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks SCREAMING_SNAKE_CASE__ = AddedToken('<ent>' , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = AddedToken('<ent2>' , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'r' ) as f: SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = 'MLukeTokenizer' with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = MLukeTokenizer.from_pretrained(UpperCamelCase_ ) # Initialize the embeddings of the special tokens SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(['@'] )[0] SCREAMING_SNAKE_CASE__ = tokenizer.convert_tokens_to_ids(['#'] )[0] SCREAMING_SNAKE_CASE__ = state_dict['embeddings.word_embeddings.weight'] SCREAMING_SNAKE_CASE__ = word_emb[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = word_emb[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: SCREAMING_SNAKE_CASE__ = state_dict[bias_name] SCREAMING_SNAKE_CASE__ = decoder_bias[ent_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = decoder_bias[enta_init_index].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: SCREAMING_SNAKE_CASE__ = F'encoder.layer.{layer_index}.attention.self.' SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] SCREAMING_SNAKE_CASE__ = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks SCREAMING_SNAKE_CASE__ = state_dict['entity_embeddings.entity_embeddings.weight'] SCREAMING_SNAKE_CASE__ = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' SCREAMING_SNAKE_CASE__ = state_dict['entity_predictions.bias'] SCREAMING_SNAKE_CASE__ = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = torch.cat([entity_prediction_bias, entity_mask_bias] ) SCREAMING_SNAKE_CASE__ = LukeForMaskedLM(config=UpperCamelCase_ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) SCREAMING_SNAKE_CASE__ = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): SCREAMING_SNAKE_CASE__ = state_dict[key] else: SCREAMING_SNAKE_CASE__ = state_dict[key] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase_ , strict=UpperCamelCase_ ) if set(UpperCamelCase_ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(UpperCamelCase_ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs SCREAMING_SNAKE_CASE__ = MLukeTokenizer.from_pretrained(UpperCamelCase_ , task='entity_classification' ) SCREAMING_SNAKE_CASE__ = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' SCREAMING_SNAKE_CASE__ = (0, 9) SCREAMING_SNAKE_CASE__ = tokenizer(UpperCamelCase_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ = torch.Size((1, 33, 768) ) SCREAMING_SNAKE_CASE__ = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base SCREAMING_SNAKE_CASE__ = torch.Size((1, 1, 768) ) SCREAMING_SNAKE_CASE__ = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction SCREAMING_SNAKE_CASE__ = MLukeTokenizer.from_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = 'Tokyo is the capital of <mask>.' SCREAMING_SNAKE_CASE__ = (24, 30) SCREAMING_SNAKE_CASE__ = tokenizer(UpperCamelCase_ , entity_spans=[span] , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = encoding['input_ids'][0].tolist() SCREAMING_SNAKE_CASE__ = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) SCREAMING_SNAKE_CASE__ = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = outputs.entity_logits[0][0].argmax().item() SCREAMING_SNAKE_CASE__ = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(UpperCamelCase_ ) ) model.save_pretrained(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = ['[MASK]', '[PAD]', '[UNK]'] SCREAMING_SNAKE_CASE__ = [json.loads(UpperCamelCase_ ) for line in open(UpperCamelCase_ )] SCREAMING_SNAKE_CASE__ = {} for entry in data: SCREAMING_SNAKE_CASE__ = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: SCREAMING_SNAKE_CASE__ = entity_id break SCREAMING_SNAKE_CASE__ = F'{language}:{entity_name}' SCREAMING_SNAKE_CASE__ = entity_id return new_mapping if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) __snake_case = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
472
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging __snake_case = ( """https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py""" ) __snake_case = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowercase ( ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = 'https://pypi.org/pypi/diffusers/json' SCREAMING_SNAKE_CASE__ = json.loads(request.urlopen(UpperCamelCase_ ).read() )['releases'].keys() return sorted(UpperCamelCase_ , key=lambda UpperCamelCase_ : version.Version(UpperCamelCase_ ) ) def _lowercase ( ) -> Union[str, Any]: '''simple docstring''' if HF_MODULES_CACHE in sys.path: return sys.path.append(UpperCamelCase_ ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / '__init__.py' if not init_path.exists(): init_path.touch() def _lowercase ( UpperCamelCase_ ) -> Optional[Any]: '''simple docstring''' init_hf_modules() SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(UpperCamelCase_ , exist_ok=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = dynamic_module_path / '__init__.py' if not init_path.exists(): init_path.touch() def _lowercase ( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' with open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE__ = f.read() # Imports of the form `import .xxx` SCREAMING_SNAKE_CASE__ = re.findall('^\s*import\s+\.(\S+)\s*$' , UpperCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('^\s*from\s+\.(\S+)\s+import' , UpperCamelCase_ , flags=re.MULTILINE ) # Unique-ify return list(set(UpperCamelCase_ ) ) def _lowercase ( UpperCamelCase_ ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = [module_file] SCREAMING_SNAKE_CASE__ = [] # Let's recurse through all relative imports while not no_change: SCREAMING_SNAKE_CASE__ = [] for f in files_to_check: new_imports.extend(get_relative_imports(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ).parent SCREAMING_SNAKE_CASE__ = [str(module_path / m ) for m in new_imports] SCREAMING_SNAKE_CASE__ = [f for f in new_import_files if f not in all_relative_imports] SCREAMING_SNAKE_CASE__ = [F'{f}.py' for f in new_import_files] SCREAMING_SNAKE_CASE__ = len(UpperCamelCase_ ) == 0 all_relative_imports.extend(UpperCamelCase_ ) return all_relative_imports def _lowercase ( UpperCamelCase_ ) -> Dict: '''simple docstring''' with open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE__ = f.read() # Imports of the form `import xxx` SCREAMING_SNAKE_CASE__ = re.findall('^\s*import\s+(\S+)\s*$' , UpperCamelCase_ , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('^\s*from\s+(\S+)\s+import' , UpperCamelCase_ , flags=re.MULTILINE ) # Only keep the top-level module SCREAMING_SNAKE_CASE__ = [imp.split('.' )[0] for imp in imports if not imp.startswith('.' )] # Unique-ify and test we got them all SCREAMING_SNAKE_CASE__ = list(set(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = [] for imp in imports: try: importlib.import_module(UpperCamelCase_ ) except ImportError: missing_packages.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: raise ImportError( 'This modeling file requires the following packages that were not found in your environment: ' F'{", ".join(UpperCamelCase_ )}. Run `pip install {" ".join(UpperCamelCase_ )}`' ) return get_relative_imports(UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = module_path.replace(os.path.sep , '.' ) SCREAMING_SNAKE_CASE__ = importlib.import_module(UpperCamelCase_ ) if class_name is None: return find_pipeline_class(UpperCamelCase_ ) return getattr(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ ) -> str: '''simple docstring''' from ..pipelines import DiffusionPipeline SCREAMING_SNAKE_CASE__ = dict(inspect.getmembers(UpperCamelCase_ , inspect.isclass ) ) SCREAMING_SNAKE_CASE__ = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , UpperCamelCase_ ) and cls.__module__.split('.' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( F'Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:' F' {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in' F' {loaded_module}.' ) SCREAMING_SNAKE_CASE__ = cls return pipeline_class def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE__ = str(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase_ , UpperCamelCase_ ) if os.path.isfile(UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = module_file_or_url SCREAMING_SNAKE_CASE__ = 'local' elif pretrained_model_name_or_path.count('/' ) == 0: SCREAMING_SNAKE_CASE__ = get_diffusers_versions() # cut ".dev0" SCREAMING_SNAKE_CASE__ = 'v' + '.'.join(__version__.split('.' )[:3] ) # retrieve github version that matches if revision is None: SCREAMING_SNAKE_CASE__ = latest_version if latest_version[1:] in available_versions else 'main' logger.info(F'Defaulting to latest_version: {revision}.' ) elif revision in available_versions: SCREAMING_SNAKE_CASE__ = F'v{revision}' elif revision == "main": SCREAMING_SNAKE_CASE__ = revision else: raise ValueError( F'`custom_revision`: {revision} does not exist. Please make sure to choose one of' F' {", ".join(available_versions + ["main"] )}.' ) # community pipeline on GitHub SCREAMING_SNAKE_CASE__ = COMMUNITY_PIPELINES_URL.format(revision=UpperCamelCase_ , pipeline=UpperCamelCase_ ) try: SCREAMING_SNAKE_CASE__ = cached_download( UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = 'git' SCREAMING_SNAKE_CASE__ = pretrained_model_name_or_path + '.py' except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise else: try: # Load from URL or cache if already cached SCREAMING_SNAKE_CASE__ = hf_hub_download( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , proxies=UpperCamelCase_ , resume_download=UpperCamelCase_ , local_files_only=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , ) SCREAMING_SNAKE_CASE__ = os.path.join('local' , '--'.join(pretrained_model_name_or_path.split('/' ) ) ) except EnvironmentError: logger.error(F'Could not locate the {module_file} inside {pretrained_model_name_or_path}.' ) raise # Check we have all the requirements in our environment SCREAMING_SNAKE_CASE__ = check_imports(UpperCamelCase_ ) # Now we move the module inside our cached dynamic modules. SCREAMING_SNAKE_CASE__ = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = Path(UpperCamelCase_ ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(UpperCamelCase_ , submodule_path / module_file ) for module_needed in modules_needed: SCREAMING_SNAKE_CASE__ = F'{module_needed}.py' shutil.copy(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(UpperCamelCase_ , UpperCamelCase_ ): SCREAMING_SNAKE_CASE__ = use_auth_token elif use_auth_token is True: SCREAMING_SNAKE_CASE__ = HfFolder.get_token() else: SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = model_info(UpperCamelCase_ , revision=UpperCamelCase_ , token=UpperCamelCase_ ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. SCREAMING_SNAKE_CASE__ = submodule_path / commit_hash SCREAMING_SNAKE_CASE__ = full_submodule + os.path.sep + commit_hash create_dynamic_module(UpperCamelCase_ ) if not (submodule_path / module_file).exists(): shutil.copy(UpperCamelCase_ , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( UpperCamelCase_ , F'{module_needed}.py' , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) return os.path.join(UpperCamelCase_ , UpperCamelCase_ ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , UpperCamelCase_ = False , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = None , UpperCamelCase_ = False , **UpperCamelCase_ , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = get_cached_module_file( UpperCamelCase_ , UpperCamelCase_ , cache_dir=UpperCamelCase_ , force_download=UpperCamelCase_ , resume_download=UpperCamelCase_ , proxies=UpperCamelCase_ , use_auth_token=UpperCamelCase_ , revision=UpperCamelCase_ , local_files_only=UpperCamelCase_ , ) return get_class_in_module(UpperCamelCase_ , final_module.replace('.py' , '' ) )
472
1
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def A(__a: str = "" ): lowerCAmelCase_ = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" lowerCAmelCase_ = BeautifulSoup(requests.get(__a ).text , "html.parser" ) lowerCAmelCase_ = soup.find_all("td" , attrs="titleColumn" ) lowerCAmelCase_ = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__a , __a ) } def A(__a: str = "IMDb_Top_250_Movies.csv" ): lowerCAmelCase_ = get_imdb_top_aaa_movies() with open(__a , "w" , newline="" ) as out_file: lowerCAmelCase_ = csv.writer(__a ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
719
import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __magic_name__ (unittest.TestCase ): @parameterized.expand([(None,), ("foo.json",)] ) def __a ( self , _a ) -> Tuple: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a , config_name=_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a , config_name=_a ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50 ) self.assertEqual(loaded_config.max_length , 20 ) self.assertEqual(loaded_config.max_time , _a ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = AutoConfig.from_pretrained("gpt2" ) lowerCAmelCase_ = GenerationConfig.from_model_config(_a ) lowerCAmelCase_ = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(_a , _a ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = GenerationConfig() lowerCAmelCase_ = { "max_new_tokens": 1024, "foo": "bar", } lowerCAmelCase_ = copy.deepcopy(_a ) lowerCAmelCase_ = generation_config.update(**_a ) # update_kwargs was not modified (no side effects) self.assertEqual(_a , _a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(_a , {"foo": "bar"} ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = GenerationConfig() lowerCAmelCase_ = "bar" with tempfile.TemporaryDirectory("test-generation-config" ) as tmp_dir: generation_config.save_pretrained(_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , "bar" ) lowerCAmelCase_ = GenerationConfig.from_model_config(_a ) assert not hasattr(_a , "foo" ) # no new kwargs should be initialized if from config def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , _a ) self.assertEqual(default_config.num_beams , 1 ) lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , _a ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_a ) lowerCAmelCase_ = GenerationConfig.from_pretrained(_a , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , _a ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class __magic_name__ (unittest.TestCase ): @classmethod def __a ( cls ) -> Optional[Any]: lowerCAmelCase_ = TOKEN HfFolder.save_token(_a ) @classmethod def __a ( cls ) -> Optional[int]: try: delete_repo(token=cls._token , repo_id="test-generation-config" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-generation-config-org" ) except HTTPError: pass def __a ( self ) -> List[Any]: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("test-generation-config" , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="test-generation-config" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="test-generation-config" , push_to_hub=_a , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained(f"{USER}/test-generation-config" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = GenerationConfig( do_sample=_a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("valid_org/test-generation-config-org" , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-generation-config-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( _a , repo_id="valid_org/test-generation-config-org" , push_to_hub=_a , use_auth_token=self._token ) lowerCAmelCase_ = GenerationConfig.from_pretrained("valid_org/test-generation-config-org" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(_a , getattr(_a , _a ) )
226
0
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : str ,A : List[str] ,A : List[Any]=13 ,A : Optional[int]=7 ,A : Tuple=True ,A : Tuple=True ,A : Tuple=True ,A : Optional[Any]=True ,A : Optional[int]=99 ,A : Optional[Any]=32 ,A : int=5 ,A : List[Any]=4 ,A : Union[str, Any]=37 ,A : int="gelu" ,A : int=0.1 ,A : List[Any]=0.1 ,A : List[str]=5_12 ,A : int=16 ,A : str=2 ,A : int=0.02 ,A : Optional[Any]=4 ,): __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_attention_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_choices def UpperCamelCase_ ( self : Dict ): __A = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __A = None if self.use_attention_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __A = AlbertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=A ,initializer_range=self.initializer_range ,) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self : Dict ): __A = self.prepare_config_and_inputs() __A , __A , __A , __A = config_and_inputs __A = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : List[Any] ): __A = FlaxAlbertModelTester(self ) @slow def UpperCamelCase_ ( self : List[Any] ): for model_class_name in self.all_model_classes: __A = model_class_name.from_pretrained("albert-base-v2" ) __A = model(np.ones((1, 1) ) ) self.assertIsNotNone(A ) @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Optional[Any] ): __A = FlaxAlbertModel.from_pretrained("albert-base-v2" ) __A = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __A = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __A = model(A ,attention_mask=A )[0] __A = (1, 11, 7_68) self.assertEqual(output.shape ,A ) __A = np.array( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,A ,atol=1E-4 ) )
55
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = LayoutLMTokenizer snake_case_ = LayoutLMTokenizerFast snake_case_ = True snake_case_ = True def UpperCamelCase_ ( self : Any ): super().setUp() __A = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __A = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file ,"w" ,encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ ( self : Tuple ,**A : int ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname ,**A ) def UpperCamelCase_ ( self : Optional[Any] ,A : Any ): __A = "UNwant\u00E9d,running" __A = "unwanted, running" return input_text, output_text def UpperCamelCase_ ( self : str ): __A = self.tokenizer_class(self.vocab_file ) __A = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(A ,["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) ,[7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ ( self : int ): pass
55
1
import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _SCREAMING_SNAKE_CASE = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowerCAmelCase : str __lowerCAmelCase : List[str] __lowerCAmelCase : Optional[List[str]] @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowerCAmelCase : List[int] __lowerCAmelCase : List[int] __lowerCAmelCase : Optional[List[int]] =None __lowerCAmelCase : Optional[List[int]] =None class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Dict ='''train''' __lowerCAmelCase : Any ='''dev''' __lowerCAmelCase : Any ='''test''' class SCREAMING_SNAKE_CASE_ : """simple docstring""" @staticmethod def UpperCamelCase__ ( snake_case :Any, snake_case :Union[Split, str]): """simple docstring""" raise NotImplementedError @staticmethod def UpperCamelCase__ ( snake_case :str): """simple docstring""" raise NotImplementedError @staticmethod def UpperCamelCase__ ( snake_case :List[InputExample], snake_case :List[str], snake_case :int, snake_case :PreTrainedTokenizer, snake_case :str=False, snake_case :Union[str, Any]="[CLS]", snake_case :int=1, snake_case :int="[SEP]", snake_case :str=False, snake_case :int=False, snake_case :Tuple=0, snake_case :Union[str, Any]=0, snake_case :Optional[int]=-100, snake_case :Optional[int]=0, snake_case :Union[str, Any]=True, ): """simple docstring""" _lowercase ={label: i for i, label in enumerate(snake_case)} _lowercase =[] for ex_index, example in enumerate(snake_case): if ex_index % 1_0000 == 0: logger.info('Writing example %d of %d', snake_case, len(snake_case)) _lowercase =[] _lowercase =[] for word, label in zip(example.words, example.labels): _lowercase =tokenizer.tokenize(snake_case) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(snake_case) > 0: tokens.extend(snake_case) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(snake_case) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. _lowercase =tokenizer.num_special_tokens_to_add() if len(snake_case) > max_seq_length - special_tokens_count: _lowercase =tokens[: (max_seq_length - special_tokens_count)] _lowercase =label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] _lowercase =[sequence_a_segment_id] * len(snake_case) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: _lowercase =[cls_token] + tokens _lowercase =[pad_token_label_id] + label_ids _lowercase =[cls_token_segment_id] + segment_ids _lowercase =tokenizer.convert_tokens_to_ids(snake_case) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. _lowercase =[1 if mask_padding_with_zero else 0] * len(snake_case) # Zero-pad up to the sequence length. _lowercase =max_seq_length - len(snake_case) if pad_on_left: _lowercase =([pad_token] * padding_length) + input_ids _lowercase =([0 if mask_padding_with_zero else 1] * padding_length) + input_mask _lowercase =([pad_token_segment_id] * padding_length) + segment_ids _lowercase =([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(snake_case) == max_seq_length assert len(snake_case) == max_seq_length assert len(snake_case) == max_seq_length assert len(snake_case) == max_seq_length if ex_index < 5: logger.info('*** Example ***') logger.info('guid: %s', example.guid) logger.info('tokens: %s', ' '.join([str(snake_case) for x in tokens])) logger.info('input_ids: %s', ' '.join([str(snake_case) for x in input_ids])) logger.info('input_mask: %s', ' '.join([str(snake_case) for x in input_mask])) logger.info('segment_ids: %s', ' '.join([str(snake_case) for x in segment_ids])) logger.info('label_ids: %s', ' '.join([str(snake_case) for x in label_ids])) if "token_type_ids" not in tokenizer.model_input_names: _lowercase =None features.append( InputFeatures( input_ids=snake_case, attention_mask=snake_case, token_type_ids=snake_case, label_ids=snake_case)) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : List[InputFeatures] __lowerCAmelCase : int =nn.CrossEntropyLoss().ignore_index def __init__( self :Optional[Any], snake_case :TokenClassificationTask, snake_case :str, snake_case :PreTrainedTokenizer, snake_case :List[str], snake_case :str, snake_case :Optional[int] = None, snake_case :Union[str, Any]=False, snake_case :Split = Split.train, ): """simple docstring""" _lowercase =os.path.join( snake_case, 'cached_{}_{}_{}'.format(mode.value, tokenizer.__class__.__name__, str(snake_case)), ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowercase =cached_features_file + '.lock' with FileLock(snake_case): if os.path.exists(snake_case) and not overwrite_cache: logger.info(f'''Loading features from cached file {cached_features_file}''') _lowercase =torch.load(snake_case) else: logger.info(f'''Creating features from dataset file at {data_dir}''') _lowercase =token_classification_task.read_examples_from_file(snake_case, snake_case) # TODO clean up all this to leverage built-in features of tokenizers _lowercase =token_classification_task.convert_examples_to_features( snake_case, snake_case, snake_case, snake_case, cls_token_at_end=bool(model_type in ['xlnet']), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ['xlnet'] else 0, sep_token=tokenizer.sep_token, sep_token_extra=snake_case, pad_on_left=bool(tokenizer.padding_side == 'left'), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) logger.info(f'''Saving features into cached file {cached_features_file}''') torch.save(self.features, snake_case) def __len__( self :Union[str, Any]): """simple docstring""" return len(self.features) def __getitem__( self :Optional[int], snake_case :List[Any]): """simple docstring""" return self.features[i] if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowerCAmelCase : List[InputFeatures] __lowerCAmelCase : int =-1_0_0 def __init__( self :Tuple, snake_case :TokenClassificationTask, snake_case :str, snake_case :PreTrainedTokenizer, snake_case :List[str], snake_case :str, snake_case :Optional[int] = None, snake_case :Dict=False, snake_case :Split = Split.train, ): """simple docstring""" _lowercase =token_classification_task.read_examples_from_file(snake_case, snake_case) # TODO clean up all this to leverage built-in features of tokenizers _lowercase =token_classification_task.convert_examples_to_features( snake_case, snake_case, snake_case, snake_case, cls_token_at_end=bool(model_type in ['xlnet']), cls_token=tokenizer.cls_token, cls_token_segment_id=2 if model_type in ['xlnet'] else 0, sep_token=tokenizer.sep_token, sep_token_extra=snake_case, pad_on_left=bool(tokenizer.padding_side == 'left'), pad_token=tokenizer.pad_token_id, pad_token_segment_id=tokenizer.pad_token_type_id, pad_token_label_id=self.pad_token_label_id, ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: _lowercase =tf.data.Dataset.from_generator( snake_case, ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa), ( {'input_ids': tf.TensorShape([None]), 'attention_mask': tf.TensorShape([None])}, tf.TensorShape([None]), ), ) else: _lowercase =tf.data.Dataset.from_generator( snake_case, ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa), ( { 'input_ids': tf.TensorShape([None]), 'attention_mask': tf.TensorShape([None]), 'token_type_ids': tf.TensorShape([None]), }, tf.TensorShape([None]), ), ) def UpperCamelCase__ ( self :List[Any]): """simple docstring""" _lowercase =self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features))) return self.dataset def __len__( self :Union[str, Any]): """simple docstring""" return len(self.features) def __getitem__( self :Optional[Any], snake_case :Optional[int]): """simple docstring""" return self.features[i]
557
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
557
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'facebook/deit-base-distilled-patch16-224': ( 'https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = "deit" def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=768 , SCREAMING_SNAKE_CASE__ : Optional[int]=12 , SCREAMING_SNAKE_CASE__ : Dict=12 , SCREAMING_SNAKE_CASE__ : Dict=3_072 , SCREAMING_SNAKE_CASE__ : Dict="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE__ : int=0.02 , SCREAMING_SNAKE_CASE__ : str=1e-1_2 , SCREAMING_SNAKE_CASE__ : int=224 , SCREAMING_SNAKE_CASE__ : Optional[Any]=16 , SCREAMING_SNAKE_CASE__ : str=3 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : List[str]=16 , **SCREAMING_SNAKE_CASE__ : Any , ) -> str: super().__init__(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = encoder_stride class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = version.parse("1.11" ) @property def a ( self : Any ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def a ( self : Dict ) -> float: return 1e-4
61
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE : List[str] = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" require_version(deps[pkg] , _UpperCAmelCase )
244
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self ) -> Tuple: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) lowerCAmelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler("""sample_euler""" ) lowerCAmelCase = """A painting of a squirrel eating a burger""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __snake_case ( self ) -> str: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowerCAmelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler("""sample_euler""" ) lowerCAmelCase = """A painting of a squirrel eating a burger""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe([prompt] , generator=A_ , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) lowerCAmelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) lowerCAmelCase = """A painting of a squirrel eating a burger""" lowerCAmelCase = torch.manual_seed(0 ) lowerCAmelCase = sd_pipe( [prompt] , generator=A_ , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=A_ , ) lowerCAmelCase = output.images lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
711
'''simple docstring''' import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser( description=( 'Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='roberta', choices=['roberta', 'gpt2']) parser.add_argument('--model_name', default='roberta-large', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_roberta_048131723.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') UpperCAmelCase = parser.parse_args() if args.model_type == "roberta": UpperCAmelCase = RobertaForMaskedLM.from_pretrained(args.model_name) UpperCAmelCase = 'roberta' elif args.model_type == "gpt2": UpperCAmelCase = GPTaLMHeadModel.from_pretrained(args.model_name) UpperCAmelCase = 'transformer' UpperCAmelCase = model.state_dict() UpperCAmelCase = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: UpperCAmelCase = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: UpperCAmelCase = F'''{prefix}.embeddings.{w}.weight''' UpperCAmelCase = state_dict[param_name] for w in ["weight", "bias"]: UpperCAmelCase = F'''{prefix}.embeddings.LayerNorm.{w}''' UpperCAmelCase = state_dict[param_name] # Transformer Blocks # UpperCAmelCase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] UpperCAmelCase = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: UpperCAmelCase = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: UpperCAmelCase = state_dict[F'''lm_head.dense.{w}'''] UpperCAmelCase = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: UpperCAmelCase = state_dict[F'''{prefix}.ln_f.{w}'''] UpperCAmelCase = state_dict['lm_head.weight'] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
344
0
'''simple docstring''' a : Union[str, Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" a : int = [{"type": "code", "content": INSTALL_CONTENT}] a : Optional[int] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
640
'''simple docstring''' from __future__ import annotations def _a (lowercase__ : int , lowercase__ : int ) -> list[str]: """simple docstring""" if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) __snake_case = number_of_bytes // partitions __snake_case = [] for i in range(lowercase__ ): __snake_case = i * bytes_per_partition + 1 __snake_case = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
56
0
"""simple docstring""" from statistics import mean import numpy as np def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = 0 # Number of processes finished _SCREAMING_SNAKE_CASE = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. _SCREAMING_SNAKE_CASE = [0] * no_of_process # List to include calculation results _SCREAMING_SNAKE_CASE = [0] * no_of_process # Sort by arrival time. _SCREAMING_SNAKE_CASE = [burst_time[i] for i in np.argsort(UpperCamelCase__ )] _SCREAMING_SNAKE_CASE = [process_name[i] for i in np.argsort(UpperCamelCase__ )] arrival_time.sort() while no_of_process > finished_process_count: _SCREAMING_SNAKE_CASE = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: _SCREAMING_SNAKE_CASE = arrival_time[i] _SCREAMING_SNAKE_CASE = 0 # Index showing the location of the process being performed _SCREAMING_SNAKE_CASE = 0 # Saves the current response ratio. _SCREAMING_SNAKE_CASE = 0 for i in range(0 , UpperCamelCase__ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: _SCREAMING_SNAKE_CASE = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: _SCREAMING_SNAKE_CASE = temp _SCREAMING_SNAKE_CASE = i # Calculate the turn around time _SCREAMING_SNAKE_CASE = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. _SCREAMING_SNAKE_CASE = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = [0] * no_of_process for i in range(0 , UpperCamelCase__ ): _SCREAMING_SNAKE_CASE = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": lowerCamelCase : Optional[Any] = 5 lowerCamelCase : List[Any] = ["""A""", """B""", """C""", """D""", """E"""] lowerCamelCase : Union[str, Any] = [1, 2, 3, 4, 5] lowerCamelCase : int = [1, 2, 3, 4, 5] lowerCamelCase : List[Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) lowerCamelCase : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("""Process name \tArrival time \tBurst time \tTurn around time \tWaiting time""") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
706
"""simple docstring""" import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __snake_case( unittest.TestCase ): def A ( self , A_ , A_ , A_ ): '''simple docstring''' self.assertEqual(len(A_ ) , len(A_ ) ) for a, b in zip(A_ , A_ ): self.assertAlmostEqual(A_ , A_ , delta=A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(A_ ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2 ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = None ops.enable_eager_execution_internal() _SCREAMING_SNAKE_CASE = tf.config.list_physical_devices('''CPU''' ) if len(A_ ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) _SCREAMING_SNAKE_CASE = tf.config.list_logical_devices(device_type='''CPU''' ) _SCREAMING_SNAKE_CASE = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): _SCREAMING_SNAKE_CASE = GradientAccumulator() _SCREAMING_SNAKE_CASE = tf.Variable([4.0, 3.0] ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = create_optimizer(5e-5 , 10 , 5 ) _SCREAMING_SNAKE_CASE = tf.Variable([0.0, 0.0] , trainable=A_ ) def accumulate_on_replica(A_ ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(A_ , A_ ): with strategy.scope(): _SCREAMING_SNAKE_CASE = strategy.experimental_local_results(A_ ) local_variables[0].assign(A_ ) local_variables[1].assign(A_ ) strategy.run(A_ , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(A_ ) def _check_local_values(A_ , A_ ): _SCREAMING_SNAKE_CASE = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , A_ , tol=1e-2 ) self.assertListAlmostEqual(values[1].value() , A_ , tol=1e-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
168
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class UpperCamelCase__ : '''simple docstring''' lowerCamelCase_ : Optional[Any] = 4_2 lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : List[Any] = None def A ( ) -> Node | None: lowerCamelCase : List[str] = Node(1 ) lowerCamelCase : Any = Node(2 ) lowerCamelCase : int = Node(3 ) lowerCamelCase : str = Node(4 ) lowerCamelCase : List[Any] = Node(5 ) return tree def A ( _SCREAMING_SNAKE_CASE ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def A ( _SCREAMING_SNAKE_CASE ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def A ( _SCREAMING_SNAKE_CASE ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def A ( _SCREAMING_SNAKE_CASE ) -> int: return (max(height(root.left ) ,height(root.right ) ) + 1) if root else 0 def A ( _SCREAMING_SNAKE_CASE ) -> Sequence[Node | None]: lowerCamelCase : Tuple = [] if root is None: return output lowerCamelCase : List[str] = deque([root] ) while process_queue: lowerCamelCase : int = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Sequence[Node | None]: lowerCamelCase : Dict = [] def populate_output(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left ,level - 1 ) populate_output(root.right ,level - 1 ) populate_output(UpperCamelCase_ ,UpperCamelCase_ ) return output def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Sequence[Node | None]: lowerCamelCase : Dict = [] def populate_output(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right ,level - 1 ) populate_output(root.left ,level - 1 ) populate_output(UpperCamelCase_ ,UpperCamelCase_ ) return output def A ( _SCREAMING_SNAKE_CASE ) -> Sequence[Node | None] | list[Any]: if root is None: return [] lowerCamelCase : Union[str, Any] = [] lowerCamelCase : str = 0 lowerCamelCase : Optional[Any] = height(UpperCamelCase_ ) for h in range(1 ,height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCamelCase_ ,UpperCamelCase_ ) ) lowerCamelCase : Union[str, Any] = 1 else: output.append(get_nodes_from_right_to_left(UpperCamelCase_ ,UpperCamelCase_ ) ) lowerCamelCase : Tuple = 0 return output def A ( ) -> None: # Main function for testing. lowerCamelCase : str = make_tree() print(f'''In-order Traversal: {inorder(UpperCamelCase_ )}''' ) print(f'''Pre-order Traversal: {preorder(UpperCamelCase_ )}''' ) print(f'''Post-order Traversal: {postorder(UpperCamelCase_ )}''' ,"\n" ) print(f'''Height of Tree: {height(UpperCamelCase_ )}''' ,"\n" ) print("Complete Level Order Traversal: " ) print(level_order(UpperCamelCase_ ) ,"\n" ) print("Level-wise order Traversal: " ) for level in range(1 ,height(UpperCamelCase_ ) + 1 ): print(f'''Level {level}:''' ,get_nodes_from_left_to_right(UpperCamelCase_ ,level=UpperCamelCase_ ) ) print("\nZigZag order Traversal: " ) print(zigzag(UpperCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py _SCREAMING_SNAKE_CASE = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ _SCREAMING_SNAKE_CASE = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ _SCREAMING_SNAKE_CASE = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE_ ( datasets.Metric ): def lowerCamelCase_ ( self : str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ), """references""": datasets.Sequence( datasets.Sequence(datasets.Value("""string""" , id="""token""" ) , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"""] , reference_urls=[ """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[Any]=4 , lowerCamelCase_ : List[Any]=False ): """simple docstring""" UpperCamelCase = compute_bleu( reference_corpus=lowerCamelCase_ , translation_corpus=lowerCamelCase_ , max_order=lowerCamelCase_ , smooth=lowerCamelCase_ ) ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
537
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :int ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase : List[Any] = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" __lowerCAmelCase : List[Any] = str(bin(SCREAMING_SNAKE_CASE ) )[2:] __lowerCAmelCase : str = max(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ) , b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
240
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :str ) -> str: if not (isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) __lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : Dict = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowerCAmelCase : List[str] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowerCAmelCase : Tuple = i __lowerCAmelCase : Any = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
240
1
from __future__ import annotations from random import choice def A__ ( __A : str ) ->int: return choice(__lowerCAmelCase ) def A__ ( __A : Optional[int] , __A : Union[str, Any] ) ->int: __A =random_pivot(__lowerCAmelCase ) # partition based on pivot # linear time __A =[e for e in lst if e < pivot] __A =[e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(__lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(__lowerCAmelCase ) < k - 1: return kth_number(__lowerCAmelCase , k - len(__lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
184
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Optional[Any] = '''data2vec-vision''' def __init__( self : str , _snake_case : str=768 , _snake_case : Tuple=12 , _snake_case : Any=12 , _snake_case : Optional[int]=3072 , _snake_case : Tuple="gelu" , _snake_case : Dict=0.0 , _snake_case : Any=0.0 , _snake_case : Tuple=0.02 , _snake_case : List[Any]=1E-1_2 , _snake_case : int=224 , _snake_case : List[str]=16 , _snake_case : List[str]=3 , _snake_case : Optional[int]=False , _snake_case : str=False , _snake_case : Tuple=False , _snake_case : Tuple=False , _snake_case : Any=0.1 , _snake_case : Any=0.1 , _snake_case : List[Any]=True , _snake_case : List[Any]=[3, 5, 7, 11] , _snake_case : List[Any]=[1, 2, 3, 6] , _snake_case : Tuple=True , _snake_case : str=0.4 , _snake_case : Any=256 , _snake_case : Any=1 , _snake_case : str=False , _snake_case : str=255 , **_snake_case : Dict , ): super().__init__(**_snake_case ) __lowercase : int = hidden_size __lowercase : Optional[int] = num_hidden_layers __lowercase : str = num_attention_heads __lowercase : List[Any] = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Optional[int] = hidden_dropout_prob __lowercase : Tuple = attention_probs_dropout_prob __lowercase : Dict = initializer_range __lowercase : List[str] = layer_norm_eps __lowercase : str = image_size __lowercase : List[str] = patch_size __lowercase : Dict = num_channels __lowercase : Optional[Any] = use_mask_token __lowercase : Optional[int] = use_absolute_position_embeddings __lowercase : Tuple = use_relative_position_bias __lowercase : Dict = use_shared_relative_position_bias __lowercase : List[Any] = layer_scale_init_value __lowercase : Union[str, Any] = drop_path_rate __lowercase : Tuple = use_mean_pooling # decode head attributes (semantic segmentation) __lowercase : List[str] = out_indices __lowercase : Tuple = pool_scales # auxiliary head attributes (semantic segmentation) __lowercase : Dict = use_auxiliary_head __lowercase : str = auxiliary_loss_weight __lowercase : Union[str, Any] = auxiliary_channels __lowercase : Dict = auxiliary_num_convs __lowercase : Dict = auxiliary_concat_input __lowercase : Dict = semantic_loss_ignore_index class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : int = version.parse('''1.11''' ) @property def snake_case_ ( self : str ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def snake_case_ ( self : Tuple ): return 1E-4
509
0
'''simple docstring''' from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowercase : str = 6 ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple =None SCREAMING_SNAKE_CASE__ : Any =None self.create_linked_list(__lowerCAmelCase ) def __magic_name__ ( self : List[Any] , __lowercase : Optional[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Any =Node() SCREAMING_SNAKE_CASE__ : Any =current_node SCREAMING_SNAKE_CASE__ : Optional[int] =current_node SCREAMING_SNAKE_CASE__ : Tuple =current_node for _ in range(1 , __lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : Any =Node() SCREAMING_SNAKE_CASE__ : Optional[Any] =current_node SCREAMING_SNAKE_CASE__ : Optional[Any] =previous_node SCREAMING_SNAKE_CASE__ : Optional[Any] =current_node SCREAMING_SNAKE_CASE__ : str =self.front SCREAMING_SNAKE_CASE__ : Dict =previous_node def __magic_name__ ( self : List[str] ) -> Dict: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __magic_name__ ( self : Tuple ) -> Optional[Any]: self.check_can_perform_operation() return self.front.data if self.front else None def __magic_name__ ( self : Dict , __lowercase : Any ) -> str: if self.rear is None: return self.check_is_full() if not self.is_empty(): SCREAMING_SNAKE_CASE__ : Optional[Any] =self.rear.next if self.rear: SCREAMING_SNAKE_CASE__ : Union[str, Any] =data def __magic_name__ ( self : Tuple ) -> List[str]: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: SCREAMING_SNAKE_CASE__ : str =self.front.data SCREAMING_SNAKE_CASE__ : Optional[int] =None return data SCREAMING_SNAKE_CASE__ : Any =self.front SCREAMING_SNAKE_CASE__ : Any =old_front.next SCREAMING_SNAKE_CASE__ : int =old_front.data SCREAMING_SNAKE_CASE__ : Any =None return data def __magic_name__ ( self : str ) -> str: if self.is_empty(): raise Exception('''Empty Queue''' ) def __magic_name__ ( self : Union[str, Any] ) -> Tuple: if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class __SCREAMING_SNAKE_CASE : def __init__( self : int ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : str =None SCREAMING_SNAKE_CASE__ : Dict =None SCREAMING_SNAKE_CASE__ : Tuple =None if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' from __future__ import annotations from collections.abc import Callable a_ = list[list[float | int]] def _a( UpperCamelCase__ : Matrix, UpperCamelCase__ : Matrix ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(size + 1 )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : float for row in range(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Tuple =matrix[row][col] SCREAMING_SNAKE_CASE__ : Optional[int] =vector[row][0] SCREAMING_SNAKE_CASE__ : Any =0 SCREAMING_SNAKE_CASE__ : Union[str, Any] =0 while row < size and col < size: # pivoting SCREAMING_SNAKE_CASE__ : Any =max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCamelCase__, UpperCamelCase__ ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[Any] =augmented[pivot_row], augmented[row] for rowa in range(row + 1, UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] =augmented[rowa][col] / augmented[row][col] SCREAMING_SNAKE_CASE__ : Tuple =0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, UpperCamelCase__ ): for row in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[Any] =augmented[row][col] / augmented[col][col] for cola in range(UpperCamelCase__, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 1_0 )] for row in range(UpperCamelCase__ ) ] def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Matrix =[[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix =[[0] for _ in range(UpperCamelCase__ )] SCREAMING_SNAKE_CASE__ : Matrix SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int SCREAMING_SNAKE_CASE__ : int for x_val, y_val in enumerate(UpperCamelCase__ ): for col in range(UpperCamelCase__ ): SCREAMING_SNAKE_CASE__ : Optional[int] =(x_val + 1) ** (size - col - 1) SCREAMING_SNAKE_CASE__ : Dict =y_val SCREAMING_SNAKE_CASE__ : Optional[int] =solve(UpperCamelCase__, UpperCamelCase__ ) def interpolated_func(UpperCamelCase__ : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCamelCase__ ) ) return interpolated_func def _a( UpperCamelCase__ : int ): '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**1_0 ) def _a( UpperCamelCase__ : Callable[[int], int] = question_function, UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : list[int] =[func(UpperCamelCase__ ) for x_val in range(1, order + 1 )] SCREAMING_SNAKE_CASE__ : list[Callable[[int], int]] =[ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] SCREAMING_SNAKE_CASE__ : int =0 SCREAMING_SNAKE_CASE__ : Callable[[int], int] SCREAMING_SNAKE_CASE__ : int for poly in polynomials: SCREAMING_SNAKE_CASE__ : Any =1 while func(UpperCamelCase__ ) == poly(UpperCamelCase__ ): x_val += 1 ret += poly(UpperCamelCase__ ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
665
0
"""simple docstring""" import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : List[str] = logging.get_logger(__name__) __magic_name__ : Tuple = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class __snake_case (lowerCamelCase ): __a = '''encodec''' def __init__( self: Union[str, Any] , A_: Union[str, Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , A_: Any=2_40_00 , A_: List[Any]=1 , A_: Optional[Any]=False , A_: Optional[int]=None , A_: int=None , A_: List[str]=1_28 , A_: Union[str, Any]=32 , A_: List[str]=1 , A_: Dict=[8, 5, 4, 2] , A_: List[Any]="weight_norm" , A_: Any=7 , A_: List[Any]=7 , A_: Tuple=3 , A_: List[str]=2 , A_: Optional[Any]=True , A_: Optional[int]="reflect" , A_: Dict=2 , A_: Union[str, Any]=2 , A_: Union[str, Any]=1.0 , A_: List[str]=10_24 , A_: str=None , A_: List[str]=True , **A_: int , ): __lowerCamelCase = target_bandwidths __lowerCamelCase = sampling_rate __lowerCamelCase = audio_channels __lowerCamelCase = normalize __lowerCamelCase = chunk_length_s __lowerCamelCase = overlap __lowerCamelCase = hidden_size __lowerCamelCase = num_filters __lowerCamelCase = num_residual_layers __lowerCamelCase = upsampling_ratios __lowerCamelCase = norm_type __lowerCamelCase = kernel_size __lowerCamelCase = last_kernel_size __lowerCamelCase = residual_kernel_size __lowerCamelCase = dilation_growth_rate __lowerCamelCase = use_causal_conv __lowerCamelCase = pad_mode __lowerCamelCase = compress __lowerCamelCase = num_lstm_layers __lowerCamelCase = trim_right_ratio __lowerCamelCase = codebook_size __lowerCamelCase = codebook_dim if codebook_dim is not None else hidden_size __lowerCamelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**A_ ) @property def __a ( self: Union[str, Any] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __a ( self: List[Any] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __a ( self: List[Any] ): __lowerCamelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __a ( self: List[Any] ): return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
281
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class __snake_case (lowerCamelCase ): __a = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
281
1
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _a : Union[str, Any] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _a : Dict = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : List[str] = calculate_rouge(__snake_case ,__snake_case ,bootstrap_aggregation=__snake_case ,rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(__snake_case ,__snake_case ) _lowerCAmelCase : Optional[int] = calculate_rouge(__snake_case ,__snake_case ,bootstrap_aggregation=__snake_case ,rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def SCREAMING_SNAKE_CASE ( ) -> Any: _lowerCAmelCase : List[Any] = "rougeLsum" _lowerCAmelCase : Optional[Any] = calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ,rouge_keys=[k] )[k] _lowerCAmelCase : Optional[Any] = calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ,rouge_keys=[k] )[k] assert score > score_no_sep def SCREAMING_SNAKE_CASE ( ) -> str: _lowerCAmelCase : str = ["rouge1", "rouge2", "rougeL"] _lowerCAmelCase : Optional[Any] = calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ,rouge_keys=__snake_case ) _lowerCAmelCase : Union[str, Any] = calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ,rouge_keys=__snake_case ) assert score_sep == score_no_sep def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _lowerCAmelCase : List[str] = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] _lowerCAmelCase : Optional[Any] = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ) == calculate_rouge(__snake_case ,__snake_case ,newline_sep=__snake_case ) def SCREAMING_SNAKE_CASE ( ) -> List[Any]: _lowerCAmelCase : Optional[Any] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] _lowerCAmelCase : Optional[int] = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] _lowerCAmelCase : Any = calculate_rouge(__snake_case ,__snake_case ,rouge_keys=["""rougeLsum"""] ,newline_sep=__snake_case )["rougeLsum"] _lowerCAmelCase : Union[str, Any] = calculate_rouge(__snake_case ,__snake_case ,rouge_keys=["""rougeLsum"""] )["rougeLsum"] assert new_score > prev_score def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _lowerCAmelCase : int = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) _lowerCAmelCase : Any = calculate_rouge_path(data_dir.joinpath("""test.source""" ) ,data_dir.joinpath("""test.target""" ) ) assert isinstance(__snake_case ,__snake_case ) _lowerCAmelCase : List[str] = calculate_rouge_path( data_dir.joinpath("""test.source""" ) ,data_dir.joinpath("""test.target""" ) ,bootstrap_aggregation=__snake_case ) assert isinstance(__snake_case ,__snake_case )
713
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
0
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : List[str] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4" ) UpperCAmelCase_ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler("sample_euler" ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler("sample_euler" ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe([prompt] , generator=__lowercase , guidance_scale=9.0 , num_inference_steps=20 , output_type="np" ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def lowercase__ ( self : Any ) -> Any: '''simple docstring''' UpperCAmelCase_ = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base" ) UpperCAmelCase_ = sd_pipe.to(__lowercase ) sd_pipe.set_progress_bar_config(disable=__lowercase ) sd_pipe.set_scheduler("sample_dpmpp_2m" ) UpperCAmelCase_ = "A painting of a squirrel eating a burger" UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sd_pipe( [prompt] , generator=__lowercase , guidance_scale=7.5 , num_inference_steps=15 , output_type="np" , use_karras_sigmas=__lowercase , ) UpperCAmelCase_ = output.images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase_ = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
82
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('''0.8.3'''): raise Exception('''requires gluonnlp == 0.8.3''') if version.parse(mx.__version__) != version.parse('''1.5.0'''): raise Exception('''requires mxnet == 1.5.0''') logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = '''The Nymphenburg Palace is a beautiful palace in Munich!''' def __UpperCamelCase ( lowercase__ : str, lowercase__ : str ): '''simple docstring''' __lowercase ={ 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } __lowercase =bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __lowercase =BERTEncoder( attention_cell=predefined_args['attention_cell'], num_layers=predefined_args['num_layers'], units=predefined_args['units'], hidden_size=predefined_args['hidden_size'], max_length=predefined_args['max_length'], num_heads=predefined_args['num_heads'], scaled=predefined_args['scaled'], dropout=predefined_args['dropout'], output_attention=lowercase__, output_all_encodings=lowercase__, use_residual=predefined_args['use_residual'], activation=predefined_args.get('activation', 'gelu' ), layer_norm_eps=predefined_args.get('layer_norm_eps', lowercase__ ), ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __lowercase ='openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __lowercase =os.path.join(get_home_dir(), 'models' ) __lowercase =_load_vocab(lowercase__, lowercase__, lowercase__, cls=lowercase__ ) __lowercase =nlp.model.BERTModel( lowercase__, len(lowercase__ ), units=predefined_args['units'], embed_size=predefined_args['embed_size'], embed_dropout=predefined_args['embed_dropout'], word_embed=predefined_args['word_embed'], use_pooler=lowercase__, use_token_type_embed=lowercase__, token_type_vocab_size=predefined_args['token_type_vocab_size'], use_classifier=lowercase__, use_decoder=lowercase__, ) original_bort.load_parameters(lowercase__, cast_dtype=lowercase__, ignore_extra=lowercase__ ) __lowercase =original_bort._collect_params_with_prefix() # Build our config 🤗 __lowercase ={ 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowercase__ ), } __lowercase =BertConfig.from_dict(lowercase__ ) __lowercase =BertForMaskedLM(lowercase__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowercase__ : Optional[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowercase__ : Optional[Any], lowercase__ : Any ): __lowercase =hf_param.shape __lowercase =to_torch(params[gluon_param] ) __lowercase =gluon_param.shape assert ( shape_hf == shape_gluon ), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param __lowercase =check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight, 'word_embed.0.weight' ) __lowercase =check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight, 'encoder.position_weight' ) __lowercase =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias, 'encoder.layer_norm.beta' ) __lowercase =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight, 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __lowercase =torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __lowercase =hf_bort_model.bert.encoder.layer[i] # self attention __lowercase =layer.attention.self __lowercase =check_and_map_params( self_attn.key.bias.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) __lowercase =check_and_map_params( self_attn.key.weight.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) __lowercase =check_and_map_params( self_attn.query.bias.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) __lowercase =check_and_map_params( self_attn.query.weight.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) __lowercase =check_and_map_params( self_attn.value.bias.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) __lowercase =check_and_map_params( self_attn.value.weight.data, F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output __lowercase =layer.attention.output __lowercase =check_and_map_params( self_output.dense.bias, F'''encoder.transformer_cells.{i}.proj.bias''' ) __lowercase =check_and_map_params( self_output.dense.weight, F'''encoder.transformer_cells.{i}.proj.weight''' ) __lowercase =check_and_map_params( self_output.LayerNorm.bias, F'''encoder.transformer_cells.{i}.layer_norm.beta''' ) __lowercase =check_and_map_params( self_output.LayerNorm.weight, F'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate __lowercase =layer.intermediate __lowercase =check_and_map_params( intermediate.dense.bias, F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) __lowercase =check_and_map_params( intermediate.dense.weight, F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output __lowercase =layer.output __lowercase =check_and_map_params( bert_output.dense.bias, F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) __lowercase =check_and_map_params( bert_output.dense.weight, F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) __lowercase =check_and_map_params( bert_output.LayerNorm.bias, F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) __lowercase =check_and_map_params( bert_output.LayerNorm.weight, F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __lowercase =RobertaTokenizer.from_pretrained('roberta-base' ) __lowercase =tokenizer.encode_plus(lowercase__ )['input_ids'] # Get gluon output __lowercase =mx.nd.array([input_ids] ) __lowercase =original_bort(inputs=lowercase__, token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowercase__ ) __lowercase =BertModel.from_pretrained(lowercase__ ) hf_bort_model.eval() __lowercase =tokenizer.encode_plus(lowercase__, return_tensors='pt' ) __lowercase =hf_bort_model(**lowercase__ )[0] __lowercase =output_gluon[0].asnumpy() __lowercase =output_hf[0].detach().numpy() __lowercase =np.max(np.abs(hf_layer - gluon_layer ) ).item() __lowercase =np.allclose(lowercase__, lowercase__, atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:', lowercase__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bort_checkpoint_path''', default=None, type=str, required=True, help='''Path the official Bort params file.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
119
0
import pytest lowerCamelCase :List[Any] = '__dummy_dataset1__' lowerCamelCase :List[Any] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __snake_case ( ) -> List[str]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __snake_case ( ) -> Tuple: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Tuple: _a = dataset_loading_script_name _a = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=_UpperCamelCase ) _a = script_dir / f"{script_name}.py" with open(_UpperCamelCase , '''w''' ) as f: f.write(_UpperCamelCase ) return str(_UpperCamelCase )
346
from collections.abc import Generator from math import sin def __snake_case ( _UpperCamelCase ) -> bytes: if len(_UpperCamelCase ) != 32: raise ValueError('''Input must be of length 32''' ) _a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( _UpperCamelCase ) -> bytes: if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(_UpperCamelCase , '''08x''' )[-8:] _a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __snake_case ( _UpperCamelCase ) -> bytes: _a = b'''''' for char in message: bit_string += format(_UpperCamelCase , '''08b''' ).encode('''utf-8''' ) _a = format(len(_UpperCamelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCamelCase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( _UpperCamelCase ) -> Generator[list[int], None, None]: if len(_UpperCamelCase ) % 5_12 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCamelCase ) , 5_12 ): _a = bit_string[pos : pos + 5_12] _a = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( _UpperCamelCase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(_UpperCamelCase , '''032b''' ) _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCamelCase , 2 ) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return (a + b) % 2**32 def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( _UpperCamelCase ) -> bytes: _a = preprocess(_UpperCamelCase ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0X67_45_23_01 _a = 0XEF_CD_AB_89 _a = 0X98_BA_DC_FE _a = 0X10_32_54_76 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCamelCase ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(_UpperCamelCase )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(_UpperCamelCase , left_rotate_aa(_UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
346
1
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A__ = logging.getLogger(__name__) A__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) A__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class a : __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization. Leave None if you want to train a model from""" """ scratch.""" ) } , ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(__lowerCamelCase )} , ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class a : __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """The input training data file (a text file)."""} ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={ """help""": ( """The input training data files (multiple files in glob format). """ """Very often splitting large files to smaller files can prevent tokenizer going out of memory""" ) } , ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """An optional input train ref data file for whole word mask in Chinese."""} , ) __lowerCAmelCase : Optional[str] = field( default=__lowerCamelCase , metadata={"""help""": """An optional input eval ref data file for whole word mask in Chinese."""} , ) __lowerCAmelCase : bool = field( default=__lowerCamelCase , metadata={"""help""": """Whether distinct lines of text in the dataset are to be handled as distinct sequences."""} , ) __lowerCAmelCase : bool = field( default=__lowerCamelCase , metadata={"""help""": """Train with masked-language modeling loss instead of language modeling."""} ) __lowerCAmelCase : bool = field(default=__lowerCamelCase , metadata={"""help""": """Whether ot not to use whole word mask."""} ) __lowerCAmelCase : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) __lowerCAmelCase : float = field( default=1 / 6 , metadata={ """help""": ( """Ratio of length of a span of masked tokens to surrounding context length for permutation language""" """ modeling.""" ) } , ) __lowerCAmelCase : int = field( default=5 , metadata={"""help""": """Maximum length of a span of masked tokens for permutation language modeling."""} ) __lowerCAmelCase : int = field( default=-1 , metadata={ """help""": ( """Optional input sequence length after tokenization.""" """The training dataset will be truncated in block of this size for training.""" """Default to the model max input length for single sentence inputs (take into account special tokens).""" ) } , ) __lowerCAmelCase : bool = field( default=__lowerCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , ) -> str: """simple docstring""" def _dataset(__lowerCAmelCase , __lowerCAmelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('''You need to set world whole masking and mlm to True for Chinese Whole Word Mask''' ) return LineByLineWithRefDataset( tokenizer=__lowerCAmelCase , file_path=__lowerCAmelCase , block_size=args.block_size , ref_path=__lowerCAmelCase , ) return LineByLineTextDataset(tokenizer=__lowerCAmelCase , file_path=__lowerCAmelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=__lowerCAmelCase , file_path=__lowerCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__lowerCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__lowerCAmelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" snake_case__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case__ , snake_case__ , snake_case__ : int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( '''Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ''' '''or remove the --do_eval argument.''' ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowerCAmelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: snake_case__ : str = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: snake_case__ : List[str] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: snake_case__ : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.tokenizer_name: snake_case__ : Dict = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: snake_case__ : Optional[int] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another''' ''' script, save it,and load it from here, using --tokenizer_name''' ) if model_args.model_name_or_path: snake_case__ : List[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info('''Training new model from scratch''' ) snake_case__ : Tuple = AutoModelWithLMHead.from_config(__lowerCAmelCase ) model.resize_token_embeddings(len(__lowerCAmelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( '''BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the''' '''--mlm flag (masked language modeling).''' ) if data_args.block_size <= 0: snake_case__ : int = tokenizer.max_len # Our input block size will be the max possible for the model else: snake_case__ : Tuple = min(data_args.block_size , tokenizer.max_len ) # Get datasets snake_case__ : List[Any] = ( get_dataset(__lowerCAmelCase , tokenizer=__lowerCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) snake_case__ : Optional[int] = ( get_dataset(__lowerCAmelCase , tokenizer=__lowerCAmelCase , evaluate=__lowerCAmelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": snake_case__ : int = DataCollatorForPermutationLanguageModeling( tokenizer=__lowerCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: snake_case__ : str = DataCollatorForWholeWordMask( tokenizer=__lowerCAmelCase , mlm_probability=data_args.mlm_probability ) else: snake_case__ : Any = DataCollatorForLanguageModeling( tokenizer=__lowerCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer snake_case__ : List[str] = Trainer( model=__lowerCAmelCase , args=__lowerCAmelCase , data_collator=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , prediction_loss_only=__lowerCAmelCase , ) # Training if training_args.do_train: snake_case__ : List[str] = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__lowerCAmelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case__ : Optional[Any] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) snake_case__ : Optional[Any] = trainer.evaluate() snake_case__ : Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) snake_case__ : List[Any] = {'''perplexity''': perplexity} snake_case__ : Dict = os.path.join(training_args.output_dir , '''eval_results_lm.txt''' ) if trainer.is_world_master(): with open(__lowerCAmelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key in sorted(result.keys() ): logger.info(''' %s = %s''' , __lowerCAmelCase , str(result[key] ) ) writer.write('''%s = %s\n''' % (key, str(result[key] )) ) results.update(__lowerCAmelCase ) return results def _lowerCAmelCase ( __lowerCAmelCase ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
252
import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''spiece.model'''} A__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 A__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } A__ = '''▁''' class a ( __lowerCamelCase ): __lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self :Union[str, Any] ,__lowercase :Dict ,__lowercase :Dict="</s>" ,__lowercase :List[Any]="<unk>" ,__lowercase :Optional[int]="<pad>" ,__lowercase :List[Any]=1_0_0 ,__lowercase :Dict=None ,__lowercase :Optional[Dict[str, Any]] = None ,__lowercase :Union[str, Any]=True ,**__lowercase :Union[str, Any] ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: snake_case__ : str = [F"""<extra_id_{i}>""" for i in range(__lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens snake_case__ : str = len(set(filter(lambda __lowercase : bool('''extra_id''' in str(__lowercase ) ) ,__lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) if legacy: logger.warning_once( F"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" ''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' ) snake_case__ : int = legacy snake_case__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowercase ,unk_token=__lowercase ,pad_token=__lowercase ,extra_ids=__lowercase ,additional_special_tokens=__lowercase ,sp_model_kwargs=self.sp_model_kwargs ,legacy=__lowercase ,**__lowercase ,) snake_case__ : Tuple = vocab_file snake_case__ : Union[str, Any] = extra_ids snake_case__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) @staticmethod def __lowerCamelCase ( __lowercase :Optional[Any] ,__lowercase :Any ,__lowercase :Optional[int] ): if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: snake_case__ : Optional[Any] = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' F""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' F""" {pretrained_model_name_or_path} automatically truncating your input to""" F""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" F""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' ,__lowercase ,) return max_model_length @property def __lowerCamelCase ( self :Tuple ): return self.sp_model.get_piece_size() + self._extra_ids def __lowerCamelCase ( self :int ): snake_case__ : List[str] = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __lowerCamelCase ( self :int ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ,__lowercase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase ,token_ids_a=__lowercase ,already_has_special_tokens=__lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__lowercase )) + [1] return ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1] def __lowerCamelCase ( self :Optional[Any] ): return list( set(filter(lambda __lowercase : bool(re.search(r'''<extra_id_\d+>''' ,__lowercase ) ) is not None ,self.additional_special_tokens ) ) ) def __lowerCamelCase ( self :str ): return [self._convert_token_to_id(__lowercase ) for token in self.get_sentinel_tokens()] def __lowerCamelCase ( self :str ,__lowercase :List[int] ): if len(__lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" ''' eos tokens being added.''' ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCamelCase ( self :Dict ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : Dict = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCamelCase ( self :int ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : Tuple = self._add_eos_if_not_present(__lowercase ) if token_ids_a is None: return token_ids_a else: snake_case__ : Tuple = self._add_eos_if_not_present(__lowercase ) return token_ids_a + token_ids_a def __getstate__( self :Any ): snake_case__ : str = self.__dict__.copy() snake_case__ : int = None return state def __setstate__( self :Optional[int] ,__lowercase :str ): snake_case__ : Any = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): snake_case__ : Any = {} snake_case__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self :Dict ,__lowercase :"TextInput" ,**__lowercase :List[Any] ): # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: snake_case__ : List[str] = SPIECE_UNDERLINE + text.replace(__lowercase ,''' ''' ) return super().tokenize(__lowercase ,**__lowercase ) def __lowerCamelCase ( self :Any ,__lowercase :List[Any] ,**__lowercase :int ): if not self.legacy: snake_case__ : Union[str, Any] = text.startswith(__lowercase ) if is_first: snake_case__ : Union[str, Any] = text[1:] snake_case__ : Optional[Any] = self.sp_model.encode(__lowercase ,out_type=__lowercase ) if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(__lowercase ): snake_case__ : Tuple = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __lowerCamelCase ( self :List[Any] ,__lowercase :Dict ): if token.startswith('''<extra_id_''' ): snake_case__ : str = re.match(r'''<extra_id_(\d+)>''' ,__lowercase ) snake_case__ : int = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :Any ): if index < self.sp_model.get_piece_size(): snake_case__ : List[Any] = self.sp_model.IdToPiece(__lowercase ) else: snake_case__ : Tuple = F"""<extra_id_{self.vocab_size - 1 - index}>""" return token def __lowerCamelCase ( self :List[Any] ,__lowercase :List[str] ): snake_case__ : Optional[int] = [] snake_case__ : int = '''''' snake_case__ : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase ) + token snake_case__ : List[Any] = True snake_case__ : Optional[int] = [] else: current_sub_tokens.append(__lowercase ) snake_case__ : Optional[Any] = False out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[str] = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : Any = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase ,'''wb''' ) as fi: snake_case__ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,)
252
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) def a ( __a , __a=False ) -> int: '''simple docstring''' UpperCamelCase__ :Optional[int] = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''') ) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''') ) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''') ) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''') ) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''') ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight''') ) rename_keys.append((f'''patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias''', f'''vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias''') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ :Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) # fmt: on return rename_keys def a ( __a , __a , __a=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ :Any = '''''' else: UpperCamelCase__ :List[str] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ :Optional[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) UpperCamelCase__ :Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ :int = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ :int = in_proj_bias[: config.hidden_size] UpperCamelCase__ :int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ :int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ :Tuple = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ :str = in_proj_bias[-config.hidden_size :] def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :Optional[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__a , __a ) def a ( __a , __a , __a ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ :Optional[Any] = dct.pop(__a ) UpperCamelCase__ :Any = val def a ( ) -> Dict: '''simple docstring''' UpperCamelCase__ :int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ :int = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def a ( __a , __a , __a=False ) -> int: '''simple docstring''' UpperCamelCase__ :Optional[Any] = BitConfig( global_padding='''same''' , layer_type='''bottleneck''' , depths=(3, 4, 9) , out_features=['''stage3'''] , embedding_dynamic_padding=__a , ) UpperCamelCase__ :List[Any] = ViTHybridConfig(backbone_config=__a , image_size=384 , num_labels=1000 ) UpperCamelCase__ :Tuple = False # load original model from timm UpperCamelCase__ :Dict = timm.create_model(__a , pretrained=__a ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase__ :Tuple = timm_model.state_dict() if base_model: remove_classification_head_(__a ) UpperCamelCase__ :List[str] = create_rename_keys(__a , __a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) UpperCamelCase__ :Dict = '''huggingface/label-files''' UpperCamelCase__ :str = '''imagenet-1k-id2label.json''' UpperCamelCase__ :Dict = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) UpperCamelCase__ :Any = {int(__a ): v for k, v in idalabel.items()} UpperCamelCase__ :str = idalabel UpperCamelCase__ :Any = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase__ :List[Any] = ViTHybridModel(__a ).eval() else: UpperCamelCase__ :Optional[int] = ViTHybridForImageClassification(__a ).eval() model.load_state_dict(__a ) # create image processor UpperCamelCase__ :str = create_transform(**resolve_data_config({} , model=__a ) ) UpperCamelCase__ :Optional[Any] = transform.transforms UpperCamelCase__ :Optional[Any] = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } UpperCamelCase__ :str = ViTHybridImageProcessor( do_resize=__a , size={'''shortest_edge''': timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__a , crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]} , do_normalize=__a , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) UpperCamelCase__ :List[Any] = prepare_img() UpperCamelCase__ :int = transform(__a ).unsqueeze(0 ) UpperCamelCase__ :Tuple = processor(__a , return_tensors='''pt''' ).pixel_values # verify pixel values assert torch.allclose(__a , __a ) # verify logits with torch.no_grad(): UpperCamelCase__ :Optional[Any] = model(__a ) UpperCamelCase__ :Tuple = outputs.logits print('''Predicted class:''' , logits.argmax(-1 ).item() ) if base_model: UpperCamelCase__ :List[str] = timm_model.forward_features(__a ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__a , outputs.pooler_output , atol=1e-3 ) else: UpperCamelCase__ :List[Any] = timm_model(__a ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__a ).mkdir(exist_ok=__a ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__a ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__a ) if push_to_hub: print(f'''Pushing model and processor to the hub {vit_name}''' ) model.push_to_hub(f'''ybelkada/{vit_name}''' ) processor.push_to_hub(f'''ybelkada/{vit_name}''' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_r50_s16_384''', type=str, help='''Name of the hybrid ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) __snake_case = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
720
'''simple docstring''' import sys __snake_case = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a ( __a ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = 1 for digit in s: product *= int(__a ) return product def a ( __a = N ) -> int: '''simple docstring''' UpperCamelCase__ :Tuple = -sys.maxsize - 1 UpperCamelCase__ :Dict = n[:13] UpperCamelCase__ :Dict = 13 while cur_index < len(__a ) - 13: if int(n[cur_index] ) >= int(substr[0] ): UpperCamelCase__ :Dict = substr[1:] + n[cur_index] cur_index += 1 else: UpperCamelCase__ :List[str] = max(__a , str_eval(__a ) ) UpperCamelCase__ :Union[str, Any] = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F"""{solution() = }""")
280
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __snake_case = {'''UserAgent''': UserAgent().random} def _A ( _lowercase ) -> dict: """simple docstring""" __UpperCamelCase = script.contents[0] __UpperCamelCase = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class __lowerCamelCase : def __init__( self: Tuple,A_: int ): '''simple docstring''' __UpperCamelCase = F'''https://www.instagram.com/{username}/''' __UpperCamelCase = self.get_json() def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = requests.get(self.url,headers=A_ ).text __UpperCamelCase = BeautifulSoup(A_,'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self: List[Any] ): '''simple docstring''' return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self: str ): '''simple docstring''' return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return self.user_data["username"] @property def snake_case_ ( self: Optional[Any] ): '''simple docstring''' return self.user_data["full_name"] @property def snake_case_ ( self: List[str] ): '''simple docstring''' return self.user_data["biography"] @property def snake_case_ ( self: str ): '''simple docstring''' return self.user_data["business_email"] @property def snake_case_ ( self: Dict ): '''simple docstring''' return self.user_data["external_url"] @property def snake_case_ ( self: str ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def snake_case_ ( self: Tuple ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def snake_case_ ( self: Optional[int] ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def snake_case_ ( self: Any ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def snake_case_ ( self: Dict ): '''simple docstring''' return self.user_data["is_verified"] @property def snake_case_ ( self: int ): '''simple docstring''' return self.user_data["is_private"] def _A ( _lowercase = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions __UpperCamelCase = InstagramUser(_lowercase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowercase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __snake_case = InstagramUser('''github''') print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
1
'''simple docstring''' from __future__ import annotations __UpperCAmelCase = list[list[int]] # assigning initial values to the grid __UpperCAmelCase = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __UpperCAmelCase = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def _snake_case ( A , A , A , A ) -> bool: for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def _snake_case ( A ) -> tuple[int, int] | None: for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def _snake_case ( A ) -> Matrix | None: if location := find_empty_location(A ): lowerCAmelCase__ , lowerCAmelCase__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(A , A , A , A ): lowerCAmelCase__ = digit if sudoku(A ) is not None: return grid lowerCAmelCase__ = 0 return None def _snake_case ( A ) -> None: for row in grid: for cell in row: print(A , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('''\nExample grid:\n''' + '''=''' * 20) print_solution(example_grid) print('''\nExample grid solution:''') __UpperCAmelCase = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('''Cannot find a solution.''')
90
0
from __future__ import annotations from math import pow, sqrt def a__ ( _UpperCamelCase : float ,_UpperCamelCase : float ,_UpperCamelCase : float ): if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(_UpperCamelCase ,2 ) - pow(_UpperCamelCase ,2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(_UpperCamelCase ,2 ) - pow(_UpperCamelCase ,2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(_UpperCamelCase ,2 ) + pow(_UpperCamelCase ,2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
622
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device a_ = False class __lowerCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=__UpperCAmelCase , text_to_image_strength=0.75 , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained(__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = generator.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt='''first prompt''' , image=__UpperCAmelCase , text_to_image_strength=0.75 , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='''numpy''' , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = '''cyberpunk 2077''' __lowerCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.dual_guided( prompt=__UpperCAmelCase , image=__UpperCAmelCase , text_to_image_strength=0.75 , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' , ).images __lowerCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.1_448, 0.1_619, 0.1_741, 0.1_086, 0.1_147, 0.1_128, 0.1_199, 0.1_165, 0.1_001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowerCamelCase = '''A painting of a squirrel eating a burger ''' __lowerCamelCase = torch.manual_seed(0 ) __lowerCamelCase = pipe.text_to_image( prompt=__UpperCAmelCase , generator=__UpperCAmelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='''numpy''' ).images __lowerCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 __lowerCamelCase = pipe.image_variation(__UpperCAmelCase , generator=__UpperCAmelCase , output_type='''numpy''' ).images __lowerCamelCase = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.3_076, 0.3_123, 0.3_284, 0.3_782, 0.3_770, 0.3_894, 0.4_297, 0.4_331, 0.4_456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
622
1
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def a__ ( A__, A__=(), A__=None, A__="no", A__="29500" ): SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : int = False if any(key.startswith('KAGGLE' ) for key in os.environ.keys() ): SCREAMING_SNAKE_CASE_ : Optional[int] = True elif "IPython" in sys.modules: SCREAMING_SNAKE_CASE_ : List[str] = 'google.colab' in str(sys.modules['IPython'].get_ipython() ) try: SCREAMING_SNAKE_CASE_ : str = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F'''Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.''' ) if (in_colab or in_kaggle) and (os.environ.get('TPU_NAME', __lowercase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ' 'your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if num_processes is None: SCREAMING_SNAKE_CASE_ : Any = 8 SCREAMING_SNAKE_CASE_ : List[str] = PrepareForLaunch(__lowercase, distributed_type='TPU' ) print(F'''Launching a training on {num_processes} TPU cores.''' ) xmp.spawn(__lowercase, args=__lowercase, nprocs=__lowercase, start_method='fork' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on one CPU.' ) function(*__lowercase ) else: if num_processes is None: raise ValueError( 'You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( 'To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ' 'inside your training function. Restart your notebook and make sure no cells initializes an ' '`Accelerator`.' ) if torch.cuda.is_initialized(): raise ValueError( 'To launch a multi-GPU training from your notebook, you need to avoid running any instruction ' 'using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ' 'function.' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowercase, master_addr='127.0.01', master_port=__lowercase, mixed_precision=__lowercase ): SCREAMING_SNAKE_CASE_ : Any = PrepareForLaunch(__lowercase, distributed_type='MULTI_GPU' ) print(F'''Launching training on {num_processes} GPUs.''' ) try: start_processes(__lowercase, args=__lowercase, nprocs=__lowercase, start_method='fork' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( 'CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ' 'This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ' 'Please review your imports and test them when running the `notebook_launcher()` to identify ' 'which one is problematic.' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): SCREAMING_SNAKE_CASE_ : str = '1' print('Launching training on MPS.' ) elif torch.cuda.is_available(): print('Launching training on one GPU.' ) else: print('Launching training on CPU.' ) function(*__lowercase ) def a__ ( A__, A__=(), A__=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=__lowercase, master_addr='127.0.01', master_port='29500', accelerate_mixed_precision='no', accelerate_debug_rdv_file=tmp_file.name, accelerate_use_cpu='yes', ): SCREAMING_SNAKE_CASE_ : Optional[Any] = PrepareForLaunch(__lowercase, debug=__lowercase ) start_processes(__lowercase, args=__lowercase, nprocs=__lowercase, start_method='fork' )
101
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE = [ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] __SCREAMING_SNAKE_CASE = { 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } __SCREAMING_SNAKE_CASE = {F"""funnel-transformer/{name}""": 512 for name in _model_names} __SCREAMING_SNAKE_CASE = {F"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class a__ ( A__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ = FunnelTokenizer UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = 2 def __init__( self :str , _lowerCamelCase :int=None , _lowerCamelCase :List[Any]=None , _lowerCamelCase :Dict=True , _lowerCamelCase :Optional[Any]="<unk>" , _lowerCamelCase :Optional[Any]="<sep>" , _lowerCamelCase :List[Any]="<pad>" , _lowerCamelCase :List[Any]="<cls>" , _lowerCamelCase :Union[str, Any]="<mask>" , _lowerCamelCase :Any="<s>" , _lowerCamelCase :Union[str, Any]="</s>" , _lowerCamelCase :str=True , _lowerCamelCase :Dict=True , _lowerCamelCase :Tuple=None , _lowerCamelCase :Tuple="##" , **_lowerCamelCase :int , ): '''simple docstring''' super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , clean_text=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , wordpieces_prefix=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase_ : str =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCamelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCamelCase ) != tokenize_chinese_chars ): UpperCamelCase_ : int =getattr(_lowerCamelCase , normalizer_state.pop('type' ) ) UpperCamelCase_ : Dict =do_lower_case UpperCamelCase_ : Tuple =strip_accents UpperCamelCase_ : int =tokenize_chinese_chars UpperCamelCase_ : Tuple =normalizer_class(**_lowerCamelCase ) UpperCamelCase_ : Dict =do_lower_case def lowerCamelCase_ ( self :Optional[int] , _lowerCamelCase :str , _lowerCamelCase :Optional[int]=None ): '''simple docstring''' UpperCamelCase_ : Optional[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase_ : Optional[int] =[self.sep_token_id] UpperCamelCase_ : List[Any] =[self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase_ ( self :Optional[Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ): '''simple docstring''' UpperCamelCase_ : int =self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
357
0
'''simple docstring''' def __UpperCAmelCase ( UpperCamelCase__ :int , UpperCamelCase__ :int ) -> str: if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) snake_case__ : Union[str, Any] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(UpperCamelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
574
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = 'ClapFeatureExtractor' A__ = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : Optional[Any] , __UpperCamelCase : Optional[int] , __UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self : Optional[int] , __UpperCamelCase : List[str]=None , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Dict=None , **__UpperCamelCase : Dict ) -> List[Any]: """simple docstring""" snake_case__ : List[str] = kwargs.pop('''sampling_rate''' , __UpperCamelCase ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: snake_case__ : List[str] = self.tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if audios is not None: snake_case__ : List[Any] = self.feature_extractor( __UpperCamelCase , sampling_rate=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) if text is not None and audios is not None: snake_case__ : Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowerCAmelCase ( self : str , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : List[str] ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCAmelCase ( self : str , *__UpperCamelCase : Tuple , **__UpperCamelCase : int ) -> Dict: """simple docstring""" return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" snake_case__ : Union[str, Any] = self.tokenizer.model_input_names snake_case__ : Optional[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
574
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def _lowerCamelCase( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ) -> List[str]: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) __lowercase= [] for i in range(lowercase__ ): __lowercase= i / num_diffusion_timesteps __lowercase= (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class A ( A_ , A_ ): UpperCamelCase_ : Tuple =[e.name for e in KarrasDiffusionSchedulers] UpperCamelCase_ : Tuple =2 @register_to_config def __init__(self , lowerCAmelCase = 1_0_0_0 , lowerCAmelCase = 0.0_00_85 , lowerCAmelCase = 0.0_12 , lowerCAmelCase = "linear" , lowerCAmelCase = None , lowerCAmelCase = "epsilon" , lowerCAmelCase = "linspace" , lowerCAmelCase = 0 , ): if trained_betas is not None: __lowercase= torch.tensor(lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __lowercase= torch.linspace(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __lowercase= ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __lowercase= betas_for_alpha_bar(lowerCAmelCase ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) __lowercase= 1.0 - self.betas __lowercase= torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase=None ): if schedule_timesteps is None: __lowercase= self.timesteps __lowercase= (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __lowercase= 1 if len(lowerCAmelCase ) > 1 else 0 else: __lowercase= timestep.cpu().item() if torch.is_tensor(lowerCAmelCase ) else timestep __lowercase= self._index_counter[timestep_int] return indices[pos].item() @property def _A (self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def _A (self , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.index_for_timestep(lowerCAmelCase ) if self.state_in_first_order: __lowercase= self.sigmas[step_index] else: __lowercase= self.sigmas_interpol[step_index] __lowercase= sample / ((sigma**2 + 1) ** 0.5) return sample def _A (self , lowerCAmelCase , lowerCAmelCase = None , lowerCAmelCase = None , ): __lowercase= num_inference_steps __lowercase= num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __lowercase= np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase , dtype=lowerCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __lowercase= num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase= (np.arange(0 , lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __lowercase= num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __lowercase= (np.arange(lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) __lowercase= np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __lowercase= torch.from_numpy(np.log(lowerCAmelCase ) ).to(lowerCAmelCase ) __lowercase= np.interp(lowerCAmelCase , np.arange(0 , len(lowerCAmelCase ) ) , lowerCAmelCase ) __lowercase= np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __lowercase= torch.from_numpy(lowerCAmelCase ).to(device=lowerCAmelCase ) # interpolate sigmas __lowercase= sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __lowercase= torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __lowercase= torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(lowerCAmelCase ).startswith('mps' ): # mps does not support float64 __lowercase= torch.from_numpy(lowerCAmelCase ).to(lowerCAmelCase , dtype=torch.floataa ) else: __lowercase= torch.from_numpy(lowerCAmelCase ).to(lowerCAmelCase ) # interpolate timesteps __lowercase= self.sigma_to_t(lowerCAmelCase ).to(lowerCAmelCase , dtype=timesteps.dtype ) __lowercase= torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __lowercase= torch.cat([timesteps[:1], interleaved_timesteps] ) __lowercase= None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __lowercase= defaultdict(lowerCAmelCase ) def _A (self , lowerCAmelCase ): # get log sigma __lowercase= sigma.log() # get distribution __lowercase= log_sigma - self.log_sigmas[:, None] # get sigmas range __lowercase= dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __lowercase= low_idx + 1 __lowercase= self.log_sigmas[low_idx] __lowercase= self.log_sigmas[high_idx] # interpolate sigmas __lowercase= (low - log_sigma) / (low - high) __lowercase= w.clamp(0 , 1 ) # transform interpolation to time range __lowercase= (1 - w) * low_idx + w * high_idx __lowercase= t.view(sigma.shape ) return t @property def _A (self ): return self.sample is None def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = True , ): __lowercase= self.index_for_timestep(lowerCAmelCase ) # advance index counter by 1 __lowercase= timestep.cpu().item() if torch.is_tensor(lowerCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __lowercase= self.sigmas[step_index] __lowercase= self.sigmas_interpol[step_index + 1] __lowercase= self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __lowercase= self.sigmas[step_index - 1] __lowercase= self.sigmas_interpol[step_index] __lowercase= self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __lowercase= 0 __lowercase= sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __lowercase= sigma_hat if self.state_in_first_order else sigma_interpol __lowercase= sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __lowercase= sigma_hat if self.state_in_first_order else sigma_interpol __lowercase= model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __lowercase= (sample - pred_original_sample) / sigma_hat # 3. delta timestep __lowercase= sigma_interpol - sigma_hat # store for 2nd order step __lowercase= sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __lowercase= (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __lowercase= sigma_next - sigma_hat __lowercase= self.sample __lowercase= None __lowercase= sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __lowercase= self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase ): # mps does not support float64 __lowercase= self.timesteps.to(original_samples.device , dtype=torch.floataa ) __lowercase= timesteps.to(original_samples.device , dtype=torch.floataa ) else: __lowercase= self.timesteps.to(original_samples.device ) __lowercase= timesteps.to(original_samples.device ) __lowercase= [self.index_for_timestep(lowerCAmelCase , lowerCAmelCase ) for t in timesteps] __lowercase= sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __lowercase= sigma.unsqueeze(-1 ) __lowercase= original_samples + noise * sigma return noisy_samples def __len__(self ): return self.config.num_train_timesteps
230
import os import sys import unittest lowerCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowerCAmelCase = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') lowerCAmelCase = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class A ( unittest.TestCase ): def _A (self ): __lowercase= get_test_to_tester_mapping(lowerCAmelCase ) __lowercase= get_test_to_tester_mapping(lowerCAmelCase ) __lowercase= {'BertModelTest': 'BertModelTester'} __lowercase= { 'BlipModelTest': 'BlipModelTester', 'BlipTextImageModelTest': 'BlipTextImageModelsModelTester', 'BlipTextModelTest': 'BlipTextModelTester', 'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester', 'BlipVQAModelTest': 'BlipVQAModelTester', 'BlipVisionModelTest': 'BlipVisionModelTester', } self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) def _A (self ): __lowercase= get_model_to_test_mapping(lowerCAmelCase ) __lowercase= get_model_to_test_mapping(lowerCAmelCase ) __lowercase= { 'BertForMaskedLM': ['BertModelTest'], 'BertForMultipleChoice': ['BertModelTest'], 'BertForNextSentencePrediction': ['BertModelTest'], 'BertForPreTraining': ['BertModelTest'], 'BertForQuestionAnswering': ['BertModelTest'], 'BertForSequenceClassification': ['BertModelTest'], 'BertForTokenClassification': ['BertModelTest'], 'BertLMHeadModel': ['BertModelTest'], 'BertModel': ['BertModelTest'], } __lowercase= { 'BlipForConditionalGeneration': ['BlipTextImageModelTest'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'], 'BlipForQuestionAnswering': ['BlipVQAModelTest'], 'BlipModel': ['BlipModelTest'], 'BlipTextModel': ['BlipTextModelTest'], 'BlipVisionModel': ['BlipVisionModelTest'], } self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) def _A (self ): __lowercase= get_model_to_tester_mapping(lowerCAmelCase ) __lowercase= get_model_to_tester_mapping(lowerCAmelCase ) __lowercase= { 'BertForMaskedLM': ['BertModelTester'], 'BertForMultipleChoice': ['BertModelTester'], 'BertForNextSentencePrediction': ['BertModelTester'], 'BertForPreTraining': ['BertModelTester'], 'BertForQuestionAnswering': ['BertModelTester'], 'BertForSequenceClassification': ['BertModelTester'], 'BertForTokenClassification': ['BertModelTester'], 'BertLMHeadModel': ['BertModelTester'], 'BertModel': ['BertModelTester'], } __lowercase= { 'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'], 'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'], 'BlipForQuestionAnswering': ['BlipVQAModelTester'], 'BlipModel': ['BlipModelTester'], 'BlipTextModel': ['BlipTextModelTester'], 'BlipVisionModel': ['BlipVisionModelTester'], } self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase ) self.assertEqual(get_test_info.to_json(lowerCAmelCase ) , lowerCAmelCase )
230
1
from collections import defaultdict def __lowerCamelCase ( A__ : str , A__ : str ) -> bool: lowerCamelCase_ : str = first_str.lower().strip() lowerCamelCase_ : Union[str, Any] = second_str.lower().strip() # Remove whitespace lowerCamelCase_ : List[Any] = first_str.replace(""" """ , """""" ) lowerCamelCase_ : List[str] = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(A__ ) != len(A__ ): return False # Default values for count should be 0 lowerCamelCase_ : defaultdict[str, int] = defaultdict(A__ ) # For each character in input strings, # increment count in the corresponding for i in range(len(A__ ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() snake_case__ : Tuple = input('Enter the first string ').strip() snake_case__ : Tuple = input('Enter the second string ').strip() snake_case__ : Any = check_anagrams(input_a, input_b) print(F'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
171
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "" _a = "hf-legacy" # "hf://"" is reserved for hffs def __init__( self : Any , __a : Optional[DatasetInfo] = None , __a : Optional[str] = None , **__a : Any , ) ->Any: super().__init__(self , **__a ) lowerCamelCase_ : Tuple = repo_info lowerCamelCase_ : Any = token lowerCamelCase_ : Any = None def _lowerCAmelCase ( self : Optional[int] ) ->List[Any]: if self.dir_cache is None: lowerCamelCase_ : Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes lowerCamelCase_ : int = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(__a ): {"""name""": str(__a ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def _lowerCAmelCase ( self : int , __a : str , __a : str = "rb" , **__a : Optional[Any] , ) ->Dict: if not isinstance(self.repo_info , __a ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) lowerCamelCase_ : int = hf_hub_url(self.repo_info.id , __a , revision=self.repo_info.sha ) return fsspec.open( __a , mode=__a , headers=get_authentication_headers_for_url(__a , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def _lowerCAmelCase ( self : Dict , __a : str , **__a : List[Any] ) ->List[Any]: self._get_dirs() lowerCamelCase_ : Tuple = self._strip_protocol(__a ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(__a ) def _lowerCAmelCase ( self : Any , __a : Optional[Any] , __a : str=False , **__a : List[str] ) ->List[Any]: self._get_dirs() lowerCamelCase_ : Optional[Any] = PurePosixPath(path.strip("""/""" ) ) lowerCamelCase_ : Dict = {} for p, f in self.dir_cache.items(): lowerCamelCase_ : str = PurePosixPath(p.strip("""/""" ) ) lowerCamelCase_ : Dict = p.parent if root == path: lowerCamelCase_ : int = f lowerCamelCase_ : List[str] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
171
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Any = logging.get_logger(__name__) _A : Any = { 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( __snake_case ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = """switch_transformers""" _SCREAMING_SNAKE_CASE : Union[str, Any] = ["""past_key_values"""] _SCREAMING_SNAKE_CASE : Any = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_21_28 , SCREAMING_SNAKE_CASE__ : List[Any]=7_68 , SCREAMING_SNAKE_CASE__ : List[Any]=64 , SCREAMING_SNAKE_CASE__ : List[str]=20_48 , SCREAMING_SNAKE_CASE__ : Any=64 , SCREAMING_SNAKE_CASE__ : Optional[Any]=12 , SCREAMING_SNAKE_CASE__ : int=3 , SCREAMING_SNAKE_CASE__ : str=12 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : List[Any]=12 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : str=0.0_1 , SCREAMING_SNAKE_CASE__ : List[str]="float32" , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=32 , SCREAMING_SNAKE_CASE__ : str=1_28 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=1e-6 , SCREAMING_SNAKE_CASE__ : Dict=0.0_0_1 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_0_1 , SCREAMING_SNAKE_CASE__ : List[Any]=1.0 , SCREAMING_SNAKE_CASE__ : Tuple="relu" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=True , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , SCREAMING_SNAKE_CASE__ : List[Any]=True , SCREAMING_SNAKE_CASE__ : int=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , **SCREAMING_SNAKE_CASE__ : Optional[int] , ) -> List[Any]: __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = d_kv __lowerCAmelCase = d_ff __lowerCAmelCase = num_sparse_encoder_layers __lowerCAmelCase = num_layers __lowerCAmelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCAmelCase = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __lowerCAmelCase = self.num_layers // self.num_sparse_encoder_layers else: __lowerCAmelCase = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __lowerCAmelCase = self.num_decoder_layers // self.num_sparse_decoder_layers else: __lowerCAmelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers __lowerCAmelCase = num_heads __lowerCAmelCase = num_experts __lowerCAmelCase = expert_capacity __lowerCAmelCase = router_bias __lowerCAmelCase = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""" ) __lowerCAmelCase = router_dtype __lowerCAmelCase = router_ignore_padding_tokens __lowerCAmelCase = relative_attention_num_buckets __lowerCAmelCase = relative_attention_max_distance __lowerCAmelCase = dropout_rate __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_factor __lowerCAmelCase = feed_forward_proj __lowerCAmelCase = use_cache __lowerCAmelCase = add_router_probs __lowerCAmelCase = router_z_loss_coef __lowerCAmelCase = router_aux_loss_coef __lowerCAmelCase = self.feed_forward_proj.split("""-""" ) __lowerCAmelCase = act_info[-1] __lowerCAmelCase = act_info[0] == """gated""" if len(lowerCAmelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """\'gated-gelu\' or \'relu\'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCAmelCase = """gelu_new""" super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ , )
427
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case__ ( __snake_case , unittest.TestCase ): '''simple docstring''' __A = DiTPipeline __A = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __A = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __A = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __A = False def UpperCamelCase ( self : str ) -> Optional[Any]: torch.manual_seed(0 ) UpperCAmelCase_ = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCAmelCase_ , activation_fn='''gelu-approximate''' , num_embeds_ada_norm=10_00 , norm_type='''ada_norm_zero''' , norm_elementwise_affine=lowerCAmelCase_ , ) UpperCAmelCase_ = AutoencoderKL() UpperCAmelCase_ = DDIMScheduler() UpperCAmelCase_ = {'''transformer''': transformer.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler} return components def UpperCamelCase ( self : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=0 ) -> Optional[int]: if str(lowerCAmelCase_ ).startswith('''mps''' ): UpperCAmelCase_ = torch.manual_seed(lowerCAmelCase_ ) else: UpperCAmelCase_ = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) UpperCAmelCase_ = { '''class_labels''': [1], '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase ( self : Any ) -> Union[str, Any]: UpperCAmelCase_ = '''cpu''' UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**lowerCAmelCase_ ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) UpperCAmelCase_ = self.get_dummy_inputs(lowerCAmelCase_ ) UpperCAmelCase_ = pipe(**lowerCAmelCase_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) UpperCAmelCase_ = np.array([0.2_946, 0.6_601, 0.4_329, 0.3_296, 0.4_144, 0.5_319, 0.7_273, 0.5_013, 0.4_457] ) UpperCAmelCase_ = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCAmelCase_ , 1e-3 ) def UpperCamelCase ( self : Dict ) -> Any: self._test_inference_batch_single_identical(relax_max_difference=lowerCAmelCase_ , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCamelCase ( self : Optional[int] ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class snake_case__ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase ( self : Dict ) -> Optional[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : List[str] ) -> Dict: UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-256''' ) pipe.to('''cuda''' ) UpperCAmelCase_ = ['''vase''', '''umbrella''', '''white shark''', '''white wolf'''] UpperCAmelCase_ = pipe.get_label_ids(lowerCAmelCase_ ) UpperCAmelCase_ = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=40 , output_type='''np''' ).images for word, image in zip(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def UpperCamelCase ( self : str ) -> Union[str, Any]: UpperCAmelCase_ = DiTPipeline.from_pretrained('''facebook/DiT-XL-2-512''' ) UpperCAmelCase_ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('''cuda''' ) UpperCAmelCase_ = ['''vase''', '''umbrella'''] UpperCAmelCase_ = pipe.get_label_ids(lowerCAmelCase_ ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = pipe(lowerCAmelCase_ , generator=lowerCAmelCase_ , num_inference_steps=25 , output_type='''np''' ).images for word, image in zip(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
121
0
"""simple docstring""" import os _UpperCamelCase : Dict = {'I': 1, 'V': 5, 'X': 1_0, 'L': 5_0, 'C': 1_0_0, 'D': 5_0_0, 'M': 1_0_0_0} def _SCREAMING_SNAKE_CASE ( __snake_case : str ): '''simple docstring''' lowercase = 0 lowercase = 0 while index < len(__snake_case ) - 1: lowercase = SYMBOLS[numerals[index]] lowercase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def _SCREAMING_SNAKE_CASE ( __snake_case : int ): '''simple docstring''' lowercase = '' lowercase = num // 10_00 numerals += m_count * "M" num %= 10_00 lowercase = num // 1_00 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 1_00 lowercase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def _SCREAMING_SNAKE_CASE ( __snake_case : str = "/p089_roman.txt" ): '''simple docstring''' lowercase = 0 with open(os.path.dirname(__snake_case ) + roman_numerals_filename ) as filea: lowercase = filea.readlines() for line in lines: lowercase = line.strip() lowercase = parse_roman_numerals(__snake_case ) lowercase = generate_roman_numerals(__snake_case ) savings += len(__snake_case ) - len(__snake_case ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
134
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Tuple = logging.get_logger(__name__) _UpperCamelCase : Dict = torch.device('cpu') def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : str , __snake_case : Any ): '''simple docstring''' lowercase = dct.pop(__snake_case ) lowercase = val def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): '''simple docstring''' lowercase = [] for k in state_dict.keys(): lowercase = k if ".pwconv" in k: lowercase = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: lowercase = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: lowercase = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: lowercase = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: lowercase = k_new.split('.' ) if ls[2].isdigit(): lowercase = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: lowercase = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : List[str] ): '''simple docstring''' lowercase = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowercase = 10_00 lowercase = 'huggingface/label-files' lowercase = 'imagenet-1k-id2label.json' lowercase = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) lowercase = {int(__snake_case ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowercase = [3, 3, 6, 4] lowercase = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": lowercase = [3, 3, 9, 6] lowercase = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": lowercase = [4, 3, 10, 5] lowercase = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": lowercase = [4, 4, 12, 6] lowercase = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): lowercase = torch.hub.load_state_dict_from_url(__snake_case , map_location='cpu' , check_hash=__snake_case ) else: lowercase = torch.load(__snake_case , map_location='cpu' ) lowercase = checkpoint lowercase = create_rename_keys(__snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) # load HuggingFace model lowercase = SwiftFormerForImageClassification(__snake_case ).eval() hf_model.load_state_dict(__snake_case ) # prepare test inputs lowercase = prepare_img() lowercase = ViTImageProcessor.from_pretrained('preprocessor_config' ) lowercase = processor(images=__snake_case , return_tensors='pt' ) # compare outputs from both models lowercase = get_expected_output(__snake_case ) lowercase = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , __snake_case , atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": _UpperCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--swiftformer_name', default='swiftformer_xs', choices=['swiftformer_xs', 'swiftformer_s', 'swiftformer_l1', 'swiftformer_l3'], type=str, help='Name of the SwiftFormer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default='./converted_outputs/', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--original_ckpt', default=None, type=str, help='Path to the original model checkpoint.') _UpperCamelCase : Union[str, Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
134
1
import warnings from functools import wraps from typing import Callable def __snake_case ( _lowerCAmelCase : List[str] ) -> int: @wraps(_lowercase ) def _inner_fn(*_lowerCAmelCase : List[str] , **_lowerCAmelCase : Dict ): warnings.warn( (f"\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.") , _lowercase , ) return fn(*_lowercase , **_lowercase ) return _inner_fn
454
'''simple docstring''' from __future__ import annotations import numpy as np def _lowerCAmelCase (_lowercase ): """simple docstring""" return np.maximum(0 , _lowercase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
331
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
665
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = ["""vqvae"""] def __init__( self : int , __lowercase : AutoencoderKL , __lowercase : UNetaDConditionModel , __lowercase : Mel , __lowercase : Union[DDIMScheduler, DDPMScheduler] , ) -> int: super().__init__() self.register_modules(unet=__lowercase , scheduler=__lowercase , mel=__lowercase , vqvae=__lowercase ) def __magic_name__ ( self : List[str] ) -> int: return 50 if isinstance(self.scheduler , __lowercase ) else 10_00 @torch.no_grad() def __call__( self : Dict , __lowercase : int = 1 , __lowercase : str = None , __lowercase : np.ndarray = None , __lowercase : int = 0 , __lowercase : int = 0 , __lowercase : int = None , __lowercase : torch.Generator = None , __lowercase : float = 0 , __lowercase : float = 0 , __lowercase : torch.Generator = None , __lowercase : float = 0 , __lowercase : torch.Tensor = None , __lowercase : torch.Tensor = None , __lowercase : Dict=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: SCREAMING_SNAKE_CASE__ : Optional[Any] =steps or self.get_default_steps() self.scheduler.set_timesteps(__lowercase ) SCREAMING_SNAKE_CASE__ : Any =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: SCREAMING_SNAKE_CASE__ : Union[str, Any] =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: SCREAMING_SNAKE_CASE__ : Optional[int] =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__lowercase , device=self.device , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =noise SCREAMING_SNAKE_CASE__ : List[str] =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : Dict =self.mel.audio_slice_to_image(__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] =np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape( (input_image.height, input_image.width) ) SCREAMING_SNAKE_CASE__ : int =(input_image / 2_55) * 2 - 1 SCREAMING_SNAKE_CASE__ : Optional[int] =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: SCREAMING_SNAKE_CASE__ : Optional[int] =self.vqvae.encode(torch.unsqueeze(__lowercase , 0 ) ).latent_dist.sample( generator=__lowercase )[0] SCREAMING_SNAKE_CASE__ : int =self.vqvae.config.scaling_factor * input_images if start_step > 0: SCREAMING_SNAKE_CASE__ : int =self.scheduler.add_noise(__lowercase , __lowercase , self.scheduler.timesteps[start_step - 1] ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) SCREAMING_SNAKE_CASE__ : Optional[Any] =int(mask_start_secs * pixels_per_second ) SCREAMING_SNAKE_CASE__ : Tuple =int(mask_end_secs * pixels_per_second ) SCREAMING_SNAKE_CASE__ : int =self.scheduler.add_noise(__lowercase , __lowercase , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , __lowercase ): SCREAMING_SNAKE_CASE__ : str =self.unet(__lowercase , __lowercase , __lowercase )['''sample'''] else: SCREAMING_SNAKE_CASE__ : str =self.unet(__lowercase , __lowercase )['''sample'''] if isinstance(self.scheduler , __lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] =self.scheduler.step( model_output=__lowercase , timestep=__lowercase , sample=__lowercase , eta=__lowercase , generator=__lowercase , )['''prev_sample'''] else: SCREAMING_SNAKE_CASE__ : Any =self.scheduler.step( model_output=__lowercase , timestep=__lowercase , sample=__lowercase , generator=__lowercase , )['''prev_sample'''] if mask is not None: if mask_start > 0: SCREAMING_SNAKE_CASE__ : Optional[Any] =mask[:, step, :, :mask_start] if mask_end > 0: SCREAMING_SNAKE_CASE__ : List[str] =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance SCREAMING_SNAKE_CASE__ : str =1 / self.vqvae.config.scaling_factor * images SCREAMING_SNAKE_CASE__ : int =self.vqvae.decode(__lowercase )['''sample'''] SCREAMING_SNAKE_CASE__ : List[str] =(images / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() SCREAMING_SNAKE_CASE__ : Dict =(images * 2_55).round().astype('''uint8''' ) SCREAMING_SNAKE_CASE__ : Any =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__lowercase , mode='''RGB''' ).convert('''L''' ) for _ in images) ) SCREAMING_SNAKE_CASE__ : Optional[int] =[self.mel.image_to_audio(__lowercase ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__lowercase )[:, np.newaxis, :] ) , **ImagePipelineOutput(__lowercase ) ) @torch.no_grad() def __magic_name__ ( self : Optional[int] , __lowercase : List[Image.Image] , __lowercase : int = 50 ) -> np.ndarray: assert isinstance(self.scheduler , __lowercase ) self.scheduler.set_timesteps(__lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] =np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] ) SCREAMING_SNAKE_CASE__ : str =(sample / 2_55) * 2 - 1 SCREAMING_SNAKE_CASE__ : str =torch.Tensor(__lowercase ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): SCREAMING_SNAKE_CASE__ : Tuple =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps SCREAMING_SNAKE_CASE__ : Any =self.scheduler.alphas_cumprod[t] SCREAMING_SNAKE_CASE__ : int =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) SCREAMING_SNAKE_CASE__ : int =1 - alpha_prod_t SCREAMING_SNAKE_CASE__ : Optional[Any] =self.unet(__lowercase , __lowercase )['''sample'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] =(1 - alpha_prod_t_prev) ** 0.5 * model_output SCREAMING_SNAKE_CASE__ : str =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) SCREAMING_SNAKE_CASE__ : Any =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def __magic_name__ ( __lowercase : torch.Tensor , __lowercase : torch.Tensor , __lowercase : float ) -> torch.Tensor: SCREAMING_SNAKE_CASE__ : Optional[int] =acos(torch.dot(torch.flatten(__lowercase ) , torch.flatten(__lowercase ) ) / torch.norm(__lowercase ) / torch.norm(__lowercase ) ) return sin((1 - alpha) * theta ) * xa / sin(__lowercase ) + sin(alpha * theta ) * xa / sin(__lowercase )
665
1
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __magic_name__ : """simple docstring""" def lowerCAmelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: str = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) _UpperCamelCase: List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) _UpperCamelCase: Tuple = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _UpperCamelCase: int = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=_lowercase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) _UpperCamelCase: Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase ( self : int ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: Dict = TaEncoderModel.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) _UpperCamelCase: str = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-t5''' ) torch.manual_seed(0 ) _UpperCamelCase: Optional[int] = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ '''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D''', ] , mid_block_type='''UNetMidBlock2DSimpleCrossAttn''' , up_block_types=['''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='''text''' , addition_embed_type_num_heads=2 , cross_attention_norm='''group_norm''' , resnet_time_scale_shift='''scale_shift''' , act_fn='''gelu''' , class_embed_type='''timestep''' , mid_block_scale_factor=1.414 , time_embedding_act_fn='''gelu''' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) _UpperCamelCase: Union[str, Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , thresholding=_lowercase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='''epsilon''' , variance_type='''learned_range''' , ) torch.manual_seed(0 ) _UpperCamelCase: Tuple = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='''squaredcos_cap_v2''' , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) _UpperCamelCase: str = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: Dict = self.get_dummy_components() _UpperCamelCase: Dict = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _UpperCamelCase: Union[str, Any] = self.get_dummy_inputs(_lowercase ) _UpperCamelCase: Optional[Any] = inputs['''prompt'''] _UpperCamelCase: str = inputs['''generator'''] _UpperCamelCase: str = inputs['''num_inference_steps'''] _UpperCamelCase: Dict = inputs['''output_type'''] if "image" in inputs: _UpperCamelCase: List[str] = inputs['''image'''] else: _UpperCamelCase: Union[str, Any] = None if "mask_image" in inputs: _UpperCamelCase: str = inputs['''mask_image'''] else: _UpperCamelCase: str = None if "original_image" in inputs: _UpperCamelCase: int = inputs['''original_image'''] else: _UpperCamelCase: Optional[Any] = None _UpperCamelCase , _UpperCamelCase: Tuple = pipe.encode_prompt(_lowercase ) # inputs with prompt converted to embeddings _UpperCamelCase: int = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: _UpperCamelCase: List[Any] = image if mask_image is not None: _UpperCamelCase: List[str] = mask_image if original_image is not None: _UpperCamelCase: List[Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(_lowercase , _lowercase , _lowercase ) _UpperCamelCase: Dict = pipe(**_lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase ) _UpperCamelCase: Any = self.pipeline_class.from_pretrained(_lowercase ) pipe_loaded.to(_lowercase ) pipe_loaded.set_progress_bar_config(disable=_lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(_lowercase , _lowercase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) _UpperCamelCase: int = self.get_dummy_inputs(_lowercase ) _UpperCamelCase: Optional[Any] = inputs['''generator'''] _UpperCamelCase: Tuple = inputs['''num_inference_steps'''] _UpperCamelCase: Tuple = inputs['''output_type'''] # inputs with prompt converted to embeddings _UpperCamelCase: Dict = { '''prompt_embeds''': prompt_embeds, '''negative_prompt_embeds''': negative_prompt_embeds, '''generator''': generator, '''num_inference_steps''': num_inference_steps, '''output_type''': output_type, } if image is not None: _UpperCamelCase: List[Any] = image if mask_image is not None: _UpperCamelCase: Union[str, Any] = mask_image if original_image is not None: _UpperCamelCase: Optional[int] = original_image _UpperCamelCase: List[Any] = pipe_loaded(**_lowercase )[0] _UpperCamelCase: Optional[int] = np.abs(to_np(_lowercase ) - to_np(_lowercase ) ).max() self.assertLess(_lowercase , 1E-4 ) def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Dict = self.get_dummy_components() _UpperCamelCase: Optional[Any] = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _UpperCamelCase: Dict = self.get_dummy_inputs(_lowercase ) _UpperCamelCase: int = pipe(**_lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(_lowercase ) _UpperCamelCase: Any = self.pipeline_class.from_pretrained(_lowercase ) pipe_loaded.to(_lowercase ) pipe_loaded.set_progress_bar_config(disable=_lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests _UpperCamelCase: List[Any] = self.get_dummy_inputs(_lowercase ) _UpperCamelCase: str = pipe_loaded(**_lowercase )[0] _UpperCamelCase: int = np.abs(to_np(_lowercase ) - to_np(_lowercase ) ).max() self.assertLess(_lowercase , 1E-4 )
271
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowerCAmelCase_ ( lowercase: str = "" ) -> dict[str, float]: '''simple docstring''' _UpperCamelCase: Tuple = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' _UpperCamelCase: Union[str, Any] = BeautifulSoup(requests.get(lowercase ).text , '''html.parser''' ) _UpperCamelCase: List[Any] = soup.find_all('''td''' , attrs='''titleColumn''' ) _UpperCamelCase: str = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(lowercase , lowercase ) } def lowerCAmelCase_ ( lowercase: str = "IMDb_Top_250_Movies.csv" ) -> None: '''simple docstring''' _UpperCamelCase: Any = get_imdb_top_aaa_movies() with open(lowercase , '''w''' , newline='''''' ) as out_file: _UpperCamelCase: Optional[Any] = csv.writer(lowercase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
271
1
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCAmelCase : '''simple docstring''' @staticmethod def UpperCamelCase( *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' pass def _UpperCamelCase ( __UpperCamelCase ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest()[:10] def _UpperCamelCase ( __UpperCamelCase ) -> Dict: lowerCamelCase_ = np.array(__UpperCamelCase ) lowerCamelCase_ = npimg.shape return {"hash": hashimage(__UpperCamelCase ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) SCREAMING_SNAKE_CASE_ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def UpperCamelCase( self ) -> int: '''simple docstring''' pass @slow @require_torch def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) lowerCamelCase_ = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9_967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9_909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9_879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9_834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9_716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9_612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9_599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9_552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9_532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9_516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9_499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9_483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9_464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9_408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9_335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9_326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9_262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8_999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8_986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8_984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8_873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8_871} ] , ) # fmt: on @require_torch @slow def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = 'facebook/sam-vit-huge' lowerCamelCase_ = pipeline('mask-generation' , model=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing lowerCamelCase_ = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0_444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0_210}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0_167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0_132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0_053}, ] , )
384
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase = 1 ,__UpperCamelCase = 10_00 ) -> int: lowerCamelCase_ = 1 lowerCamelCase_ = 0 for divide_by_number in range(__UpperCamelCase ,digit + 1 ): lowerCamelCase_ = [] lowerCamelCase_ = numerator for _ in range(1 ,digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCamelCase ): lowerCamelCase_ = len(__UpperCamelCase ) lowerCamelCase_ = divide_by_number else: has_been_divided.append(__UpperCamelCase ) lowerCamelCase_ = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
384
1
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase : __UpperCamelCase =BlenderbotSmallConfig __UpperCamelCase ={} __UpperCamelCase ="gelu" def __init__( self : Optional[int] , snake_case__ : Dict , snake_case__ : Optional[int]=1_3 , snake_case__ : Optional[int]=7 , snake_case__ : Optional[Any]=True , snake_case__ : List[str]=False , snake_case__ : int=9_9 , snake_case__ : Any=3_2 , snake_case__ : Tuple=2 , snake_case__ : Optional[int]=4 , snake_case__ : int=3_7 , snake_case__ : Optional[Any]=0.1 , snake_case__ : int=0.1 , snake_case__ : Any=2_0 , snake_case__ : List[Any]=2 , snake_case__ : int=1 , snake_case__ : int=0 , ): """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) SCREAMING_SNAKE_CASE = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) SCREAMING_SNAKE_CASE = tf.concat([input_ids, eos_tensor] , axis=1 ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) SCREAMING_SNAKE_CASE = prepare_blenderbot_small_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def UpperCamelCase ( self : Dict , snake_case__ : Tuple , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE = TFBlenderbotSmallModel(config=snake_case__ ).get_decoder() SCREAMING_SNAKE_CASE = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE = input_ids[:1, :] SCREAMING_SNAKE_CASE = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE = inputs_dict['head_mask'] SCREAMING_SNAKE_CASE = 1 # first forward pass SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , head_mask=snake_case__ , use_cache=snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE = ids_tensor((self.batch_size, 3) , config.vocab_size ) SCREAMING_SNAKE_CASE = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE = tf.concat([input_ids, next_tokens] , axis=-1 ) SCREAMING_SNAKE_CASE = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ )[0] SCREAMING_SNAKE_CASE = model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(snake_case__ , snake_case__ , rtol=1E-3 ) def __lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Optional[int] , _UpperCamelCase : str , _UpperCamelCase : Dict=None , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Any=None , _UpperCamelCase : List[str]=None , _UpperCamelCase : Optional[Any]=None , ) -> str: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE = tf.cast(tf.math.not_equal(_UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __UpperCamelCase =(TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase =( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*snake_case__ ) @require_tokenizers @require_tf class UpperCamelCase ( unittest.TestCase ): __UpperCamelCase =[ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] __UpperCamelCase ="facebook/blenderbot_small-90M" @cached_property def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , return_tensors='tf' ) SCREAMING_SNAKE_CASE = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=snake_case__ , ) SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=snake_case__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
439
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a_ : str = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : List[Any]=None , _UpperCamelCase : Dict=None , _UpperCamelCase : str=None ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = True while ask_again: SCREAMING_SNAKE_CASE = input(_UpperCamelCase ) try: if default is not None and len(_UpperCamelCase ) == 0: return default return convert_value(_UpperCamelCase ) if convert_value is not None else result except Exception: if error_message is not None: print(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any]=[] , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Optional[Any]=0 ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BulletMenu(_UpperCamelCase , _UpperCamelCase ) SCREAMING_SNAKE_CASE = menu.run(default_choice=_UpperCamelCase ) return convert_value(_UpperCamelCase ) if convert_value is not None else result def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def __lowerCAmelCase ( _UpperCamelCase : List[Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def __lowerCAmelCase ( _UpperCamelCase : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = int(_UpperCamelCase ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def __lowerCAmelCase ( _UpperCamelCase : Dict ) -> str: '''simple docstring''' return {"yes": True, "no": False}[value.lower()] class UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : List[str] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = super()._format_usage(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = usage.replace('<command> [<args>] ' , '' ) return usage
439
1
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter lowerCamelCase_ = True except ImportError: lowerCamelCase_ = False lowerCamelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case ( A__ ): return AddNewModelCommand(args.testing ,args.testing_file ,path=args.path ) class UpperCamelCase_ (__A ): @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : ArgumentParser ) -> Union[str, Any]: UpperCAmelCase_ : int = parser.add_parser("add-new-model" ) add_new_model_parser.add_argument("--testing" , action="store_true" , help="If in testing mode." ) add_new_model_parser.add_argument("--testing_file" , type=lowerCAmelCase_ , help="Configuration file on which to run." ) add_new_model_parser.add_argument( "--path" , type=lowerCAmelCase_ , help="Path to cookiecutter. Should only be used for testing purposes." ) add_new_model_parser.set_defaults(func=lowerCAmelCase_ ) def __init__( self : Union[str, Any] , lowerCAmelCase_ : bool , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , *lowerCAmelCase_ : Dict ) -> List[Any]: UpperCAmelCase_ : str = testing UpperCAmelCase_ : str = testing_file UpperCAmelCase_ : List[str] = path def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: warnings.warn( "The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. " "It is not actively maintained anymore, so might give a result that won't pass all tests and quality " "checks, you should use `transformers-cli add-new-model-like` instead." ) if not _has_cookiecutter: raise ImportError( "Model creation dependencies are required to use the `add_new_model` command. Install them by running " "the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCAmelCase_ : Dict = [directory for directory in os.listdir() if "cookiecutter-template-" == directory[:22]] if len(lowerCAmelCase_ ) > 0: raise ValueError( "Several directories starting with `cookiecutter-template-` in current working directory. " "Please clean your directory by removing all folders starting with `cookiecutter-template-` or " "change your working directory." ) UpperCAmelCase_ : Optional[Any] = ( Path(lowerCAmelCase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCAmelCase_ : List[str] = path_to_transformer_root / "templates" / "adding_a_new_model" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCAmelCase_ ) ) else: with open(self._testing_file , "r" ) as configuration_file: UpperCAmelCase_ : Any = json.load(lowerCAmelCase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCAmelCase_ , extra_context=lowerCAmelCase_ , ) UpperCAmelCase_ : Dict = [directory for directory in os.listdir() if "cookiecutter-template-" in directory[:22]][0] # Retrieve configuration with open(directory + "/configuration.json" , "r" ) as configuration_file: UpperCAmelCase_ : Tuple = json.load(lowerCAmelCase_ ) UpperCAmelCase_ : int = configuration["lowercase_modelname"] UpperCAmelCase_ : Optional[Any] = configuration["generate_tensorflow_pytorch_and_flax"] os.remove(f"""{directory}/configuration.json""" ) UpperCAmelCase_ : Optional[int] = "PyTorch" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ : Dict = "TensorFlow" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ : Union[str, Any] = "Flax" in generate_tensorflow_pytorch_and_flax UpperCAmelCase_ : List[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=lowerCAmelCase_ ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , "w" ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(lowerCAmelCase_ : Optional[int] ): with open(lowerCAmelCase_ , "r" ) as f: UpperCAmelCase_ : Tuple = f.readlines() with open(lowerCAmelCase_ , "w" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCAmelCase_ ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCAmelCase_ : str , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str] ): # Create temp file UpperCAmelCase_ : Optional[int] = mkstemp() UpperCAmelCase_ : str = False with fdopen(lowerCAmelCase_ , "w" ) as new_file: with open(lowerCAmelCase_ ) as old_file: for line in old_file: new_file.write(lowerCAmelCase_ ) if line_to_copy_below in line: UpperCAmelCase_ : List[str] = True for line_to_copy in lines_to_copy: new_file.write(lowerCAmelCase_ ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(lowerCAmelCase_ , lowerCAmelCase_ ) # Remove original file remove(lowerCAmelCase_ ) # Move new file move(lowerCAmelCase_ , lowerCAmelCase_ ) def skip_units(lowerCAmelCase_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCAmelCase_ : Dict ): with open(lowerCAmelCase_ ) as datafile: UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Union[str, Any] = False UpperCAmelCase_ : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCAmelCase_ : Optional[Any] = line.split("\"" )[1] UpperCAmelCase_ : int = skip_units(lowerCAmelCase_ ) elif "# Below: " in line and "##" not in line: UpperCAmelCase_ : Dict = line.split("\"" )[1] UpperCAmelCase_ : str = skip_units(lowerCAmelCase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : List[str] = [] elif "# Replace with" in line and "##" not in line: UpperCAmelCase_ : List[Any] = [] elif "##" not in line: lines_to_copy.append(lowerCAmelCase_ ) remove(lowerCAmelCase_ ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(lowerCAmelCase_ )
717
"""simple docstring""" class UpperCamelCase_ : def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[Any]=None ) -> int: UpperCAmelCase_ : int = data UpperCAmelCase_ : Optional[int] = previous UpperCAmelCase_ : int = next_node def __str__( self : Dict ) -> str: return f"""{self.data}""" def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: return self.data def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Union[str, Any]: return self.next def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[int]: return self.previous class UpperCamelCase_ : def __init__( self : Any , lowerCAmelCase_ : str ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = head def __iter__( self : Any ) -> List[str]: return self def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: if not self.current: raise StopIteration else: UpperCAmelCase_ : Optional[int] = self.current.get_data() UpperCAmelCase_ : Dict = self.current.get_next() return value class UpperCamelCase_ : def __init__( self : List[str] ) -> Tuple: UpperCAmelCase_ : Tuple = None # First node in list UpperCAmelCase_ : Union[str, Any] = None # Last node in list def __str__( self : List[Any] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.head UpperCAmelCase_ : int = [] while current is not None: nodes.append(current.get_data() ) UpperCAmelCase_ : Optional[Any] = current.get_next() return " ".join(str(lowerCAmelCase_ ) for node in nodes ) def __contains__( self : int , lowerCAmelCase_ : int ) -> List[str]: UpperCAmelCase_ : Optional[int] = self.head while current: if current.get_data() == value: return True UpperCAmelCase_ : Union[str, Any] = current.get_next() return False def __iter__( self : int ) -> Tuple: return LinkedListIterator(self.head ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: if self.head: return self.head.get_data() return None def _SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: if self.tail: return self.tail.get_data() return None def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Node ) -> None: if self.head is None: UpperCAmelCase_ : Optional[int] = node UpperCAmelCase_ : Union[str, Any] = node else: self.insert_before_node(self.head , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Node ) -> None: if self.head is None: self.set_head(lowerCAmelCase_ ) else: self.insert_after_node(self.tail , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : Optional[Any] = Node(lowerCAmelCase_ ) if self.head is None: self.set_head(lowerCAmelCase_ ) else: self.set_tail(lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : Node , lowerCAmelCase_ : Node ) -> None: UpperCAmelCase_ : Any = node UpperCAmelCase_ : Tuple = node.previous if node.get_previous() is None: UpperCAmelCase_ : List[Any] = node_to_insert else: UpperCAmelCase_ : Dict = node_to_insert UpperCAmelCase_ : Dict = node_to_insert def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase_ : Node , lowerCAmelCase_ : Node ) -> None: UpperCAmelCase_ : Dict = node UpperCAmelCase_ : int = node.next if node.get_next() is None: UpperCAmelCase_ : int = node_to_insert else: UpperCAmelCase_ : Optional[Any] = node_to_insert UpperCAmelCase_ : Any = node_to_insert def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : int , lowerCAmelCase_ : int ) -> None: UpperCAmelCase_ : int = 1 UpperCAmelCase_ : List[str] = Node(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[Any] = self.head while node: if current_position == position: self.insert_before_node(lowerCAmelCase_ , lowerCAmelCase_ ) return current_position += 1 UpperCAmelCase_ : Optional[Any] = node.next self.insert_after_node(self.tail , lowerCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase_ : int ) -> Node: UpperCAmelCase_ : List[Any] = self.head while node: if node.get_data() == item: return node UpperCAmelCase_ : Optional[int] = node.get_next() raise Exception("Node not found" ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: if (node := self.get_node(lowerCAmelCase_ )) is not None: if node == self.head: UpperCAmelCase_ : Tuple = self.head.get_next() if node == self.tail: UpperCAmelCase_ : Optional[int] = self.tail.get_previous() self.remove_node_pointers(lowerCAmelCase_ ) @staticmethod def _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ : Node ) -> None: if node.get_next(): UpperCAmelCase_ : int = node.previous if node.get_previous(): UpperCAmelCase_ : Optional[Any] = node.next UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Dict = None def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> str: return self.head is None def snake_case ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
463
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
67
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class A_ ( unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Any ) -> str: torch.manual_seed(0 ) _lowercase = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: _lowercase = self.dummy_uncond_unet _lowercase = KarrasVeScheduler() _lowercase = KarrasVePipeline(unet=__A ,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=2 ,generator=__A ,output_type='numpy' ).images _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=2 ,generator=__A ,output_type='numpy' ,return_dict=__A )[0] _lowercase = image[0, -3:, -3:, -1] _lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class A_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: _lowercase = 'google/ncsnpp-celebahq-256' _lowercase = UNetaDModel.from_pretrained(__A ) _lowercase = KarrasVeScheduler() _lowercase = KarrasVePipeline(unet=__A ,scheduler=__A ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowercase = torch.manual_seed(0 ) _lowercase = pipe(num_inference_steps=20 ,generator=__A ,output_type='numpy' ).images _lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowercase = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
67
1
"""simple docstring""" def lowerCamelCase_( _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : str = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCamelCase_( _lowerCamelCase ) -> dict[str, str]: '''simple docstring''' _lowerCamelCase : List[Any] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key _lowerCamelCase : Any = remove_duplicates(key.upper() ) _lowerCamelCase : Optional[Any] = len(_lowerCamelCase ) # First fill cipher with key characters _lowerCamelCase : Any = {alphabet[i]: char for i, char in enumerate(_lowerCamelCase )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_lowerCamelCase ) , 26 ): _lowerCamelCase : int = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowerCamelCase : Union[str, Any] = alphabet[i - offset] _lowerCamelCase : List[str] = char return cipher_alphabet def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' return "".join(cipher_map.get(_lowerCamelCase , _lowerCamelCase ) for ch in message.upper() ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' _lowerCamelCase : Dict = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_lowerCamelCase , _lowerCamelCase ) for ch in message.upper() ) def lowerCamelCase_( ) -> None: '''simple docstring''' _lowerCamelCase : Union[str, Any] = input("Enter message to encode or decode: " ).strip() _lowerCamelCase : List[str] = input("Enter keyword: " ).strip() _lowerCamelCase : Tuple = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: _lowerCamelCase : Any = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) _lowerCamelCase : Optional[Any] = create_cipher_map(_lowerCamelCase ) print(func(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
386
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ ( unittest.TestCase ): def __init__( self: Any ,__lowerCAmelCase: int ,__lowerCAmelCase: Optional[Any]=13 ,__lowerCAmelCase: List[str]=3 ,__lowerCAmelCase: Optional[Any]=224 ,__lowerCAmelCase: Optional[int]=30 ,__lowerCAmelCase: Union[str, Any]=400 ,__lowerCAmelCase: List[Any]=True ,__lowerCAmelCase: Any=None ,__lowerCAmelCase: str=True ,__lowerCAmelCase: Union[str, Any]=[0.5, 0.5, 0.5] ,__lowerCAmelCase: Tuple=[0.5, 0.5, 0.5] ,): '''simple docstring''' _lowerCamelCase : Optional[Any] = size if size is not None else {"height": 18, "width": 18} _lowerCamelCase : Tuple = parent _lowerCamelCase : List[str] = batch_size _lowerCamelCase : Any = num_channels _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Optional[int] = min_resolution _lowerCamelCase : List[str] = max_resolution _lowerCamelCase : int = do_resize _lowerCamelCase : Dict = size _lowerCamelCase : Optional[int] = do_normalize _lowerCamelCase : int = image_mean _lowerCamelCase : Tuple = image_std def _lowercase ( self: Optional[Any] ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A_ ( _a , unittest.TestCase ): lowerCAmelCase__ = ViTImageProcessor if is_vision_available() else None def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase : Optional[Any] = EfficientFormerImageProcessorTester(self ) @property def _lowercase ( self: Tuple ): '''simple docstring''' return self.image_proc_tester.prepare_image_processor_dict() def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_mean" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"image_std" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_normalize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"do_resize" ) ) self.assertTrue(hasattr(__lowerCAmelCase ,"size" ) ) def _lowercase ( self: List[Any] ): '''simple docstring''' pass def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase : Dict = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,Image.Image ) # Test not batched input _lowerCamelCase : Dict = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Optional[Any] = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase : str = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ,numpify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,np.ndarray ) # Test not batched input _lowerCamelCase : List[Any] = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Dict = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) def _lowercase ( self: int ): '''simple docstring''' _lowerCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase : int = prepare_image_inputs(self.image_proc_tester ,equal_resolution=__lowerCAmelCase ,torchify=__lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(__lowerCAmelCase ,torch.Tensor ) # Test not batched input _lowerCamelCase : int = image_processor(image_inputs[0] ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,) # Test batched _lowerCamelCase : Tuple = image_processor(__lowerCAmelCase ,return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) ,)
386
1
'''simple docstring''' from functools import reduce __lowerCAmelCase = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def __lowerCamelCase ( lowerCAmelCase_ = N ) -> int: return max( # mypy cannot properly interpret reduce int(reduce(lambda lowerCAmelCase_ , lowerCAmelCase_ : str(int(lowerCAmelCase_ ) * int(lowerCAmelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase_ ) - 12 ) ) if __name__ == "__main__": print(f"""{solution() = }""")
358
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: return params[f"""{prefix}/{prefix}/relpos_bias/rel_embedding"""][:, i, :] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="attention" ) -> int: _a : int = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/key/kernel"""][:, i, :, :] ) _a : Dict = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) _a : Any = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/out/kernel"""][:, i, :, :] ) _a : int = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) _a : List[str] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/query/kernel"""][:, i, :, :] ) _a : Dict = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) _a : List[str] = np.ascontiguousarray(params[f"""{prefix}/{prefix}/{layer_name}/value/kernel"""][:, i, :, :] ) _a : int = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ) -> Optional[Any]: if split_mlp_wi: _a : Dict = params[f"""{prefix}/{prefix}/mlp/wi_0/kernel"""][:, i, :] _a : Dict = params[f"""{prefix}/{prefix}/mlp/wi_1/kernel"""][:, i, :] _a : Optional[int] = (wi_a, wi_a) else: _a : Tuple = params[f"""{prefix}/{prefix}/mlp/wi/kernel"""][:, i, :] _a : Tuple = params[f"""{prefix}/{prefix}/mlp/wo/kernel"""][:, i, :] return wi, wo def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: return params[f"""{prefix}/{prefix}/{layer_name}/scale"""][:, i] def __lowerCamelCase ( lowerCAmelCase_ , *, lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False ) -> Any: _a : Dict = traverse_util.flatten_dict(variables['target'] ) _a : Tuple = {'/'.join(lowerCAmelCase_ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _a : int = 'encoder/encoder/mlp/wi_0/kernel' in old print('Split MLP:' , lowerCAmelCase_ ) _a : str = collections.OrderedDict() # Shared embeddings. _a : List[str] = old['token_embedder/embedding'] # Encoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). _a : Any = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' , 'pre_attention_layer_norm' ) _a , _a , _a , _a : List[str] = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' , 'attention' ) _a : str = layer_norm _a : Union[str, Any] = k.T _a : Dict = o.T _a : int = q.T _a : List[str] = v.T # Block i, layer 1 (MLP). _a : Optional[int] = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' , 'pre_mlp_layer_norm' ) _a , _a : Any = tax_mlp_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' , lowerCAmelCase_ ) _a : Optional[Any] = layer_norm if split_mlp_wi: _a : Tuple = wi[0].T _a : List[str] = wi[1].T else: _a : Union[str, Any] = wi.T _a : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : Any = tax_relpos_bias_lookup( lowerCAmelCase_ , lowerCAmelCase_ , 'encoder' ).T _a : Optional[Any] = old['encoder/encoder_norm/scale'] if not scalable_attention: _a : Union[str, Any] = tax_relpos_bias_lookup( lowerCAmelCase_ , 0 , 'encoder' ).T _a : Any = tax_relpos_bias_lookup( lowerCAmelCase_ , 0 , 'decoder' ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase_ ): # Block i, layer 0 (Self Attention). _a : Dict = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'pre_self_attention_layer_norm' ) _a , _a , _a , _a : Union[str, Any] = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'self_attention' ) _a : str = layer_norm _a : List[Any] = k.T _a : Union[str, Any] = o.T _a : int = q.T _a : List[Any] = v.T # Block i, layer 1 (Cross Attention). _a : List[Any] = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'pre_cross_attention_layer_norm' ) _a , _a , _a , _a : Optional[int] = tax_attention_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'encoder_decoder_attention' ) _a : str = layer_norm _a : Union[str, Any] = k.T _a : Union[str, Any] = o.T _a : Any = q.T _a : str = v.T # Block i, layer 2 (MLP). _a : str = tax_layer_norm_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , 'pre_mlp_layer_norm' ) _a , _a : int = tax_mlp_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' , lowerCAmelCase_ ) _a : List[str] = layer_norm if split_mlp_wi: _a : List[str] = wi[0].T _a : Union[str, Any] = wi[1].T else: _a : Optional[Any] = wi.T _a : List[str] = wo.T if scalable_attention: # convert the rel_embedding of each layer _a : int = tax_relpos_bias_lookup(lowerCAmelCase_ , lowerCAmelCase_ , 'decoder' ).T _a : List[Any] = old['decoder/decoder_norm/scale'] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _a : List[Any] = old['decoder/logits_dense/kernel'].T return new def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> str: _a : List[str] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _a : Tuple = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _a : Union[str, Any] = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) _a : Optional[Any] = state_dict['shared.weight'] return state_dict def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _a : Any = checkpoints.load_tax_checkpoint(lowerCAmelCase_ ) _a : str = convert_tax_to_pytorch( lowerCAmelCase_ , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase_ , scalable_attention=lowerCAmelCase_ ) _a : Dict = make_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False , lowerCAmelCase_ = False , ) -> str: _a : int = MTaConfig.from_json_file(lowerCAmelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _a : Any = UMTaEncoderModel(lowerCAmelCase_ ) else: _a : Optional[int] = UMTaForConditionalGeneration(lowerCAmelCase_ ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCAmelCase_ ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase_ ) print('Done' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) __lowerCAmelCase = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
358
1
"""simple docstring""" from __future__ import annotations def lowercase (_lowerCAmelCase ): __lowerCAmelCase = str(_lowerCAmelCase ) return len(_lowerCAmelCase ) == 9 and set(_lowerCAmelCase ) == set("""123456789""" ) def lowercase (): for base_num in range(9999 , 4999 , -1 ): __lowerCAmelCase = 10_0002 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate for base_num in range(333 , 99 , -1 ): __lowerCAmelCase = 100_2003 * base_num if is_9_pandigital(_lowerCAmelCase ): return candidate return None if __name__ == "__main__": print(F"{solution() = }")
720
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=3 , snake_case_=10 , snake_case_=18 , snake_case_=30 , snake_case_=400 , snake_case_=True , snake_case_=None , snake_case_=True , snake_case_=[0.5, 0.5, 0.5] , snake_case_=[0.5, 0.5, 0.5] , snake_case_=None , ) -> int: __lowerCAmelCase = size if size is not None else {"""shortest_edge""": 18} __lowerCAmelCase = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = num_channels __lowerCAmelCase = num_frames __lowerCAmelCase = image_size __lowerCAmelCase = min_resolution __lowerCAmelCase = max_resolution __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean __lowerCAmelCase = image_std __lowerCAmelCase = crop_size def A__ ( self ) -> Optional[Any]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class lowerCAmelCase_ ( A__ , unittest.TestCase ): '''simple docstring''' _snake_case = VivitImageProcessor if is_vision_available() else None def A__ ( self ) -> List[Any]: __lowerCAmelCase = VivitImageProcessingTester(self ) @property def A__ ( self ) -> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case_ , """image_mean""" ) ) self.assertTrue(hasattr(snake_case_ , """image_std""" ) ) self.assertTrue(hasattr(snake_case_ , """do_normalize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_resize""" ) ) self.assertTrue(hasattr(snake_case_ , """do_center_crop""" ) ) self.assertTrue(hasattr(snake_case_ , """size""" ) ) def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) __lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def A__ ( self ) -> Optional[Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ ( self ) -> Tuple: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ , numpify=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def A__ ( self ) -> Union[str, Any]: # Initialize image_processing __lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case_ , torchify=snake_case_ ) for video in video_inputs: self.assertIsInstance(snake_case_ , snake_case_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input __lowerCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched __lowerCAmelCase = image_processing(snake_case_ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
573
0
# Algorithm for the pigeonhole sorting def a_ ( lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = min(lowerCAmelCase_ ) # min() finds the minimum value __lowerCAmelCase = max(lowerCAmelCase_ ) # max() finds the maximum value __lowerCAmelCase = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size __lowerCAmelCase = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCAmelCase_, lowerCAmelCase_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. __lowerCAmelCase = 0 for count in range(lowerCAmelCase_ ): while holes[count] > 0: holes[count] -= 1 __lowerCAmelCase = count + min_val i += 1 def a_ ( ): __lowerCAmelCase = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCAmelCase_ ) print('Sorted order is:', ' '.join(lowerCAmelCase_ ) ) if __name__ == "__main__": main()
53
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : str = { """configuration_time_series_transformer""": [ """TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimeSeriesTransformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Tuple = [ """TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimeSeriesTransformerForPrediction""", """TimeSeriesTransformerModel""", """TimeSeriesTransformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
244
0
def lowerCamelCase_ ( A : int , A : int ): """simple docstring""" lowerCAmelCase_ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCAmelCase_ = n - k # Calculate C(n,k) for i in range(A ): result *= n - i result //= i + 1 return result def lowerCamelCase_ ( A : int ): """simple docstring""" return binomial_coefficient(2 * node_count , A ) // (node_count + 1) def lowerCamelCase_ ( A : int ): """simple docstring""" if n < 0: raise ValueError('''factorial() not defined for negative values''' ) lowerCAmelCase_ = 1 for i in range(1 , n + 1 ): result *= i return result def lowerCamelCase_ ( A : int ): """simple docstring""" return catalan_number(A ) * factorial(A ) if __name__ == "__main__": _snake_case = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
413
from __future__ import annotations from collections.abc import Iterator class UpperCamelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase): lowerCAmelCase_ = value lowerCAmelCase_ = None lowerCAmelCase_ = None class UpperCamelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase): lowerCAmelCase_ = tree def lowercase__ ( self , _UpperCAmelCase): if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__( self): yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
413
1
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : int | float | str ) -> tuple[int, int]: """simple docstring""" try: UpperCAmelCase_ : int = float(_SCREAMING_SNAKE_CASE ) except ValueError: raise ValueError("Please enter a valid number" ) UpperCAmelCase_ : List[str] = decimal - int(_SCREAMING_SNAKE_CASE ) if fractional_part == 0: return int(_SCREAMING_SNAKE_CASE ), 1 else: UpperCAmelCase_ : Any = len(str(_SCREAMING_SNAKE_CASE ).split("." )[1] ) UpperCAmelCase_ : Any = int(decimal * (10**number_of_frac_digits) ) UpperCAmelCase_ : Any = 10**number_of_frac_digits UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = denominator, numerator while True: UpperCAmelCase_ : List[str] = dividend % divisor if remainder == 0: break UpperCAmelCase_ , UpperCAmelCase_ : int = divisor, remainder UpperCAmelCase_ , UpperCAmelCase_ : Dict = numerator / divisor, denominator / divisor return int(_SCREAMING_SNAKE_CASE ), int(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction('67') = }""") print(f"""{decimal_to_fraction('45.0') = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction('6.25') = }""") print(f"""{decimal_to_fraction('78td') = }""")
71
'''simple docstring''' from statistics import mean, stdev def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 3 ) -> list: """simple docstring""" UpperCAmelCase_ : Dict = min(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = max(_SCREAMING_SNAKE_CASE ) # normalize data return [round((x - x_min) / (x_max - x_min) , _SCREAMING_SNAKE_CASE ) for x in data] def a__ ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 3 ) -> list: """simple docstring""" UpperCAmelCase_ : Tuple = mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = stdev(_SCREAMING_SNAKE_CASE ) # standardize data return [round((x - mu) / (sigma) , _SCREAMING_SNAKE_CASE ) for x in data]
71
1
"""simple docstring""" import os from pathlib import Path def lowerCamelCase ( ) -> Tuple: '''simple docstring''' from torch.utils.cpp_extension import load __UpperCAmelCase : int = Path(_UpperCamelCase ).resolve().parent.parent.parent / """kernels""" / """deformable_detr""" __UpperCAmelCase : Union[str, Any] = [ root / filename for filename in [ """vision.cpp""", os.path.join("""cpu""" , """ms_deform_attn_cpu.cpp""" ), os.path.join("""cuda""" , """ms_deform_attn_cuda.cu""" ), ] ] load( """MultiScaleDeformableAttention""" , _UpperCamelCase , with_cuda=_UpperCamelCase , extra_include_paths=[str(_UpperCamelCase )] , extra_cflags=["""-DWITH_CUDA=1"""] , extra_cuda_cflags=[ """-DCUDA_HAS_FP16=1""", """-D__CUDA_NO_HALF_OPERATORS__""", """-D__CUDA_NO_HALF_CONVERSIONS__""", """-D__CUDA_NO_HALF2_OPERATORS__""", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
703
"""simple docstring""" import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCamelCase__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : Dict=3 , UpperCamelCase : Dict=32 , UpperCamelCase : int=3 , UpperCamelCase : Optional[int]=10 , UpperCamelCase : Any=[8, 16, 32, 64] , UpperCamelCase : Optional[int]=[1, 1, 2, 1] , UpperCamelCase : List[str]=True , UpperCamelCase : Tuple=True , UpperCamelCase : Optional[Any]="relu" , UpperCamelCase : Optional[Any]=3 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Optional[int]=["stage2", "stage3", "stage4"] , UpperCamelCase : Optional[int]=[2, 3, 4] , UpperCamelCase : Any=1 , ): '''simple docstring''' __UpperCAmelCase : Tuple = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : int = image_size __UpperCAmelCase : str = num_channels __UpperCAmelCase : int = embeddings_size __UpperCAmelCase : Dict = hidden_sizes __UpperCAmelCase : List[Any] = depths __UpperCAmelCase : Optional[int] = is_training __UpperCAmelCase : List[Any] = use_labels __UpperCAmelCase : Optional[Any] = hidden_act __UpperCAmelCase : int = num_labels __UpperCAmelCase : Dict = scope __UpperCAmelCase : Dict = len(UpperCamelCase ) __UpperCAmelCase : Tuple = out_features __UpperCAmelCase : str = out_indices __UpperCAmelCase : Optional[int] = num_groups def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Tuple = None if self.use_labels: __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : List[Any] = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : int ): '''simple docstring''' return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[Any] , UpperCamelCase : int , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = BitModel(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : str = model(UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase__ ( self : int , UpperCamelCase : List[str] , UpperCamelCase : Optional[int] , UpperCamelCase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = BitForImageClassification(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int , UpperCamelCase : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : Optional[Any] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = BitBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[Any] = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Optional[Any] = BitBackbone(config=UpperCamelCase ) model.to(UpperCamelCase ) model.eval() __UpperCAmelCase : List[str] = model(UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' __UpperCAmelCase : List[Any] = self.prepare_config_and_inputs() __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : int = config_and_inputs __UpperCAmelCase : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( A , A , unittest.TestCase ): """simple docstring""" __a = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __a = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False __a = False def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Any = BitModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' pass def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Optional[int] = model_class(UpperCamelCase ) __UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase ) def lowerCamelCase__ ( self : Any ): '''simple docstring''' __UpperCAmelCase ,__UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Tuple = model_class(config=UpperCamelCase ) for name, module in model.named_modules(): if isinstance(UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : str ): __UpperCAmelCase : List[str] = model_class(UpperCamelCase ) model.to(UpperCamelCase ) model.eval() with torch.no_grad(): __UpperCAmelCase : Dict = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) ) __UpperCAmelCase : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(UpperCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCAmelCase ,__UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCAmelCase : List[Any] = layer_type __UpperCAmelCase : List[str] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : Optional[Any] = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' pass def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Optional[Any] = BitModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def lowerCamelCase ( ) -> List[str]: '''simple docstring''' __UpperCAmelCase : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : str ): '''simple docstring''' return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : List[Any] = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCamelCase ) __UpperCAmelCase : Optional[Any] = self.default_image_processor __UpperCAmelCase : List[str] = prepare_img() __UpperCAmelCase : Tuple = image_processor(images=UpperCamelCase , return_tensors="""pt""" ).to(UpperCamelCase ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**UpperCamelCase ) # verify the logits __UpperCAmelCase : int = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @require_torch class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = (BitBackbone,) if is_torch_available() else () __a = BitConfig __a = False def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = BitModelTester(self )
299
0
"""simple docstring""" from collections import defaultdict from math import ceil, sqrt def UpperCAmelCase ( a__ = 1_00_00_00 , a__ = 10 ): '''simple docstring''' lowerCAmelCase :defaultdict = defaultdict(a__ ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCAmelCase :Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCAmelCase :Optional[Any] = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(a__ , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F"""{solution() = }""")
553
"""simple docstring""" import math def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(a__ ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __SCREAMING_SNAKE_CASE = 'Enter the base and the power separated by a comma: ' __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = map(int, input(prompt).split(',')) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. __SCREAMING_SNAKE_CASE = res(xa, ya) __SCREAMING_SNAKE_CASE = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
553
1
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __UpperCamelCase : Optional[int] = {'UserAgent': UserAgent().random} def A ( _lowercase ): SCREAMING_SNAKE_CASE : List[str] = script.contents[0] SCREAMING_SNAKE_CASE : Any = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase__ : def __init__( self : Optional[int] , UpperCamelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = f"""https://www.instagram.com/{username}/""" SCREAMING_SNAKE_CASE : Any = self.get_json() def __A ( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = requests.get(self.url , headers=_SCREAMING_SNAKE_CASE ).text SCREAMING_SNAKE_CASE : Any = BeautifulSoup(_SCREAMING_SNAKE_CASE , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Optional[int] ): '''simple docstring''' return f"""{self.__class__.__name__}(\'{self.username}\')""" def __str__( self : Any ): '''simple docstring''' return f"""{self.fullname} ({self.username}) is {self.biography}""" @property def __A ( self : Union[str, Any] ): '''simple docstring''' return self.user_data["username"] @property def __A ( self : Dict ): '''simple docstring''' return self.user_data["full_name"] @property def __A ( self : Any ): '''simple docstring''' return self.user_data["biography"] @property def __A ( self : int ): '''simple docstring''' return self.user_data["business_email"] @property def __A ( self : Any ): '''simple docstring''' return self.user_data["external_url"] @property def __A ( self : Any ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def __A ( self : Optional[Any] ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def __A ( self : str ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __A ( self : int ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def __A ( self : Optional[int] ): '''simple docstring''' return self.user_data["is_verified"] @property def __A ( self : Union[str, Any] ): '''simple docstring''' return self.user_data["is_private"] def A ( _lowercase = "github" ): import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE : int = InstagramUser(_lowercase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _lowercase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : List[Any] = InstagramUser('github') print(instagram_user) print(f"""{instagram_user.number_of_posts = }""") print(f"""{instagram_user.number_of_followers = }""") print(f"""{instagram_user.number_of_followings = }""") print(f"""{instagram_user.email = }""") print(f"""{instagram_user.website = }""") print(f"""{instagram_user.profile_picture_url = }""") print(f"""{instagram_user.is_verified = }""") print(f"""{instagram_user.is_private = }""")
721
from __future__ import annotations from typing import Any class lowercase__ ( UpperCamelCase_): pass class lowercase__ : def __init__( self : Union[str, Any] , UpperCamelCase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = data SCREAMING_SNAKE_CASE : Node | None = None def __iter__( self : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self SCREAMING_SNAKE_CASE : Tuple = [] while node: if node in visited: raise ContainsLoopError visited.append(UpperCamelCase__ ) yield node.data SCREAMING_SNAKE_CASE : Dict = node.next_node @property def __A ( self : Optional[int] ): '''simple docstring''' try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": __UpperCamelCase : List[Any] = Node(1) __UpperCamelCase : str = Node(2) __UpperCamelCase : Dict = Node(3) __UpperCamelCase : List[Any] = Node(4) print(root_node.has_loop) # False __UpperCamelCase : int = root_node.next_node print(root_node.has_loop) # True __UpperCamelCase : Union[str, Any] = Node(5) __UpperCamelCase : Union[str, Any] = Node(6) __UpperCamelCase : List[Any] = Node(5) __UpperCamelCase : List[str] = Node(6) print(root_node.has_loop) # False __UpperCamelCase : List[Any] = Node(1) print(root_node.has_loop) # False
34
0
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _lowerCAmelCase = quote(SCREAMING_SNAKE_CASE_ ) return hfh.hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" , revision=SCREAMING_SNAKE_CASE_ )
18
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _a : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Dict = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys _a : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
479
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _A ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : int = StableDiffusionLatentUpscalePipeline SCREAMING_SNAKE_CASE : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } SCREAMING_SNAKE_CASE : Optional[int] = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} SCREAMING_SNAKE_CASE : Tuple = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE : str = frozenset( []) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE : Optional[int] = frozenset([]) SCREAMING_SNAKE_CASE : Optional[Any] = True @property def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Dict = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = (16, 16) SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_SCREAMING_SNAKE_CASE ) return image def UpperCAmelCase ( self ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE_ : List[Any] = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=_SCREAMING_SNAKE_CASE , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=_SCREAMING_SNAKE_CASE , only_cross_attention=_SCREAMING_SNAKE_CASE , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) SCREAMING_SNAKE_CASE_ : Optional[int] = EulerDiscreteScheduler(prediction_type='sample' ) SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='quick_gelu' , projection_dim=512 , ) SCREAMING_SNAKE_CASE_ : List[str] = CLIPTextModel(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) SCREAMING_SNAKE_CASE_ : Dict = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if str(_SCREAMING_SNAKE_CASE ).startswith('mps' ): SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'cpu' SCREAMING_SNAKE_CASE_ : List[str] = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : str = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(**_SCREAMING_SNAKE_CASE ).images SCREAMING_SNAKE_CASE_ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) SCREAMING_SNAKE_CASE_ : Tuple = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-3 ) def UpperCAmelCase ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def UpperCAmelCase ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def UpperCAmelCase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def UpperCAmelCase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def UpperCAmelCase ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def UpperCAmelCase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3e-3 ) def UpperCAmelCase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3e-3 ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] SCREAMING_SNAKE_CASE_ : int = self.get_dummy_components() SCREAMING_SNAKE_CASE_ : Any = self.pipeline_class(**_SCREAMING_SNAKE_CASE ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = 2 SCREAMING_SNAKE_CASE_ : int = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue SCREAMING_SNAKE_CASE_ : int = getattr(_SCREAMING_SNAKE_CASE , scheduler_enum.name ) SCREAMING_SNAKE_CASE_ : Any = scheduler_cls.from_config(pipe.scheduler.config ) SCREAMING_SNAKE_CASE_ : List[str] = pipe(**_SCREAMING_SNAKE_CASE )[0] outputs.append(_SCREAMING_SNAKE_CASE ) assert check_same_shape(_SCREAMING_SNAKE_CASE ) @require_torch_gpu @slow class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[int] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) SCREAMING_SNAKE_CASE_ : Dict = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' SCREAMING_SNAKE_CASE_ : Optional[int] = pipe(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='latent' ).images SCREAMING_SNAKE_CASE_ : str = upscaler( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , num_inference_steps=20 , guidance_scale=0 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , ).images[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) SCREAMING_SNAKE_CASE_ : Dict = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' SCREAMING_SNAKE_CASE_ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) SCREAMING_SNAKE_CASE_ : Optional[int] = upscaler( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , num_inference_steps=20 , guidance_scale=0 , generator=_SCREAMING_SNAKE_CASE , output_type='np' , ).images[0] SCREAMING_SNAKE_CASE_ : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5e-2
718
import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _A ( __magic_name__ , unittest.TestCase): SCREAMING_SNAKE_CASE : Dict = GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE : List[Any] = False SCREAMING_SNAKE_CASE : Union[str, Any] = {'''do_clean_text''': False, '''add_prefix_space''': False} def UpperCAmelCase ( self ): """simple docstring""" super().setUp() # fmt: off SCREAMING_SNAKE_CASE_ : Optional[Any] = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on SCREAMING_SNAKE_CASE_ : Optional[Any] = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 SCREAMING_SNAKE_CASE_ : int = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = 'こんにちは、世界。 \nこんばんは、㔺界。😀' SCREAMING_SNAKE_CASE_ : Optional[Any] = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.get_input_output_texts(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = tokenizer.decode(_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE ) return text, ids def UpperCAmelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self ): """simple docstring""" pass # TODO add if relevant def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE_ : List[Any] = 'こんにちは、世界。 こんばんは、㔺界。' SCREAMING_SNAKE_CASE_ : List[str] = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] SCREAMING_SNAKE_CASE_ : str = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids without special tokens SCREAMING_SNAKE_CASE_ : Optional[Any] = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Testing conversion to ids with special tokens SCREAMING_SNAKE_CASE_ : Optional[Any] = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE_ : str = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] SCREAMING_SNAKE_CASE_ : str = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_tokenizer() # Testing tokenization SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' SCREAMING_SNAKE_CASE_ : str = 'こんにちは、、、、世界。こんばんは、、、、世界。' SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization SCREAMING_SNAKE_CASE_ : int = 'こんにちは、世界。' SCREAMING_SNAKE_CASE_ : List[str] = 'こんばんは、㔺界。😀' SCREAMING_SNAKE_CASE_ : List[str] = 'こんにちは、世界。こんばんは、世界。😀' SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode(prefix_text + input_text ) SCREAMING_SNAKE_CASE_ : int = tokenizer.encode('' , prefix_text=prefix_text + input_text ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode(_SCREAMING_SNAKE_CASE , prefix_text=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = tokenizer.decode(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = tokenizer.decode(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.decode(_SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization SCREAMING_SNAKE_CASE_ : Any = 'こんにちは、世界。' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'こんばんは、㔺界。😀' SCREAMING_SNAKE_CASE_ : int = len(tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) - 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) - 2 SCREAMING_SNAKE_CASE_ : str = [1] + [0] * (len_prefix + len_text + 1) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1] * (len_prefix + len_text + 1) + [0] SCREAMING_SNAKE_CASE_ : Dict = [1] + [1] * (len_prefix) + [0] * (len_text + 1) SCREAMING_SNAKE_CASE_ : Any = tokenizer(prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(_SCREAMING_SNAKE_CASE , prefix_text=_SCREAMING_SNAKE_CASE ).token_type_ids self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.encode('あンいワ' ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode('' , prefix_text='あンいワ' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(_SCREAMING_SNAKE_CASE ) , tokenizer.decode(_SCREAMING_SNAKE_CASE ) ) self.assertEqual(tokenizer.decode(_SCREAMING_SNAKE_CASE ) , tokenizer.decode(_SCREAMING_SNAKE_CASE ) ) self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertNotEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) SCREAMING_SNAKE_CASE_ : Tuple = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] SCREAMING_SNAKE_CASE_ : Tuple = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.batch_encode_plus(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) # fmt: off SCREAMING_SNAKE_CASE_ : List[str] = [[3_5993, 8640, 2_5948, 3_5998, 3_0647, 3_5675, 3_5999, 3_5999], [3_5993, 1_0382, 9868, 3_5998, 3_0646, 9459, 3_0646, 3_5675]] SCREAMING_SNAKE_CASE_ : int = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] SCREAMING_SNAKE_CASE_ : Any = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token.token_type_ids , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token.attention_mask , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.input_ids , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.token_type_ids , _SCREAMING_SNAKE_CASE ) self.assertListEqual(x_token_a.attention_mask , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" pass def UpperCAmelCase ( self ): """simple docstring""" pass
353
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : int = { """configuration_jukebox""": [ """JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """JukeboxConfig""", """JukeboxPriorConfig""", """JukeboxVQVAEConfig""", ], """tokenization_jukebox""": ["""JukeboxTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = [ """JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """JukeboxModel""", """JukeboxPreTrainedModel""", """JukeboxVQVAE""", """JukeboxPrior""", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
295
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 200 ) -> int: lowerCamelCase__ : Dict = [1, 2, 5, 10, 20, 50, 100, 200] lowerCamelCase__ : Union[str, Any] = [0] * (pence + 1) lowerCamelCase__ : List[str] = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_UpperCAmelCase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
295
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "layer_norm" , _SCREAMING_SNAKE_CASE = False , ): super().__init__() _UpperCAmelCase = only_cross_attention _UpperCAmelCase = (num_embeds_ada_norm is not None) and norm_type == """ada_norm_zero""" _UpperCAmelCase = (num_embeds_ada_norm is not None) and norm_type == """ada_norm""" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _UpperCAmelCase = AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: _UpperCAmelCase = AdaLayerNormZero(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Attention( query_dim=_SCREAMING_SNAKE_CASE , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_SCREAMING_SNAKE_CASE , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _UpperCAmelCase = ( AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = Attention( query_dim=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , upcast_attention=_SCREAMING_SNAKE_CASE , ) # is self-attn if encoder_hidden_states is none else: _UpperCAmelCase = None _UpperCAmelCase = None # 3. Feed-forward _UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = FeedForward(_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , activation_fn=_SCREAMING_SNAKE_CASE , final_dropout=_SCREAMING_SNAKE_CASE ) # let chunk size default to None _UpperCAmelCase = None _UpperCAmelCase = 0 def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): # Sets chunk feed-forward _UpperCAmelCase = chunk_size _UpperCAmelCase = dim def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.norma( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=hidden_states.dtype ) else: _UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} _UpperCAmelCase = self.attna( _SCREAMING_SNAKE_CASE , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if self.use_ada_layer_norm_zero: _UpperCAmelCase = gate_msa.unsqueeze(1 ) * attn_output _UpperCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _UpperCAmelCase = ( self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = self.attna( _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = attn_output + hidden_states # 3. Feed-forward _UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: _UpperCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) _UpperCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _UpperCAmelCase = torch.cat( [self.ff(_SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(_SCREAMING_SNAKE_CASE , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _UpperCAmelCase = self.ff(_SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: _UpperCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output _UpperCAmelCase = ff_output + hidden_states return hidden_states class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = False , ): super().__init__() _UpperCAmelCase = int(dim * mult ) _UpperCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": _UpperCAmelCase = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if activation_fn == "gelu-approximate": _UpperCAmelCase = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , approximate="""tanh""" ) elif activation_fn == "geglu": _UpperCAmelCase = GEGLU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif activation_fn == "geglu-approximate": _UpperCAmelCase = ApproximateGELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.ModuleList([] ) # project in self.net.append(_SCREAMING_SNAKE_CASE ) # project dropout self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) ) # project out self.net.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): for module in self.net: _UpperCAmelCase = module(_SCREAMING_SNAKE_CASE ) return hidden_states class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "none" ): super().__init__() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = approximate def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): if gate.device.type != "mps": return F.gelu(_SCREAMING_SNAKE_CASE , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.gelu(_SCREAMING_SNAKE_CASE ) return hidden_states class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): super().__init__() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , dim_out * 2 ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): if gate.device.type != "mps": return F.gelu(_SCREAMING_SNAKE_CASE ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase , _UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_SCREAMING_SNAKE_CASE ) class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): super().__init__() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE ) return x * torch.sigmoid(1.702 * x ) class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): super().__init__() _UpperCAmelCase = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.SiLU() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , embedding_dim * 2 ) _UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase , _UpperCAmelCase = torch.chunk(_SCREAMING_SNAKE_CASE , 2 ) _UpperCAmelCase = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale) + shift return x class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): super().__init__() _UpperCAmelCase = CombinedTimestepLabelEmbeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.SiLU() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , 6 * embedding_dim , bias=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE , eps=1e-6 ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): _UpperCAmelCase = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = emb.chunk(6 , dim=1 ) _UpperCAmelCase = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _A ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1e-5 ): super().__init__() _UpperCAmelCase = num_groups _UpperCAmelCase = eps if act_fn is None: _UpperCAmelCase = None else: _UpperCAmelCase = get_activation(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , out_dim * 2 ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if self.act: _UpperCAmelCase = self.act(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.linear(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = emb[:, :, None, None] _UpperCAmelCase , _UpperCAmelCase = emb.chunk(2 , dim=1 ) _UpperCAmelCase = F.group_norm(_SCREAMING_SNAKE_CASE , self.num_groups , eps=self.eps ) _UpperCAmelCase = x * (1 + scale) + shift return x
721
def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> bool: _UpperCAmelCase = len(snake_case ) + 1 _UpperCAmelCase = len(snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _UpperCAmelCase = [[0 for i in range(snake_case )] for j in range(snake_case )] # since string of zero length match pattern of zero length _UpperCAmelCase = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , snake_case ): _UpperCAmelCase = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , snake_case ): _UpperCAmelCase = dp[0][j - 2] if pattern[j - 1] == """*""" else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , snake_case ): for j in range(1 , snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _UpperCAmelCase = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _UpperCAmelCase = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _UpperCAmelCase = dp[i - 1][j] else: _UpperCAmelCase = 0 else: _UpperCAmelCase = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") a = "aab" a = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
175
0
'''simple docstring''' import random class _UpperCAmelCase : """simple docstring""" @staticmethod def _lowerCAmelCase ( lowerCAmelCase_ ): '''simple docstring''' a_ : int = [ord(snake_case__ ) for i in text] a_ : Optional[int] = [] a_ : int = [] for i in plain: a_ : List[Any] = random.randint(1 , 3_00 ) a_ : List[Any] = (i + k) * k cipher.append(snake_case__ ) key.append(snake_case__ ) return cipher, key @staticmethod def _lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : int = [] for i in range(len(snake_case__ ) ): a_ : List[str] = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(snake_case__ ) ) return "".join(snake_case__ ) if __name__ == "__main__": __snake_case ,__snake_case: List[str] = Onepad().encrypt("Hello") print(c, k) print(Onepad().decrypt(c, k))
577
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def UpperCamelCase ( __lowerCamelCase : Dict ): snake_case : Any = VideoMAEConfig() set_architecture_configs(__lowerCamelCase , __lowerCamelCase ) if "finetuned" not in model_name: snake_case : int = False if "finetuned" in model_name: snake_case : Dict = "huggingface/label-files" if "kinetics" in model_name: snake_case : List[str] = 400 snake_case : List[str] = "kinetics400-id2label.json" elif "ssv2" in model_name: snake_case : List[str] = 174 snake_case : Optional[int] = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) snake_case : Tuple = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) , "r" ) ) snake_case : Dict = {int(__lowerCamelCase ): v for k, v in idalabel.items()} snake_case : Optional[Any] = idalabel snake_case : Tuple = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): if "small" in model_name: snake_case : Dict = 384 snake_case : Optional[Any] = 1536 snake_case : Union[str, Any] = 12 snake_case : Dict = 16 snake_case : List[str] = 12 snake_case : List[str] = 3 snake_case : str = 192 snake_case : Union[str, Any] = 768 elif "large" in model_name: snake_case : Tuple = 1024 snake_case : List[Any] = 4096 snake_case : Any = 24 snake_case : Optional[int] = 16 snake_case : List[str] = 12 snake_case : int = 8 snake_case : Any = 512 snake_case : List[Any] = 2048 elif "huge" in model_name: snake_case : Any = 1280 snake_case : List[str] = 5120 snake_case : Dict = 32 snake_case : int = 16 snake_case : int = 12 snake_case : Tuple = 8 snake_case : str = 640 snake_case : List[Any] = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def UpperCamelCase ( __lowerCamelCase : Any ): if "encoder." in name: snake_case : Dict = name.replace("encoder." , "" ) if "cls_token" in name: snake_case : str = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: snake_case : Tuple = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: snake_case : str = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: snake_case : int = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: snake_case : List[Any] = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: snake_case : Tuple = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: snake_case : Any = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: snake_case : int = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: snake_case : Optional[Any] = name.replace("attn" , "attention.self" ) if "attn" in name: snake_case : List[str] = name.replace("attn" , "attention.attention" ) if "norm1" in name: snake_case : Optional[int] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: snake_case : Any = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: snake_case : Optional[int] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: snake_case : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: snake_case : Optional[int] = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: snake_case : Tuple = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: snake_case : str = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: snake_case : List[Any] = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: snake_case : Dict = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: snake_case : Union[str, Any] = name.replace("head" , "classifier" ) return name def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): for key in orig_state_dict.copy().keys(): snake_case : Optional[Any] = orig_state_dict.pop(__lowerCamelCase ) if key.startswith("encoder." ): snake_case : Optional[Any] = key.replace("encoder." , "" ) if "qkv" in key: snake_case : Tuple = key.split("." ) if key.startswith("decoder.blocks" ): snake_case : str = config.decoder_hidden_size snake_case : Optional[Any] = int(key_split[2] ) snake_case : Tuple = "decoder.decoder_layers." if "weight" in key: snake_case : Optional[Any] = val[:dim, :] snake_case : List[str] = val[dim : dim * 2, :] snake_case : str = val[-dim:, :] else: snake_case : str = config.hidden_size snake_case : str = int(key_split[1] ) snake_case : Union[str, Any] = "videomae.encoder.layer." if "weight" in key: snake_case : int = val[:dim, :] snake_case : int = val[dim : dim * 2, :] snake_case : Union[str, Any] = val[-dim:, :] else: snake_case : Optional[Any] = val return orig_state_dict def UpperCamelCase ( ): snake_case : Union[str, Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) snake_case : Optional[Any] = np.load(__lowerCamelCase ) return list(__lowerCamelCase ) def UpperCamelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ): snake_case : List[str] = get_videomae_config(__lowerCamelCase ) if "finetuned" in model_name: snake_case : List[Any] = VideoMAEForVideoClassification(__lowerCamelCase ) else: snake_case : List[str] = VideoMAEForPreTraining(__lowerCamelCase ) # download original checkpoint, hosted on Google Drive snake_case : List[Any] = "pytorch_model.bin" gdown.cached_download(__lowerCamelCase , __lowerCamelCase , quiet=__lowerCamelCase ) snake_case : str = torch.load(__lowerCamelCase , map_location="cpu" ) if "model" in files: snake_case : List[str] = files["model"] else: snake_case : List[str] = files["module"] snake_case : List[str] = convert_state_dict(__lowerCamelCase , __lowerCamelCase ) model.load_state_dict(__lowerCamelCase ) model.eval() # verify model on basic input snake_case : Tuple = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) snake_case : Dict = prepare_video() snake_case : Dict = image_processor(__lowerCamelCase , return_tensors="pt" ) if "finetuned" not in model_name: snake_case : List[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) snake_case : Union[str, Any] = torch.load(__lowerCamelCase ) snake_case : Any = model(**__lowerCamelCase ) snake_case : List[Any] = outputs.logits snake_case : Any = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": snake_case : List[str] = torch.Size([1, 400] ) snake_case : List[str] = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": snake_case : Dict = torch.Size([1, 174] ) snake_case : Tuple = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": snake_case : Union[str, Any] = torch.Size([1, 1408, 1536] ) snake_case : Union[str, Any] = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": snake_case : str = torch.Size([1, 1408, 1536] ) snake_case : List[Any] = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one snake_case : int = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": snake_case : Optional[int] = torch.Size([1, 1408, 1536] ) snake_case : Tuple = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": snake_case : Dict = torch.Size([1, 400] ) snake_case : Any = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": snake_case : str = torch.Size([1, 400] ) snake_case : List[str] = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": snake_case : int = torch.Size([1, 400] ) snake_case : Tuple = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": snake_case : Optional[Any] = torch.Size([1, 400] ) snake_case : Dict = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": snake_case : List[Any] = torch.Size([1, 1408, 1536] ) snake_case : Union[str, Any] = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": snake_case : Any = torch.Size([1, 174] ) snake_case : str = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": snake_case : Dict = torch.Size([1, 1408, 1536] ) snake_case : List[Any] = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": snake_case : List[Any] = torch.Size([1, 174] ) snake_case : Optional[int] = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __lowerCamelCase , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": snake_case : List[Any] = outputs.loss assert torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(__lowerCamelCase , organization="nielsr" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowerCamelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
204
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class _snake_case ( unittest.TestCase): def __init__( self : Optional[int], __lowercase : int, __lowercase : List[str]=7, __lowercase : List[Any]=3, __lowercase : int=30, __lowercase : str=400, __lowercase : Any=True, __lowercase : int=None, __lowercase : Dict=True, __lowercase : List[Any]=[0.5, 0.5, 0.5], __lowercase : List[Any]=[0.5, 0.5, 0.5], __lowercase : int=True, __lowercase : Optional[Any]=1 / 255, __lowercase : Optional[Any]=True, ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase__ = size if size is not None else {"shortest_edge": 18, "longest_edge": 1333} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_pad def A__ ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def A__ ( self : List[str], __lowercase : int, __lowercase : List[Any]=False ): if not batched: lowercase__ = image_inputs[0] if isinstance(__lowercase, Image.Image ): lowercase__ , lowercase__ = image.size else: lowercase__ , lowercase__ = image.shape[1], image.shape[2] if w < h: lowercase__ = int(self.size["shortest_edge"] * h / w ) lowercase__ = self.size["shortest_edge"] elif w > h: lowercase__ = self.size["shortest_edge"] lowercase__ = int(self.size["shortest_edge"] * w / h ) else: lowercase__ = self.size["shortest_edge"] lowercase__ = self.size["shortest_edge"] else: lowercase__ = [] for image in image_inputs: lowercase__ , lowercase__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase__ = max(__lowercase, key=lambda __lowercase : item[0] )[0] lowercase__ = max(__lowercase, key=lambda __lowercase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _snake_case ( lowercase__ , unittest.TestCase): UpperCamelCase__ : Any =ConditionalDetrImageProcessor if is_vision_available() else None def A__ ( self : List[str] ): lowercase__ = ConditionalDetrImageProcessingTester(self ) @property def A__ ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self : Optional[Any] ): lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase, "image_mean" ) ) self.assertTrue(hasattr(__lowercase, "image_std" ) ) self.assertTrue(hasattr(__lowercase, "do_normalize" ) ) self.assertTrue(hasattr(__lowercase, "do_resize" ) ) self.assertTrue(hasattr(__lowercase, "size" ) ) def A__ ( self : Any ): lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {"shortest_edge": 18, "longest_edge": 1333} ) self.assertEqual(image_processor.do_pad, __lowercase ) lowercase__ = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=__lowercase ) self.assertEqual(image_processor.size, {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad, __lowercase ) def A__ ( self : List[str] ): pass def A__ ( self : List[Any] ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(__lowercase, batched=__lowercase ) lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def A__ ( self : List[str] ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(__lowercase, batched=__lowercase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def A__ ( self : List[Any] ): # Initialize image_processing lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester, equal_resolution=__lowercase, torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase, torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0], return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(__lowercase ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched lowercase__ = image_processing(__lowercase, return_tensors="pt" ).pixel_values lowercase__ , lowercase__ = self.image_processor_tester.get_expected_values(__lowercase, batched=__lowercase ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def A__ ( self : int ): # prepare image and target lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt", "r" ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = {"image_id": 3_9769, "annotations": target} # encode them lowercase__ = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) lowercase__ = image_processing(images=__lowercase, annotations=__lowercase, return_tensors="pt" ) # verify pixel values lowercase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape, __lowercase ) lowercase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], __lowercase, atol=1e-4 ) ) # verify area lowercase__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], __lowercase ) ) # verify boxes lowercase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape, __lowercase ) lowercase__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], __lowercase, atol=1e-3 ) ) # verify image_id lowercase__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], __lowercase ) ) # verify is_crowd lowercase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], __lowercase ) ) # verify class_labels lowercase__ = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], __lowercase ) ) # verify orig_size lowercase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], __lowercase ) ) # verify size lowercase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], __lowercase ) ) @slow def A__ ( self : Optional[int] ): # prepare image, target and masks_path lowercase__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt", "r" ) as f: lowercase__ = json.loads(f.read() ) lowercase__ = {"file_name": "000000039769.png", "image_id": 3_9769, "segments_info": target} lowercase__ = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowercase__ = ConditionalDetrImageProcessor(format="coco_panoptic" ) lowercase__ = image_processing(images=__lowercase, annotations=__lowercase, masks_path=__lowercase, return_tensors="pt" ) # verify pixel values lowercase__ = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["pixel_values"].shape, __lowercase ) lowercase__ = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3], __lowercase, atol=1e-4 ) ) # verify area lowercase__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"], __lowercase ) ) # verify boxes lowercase__ = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape, __lowercase ) lowercase__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0], __lowercase, atol=1e-3 ) ) # verify image_id lowercase__ = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"], __lowercase ) ) # verify is_crowd lowercase__ = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"], __lowercase ) ) # verify class_labels lowercase__ = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"], __lowercase ) ) # verify masks lowercase__ = 82_2873 self.assertEqual(encoding["labels"][0]["masks"].sum().item(), __lowercase ) # verify orig_size lowercase__ = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"], __lowercase ) ) # verify size lowercase__ = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"], __lowercase ) )
37
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
37
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } lowerCamelCase_ = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class _SCREAMING_SNAKE_CASE( A__ ): SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = SqueezeBertTokenizer def __init__( self ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__="[UNK]" ,SCREAMING_SNAKE_CASE__="[SEP]" ,SCREAMING_SNAKE_CASE__="[PAD]" ,SCREAMING_SNAKE_CASE__="[CLS]" ,SCREAMING_SNAKE_CASE__="[MASK]" ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[int]: """simple docstring""" super().__init__( lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,tokenize_chinese_chars=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ,**lowerCamelCase__ ,) __SCREAMING_SNAKE_CASE :List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' ,lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,lowerCamelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE :Union[str, Any] = getattr(lowerCamelCase__ ,normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE :List[Any] = do_lower_case __SCREAMING_SNAKE_CASE :Optional[Any] = strip_accents __SCREAMING_SNAKE_CASE :str = tokenize_chinese_chars __SCREAMING_SNAKE_CASE :Any = normalizer_class(**lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Any = do_lower_case def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self._tokenizer.model.save(lowerCamelCase__ ,name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
498
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class lowerCamelCase (unittest.TestCase ): """simple docstring""" lowerCamelCase__ = ViTImageProcessor if is_vision_available() else None @property def __A ( self : Dict ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE_ = (3, 32, 128) SCREAMING_SNAKE_CASE_ = tempfile.mkdtemp() # fmt: off SCREAMING_SNAKE_CASE_ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on SCREAMING_SNAKE_CASE_ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) SCREAMING_SNAKE_CASE_ = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 128}, } SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , __magic_name__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__magic_name__ , __magic_name__ ) def __A ( self : int , **__magic_name__ : List[str] ) -> Dict: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : List[str] , **__magic_name__ : Optional[Any] ) -> Dict: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__magic_name__ ) def __A ( self : str ) -> Any: shutil.rmtree(self.tmpdirname ) def __A ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE_ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) SCREAMING_SNAKE_CASE_ = Image.fromarray(np.moveaxis(__magic_name__ , 0 , -1 ) ) return image_input def __A ( self : Any ) -> str: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__magic_name__ ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : Dict ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) processor.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) SCREAMING_SNAKE_CASE_ = self.get_image_processor(do_normalize=__magic_name__ , padding_value=1.0 ) SCREAMING_SNAKE_CASE_ = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__magic_name__ , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __magic_name__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __magic_name__ ) def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = image_processor(__magic_name__ , return_tensors="np" ) SCREAMING_SNAKE_CASE_ = processor(images=__magic_name__ , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "test" SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer(__magic_name__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : List[str] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = "test" SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(__magic_name__ ): processor() def __A ( self : List[Any] ) -> int: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] SCREAMING_SNAKE_CASE_ = processor.char_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = tokenizer.batch_decode(__magic_name__ ) SCREAMING_SNAKE_CASE_ = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(__magic_name__ , __magic_name__ ) def __A ( self : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = self.prepare_image_inputs() SCREAMING_SNAKE_CASE_ = processor(text=__magic_name__ , images=__magic_name__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self : str ) -> Any: SCREAMING_SNAKE_CASE_ = self.get_image_processor() SCREAMING_SNAKE_CASE_ = self.get_tokenizer() SCREAMING_SNAKE_CASE_ = MgpstrProcessor(tokenizer=__magic_name__ , image_processor=__magic_name__ ) SCREAMING_SNAKE_CASE_ = torch.randn(1 , 27 , 38 ) SCREAMING_SNAKE_CASE_ = torch.randn(1 , 27 , 50_257 ) SCREAMING_SNAKE_CASE_ = torch.randn(1 , 27 , 30_522 ) SCREAMING_SNAKE_CASE_ = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
709
import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask A : Any = logging.getLogger(__name__) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : List[Any] , __magic_name__ : Optional[Any]=-1 ) -> Optional[Any]: # in NER datasets, the last column is usually reserved for NER label SCREAMING_SNAKE_CASE_ = label_idx def __A ( self : Optional[Any] , __magic_name__ : List[Any] , __magic_name__ : Union[Split, str] ) -> List[InputExample]: if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = mode.value SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , F'''{mode}.txt''' ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [] with open(__magic_name__ , encoding="utf-8" ) as f: SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for line in f: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__magic_name__ , labels=__magic_name__ ) ) guid_index += 1 SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] else: SCREAMING_SNAKE_CASE_ = line.split(" " ) words.append(splits[0] ) if len(__magic_name__ ) > 1: labels.append(splits[self.label_idx].replace("\n" , "" ) ) else: # Examples could have no label for mode = "test" labels.append("O" ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__magic_name__ , labels=__magic_name__ ) ) return examples def __A ( self : Tuple , __magic_name__ : TextIO , __magic_name__ : TextIO , __magic_name__ : List ) -> List[Any]: SCREAMING_SNAKE_CASE_ = 0 for line in test_input_reader: if line.startswith("-DOCSTART-" ) or line == "" or line == "\n": writer.write(__magic_name__ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: SCREAMING_SNAKE_CASE_ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n" writer.write(__magic_name__ ) else: logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] ) def __A ( self : Optional[int] , __magic_name__ : str ) -> List[str]: if path: with open(__magic_name__ , "r" ) as f: SCREAMING_SNAKE_CASE_ = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE_ = ["O"] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self : Optional[int] ) -> str: # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def __A ( self : Any , __magic_name__ : str ) -> List[str]: if path: with open(__magic_name__ , "r" ) as f: SCREAMING_SNAKE_CASE_ = f.read().splitlines() if "O" not in labels: SCREAMING_SNAKE_CASE_ = ["O"] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __A ( self : str , __magic_name__ : Optional[Any] , __magic_name__ : Union[Split, str] ) -> List[InputExample]: if isinstance(__magic_name__ , __magic_name__ ): SCREAMING_SNAKE_CASE_ = mode.value SCREAMING_SNAKE_CASE_ = os.path.join(__magic_name__ , F'''{mode}.txt''' ) SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = [] with open(__magic_name__ , encoding="utf-8" ) as f: for sentence in parse_incr(__magic_name__ ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] for token in sentence: words.append(token["form"] ) labels.append(token["upos"] ) assert len(__magic_name__ ) == len(__magic_name__ ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__magic_name__ , labels=__magic_name__ ) ) guid_index += 1 return examples def __A ( self : Optional[int] , __magic_name__ : TextIO , __magic_name__ : TextIO , __magic_name__ : List ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = 0 for sentence in parse_incr(__magic_name__ ): SCREAMING_SNAKE_CASE_ = preds_list[example_id] SCREAMING_SNAKE_CASE_ = "" for token in sentence: out += F'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ''' out += "\n" writer.write(__magic_name__ ) example_id += 1 def __A ( self : Optional[int] , __magic_name__ : str ) -> List[str]: if path: with open(__magic_name__ , "r" ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
356
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class __lowercase : _a = BlenderbotConfig _a = {} _a = """gelu""" def __init__( self , UpperCamelCase , UpperCamelCase=13 , UpperCamelCase=7 , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=99 , UpperCamelCase=32 , UpperCamelCase=2 , UpperCamelCase=4 , UpperCamelCase=37 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=20 , UpperCamelCase=2 , UpperCamelCase=1 , UpperCamelCase=0 , ) -> List[str]: __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __a = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __a = tf.concat([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_blenderbot_inputs_dict(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return config, inputs_dict def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: __a = TFBlenderbotModel(config=UpperCamelCase ).get_decoder() __a = inputs_dict['input_ids'] __a = input_ids[:1, :] __a = inputs_dict['attention_mask'][:1, :] __a = inputs_dict['head_mask'] __a = 1 # first forward pass __a = model(UpperCamelCase , attention_mask=UpperCamelCase , head_mask=UpperCamelCase , use_cache=UpperCamelCase ) __a , __a = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __a = ids_tensor((self.batch_size, 3) , config.vocab_size ) __a = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __a = tf.concat([input_ids, next_tokens] , axis=-1 ) __a = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __a = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] __a = model(UpperCamelCase , attention_mask=UpperCamelCase , past_key_values=UpperCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __a = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __a = output_from_no_past[:, -3:, random_slice_idx] __a = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase , UpperCamelCase , rtol=1e-3 ) def SCREAMING_SNAKE_CASE ( a_ : List[Any] , a_ : Dict , a_ : str , a_ : List[str]=None , a_ : List[Any]=None , a_ : str=None , a_ : Tuple=None , a_ : List[Any]=None , ): if attention_mask is None: __a = tf.cast(tf.math.not_equal(a_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __a = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __a = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __a = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( __magic_name__ , __magic_name__ , unittest.TestCase ): _a = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () _a = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () _a = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) _a = True _a = False _a = False def UpperCamelCase__ ( self ) -> Optional[Any]: __a = TFBlenderbotModelTester(self ) __a = ConfigTester(self , config_class=UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> int: __a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase ) @require_tokenizers @require_tf class __lowercase ( unittest.TestCase ): _a = ["""My friends are cool but they eat too many carbs."""] _a = """facebook/blenderbot-400M-distill""" @cached_property def UpperCamelCase__ ( self ) -> Any: return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCamelCase__ ( self ) -> Tuple: __a = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase__ ( self ) -> int: __a = self.tokenizer(self.src_text , return_tensors='tf' ) __a = self.model.generate( model_inputs.input_ids , ) __a = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
539
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): _a = StableUnCLIPImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def UpperCamelCase__ ( self ) -> List[str]: __a = 32 __a = embedder_hidden_size # image encoding components __a = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __a = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __a = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) __a = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __a = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) __a = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __a = AutoencoderKL() __a = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=0 , UpperCamelCase=True ) -> Dict: if str(UpperCamelCase ).startswith('mps' ): __a = torch.manual_seed(UpperCamelCase ) else: __a = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if pil_image: __a = input_image * 0.5 + 0.5 __a = input_image.clamp(0 , 1 ) __a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a = DiffusionPipeline.numpy_to_pil(UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self ) -> int: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableUnCLIPImgaImgPipeline(**UpperCamelCase ) __a = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = self.get_dummy_inputs(UpperCamelCase ) inputs.update({'image_embeds': None} ) __a = sd_pipe(**UpperCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) -> Any: __a = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> str: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = pipe( UpperCamelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
539
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _lowercase ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Optional[Any] ): """simple docstring""" __snake_case : Any =XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) __snake_case : int =torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house __snake_case : int =torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim __snake_case : List[Any] =torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __snake_case : Any =model(a )['''last_hidden_state'''].detach() self.assertEqual(output.shape , a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , a , atol=1e-3 ) ) @slow def _UpperCamelCase ( self : Dict ): """simple docstring""" __snake_case : Union[str, Any] =XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) __snake_case : Union[str, Any] =torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house __snake_case : Optional[int] =torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim __snake_case : str =torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __snake_case : Dict =model(a )['''last_hidden_state'''].detach() self.assertEqual(output.shape , a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , a , atol=1e-3 ) )
716
"""simple docstring""" def __lowercase ( a : str , a : str ) -> str: __snake_case : int =len(a ) __snake_case : int =len(a ) __snake_case : int =( first_str_length if first_str_length > second_str_length else second_str_length ) __snake_case : list =[] for char_count in range(a ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(a ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
497
0